1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->master = spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 601 602 if (adev) { 603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 604 return; 605 } 606 607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 608 spi_get_chipselect(spi, 0)); 609 } 610 611 static int spi_dev_check(struct device *dev, void *data) 612 { 613 struct spi_device *spi = to_spi_device(dev); 614 struct spi_device *new_spi = data; 615 int idx, nw_idx; 616 u8 cs, cs_nw; 617 618 if (spi->controller == new_spi->controller) { 619 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 620 cs = spi_get_chipselect(spi, idx); 621 for (nw_idx = 0; nw_idx < SPI_CS_CNT_MAX; nw_idx++) { 622 cs_nw = spi_get_chipselect(new_spi, nw_idx); 623 if (cs != 0xFF && cs_nw != 0xFF && cs == cs_nw) { 624 dev_err(dev, "chipselect %d already in use\n", cs_nw); 625 return -EBUSY; 626 } 627 } 628 } 629 } 630 return 0; 631 } 632 633 static void spi_cleanup(struct spi_device *spi) 634 { 635 if (spi->controller->cleanup) 636 spi->controller->cleanup(spi); 637 } 638 639 static int __spi_add_device(struct spi_device *spi) 640 { 641 struct spi_controller *ctlr = spi->controller; 642 struct device *dev = ctlr->dev.parent; 643 int status, idx, nw_idx; 644 u8 cs, nw_cs; 645 646 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 647 /* Chipselects are numbered 0..max; validate. */ 648 cs = spi_get_chipselect(spi, idx); 649 if (cs != 0xFF && cs >= ctlr->num_chipselect) { 650 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 651 ctlr->num_chipselect); 652 return -EINVAL; 653 } 654 } 655 656 /* 657 * Make sure that multiple logical CS doesn't map to the same physical CS. 658 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 659 */ 660 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 661 cs = spi_get_chipselect(spi, idx); 662 for (nw_idx = idx + 1; nw_idx < SPI_CS_CNT_MAX; nw_idx++) { 663 nw_cs = spi_get_chipselect(spi, nw_idx); 664 if (cs != 0xFF && nw_cs != 0xFF && cs == nw_cs) { 665 dev_err(dev, "chipselect %d already in use\n", nw_cs); 666 return -EBUSY; 667 } 668 } 669 } 670 671 /* Set the bus ID string */ 672 spi_dev_set_name(spi); 673 674 /* 675 * We need to make sure there's no other device with this 676 * chipselect **BEFORE** we call setup(), else we'll trash 677 * its configuration. 678 */ 679 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 680 if (status) 681 return status; 682 683 /* Controller may unregister concurrently */ 684 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 685 !device_is_registered(&ctlr->dev)) { 686 return -ENODEV; 687 } 688 689 if (ctlr->cs_gpiods) { 690 u8 cs; 691 692 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 693 cs = spi_get_chipselect(spi, idx); 694 if (cs != 0xFF) 695 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 696 } 697 } 698 699 /* 700 * Drivers may modify this initial i/o setup, but will 701 * normally rely on the device being setup. Devices 702 * using SPI_CS_HIGH can't coexist well otherwise... 703 */ 704 status = spi_setup(spi); 705 if (status < 0) { 706 dev_err(dev, "can't setup %s, status %d\n", 707 dev_name(&spi->dev), status); 708 return status; 709 } 710 711 /* Device may be bound to an active driver when this returns */ 712 status = device_add(&spi->dev); 713 if (status < 0) { 714 dev_err(dev, "can't add %s, status %d\n", 715 dev_name(&spi->dev), status); 716 spi_cleanup(spi); 717 } else { 718 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 719 } 720 721 return status; 722 } 723 724 /** 725 * spi_add_device - Add spi_device allocated with spi_alloc_device 726 * @spi: spi_device to register 727 * 728 * Companion function to spi_alloc_device. Devices allocated with 729 * spi_alloc_device can be added onto the SPI bus with this function. 730 * 731 * Return: 0 on success; negative errno on failure 732 */ 733 int spi_add_device(struct spi_device *spi) 734 { 735 struct spi_controller *ctlr = spi->controller; 736 int status; 737 738 /* Set the bus ID string */ 739 spi_dev_set_name(spi); 740 741 mutex_lock(&ctlr->add_lock); 742 status = __spi_add_device(spi); 743 mutex_unlock(&ctlr->add_lock); 744 return status; 745 } 746 EXPORT_SYMBOL_GPL(spi_add_device); 747 748 /** 749 * spi_new_device - instantiate one new SPI device 750 * @ctlr: Controller to which device is connected 751 * @chip: Describes the SPI device 752 * Context: can sleep 753 * 754 * On typical mainboards, this is purely internal; and it's not needed 755 * after board init creates the hard-wired devices. Some development 756 * platforms may not be able to use spi_register_board_info though, and 757 * this is exported so that for example a USB or parport based adapter 758 * driver could add devices (which it would learn about out-of-band). 759 * 760 * Return: the new device, or NULL. 761 */ 762 struct spi_device *spi_new_device(struct spi_controller *ctlr, 763 struct spi_board_info *chip) 764 { 765 struct spi_device *proxy; 766 int status; 767 u8 idx; 768 769 /* 770 * NOTE: caller did any chip->bus_num checks necessary. 771 * 772 * Also, unless we change the return value convention to use 773 * error-or-pointer (not NULL-or-pointer), troubleshootability 774 * suggests syslogged diagnostics are best here (ugh). 775 */ 776 777 proxy = spi_alloc_device(ctlr); 778 if (!proxy) 779 return NULL; 780 781 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 782 783 /* 784 * Zero(0) is a valid physical CS value and can be located at any 785 * logical CS in the spi->chip_select[]. If all the physical CS 786 * are initialized to 0 then It would be difficult to differentiate 787 * between a valid physical CS 0 & an unused logical CS whose physical 788 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 789 * Now all the unused logical CS will have 0xFF physical CS value & can be 790 * ignore while performing physical CS validity checks. 791 */ 792 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 793 spi_set_chipselect(proxy, idx, 0xFF); 794 795 spi_set_chipselect(proxy, 0, chip->chip_select); 796 proxy->max_speed_hz = chip->max_speed_hz; 797 proxy->mode = chip->mode; 798 proxy->irq = chip->irq; 799 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 800 proxy->dev.platform_data = (void *) chip->platform_data; 801 proxy->controller_data = chip->controller_data; 802 proxy->controller_state = NULL; 803 /* 804 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 805 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 806 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 807 * spi->chip_select[0] will give the physical CS. 808 * By default spi->chip_select[0] will hold the physical CS number so, set 809 * spi->cs_index_mask as 0x01. 810 */ 811 proxy->cs_index_mask = 0x01; 812 813 if (chip->swnode) { 814 status = device_add_software_node(&proxy->dev, chip->swnode); 815 if (status) { 816 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 817 chip->modalias, status); 818 goto err_dev_put; 819 } 820 } 821 822 status = spi_add_device(proxy); 823 if (status < 0) 824 goto err_dev_put; 825 826 return proxy; 827 828 err_dev_put: 829 device_remove_software_node(&proxy->dev); 830 spi_dev_put(proxy); 831 return NULL; 832 } 833 EXPORT_SYMBOL_GPL(spi_new_device); 834 835 /** 836 * spi_unregister_device - unregister a single SPI device 837 * @spi: spi_device to unregister 838 * 839 * Start making the passed SPI device vanish. Normally this would be handled 840 * by spi_unregister_controller(). 841 */ 842 void spi_unregister_device(struct spi_device *spi) 843 { 844 if (!spi) 845 return; 846 847 if (spi->dev.of_node) { 848 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 849 of_node_put(spi->dev.of_node); 850 } 851 if (ACPI_COMPANION(&spi->dev)) 852 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 853 device_remove_software_node(&spi->dev); 854 device_del(&spi->dev); 855 spi_cleanup(spi); 856 put_device(&spi->dev); 857 } 858 EXPORT_SYMBOL_GPL(spi_unregister_device); 859 860 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 861 struct spi_board_info *bi) 862 { 863 struct spi_device *dev; 864 865 if (ctlr->bus_num != bi->bus_num) 866 return; 867 868 dev = spi_new_device(ctlr, bi); 869 if (!dev) 870 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 871 bi->modalias); 872 } 873 874 /** 875 * spi_register_board_info - register SPI devices for a given board 876 * @info: array of chip descriptors 877 * @n: how many descriptors are provided 878 * Context: can sleep 879 * 880 * Board-specific early init code calls this (probably during arch_initcall) 881 * with segments of the SPI device table. Any device nodes are created later, 882 * after the relevant parent SPI controller (bus_num) is defined. We keep 883 * this table of devices forever, so that reloading a controller driver will 884 * not make Linux forget about these hard-wired devices. 885 * 886 * Other code can also call this, e.g. a particular add-on board might provide 887 * SPI devices through its expansion connector, so code initializing that board 888 * would naturally declare its SPI devices. 889 * 890 * The board info passed can safely be __initdata ... but be careful of 891 * any embedded pointers (platform_data, etc), they're copied as-is. 892 * 893 * Return: zero on success, else a negative error code. 894 */ 895 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 896 { 897 struct boardinfo *bi; 898 int i; 899 900 if (!n) 901 return 0; 902 903 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 904 if (!bi) 905 return -ENOMEM; 906 907 for (i = 0; i < n; i++, bi++, info++) { 908 struct spi_controller *ctlr; 909 910 memcpy(&bi->board_info, info, sizeof(*info)); 911 912 mutex_lock(&board_lock); 913 list_add_tail(&bi->list, &board_list); 914 list_for_each_entry(ctlr, &spi_controller_list, list) 915 spi_match_controller_to_boardinfo(ctlr, 916 &bi->board_info); 917 mutex_unlock(&board_lock); 918 } 919 920 return 0; 921 } 922 923 /*-------------------------------------------------------------------------*/ 924 925 /* Core methods for SPI resource management */ 926 927 /** 928 * spi_res_alloc - allocate a spi resource that is life-cycle managed 929 * during the processing of a spi_message while using 930 * spi_transfer_one 931 * @spi: the SPI device for which we allocate memory 932 * @release: the release code to execute for this resource 933 * @size: size to alloc and return 934 * @gfp: GFP allocation flags 935 * 936 * Return: the pointer to the allocated data 937 * 938 * This may get enhanced in the future to allocate from a memory pool 939 * of the @spi_device or @spi_controller to avoid repeated allocations. 