1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/autoconf.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/cache.h> 26 #include <linux/spi/spi.h> 27 28 29 /* SPI bustype and spi_master class are registered after board init code 30 * provides the SPI device tables, ensuring that both are present by the 31 * time controller driver registration causes spi_devices to "enumerate". 32 */ 33 static void spidev_release(struct device *dev) 34 { 35 struct spi_device *spi = to_spi_device(dev); 36 37 /* spi masters may cleanup for released devices */ 38 if (spi->master->cleanup) 39 spi->master->cleanup(spi); 40 41 spi_master_put(spi->master); 42 kfree(dev); 43 } 44 45 static ssize_t 46 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 47 { 48 const struct spi_device *spi = to_spi_device(dev); 49 50 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias); 51 } 52 53 static struct device_attribute spi_dev_attrs[] = { 54 __ATTR_RO(modalias), 55 __ATTR_NULL, 56 }; 57 58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 59 * and the sysfs version makes coldplug work too. 60 */ 61 62 static int spi_match_device(struct device *dev, struct device_driver *drv) 63 { 64 const struct spi_device *spi = to_spi_device(dev); 65 66 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0; 67 } 68 69 static int spi_uevent(struct device *dev, char **envp, int num_envp, 70 char *buffer, int buffer_size) 71 { 72 const struct spi_device *spi = to_spi_device(dev); 73 74 envp[0] = buffer; 75 snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias); 76 envp[1] = NULL; 77 return 0; 78 } 79 80 #ifdef CONFIG_PM 81 82 /* 83 * NOTE: the suspend() method for an spi_master controller driver 84 * should verify that all its child devices are marked as suspended; 85 * suspend requests delivered through sysfs power/state files don't 86 * enforce such constraints. 87 */ 88 static int spi_suspend(struct device *dev, pm_message_t message) 89 { 90 int value; 91 struct spi_driver *drv = to_spi_driver(dev->driver); 92 93 if (!drv || !drv->suspend) 94 return 0; 95 96 /* suspend will stop irqs and dma; no more i/o */ 97 value = drv->suspend(to_spi_device(dev), message); 98 if (value == 0) 99 dev->power.power_state = message; 100 return value; 101 } 102 103 static int spi_resume(struct device *dev) 104 { 105 int value; 106 struct spi_driver *drv = to_spi_driver(dev->driver); 107 108 if (!drv || !drv->resume) 109 return 0; 110 111 /* resume may restart the i/o queue */ 112 value = drv->resume(to_spi_device(dev)); 113 if (value == 0) 114 dev->power.power_state = PMSG_ON; 115 return value; 116 } 117 118 #else 119 #define spi_suspend NULL 120 #define spi_resume NULL 121 #endif 122 123 struct bus_type spi_bus_type = { 124 .name = "spi", 125 .dev_attrs = spi_dev_attrs, 126 .match = spi_match_device, 127 .uevent = spi_uevent, 128 .suspend = spi_suspend, 129 .resume = spi_resume, 130 }; 131 EXPORT_SYMBOL_GPL(spi_bus_type); 132 133 134 static int spi_drv_probe(struct device *dev) 135 { 136 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 137 138 return sdrv->probe(to_spi_device(dev)); 139 } 140 141 static int spi_drv_remove(struct device *dev) 142 { 143 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 144 145 return sdrv->remove(to_spi_device(dev)); 146 } 147 148 static void spi_drv_shutdown(struct device *dev) 149 { 150 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 151 152 sdrv->shutdown(to_spi_device(dev)); 153 } 154 155 int spi_register_driver(struct spi_driver *sdrv) 156 { 157 sdrv->driver.bus = &spi_bus_type; 158 if (sdrv->probe) 159 sdrv->driver.probe = spi_drv_probe; 160 if (sdrv->remove) 161 sdrv->driver.remove = spi_drv_remove; 162 if (sdrv->shutdown) 163 sdrv->driver.shutdown = spi_drv_shutdown; 164 return driver_register(&sdrv->driver); 165 } 166 EXPORT_SYMBOL_GPL(spi_register_driver); 167 168 /*-------------------------------------------------------------------------*/ 169 170 /* SPI devices should normally not be created by SPI device drivers; that 171 * would make them board-specific. Similarly with SPI master drivers. 