1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/property.h> 25 #include <linux/export.h> 26 #include <linux/sched/rt.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/ioport.h> 31 #include <linux/acpi.h> 32 #include <linux/highmem.h> 33 #include <linux/idr.h> 34 #include <linux/platform_data/x86/apple.h> 35 #include <linux/ptp_clock_kernel.h> 36 #include <linux/percpu.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 #define spi_pcpu_stats_totalize(ret, in, field) \ 121 do { \ 122 int i; \ 123 ret = 0; \ 124 for_each_possible_cpu(i) { \ 125 const struct spi_statistics *pcpu_stats; \ 126 u64 inc; \ 127 unsigned int start; \ 128 pcpu_stats = per_cpu_ptr(in, i); \ 129 do { \ 130 start = u64_stats_fetch_begin_irq( \ 131 &pcpu_stats->syncp); \ 132 inc = u64_stats_read(&pcpu_stats->field); \ 133 } while (u64_stats_fetch_retry_irq( \ 134 &pcpu_stats->syncp, start)); \ 135 ret += inc; \ 136 } \ 137 } while (0) 138 139 #define SPI_STATISTICS_ATTRS(field, file) \ 140 static ssize_t spi_controller_##field##_show(struct device *dev, \ 141 struct device_attribute *attr, \ 142 char *buf) \ 143 { \ 144 struct spi_controller *ctlr = container_of(dev, \ 145 struct spi_controller, dev); \ 146 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 147 } \ 148 static struct device_attribute dev_attr_spi_controller_##field = { \ 149 .attr = { .name = file, .mode = 0444 }, \ 150 .show = spi_controller_##field##_show, \ 151 }; \ 152 static ssize_t spi_device_##field##_show(struct device *dev, \ 153 struct device_attribute *attr, \ 154 char *buf) \ 155 { \ 156 struct spi_device *spi = to_spi_device(dev); \ 157 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 158 } \ 159 static struct device_attribute dev_attr_spi_device_##field = { \ 160 .attr = { .name = file, .mode = 0444 }, \ 161 .show = spi_device_##field##_show, \ 162 } 163 164 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 166 char *buf) \ 167 { \ 168 ssize_t len; \ 169 u64 val; \ 170 spi_pcpu_stats_totalize(val, stat, field); \ 171 len = sysfs_emit(buf, "%llu\n", val); \ 172 return len; \ 173 } \ 174 SPI_STATISTICS_ATTRS(name, file) 175 176 #define SPI_STATISTICS_SHOW(field) \ 177 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 178 field) 179 180 SPI_STATISTICS_SHOW(messages); 181 SPI_STATISTICS_SHOW(transfers); 182 SPI_STATISTICS_SHOW(errors); 183 SPI_STATISTICS_SHOW(timedout); 184 185 SPI_STATISTICS_SHOW(spi_sync); 186 SPI_STATISTICS_SHOW(spi_sync_immediate); 187 SPI_STATISTICS_SHOW(spi_async); 188 189 SPI_STATISTICS_SHOW(bytes); 190 SPI_STATISTICS_SHOW(bytes_rx); 191 SPI_STATISTICS_SHOW(bytes_tx); 192 193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 194 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 195 "transfer_bytes_histo_" number, \ 196 transfer_bytes_histo[index]) 197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 214 215 SPI_STATISTICS_SHOW(transfers_split_maxsize); 216 217 static struct attribute *spi_dev_attrs[] = { 218 &dev_attr_modalias.attr, 219 &dev_attr_driver_override.attr, 220 NULL, 221 }; 222 223 static const struct attribute_group spi_dev_group = { 224 .attrs = spi_dev_attrs, 225 }; 226 227 static struct attribute *spi_device_statistics_attrs[] = { 228 &dev_attr_spi_device_messages.attr, 229 &dev_attr_spi_device_transfers.attr, 230 &dev_attr_spi_device_errors.attr, 231 &dev_attr_spi_device_timedout.attr, 232 &dev_attr_spi_device_spi_sync.attr, 233 &dev_attr_spi_device_spi_sync_immediate.attr, 234 &dev_attr_spi_device_spi_async.attr, 235 &dev_attr_spi_device_bytes.attr, 236 &dev_attr_spi_device_bytes_rx.attr, 237 &dev_attr_spi_device_bytes_tx.attr, 238 &dev_attr_spi_device_transfer_bytes_histo0.attr, 239 &dev_attr_spi_device_transfer_bytes_histo1.attr, 240 &dev_attr_spi_device_transfer_bytes_histo2.attr, 241 &dev_attr_spi_device_transfer_bytes_histo3.attr, 242 &dev_attr_spi_device_transfer_bytes_histo4.attr, 243 &dev_attr_spi_device_transfer_bytes_histo5.attr, 244 &dev_attr_spi_device_transfer_bytes_histo6.attr, 245 &dev_attr_spi_device_transfer_bytes_histo7.attr, 246 &dev_attr_spi_device_transfer_bytes_histo8.attr, 247 &dev_attr_spi_device_transfer_bytes_histo9.attr, 248 &dev_attr_spi_device_transfer_bytes_histo10.attr, 249 &dev_attr_spi_device_transfer_bytes_histo11.attr, 250 &dev_attr_spi_device_transfer_bytes_histo12.attr, 251 &dev_attr_spi_device_transfer_bytes_histo13.attr, 252 &dev_attr_spi_device_transfer_bytes_histo14.attr, 253 &dev_attr_spi_device_transfer_bytes_histo15.attr, 254 &dev_attr_spi_device_transfer_bytes_histo16.attr, 255 &dev_attr_spi_device_transfers_split_maxsize.attr, 256 NULL, 257 }; 258 259 static const struct attribute_group spi_device_statistics_group = { 260 .name = "statistics", 261 .attrs = spi_device_statistics_attrs, 262 }; 263 264 static const struct attribute_group *spi_dev_groups[] = { 265 &spi_dev_group, 266 &spi_device_statistics_group, 267 NULL, 268 }; 269 270 static struct attribute *spi_controller_statistics_attrs[] = { 271 &dev_attr_spi_controller_messages.attr, 272 &dev_attr_spi_controller_transfers.attr, 273 &dev_attr_spi_controller_errors.attr, 274 &dev_attr_spi_controller_timedout.attr, 275 &dev_attr_spi_controller_spi_sync.attr, 276 &dev_attr_spi_controller_spi_sync_immediate.attr, 277 &dev_attr_spi_controller_spi_async.attr, 278 &dev_attr_spi_controller_bytes.attr, 279 &dev_attr_spi_controller_bytes_rx.attr, 280 &dev_attr_spi_controller_bytes_tx.attr, 281 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 298 &dev_attr_spi_controller_transfers_split_maxsize.attr, 299 NULL, 300 }; 301 302 static const struct attribute_group spi_controller_statistics_group = { 303 .name = "statistics", 304 .attrs = spi_controller_statistics_attrs, 305 }; 306 307 static const struct attribute_group *spi_master_groups[] = { 308 &spi_controller_statistics_group, 309 NULL, 310 }; 311 312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 313 struct spi_transfer *xfer, 314 struct spi_controller *ctlr) 315 { 316 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 317 struct spi_statistics *stats; 318 319 if (l2len < 0) 320 l2len = 0; 321 322 get_cpu(); 323 stats = this_cpu_ptr(pcpu_stats); 324 u64_stats_update_begin(&stats->syncp); 325 326 u64_stats_inc(&stats->transfers); 327 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 328 329 u64_stats_add(&stats->bytes, xfer->len); 330 if ((xfer->tx_buf) && 331 (xfer->tx_buf != ctlr->dummy_tx)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if ((xfer->rx_buf) && 334 (xfer->rx_buf != ctlr->dummy_rx)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 static int spi_match_device(struct device *dev, struct device_driver *drv) 364 { 365 const struct spi_device *spi = to_spi_device(dev); 366 const struct spi_driver *sdrv = to_spi_driver(drv); 367 368 /* Check override first, and if set, only use the named driver */ 369 if (spi->driver_override) 370 return strcmp(spi->driver_override, drv->name) == 0; 371 372 /* Attempt an OF style match */ 373 if (of_driver_match_device(dev, drv)) 374 return 1; 375 376 /* Then try ACPI */ 377 if (acpi_driver_match_device(dev, drv)) 378 return 1; 379 380 if (sdrv->id_table) 381 return !!spi_match_id(sdrv->id_table, spi->modalias); 382 383 return strcmp(spi->modalias, drv->name) == 0; 384 } 385 386 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 387 { 388 const struct spi_device *spi = to_spi_device(dev); 389 int rc; 390 391 rc = acpi_device_uevent_modalias(dev, env); 392 if (rc != -ENODEV) 393 return rc; 394 395 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 396 } 397 398 static int spi_probe(struct device *dev) 399 { 400 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 401 struct spi_device *spi = to_spi_device(dev); 402 int ret; 403 404 ret = of_clk_set_defaults(dev->of_node, false); 405 if (ret) 406 return ret; 407 408 if (dev->of_node) { 409 spi->irq = of_irq_get(dev->of_node, 0); 410 if (spi->irq == -EPROBE_DEFER) 411 return -EPROBE_DEFER; 412 if (spi->irq < 0) 413 spi->irq = 0; 414 } 415 416 ret = dev_pm_domain_attach(dev, true); 417 if (ret) 418 return ret; 419 420 if (sdrv->probe) { 421 ret = sdrv->probe(spi); 422 if (ret) 423 dev_pm_domain_detach(dev, true); 424 } 425 426 return ret; 427 } 428 429 static void spi_remove(struct device *dev) 430 { 431 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 432 433 if (sdrv->remove) 434 sdrv->remove(to_spi_device(dev)); 435 436 dev_pm_domain_detach(dev, true); 437 } 438 439 static void spi_shutdown(struct device *dev) 440 { 441 if (dev->driver) { 442 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 443 444 if (sdrv->shutdown) 445 sdrv->shutdown(to_spi_device(dev)); 446 } 447 } 448 449 struct bus_type spi_bus_type = { 450 .name = "spi", 451 .dev_groups = spi_dev_groups, 452 .match = spi_match_device, 453 .uevent = spi_uevent, 454 .probe = spi_probe, 455 .remove = spi_remove, 456 .shutdown = spi_shutdown, 457 }; 458 EXPORT_SYMBOL_GPL(spi_bus_type); 459 460 /** 461 * __spi_register_driver - register a SPI driver 462 * @owner: owner module of the driver to register 463 * @sdrv: the driver to register 464 * Context: can sleep 465 * 466 * Return: zero on success, else a negative error code. 467 */ 468 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 469 { 470 sdrv->driver.owner = owner; 471 sdrv->driver.bus = &spi_bus_type; 472 473 /* 474 * For Really Good Reasons we use spi: modaliases not of: 475 * modaliases for DT so module autoloading won't work if we 476 * don't have a spi_device_id as well as a compatible string. 477 */ 478 if (sdrv->driver.of_match_table) { 479 const struct of_device_id *of_id; 480 481 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 482 of_id++) { 483 const char *of_name; 484 485 /* Strip off any vendor prefix */ 486 of_name = strnchr(of_id->compatible, 487 sizeof(of_id->compatible), ','); 488 if (of_name) 489 of_name++; 490 else 491 of_name = of_id->compatible; 492 493 if (sdrv->id_table) { 494 const struct spi_device_id *spi_id; 495 496 spi_id = spi_match_id(sdrv->id_table, of_name); 497 if (spi_id) 498 continue; 499 } else { 500 if (strcmp(sdrv->driver.name, of_name) == 0) 501 continue; 502 } 503 504 pr_warn("SPI driver %s has no spi_device_id for %s\n", 505 sdrv->driver.name, of_id->compatible); 506 } 507 } 508 509 return driver_register(&sdrv->driver); 510 } 511 EXPORT_SYMBOL_GPL(__spi_register_driver); 512 513 /*-------------------------------------------------------------------------*/ 514 515 /* 516 * SPI devices should normally not be created by SPI device drivers; that 517 * would make them board-specific. Similarly with SPI controller drivers. 518 * Device registration normally goes into like arch/.../mach.../board-YYY.c 519 * with other readonly (flashable) information about mainboard devices. 520 */ 521 522 struct boardinfo { 523 struct list_head list; 524 struct spi_board_info board_info; 525 }; 526 527 static LIST_HEAD(board_list); 528 static LIST_HEAD(spi_controller_list); 529 530 /* 531 * Used to protect add/del operation for board_info list and 532 * spi_controller list, and their matching process also used 533 * to protect object of type struct idr. 534 */ 535 static DEFINE_MUTEX(board_lock); 536 537 /** 538 * spi_alloc_device - Allocate a new SPI device 539 * @ctlr: Controller to which device is connected 540 * Context: can sleep 541 * 542 * Allows a driver to allocate and initialize a spi_device without 543 * registering it immediately. This allows a driver to directly 544 * fill the spi_device with device parameters before calling 545 * spi_add_device() on it. 546 * 547 * Caller is responsible to call spi_add_device() on the returned 548 * spi_device structure to add it to the SPI controller. If the caller 549 * needs to discard the spi_device without adding it, then it should 550 * call spi_dev_put() on it. 551 * 552 * Return: a pointer to the new device, or NULL. 553 */ 554 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 555 { 556 struct spi_device *spi; 557 558 if (!spi_controller_get(ctlr)) 559 return NULL; 560 561 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 562 if (!spi) { 563 spi_controller_put(ctlr); 564 return NULL; 565 } 566 567 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 568 if (!spi->pcpu_statistics) { 569 kfree(spi); 570 spi_controller_put(ctlr); 571 return NULL; 572 } 573 574 spi->master = spi->controller = ctlr; 575 spi->dev.parent = &ctlr->dev; 576 spi->dev.bus = &spi_bus_type; 577 spi->dev.release = spidev_release; 578 spi->mode = ctlr->buswidth_override_bits; 579 580 device_initialize(&spi->dev); 581 return spi; 582 } 583 EXPORT_SYMBOL_GPL(spi_alloc_device); 584 585 static void spi_dev_set_name(struct spi_device *spi) 586 { 587 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 588 589 if (adev) { 590 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 591 return; 592 } 593 594 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 595 spi->chip_select); 596 } 597 598 static int spi_dev_check(struct device *dev, void *data) 599 { 600 struct spi_device *spi = to_spi_device(dev); 601 struct spi_device *new_spi = data; 602 603 if (spi->controller == new_spi->controller && 604 spi->chip_select == new_spi->chip_select) 605 return -EBUSY; 606 return 0; 607 } 608 609 static void spi_cleanup(struct spi_device *spi) 610 { 611 if (spi->controller->cleanup) 612 spi->controller->cleanup(spi); 613 } 614 615 static int __spi_add_device(struct spi_device *spi) 616 { 617 struct spi_controller *ctlr = spi->controller; 618 struct device *dev = ctlr->dev.parent; 619 int status; 620 621 /* 622 * We need to make sure there's no other device with this 623 * chipselect **BEFORE** we call setup(), else we'll trash 624 * its configuration. 625 */ 626 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 627 if (status) { 628 dev_err(dev, "chipselect %d already in use\n", 629 spi->chip_select); 630 return status; 631 } 632 633 /* Controller may unregister concurrently */ 634 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 635 !device_is_registered(&ctlr->dev)) { 636 return -ENODEV; 637 } 638 639 if (ctlr->cs_gpiods) 640 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 641 642 /* 643 * Drivers may modify this initial i/o setup, but will 644 * normally rely on the device being setup. Devices 645 * using SPI_CS_HIGH can't coexist well otherwise... 646 */ 647 status = spi_setup(spi); 648 if (status < 0) { 649 dev_err(dev, "can't setup %s, status %d\n", 650 dev_name(&spi->dev), status); 651 return status; 652 } 653 654 /* Device may be bound to an active driver when this returns */ 655 status = device_add(&spi->dev); 656 if (status < 0) { 657 dev_err(dev, "can't add %s, status %d\n", 658 dev_name(&spi->dev), status); 659 spi_cleanup(spi); 660 } else { 661 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 662 } 663 664 return status; 665 } 666 667 /** 668 * spi_add_device - Add spi_device allocated with spi_alloc_device 669 * @spi: spi_device to register 670 * 671 * Companion function to spi_alloc_device. Devices allocated with 672 * spi_alloc_device can be added onto the spi bus with this function. 673 * 674 * Return: 0 on success; negative errno on failure 675 */ 676 int spi_add_device(struct spi_device *spi) 677 { 678 struct spi_controller *ctlr = spi->controller; 679 struct device *dev = ctlr->dev.parent; 680 int status; 681 682 /* Chipselects are numbered 0..max; validate. */ 683 if (spi->chip_select >= ctlr->num_chipselect) { 684 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 685 ctlr->num_chipselect); 686 return -EINVAL; 687 } 688 689 /* Set the bus ID string */ 690 spi_dev_set_name(spi); 691 692 mutex_lock(&ctlr->add_lock); 693 status = __spi_add_device(spi); 694 mutex_unlock(&ctlr->add_lock); 695 return status; 696 } 697 EXPORT_SYMBOL_GPL(spi_add_device); 698 699 static int spi_add_device_locked(struct spi_device *spi) 700 { 701 struct spi_controller *ctlr = spi->controller; 702 struct device *dev = ctlr->dev.parent; 703 704 /* Chipselects are numbered 0..max; validate. */ 705 if (spi->chip_select >= ctlr->num_chipselect) { 706 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 707 ctlr->num_chipselect); 708 return -EINVAL; 709 } 710 711 /* Set the bus ID string */ 712 spi_dev_set_name(spi); 713 714 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 715 return __spi_add_device(spi); 716 } 717 718 /** 719 * spi_new_device - instantiate one new SPI device 720 * @ctlr: Controller to which device is connected 721 * @chip: Describes the SPI device 722 * Context: can sleep 723 * 724 * On typical mainboards, this is purely internal; and it's not needed 725 * after board init creates the hard-wired devices. Some development 726 * platforms may not be able to use spi_register_board_info though, and 727 * this is exported so that for example a USB or parport based adapter 728 * driver could add devices (which it would learn about out-of-band). 