940 */ 941 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 942 size_t size, gfp_t gfp) 943 { 944 struct spi_res *sres; 945 946 sres = kzalloc(sizeof(*sres) + size, gfp); 947 if (!sres) 948 return NULL; 949 950 INIT_LIST_HEAD(&sres->entry); 951 sres->release = release; 952 953 return sres->data; 954 } 955 956 /** 957 * spi_res_free - free an SPI resource 958 * @res: pointer to the custom data of a resource 959 */ 960 static void spi_res_free(void *res) 961 { 962 struct spi_res *sres = container_of(res, struct spi_res, data); 963 964 if (!res) 965 return; 966 967 WARN_ON(!list_empty(&sres->entry)); 968 kfree(sres); 969 } 970 971 /** 972 * spi_res_add - add a spi_res to the spi_message 973 * @message: the SPI message 974 * @res: the spi_resource 975 */ 976 static void spi_res_add(struct spi_message *message, void *res) 977 { 978 struct spi_res *sres = container_of(res, struct spi_res, data); 979 980 WARN_ON(!list_empty(&sres->entry)); 981 list_add_tail(&sres->entry, &message->resources); 982 } 983 984 /** 985 * spi_res_release - release all SPI resources for this message 986 * @ctlr: the @spi_controller 987 * @message: the @spi_message 988 */ 989 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 990 { 991 struct spi_res *res, *tmp; 992 993 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 994 if (res->release) 995 res->release(ctlr, message, res->data); 996 997 list_del(&res->entry); 998 999 kfree(res); 1000 } 1001 } 1002 1003 /*-------------------------------------------------------------------------*/ 1004 static inline bool spi_is_last_cs(struct spi_device *spi) 1005 { 1006 u8 idx; 1007 bool last = false; 1008 1009 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 1010 if ((spi->cs_index_mask >> idx) & 0x01) { 1011 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1012 last = true; 1013 } 1014 } 1015 return last; 1016 } 1017 1018 1019 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1020 { 1021 bool activate = enable; 1022 u8 idx; 1023 1024 /* 1025 * Avoid calling into the driver (or doing delays) if the chip select 1026 * isn't actually changing from the last time this was called. 1027 */ 1028 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1029 spi_is_last_cs(spi)) || 1030 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1031 !spi_is_last_cs(spi))) && 1032 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1033 return; 1034 1035 trace_spi_set_cs(spi, activate); 1036 1037 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1038 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1039 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : -1; 1040 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1041 1042 if (spi->mode & SPI_CS_HIGH) 1043 enable = !enable; 1044 1045 if (spi_is_csgpiod(spi)) { 1046 if (!spi->controller->set_cs_timing && !activate) 1047 spi_delay_exec(&spi->cs_hold, NULL); 1048 1049 if (!(spi->mode & SPI_NO_CS)) { 1050 /* 1051 * Historically ACPI has no means of the GPIO polarity and 1052 * thus the SPISerialBus() resource defines it on the per-chip 1053 * basis. In order to avoid a chain of negations, the GPIO 1054 * polarity is considered being Active High. Even for the cases 1055 * when _DSD() is involved (in the updated versions of ACPI) 1056 * the GPIO CS polarity must be defined Active High to avoid 1057 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1058 * into account. 1059 */ 1060 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 1061 if (((spi->cs_index_mask >> idx) & 0x01) && 1062 spi_get_csgpiod(spi, idx)) { 1063 if (has_acpi_companion(&spi->dev)) 1064 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), 1065 !enable); 1066 else 1067 /* Polarity handled by GPIO library */ 1068 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), 1069 activate); 1070 1071 if (activate) 1072 spi_delay_exec(&spi->cs_setup, NULL); 1073 else 1074 spi_delay_exec(&spi->cs_inactive, NULL); 1075 } 1076 } 1077 } 1078 /* Some SPI masters need both GPIO CS & slave_select */ 1079 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1080 spi->controller->set_cs) 1081 spi->controller->set_cs(spi, !enable); 1082 1083 if (!spi->controller->set_cs_timing) { 1084 if (activate) 1085 spi_delay_exec(&spi->cs_setup, NULL); 1086 else 1087 spi_delay_exec(&spi->cs_inactive, NULL); 1088 } 1089 } else if (spi->controller->set_cs) { 1090 spi->controller->set_cs(spi, !enable); 1091 } 1092 } 1093 1094 #ifdef CONFIG_HAS_DMA 1095 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1096 struct sg_table *sgt, void *buf, size_t len, 1097 enum dma_data_direction dir, unsigned long attrs) 1098 { 1099 const bool vmalloced_buf = is_vmalloc_addr(buf); 1100 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1101 #ifdef CONFIG_HIGHMEM 1102 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1103 (unsigned long)buf < (PKMAP_BASE + 1104 (LAST_PKMAP * PAGE_SIZE))); 1105 #else 1106 const bool kmap_buf = false; 1107 #endif 1108 int desc_len; 1109 int sgs; 1110 struct page *vm_page; 1111 struct scatterlist *sg; 1112 void *sg_buf; 1113 size_t min; 1114 int i, ret; 1115 1116 if (vmalloced_buf || kmap_buf) { 1117 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1118 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1119 } else if (virt_addr_valid(buf)) { 1120 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1121 sgs = DIV_ROUND_UP(len, desc_len); 1122 } else { 1123 return -EINVAL; 1124 } 1125 1126 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1127 if (ret != 0) 1128 return ret; 1129 1130 sg = &sgt->sgl[0]; 1131 for (i = 0; i < sgs; i++) { 1132 1133 if (vmalloced_buf || kmap_buf) { 1134 /* 1135 * Next scatterlist entry size is the minimum between 1136 * the desc_len and the remaining buffer length that 1137 * fits in a page. 1138 */ 1139 min = min_t(size_t, desc_len, 1140 min_t(size_t, len, 1141 PAGE_SIZE - offset_in_page(buf))); 1142 if (vmalloced_buf) 1143 vm_page = vmalloc_to_page(buf); 1144 else 1145 vm_page = kmap_to_page(buf); 1146 if (!vm_page) { 1147 sg_free_table(sgt); 1148 return -ENOMEM; 1149 } 1150 sg_set_page(sg, vm_page, 1151 min, offset_in_page(buf)); 1152 } else { 1153 min = min_t(size_t, len, desc_len); 1154 sg_buf = buf; 1155 sg_set_buf(sg, sg_buf, min); 1156 } 1157 1158 buf += min; 1159 len -= min; 1160 sg = sg_next(sg); 1161 } 1162 1163 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1164 if (ret < 0) { 1165 sg_free_table(sgt); 1166 return ret; 1167 } 1168 1169 return 0; 1170 } 1171 1172 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1173 struct sg_table *sgt, void *buf, size_t len, 1174 enum dma_data_direction dir) 1175 { 1176 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1177 } 1178 1179 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1180 struct device *dev, struct sg_table *sgt, 1181 enum dma_data_direction dir, 1182 unsigned long attrs) 1183 { 1184 if (sgt->orig_nents) { 1185 dma_unmap_sgtable(dev, sgt, dir, attrs); 1186 sg_free_table(sgt); 1187 sgt->orig_nents = 0; 1188 sgt->nents = 0; 1189 } 1190 } 1191 1192 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1193 struct sg_table *sgt, enum dma_data_direction dir) 1194 { 1195 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1196 } 1197 1198 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1199 { 1200 struct device *tx_dev, *rx_dev; 1201 struct spi_transfer *xfer; 1202 int ret; 1203 1204 if (!ctlr->can_dma) 1205 return 0; 1206 1207 if (ctlr->dma_tx) 1208 tx_dev = ctlr->dma_tx->device->dev; 1209 else if (ctlr->dma_map_dev) 1210 tx_dev = ctlr->dma_map_dev; 1211 else 1212 tx_dev = ctlr->dev.parent; 1213 1214 if (ctlr->dma_rx) 1215 rx_dev = ctlr->dma_rx->device->dev; 1216 else if (ctlr->dma_map_dev) 1217 rx_dev = ctlr->dma_map_dev; 1218 else 1219 rx_dev = ctlr->dev.parent; 1220 1221 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1222 /* The sync is done before each transfer. */ 1223 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1224 1225 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1226 continue; 1227 1228 if (xfer->tx_buf != NULL) { 1229 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1230 (void *)xfer->tx_buf, 1231 xfer->len, DMA_TO_DEVICE, 1232 attrs); 1233 if (ret != 0) 1234 return ret; 1235 } 1236 1237 if (xfer->rx_buf != NULL) { 1238 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1239 xfer->rx_buf, xfer->len, 1240 DMA_FROM_DEVICE, attrs); 1241 if (ret != 0) { 1242 spi_unmap_buf_attrs(ctlr, tx_dev, 1243 &xfer->tx_sg, DMA_TO_DEVICE, 1244 attrs); 1245 1246 return ret; 1247 } 1248 } 1249 } 1250 1251 ctlr->cur_rx_dma_dev = rx_dev; 1252 ctlr->cur_tx_dma_dev = tx_dev; 1253 ctlr->cur_msg_mapped = true; 1254 1255 return 0; 1256 } 1257 1258 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1259 { 1260 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1261 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1262 struct spi_transfer *xfer; 1263 1264 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1265 return 0; 1266 1267 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1268 /* The sync has already been done after each transfer. */ 1269 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1270 1271 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1272 continue; 1273 1274 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1275 DMA_FROM_DEVICE, attrs); 1276 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1277 DMA_TO_DEVICE, attrs); 1278 } 1279 1280 ctlr->cur_msg_mapped = false; 1281 1282 return 0; 1283 } 1284 1285 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1286 struct spi_transfer *xfer) 1287 { 1288 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1289 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1290 1291 if (!ctlr->cur_msg_mapped) 1292 return; 1293 1294 if (xfer->tx_sg.orig_nents) 1295 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1296 if (xfer->rx_sg.orig_nents) 1297 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1298 } 1299 1300 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1301 struct spi_transfer *xfer) 1302 { 1303 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1304 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1305 1306 if (!ctlr->cur_msg_mapped) 1307 return; 1308 1309 if (xfer->rx_sg.orig_nents) 1310 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1311 if (xfer->tx_sg.orig_nents) 1312 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1313 } 1314 #else /* !CONFIG_HAS_DMA */ 1315 static inline int __spi_map_msg(struct spi_controller *ctlr, 1316 struct spi_message *msg) 1317 { 1318 return 0; 1319 } 1320 1321 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1322 struct spi_message *msg) 1323 { 1324 return 0; 1325 } 1326 1327 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1328 struct spi_transfer *xfer) 1329 { 1330 } 1331 1332 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1333 struct spi_transfer *xfer) 1334 { 1335 } 1336 #endif /* !CONFIG_HAS_DMA */ 1337 1338 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1339 struct spi_message *msg) 1340 { 1341 struct spi_transfer *xfer; 1342 1343 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1344 /* 1345 * Restore the original value of tx_buf or rx_buf if they are 1346 * NULL. 1347 */ 1348 if (xfer->tx_buf == ctlr->dummy_tx) 1349 xfer->tx_buf = NULL; 1350 if (xfer->rx_buf == ctlr->dummy_rx) 1351 xfer->rx_buf = NULL; 1352 } 1353 1354 return __spi_unmap_msg(ctlr, msg); 1355 } 1356 1357 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1358 { 1359 struct spi_transfer *xfer; 1360 void *tmp; 1361 unsigned int max_tx, max_rx; 1362 1363 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1364 && !