172 * Device registration normally goes into like arch/.../mach.../board-YYY.c 173 * with other readonly (flashable) information about mainboard devices. 174 */ 175 176 struct boardinfo { 177 struct list_head list; 178 unsigned n_board_info; 179 struct spi_board_info board_info[0]; 180 }; 181 182 static LIST_HEAD(board_list); 183 static DECLARE_MUTEX(board_lock); 184 185 186 /* On typical mainboards, this is purely internal; and it's not needed 187 * after board init creates the hard-wired devices. Some development 188 * platforms may not be able to use spi_register_board_info though, and 189 * this is exported so that for example a USB or parport based adapter 190 * driver could add devices (which it would learn about out-of-band). 191 */ 192 struct spi_device *spi_new_device(struct spi_master *master, 193 struct spi_board_info *chip) 194 { 195 struct spi_device *proxy; 196 struct device *dev = master->cdev.dev; 197 int status; 198 199 /* NOTE: caller did any chip->bus_num checks necessary */ 200 201 if (!spi_master_get(master)) 202 return NULL; 203 204 proxy = kzalloc(sizeof *proxy, GFP_KERNEL); 205 if (!proxy) { 206 dev_err(dev, "can't alloc dev for cs%d\n", 207 chip->chip_select); 208 goto fail; 209 } 210 proxy->master = master; 211 proxy->chip_select = chip->chip_select; 212 proxy->max_speed_hz = chip->max_speed_hz; 213 proxy->mode = chip->mode; 214 proxy->irq = chip->irq; 215 proxy->modalias = chip->modalias; 216 217 snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id, 218 "%s.%u", master->cdev.class_id, 219 chip->chip_select); 220 proxy->dev.parent = dev; 221 proxy->dev.bus = &spi_bus_type; 222 proxy->dev.platform_data = (void *) chip->platform_data; 223 proxy->controller_data = chip->controller_data; 224 proxy->controller_state = NULL; 225 proxy->dev.release = spidev_release; 226 227 /* drivers may modify this default i/o setup */ 228 status = master->setup(proxy); 229 if (status < 0) { 230 dev_dbg(dev, "can't %s %s, status %d\n", 231 "setup", proxy->dev.bus_id, status); 232 goto fail; 233 } 234 235 /* driver core catches callers that misbehave by defining 236 * devices that already exist. 237 */ 238 status = device_register(&proxy->dev); 239 if (status < 0) { 240 dev_dbg(dev, "can't %s %s, status %d\n", 241 "add", proxy->dev.bus_id, status); 242 goto fail; 243 } 244 dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id); 245 return proxy; 246 247 fail: 248 spi_master_put(master); 249 kfree(proxy); 250 return NULL; 251 } 252 EXPORT_SYMBOL_GPL(spi_new_device); 253 254 /* 255 * Board-specific early init code calls this (probably during arch_initcall) 256 * with segments of the SPI device table. Any device nodes are created later, 257 * after the relevant parent SPI controller (bus_num) is defined. We keep 258 * this table of devices forever, so that reloading a controller driver will 259 * not make Linux forget about these hard-wired devices. 260 * 261 * Other code can also call this, e.g. a particular add-on board might provide 262 * SPI devices through its expansion connector, so code initializing that board 263 * would naturally declare its SPI devices. 