729 * 730 * Return: the new device, or NULL. 731 */ 732 struct spi_device *spi_new_device(struct spi_controller *ctlr, 733 struct spi_board_info *chip) 734 { 735 struct spi_device *proxy; 736 int status; 737 738 /* 739 * NOTE: caller did any chip->bus_num checks necessary. 740 * 741 * Also, unless we change the return value convention to use 742 * error-or-pointer (not NULL-or-pointer), troubleshootability 743 * suggests syslogged diagnostics are best here (ugh). 744 */ 745 746 proxy = spi_alloc_device(ctlr); 747 if (!proxy) 748 return NULL; 749 750 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 751 752 proxy->chip_select = chip->chip_select; 753 proxy->max_speed_hz = chip->max_speed_hz; 754 proxy->mode = chip->mode; 755 proxy->irq = chip->irq; 756 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 757 proxy->dev.platform_data = (void *) chip->platform_data; 758 proxy->controller_data = chip->controller_data; 759 proxy->controller_state = NULL; 760 761 if (chip->swnode) { 762 status = device_add_software_node(&proxy->dev, chip->swnode); 763 if (status) { 764 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 765 chip->modalias, status); 766 goto err_dev_put; 767 } 768 } 769 770 status = spi_add_device(proxy); 771 if (status < 0) 772 goto err_dev_put; 773 774 return proxy; 775 776 err_dev_put: 777 device_remove_software_node(&proxy->dev); 778 spi_dev_put(proxy); 779 return NULL; 780 } 781 EXPORT_SYMBOL_GPL(spi_new_device); 782 783 /** 784 * spi_unregister_device - unregister a single SPI device 785 * @spi: spi_device to unregister 786 * 787 * Start making the passed SPI device vanish. Normally this would be handled 788 * by spi_unregister_controller(). 789 */ 790 void spi_unregister_device(struct spi_device *spi) 791 { 792 if (!spi) 793 return; 794 795 if (spi->dev.of_node) { 796 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 797 of_node_put(spi->dev.of_node); 798 } 799 if (ACPI_COMPANION(&spi->dev)) 800 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 801 device_remove_software_node(&spi->dev); 802 device_del(&spi->dev); 803 spi_cleanup(spi); 804 put_device(&spi->dev); 805 } 806 EXPORT_SYMBOL_GPL(spi_unregister_device); 807 808 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 809 struct spi_board_info *bi) 810 { 811 struct spi_device *dev; 812 813 if (ctlr->bus_num != bi->bus_num) 814 return; 815 816 dev = spi_new_device(ctlr, bi); 817 if (!dev) 818 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 819 bi->modalias); 820 } 821 822 /** 823 * spi_register_board_info - register SPI devices for a given board 824 * @info: array of chip descriptors 825 * @n: how many descriptors are provided 826 * Context: can sleep 827 * 828 * Board-specific early init code calls this (probably during arch_initcall) 829 * with segments of the SPI device table. Any device nodes are created later, 830 * after the relevant parent SPI controller (bus_num) is defined. We keep 831 * this table of devices forever, so that reloading a controller driver will 832 * not make Linux forget about these hard-wired devices. 833 * 834 * Other code can also call this, e.g. a particular add-on board might provide 835 * SPI devices through its expansion connector, so code initializing that board 836 * would naturally declare its SPI devices. 837 * 838 * The board info passed can safely be __initdata ... but be careful of 839 * any embedded pointers (platform_data, etc), they're copied as-is. 840 * 841 * Return: zero on success, else a negative error code. 842 */ 843 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 844 { 845 struct boardinfo *bi; 846 int i; 847 848 if (!n) 849 return 0; 850 851 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 852 if (!bi) 853 return -ENOMEM; 854 855 for (i = 0; i < n; i++, bi++, info++) { 856 struct spi_controller *ctlr; 857 858 memcpy(&bi->board_info, info, sizeof(*info)); 859 860 mutex_lock(&board_lock); 861 list_add_tail(&bi->list, &board_list); 862 list_for_each_entry(ctlr, &spi_controller_list, list) 863 spi_match_controller_to_boardinfo(ctlr, 864 &bi->board_info); 865 mutex_unlock(&board_lock); 866 } 867 868 return 0; 869 } 870 871 /*-------------------------------------------------------------------------*/ 872 873 /* Core methods for SPI resource management */ 874 875 /** 876 * spi_res_alloc - allocate a spi resource that is life-cycle managed 877 * during the processing of a spi_message while using 878 * spi_transfer_one 879 * @spi: the spi device for which we allocate memory 880 * @release: the release code to execute for this resource 881 * @size: size to alloc and return 882 * @gfp: GFP allocation flags 883 * 884 * Return: the pointer to the allocated data 885 * 886 * This may get enhanced in the future to allocate from a memory pool 887 * of the @spi_device or @spi_controller to avoid repeated allocations. 888 */ 889 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 890 size_t size, gfp_t gfp) 891 { 892 struct spi_res *sres; 893 894 sres = kzalloc(sizeof(*sres) + size, gfp); 895 if (!sres) 896 return NULL; 897 898 INIT_LIST_HEAD(&sres->entry); 899 sres->release = release; 900 901 return sres->data; 902 } 903 904 /** 905 * spi_res_free - free an spi resource 906 * @res: pointer to the custom data of a resource 907 */ 908 static void spi_res_free(void *res) 909 { 910 struct spi_res *sres = container_of(res, struct spi_res, data); 911 912 if (!res) 913 return; 914 915 WARN_ON(!list_empty(&sres->entry)); 916 kfree(sres); 917 } 918 919 /** 920 * spi_res_add - add a spi_res to the spi_message 921 * @message: the spi message 922 * @res: the spi_resource 923 */ 924 static void spi_res_add(struct spi_message *message, void *res) 925 { 926 struct spi_res *sres = container_of(res, struct spi_res, data); 927 928 WARN_ON(!list_empty(&sres->entry)); 929 list_add_tail(&sres->entry, &message->resources); 930 } 931 932 /** 933 * spi_res_release - release all spi resources for this message 934 * @ctlr: the @spi_controller 935 * @message: the @spi_message 936 */ 937 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 938 { 939 struct spi_res *res, *tmp; 940 941 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 942 if (res->release) 943 res->release(ctlr, message, res->data); 944 945 list_del(&res->entry); 946 947 kfree(res); 948 } 949 } 950 951 /*-------------------------------------------------------------------------*/ 952 953 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 954 { 955 bool activate = enable; 956 957 /* 958 * Avoid calling into the driver (or doing delays) if the chip select 959 * isn't actually changing from the last time this was called. 960 */ 961 if (!force && ((enable && spi->controller->last_cs == spi->chip_select) || 962 (!enable && spi->controller->last_cs != spi->chip_select)) && 963 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 964 return; 965 966 trace_spi_set_cs(spi, activate); 967 968 spi->controller->last_cs = enable ? spi->chip_select : -1; 969 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 970 971 if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) { 972 spi_delay_exec(&spi->cs_hold, NULL); 973 } 974 975 if (spi->mode & SPI_CS_HIGH) 976 enable = !enable; 977 978 if (spi->cs_gpiod) { 979 if (!(spi->mode & SPI_NO_CS)) { 980 /* 981 * Historically ACPI has no means of the GPIO polarity and 982 * thus the SPISerialBus() resource defines it on the per-chip 983 * basis. In order to avoid a chain of negations, the GPIO 984 * polarity is considered being Active High. Even for the cases 985 * when _DSD() is involved (in the updated versions of ACPI) 986 * the GPIO CS polarity must be defined Active High to avoid 987 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 988 * into account. 989 */ 990 if (has_acpi_companion(&spi->dev)) 991 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 992 else 993 /* Polarity handled by GPIO library */ 994 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 995 } 996 /* Some SPI masters need both GPIO CS & slave_select */ 997 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 998 spi->controller->set_cs) 999 spi->controller->set_cs(spi, !enable); 1000 } else if (spi->controller->set_cs) { 1001 spi->controller->set_cs(spi, !enable); 1002 } 1003 1004 if (spi->cs_gpiod || !spi->controller->set_cs_timing) { 1005 if (activate) 1006 spi_delay_exec(&spi->cs_setup, NULL); 1007 else 1008 spi_delay_exec(&spi->cs_inactive, NULL); 1009 } 1010 } 1011 1012 #ifdef CONFIG_HAS_DMA 1013 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1014 struct sg_table *sgt, void *buf, size_t len, 1015 enum dma_data_direction dir, unsigned long attrs) 1016 { 1017 const bool vmalloced_buf = is_vmalloc_addr(buf); 1018 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1019 #ifdef CONFIG_HIGHMEM 1020 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1021 (unsigned long)buf < (PKMAP_BASE + 1022 (LAST_PKMAP * PAGE_SIZE))); 1023 #else 1024 const bool kmap_buf = false; 1025 #endif 1026 int desc_len; 1027 int sgs; 1028 struct page *vm_page; 1029 struct scatterlist *sg; 1030 void *sg_buf; 1031 size_t min; 1032 int i, ret; 1033 1034 if (vmalloced_buf || kmap_buf) { 1035 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1036 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1037 } else if (virt_addr_valid(buf)) { 1038 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1039 sgs = DIV_ROUND_UP(len, desc_len); 1040 } else { 1041 return -EINVAL; 1042 } 1043 1044 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1045 if (ret != 0) 1046 return ret; 1047 1048 sg = &sgt->sgl[0]; 1049 for (i = 0; i < sgs; i++) { 1050 1051 if (vmalloced_buf || kmap_buf) { 1052 /* 1053 * Next scatterlist entry size is the minimum between 1054 * the desc_len and the remaining buffer length that 1055 * fits in a page. 1056 */ 1057 min = min_t(size_t, desc_len, 1058 min_t(size_t, len, 1059 PAGE_SIZE - offset_in_page(buf))); 1060 if (vmalloced_buf) 1061 vm_page = vmalloc_to_page(buf); 1062 else 1063 vm_page = kmap_to_page(buf); 1064 if (!vm_page) { 1065 sg_free_table(sgt); 1066 return -ENOMEM; 1067 } 1068 sg_set_page(sg, vm_page, 1069 min, offset_in_page(buf)); 1070 } else { 1071 min = min_t(size_t, len, desc_len); 1072 sg_buf = buf; 1073 sg_set_buf(sg, sg_buf, min); 1074 } 1075 1076 buf += min; 1077 len -= min; 1078 sg = sg_next(sg); 1079 } 1080 1081 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1082 if (ret < 0) { 1083 sg_free_table(sgt); 1084 return ret; 1085 } 1086 1087 return 0; 1088 } 1089 1090 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1091 struct sg_table *sgt, void *buf, size_t len, 1092 enum dma_data_direction dir) 1093 { 1094 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1095 } 1096 1097 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1098 struct device *dev, struct sg_table *sgt, 1099 enum dma_data_direction dir, 1100 unsigned long attrs) 1101 { 1102 if (sgt->orig_nents) { 1103 dma_unmap_sgtable(dev, sgt, dir, attrs); 1104 sg_free_table(sgt); 1105 sgt->orig_nents = 0; 1106 sgt->nents = 0; 1107 } 1108 } 1109 1110 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1111 struct sg_table *sgt, enum dma_data_direction dir) 1112 { 1113 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1114 } 1115 1116 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1117 { 1118 struct device *tx_dev, *rx_dev; 1119 struct spi_transfer *xfer; 1120 int ret; 1121 1122 if (!ctlr->can_dma) 1123 return 0; 1124 1125 if (ctlr->dma_tx) 1126 tx_dev = ctlr->dma_tx->device->dev; 1127 else if (ctlr->dma_map_dev) 1128 tx_dev = ctlr->dma_map_dev; 1129 else 1130 tx_dev = ctlr->dev.parent; 1131 1132 if (ctlr->dma_rx) 1133 rx_dev = ctlr->dma_rx->device->dev; 1134 else if (ctlr->dma_map_dev) 1135 rx_dev = ctlr->dma_map_dev; 1136 else 1137 rx_dev = ctlr->dev.parent; 1138 1139 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1140 /* The sync is done before each transfer. */ 1141 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1142 1143 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1144 continue; 1145 1146 if (xfer->tx_buf != NULL) { 1147 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1148 (void *)xfer->tx_buf, 1149 xfer->len, DMA_TO_DEVICE, 1150 attrs); 1151 if (ret != 0) 1152 return ret; 1153 } 1154 1155 if (xfer->rx_buf != NULL) { 1156 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1157 xfer->rx_buf, xfer->len, 1158 DMA_FROM_DEVICE, attrs); 1159 if (ret != 0) { 1160 spi_unmap_buf_attrs(ctlr, tx_dev, 1161 &xfer->tx_sg, DMA_TO_DEVICE, 1162 attrs); 1163 1164 return ret; 1165 } 1166 } 1167 } 1168 1169 ctlr->cur_rx_dma_dev = rx_dev; 1170 ctlr->cur_tx_dma_dev = tx_dev; 1171 ctlr->cur_msg_mapped = true; 1172 1173 return 0; 1174 } 1175 1176 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1177 { 1178 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1179 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1180 struct spi_transfer *xfer; 1181 1182 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1183 return 0; 1184 1185 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1186 /* The sync has already been done after each transfer. */ 1187 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1188 1189 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1190 continue; 1191 1192 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1193 DMA_FROM_DEVICE, attrs); 1194 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1195 DMA_TO_DEVICE, attrs); 1196 } 1197 1198 ctlr->cur_msg_mapped = false; 1199 1200 return 0; 1201 } 1202 1203 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1204 struct spi_transfer *xfer) 1205 { 1206 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1207 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1208 1209 if (!ctlr->cur_msg_mapped) 1210 return; 1211 1212 if (xfer->tx_sg.orig_nents) 1213 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1214 if (xfer->rx_sg.orig_nents) 1215 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1216 } 1217 1218 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1219 struct spi_transfer *xfer) 1220 { 1221 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1222 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1223 1224 if (!ctlr->cur_msg_mapped) 1225 return; 1226 1227 if (xfer->rx_sg.orig_nents) 1228 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1229 if (xfer->tx_sg.orig_nents) 1230 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1231 } 1232 #else /* !CONFIG_HAS_DMA */ 1233 static inline int __spi_map_msg(struct spi_controller *ctlr, 1234 struct spi_message *msg) 1235 { 1236 return 0; 1237 } 1238 1239 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1240 struct spi_message *msg) 1241 { 1242 return 0; 1243 } 1244 1245 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1246 struct spi_transfer *xfer) 1247 { 1248 } 1249 1250 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1251 struct spi_transfer *xfer) 1252 { 1253 } 1254 #endif /* !CONFIG_HAS_DMA */ 1255 1256 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1257 struct spi_message *msg) 1258 { 1259 struct spi_transfer *xfer; 1260 1261 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1262 /* 1263 * Restore the original value of tx_buf or rx_buf if they are 1264 * NULL. 1265 */ 1266 if (xfer->tx_buf == ctlr->dummy_tx) 1267 xfer->tx_buf = NULL; 1268 if (xfer->rx_buf == ctlr->dummy_rx) 1269 xfer->rx_buf = NULL; 1270 } 1271 1272 return __spi_unmap_msg(ctlr, msg); 1273 } 1274 1275 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1276 { 1277 struct spi_transfer *xfer; 1278 void *tmp; 1279 unsigned int max_tx, max_rx; 1280 1281 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1282 && !