(msg->spi->mode & SPI_3WIRE)) { 1365 max_tx = 0; 1366 max_rx = 0; 1367 1368 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1369 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1370 !xfer->tx_buf) 1371 max_tx = max(xfer->len, max_tx); 1372 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1373 !xfer->rx_buf) 1374 max_rx = max(xfer->len, max_rx); 1375 } 1376 1377 if (max_tx) { 1378 tmp = krealloc(ctlr->dummy_tx, max_tx, 1379 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1380 if (!tmp) 1381 return -ENOMEM; 1382 ctlr->dummy_tx = tmp; 1383 } 1384 1385 if (max_rx) { 1386 tmp = krealloc(ctlr->dummy_rx, max_rx, 1387 GFP_KERNEL | GFP_DMA); 1388 if (!tmp) 1389 return -ENOMEM; 1390 ctlr->dummy_rx = tmp; 1391 } 1392 1393 if (max_tx || max_rx) { 1394 list_for_each_entry(xfer, &msg->transfers, 1395 transfer_list) { 1396 if (!xfer->len) 1397 continue; 1398 if (!xfer->tx_buf) 1399 xfer->tx_buf = ctlr->dummy_tx; 1400 if (!xfer->rx_buf) 1401 xfer->rx_buf = ctlr->dummy_rx; 1402 } 1403 } 1404 } 1405 1406 return __spi_map_msg(ctlr, msg); 1407 } 1408 1409 static int spi_transfer_wait(struct spi_controller *ctlr, 1410 struct spi_message *msg, 1411 struct spi_transfer *xfer) 1412 { 1413 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1414 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1415 u32 speed_hz = xfer->speed_hz; 1416 unsigned long long ms; 1417 1418 if (spi_controller_is_slave(ctlr)) { 1419 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1420 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1421 return -EINTR; 1422 } 1423 } else { 1424 if (!speed_hz) 1425 speed_hz = 100000; 1426 1427 /* 1428 * For each byte we wait for 8 cycles of the SPI clock. 1429 * Since speed is defined in Hz and we want milliseconds, 1430 * use respective multiplier, but before the division, 1431 * otherwise we may get 0 for short transfers. 1432 */ 1433 ms = 8LL * MSEC_PER_SEC * xfer->len; 1434 do_div(ms, speed_hz); 1435 1436 /* 1437 * Increase it twice and add 200 ms tolerance, use 1438 * predefined maximum in case of overflow. 1439 */ 1440 ms += ms + 200; 1441 if (ms > UINT_MAX) 1442 ms = UINT_MAX; 1443 1444 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1445 msecs_to_jiffies(ms)); 1446 1447 if (ms == 0) { 1448 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1449 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1450 dev_err(&msg->spi->dev, 1451 "SPI transfer timed out\n"); 1452 return -ETIMEDOUT; 1453 } 1454 1455 if (xfer->error & SPI_TRANS_FAIL_IO) 1456 return -EIO; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static void _spi_transfer_delay_ns(u32 ns) 1463 { 1464 if (!ns) 1465 return; 1466 if (ns <= NSEC_PER_USEC) { 1467 ndelay(ns); 1468 } else { 1469 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1470 1471 if (us <= 10) 1472 udelay(us); 1473 else 1474 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1475 } 1476 } 1477 1478 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1479 { 1480 u32 delay = _delay->value; 1481 u32 unit = _delay->unit; 1482 u32 hz; 1483 1484 if (!delay) 1485 return 0; 1486 1487 switch (unit) { 1488 case SPI_DELAY_UNIT_USECS: 1489 delay *= NSEC_PER_USEC; 1490 break; 1491 case SPI_DELAY_UNIT_NSECS: 1492 /* Nothing to do here */ 1493 break; 1494 case SPI_DELAY_UNIT_SCK: 1495 /* Clock cycles need to be obtained from spi_transfer */ 1496 if (!xfer) 1497 return -EINVAL; 1498 /* 1499 * If there is unknown effective speed, approximate it 1500 * by underestimating with half of the requested Hz. 1501 */ 1502 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1503 if (!hz) 1504 return -EINVAL; 1505 1506 /* Convert delay to nanoseconds */ 1507 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1508 break; 1509 default: 1510 return -EINVAL; 1511 } 1512 1513 return delay; 1514 } 1515 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1516 1517 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1518 { 1519 int delay; 1520 1521 might_sleep(); 1522 1523 if (!_delay) 1524 return -EINVAL; 1525 1526 delay = spi_delay_to_ns(_delay, xfer); 1527 if (delay < 0) 1528 return delay; 1529 1530 _spi_transfer_delay_ns(delay); 1531 1532 return 0; 1533 } 1534 EXPORT_SYMBOL_GPL(spi_delay_exec); 1535 1536 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1537 struct spi_transfer *xfer) 1538 { 1539 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1540 u32 delay = xfer->cs_change_delay.value; 1541 u32 unit = xfer->cs_change_delay.unit; 1542 int ret; 1543 1544 /* Return early on "fast" mode - for everything but USECS */ 1545 if (!delay) { 1546 if (unit == SPI_DELAY_UNIT_USECS) 1547 _spi_transfer_delay_ns(default_delay_ns); 1548 return; 1549 } 1550 1551 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1552 if (ret) { 1553 dev_err_once(&msg->spi->dev, 1554 "Use of unsupported delay unit %i, using default of %luus\n", 1555 unit, default_delay_ns / NSEC_PER_USEC); 1556 _spi_transfer_delay_ns(default_delay_ns); 1557 } 1558 } 1559 1560 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1561 struct spi_transfer *xfer) 1562 { 1563 _spi_transfer_cs_change_delay(msg, xfer); 1564 } 1565 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1566 1567 /* 1568 * spi_transfer_one_message - Default implementation of transfer_one_message() 1569 * 1570 * This is a standard implementation of transfer_one_message() for 1571 * drivers which implement a transfer_one() operation. It provides 1572 * standard handling of delays and chip select management. 1573 */ 1574 static int spi_transfer_one_message(struct spi_controller *ctlr, 1575 struct spi_message *msg) 1576 { 1577 struct spi_transfer *xfer; 1578 bool keep_cs = false; 1579 int ret = 0; 1580 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1581 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1582 1583 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1584 spi_set_cs(msg->spi, !xfer->cs_off, false); 1585 1586 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1587 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1588 1589 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1590 trace_spi_transfer_start(msg, xfer); 1591 1592 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1593 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1594 1595 if (!ctlr->ptp_sts_supported) { 1596 xfer->ptp_sts_word_pre = 0; 1597 ptp_read_system_prets(xfer->ptp_sts); 1598 } 1599 1600 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1601 reinit_completion(&ctlr->xfer_completion); 1602 1603 fallback_pio: 1604 spi_dma_sync_for_device(ctlr, xfer); 1605 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1606 if (ret < 0) { 1607 spi_dma_sync_for_cpu(ctlr, xfer); 1608 1609 if (ctlr->cur_msg_mapped && 1610 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1611 __spi_unmap_msg(ctlr, msg); 1612 ctlr->fallback = true; 1613 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1614 goto fallback_pio; 1615 } 1616 1617 SPI_STATISTICS_INCREMENT_FIELD(statm, 1618 errors); 1619 SPI_STATISTICS_INCREMENT_FIELD(stats, 1620 errors); 1621 dev_err(&msg->spi->dev, 1622 "SPI transfer failed: %d\n", ret); 1623 goto out; 1624 } 1625 1626 if (ret > 0) { 1627 ret = spi_transfer_wait(ctlr, msg, xfer); 1628 if (ret < 0) 1629 msg->status = ret; 1630 } 1631 1632 spi_dma_sync_for_cpu(ctlr, xfer); 1633 } else { 1634 if (xfer->len) 1635 dev_err(&msg->spi->dev, 1636 "Bufferless transfer has length %u\n", 1637 xfer->len); 1638 } 1639 1640 if (!ctlr->ptp_sts_supported) { 1641 ptp_read_system_postts(xfer->ptp_sts); 1642 xfer->ptp_sts_word_post = xfer->len; 1643 } 1644 1645 trace_spi_transfer_stop(msg, xfer); 1646 1647 if (msg->status != -EINPROGRESS) 1648 goto out; 1649 1650 spi_transfer_delay_exec(xfer); 1651 1652 if (xfer->cs_change) { 1653 if (list_is_last(&xfer->transfer_list, 1654 &msg->transfers)) { 1655 keep_cs = true; 1656 } else { 1657 if (!xfer->cs_off) 1658 spi_set_cs(msg->spi, false, false); 1659 _spi_transfer_cs_change_delay(msg, xfer); 1660 if (!list_next_entry(xfer, transfer_list)->cs_off) 1661 spi_set_cs(msg->spi, true, false); 1662 } 1663 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1664 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1665 spi_set_cs(msg->spi, xfer->cs_off, false); 1666 } 1667 1668 msg->actual_length += xfer->len; 1669 } 1670 1671 out: 1672 if (ret != 0 || !keep_cs) 1673 spi_set_cs(msg->spi, false, false); 1674 1675 if (msg->status == -EINPROGRESS) 1676 msg->status = ret; 1677 1678 if (msg->status && ctlr->handle_err) 1679 ctlr->handle_err(ctlr, msg); 1680 1681 spi_finalize_current_message(ctlr); 1682 1683 return ret; 1684 } 1685 1686 /** 1687 * spi_finalize_current_transfer - report completion of a transfer 1688 * @ctlr: the controller reporting completion 1689 * 1690 * Called by SPI drivers using the core transfer_one_message() 1691 * implementation to notify it that the current interrupt driven 1692 * transfer has finished and the next one may be scheduled. 