264 * 265 * The board info passed can safely be __initdata ... but be careful of 266 * any embedded pointers (platform_data, etc), they're copied as-is. 267 */ 268 int __init 269 spi_register_board_info(struct spi_board_info const *info, unsigned n) 270 { 271 struct boardinfo *bi; 272 273 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 274 if (!bi) 275 return -ENOMEM; 276 bi->n_board_info = n; 277 memcpy(bi->board_info, info, n * sizeof *info); 278 279 down(&board_lock); 280 list_add_tail(&bi->list, &board_list); 281 up(&board_lock); 282 return 0; 283 } 284 285 /* FIXME someone should add support for a __setup("spi", ...) that 286 * creates board info from kernel command lines 287 */ 288 289 static void __init_or_module 290 scan_boardinfo(struct spi_master *master) 291 { 292 struct boardinfo *bi; 293 struct device *dev = master->cdev.dev; 294 295 down(&board_lock); 296 list_for_each_entry(bi, &board_list, list) { 297 struct spi_board_info *chip = bi->board_info; 298 unsigned n; 299 300 for (n = bi->n_board_info; n > 0; n--, chip++) { 301 if (chip->bus_num != master->bus_num) 302 continue; 303 /* some controllers only have one chip, so they 304 * might not use chipselects. otherwise, the 305 * chipselects are numbered 0..max. 306 */ 307 if (chip->chip_select >= master->num_chipselect 308 && master->num_chipselect) { 309 dev_dbg(dev, "cs%d > max %d\n", 310 chip->chip_select, 311 master->num_chipselect); 312 continue; 313 } 314 (void) spi_new_device(master, chip); 315 } 316 } 317 up(&board_lock); 318 } 319 320 /*-------------------------------------------------------------------------*/ 321 322 static void spi_master_release(struct class_device *cdev) 323 { 324 struct spi_master *master; 325 326 master = container_of(cdev, struct spi_master, cdev); 327 kfree(master); 328 } 329 330 static struct class spi_master_class = { 331 .name = "spi_master", 332 .owner = THIS_MODULE, 333 .release = spi_master_release, 334 }; 335 336 337 /** 338 * spi_alloc_master - allocate SPI master controller 339 * @dev: the controller, possibly using the platform_bus 340 * @size: how much driver-private data to preallocate; the pointer to this 341 * memory is in the class_data field of the returned class_device, 342 * accessible with spi_master_get_devdata(). 343 * 344 * This call is used only by SPI master controller drivers, which are the 345 * only ones directly touching chip registers. It's how they allocate 346 * an spi_master structure, prior to calling spi_register_master(). 347 * 348 * This must be called from context that can sleep. It returns the SPI 349 * master structure on success, else NULL. 350 * 351 * The caller is responsible for assigning the bus number and initializing 352 * the master's methods before calling spi_register_master(); and (after errors 353 * adding the device) calling spi_master_put() to prevent a memory leak. 354 */ 355 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 356 { 357 struct spi_master *master; 358 359 if (!dev) 360 return NULL; 361 362 master = kzalloc(size + sizeof *master, GFP_KERNEL); 363 if (!master) 364 return NULL; 365 366 class_device_initialize(&master->cdev); 367 master->cdev.class = &spi_master_class; 368 master->cdev.dev = get_device(dev); 369 spi_master_set_devdata(master, &master[1]); 370 371 return master; 372 } 373 EXPORT_SYMBOL_GPL(spi_alloc_master); 374 375 /** 376 * spi_register_master - register SPI master controller 377 * @master: initialized master, originally from spi_alloc_master() 378 * 379 * SPI master controllers connect to their drivers using some non-SPI bus, 380 * such as the platform bus. The final stage of probe() in that code 381 * includes calling spi_register_master() to hook up to this SPI bus glue. 382 * 383 * SPI controllers use board specific (often SOC specific) bus numbers, 384 * and board-specific addressing for SPI devices combines those numbers 385 * with chip select numbers. Since SPI does not directly support dynamic 386 * device identification, boards need configuration tables telling which 387 * chip is at which address. 388 * 389 * This must be called from context that can sleep. It returns zero on 390 * success, else a negative error code (dropping the master's refcount). 391 * After a successful return, the caller is responsible for calling 392 * spi_unregister_master(). 