(msg->spi->mode & SPI_3WIRE)) { 1283 max_tx = 0; 1284 max_rx = 0; 1285 1286 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1287 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1288 !xfer->tx_buf) 1289 max_tx = max(xfer->len, max_tx); 1290 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1291 !xfer->rx_buf) 1292 max_rx = max(xfer->len, max_rx); 1293 } 1294 1295 if (max_tx) { 1296 tmp = krealloc(ctlr->dummy_tx, max_tx, 1297 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1298 if (!tmp) 1299 return -ENOMEM; 1300 ctlr->dummy_tx = tmp; 1301 } 1302 1303 if (max_rx) { 1304 tmp = krealloc(ctlr->dummy_rx, max_rx, 1305 GFP_KERNEL | GFP_DMA); 1306 if (!tmp) 1307 return -ENOMEM; 1308 ctlr->dummy_rx = tmp; 1309 } 1310 1311 if (max_tx || max_rx) { 1312 list_for_each_entry(xfer, &msg->transfers, 1313 transfer_list) { 1314 if (!xfer->len) 1315 continue; 1316 if (!xfer->tx_buf) 1317 xfer->tx_buf = ctlr->dummy_tx; 1318 if (!xfer->rx_buf) 1319 xfer->rx_buf = ctlr->dummy_rx; 1320 } 1321 } 1322 } 1323 1324 return __spi_map_msg(ctlr, msg); 1325 } 1326 1327 static int spi_transfer_wait(struct spi_controller *ctlr, 1328 struct spi_message *msg, 1329 struct spi_transfer *xfer) 1330 { 1331 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1332 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1333 u32 speed_hz = xfer->speed_hz; 1334 unsigned long long ms; 1335 1336 if (spi_controller_is_slave(ctlr)) { 1337 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1338 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1339 return -EINTR; 1340 } 1341 } else { 1342 if (!speed_hz) 1343 speed_hz = 100000; 1344 1345 /* 1346 * For each byte we wait for 8 cycles of the SPI clock. 1347 * Since speed is defined in Hz and we want milliseconds, 1348 * use respective multiplier, but before the division, 1349 * otherwise we may get 0 for short transfers. 1350 */ 1351 ms = 8LL * MSEC_PER_SEC * xfer->len; 1352 do_div(ms, speed_hz); 1353 1354 /* 1355 * Increase it twice and add 200 ms tolerance, use 1356 * predefined maximum in case of overflow. 1357 */ 1358 ms += ms + 200; 1359 if (ms > UINT_MAX) 1360 ms = UINT_MAX; 1361 1362 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1363 msecs_to_jiffies(ms)); 1364 1365 if (ms == 0) { 1366 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1367 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1368 dev_err(&msg->spi->dev, 1369 "SPI transfer timed out\n"); 1370 return -ETIMEDOUT; 1371 } 1372 } 1373 1374 return 0; 1375 } 1376 1377 static void _spi_transfer_delay_ns(u32 ns) 1378 { 1379 if (!ns) 1380 return; 1381 if (ns <= NSEC_PER_USEC) { 1382 ndelay(ns); 1383 } else { 1384 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1385 1386 if (us <= 10) 1387 udelay(us); 1388 else 1389 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1390 } 1391 } 1392 1393 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1394 { 1395 u32 delay = _delay->value; 1396 u32 unit = _delay->unit; 1397 u32 hz; 1398 1399 if (!delay) 1400 return 0; 1401 1402 switch (unit) { 1403 case SPI_DELAY_UNIT_USECS: 1404 delay *= NSEC_PER_USEC; 1405 break; 1406 case SPI_DELAY_UNIT_NSECS: 1407 /* Nothing to do here */ 1408 break; 1409 case SPI_DELAY_UNIT_SCK: 1410 /* Clock cycles need to be obtained from spi_transfer */ 1411 if (!xfer) 1412 return -EINVAL; 1413 /* 1414 * If there is unknown effective speed, approximate it 1415 * by underestimating with half of the requested hz. 1416 */ 1417 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1418 if (!hz) 1419 return -EINVAL; 1420 1421 /* Convert delay to nanoseconds */ 1422 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1423 break; 1424 default: 1425 return -EINVAL; 1426 } 1427 1428 return delay; 1429 } 1430 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1431 1432 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1433 { 1434 int delay; 1435 1436 might_sleep(); 1437 1438 if (!_delay) 1439 return -EINVAL; 1440 1441 delay = spi_delay_to_ns(_delay, xfer); 1442 if (delay < 0) 1443 return delay; 1444 1445 _spi_transfer_delay_ns(delay); 1446 1447 return 0; 1448 } 1449 EXPORT_SYMBOL_GPL(spi_delay_exec); 1450 1451 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1452 struct spi_transfer *xfer) 1453 { 1454 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1455 u32 delay = xfer->cs_change_delay.value; 1456 u32 unit = xfer->cs_change_delay.unit; 1457 int ret; 1458 1459 /* Return early on "fast" mode - for everything but USECS */ 1460 if (!delay) { 1461 if (unit == SPI_DELAY_UNIT_USECS) 1462 _spi_transfer_delay_ns(default_delay_ns); 1463 return; 1464 } 1465 1466 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1467 if (ret) { 1468 dev_err_once(&msg->spi->dev, 1469 "Use of unsupported delay unit %i, using default of %luus\n", 1470 unit, default_delay_ns / NSEC_PER_USEC); 1471 _spi_transfer_delay_ns(default_delay_ns); 1472 } 1473 } 1474 1475 /* 1476 * spi_transfer_one_message - Default implementation of transfer_one_message() 1477 * 1478 * This is a standard implementation of transfer_one_message() for 1479 * drivers which implement a transfer_one() operation. It provides 1480 * standard handling of delays and chip select management. 1481 */ 1482 static int spi_transfer_one_message(struct spi_controller *ctlr, 1483 struct spi_message *msg) 1484 { 1485 struct spi_transfer *xfer; 1486 bool keep_cs = false; 1487 int ret = 0; 1488 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1489 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1490 1491 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1492 spi_set_cs(msg->spi, !xfer->cs_off, false); 1493 1494 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1495 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1496 1497 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1498 trace_spi_transfer_start(msg, xfer); 1499 1500 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1501 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1502 1503 if (!ctlr->ptp_sts_supported) { 1504 xfer->ptp_sts_word_pre = 0; 1505 ptp_read_system_prets(xfer->ptp_sts); 1506 } 1507 1508 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1509 reinit_completion(&ctlr->xfer_completion); 1510 1511 fallback_pio: 1512 spi_dma_sync_for_device(ctlr, xfer); 1513 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1514 if (ret < 0) { 1515 spi_dma_sync_for_cpu(ctlr, xfer); 1516 1517 if (ctlr->cur_msg_mapped && 1518 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1519 __spi_unmap_msg(ctlr, msg); 1520 ctlr->fallback = true; 1521 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1522 goto fallback_pio; 1523 } 1524 1525 SPI_STATISTICS_INCREMENT_FIELD(statm, 1526 errors); 1527 SPI_STATISTICS_INCREMENT_FIELD(stats, 1528 errors); 1529 dev_err(&msg->spi->dev, 1530 "SPI transfer failed: %d\n", ret); 1531 goto out; 1532 } 1533 1534 if (ret > 0) { 1535 ret = spi_transfer_wait(ctlr, msg, xfer); 1536 if (ret < 0) 1537 msg->status = ret; 1538 } 1539 1540 spi_dma_sync_for_cpu(ctlr, xfer); 1541 } else { 1542 if (xfer->len) 1543 dev_err(&msg->spi->dev, 1544 "Bufferless transfer has length %u\n", 1545 xfer->len); 1546 } 1547 1548 if (!ctlr->ptp_sts_supported) { 1549 ptp_read_system_postts(xfer->ptp_sts); 1550 xfer->ptp_sts_word_post = xfer->len; 1551 } 1552 1553 trace_spi_transfer_stop(msg, xfer); 1554 1555 if (msg->status != -EINPROGRESS) 1556 goto out; 1557 1558 spi_transfer_delay_exec(xfer); 1559 1560 if (xfer->cs_change) { 1561 if (list_is_last(&xfer->transfer_list, 1562 &msg->transfers)) { 1563 keep_cs = true; 1564 } else { 1565 if (!xfer->cs_off) 1566 spi_set_cs(msg->spi, false, false); 1567 _spi_transfer_cs_change_delay(msg, xfer); 1568 if (!list_next_entry(xfer, transfer_list)->cs_off) 1569 spi_set_cs(msg->spi, true, false); 1570 } 1571 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1572 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1573 spi_set_cs(msg->spi, xfer->cs_off, false); 1574 } 1575 1576 msg->actual_length += xfer->len; 1577 } 1578 1579 out: 1580 if (ret != 0 || !keep_cs) 1581 spi_set_cs(msg->spi, false, false); 1582 1583 if (msg->status == -EINPROGRESS) 1584 msg->status = ret; 1585 1586 if (msg->status && ctlr->handle_err) 1587 ctlr->handle_err(ctlr, msg); 1588 1589 spi_finalize_current_message(ctlr); 1590 1591 return ret; 1592 } 1593 1594 /** 1595 * spi_finalize_current_transfer - report completion of a transfer 1596 * @ctlr: the controller reporting completion 1597 * 1598 * Called by SPI drivers using the core transfer_one_message() 1599 * implementation to notify it that the current interrupt driven 1600 * transfer has finished and the next one may be scheduled. 1601 */ 1602 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1603 { 1604 complete(&ctlr->xfer_completion); 1605 } 1606 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1607 1608 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1609 { 1610 if (ctlr->auto_runtime_pm) { 1611 pm_runtime_mark_last_busy(ctlr->dev.parent); 1612 pm_runtime_put_autosuspend(ctlr->dev.parent); 1613 } 1614 } 1615 1616 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1617 struct spi_message *msg, bool was_busy) 1618 { 1619 struct spi_transfer *xfer; 1620 int ret; 1621 1622 if (!was_busy && ctlr->auto_runtime_pm) { 1623 ret = pm_runtime_get_sync(ctlr->dev.parent); 1624 if (ret < 0) { 1625 pm_runtime_put_noidle(ctlr->dev.parent); 1626 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1627 ret); 1628 return ret; 1629 } 1630 } 1631 1632 if (!was_busy) 1633 trace_spi_controller_busy(ctlr); 1634 1635 if (!was_busy && ctlr->prepare_transfer_hardware) { 1636 ret = ctlr->prepare_transfer_hardware(ctlr); 1637 if (ret) { 1638 dev_err(&ctlr->dev, 1639 "failed to prepare transfer hardware: %d\n", 1640 ret); 1641 1642 if (ctlr->auto_runtime_pm) 1643 pm_runtime_put(ctlr->dev.parent); 1644 1645 msg->status = ret; 1646 spi_finalize_current_message(ctlr); 1647 1648 return ret; 1649 } 1650 } 1651 1652 trace_spi_message_start(msg); 1653 1654 ret = spi_split_transfers_maxsize(ctlr, msg, 1655 spi_max_transfer_size(msg->spi), 1656 GFP_KERNEL | GFP_DMA); 1657 if (ret) { 1658 msg->status = ret; 1659 spi_finalize_current_message(ctlr); 1660 return ret; 1661 } 1662 1663 if (ctlr->prepare_message) { 1664 ret = ctlr->prepare_message(ctlr, msg); 1665 if (ret) { 1666 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1667 ret); 1668 msg->status = ret; 1669 spi_finalize_current_message(ctlr); 1670 return ret; 1671 } 1672 msg->prepared = true; 1673 } 1674 1675 ret = spi_map_msg(ctlr, msg); 1676 if (ret) { 1677 msg->status = ret; 1678 spi_finalize_current_message(ctlr); 1679 return ret; 1680 } 1681 1682 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1683 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1684 xfer->ptp_sts_word_pre = 0; 1685 ptp_read_system_prets(xfer->ptp_sts); 1686 } 1687 } 1688 1689 /* 1690 * Drivers implementation of transfer_one_message() must arrange for 1691 * spi_finalize_current_message() to get called. Most drivers will do 1692 * this in the calling context, but some don't. For those cases, a 1693 * completion is used to guarantee that this function does not return 1694 * until spi_finalize_current_message() is done accessing 1695 * ctlr->cur_msg. 1696 * Use of the following two flags enable to opportunistically skip the 1697 * use of the completion since its use involves expensive spin locks. 1698 * In case of a race with the context that calls 1699 * spi_finalize_current_message() the completion will always be used, 1700 * due to strict ordering of these flags using barriers. 1701 */ 1702 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1703 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1704 reinit_completion(&ctlr->cur_msg_completion); 1705 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1706 1707 ret = ctlr->transfer_one_message(ctlr, msg); 1708 if (ret) { 1709 dev_err(&ctlr->dev, 1710 "failed to transfer one message from queue\n"); 1711 return ret; 1712 } 1713 1714 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1715 smp_mb(); /* See spi_finalize_current_message()... */ 1716 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1717 wait_for_completion(&ctlr->cur_msg_completion); 1718 1719 return 0; 1720 } 1721 1722 /** 1723 * __spi_pump_messages - function which processes spi message queue 1724 * @ctlr: controller to process queue for 1725 * @in_kthread: true if we are in the context of the message pump thread 1726 * 1727 * This function checks if there is any spi message in the queue that 1728 * needs processing and if so call out to the driver to initialize hardware 1729 * and transfer each message. 1730 * 1731 * Note that it is called both from the kthread itself and also from 1732 * inside spi_sync(); the queue extraction handling at the top of the 1733 * function should deal with this safely. 1734 */ 1735 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1736 { 1737 struct spi_message *msg; 1738 bool was_busy = false; 1739 unsigned long flags; 1740 int ret; 1741 1742 /* Take the IO mutex */ 1743 mutex_lock(&ctlr->io_mutex); 1744 1745 /* Lock queue */ 1746 spin_lock_irqsave(&ctlr->queue_lock, flags); 1747 1748 /* Make sure we are not already running a message */ 1749 if (ctlr->cur_msg) 1750 goto out_unlock; 1751 1752 /* Check if the queue is idle */ 1753 if (list_empty(&ctlr->queue) || !ctlr->running) { 1754 if (!ctlr->busy) 1755 goto out_unlock; 1756 1757 /* Defer any non-atomic teardown to the thread */ 1758 if (!in_kthread) { 1759 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1760 !ctlr->unprepare_transfer_hardware) { 1761 spi_idle_runtime_pm(ctlr); 1762 ctlr->busy = false; 1763 ctlr->queue_empty = true; 1764 trace_spi_controller_idle(ctlr); 1765 } else { 1766 kthread_queue_work(ctlr->kworker, 1767 &ctlr->pump_messages); 1768 } 1769 goto out_unlock; 1770 } 1771 1772 ctlr->busy = false; 1773 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1774 1775 kfree(ctlr->dummy_rx); 1776 ctlr->dummy_rx = NULL; 1777 kfree(ctlr->dummy_tx); 1778 ctlr->dummy_tx = NULL; 1779 if (ctlr->unprepare_transfer_hardware && 1780 ctlr->unprepare_transfer_hardware(ctlr)) 1781 dev_err(&ctlr->dev, 1782 "failed to unprepare transfer hardware\n"); 1783 spi_idle_runtime_pm(ctlr); 1784 trace_spi_controller_idle(ctlr); 1785 1786 spin_lock_irqsave(&ctlr->queue_lock, flags); 1787 ctlr->queue_empty = true; 1788 goto out_unlock; 1789 } 1790 1791 /* Extract head of queue */ 1792 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1793 ctlr->cur_msg = msg; 1794 1795 list_del_init(&msg->queue); 1796 if (ctlr->busy) 1797 was_busy = true; 1798 else 1799 ctlr->busy = true; 1800 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1801 1802 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1803 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1804 1805 ctlr->cur_msg = NULL; 1806 ctlr->fallback = false; 1807 1808 mutex_unlock(&ctlr->io_mutex); 1809 1810 /* Prod the scheduler in case transfer_one() was busy waiting */ 1811 if (!ret) 1812 cond_resched(); 1813 return; 1814 1815 out_unlock: 1816 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1817 mutex_unlock(&ctlr->io_mutex); 1818 } 1819 1820 /** 1821 * spi_pump_messages - kthread work function which processes spi message queue 1822 * @work: pointer to kthread work struct contained in the controller struct 1823 */ 1824 static void spi_pump_messages(struct kthread_work *work) 1825 { 1826 struct spi_controller *ctlr = 1827 container_of(work, struct spi_controller, pump_messages); 1828 1829 __spi_pump_messages(ctlr, true); 1830 } 1831 1832 /** 1833 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1834 * @ctlr: Pointer to the spi_controller structure of the driver 1835 * @xfer: Pointer to the transfer being timestamped 1836 * @progress: How many words (not bytes) have been transferred so far 1837 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1838 * transfer, for less jitter in time measurement. Only compatible 1839 * with PIO drivers. If true, must follow up with 1840 * spi_take_timestamp_post or otherwise system will crash. 1841 * WARNING: for fully predictable results, the CPU frequency must 1842 * also be under control (governor). 