1693 */ 1694 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1695 { 1696 complete(&ctlr->xfer_completion); 1697 } 1698 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1699 1700 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1701 { 1702 if (ctlr->auto_runtime_pm) { 1703 pm_runtime_mark_last_busy(ctlr->dev.parent); 1704 pm_runtime_put_autosuspend(ctlr->dev.parent); 1705 } 1706 } 1707 1708 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1709 struct spi_message *msg, bool was_busy) 1710 { 1711 struct spi_transfer *xfer; 1712 int ret; 1713 1714 if (!was_busy && ctlr->auto_runtime_pm) { 1715 ret = pm_runtime_get_sync(ctlr->dev.parent); 1716 if (ret < 0) { 1717 pm_runtime_put_noidle(ctlr->dev.parent); 1718 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1719 ret); 1720 1721 msg->status = ret; 1722 spi_finalize_current_message(ctlr); 1723 1724 return ret; 1725 } 1726 } 1727 1728 if (!was_busy) 1729 trace_spi_controller_busy(ctlr); 1730 1731 if (!was_busy && ctlr->prepare_transfer_hardware) { 1732 ret = ctlr->prepare_transfer_hardware(ctlr); 1733 if (ret) { 1734 dev_err(&ctlr->dev, 1735 "failed to prepare transfer hardware: %d\n", 1736 ret); 1737 1738 if (ctlr->auto_runtime_pm) 1739 pm_runtime_put(ctlr->dev.parent); 1740 1741 msg->status = ret; 1742 spi_finalize_current_message(ctlr); 1743 1744 return ret; 1745 } 1746 } 1747 1748 trace_spi_message_start(msg); 1749 1750 ret = spi_split_transfers_maxsize(ctlr, msg, 1751 spi_max_transfer_size(msg->spi), 1752 GFP_KERNEL | GFP_DMA); 1753 if (ret) { 1754 msg->status = ret; 1755 spi_finalize_current_message(ctlr); 1756 return ret; 1757 } 1758 1759 if (ctlr->prepare_message) { 1760 ret = ctlr->prepare_message(ctlr, msg); 1761 if (ret) { 1762 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1763 ret); 1764 msg->status = ret; 1765 spi_finalize_current_message(ctlr); 1766 return ret; 1767 } 1768 msg->prepared = true; 1769 } 1770 1771 ret = spi_map_msg(ctlr, msg); 1772 if (ret) { 1773 msg->status = ret; 1774 spi_finalize_current_message(ctlr); 1775 return ret; 1776 } 1777 1778 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1779 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1780 xfer->ptp_sts_word_pre = 0; 1781 ptp_read_system_prets(xfer->ptp_sts); 1782 } 1783 } 1784 1785 /* 1786 * Drivers implementation of transfer_one_message() must arrange for 1787 * spi_finalize_current_message() to get called. Most drivers will do 1788 * this in the calling context, but some don't. For those cases, a 1789 * completion is used to guarantee that this function does not return 1790 * until spi_finalize_current_message() is done accessing 1791 * ctlr->cur_msg. 1792 * Use of the following two flags enable to opportunistically skip the 1793 * use of the completion since its use involves expensive spin locks. 1794 * In case of a race with the context that calls 1795 * spi_finalize_current_message() the completion will always be used, 1796 * due to strict ordering of these flags using barriers. 1797 */ 1798 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1799 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1800 reinit_completion(&ctlr->cur_msg_completion); 1801 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1802 1803 ret = ctlr->transfer_one_message(ctlr, msg); 1804 if (ret) { 1805 dev_err(&ctlr->dev, 1806 "failed to transfer one message from queue\n"); 1807 return ret; 1808 } 1809 1810 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1811 smp_mb(); /* See spi_finalize_current_message()... */ 1812 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1813 wait_for_completion(&ctlr->cur_msg_completion); 1814 1815 return 0; 1816 } 1817 1818 /** 1819 * __spi_pump_messages - function which processes SPI message queue 1820 * @ctlr: controller to process queue for 1821 * @in_kthread: true if we are in the context of the message pump thread 1822 * 1823 * This function checks if there is any SPI message in the queue that 1824 * needs processing and if so call out to the driver to initialize hardware 1825 * and transfer each message. 1826 * 1827 * Note that it is called both from the kthread itself and also from 1828 * inside spi_sync(); the queue extraction handling at the top of the 1829 * function should deal with this safely. 1830 */ 1831 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1832 { 1833 struct spi_message *msg; 1834 bool was_busy = false; 1835 unsigned long flags; 1836 int ret; 1837 1838 /* Take the I/O mutex */ 1839 mutex_lock(&ctlr->io_mutex); 1840 1841 /* Lock queue */ 1842 spin_lock_irqsave(&ctlr->queue_lock, flags); 1843 1844 /* Make sure we are not already running a message */ 1845 if (ctlr->cur_msg) 1846 goto out_unlock; 1847 1848 /* Check if the queue is idle */ 1849 if (list_empty(&ctlr->queue) || !ctlr->running) { 1850 if (!ctlr->busy) 1851 goto out_unlock; 1852 1853 /* Defer any non-atomic teardown to the thread */ 1854 if (!in_kthread) { 1855 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1856 !ctlr->unprepare_transfer_hardware) { 1857 spi_idle_runtime_pm(ctlr); 1858 ctlr->busy = false; 1859 ctlr->queue_empty = true; 1860 trace_spi_controller_idle(ctlr); 1861 } else { 1862 kthread_queue_work(ctlr->kworker, 1863 &ctlr->pump_messages); 1864 } 1865 goto out_unlock; 1866 } 1867 1868 ctlr->busy = false; 1869 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1870 1871 kfree(ctlr->dummy_rx); 1872 ctlr->dummy_rx = NULL; 1873 kfree(ctlr->dummy_tx); 1874 ctlr->dummy_tx = NULL; 1875 if (ctlr->unprepare_transfer_hardware && 1876 ctlr->unprepare_transfer_hardware(ctlr)) 1877 dev_err(&ctlr->dev, 1878 "failed to unprepare transfer hardware\n"); 1879 spi_idle_runtime_pm(ctlr); 1880 trace_spi_controller_idle(ctlr); 1881 1882 spin_lock_irqsave(&ctlr->queue_lock, flags); 1883 ctlr->queue_empty = true; 1884 goto out_unlock; 1885 } 1886 1887 /* Extract head of queue */ 1888 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1889 ctlr->cur_msg = msg; 1890 1891 list_del_init(&msg->queue); 1892 if (ctlr->busy) 1893 was_busy = true; 1894 else 1895 ctlr->busy = true; 1896 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1897 1898 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1899 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1900 1901 ctlr->cur_msg = NULL; 1902 ctlr->fallback = false; 1903 1904 mutex_unlock(&ctlr->io_mutex); 1905 1906 /* Prod the scheduler in case transfer_one() was busy waiting */ 1907 if (!ret) 1908 cond_resched(); 1909 return; 1910 1911 out_unlock: 1912 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1913 mutex_unlock(&ctlr->io_mutex); 1914 } 1915 1916 /** 1917 * spi_pump_messages - kthread work function which processes spi message queue 1918 * @work: pointer to kthread work struct contained in the controller struct 1919 */ 1920 static void spi_pump_messages(struct kthread_work *work) 1921 { 1922 struct spi_controller *ctlr = 1923 container_of(work, struct spi_controller, pump_messages); 1924 1925 __spi_pump_messages(ctlr, true); 1926 } 1927 1928 /** 1929 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1930 * @ctlr: Pointer to the spi_controller structure of the driver 1931 * @xfer: Pointer to the transfer being timestamped 1932 * @progress: How many words (not bytes) have been transferred so far 1933 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1934 * transfer, for less jitter in time measurement. Only compatible 1935 * with PIO drivers. If true, must follow up with 1936 * spi_take_timestamp_post or otherwise system will crash. 1937 * WARNING: for fully predictable results, the CPU frequency must 1938 * also be under control (governor). 1939 * 1940 * This is a helper for drivers to collect the beginning of the TX timestamp 1941 * for the requested byte from the SPI transfer. The frequency with which this 1942 * function must be called (once per word, once for the whole transfer, once 1943 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1944 * greater than or equal to the requested byte at the time of the call. The 1945 * timestamp is only taken once, at the first such call. It is assumed that 1946 * the driver advances its @tx buffer pointer monotonically. 1947 */ 1948 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1949 struct spi_transfer *xfer, 1950 size_t progress, bool irqs_off) 1951 { 1952 if (!xfer->ptp_sts) 1953 return; 1954 1955 if (xfer->timestamped) 1956 return; 1957 1958 if (progress > xfer->ptp_sts_word_pre) 1959 return; 1960 1961 /* Capture the resolution of the timestamp */ 1962 xfer->ptp_sts_word_pre = progress; 1963 1964 if (irqs_off) { 1965 local_irq_save(ctlr->irq_flags); 1966 preempt_disable(); 1967 } 1968 1969 ptp_read_system_prets(xfer->ptp_sts); 1970 } 1971 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1972 1973 /** 1974 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1975 * @ctlr: Pointer to the spi_controller structure of the driver 1976 * @xfer: Pointer to the transfer being timestamped 1977 * @progress: How many words (not bytes) have been transferred so far 1978 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1979 * 1980 * This is a helper for drivers to collect the end of the TX timestamp for 1981 * the requested byte from the SPI transfer. Can be called with an arbitrary 1982 * frequency: only the first call where @tx exceeds or is equal to the 1983 * requested word will be timestamped. 1984 */ 1985 void spi_take_timestamp_post(struct spi_controller *ctlr, 1986 struct spi_transfer *xfer, 1987 size_t progress, bool irqs_off) 1988 { 1989 if (!xfer->ptp_sts) 1990 return; 1991 1992 if (xfer->timestamped) 1993 return; 1994 1995 if (progress < xfer->ptp_sts_word_post) 1996 return; 1997 1998 ptp_read_system_postts(xfer->ptp_sts); 1999 2000 if (irqs_off) { 2001 local_irq_restore(ctlr->irq_flags); 2002 preempt_enable(); 2003 } 2004 2005 /* Capture the resolution of the timestamp */ 2006 xfer->ptp_sts_word_post = progress; 2007 2008 xfer->timestamped = 1; 2009 } 2010 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2011 2012 /** 2013 * spi_set_thread_rt - set the controller to pump at realtime priority 2014 * @ctlr: controller to boost priority of 2015 * 2016 * This can be called because the controller requested realtime priority 2017 * (by setting the ->rt value before calling spi_register_controller()) or 2018 * because a device on the bus said that its transfers needed realtime 2019 * priority. 2020 * 2021 * NOTE: at the moment if any device on a bus says it needs realtime then 2022 * the thread will be at realtime priority for all transfers on that 2023 * controller. If this eventually becomes a problem we may see if we can 2024 * find a way to boost the priority only temporarily during relevant 2025 * transfers. 