393 */ 394 int spi_register_master(struct spi_master *master) 395 { 396 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<16) - 1); 397 struct device *dev = master->cdev.dev; 398 int status = -ENODEV; 399 int dynamic = 0; 400 401 if (!dev) 402 return -ENODEV; 403 404 /* convention: dynamically assigned bus IDs count down from the max */ 405 if (master->bus_num < 0) { 406 master->bus_num = atomic_dec_return(&dyn_bus_id); 407 dynamic = 1; 408 } 409 410 /* register the device, then userspace will see it. 411 * registration fails if the bus ID is in use. 412 */ 413 snprintf(master->cdev.class_id, sizeof master->cdev.class_id, 414 "spi%u", master->bus_num); 415 status = class_device_add(&master->cdev); 416 if (status < 0) 417 goto done; 418 dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id, 419 dynamic ? " (dynamic)" : ""); 420 421 /* populate children from any spi device tables */ 422 scan_boardinfo(master); 423 status = 0; 424 done: 425 return status; 426 } 427 EXPORT_SYMBOL_GPL(spi_register_master); 428 429 430 static int __unregister(struct device *dev, void *unused) 431 { 432 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 433 spi_unregister_device(to_spi_device(dev)); 434 return 0; 435 } 436 437 /** 438 * spi_unregister_master - unregister SPI master controller 439 * @master: the master being unregistered 440 * 441 * This call is used only by SPI master controller drivers, which are the 442 * only ones directly touching chip registers. 443 * 444 * This must be called from context that can sleep. 445 */ 446 void spi_unregister_master(struct spi_master *master) 447 { 448 int dummy; 449 450 dummy = device_for_each_child(master->cdev.dev, NULL, __unregister); 451 class_device_unregister(&master->cdev); 452 } 453 EXPORT_SYMBOL_GPL(spi_unregister_master); 454 455 /** 456 * spi_busnum_to_master - look up master associated with bus_num 457 * @bus_num: the master's bus number 458 * 459 * This call may be used with devices that are registered after 460 * arch init time. It returns a refcounted pointer to the relevant 461 * spi_master (which the caller must release), or NULL if there is 462 * no such master registered. 463 */ 464 struct spi_master *spi_busnum_to_master(u16 bus_num) 465 { 466 struct class_device *cdev; 467 struct spi_master *master = NULL; 468 struct spi_master *m; 469 470 down(&spi_master_class.sem); 471 list_for_each_entry(cdev, &spi_master_class.children, node) { 472 m = container_of(cdev, struct spi_master, cdev); 473 if (m->bus_num == bus_num) { 474 master = spi_master_get(m); 475 break; 476 } 477 } 478 up(&spi_master_class.sem); 479 return master; 480 } 481 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 482 483 484 /*-------------------------------------------------------------------------*/ 485 486 static void spi_complete(void *arg) 487 { 488 complete(arg); 489 } 490 491 /** 492 * spi_sync - blocking/synchronous SPI data transfers 493 * @spi: device with which data will be exchanged 494 * @message: describes the data transfers 495 * 496 * This call may only be used from a context that may sleep. The sleep 497 * is non-interruptible, and has no timeout. Low-overhead controller 498 * drivers may DMA directly into and out of the message buffers. 499 * 500 * Note that the SPI device's chip select is active during the message, 501 * and then is normally disabled between messages. Drivers for some 502 * frequently-used devices may want to minimize costs of selecting a chip, 503 * by leaving it selected in anticipation that the next message will go 504 * to the same chip. (That may increase power usage.) 505 * 506 * Also, the caller is guaranteeing that the memory associated with the 507 * message will not be freed before this call returns. 