1843 * 1844 * This is a helper for drivers to collect the beginning of the TX timestamp 1845 * for the requested byte from the SPI transfer. The frequency with which this 1846 * function must be called (once per word, once for the whole transfer, once 1847 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1848 * greater than or equal to the requested byte at the time of the call. The 1849 * timestamp is only taken once, at the first such call. It is assumed that 1850 * the driver advances its @tx buffer pointer monotonically. 1851 */ 1852 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1853 struct spi_transfer *xfer, 1854 size_t progress, bool irqs_off) 1855 { 1856 if (!xfer->ptp_sts) 1857 return; 1858 1859 if (xfer->timestamped) 1860 return; 1861 1862 if (progress > xfer->ptp_sts_word_pre) 1863 return; 1864 1865 /* Capture the resolution of the timestamp */ 1866 xfer->ptp_sts_word_pre = progress; 1867 1868 if (irqs_off) { 1869 local_irq_save(ctlr->irq_flags); 1870 preempt_disable(); 1871 } 1872 1873 ptp_read_system_prets(xfer->ptp_sts); 1874 } 1875 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1876 1877 /** 1878 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1879 * @ctlr: Pointer to the spi_controller structure of the driver 1880 * @xfer: Pointer to the transfer being timestamped 1881 * @progress: How many words (not bytes) have been transferred so far 1882 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1883 * 1884 * This is a helper for drivers to collect the end of the TX timestamp for 1885 * the requested byte from the SPI transfer. Can be called with an arbitrary 1886 * frequency: only the first call where @tx exceeds or is equal to the 1887 * requested word will be timestamped. 1888 */ 1889 void spi_take_timestamp_post(struct spi_controller *ctlr, 1890 struct spi_transfer *xfer, 1891 size_t progress, bool irqs_off) 1892 { 1893 if (!xfer->ptp_sts) 1894 return; 1895 1896 if (xfer->timestamped) 1897 return; 1898 1899 if (progress < xfer->ptp_sts_word_post) 1900 return; 1901 1902 ptp_read_system_postts(xfer->ptp_sts); 1903 1904 if (irqs_off) { 1905 local_irq_restore(ctlr->irq_flags); 1906 preempt_enable(); 1907 } 1908 1909 /* Capture the resolution of the timestamp */ 1910 xfer->ptp_sts_word_post = progress; 1911 1912 xfer->timestamped = true; 1913 } 1914 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1915 1916 /** 1917 * spi_set_thread_rt - set the controller to pump at realtime priority 1918 * @ctlr: controller to boost priority of 1919 * 1920 * This can be called because the controller requested realtime priority 1921 * (by setting the ->rt value before calling spi_register_controller()) or 1922 * because a device on the bus said that its transfers needed realtime 1923 * priority. 1924 * 1925 * NOTE: at the moment if any device on a bus says it needs realtime then 1926 * the thread will be at realtime priority for all transfers on that 1927 * controller. If this eventually becomes a problem we may see if we can 1928 * find a way to boost the priority only temporarily during relevant 1929 * transfers. 1930 */ 1931 static void spi_set_thread_rt(struct spi_controller *ctlr) 1932 { 1933 dev_info(&ctlr->dev, 1934 "will run message pump with realtime priority\n"); 1935 sched_set_fifo(ctlr->kworker->task); 1936 } 1937 1938 static int spi_init_queue(struct spi_controller *ctlr) 1939 { 1940 ctlr->running = false; 1941 ctlr->busy = false; 1942 ctlr->queue_empty = true; 1943 1944 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1945 if (IS_ERR(ctlr->kworker)) { 1946 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1947 return PTR_ERR(ctlr->kworker); 1948 } 1949 1950 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1951 1952 /* 1953 * Controller config will indicate if this controller should run the 1954 * message pump with high (realtime) priority to reduce the transfer 1955 * latency on the bus by minimising the delay between a transfer 1956 * request and the scheduling of the message pump thread. Without this 1957 * setting the message pump thread will remain at default priority. 1958 */ 1959 if (ctlr->rt) 1960 spi_set_thread_rt(ctlr); 1961 1962 return 0; 1963 } 1964 1965 /** 1966 * spi_get_next_queued_message() - called by driver to check for queued 1967 * messages 1968 * @ctlr: the controller to check for queued messages 1969 * 1970 * If there are more messages in the queue, the next message is returned from 1971 * this call. 1972 * 1973 * Return: the next message in the queue, else NULL if the queue is empty. 1974 */ 1975 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1976 { 1977 struct spi_message *next; 1978 unsigned long flags; 1979 1980 /* Get a pointer to the next message, if any */ 1981 spin_lock_irqsave(&ctlr->queue_lock, flags); 1982 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1983 queue); 1984 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1985 1986 return next; 1987 } 1988 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1989 1990 /** 1991 * spi_finalize_current_message() - the current message is complete 1992 * @ctlr: the controller to return the message to 1993 * 1994 * Called by the driver to notify the core that the message in the front of the 1995 * queue is complete and can be removed from the queue. 1996 */ 1997 void spi_finalize_current_message(struct spi_controller *ctlr) 1998 { 1999 struct spi_transfer *xfer; 2000 struct spi_message *mesg; 2001 int ret; 2002 2003 mesg = ctlr->cur_msg; 2004 2005 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2006 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2007 ptp_read_system_postts(xfer->ptp_sts); 2008 xfer->ptp_sts_word_post = xfer->len; 2009 } 2010 } 2011 2012 if (unlikely(ctlr->ptp_sts_supported)) 2013 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2014 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2015 2016 spi_unmap_msg(ctlr, mesg); 2017 2018 /* 2019 * In the prepare_messages callback the SPI bus has the opportunity 2020 * to split a transfer to smaller chunks. 2021 * 2022 * Release the split transfers here since spi_map_msg() is done on 2023 * the split transfers. 2024 */ 2025 spi_res_release(ctlr, mesg); 2026 2027 if (mesg->prepared && ctlr->unprepare_message) { 2028 ret = ctlr->unprepare_message(ctlr, mesg); 2029 if (ret) { 2030 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2031 ret); 2032 } 2033 } 2034 2035 mesg->prepared = false; 2036 2037 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2038 smp_mb(); /* See __spi_pump_transfer_message()... */ 2039 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2040 complete(&ctlr->cur_msg_completion); 2041 2042 trace_spi_message_done(mesg); 2043 2044 mesg->state = NULL; 2045 if (mesg->complete) 2046 mesg->complete(mesg->context); 2047 } 2048 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2049 2050 static int spi_start_queue(struct spi_controller *ctlr) 2051 { 2052 unsigned long flags; 2053 2054 spin_lock_irqsave(&ctlr->queue_lock, flags); 2055 2056 if (ctlr->running || ctlr->busy) { 2057 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2058 return -EBUSY; 2059 } 2060 2061 ctlr->running = true; 2062 ctlr->cur_msg = NULL; 2063 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2064 2065 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2066 2067 return 0; 2068 } 2069 2070 static int spi_stop_queue(struct spi_controller *ctlr) 2071 { 2072 unsigned long flags; 2073 unsigned limit = 500; 2074 int ret = 0; 2075 2076 spin_lock_irqsave(&ctlr->queue_lock, flags); 2077 2078 /* 2079 * This is a bit lame, but is optimized for the common execution path. 2080 * A wait_queue on the ctlr->busy could be used, but then the common 2081 * execution path (pump_messages) would be required to call wake_up or 2082 * friends on every SPI message. Do this instead. 2083 */ 2084 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2085 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2086 usleep_range(10000, 11000); 2087 spin_lock_irqsave(&ctlr->queue_lock, flags); 2088 } 2089 2090 if (!list_empty(&ctlr->queue) || ctlr->busy) 2091 ret = -EBUSY; 2092 else 2093 ctlr->running = false; 2094 2095 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2096 2097 if (ret) { 2098 dev_warn(&ctlr->dev, "could not stop message queue\n"); 2099 return ret; 2100 } 2101 return ret; 2102 } 2103 2104 static int spi_destroy_queue(struct spi_controller *ctlr) 2105 { 2106 int ret; 2107 2108 ret = spi_stop_queue(ctlr); 2109 2110 /* 2111 * kthread_flush_worker will block until all work is done. 2112 * If the reason that stop_queue timed out is that the work will never 2113 * finish, then it does no good to call flush/stop thread, so 2114 * return anyway. 2115 */ 2116 if (ret) { 2117 dev_err(&ctlr->dev, "problem destroying queue\n"); 2118 return ret; 2119 } 2120 2121 kthread_destroy_worker(ctlr->kworker); 2122 2123 return 0; 2124 } 2125 2126 static int __spi_queued_transfer(struct spi_device *spi, 2127 struct spi_message *msg, 2128 bool need_pump) 2129 { 2130 struct spi_controller *ctlr = spi->controller; 2131 unsigned long flags; 2132 2133 spin_lock_irqsave(&ctlr->queue_lock, flags); 2134 2135 if (!ctlr->running) { 2136 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2137 return -ESHUTDOWN; 2138 } 2139 msg->actual_length = 0; 2140 msg->status = -EINPROGRESS; 2141 2142 list_add_tail(&msg->queue, &ctlr->queue); 2143 ctlr->queue_empty = false; 2144 if (!ctlr->busy && need_pump) 2145 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2146 2147 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2148 return 0; 2149 } 2150 2151 /** 2152 * spi_queued_transfer - transfer function for queued transfers 2153 * @spi: spi device which is requesting transfer 2154 * @msg: spi message which is to handled is queued to driver queue 2155 * 2156 * Return: zero on success, else a negative error code. 2157 */ 2158 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2159 { 2160 return __spi_queued_transfer(spi, msg, true); 2161 } 2162 2163 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2164 { 2165 int ret; 2166 2167 ctlr->transfer = spi_queued_transfer; 2168 if (!ctlr->transfer_one_message) 2169 ctlr->transfer_one_message = spi_transfer_one_message; 2170 2171 /* Initialize and start queue */ 2172 ret = spi_init_queue(ctlr); 2173 if (ret) { 2174 dev_err(&ctlr->dev, "problem initializing queue\n"); 2175 goto err_init_queue; 2176 } 2177 ctlr->queued = true; 2178 ret = spi_start_queue(ctlr); 2179 if (ret) { 2180 dev_err(&ctlr->dev, "problem starting queue\n"); 2181 goto err_start_queue; 2182 } 2183 2184 return 0; 2185 2186 err_start_queue: 2187 spi_destroy_queue(ctlr); 2188 err_init_queue: 2189 return ret; 2190 } 2191 2192 /** 2193 * spi_flush_queue - Send all pending messages in the queue from the callers' 2194 * context 2195 * @ctlr: controller to process queue for 2196 * 2197 * This should be used when one wants to ensure all pending messages have been 2198 * sent before doing something. Is used by the spi-mem code to make sure SPI 2199 * memory operations do not preempt regular SPI transfers that have been queued 2200 * before the spi-mem operation. 2201 */ 2202 void spi_flush_queue(struct spi_controller *ctlr) 2203 { 2204 if (ctlr->transfer == spi_queued_transfer) 2205 __spi_pump_messages(ctlr, false); 2206 } 2207 2208 /*-------------------------------------------------------------------------*/ 2209 2210 #if defined(CONFIG_OF) 2211 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2212 struct device_node *nc) 2213 { 2214 u32 value; 2215 int rc; 2216 2217 /* Mode (clock phase/polarity/etc.) */ 2218 if (of_property_read_bool(nc, "spi-cpha")) 2219 spi->mode |= SPI_CPHA; 2220 if (of_property_read_bool(nc, "spi-cpol")) 2221 spi->mode |= SPI_CPOL; 2222 if (of_property_read_bool(nc, "spi-3wire")) 2223 spi->mode |= SPI_3WIRE; 2224 if (of_property_read_bool(nc, "spi-lsb-first")) 2225 spi->mode |= SPI_LSB_FIRST; 2226 if (of_property_read_bool(nc, "spi-cs-high")) 2227 spi->mode |= SPI_CS_HIGH; 2228 2229 /* Device DUAL/QUAD mode */ 2230 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2231 switch (value) { 2232 case 0: 2233 spi->mode |= SPI_NO_TX; 2234 break; 2235 case 1: 2236 break; 2237 case 2: 2238 spi->mode |= SPI_TX_DUAL; 2239 break; 2240 case 4: 2241 spi->mode |= SPI_TX_QUAD; 2242 break; 2243 case 8: 2244 spi->mode |= SPI_TX_OCTAL; 2245 break; 2246 default: 2247 dev_warn(&ctlr->dev, 2248 "spi-tx-bus-width %d not supported\n", 2249 value); 2250 break; 2251 } 2252 } 2253 2254 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2255 switch (value) { 2256 case 0: 2257 spi->mode |= SPI_NO_RX; 2258 break; 2259 case 1: 2260 break; 2261 case 2: 2262 spi->mode |= SPI_RX_DUAL; 2263 break; 2264 case 4: 2265 spi->mode |= SPI_RX_QUAD; 2266 break; 2267 case 8: 2268 spi->mode |= SPI_RX_OCTAL; 2269 break; 2270 default: 2271 dev_warn(&ctlr->dev, 2272 "spi-rx-bus-width %d not supported\n", 2273 value); 2274 break; 2275 } 2276 } 2277 2278 if (spi_controller_is_slave(ctlr)) { 2279 if (!of_node_name_eq(nc, "slave")) { 2280 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2281 nc); 2282 return -EINVAL; 2283 } 2284 return 0; 2285 } 2286 2287 /* Device address */ 2288 rc = of_property_read_u32(nc, "reg", &value); 2289 if (rc) { 2290 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2291 nc, rc); 2292 return rc; 2293 } 2294 spi->chip_select = value; 2295 2296 /* Device speed */ 2297 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2298 spi->max_speed_hz = value; 2299 2300 return 0; 2301 } 2302 2303 static struct spi_device * 2304 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2305 { 2306 struct spi_device *spi; 2307 int rc; 2308 2309 /* Alloc an spi_device */ 2310 spi = spi_alloc_device(ctlr); 2311 if (!spi) { 2312 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2313 rc = -ENOMEM; 2314 goto err_out; 2315 } 2316 2317 /* Select device driver */ 2318 rc = of_modalias_node(nc, spi->modalias, 2319 sizeof(spi->modalias)); 2320 if (rc < 0) { 2321 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2322 goto err_out; 2323 } 2324 2325 rc = of_spi_parse_dt(ctlr, spi, nc); 2326 if (rc) 2327 goto err_out; 2328 2329 /* Store a pointer to the node in the device structure */ 2330 of_node_get(nc); 2331 spi->dev.of_node = nc; 2332 spi->dev.fwnode = of_fwnode_handle(nc); 2333 2334 /* Register the new device */ 2335 rc = spi_add_device(spi); 2336 if (rc) { 2337 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2338 goto err_of_node_put; 2339 } 2340 2341 return spi; 2342 2343 err_of_node_put: 2344 of_node_put(nc); 2345 err_out: 2346 spi_dev_put(spi); 2347 return ERR_PTR(rc); 2348 } 2349 2350 /** 2351 * of_register_spi_devices() - Register child devices onto the SPI bus 2352 * @ctlr: Pointer to spi_controller device 2353 * 2354 * Registers an spi_device for each child node of controller node which 2355 * represents a valid SPI slave. 2356 */ 2357 static void of_register_spi_devices(struct spi_controller *ctlr) 2358 { 2359 struct spi_device *spi; 2360 struct device_node *nc; 2361 2362 if (!ctlr->dev.of_node) 2363 return; 2364 2365 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2366 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2367 continue; 2368 spi = of_register_spi_device(ctlr, nc); 2369 if (IS_ERR(spi)) { 2370 dev_warn(&ctlr->dev, 2371 "Failed to create SPI device for %pOF\n", nc); 2372 of_node_clear_flag(nc, OF_POPULATED); 2373 } 2374 } 2375 } 2376 #else 2377 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2378 #endif 2379 2380 /** 2381 * spi_new_ancillary_device() - Register ancillary SPI device 2382 * @spi: Pointer to the main SPI device registering the ancillary device 2383 * @chip_select: Chip Select of the ancillary device 2384 * 2385 * Register an ancillary SPI device; for example some chips have a chip-select 2386 * for normal device usage and another one for setup/firmware upload. 2387 * 2388 * This may only be called from main SPI device's probe routine. 