2026 */ 2027 static void spi_set_thread_rt(struct spi_controller *ctlr) 2028 { 2029 dev_info(&ctlr->dev, 2030 "will run message pump with realtime priority\n"); 2031 sched_set_fifo(ctlr->kworker->task); 2032 } 2033 2034 static int spi_init_queue(struct spi_controller *ctlr) 2035 { 2036 ctlr->running = false; 2037 ctlr->busy = false; 2038 ctlr->queue_empty = true; 2039 2040 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2041 if (IS_ERR(ctlr->kworker)) { 2042 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2043 return PTR_ERR(ctlr->kworker); 2044 } 2045 2046 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2047 2048 /* 2049 * Controller config will indicate if this controller should run the 2050 * message pump with high (realtime) priority to reduce the transfer 2051 * latency on the bus by minimising the delay between a transfer 2052 * request and the scheduling of the message pump thread. Without this 2053 * setting the message pump thread will remain at default priority. 2054 */ 2055 if (ctlr->rt) 2056 spi_set_thread_rt(ctlr); 2057 2058 return 0; 2059 } 2060 2061 /** 2062 * spi_get_next_queued_message() - called by driver to check for queued 2063 * messages 2064 * @ctlr: the controller to check for queued messages 2065 * 2066 * If there are more messages in the queue, the next message is returned from 2067 * this call. 2068 * 2069 * Return: the next message in the queue, else NULL if the queue is empty. 2070 */ 2071 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2072 { 2073 struct spi_message *next; 2074 unsigned long flags; 2075 2076 /* Get a pointer to the next message, if any */ 2077 spin_lock_irqsave(&ctlr->queue_lock, flags); 2078 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2079 queue); 2080 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2081 2082 return next; 2083 } 2084 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2085 2086 /** 2087 * spi_finalize_current_message() - the current message is complete 2088 * @ctlr: the controller to return the message to 2089 * 2090 * Called by the driver to notify the core that the message in the front of the 2091 * queue is complete and can be removed from the queue. 2092 */ 2093 void spi_finalize_current_message(struct spi_controller *ctlr) 2094 { 2095 struct spi_transfer *xfer; 2096 struct spi_message *mesg; 2097 int ret; 2098 2099 mesg = ctlr->cur_msg; 2100 2101 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2102 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2103 ptp_read_system_postts(xfer->ptp_sts); 2104 xfer->ptp_sts_word_post = xfer->len; 2105 } 2106 } 2107 2108 if (unlikely(ctlr->ptp_sts_supported)) 2109 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2110 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2111 2112 spi_unmap_msg(ctlr, mesg); 2113 2114 /* 2115 * In the prepare_messages callback the SPI bus has the opportunity 2116 * to split a transfer to smaller chunks. 2117 * 2118 * Release the split transfers here since spi_map_msg() is done on 2119 * the split transfers. 2120 */ 2121 spi_res_release(ctlr, mesg); 2122 2123 if (mesg->prepared && ctlr->unprepare_message) { 2124 ret = ctlr->unprepare_message(ctlr, mesg); 2125 if (ret) { 2126 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2127 ret); 2128 } 2129 } 2130 2131 mesg->prepared = false; 2132 2133 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2134 smp_mb(); /* See __spi_pump_transfer_message()... */ 2135 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2136 complete(&ctlr->cur_msg_completion); 2137 2138 trace_spi_message_done(mesg); 2139 2140 mesg->state = NULL; 2141 if (mesg->complete) 2142 mesg->complete(mesg->context); 2143 } 2144 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2145 2146 static int spi_start_queue(struct spi_controller *ctlr) 2147 { 2148 unsigned long flags; 2149 2150 spin_lock_irqsave(&ctlr->queue_lock, flags); 2151 2152 if (ctlr->running || ctlr->busy) { 2153 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2154 return -EBUSY; 2155 } 2156 2157 ctlr->running = true; 2158 ctlr->cur_msg = NULL; 2159 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2160 2161 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2162 2163 return 0; 2164 } 2165 2166 static int spi_stop_queue(struct spi_controller *ctlr) 2167 { 2168 unsigned long flags; 2169 unsigned limit = 500; 2170 int ret = 0; 2171 2172 spin_lock_irqsave(&ctlr->queue_lock, flags); 2173 2174 /* 2175 * This is a bit lame, but is optimized for the common execution path. 2176 * A wait_queue on the ctlr->busy could be used, but then the common 2177 * execution path (pump_messages) would be required to call wake_up or 2178 * friends on every SPI message. Do this instead. 2179 */ 2180 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2181 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2182 usleep_range(10000, 11000); 2183 spin_lock_irqsave(&ctlr->queue_lock, flags); 2184 } 2185 2186 if (!list_empty(&ctlr->queue) || ctlr->busy) 2187 ret = -EBUSY; 2188 else 2189 ctlr->running = false; 2190 2191 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2192 2193 return ret; 2194 } 2195 2196 static int spi_destroy_queue(struct spi_controller *ctlr) 2197 { 2198 int ret; 2199 2200 ret = spi_stop_queue(ctlr); 2201 2202 /* 2203 * kthread_flush_worker will block until all work is done. 2204 * If the reason that stop_queue timed out is that the work will never 2205 * finish, then it does no good to call flush/stop thread, so 2206 * return anyway. 2207 */ 2208 if (ret) { 2209 dev_err(&ctlr->dev, "problem destroying queue\n"); 2210 return ret; 2211 } 2212 2213 kthread_destroy_worker(ctlr->kworker); 2214 2215 return 0; 2216 } 2217 2218 static int __spi_queued_transfer(struct spi_device *spi, 2219 struct spi_message *msg, 2220 bool need_pump) 2221 { 2222 struct spi_controller *ctlr = spi->controller; 2223 unsigned long flags; 2224 2225 spin_lock_irqsave(&ctlr->queue_lock, flags); 2226 2227 if (!ctlr->running) { 2228 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2229 return -ESHUTDOWN; 2230 } 2231 msg->actual_length = 0; 2232 msg->status = -EINPROGRESS; 2233 2234 list_add_tail(&msg->queue, &ctlr->queue); 2235 ctlr->queue_empty = false; 2236 if (!ctlr->busy && need_pump) 2237 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2238 2239 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2240 return 0; 2241 } 2242 2243 /** 2244 * spi_queued_transfer - transfer function for queued transfers 2245 * @spi: SPI device which is requesting transfer 2246 * @msg: SPI message which is to handled is queued to driver queue 2247 * 2248 * Return: zero on success, else a negative error code. 2249 */ 2250 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2251 { 2252 return __spi_queued_transfer(spi, msg, true); 2253 } 2254 2255 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2256 { 2257 int ret; 2258 2259 ctlr->transfer = spi_queued_transfer; 2260 if (!ctlr->transfer_one_message) 2261 ctlr->transfer_one_message = spi_transfer_one_message; 2262 2263 /* Initialize and start queue */ 2264 ret = spi_init_queue(ctlr); 2265 if (ret) { 2266 dev_err(&ctlr->dev, "problem initializing queue\n"); 2267 goto err_init_queue; 2268 } 2269 ctlr->queued = true; 2270 ret = spi_start_queue(ctlr); 2271 if (ret) { 2272 dev_err(&ctlr->dev, "problem starting queue\n"); 2273 goto err_start_queue; 2274 } 2275 2276 return 0; 2277 2278 err_start_queue: 2279 spi_destroy_queue(ctlr); 2280 err_init_queue: 2281 return ret; 2282 } 2283 2284 /** 2285 * spi_flush_queue - Send all pending messages in the queue from the callers' 2286 * context 2287 * @ctlr: controller to process queue for 2288 * 2289 * This should be used when one wants to ensure all pending messages have been 2290 * sent before doing something. Is used by the spi-mem code to make sure SPI 2291 * memory operations do not preempt regular SPI transfers that have been queued 2292 * before the spi-mem operation. 2293 */ 2294 void spi_flush_queue(struct spi_controller *ctlr) 2295 { 2296 if (ctlr->transfer == spi_queued_transfer) 2297 __spi_pump_messages(ctlr, false); 2298 } 2299 2300 /*-------------------------------------------------------------------------*/ 2301 2302 #if defined(CONFIG_OF) 2303 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2304 struct spi_delay *delay, const char *prop) 2305 { 2306 u32 value; 2307 2308 if (!of_property_read_u32(nc, prop, &value)) { 2309 if (value > U16_MAX) { 2310 delay->value = DIV_ROUND_UP(value, 1000); 2311 delay->unit = SPI_DELAY_UNIT_USECS; 2312 } else { 2313 delay->value = value; 2314 delay->unit = SPI_DELAY_UNIT_NSECS; 2315 } 2316 } 2317 } 2318 2319 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2320 struct device_node *nc) 2321 { 2322 u32 value, cs[SPI_CS_CNT_MAX]; 2323 int rc, idx; 2324 2325 /* Mode (clock phase/polarity/etc.) */ 2326 if (of_property_read_bool(nc, "spi-cpha")) 2327 spi->mode |= SPI_CPHA; 2328 if (of_property_read_bool(nc, "spi-cpol")) 2329 spi->mode |= SPI_CPOL; 2330 if (of_property_read_bool(nc, "spi-3wire")) 2331 spi->mode |= SPI_3WIRE; 2332 if (of_property_read_bool(nc, "spi-lsb-first")) 2333 spi->mode |= SPI_LSB_FIRST; 2334 if (of_property_read_bool(nc, "spi-cs-high")) 2335 spi->mode |= SPI_CS_HIGH; 2336 2337 /* Device DUAL/QUAD mode */ 2338 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2339 switch (value) { 2340 case 0: 2341 spi->mode |= SPI_NO_TX; 2342 break; 2343 case 1: 2344 break; 2345 case 2: 2346 spi->mode |= SPI_TX_DUAL; 2347 break; 2348 case 4: 2349 spi->mode |= SPI_TX_QUAD; 2350 break; 2351 case 8: 2352 spi->mode |= SPI_TX_OCTAL; 2353 break; 2354 default: 2355 dev_warn(&ctlr->dev, 2356 "spi-tx-bus-width %d not supported\n", 2357 value); 2358 break; 2359 } 2360 } 2361 2362 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2363 switch (value) { 2364 case 0: 2365 spi->mode |= SPI_NO_RX; 2366 break; 2367 case 1: 2368 break; 2369 case 2: 2370 spi->mode |= SPI_RX_DUAL; 2371 break; 2372 case 4: 2373 spi->mode |= SPI_RX_QUAD; 2374 break; 2375 case 8: 2376 spi->mode |= SPI_RX_OCTAL; 2377 break; 2378 default: 2379 dev_warn(&ctlr->dev, 2380 "spi-rx-bus-width %d not supported\n", 2381 value); 2382 break; 2383 } 2384 } 2385 2386 if (spi_controller_is_slave(ctlr)) { 2387 if (!of_node_name_eq(nc, "slave")) { 2388 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2389 nc); 2390 return -EINVAL; 2391 } 2392 return 0; 2393 } 2394 2395 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2396 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2397 return -EINVAL; 2398 } 2399 2400 /* 2401 * Zero(0) is a valid physical CS value and can be located at any 2402 * logical CS in the spi->chip_select[]. If all the physical CS 2403 * are initialized to 0 then It would be difficult to differentiate 2404 * between a valid physical CS 0 & an unused logical CS whose physical 2405 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 2406 * Now all the unused logical CS will have 0xFF physical CS value & can be 2407 * ignore while performing physical CS validity checks. 