508 * 509 * The return value is a negative error code if the message could not be 510 * submitted, else zero. When the value is zero, then message->status is 511 * also defined: it's the completion code for the transfer, either zero 512 * or a negative error code from the controller driver. 513 */ 514 int spi_sync(struct spi_device *spi, struct spi_message *message) 515 { 516 DECLARE_COMPLETION_ONSTACK(done); 517 int status; 518 519 message->complete = spi_complete; 520 message->context = &done; 521 status = spi_async(spi, message); 522 if (status == 0) 523 wait_for_completion(&done); 524 message->context = NULL; 525 return status; 526 } 527 EXPORT_SYMBOL_GPL(spi_sync); 528 529 /* portable code must never pass more than 32 bytes */ 530 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 531 532 static u8 *buf; 533 534 /** 535 * spi_write_then_read - SPI synchronous write followed by read 536 * @spi: device with which data will be exchanged 537 * @txbuf: data to be written (need not be dma-safe) 538 * @n_tx: size of txbuf, in bytes 539 * @rxbuf: buffer into which data will be read 540 * @n_rx: size of rxbuf, in bytes (need not be dma-safe) 541 * 542 * This performs a half duplex MicroWire style transaction with the 543 * device, sending txbuf and then reading rxbuf. The return value 544 * is zero for success, else a negative errno status code. 545 * This call may only be used from a context that may sleep. 546 * 547 * Parameters to this routine are always copied using a small buffer; 548 * performance-sensitive or bulk transfer code should instead use 549 * spi_{async,sync}() calls with dma-safe buffers. 550 */ 551 int spi_write_then_read(struct spi_device *spi, 552 const u8 *txbuf, unsigned n_tx, 553 u8 *rxbuf, unsigned n_rx) 554 { 555 static DECLARE_MUTEX(lock); 556 557 int status; 558 struct spi_message message; 559 struct spi_transfer x[2]; 560 u8 *local_buf; 561 562 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 563 * (as a pure convenience thing), but we can keep heap costs 564 * out of the hot path ... 565 */ 566 if ((n_tx + n_rx) > SPI_BUFSIZ) 567 return -EINVAL; 568 569 spi_message_init(&message); 570 memset(x, 0, sizeof x); 571 if (n_tx) { 572 x[0].len = n_tx; 573 spi_message_add_tail(&x[0], &message); 574 } 575 if (n_rx) { 576 x[1].len = n_rx; 577 spi_message_add_tail(&x[1], &message); 578 } 579 580 /* ... unless someone else is using the pre-allocated buffer */ 581 if (down_trylock(&lock)) { 582 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 583 if (!local_buf) 584 return -ENOMEM; 585 } else 586 local_buf = buf; 587 588 memcpy(local_buf, txbuf, n_tx); 589 x[0].tx_buf = local_buf; 590 x[1].rx_buf = local_buf + n_tx; 591 592 /* do the i/o */ 593 status = spi_sync(spi, &message); 594 if (status == 0) { 595 memcpy(rxbuf, x[1].rx_buf, n_rx); 596 status = message.status; 597 } 598 599 if (x[0].tx_buf == buf) 600 up(&lock); 601 else 602 kfree(local_buf); 603 604 return status; 605 } 606 EXPORT_SYMBOL_GPL(spi_write_then_read); 607 608 /*-------------------------------------------------------------------------*/ 609 610 static int __init spi_init(void) 611 { 612 int status; 613 614 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 615 if (!buf) { 616 status = -ENOMEM; 617 goto err0; 618 } 619 620 status = bus_register(&spi_bus_type); 621 if (status < 0) 622 goto err1; 623 624 status = class_register(&spi_master_class); 625 if (status < 0) 626 goto err2; 627 return 0; 628 629 err2: 630 bus_unregister(&spi_bus_type); 631 err1: 632 kfree(buf); 633 buf = NULL; 634 err0: 635 return status; 636 } 637 638 /* board_info is normally registered in arch_initcall(), 639 * but even essential drivers wait till later 640 * 641 * REVISIT only boardinfo really needs static linking. the rest (device and 642 * driver registration) _could_ be dynamically linked (modular) ... costs 643 * include needing to have boardinfo data structures be much more public. 644 */ 645 subsys_initcall(spi_init); 646 647