2389 * 2390 * Return: 0 on success; negative errno on failure 2391 */ 2392 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2393 u8 chip_select) 2394 { 2395 struct spi_device *ancillary; 2396 int rc = 0; 2397 2398 /* Alloc an spi_device */ 2399 ancillary = spi_alloc_device(spi->controller); 2400 if (!ancillary) { 2401 rc = -ENOMEM; 2402 goto err_out; 2403 } 2404 2405 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2406 2407 /* Use provided chip-select for ancillary device */ 2408 ancillary->chip_select = chip_select; 2409 2410 /* Take over SPI mode/speed from SPI main device */ 2411 ancillary->max_speed_hz = spi->max_speed_hz; 2412 ancillary->mode = spi->mode; 2413 2414 /* Register the new device */ 2415 rc = spi_add_device_locked(ancillary); 2416 if (rc) { 2417 dev_err(&spi->dev, "failed to register ancillary device\n"); 2418 goto err_out; 2419 } 2420 2421 return ancillary; 2422 2423 err_out: 2424 spi_dev_put(ancillary); 2425 return ERR_PTR(rc); 2426 } 2427 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2428 2429 #ifdef CONFIG_ACPI 2430 struct acpi_spi_lookup { 2431 struct spi_controller *ctlr; 2432 u32 max_speed_hz; 2433 u32 mode; 2434 int irq; 2435 u8 bits_per_word; 2436 u8 chip_select; 2437 int n; 2438 int index; 2439 }; 2440 2441 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2442 { 2443 struct acpi_resource_spi_serialbus *sb; 2444 int *count = data; 2445 2446 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2447 return 1; 2448 2449 sb = &ares->data.spi_serial_bus; 2450 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2451 return 1; 2452 2453 *count = *count + 1; 2454 2455 return 1; 2456 } 2457 2458 /** 2459 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2460 * @adev: ACPI device 2461 * 2462 * Returns the number of SpiSerialBus resources in the ACPI-device's 2463 * resource-list; or a negative error code. 2464 */ 2465 int acpi_spi_count_resources(struct acpi_device *adev) 2466 { 2467 LIST_HEAD(r); 2468 int count = 0; 2469 int ret; 2470 2471 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2472 if (ret < 0) 2473 return ret; 2474 2475 acpi_dev_free_resource_list(&r); 2476 2477 return count; 2478 } 2479 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2480 2481 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2482 struct acpi_spi_lookup *lookup) 2483 { 2484 const union acpi_object *obj; 2485 2486 if (!x86_apple_machine) 2487 return; 2488 2489 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2490 && obj->buffer.length >= 4) 2491 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2492 2493 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2494 && obj->buffer.length == 8) 2495 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2496 2497 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2498 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2499 lookup->mode |= SPI_LSB_FIRST; 2500 2501 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2502 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2503 lookup->mode |= SPI_CPOL; 2504 2505 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2506 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2507 lookup->mode |= SPI_CPHA; 2508 } 2509 2510 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2511 2512 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2513 { 2514 struct acpi_spi_lookup *lookup = data; 2515 struct spi_controller *ctlr = lookup->ctlr; 2516 2517 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2518 struct acpi_resource_spi_serialbus *sb; 2519 acpi_handle parent_handle; 2520 acpi_status status; 2521 2522 sb = &ares->data.spi_serial_bus; 2523 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2524 2525 if (lookup->index != -1 && lookup->n++ != lookup->index) 2526 return 1; 2527 2528 status = acpi_get_handle(NULL, 2529 sb->resource_source.string_ptr, 2530 &parent_handle); 2531 2532 if (ACPI_FAILURE(status)) 2533 return -ENODEV; 2534 2535 if (ctlr) { 2536 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2537 return -ENODEV; 2538 } else { 2539 struct acpi_device *adev; 2540 2541 adev = acpi_fetch_acpi_dev(parent_handle); 2542 if (!adev) 2543 return -ENODEV; 2544 2545 ctlr = acpi_spi_find_controller_by_adev(adev); 2546 if (!ctlr) 2547 return -EPROBE_DEFER; 2548 2549 lookup->ctlr = ctlr; 2550 } 2551 2552 /* 2553 * ACPI DeviceSelection numbering is handled by the 2554 * host controller driver in Windows and can vary 2555 * from driver to driver. In Linux we always expect 2556 * 0 .. max - 1 so we need to ask the driver to 2557 * translate between the two schemes. 2558 */ 2559 if (ctlr->fw_translate_cs) { 2560 int cs = ctlr->fw_translate_cs(ctlr, 2561 sb->device_selection); 2562 if (cs < 0) 2563 return cs; 2564 lookup->chip_select = cs; 2565 } else { 2566 lookup->chip_select = sb->device_selection; 2567 } 2568 2569 lookup->max_speed_hz = sb->connection_speed; 2570 lookup->bits_per_word = sb->data_bit_length; 2571 2572 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2573 lookup->mode |= SPI_CPHA; 2574 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2575 lookup->mode |= SPI_CPOL; 2576 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2577 lookup->mode |= SPI_CS_HIGH; 2578 } 2579 } else if (lookup->irq < 0) { 2580 struct resource r; 2581 2582 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2583 lookup->irq = r.start; 2584 } 2585 2586 /* Always tell the ACPI core to skip this resource */ 2587 return 1; 2588 } 2589 2590 /** 2591 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2592 * @ctlr: controller to which the spi device belongs 2593 * @adev: ACPI Device for the spi device 2594 * @index: Index of the spi resource inside the ACPI Node 2595 * 2596 * This should be used to allocate a new spi device from and ACPI Node. 2597 * The caller is responsible for calling spi_add_device to register the spi device. 2598 * 2599 * If ctlr is set to NULL, the Controller for the spi device will be looked up 2600 * using the resource. 2601 * If index is set to -1, index is not used. 2602 * Note: If index is -1, ctlr must be set. 2603 * 2604 * Return: a pointer to the new device, or ERR_PTR on error. 2605 */ 2606 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2607 struct acpi_device *adev, 2608 int index) 2609 { 2610 acpi_handle parent_handle = NULL; 2611 struct list_head resource_list; 2612 struct acpi_spi_lookup lookup = {}; 2613 struct spi_device *spi; 2614 int ret; 2615 2616 if (!ctlr && index == -1) 2617 return ERR_PTR(-EINVAL); 2618 2619 lookup.ctlr = ctlr; 2620 lookup.irq = -1; 2621 lookup.index = index; 2622 lookup.n = 0; 2623 2624 INIT_LIST_HEAD(&resource_list); 2625 ret = acpi_dev_get_resources(adev, &resource_list, 2626 acpi_spi_add_resource, &lookup); 2627 acpi_dev_free_resource_list(&resource_list); 2628 2629 if (ret < 0) 2630 /* Found SPI in _CRS but it points to another controller */ 2631 return ERR_PTR(ret); 2632 2633 if (!lookup.max_speed_hz && 2634 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2635 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2636 /* Apple does not use _CRS but nested devices for SPI slaves */ 2637 acpi_spi_parse_apple_properties(adev, &lookup); 2638 } 2639 2640 if (!lookup.max_speed_hz) 2641 return ERR_PTR(-ENODEV); 2642 2643 spi = spi_alloc_device(lookup.ctlr); 2644 if (!spi) { 2645 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2646 dev_name(&adev->dev)); 2647 return ERR_PTR(-ENOMEM); 2648 } 2649 2650 ACPI_COMPANION_SET(&spi->dev, adev); 2651 spi->max_speed_hz = lookup.max_speed_hz; 2652 spi->mode |= lookup.mode; 2653 spi->irq = lookup.irq; 2654 spi->bits_per_word = lookup.bits_per_word; 2655 spi->chip_select = lookup.chip_select; 2656 2657 return spi; 2658 } 2659 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2660 2661 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2662 struct acpi_device *adev) 2663 { 2664 struct spi_device *spi; 2665 2666 if (acpi_bus_get_status(adev) || !adev->status.present || 2667 acpi_device_enumerated(adev)) 2668 return AE_OK; 2669 2670 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2671 if (IS_ERR(spi)) { 2672 if (PTR_ERR(spi) == -ENOMEM) 2673 return AE_NO_MEMORY; 2674 else 2675 return AE_OK; 2676 } 2677 2678 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2679 sizeof(spi->modalias)); 2680 2681 if (spi->irq < 0) 2682 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2683 2684 acpi_device_set_enumerated(adev); 2685 2686 adev->power.flags.ignore_parent = true; 2687 if (spi_add_device(spi)) { 2688 adev->power.flags.ignore_parent = false; 2689 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2690 dev_name(&adev->dev)); 2691 spi_dev_put(spi); 2692 } 2693 2694 return AE_OK; 2695 } 2696 2697 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2698 void *data, void **return_value) 2699 { 2700 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2701 struct spi_controller *ctlr = data; 2702 2703 if (!adev) 2704 return AE_OK; 2705 2706 return acpi_register_spi_device(ctlr, adev); 2707 } 2708 2709 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2710 2711 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2712 { 2713 acpi_status status; 2714 acpi_handle handle; 2715 2716 handle = ACPI_HANDLE(ctlr->dev.parent); 2717 if (!handle) 2718 return; 2719 2720 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2721 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2722 acpi_spi_add_device, NULL, ctlr, NULL); 2723 if (ACPI_FAILURE(status)) 2724 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2725 } 2726 #else 2727 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2728 #endif /* CONFIG_ACPI */ 2729 2730 static void spi_controller_release(struct device *dev) 2731 { 2732 struct spi_controller *ctlr; 2733 2734 ctlr = container_of(dev, struct spi_controller, dev); 2735 kfree(ctlr); 2736 } 2737 2738 static struct class spi_master_class = { 2739 .name = "spi_master", 2740 .owner = THIS_MODULE, 2741 .dev_release = spi_controller_release, 2742 .dev_groups = spi_master_groups, 2743 }; 2744 2745 #ifdef CONFIG_SPI_SLAVE 2746 /** 2747 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2748 * controller 2749 * @spi: device used for the current transfer 2750 */ 2751 int spi_slave_abort(struct spi_device *spi) 2752 { 2753 struct spi_controller *ctlr = spi->controller; 2754 2755 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2756 return ctlr->slave_abort(ctlr); 2757 2758 return -ENOTSUPP; 2759 } 2760 EXPORT_SYMBOL_GPL(spi_slave_abort); 2761 2762 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2763 char *buf) 2764 { 2765 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2766 dev); 2767 struct device *child; 2768 2769 child = device_find_any_child(&ctlr->dev); 2770 return sprintf(buf, "%s\n", 2771 child ? to_spi_device(child)->modalias : NULL); 2772 } 2773 2774 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2775 const char *buf, size_t count) 2776 { 2777 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2778 dev); 2779 struct spi_device *spi; 2780 struct device *child; 2781 char name[32]; 2782 int rc; 2783 2784 rc = sscanf(buf, "%31s", name); 2785 if (rc != 1 || !name[0]) 2786 return -EINVAL; 2787 2788 child = device_find_any_child(&ctlr->dev); 2789 if (child) { 2790 /* Remove registered slave */ 2791 device_unregister(child); 2792 put_device(child); 2793 } 2794 2795 if (strcmp(name, "(null)")) { 2796 /* Register new slave */ 2797 spi = spi_alloc_device(ctlr); 2798 if (!spi) 2799 return -ENOMEM; 2800 2801 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2802 2803 rc = spi_add_device(spi); 2804 if (rc) { 2805 spi_dev_put(spi); 2806 return rc; 2807 } 2808 } 2809 2810 return count; 2811 } 2812 2813 static DEVICE_ATTR_RW(slave); 2814 2815 static struct attribute *spi_slave_attrs[] = { 2816 &dev_attr_slave.attr, 2817 NULL, 2818 }; 2819 2820 static const struct attribute_group spi_slave_group = { 2821 .attrs = spi_slave_attrs, 2822 }; 2823 2824 static const struct attribute_group *spi_slave_groups[] = { 2825 &spi_controller_statistics_group, 2826 &spi_slave_group, 2827 NULL, 2828 }; 2829 2830 static struct class spi_slave_class = { 2831 .name = "spi_slave", 2832 .owner = THIS_MODULE, 2833 .dev_release = spi_controller_release, 2834 .dev_groups = spi_slave_groups, 2835 }; 2836 #else 2837 extern struct class spi_slave_class; /* dummy */ 2838 #endif 2839 2840 /** 2841 * __spi_alloc_controller - allocate an SPI master or slave controller 2842 * @dev: the controller, possibly using the platform_bus 2843 * @size: how much zeroed driver-private data to allocate; the pointer to this 2844 * memory is in the driver_data field of the returned device, accessible 2845 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2846 * drivers granting DMA access to portions of their private data need to 2847 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2848 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2849 * slave (true) controller 2850 * Context: can sleep 2851 * 2852 * This call is used only by SPI controller drivers, which are the 2853 * only ones directly touching chip registers. It's how they allocate 2854 * an spi_controller structure, prior to calling spi_register_controller(). 2855 * 2856 * This must be called from context that can sleep. 2857 * 2858 * The caller is responsible for assigning the bus number and initializing the 2859 * controller's methods before calling spi_register_controller(); and (after 2860 * errors adding the device) calling spi_controller_put() to prevent a memory 2861 * leak. 2862 * 2863 * Return: the SPI controller structure on success, else NULL. 2864 */ 2865 struct spi_controller *__spi_alloc_controller(struct device *dev, 2866 unsigned int size, bool slave) 2867 { 2868 struct spi_controller *ctlr; 2869 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2870 2871 if (!dev) 2872 return NULL; 2873 2874 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2875 if (!ctlr) 2876 return NULL; 2877 2878 device_initialize(&ctlr->dev); 2879 INIT_LIST_HEAD(&ctlr->queue); 2880 spin_lock_init(&ctlr->queue_lock); 2881 spin_lock_init(&ctlr->bus_lock_spinlock); 2882 mutex_init(&ctlr->bus_lock_mutex); 2883 mutex_init(&ctlr->io_mutex); 2884 mutex_init(&ctlr->add_lock); 2885 ctlr->bus_num = -1; 2886 ctlr->num_chipselect = 1; 2887 ctlr->slave = slave; 2888 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2889 ctlr->dev.class = &spi_slave_class; 2890 else 2891 ctlr->dev.class = &spi_master_class; 2892 ctlr->dev.parent = dev; 2893 pm_suspend_ignore_children(&ctlr->dev, true); 2894 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2895 2896 return ctlr; 2897 } 2898 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2899 2900 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2901 { 2902 spi_controller_put(*(struct spi_controller **)ctlr); 2903 } 2904 2905 /** 2906 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2907 * @dev: physical device of SPI controller 2908 * @size: how much zeroed driver-private data to allocate 2909 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2910 * Context: can sleep 2911 * 2912 * Allocate an SPI controller and automatically release a reference on it 2913 * when @dev is unbound from its driver. Drivers are thus relieved from 2914 * having to call spi_controller_put(). 2915 * 2916 * The arguments to this function are identical to __spi_alloc_controller(). 