2408 */ 2409 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 2410 spi_set_chipselect(spi, idx, 0xFF); 2411 2412 /* Device address */ 2413 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2414 SPI_CS_CNT_MAX); 2415 if (rc < 0) { 2416 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2417 nc, rc); 2418 return rc; 2419 } 2420 if (rc > ctlr->num_chipselect) { 2421 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2422 nc, rc); 2423 return rc; 2424 } 2425 if ((of_property_read_bool(nc, "parallel-memories")) && 2426 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2427 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2428 return -EINVAL; 2429 } 2430 for (idx = 0; idx < rc; idx++) 2431 spi_set_chipselect(spi, idx, cs[idx]); 2432 2433 /* 2434 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 2435 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 2436 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 2437 * spi->chip_select[0] will give the physical CS. 2438 * By default spi->chip_select[0] will hold the physical CS number so, set 2439 * spi->cs_index_mask as 0x01. 2440 */ 2441 spi->cs_index_mask = 0x01; 2442 2443 /* Device speed */ 2444 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2445 spi->max_speed_hz = value; 2446 2447 /* Device CS delays */ 2448 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2449 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2450 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2451 2452 return 0; 2453 } 2454 2455 static struct spi_device * 2456 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2457 { 2458 struct spi_device *spi; 2459 int rc; 2460 2461 /* Alloc an spi_device */ 2462 spi = spi_alloc_device(ctlr); 2463 if (!spi) { 2464 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2465 rc = -ENOMEM; 2466 goto err_out; 2467 } 2468 2469 /* Select device driver */ 2470 rc = of_alias_from_compatible(nc, spi->modalias, 2471 sizeof(spi->modalias)); 2472 if (rc < 0) { 2473 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2474 goto err_out; 2475 } 2476 2477 rc = of_spi_parse_dt(ctlr, spi, nc); 2478 if (rc) 2479 goto err_out; 2480 2481 /* Store a pointer to the node in the device structure */ 2482 of_node_get(nc); 2483 2484 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2485 2486 /* Register the new device */ 2487 rc = spi_add_device(spi); 2488 if (rc) { 2489 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2490 goto err_of_node_put; 2491 } 2492 2493 return spi; 2494 2495 err_of_node_put: 2496 of_node_put(nc); 2497 err_out: 2498 spi_dev_put(spi); 2499 return ERR_PTR(rc); 2500 } 2501 2502 /** 2503 * of_register_spi_devices() - Register child devices onto the SPI bus 2504 * @ctlr: Pointer to spi_controller device 2505 * 2506 * Registers an spi_device for each child node of controller node which 2507 * represents a valid SPI slave. 2508 */ 2509 static void of_register_spi_devices(struct spi_controller *ctlr) 2510 { 2511 struct spi_device *spi; 2512 struct device_node *nc; 2513 2514 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2515 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2516 continue; 2517 spi = of_register_spi_device(ctlr, nc); 2518 if (IS_ERR(spi)) { 2519 dev_warn(&ctlr->dev, 2520 "Failed to create SPI device for %pOF\n", nc); 2521 of_node_clear_flag(nc, OF_POPULATED); 2522 } 2523 } 2524 } 2525 #else 2526 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2527 #endif 2528 2529 /** 2530 * spi_new_ancillary_device() - Register ancillary SPI device 2531 * @spi: Pointer to the main SPI device registering the ancillary device 2532 * @chip_select: Chip Select of the ancillary device 2533 * 2534 * Register an ancillary SPI device; for example some chips have a chip-select 2535 * for normal device usage and another one for setup/firmware upload. 2536 * 2537 * This may only be called from main SPI device's probe routine. 2538 * 2539 * Return: 0 on success; negative errno on failure 2540 */ 2541 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2542 u8 chip_select) 2543 { 2544 struct spi_controller *ctlr = spi->controller; 2545 struct spi_device *ancillary; 2546 int rc = 0; 2547 u8 idx; 2548 2549 /* Alloc an spi_device */ 2550 ancillary = spi_alloc_device(ctlr); 2551 if (!ancillary) { 2552 rc = -ENOMEM; 2553 goto err_out; 2554 } 2555 2556 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2557 2558 /* 2559 * Zero(0) is a valid physical CS value and can be located at any 2560 * logical CS in the spi->chip_select[]. If all the physical CS 2561 * are initialized to 0 then It would be difficult to differentiate 2562 * between a valid physical CS 0 & an unused logical CS whose physical 2563 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 2564 * Now all the unused logical CS will have 0xFF physical CS value & can be 2565 * ignore while performing physical CS validity checks. 2566 */ 2567 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 2568 spi_set_chipselect(ancillary, idx, 0xFF); 2569 2570 /* Use provided chip-select for ancillary device */ 2571 spi_set_chipselect(ancillary, 0, chip_select); 2572 2573 /* Take over SPI mode/speed from SPI main device */ 2574 ancillary->max_speed_hz = spi->max_speed_hz; 2575 ancillary->mode = spi->mode; 2576 /* 2577 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 2578 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 2579 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 2580 * spi->chip_select[0] will give the physical CS. 2581 * By default spi->chip_select[0] will hold the physical CS number so, set 2582 * spi->cs_index_mask as 0x01. 2583 */ 2584 ancillary->cs_index_mask = 0x01; 2585 2586 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2587 2588 /* Register the new device */ 2589 rc = __spi_add_device(ancillary); 2590 if (rc) { 2591 dev_err(&spi->dev, "failed to register ancillary device\n"); 2592 goto err_out; 2593 } 2594 2595 return ancillary; 2596 2597 err_out: 2598 spi_dev_put(ancillary); 2599 return ERR_PTR(rc); 2600 } 2601 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2602 2603 #ifdef CONFIG_ACPI 2604 struct acpi_spi_lookup { 2605 struct spi_controller *ctlr; 2606 u32 max_speed_hz; 2607 u32 mode; 2608 int irq; 2609 u8 bits_per_word; 2610 u8 chip_select; 2611 int n; 2612 int index; 2613 }; 2614 2615 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2616 { 2617 struct acpi_resource_spi_serialbus *sb; 2618 int *count = data; 2619 2620 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2621 return 1; 2622 2623 sb = &ares->data.spi_serial_bus; 2624 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2625 return 1; 2626 2627 *count = *count + 1; 2628 2629 return 1; 2630 } 2631 2632 /** 2633 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2634 * @adev: ACPI device 2635 * 2636 * Return: the number of SpiSerialBus resources in the ACPI-device's 2637 * resource-list; or a negative error code. 2638 */ 2639 int acpi_spi_count_resources(struct acpi_device *adev) 2640 { 2641 LIST_HEAD(r); 2642 int count = 0; 2643 int ret; 2644 2645 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2646 if (ret < 0) 2647 return ret; 2648 2649 acpi_dev_free_resource_list(&r); 2650 2651 return count; 2652 } 2653 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2654 2655 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2656 struct acpi_spi_lookup *lookup) 2657 { 2658 const union acpi_object *obj; 2659 2660 if (!x86_apple_machine) 2661 return; 2662 2663 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2664 && obj->buffer.length >= 4) 2665 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2666 2667 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2668 && obj->buffer.length == 8) 2669 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2670 2671 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2672 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2673 lookup->mode |= SPI_LSB_FIRST; 2674 2675 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2676 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2677 lookup->mode |= SPI_CPOL; 2678 2679 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2680 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2681 lookup->mode |= SPI_CPHA; 2682 } 2683 2684 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2685 { 2686 struct acpi_spi_lookup *lookup = data; 2687 struct spi_controller *ctlr = lookup->ctlr; 2688 2689 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2690 struct acpi_resource_spi_serialbus *sb; 2691 acpi_handle parent_handle; 2692 acpi_status status; 2693 2694 sb = &ares->data.spi_serial_bus; 2695 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2696 2697 if (lookup->index != -1 && lookup->n++ != lookup->index) 2698 return 1; 2699 2700 status = acpi_get_handle(NULL, 2701 sb->resource_source.string_ptr, 2702 &parent_handle); 2703 2704 if (ACPI_FAILURE(status)) 2705 return -ENODEV; 2706 2707 if (ctlr) { 2708 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2709 return -ENODEV; 2710 } else { 2711 struct acpi_device *adev; 2712 2713 adev = acpi_fetch_acpi_dev(parent_handle); 2714 if (!adev) 2715 return -ENODEV; 2716 2717 ctlr = acpi_spi_find_controller_by_adev(adev); 2718 if (!ctlr) 2719 return -EPROBE_DEFER; 2720 2721 lookup->ctlr = ctlr; 2722 } 2723 2724 /* 2725 * ACPI DeviceSelection numbering is handled by the 2726 * host controller driver in Windows and can vary 2727 * from driver to driver. In Linux we always expect 2728 * 0 .. max - 1 so we need to ask the driver to 2729 * translate between the two schemes. 