2917 * 2918 * Return: the SPI controller structure on success, else NULL. 2919 */ 2920 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2921 unsigned int size, 2922 bool slave) 2923 { 2924 struct spi_controller **ptr, *ctlr; 2925 2926 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2927 GFP_KERNEL); 2928 if (!ptr) 2929 return NULL; 2930 2931 ctlr = __spi_alloc_controller(dev, size, slave); 2932 if (ctlr) { 2933 ctlr->devm_allocated = true; 2934 *ptr = ctlr; 2935 devres_add(dev, ptr); 2936 } else { 2937 devres_free(ptr); 2938 } 2939 2940 return ctlr; 2941 } 2942 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2943 2944 /** 2945 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2946 * @ctlr: The SPI master to grab GPIO descriptors for 2947 */ 2948 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2949 { 2950 int nb, i; 2951 struct gpio_desc **cs; 2952 struct device *dev = &ctlr->dev; 2953 unsigned long native_cs_mask = 0; 2954 unsigned int num_cs_gpios = 0; 2955 2956 nb = gpiod_count(dev, "cs"); 2957 if (nb < 0) { 2958 /* No GPIOs at all is fine, else return the error */ 2959 if (nb == -ENOENT) 2960 return 0; 2961 return nb; 2962 } 2963 2964 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2965 2966 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2967 GFP_KERNEL); 2968 if (!cs) 2969 return -ENOMEM; 2970 ctlr->cs_gpiods = cs; 2971 2972 for (i = 0; i < nb; i++) { 2973 /* 2974 * Most chipselects are active low, the inverted 2975 * semantics are handled by special quirks in gpiolib, 2976 * so initializing them GPIOD_OUT_LOW here means 2977 * "unasserted", in most cases this will drive the physical 2978 * line high. 2979 */ 2980 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2981 GPIOD_OUT_LOW); 2982 if (IS_ERR(cs[i])) 2983 return PTR_ERR(cs[i]); 2984 2985 if (cs[i]) { 2986 /* 2987 * If we find a CS GPIO, name it after the device and 2988 * chip select line. 2989 */ 2990 char *gpioname; 2991 2992 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2993 dev_name(dev), i); 2994 if (!gpioname) 2995 return -ENOMEM; 2996 gpiod_set_consumer_name(cs[i], gpioname); 2997 num_cs_gpios++; 2998 continue; 2999 } 3000 3001 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3002 dev_err(dev, "Invalid native chip select %d\n", i); 3003 return -EINVAL; 3004 } 3005 native_cs_mask |= BIT(i); 3006 } 3007 3008 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3009 3010 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 3011 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3012 dev_err(dev, "No unused native chip select available\n"); 3013 return -EINVAL; 3014 } 3015 3016 return 0; 3017 } 3018 3019 static int spi_controller_check_ops(struct spi_controller *ctlr) 3020 { 3021 /* 3022 * The controller may implement only the high-level SPI-memory like 3023 * operations if it does not support regular SPI transfers, and this is 3024 * valid use case. 3025 * If ->mem_ops is NULL, we request that at least one of the 3026 * ->transfer_xxx() method be implemented. 3027 */ 3028 if (ctlr->mem_ops) { 3029 if (!ctlr->mem_ops->exec_op) 3030 return -EINVAL; 3031 } else if (!ctlr->transfer && !ctlr->transfer_one && 3032 !ctlr->transfer_one_message) { 3033 return -EINVAL; 3034 } 3035 3036 return 0; 3037 } 3038 3039 /** 3040 * spi_register_controller - register SPI master or slave controller 3041 * @ctlr: initialized master, originally from spi_alloc_master() or 3042 * spi_alloc_slave() 3043 * Context: can sleep 3044 * 3045 * SPI controllers connect to their drivers using some non-SPI bus, 3046 * such as the platform bus. The final stage of probe() in that code 3047 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3048 * 3049 * SPI controllers use board specific (often SOC specific) bus numbers, 3050 * and board-specific addressing for SPI devices combines those numbers 3051 * with chip select numbers. Since SPI does not directly support dynamic 3052 * device identification, boards need configuration tables telling which 3053 * chip is at which address. 3054 * 3055 * This must be called from context that can sleep. It returns zero on 3056 * success, else a negative error code (dropping the controller's refcount). 3057 * After a successful return, the caller is responsible for calling 3058 * spi_unregister_controller(). 3059 * 3060 * Return: zero on success, else a negative error code. 3061 */ 3062 int spi_register_controller(struct spi_controller *ctlr) 3063 { 3064 struct device *dev = ctlr->dev.parent; 3065 struct boardinfo *bi; 3066 int status; 3067 int id, first_dynamic; 3068 3069 if (!dev) 3070 return -ENODEV; 3071 3072 /* 3073 * Make sure all necessary hooks are implemented before registering 3074 * the SPI controller. 3075 */ 3076 status = spi_controller_check_ops(ctlr); 3077 if (status) 3078 return status; 3079 3080 if (ctlr->bus_num >= 0) { 3081 /* Devices with a fixed bus num must check-in with the num */ 3082 mutex_lock(&board_lock); 3083 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3084 ctlr->bus_num + 1, GFP_KERNEL); 3085 mutex_unlock(&board_lock); 3086 if (WARN(id < 0, "couldn't get idr")) 3087 return id == -ENOSPC ? -EBUSY : id; 3088 ctlr->bus_num = id; 3089 } else if (ctlr->dev.of_node) { 3090 /* Allocate dynamic bus number using Linux idr */ 3091 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 3092 if (id >= 0) { 3093 ctlr->bus_num = id; 3094 mutex_lock(&board_lock); 3095 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 3096 ctlr->bus_num + 1, GFP_KERNEL); 3097 mutex_unlock(&board_lock); 3098 if (WARN(id < 0, "couldn't get idr")) 3099 return id == -ENOSPC ? -EBUSY : id; 3100 } 3101 } 3102 if (ctlr->bus_num < 0) { 3103 first_dynamic = of_alias_get_highest_id("spi"); 3104 if (first_dynamic < 0) 3105 first_dynamic = 0; 3106 else 3107 first_dynamic++; 3108 3109 mutex_lock(&board_lock); 3110 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 3111 0, GFP_KERNEL); 3112 mutex_unlock(&board_lock); 3113 if (WARN(id < 0, "couldn't get idr")) 3114 return id; 3115 ctlr->bus_num = id; 3116 } 3117 ctlr->bus_lock_flag = 0; 3118 init_completion(&ctlr->xfer_completion); 3119 init_completion(&ctlr->cur_msg_completion); 3120 if (!ctlr->max_dma_len) 3121 ctlr->max_dma_len = INT_MAX; 3122 3123 /* 3124 * Register the device, then userspace will see it. 3125 * Registration fails if the bus ID is in use. 3126 */ 3127 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3128 3129 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3130 status = spi_get_gpio_descs(ctlr); 3131 if (status) 3132 goto free_bus_id; 3133 /* 3134 * A controller using GPIO descriptors always 3135 * supports SPI_CS_HIGH if need be. 3136 */ 3137 ctlr->mode_bits |= SPI_CS_HIGH; 3138 } 3139 3140 /* 3141 * Even if it's just one always-selected device, there must 3142 * be at least one chipselect. 3143 */ 3144 if (!ctlr->num_chipselect) { 3145 status = -EINVAL; 3146 goto free_bus_id; 3147 } 3148 3149 /* Setting last_cs to -1 means no chip selected */ 3150 ctlr->last_cs = -1; 3151 3152 status = device_add(&ctlr->dev); 3153 if (status < 0) 3154 goto free_bus_id; 3155 dev_dbg(dev, "registered %s %s\n", 3156 spi_controller_is_slave(ctlr) ? "slave" : "master", 3157 dev_name(&ctlr->dev)); 3158 3159 /* 3160 * If we're using a queued driver, start the queue. Note that we don't 3161 * need the queueing logic if the driver is only supporting high-level 3162 * memory operations. 3163 */ 3164 if (ctlr->transfer) { 3165 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3166 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3167 status = spi_controller_initialize_queue(ctlr); 3168 if (status) { 3169 device_del(&ctlr->dev); 3170 goto free_bus_id; 3171 } 3172 } 3173 /* Add statistics */ 3174 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3175 if (!ctlr->pcpu_statistics) { 3176 dev_err(dev, "Error allocating per-cpu statistics\n"); 3177 status = -ENOMEM; 3178 goto destroy_queue; 3179 } 3180 3181 mutex_lock(&board_lock); 3182 list_add_tail(&ctlr->list, &spi_controller_list); 3183 list_for_each_entry(bi, &board_list, list) 3184 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3185 mutex_unlock(&board_lock); 3186 3187 /* Register devices from the device tree and ACPI */ 3188 of_register_spi_devices(ctlr); 3189 acpi_register_spi_devices(ctlr); 3190 return status; 3191 3192 destroy_queue: 3193 spi_destroy_queue(ctlr); 3194 free_bus_id: 3195 mutex_lock(&board_lock); 3196 idr_remove(&spi_master_idr, ctlr->bus_num); 3197 mutex_unlock(&board_lock); 3198 return status; 3199 } 3200 EXPORT_SYMBOL_GPL(spi_register_controller); 3201 3202 static void devm_spi_unregister(struct device *dev, void *res) 3203 { 3204 spi_unregister_controller(*(struct spi_controller **)res); 3205 } 3206 3207 /** 3208 * devm_spi_register_controller - register managed SPI master or slave 3209 * controller 3210 * @dev: device managing SPI controller 3211 * @ctlr: initialized controller, originally from spi_alloc_master() or 3212 * spi_alloc_slave() 3213 * Context: can sleep 3214 * 3215 * Register a SPI device as with spi_register_controller() which will 3216 * automatically be unregistered and freed. 3217 * 3218 * Return: zero on success, else a negative error code. 3219 */ 3220 int devm_spi_register_controller(struct device *dev, 3221 struct spi_controller *ctlr) 3222 { 3223 struct spi_controller **ptr; 3224 int ret; 3225 3226 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3227 if (!ptr) 3228 return -ENOMEM; 3229 3230 ret = spi_register_controller(ctlr); 3231 if (!ret) { 3232 *ptr = ctlr; 3233 devres_add(dev, ptr); 3234 } else { 3235 devres_free(ptr); 3236 } 3237 3238 return ret; 3239 } 3240 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3241 3242 static int __unregister(struct device *dev, void *null) 3243 { 3244 spi_unregister_device(to_spi_device(dev)); 3245 return 0; 3246 } 3247 3248 /** 3249 * spi_unregister_controller - unregister SPI master or slave controller 3250 * @ctlr: the controller being unregistered 3251 * Context: can sleep 3252 * 3253 * This call is used only by SPI controller drivers, which are the 3254 * only ones directly touching chip registers. 3255 * 3256 * This must be called from context that can sleep. 3257 * 3258 * Note that this function also drops a reference to the controller. 3259 */ 3260 void spi_unregister_controller(struct spi_controller *ctlr) 3261 { 3262 struct spi_controller *found; 3263 int id = ctlr->bus_num; 3264 3265 /* Prevent addition of new devices, unregister existing ones */ 3266 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3267 mutex_lock(&ctlr->add_lock); 3268 3269 device_for_each_child(&ctlr->dev, NULL, __unregister); 3270 3271 /* First make sure that this controller was ever added */ 3272 mutex_lock(&board_lock); 3273 found = idr_find(&spi_master_idr, id); 3274 mutex_unlock(&board_lock); 3275 if (ctlr->queued) { 3276 if (spi_destroy_queue(ctlr)) 3277 dev_err(&ctlr->dev, "queue remove failed\n"); 3278 } 3279 mutex_lock(&board_lock); 3280 list_del(&ctlr->list); 3281 mutex_unlock(&board_lock); 3282 3283 device_del(&ctlr->dev); 3284 3285 /* Free bus id */ 3286 mutex_lock(&board_lock); 3287 if (found == ctlr) 3288 idr_remove(&spi_master_idr, id); 3289 mutex_unlock(&board_lock); 3290 3291 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3292 mutex_unlock(&ctlr->add_lock); 3293 3294 /* Release the last reference on the controller if its driver 3295 * has not yet been converted to devm_spi_alloc_master/slave(). 3296 */ 3297 if (!ctlr->devm_allocated) 3298 put_device(&ctlr->dev); 3299 } 3300 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3301 3302 int spi_controller_suspend(struct spi_controller *ctlr) 3303 { 3304 int ret; 3305 3306 /* Basically no-ops for non-queued controllers */ 3307 if (!ctlr->queued) 3308 return 0; 3309 3310 ret = spi_stop_queue(ctlr); 3311 if (ret) 3312 dev_err(&ctlr->dev, "queue stop failed\n"); 3313 3314 return ret; 3315 } 3316 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3317 3318 int spi_controller_resume(struct spi_controller *ctlr) 3319 { 3320 int ret; 3321 3322 if (!ctlr->queued) 3323 return 0; 3324 3325 ret = spi_start_queue(ctlr); 3326 if (ret) 3327 dev_err(&ctlr->dev, "queue restart failed\n"); 3328 3329 return ret; 3330 } 3331 EXPORT_SYMBOL_GPL(spi_controller_resume); 3332 3333 /*-------------------------------------------------------------------------*/ 3334 3335 /* Core methods for spi_message alterations */ 3336 3337 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3338 struct spi_message *msg, 3339 void *res) 3340 { 3341 struct spi_replaced_transfers *rxfer = res; 3342 size_t i; 3343 3344 /* Call extra callback if requested */ 3345 if (rxfer->release) 3346 rxfer->release(ctlr, msg, res); 3347 3348 /* Insert replaced transfers back into the message */ 3349 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3350 3351 /* Remove the formerly inserted entries */ 3352 for (i = 0; i < rxfer->inserted; i++) 3353 list_del(&rxfer->inserted_transfers[i].transfer_list); 3354 } 3355 3356 /** 3357 * spi_replace_transfers - replace transfers with several transfers 3358 * and register change with spi_message.resources 3359 * @msg: the spi_message we work upon 3360 * @xfer_first: the first spi_transfer we want to replace 3361 * @remove: number of transfers to remove 3362 * @insert: the number of transfers we want to insert instead 3363 * @release: extra release code necessary in some circumstances 3364 * @extradatasize: extra data to allocate (with alignment guarantees 3365 * of struct @spi_transfer) 3366 * @gfp: gfp flags 3367 * 3368 * Returns: pointer to @spi_replaced_transfers, 3369 * PTR_ERR(...) in case of errors. 3370 */ 3371 static struct spi_replaced_transfers *spi_replace_transfers( 3372 struct spi_message *msg, 3373 struct spi_transfer *xfer_first, 3374 size_t remove, 3375 size_t insert, 3376 spi_replaced_release_t release, 3377 size_t extradatasize, 3378 gfp_t gfp) 3379 { 3380 struct spi_replaced_transfers *rxfer; 3381 struct spi_transfer *xfer; 3382 size_t i; 3383 3384 /* Allocate the structure using spi_res */ 3385 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3386 struct_size(rxfer, inserted_transfers, insert) 3387 + extradatasize, 3388 gfp); 3389 if (!rxfer) 3390 return ERR_PTR(-ENOMEM); 3391 3392 /* The release code to invoke before running the generic release */ 3393 rxfer->release = release; 3394 3395 /* Assign extradata */ 3396 if (extradatasize) 3397 rxfer->extradata = 3398 &rxfer->inserted_transfers[insert]; 3399 3400 /* Init the replaced_transfers list */ 3401 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3402 3403 /* 3404 * Assign the list_entry after which we should reinsert 3405 * the @replaced_transfers - it may be spi_message.messages! 3406 */ 3407 rxfer->replaced_after = xfer_first->transfer_list.prev; 3408 3409 /* Remove the requested number of transfers */ 3410 for (i = 0; i < remove; i++) { 3411 /* 3412 * If the entry after replaced_after it is msg->transfers 3413 * then we have been requested to remove more transfers 3414 * than are in the list. 3415 */ 3416 if (rxfer->replaced_after->next == &msg->transfers) { 3417 dev_err(&msg->spi->dev, 3418 "requested to remove more spi_transfers than are available\n"); 3419 /* Insert replaced transfers back into the message */ 3420 list_splice(&rxfer->replaced_transfers, 3421 rxfer->replaced_after); 3422 3423 /* Free the spi_replace_transfer structure... */ 3424 spi_res_free(rxfer); 3425 3426 /* ...and return with an error */ 3427 return ERR_PTR(-EINVAL); 3428 } 3429 3430 /* 3431 * Remove the entry after replaced_after from list of 3432 * transfers and add it to list of replaced_transfers. 3433 */ 3434 list_move_tail(rxfer->replaced_after->next, 3435 &rxfer->replaced_transfers); 3436 } 3437 3438 /* 3439 * Create copy of the given xfer with identical settings 3440 * based on the first transfer to get removed. 3441 */ 3442 for (i = 0; i < insert; i++) { 3443 /* We need to run in reverse order */ 3444 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3445 3446 /* Copy all spi_transfer data */ 3447 memcpy(xfer, xfer_first, sizeof(*xfer)); 3448 3449 /* Add to list */ 3450 list_add(&xfer->transfer_list, rxfer->replaced_after); 3451 3452 /* Clear cs_change and delay for all but the last */ 3453 if (i) { 3454 xfer->cs_change = false; 3455 xfer->delay.value = 0; 3456 } 3457 } 3458 3459 /* Set up inserted... */ 3460 rxfer->inserted = insert; 3461 3462 /* ...and register it with spi_res/spi_message */ 3463 spi_res_add(msg, rxfer); 3464 3465 return rxfer; 3466 } 3467 3468 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3469 struct spi_message *msg, 3470 struct spi_transfer **xferp, 3471 size_t maxsize, 3472 gfp_t gfp) 3473 { 3474 struct spi_transfer *xfer = *xferp, *xfers; 3475 struct spi_replaced_transfers *srt; 3476 size_t offset; 3477 size_t count, i; 3478 3479 /* Calculate how many we have to replace */ 3480 count = DIV_ROUND_UP(xfer->len, maxsize); 3481 3482 /* Create replacement */ 3483 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3484 if (IS_ERR(srt)) 3485 return PTR_ERR(srt); 3486 xfers = srt->inserted_transfers; 3487 3488 /* 3489 * Now handle each of those newly inserted spi_transfers. 3490 * Note that the replacements spi_transfers all are preset 3491 * to the same values as *xferp, so tx_buf, rx_buf and len 3492 * are all identical (as well as most others) 3493 * so we just have to fix up len and the pointers. 3494 * 3495 * This also includes support for the depreciated 3496 * spi_message.is_dma_mapped interface. 3497 */ 3498 3499 /* 3500 * The first transfer just needs the length modified, so we 3501 * run it outside the loop. 3502 */ 3503 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3504 3505 /* All the others need rx_buf/tx_buf also set */ 3506 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3507 /* Update rx_buf, tx_buf and dma */ 3508 if (xfers[i].rx_buf) 3509 xfers[i].rx_buf += offset; 3510 if (xfers[i].rx_dma) 3511 xfers[i].rx_dma += offset; 3512 if (xfers[i].tx_buf) 3513 xfers[i].tx_buf += offset; 3514 if (xfers[i].tx_dma) 3515 xfers[i].tx_dma += offset; 3516 3517 /* Update length */ 3518 xfers[i].len = min(maxsize, xfers[i].len - offset); 3519 } 3520 3521 /* 3522 * We set up xferp to the last entry we have inserted, 3523 * so that we skip those already split transfers. 3524 */ 3525 *xferp = &xfers[count - 1]; 3526 3527 /* Increment statistics counters */ 3528 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3529 transfers_split_maxsize); 3530 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3531 transfers_split_maxsize); 3532 3533 return 0; 3534 } 3535 3536 /** 3537 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3538 * when an individual transfer exceeds a 3539 * certain size 3540 * @ctlr: the @spi_controller for this transfer 3541 * @msg: the @spi_message to transform 3542 * @maxsize: the maximum when to apply this 3543 * @gfp: GFP allocation flags 3544 * 3545 * Return: status of transformation 3546 */ 3547 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3548 struct spi_message *msg, 3549 size_t maxsize, 3550 gfp_t gfp) 3551 { 3552 struct spi_transfer *xfer; 3553 int ret; 3554 3555 /* 3556 * Iterate over the transfer_list, 3557 * but note that xfer is advanced to the last transfer inserted 3558 * to avoid checking sizes again unnecessarily (also xfer does 3559 * potentially belong to a different list by the time the 3560 * replacement has happened). 3561 */ 3562 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3563 if (xfer->len > maxsize) { 3564 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3565 maxsize, gfp); 3566 if (ret) 3567 return ret; 3568 } 3569 } 3570 3571 return 0; 3572 } 3573 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3574 3575 /*-------------------------------------------------------------------------*/ 3576 3577 /* Core methods for SPI controller protocol drivers. Some of the 3578 * other core methods are currently defined as inline functions. 3579 */ 3580 3581 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3582 u8 bits_per_word) 3583 { 3584 if (ctlr->bits_per_word_mask) { 3585 /* Only 32 bits fit in the mask */ 3586 if (bits_per_word > 32) 3587 return -EINVAL; 3588 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3589 return -EINVAL; 3590 } 3591 3592 return 0; 3593 } 3594 3595 /** 3596 * spi_setup - setup SPI mode and clock rate 3597 * @spi: the device whose settings are being modified 3598 * Context: can sleep, and no requests are queued to the device 3599 * 3600 * SPI protocol drivers may need to update the transfer mode if the 3601 * device doesn't work with its default. They may likewise need 3602 * to update clock rates or word sizes from initial values. This function 3603 * changes those settings, and must be called from a context that can sleep. 3604 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3605 * effect the next time the device is selected and data is transferred to 3606 * or from it. When this function returns, the spi device is deselected. 3607 * 3608 * Note that this call will fail if the protocol driver specifies an option 3609 * that the underlying controller or its driver does not support. For 3610 * example, not all hardware supports wire transfers using nine bit words, 3611 * LSB-first wire encoding, or active-high chipselects. 3612 * 3613 * Return: zero on success, else a negative error code. 3614 */ 3615 int spi_setup(struct spi_device *spi) 3616 { 3617 unsigned bad_bits, ugly_bits; 3618 int status = 0; 3619 3620 /* 3621 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3622 * are set at the same time. 3623 */ 3624 if ((hweight_long(spi->mode & 3625 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3626 (hweight_long(spi->mode & 3627 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3628 dev_err(&spi->dev, 3629 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3630 return -EINVAL; 3631 } 3632 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3633 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3634 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3635 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3636 return -EINVAL; 3637 /* 3638 * Help drivers fail *cleanly* when they need options 3639 * that aren't supported with their current controller. 3640 * SPI_CS_WORD has a fallback software implementation, 3641 * so it is ignored here. 3642 */ 3643 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3644 SPI_NO_TX | SPI_NO_RX); 3645 ugly_bits = bad_bits & 3646 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3647 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3648 if (ugly_bits) { 3649 dev_warn(&spi->dev, 3650 "setup: ignoring unsupported mode bits %x\n", 3651 ugly_bits); 3652 spi->mode &= ~ugly_bits; 3653 bad_bits &= ~ugly_bits; 3654 } 3655 if (bad_bits) { 3656 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3657 bad_bits); 3658 return -EINVAL; 3659 } 3660 3661 if (!spi->bits_per_word) { 3662 spi->bits_per_word = 8; 3663 } else { 3664 /* 3665 * Some controllers may not support the default 8 bits-per-word 3666 * so only perform the check when this is explicitly provided. 3667 */ 3668 status = __spi_validate_bits_per_word(spi->controller, 3669 spi->bits_per_word); 3670 if (status) 3671 return status; 3672 } 3673 3674 if (spi->controller->max_speed_hz && 3675 (!spi->max_speed_hz || 3676 spi->max_speed_hz > spi->controller->max_speed_hz)) 3677 spi->max_speed_hz = spi->controller->max_speed_hz; 3678 3679 mutex_lock(&spi->controller->io_mutex); 3680 3681 if (spi->controller->setup) { 3682 status = spi->controller->setup(spi); 3683 if (status) { 3684 mutex_unlock(&spi->controller->io_mutex); 3685 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3686 status); 3687 return status; 3688 } 3689 } 3690 3691 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3692 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3693 if (status < 0) { 3694 mutex_unlock(&spi->controller->io_mutex); 3695 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3696 status); 3697 return status; 3698 } 3699 3700 /* 3701 * We do not want to return positive value from pm_runtime_get, 3702 * there are many instances of devices calling spi_setup() and 3703 * checking for a non-zero return value instead of a negative 3704 * return value. 3705 */ 3706 status = 0; 3707 3708 spi_set_cs(spi, false, true); 3709 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3710 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3711 } else { 3712 spi_set_cs(spi, false, true); 3713 } 3714 3715 mutex_unlock(&spi->controller->io_mutex); 3716 3717 if (spi->rt && !spi->controller->rt) { 3718 spi->controller->rt = true; 3719 spi_set_thread_rt(spi->controller); 3720 } 3721 3722 trace_spi_setup(spi, status); 3723 3724 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3725 spi->mode & SPI_MODE_X_MASK, 3726 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3727 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3728 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3729 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3730 spi->bits_per_word, spi->max_speed_hz, 3731 status); 3732 3733 return status; 3734 } 3735 EXPORT_SYMBOL_GPL(spi_setup); 3736 3737 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3738 struct spi_device *spi) 3739 { 3740 int delay1, delay2; 3741 3742 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3743 if (delay1 < 0) 3744 return delay1; 3745 3746 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3747 if (delay2 < 0) 3748 return delay2; 3749 3750 if (delay1 < delay2) 3751 memcpy(&xfer->word_delay, &spi->word_delay, 3752 sizeof(xfer->word_delay)); 3753 3754 return 0; 3755 } 3756 3757 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3758 { 3759 struct spi_controller *ctlr = spi->controller; 3760 struct spi_transfer *xfer; 3761 int w_size; 3762 3763 if (list_empty(&message->transfers)) 3764 return -EINVAL; 3765 3766 /* 3767 * If an SPI controller does not support toggling the CS line on each 3768 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3769 * for the CS line, we can emulate the CS-per-word hardware function by 3770 * splitting transfers into one-word transfers and ensuring that 3771 * cs_change is set for each transfer. 3772 */ 3773 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3774 spi->cs_gpiod)) { 3775 size_t maxsize; 3776 int ret; 3777 3778 maxsize = (spi->bits_per_word + 7) / 8; 3779 3780 /* spi_split_transfers_maxsize() requires message->spi */ 3781 message->spi = spi; 3782 3783 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3784 GFP_KERNEL); 3785 if (ret) 3786 return ret; 3787 3788 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3789 /* Don't change cs_change on the last entry in the list */ 3790 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3791 break; 3792 xfer->cs_change = 1; 3793 } 3794 } 3795 3796 /* 3797 * Half-duplex links include original MicroWire, and ones with 3798 * only one data pin like SPI_3WIRE (switches direction) or where 3799 * either MOSI or MISO is missing. They can also be caused by 3800 * software limitations. 3801 */ 3802 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3803 (spi->mode & SPI_3WIRE)) { 3804 unsigned flags = ctlr->flags; 3805 3806 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3807 if (xfer->rx_buf && xfer->tx_buf) 3808 return -EINVAL; 3809 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3810 return -EINVAL; 3811 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3812 return -EINVAL; 3813 } 3814 } 3815 3816 /* 3817 * Set transfer bits_per_word and max speed as spi device default if 3818 * it is not set for this transfer. 3819 * Set transfer tx_nbits and rx_nbits as single transfer default 3820 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3821 * Ensure transfer word_delay is at least as long as that required by 3822 * device itself. 3823 */ 3824 message->frame_length = 0; 3825 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3826 xfer->effective_speed_hz = 0; 3827 message->frame_length += xfer->len; 3828 if (!xfer->bits_per_word) 3829 xfer->bits_per_word = spi->bits_per_word; 3830 3831 if (!xfer->speed_hz) 3832 xfer->speed_hz = spi->max_speed_hz; 3833 3834 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3835 xfer->speed_hz = ctlr->max_speed_hz; 3836 3837 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3838 return -EINVAL; 3839 3840 /* 3841 * SPI transfer length should be multiple of SPI word size 3842 * where SPI word size should be power-of-two multiple. 3843 */ 3844 if (xfer->bits_per_word <= 8) 3845 w_size = 1; 3846 else if (xfer->bits_per_word <= 16) 3847 w_size = 2; 3848 else 3849 w_size = 4; 3850 3851 /* No partial transfers accepted */ 3852 if (xfer->len % w_size) 3853 return -EINVAL; 3854 3855 if (xfer->speed_hz && ctlr->min_speed_hz && 3856 xfer->speed_hz < ctlr->min_speed_hz) 3857 return -EINVAL; 3858 3859 if (xfer->tx_buf && !xfer->tx_nbits) 3860 xfer->tx_nbits = SPI_NBITS_SINGLE; 3861 if (xfer->rx_buf && !xfer->rx_nbits) 3862 xfer->rx_nbits = SPI_NBITS_SINGLE; 3863 /* 3864 * Check transfer tx/rx_nbits: 3865 * 1. check the value matches one of single, dual and quad 3866 * 2. check tx/rx_nbits match the mode in spi_device 3867 */ 3868 if (xfer->tx_buf) { 3869 if (spi->mode & SPI_NO_TX) 3870 return -EINVAL; 3871 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3872 xfer->tx_nbits != SPI_NBITS_DUAL && 3873 xfer->tx_nbits != SPI_NBITS_QUAD) 3874 return -EINVAL; 3875 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3876 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3877 return -EINVAL; 3878 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3879 !(spi->mode & SPI_TX_QUAD)) 3880 return -EINVAL; 3881 } 3882 /* Check transfer rx_nbits */ 3883 if (xfer->rx_buf) { 3884 if (spi->mode & SPI_NO_RX) 3885 return -EINVAL; 3886 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3887 xfer->rx_nbits != SPI_NBITS_DUAL && 3888 xfer->rx_nbits != SPI_NBITS_QUAD) 3889 return -EINVAL; 3890 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3891 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3892 return -EINVAL; 3893 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3894 !(spi->mode & SPI_RX_QUAD)) 3895 return -EINVAL; 3896 } 3897 3898 if (_spi_xfer_word_delay_update(xfer, spi)) 3899 return -EINVAL; 3900 } 3901 3902 message->status = -EINPROGRESS; 3903 3904 return 0; 3905 } 3906 3907 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3908 { 3909 struct spi_controller *ctlr = spi->controller; 3910 struct spi_transfer *xfer; 3911 3912 /* 3913 * Some controllers do not support doing regular SPI transfers. Return 3914 * ENOTSUPP when this is the case. 3915 */ 3916 if (!ctlr->transfer) 3917 return -ENOTSUPP; 3918 3919 message->spi = spi; 3920 3921 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 3922 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 3923 3924 trace_spi_message_submit(message); 3925 3926 if (!ctlr->ptp_sts_supported) { 3927 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3928 xfer->ptp_sts_word_pre = 0; 3929 ptp_read_system_prets(xfer->ptp_sts); 3930 } 3931 } 3932 3933 return ctlr->transfer(spi, message); 3934 } 3935 3936 /** 3937 * spi_async - asynchronous SPI transfer 3938 * @spi: device with which data will be exchanged 3939 * @message: describes the data transfers, including completion callback 3940 * Context: any (irqs may be blocked, etc) 3941 * 3942 * This call may be used in_irq and other contexts which can't sleep, 3943 * as well as from task contexts which can sleep. 3944 * 3945 * The completion callback is invoked in a context which can't sleep. 3946 * Before that invocation, the value of message->status is undefined. 3947 * When the callback is issued, message->status holds either zero (to 3948 * indicate complete success) or a negative error code. After that 3949 * callback returns, the driver which issued the transfer request may 3950 * deallocate the associated memory; it's no longer in use by any SPI 3951 * core or controller driver code. 3952 * 3953 * Note that although all messages to a spi_device are handled in 3954 * FIFO order, messages may go to different devices in other orders. 3955 * Some device might be higher priority, or have various "hard" access 3956 * time requirements, for example. 3957 * 3958 * On detection of any fault during the transfer, processing of 3959 * the entire message is aborted, and the device is deselected. 3960 * Until returning from the associated message completion callback, 3961 * no other spi_message queued to that device will be processed. 3962 * (This rule applies equally to all the synchronous transfer calls, 3963 * which are wrappers around this core asynchronous primitive.) 3964 * 3965 * Return: zero on success, else a negative error code. 3966 */ 3967 int spi_async(struct spi_device *spi, struct spi_message *message) 3968 { 3969 struct spi_controller *ctlr = spi->controller; 3970 int ret; 3971 unsigned long flags; 3972 3973 ret = __spi_validate(spi, message); 3974 if (ret != 0) 3975 return ret; 3976 3977 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3978 3979 if (ctlr->bus_lock_flag) 3980 ret = -EBUSY; 3981 else 3982 ret = __spi_async(spi, message); 3983 3984 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3985 3986 return ret; 3987 } 3988 EXPORT_SYMBOL_GPL(spi_async); 3989 3990 /** 3991 * spi_async_locked - version of spi_async with exclusive bus usage 3992 * @spi: device with which data will be exchanged 3993 * @message: describes the data transfers, including completion callback 3994 * Context: any (irqs may be blocked, etc) 3995 * 3996 * This call may be used in_irq and other contexts which can't sleep, 3997 * as well as from task contexts which can sleep. 3998 * 3999 * The completion callback is invoked in a context which can't sleep. 4000 * Before that invocation, the value of message->status is undefined. 