2730 */ 2731 if (ctlr->fw_translate_cs) { 2732 int cs = ctlr->fw_translate_cs(ctlr, 2733 sb->device_selection); 2734 if (cs < 0) 2735 return cs; 2736 lookup->chip_select = cs; 2737 } else { 2738 lookup->chip_select = sb->device_selection; 2739 } 2740 2741 lookup->max_speed_hz = sb->connection_speed; 2742 lookup->bits_per_word = sb->data_bit_length; 2743 2744 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2745 lookup->mode |= SPI_CPHA; 2746 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2747 lookup->mode |= SPI_CPOL; 2748 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2749 lookup->mode |= SPI_CS_HIGH; 2750 } 2751 } else if (lookup->irq < 0) { 2752 struct resource r; 2753 2754 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2755 lookup->irq = r.start; 2756 } 2757 2758 /* Always tell the ACPI core to skip this resource */ 2759 return 1; 2760 } 2761 2762 /** 2763 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2764 * @ctlr: controller to which the spi device belongs 2765 * @adev: ACPI Device for the spi device 2766 * @index: Index of the spi resource inside the ACPI Node 2767 * 2768 * This should be used to allocate a new SPI device from and ACPI Device node. 2769 * The caller is responsible for calling spi_add_device to register the SPI device. 2770 * 2771 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2772 * using the resource. 2773 * If index is set to -1, index is not used. 2774 * Note: If index is -1, ctlr must be set. 2775 * 2776 * Return: a pointer to the new device, or ERR_PTR on error. 2777 */ 2778 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2779 struct acpi_device *adev, 2780 int index) 2781 { 2782 acpi_handle parent_handle = NULL; 2783 struct list_head resource_list; 2784 struct acpi_spi_lookup lookup = {}; 2785 struct spi_device *spi; 2786 int ret; 2787 u8 idx; 2788 2789 if (!ctlr && index == -1) 2790 return ERR_PTR(-EINVAL); 2791 2792 lookup.ctlr = ctlr; 2793 lookup.irq = -1; 2794 lookup.index = index; 2795 lookup.n = 0; 2796 2797 INIT_LIST_HEAD(&resource_list); 2798 ret = acpi_dev_get_resources(adev, &resource_list, 2799 acpi_spi_add_resource, &lookup); 2800 acpi_dev_free_resource_list(&resource_list); 2801 2802 if (ret < 0) 2803 /* Found SPI in _CRS but it points to another controller */ 2804 return ERR_PTR(ret); 2805 2806 if (!lookup.max_speed_hz && 2807 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2808 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2809 /* Apple does not use _CRS but nested devices for SPI slaves */ 2810 acpi_spi_parse_apple_properties(adev, &lookup); 2811 } 2812 2813 if (!lookup.max_speed_hz) 2814 return ERR_PTR(-ENODEV); 2815 2816 spi = spi_alloc_device(lookup.ctlr); 2817 if (!spi) { 2818 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2819 dev_name(&adev->dev)); 2820 return ERR_PTR(-ENOMEM); 2821 } 2822 2823 /* 2824 * Zero(0) is a valid physical CS value and can be located at any 2825 * logical CS in the spi->chip_select[]. If all the physical CS 2826 * are initialized to 0 then It would be difficult to differentiate 2827 * between a valid physical CS 0 & an unused logical CS whose physical 2828 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 2829 * Now all the unused logical CS will have 0xFF physical CS value & can be 2830 * ignore while performing physical CS validity checks. 2831 */ 2832 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 2833 spi_set_chipselect(spi, idx, 0xFF); 2834 2835 ACPI_COMPANION_SET(&spi->dev, adev); 2836 spi->max_speed_hz = lookup.max_speed_hz; 2837 spi->mode |= lookup.mode; 2838 spi->irq = lookup.irq; 2839 spi->bits_per_word = lookup.bits_per_word; 2840 spi_set_chipselect(spi, 0, lookup.chip_select); 2841 /* 2842 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 2843 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 2844 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 2845 * spi->chip_select[0] will give the physical CS. 2846 * By default spi->chip_select[0] will hold the physical CS number so, set 2847 * spi->cs_index_mask as 0x01. 2848 */ 2849 spi->cs_index_mask = 0x01; 2850 2851 return spi; 2852 } 2853 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2854 2855 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2856 struct acpi_device *adev) 2857 { 2858 struct spi_device *spi; 2859 2860 if (acpi_bus_get_status(adev) || !adev->status.present || 2861 acpi_device_enumerated(adev)) 2862 return AE_OK; 2863 2864 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2865 if (IS_ERR(spi)) { 2866 if (PTR_ERR(spi) == -ENOMEM) 2867 return AE_NO_MEMORY; 2868 else 2869 return AE_OK; 2870 } 2871 2872 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2873 sizeof(spi->modalias)); 2874 2875 if (spi->irq < 0) 2876 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2877 2878 acpi_device_set_enumerated(adev); 2879 2880 adev->power.flags.ignore_parent = true; 2881 if (spi_add_device(spi)) { 2882 adev->power.flags.ignore_parent = false; 2883 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2884 dev_name(&adev->dev)); 2885 spi_dev_put(spi); 2886 } 2887 2888 return AE_OK; 2889 } 2890 2891 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2892 void *data, void **return_value) 2893 { 2894 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2895 struct spi_controller *ctlr = data; 2896 2897 if (!adev) 2898 return AE_OK; 2899 2900 return acpi_register_spi_device(ctlr, adev); 2901 } 2902 2903 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2904 2905 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2906 { 2907 acpi_status status; 2908 acpi_handle handle; 2909 2910 handle = ACPI_HANDLE(ctlr->dev.parent); 2911 if (!handle) 2912 return; 2913 2914 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2915 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2916 acpi_spi_add_device, NULL, ctlr, NULL); 2917 if (ACPI_FAILURE(status)) 2918 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2919 } 2920 #else 2921 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2922 #endif /* CONFIG_ACPI */ 2923 2924 static void spi_controller_release(struct device *dev) 2925 { 2926 struct spi_controller *ctlr; 2927 2928 ctlr = container_of(dev, struct spi_controller, dev); 2929 kfree(ctlr); 2930 } 2931 2932 static struct class spi_master_class = { 2933 .name = "spi_master", 2934 .dev_release = spi_controller_release, 2935 .dev_groups = spi_master_groups, 2936 }; 2937 2938 #ifdef CONFIG_SPI_SLAVE 2939 /** 2940 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2941 * controller 2942 * @spi: device used for the current transfer 2943 */ 2944 int spi_slave_abort(struct spi_device *spi) 2945 { 2946 struct spi_controller *ctlr = spi->controller; 2947 2948 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2949 return ctlr->slave_abort(ctlr); 2950 2951 return -ENOTSUPP; 2952 } 2953 EXPORT_SYMBOL_GPL(spi_slave_abort); 2954 2955 int spi_target_abort(struct spi_device *spi) 2956 { 2957 struct spi_controller *ctlr = spi->controller; 2958 2959 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2960 return ctlr->target_abort(ctlr); 2961 2962 return -ENOTSUPP; 2963 } 2964 EXPORT_SYMBOL_GPL(spi_target_abort); 2965 2966 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2967 char *buf) 2968 { 2969 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2970 dev); 2971 struct device *child; 2972 2973 child = device_find_any_child(&ctlr->dev); 2974 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2975 } 2976 2977 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2978 const char *buf, size_t count) 2979 { 2980 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2981 dev); 2982 struct spi_device *spi; 2983 struct device *child; 2984 char name[32]; 2985 int rc; 2986 2987 rc = sscanf(buf, "%31s", name); 2988 if (rc != 1 || !name[0]) 2989 return -EINVAL; 2990 2991 child = device_find_any_child(&ctlr->dev); 2992 if (child) { 2993 /* Remove registered slave */ 2994 device_unregister(child); 2995 put_device(child); 2996 } 2997 2998 if (strcmp(name, "(null)")) { 2999 /* Register new slave */ 3000 spi = spi_alloc_device(ctlr); 3001 if (!spi) 3002 return -ENOMEM; 3003 3004 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3005 3006 rc = spi_add_device(spi); 3007 if (rc) { 3008 spi_dev_put(spi); 3009 return rc; 3010 } 3011 } 3012 3013 return count; 3014 } 3015 3016 static DEVICE_ATTR_RW(slave); 3017 3018 static struct attribute *spi_slave_attrs[] = { 3019 &dev_attr_slave.attr, 3020 NULL, 3021 }; 3022 3023 static const struct attribute_group spi_slave_group = { 3024 .attrs = spi_slave_attrs, 3025 }; 3026 3027 static const struct attribute_group *spi_slave_groups[] = { 3028 &spi_controller_statistics_group, 3029 &spi_slave_group, 3030 NULL, 3031 }; 3032 3033 static struct class spi_slave_class = { 3034 .name = "spi_slave", 3035 .dev_release = spi_controller_release, 3036 .dev_groups = spi_slave_groups, 3037 }; 3038 #else 3039 extern struct class spi_slave_class; /* dummy */ 3040 #endif 3041 3042 /** 3043 * __spi_alloc_controller - allocate an SPI master or slave controller 3044 * @dev: the controller, possibly using the platform_bus 3045 * @size: how much zeroed driver-private data to allocate; the pointer to this 3046 * memory is in the driver_data field of the returned device, accessible 3047 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3048 * drivers granting DMA access to portions of their private data need to 3049 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3050 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3051 * slave (true) controller 3052 * Context: can sleep 3053 * 3054 * This call is used only by SPI controller drivers, which are the 3055 * only ones directly touching chip registers. It's how they allocate 3056 * an spi_controller structure, prior to calling spi_register_controller(). 3057 * 3058 * This must be called from context that can sleep. 3059 * 3060 * The caller is responsible for assigning the bus number and initializing the 3061 * controller's methods before calling spi_register_controller(); and (after 3062 * errors adding the device) calling spi_controller_put() to prevent a memory 3063 * leak. 3064 * 3065 * Return: the SPI controller structure on success, else NULL. 3066 */ 3067 struct spi_controller *__spi_alloc_controller(struct device *dev, 3068 unsigned int size, bool slave) 3069 { 3070 struct spi_controller *ctlr; 3071 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3072 3073 if (!dev) 3074 return NULL; 3075 3076 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3077 if (!ctlr) 3078 return NULL; 3079 3080 device_initialize(&ctlr->dev); 3081 INIT_LIST_HEAD(&ctlr->queue); 3082 spin_lock_init(&ctlr->queue_lock); 3083 spin_lock_init(&ctlr->bus_lock_spinlock); 3084 mutex_init(&ctlr->bus_lock_mutex); 3085 mutex_init(&ctlr->io_mutex); 3086 mutex_init(&ctlr->add_lock); 3087 ctlr->bus_num = -1; 3088 ctlr->num_chipselect = 1; 3089 ctlr->slave = slave; 3090 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3091 ctlr->dev.class = &spi_slave_class; 3092 else 3093 ctlr->dev.class = &spi_master_class; 3094 ctlr->dev.parent = dev; 3095 pm_suspend_ignore_children(&ctlr->dev, true); 3096 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3097 3098 return ctlr; 3099 } 3100 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3101 3102 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3103 { 3104 spi_controller_put(*(struct spi_controller **)ctlr); 3105 } 3106 3107 /** 3108 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3109 * @dev: physical device of SPI controller 3110 * @size: how much zeroed driver-private data to allocate 3111 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3112 * Context: can sleep 3113 * 3114 * Allocate an SPI controller and automatically release a reference on it 3115 * when @dev is unbound from its driver. Drivers are thus relieved from 3116 * having to call spi_controller_put(). 