4001 * When the callback is issued, message->status holds either zero (to 4002 * indicate complete success) or a negative error code. After that 4003 * callback returns, the driver which issued the transfer request may 4004 * deallocate the associated memory; it's no longer in use by any SPI 4005 * core or controller driver code. 4006 * 4007 * Note that although all messages to a spi_device are handled in 4008 * FIFO order, messages may go to different devices in other orders. 4009 * Some device might be higher priority, or have various "hard" access 4010 * time requirements, for example. 4011 * 4012 * On detection of any fault during the transfer, processing of 4013 * the entire message is aborted, and the device is deselected. 4014 * Until returning from the associated message completion callback, 4015 * no other spi_message queued to that device will be processed. 4016 * (This rule applies equally to all the synchronous transfer calls, 4017 * which are wrappers around this core asynchronous primitive.) 4018 * 4019 * Return: zero on success, else a negative error code. 4020 */ 4021 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4022 { 4023 struct spi_controller *ctlr = spi->controller; 4024 int ret; 4025 unsigned long flags; 4026 4027 ret = __spi_validate(spi, message); 4028 if (ret != 0) 4029 return ret; 4030 4031 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4032 4033 ret = __spi_async(spi, message); 4034 4035 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4036 4037 return ret; 4038 4039 } 4040 4041 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4042 { 4043 bool was_busy; 4044 int ret; 4045 4046 mutex_lock(&ctlr->io_mutex); 4047 4048 was_busy = ctlr->busy; 4049 4050 ctlr->cur_msg = msg; 4051 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4052 if (ret) 4053 goto out; 4054 4055 ctlr->cur_msg = NULL; 4056 ctlr->fallback = false; 4057 4058 if (!was_busy) { 4059 kfree(ctlr->dummy_rx); 4060 ctlr->dummy_rx = NULL; 4061 kfree(ctlr->dummy_tx); 4062 ctlr->dummy_tx = NULL; 4063 if (ctlr->unprepare_transfer_hardware && 4064 ctlr->unprepare_transfer_hardware(ctlr)) 4065 dev_err(&ctlr->dev, 4066 "failed to unprepare transfer hardware\n"); 4067 spi_idle_runtime_pm(ctlr); 4068 } 4069 4070 out: 4071 mutex_unlock(&ctlr->io_mutex); 4072 } 4073 4074 /*-------------------------------------------------------------------------*/ 4075 4076 /* 4077 * Utility methods for SPI protocol drivers, layered on 4078 * top of the core. Some other utility methods are defined as 4079 * inline functions. 4080 */ 4081 4082 static void spi_complete(void *arg) 4083 { 4084 complete(arg); 4085 } 4086 4087 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4088 { 4089 DECLARE_COMPLETION_ONSTACK(done); 4090 int status; 4091 struct spi_controller *ctlr = spi->controller; 4092 4093 status = __spi_validate(spi, message); 4094 if (status != 0) 4095 return status; 4096 4097 message->spi = spi; 4098 4099 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4100 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4101 4102 /* 4103 * Checking queue_empty here only guarantees async/sync message 4104 * ordering when coming from the same context. It does not need to 4105 * guard against reentrancy from a different context. The io_mutex 4106 * will catch those cases. 4107 */ 4108 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4109 message->actual_length = 0; 4110 message->status = -EINPROGRESS; 4111 4112 trace_spi_message_submit(message); 4113 4114 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4115 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4116 4117 __spi_transfer_message_noqueue(ctlr, message); 4118 4119 return message->status; 4120 } 4121 4122 /* 4123 * There are messages in the async queue that could have originated 4124 * from the same context, so we need to preserve ordering. 4125 * Therefor we send the message to the async queue and wait until they 4126 * are completed. 4127 */ 4128 message->complete = spi_complete; 4129 message->context = &done; 4130 status = spi_async_locked(spi, message); 4131 if (status == 0) { 4132 wait_for_completion(&done); 4133 status = message->status; 4134 } 4135 message->context = NULL; 4136 4137 return status; 4138 } 4139 4140 /** 4141 * spi_sync - blocking/synchronous SPI data transfers 4142 * @spi: device with which data will be exchanged 4143 * @message: describes the data transfers 4144 * Context: can sleep 4145 * 4146 * This call may only be used from a context that may sleep. The sleep 4147 * is non-interruptible, and has no timeout. Low-overhead controller 4148 * drivers may DMA directly into and out of the message buffers. 4149 * 4150 * Note that the SPI device's chip select is active during the message, 4151 * and then is normally disabled between messages. Drivers for some 4152 * frequently-used devices may want to minimize costs of selecting a chip, 4153 * by leaving it selected in anticipation that the next message will go 4154 * to the same chip. (That may increase power usage.) 4155 * 4156 * Also, the caller is guaranteeing that the memory associated with the 4157 * message will not be freed before this call returns. 4158 * 4159 * Return: zero on success, else a negative error code. 4160 */ 4161 int spi_sync(struct spi_device *spi, struct spi_message *message) 4162 { 4163 int ret; 4164 4165 mutex_lock(&spi->controller->bus_lock_mutex); 4166 ret = __spi_sync(spi, message); 4167 mutex_unlock(&spi->controller->bus_lock_mutex); 4168 4169 return ret; 4170 } 4171 EXPORT_SYMBOL_GPL(spi_sync); 4172 4173 /** 4174 * spi_sync_locked - version of spi_sync with exclusive bus usage 4175 * @spi: device with which data will be exchanged 4176 * @message: describes the data transfers 4177 * Context: can sleep 4178 * 4179 * This call may only be used from a context that may sleep. The sleep 4180 * is non-interruptible, and has no timeout. Low-overhead controller 4181 * drivers may DMA directly into and out of the message buffers. 4182 * 4183 * This call should be used by drivers that require exclusive access to the 4184 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4185 * be released by a spi_bus_unlock call when the exclusive access is over. 4186 * 4187 * Return: zero on success, else a negative error code. 4188 */ 4189 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4190 { 4191 return __spi_sync(spi, message); 4192 } 4193 EXPORT_SYMBOL_GPL(spi_sync_locked); 4194 4195 /** 4196 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4197 * @ctlr: SPI bus master that should be locked for exclusive bus access 4198 * Context: can sleep 4199 * 4200 * This call may only be used from a context that may sleep. The sleep 4201 * is non-interruptible, and has no timeout. 4202 * 4203 * This call should be used by drivers that require exclusive access to the 4204 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4205 * exclusive access is over. Data transfer must be done by spi_sync_locked 4206 * and spi_async_locked calls when the SPI bus lock is held. 4207 * 4208 * Return: always zero. 4209 */ 4210 int spi_bus_lock(struct spi_controller *ctlr) 4211 { 4212 unsigned long flags; 4213 4214 mutex_lock(&ctlr->bus_lock_mutex); 4215 4216 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4217 ctlr->bus_lock_flag = 1; 4218 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4219 4220 /* Mutex remains locked until spi_bus_unlock() is called */ 4221 4222 return 0; 4223 } 4224 EXPORT_SYMBOL_GPL(spi_bus_lock); 4225 4226 /** 4227 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4228 * @ctlr: SPI bus master that was locked for exclusive bus access 4229 * Context: can sleep 4230 * 4231 * This call may only be used from a context that may sleep. The sleep 4232 * is non-interruptible, and has no timeout. 4233 * 4234 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4235 * call. 4236 * 4237 * Return: always zero. 4238 */ 4239 int spi_bus_unlock(struct spi_controller *ctlr) 4240 { 4241 ctlr->bus_lock_flag = 0; 4242 4243 mutex_unlock(&ctlr->bus_lock_mutex); 4244 4245 return 0; 4246 } 4247 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4248 4249 /* Portable code must never pass more than 32 bytes */ 4250 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4251 4252 static u8 *buf; 4253 4254 /** 4255 * spi_write_then_read - SPI synchronous write followed by read 4256 * @spi: device with which data will be exchanged 4257 * @txbuf: data to be written (need not be dma-safe) 4258 * @n_tx: size of txbuf, in bytes 4259 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4260 * @n_rx: size of rxbuf, in bytes 4261 * Context: can sleep 4262 * 4263 * This performs a half duplex MicroWire style transaction with the 4264 * device, sending txbuf and then reading rxbuf. The return value 4265 * is zero for success, else a negative errno status code. 4266 * This call may only be used from a context that may sleep. 4267 * 4268 * Parameters to this routine are always copied using a small buffer. 4269 * Performance-sensitive or bulk transfer code should instead use 4270 * spi_{async,sync}() calls with dma-safe buffers. 4271 * 4272 * Return: zero on success, else a negative error code. 4273 */ 4274 int spi_write_then_read(struct spi_device *spi, 4275 const void *txbuf, unsigned n_tx, 4276 void *rxbuf, unsigned n_rx) 4277 { 4278 static DEFINE_MUTEX(lock); 4279 4280 int status; 4281 struct spi_message message; 4282 struct spi_transfer x[2]; 4283 u8 *local_buf; 4284 4285 /* 4286 * Use preallocated DMA-safe buffer if we can. We can't avoid 4287 * copying here, (as a pure convenience thing), but we can 4288 * keep heap costs out of the hot path unless someone else is 4289 * using the pre-allocated buffer or the transfer is too large. 4290 */ 4291 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4292 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4293 GFP_KERNEL | GFP_DMA); 4294 if (!local_buf) 4295 return -ENOMEM; 4296 } else { 4297 local_buf = buf; 4298 } 4299 4300 spi_message_init(&message); 4301 memset(x, 0, sizeof(x)); 4302 if (n_tx) { 4303 x[0].len = n_tx; 4304 spi_message_add_tail(&x[0], &message); 4305 } 4306 if (n_rx) { 4307 x[1].len = n_rx; 4308 spi_message_add_tail(&x[1], &message); 4309 } 4310 4311 memcpy(local_buf, txbuf, n_tx); 4312 x[0].tx_buf = local_buf; 4313 x[1].rx_buf = local_buf + n_tx; 4314 4315 /* Do the i/o */ 4316 status = spi_sync(spi, &message); 4317 if (status == 0) 4318 memcpy(rxbuf, x[1].rx_buf, n_rx); 4319 4320 if (x[0].tx_buf == buf) 4321 mutex_unlock(&lock); 4322 else 4323 kfree(local_buf); 4324 4325 return status; 4326 } 4327 EXPORT_SYMBOL_GPL(spi_write_then_read); 4328 4329 /*-------------------------------------------------------------------------*/ 4330 4331 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4332 /* Must call put_device() when done with returned spi_device device */ 4333 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4334 { 4335 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4336 4337 return dev ? to_spi_device(dev) : NULL; 4338 } 4339 4340 /* The spi controllers are not using spi_bus, so we find it with another way */ 4341 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4342 { 4343 struct device *dev; 4344 4345 dev = class_find_device_by_of_node(&spi_master_class, node); 4346 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4347 dev = class_find_device_by_of_node(&spi_slave_class, node); 4348 if (!dev) 4349 return NULL; 4350 4351 /* Reference got in class_find_device */ 4352 return container_of(dev, struct spi_controller, dev); 4353 } 4354 4355 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4356 void *arg) 4357 { 4358 struct of_reconfig_data *rd = arg; 4359 struct spi_controller *ctlr; 4360 struct spi_device *spi; 4361 4362 switch (of_reconfig_get_state_change(action, arg)) { 4363 case OF_RECONFIG_CHANGE_ADD: 4364 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4365 if (ctlr == NULL) 4366 return NOTIFY_OK; /* Not for us */ 4367 4368 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4369 put_device(&ctlr->dev); 4370 return NOTIFY_OK; 4371 } 4372 4373 spi = of_register_spi_device(ctlr, rd->dn); 4374 put_device(&ctlr->dev); 4375 4376 if (IS_ERR(spi)) { 4377 pr_err("%s: failed to create for '%pOF'\n", 4378 __func__, rd->dn); 4379 of_node_clear_flag(rd->dn, OF_POPULATED); 4380 return notifier_from_errno(PTR_ERR(spi)); 4381 } 4382 break; 4383 4384 case OF_RECONFIG_CHANGE_REMOVE: 4385 /* Already depopulated? */ 4386 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4387 return NOTIFY_OK; 4388 4389 /* Find our device by node */ 4390 spi = of_find_spi_device_by_node(rd->dn); 4391 if (spi == NULL) 4392 return NOTIFY_OK; /* No? not meant for us */ 4393 4394 /* Unregister takes one ref away */ 4395 spi_unregister_device(spi); 4396 4397 /* And put the reference of the find */ 4398 put_device(&spi->dev); 4399 break; 4400 } 4401 4402 return NOTIFY_OK; 4403 } 4404 4405 static struct notifier_block spi_of_notifier = { 4406 .notifier_call = of_spi_notify, 4407 }; 4408 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4409 extern struct notifier_block spi_of_notifier; 4410 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4411 4412 #if IS_ENABLED(CONFIG_ACPI) 4413 static int spi_acpi_controller_match(struct device *dev, const void *data) 4414 { 4415 return ACPI_COMPANION(dev->parent) == data; 4416 } 4417 4418 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4419 { 4420 struct device *dev; 4421 4422 dev = class_find_device(&spi_master_class, NULL, adev, 4423 spi_acpi_controller_match); 4424 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4425 dev = class_find_device(&spi_slave_class, NULL, adev, 4426 spi_acpi_controller_match); 4427 if (!dev) 4428 return NULL; 4429 4430 return container_of(dev, struct spi_controller, dev); 4431 } 4432 4433 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4434 { 4435 struct device *dev; 4436 4437 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4438 return to_spi_device(dev); 4439 } 4440 4441 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4442 void *arg) 4443 { 4444 struct acpi_device *adev = arg; 4445 struct spi_controller *ctlr; 4446 struct spi_device *spi; 4447 4448 switch (value) { 4449 case ACPI_RECONFIG_DEVICE_ADD: 4450 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4451 if (!ctlr) 4452 break; 4453 4454 acpi_register_spi_device(ctlr, adev); 4455 put_device(&ctlr->dev); 4456 break; 4457 case ACPI_RECONFIG_DEVICE_REMOVE: 4458 if (!acpi_device_enumerated(adev)) 4459 break; 4460 4461 spi = acpi_spi_find_device_by_adev(adev); 4462 if (!spi) 4463 break; 4464 4465 spi_unregister_device(spi); 4466 put_device(&spi->dev); 4467 break; 4468 } 4469 4470 return NOTIFY_OK; 4471 } 4472 4473 static struct notifier_block spi_acpi_notifier = { 4474 .notifier_call = acpi_spi_notify, 4475 }; 4476 #else 4477 extern struct notifier_block spi_acpi_notifier; 4478 #endif 4479 4480 static int __init spi_init(void) 4481 { 4482 int status; 4483 4484 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4485 if (!buf) { 4486 status = -ENOMEM; 4487 goto err0; 4488 } 4489 4490 status = bus_register(&spi_bus_type); 4491 if (status < 0) 4492 goto err1; 4493 4494 status = class_register(&spi_master_class); 4495 if (status < 0) 4496 goto err2; 4497 4498 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4499 status = class_register(&spi_slave_class); 4500 if (status < 0) 4501 goto err3; 4502 } 4503 4504 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4505 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4506 if (IS_ENABLED(CONFIG_ACPI)) 4507 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4508 4509 return 0; 4510 4511 err3: 4512 class_unregister(&spi_master_class); 4513 err2: 4514 bus_unregister(&spi_bus_type); 4515 err1: 4516 kfree(buf); 4517 buf = NULL; 4518 err0: 4519 return status; 4520 } 4521 4522 /* 4523 * A board_info is normally registered in arch_initcall(), 4524 * but even essential drivers wait till later. 4525 * 4526 * REVISIT only boardinfo really needs static linking. The rest (device and 4527 * driver registration) _could_ be dynamically linked (modular) ... Costs 4528 * include needing to have boardinfo data structures be much more public. 4529 */ 4530 postcore_initcall(spi_init); 4531