3117 * 3118 * The arguments to this function are identical to __spi_alloc_controller(). 3119 * 3120 * Return: the SPI controller structure on success, else NULL. 3121 */ 3122 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3123 unsigned int size, 3124 bool slave) 3125 { 3126 struct spi_controller **ptr, *ctlr; 3127 3128 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3129 GFP_KERNEL); 3130 if (!ptr) 3131 return NULL; 3132 3133 ctlr = __spi_alloc_controller(dev, size, slave); 3134 if (ctlr) { 3135 ctlr->devm_allocated = true; 3136 *ptr = ctlr; 3137 devres_add(dev, ptr); 3138 } else { 3139 devres_free(ptr); 3140 } 3141 3142 return ctlr; 3143 } 3144 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3145 3146 /** 3147 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3148 * @ctlr: The SPI master to grab GPIO descriptors for 3149 */ 3150 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3151 { 3152 int nb, i; 3153 struct gpio_desc **cs; 3154 struct device *dev = &ctlr->dev; 3155 unsigned long native_cs_mask = 0; 3156 unsigned int num_cs_gpios = 0; 3157 3158 nb = gpiod_count(dev, "cs"); 3159 if (nb < 0) { 3160 /* No GPIOs at all is fine, else return the error */ 3161 if (nb == -ENOENT) 3162 return 0; 3163 return nb; 3164 } 3165 3166 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3167 3168 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3169 GFP_KERNEL); 3170 if (!cs) 3171 return -ENOMEM; 3172 ctlr->cs_gpiods = cs; 3173 3174 for (i = 0; i < nb; i++) { 3175 /* 3176 * Most chipselects are active low, the inverted 3177 * semantics are handled by special quirks in gpiolib, 3178 * so initializing them GPIOD_OUT_LOW here means 3179 * "unasserted", in most cases this will drive the physical 3180 * line high. 3181 */ 3182 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3183 GPIOD_OUT_LOW); 3184 if (IS_ERR(cs[i])) 3185 return PTR_ERR(cs[i]); 3186 3187 if (cs[i]) { 3188 /* 3189 * If we find a CS GPIO, name it after the device and 3190 * chip select line. 3191 */ 3192 char *gpioname; 3193 3194 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3195 dev_name(dev), i); 3196 if (!gpioname) 3197 return -ENOMEM; 3198 gpiod_set_consumer_name(cs[i], gpioname); 3199 num_cs_gpios++; 3200 continue; 3201 } 3202 3203 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3204 dev_err(dev, "Invalid native chip select %d\n", i); 3205 return -EINVAL; 3206 } 3207 native_cs_mask |= BIT(i); 3208 } 3209 3210 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3211 3212 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3213 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3214 dev_err(dev, "No unused native chip select available\n"); 3215 return -EINVAL; 3216 } 3217 3218 return 0; 3219 } 3220 3221 static int spi_controller_check_ops(struct spi_controller *ctlr) 3222 { 3223 /* 3224 * The controller may implement only the high-level SPI-memory like 3225 * operations if it does not support regular SPI transfers, and this is 3226 * valid use case. 3227 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3228 * one of the ->transfer_xxx() method be implemented. 3229 */ 3230 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3231 if (!ctlr->transfer && !ctlr->transfer_one && 3232 !ctlr->transfer_one_message) { 3233 return -EINVAL; 3234 } 3235 } 3236 3237 return 0; 3238 } 3239 3240 /* Allocate dynamic bus number using Linux idr */ 3241 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3242 { 3243 int id; 3244 3245 mutex_lock(&board_lock); 3246 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3247 mutex_unlock(&board_lock); 3248 if (WARN(id < 0, "couldn't get idr")) 3249 return id == -ENOSPC ? -EBUSY : id; 3250 ctlr->bus_num = id; 3251 return 0; 3252 } 3253 3254 /** 3255 * spi_register_controller - register SPI master or slave controller 3256 * @ctlr: initialized master, originally from spi_alloc_master() or 3257 * spi_alloc_slave() 3258 * Context: can sleep 3259 * 3260 * SPI controllers connect to their drivers using some non-SPI bus, 3261 * such as the platform bus. The final stage of probe() in that code 3262 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3263 * 3264 * SPI controllers use board specific (often SOC specific) bus numbers, 3265 * and board-specific addressing for SPI devices combines those numbers 3266 * with chip select numbers. Since SPI does not directly support dynamic 3267 * device identification, boards need configuration tables telling which 3268 * chip is at which address. 3269 * 3270 * This must be called from context that can sleep. It returns zero on 3271 * success, else a negative error code (dropping the controller's refcount). 3272 * After a successful return, the caller is responsible for calling 3273 * spi_unregister_controller(). 3274 * 3275 * Return: zero on success, else a negative error code. 3276 */ 3277 int spi_register_controller(struct spi_controller *ctlr) 3278 { 3279 struct device *dev = ctlr->dev.parent; 3280 struct boardinfo *bi; 3281 int first_dynamic; 3282 int status; 3283 int idx; 3284 3285 if (!dev) 3286 return -ENODEV; 3287 3288 /* 3289 * Make sure all necessary hooks are implemented before registering 3290 * the SPI controller. 3291 */ 3292 status = spi_controller_check_ops(ctlr); 3293 if (status) 3294 return status; 3295 3296 if (ctlr->bus_num < 0) 3297 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3298 if (ctlr->bus_num >= 0) { 3299 /* Devices with a fixed bus num must check-in with the num */ 3300 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3301 if (status) 3302 return status; 3303 } 3304 if (ctlr->bus_num < 0) { 3305 first_dynamic = of_alias_get_highest_id("spi"); 3306 if (first_dynamic < 0) 3307 first_dynamic = 0; 3308 else 3309 first_dynamic++; 3310 3311 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3312 if (status) 3313 return status; 3314 } 3315 ctlr->bus_lock_flag = 0; 3316 init_completion(&ctlr->xfer_completion); 3317 init_completion(&ctlr->cur_msg_completion); 3318 if (!ctlr->max_dma_len) 3319 ctlr->max_dma_len = INT_MAX; 3320 3321 /* 3322 * Register the device, then userspace will see it. 3323 * Registration fails if the bus ID is in use. 3324 */ 3325 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3326 3327 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3328 status = spi_get_gpio_descs(ctlr); 3329 if (status) 3330 goto free_bus_id; 3331 /* 3332 * A controller using GPIO descriptors always 3333 * supports SPI_CS_HIGH if need be. 3334 */ 3335 ctlr->mode_bits |= SPI_CS_HIGH; 3336 } 3337 3338 /* 3339 * Even if it's just one always-selected device, there must 3340 * be at least one chipselect. 3341 */ 3342 if (!ctlr->num_chipselect) { 3343 status = -EINVAL; 3344 goto free_bus_id; 3345 } 3346 3347 /* Setting last_cs to -1 means no chip selected */ 3348 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3349 ctlr->last_cs[idx] = -1; 3350 3351 status = device_add(&ctlr->dev); 3352 if (status < 0) 3353 goto free_bus_id; 3354 dev_dbg(dev, "registered %s %s\n", 3355 spi_controller_is_slave(ctlr) ? "slave" : "master", 3356 dev_name(&ctlr->dev)); 3357 3358 /* 3359 * If we're using a queued driver, start the queue. Note that we don't 3360 * need the queueing logic if the driver is only supporting high-level 3361 * memory operations. 3362 */ 3363 if (ctlr->transfer) { 3364 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3365 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3366 status = spi_controller_initialize_queue(ctlr); 3367 if (status) { 3368 device_del(&ctlr->dev); 3369 goto free_bus_id; 3370 } 3371 } 3372 /* Add statistics */ 3373 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3374 if (!ctlr->pcpu_statistics) { 3375 dev_err(dev, "Error allocating per-cpu statistics\n"); 3376 status = -ENOMEM; 3377 goto destroy_queue; 3378 } 3379 3380 mutex_lock(&board_lock); 3381 list_add_tail(&ctlr->list, &spi_controller_list); 3382 list_for_each_entry(bi, &board_list, list) 3383 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3384 mutex_unlock(&board_lock); 3385 3386 /* Register devices from the device tree and ACPI */ 3387 of_register_spi_devices(ctlr); 3388 acpi_register_spi_devices(ctlr); 3389 return status; 3390 3391 destroy_queue: 3392 spi_destroy_queue(ctlr); 3393 free_bus_id: 3394 mutex_lock(&board_lock); 3395 idr_remove(&spi_master_idr, ctlr->bus_num); 3396 mutex_unlock(&board_lock); 3397 return status; 3398 } 3399 EXPORT_SYMBOL_GPL(spi_register_controller); 3400 3401 static void devm_spi_unregister(struct device *dev, void *res) 3402 { 3403 spi_unregister_controller(*(struct spi_controller **)res); 3404 } 3405 3406 /** 3407 * devm_spi_register_controller - register managed SPI master or slave 3408 * controller 3409 * @dev: device managing SPI controller 3410 * @ctlr: initialized controller, originally from spi_alloc_master() or 3411 * spi_alloc_slave() 3412 * Context: can sleep 3413 * 3414 * Register a SPI device as with spi_register_controller() which will 3415 * automatically be unregistered and freed. 3416 * 3417 * Return: zero on success, else a negative error code. 3418 */ 3419 int devm_spi_register_controller(struct device *dev, 3420 struct spi_controller *ctlr) 3421 { 3422 struct spi_controller **ptr; 3423 int ret; 3424 3425 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3426 if (!ptr) 3427 return -ENOMEM; 3428 3429 ret = spi_register_controller(ctlr); 3430 if (!ret) { 3431 *ptr = ctlr; 3432 devres_add(dev, ptr); 3433 } else { 3434 devres_free(ptr); 3435 } 3436 3437 return ret; 3438 } 3439 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3440 3441 static int __unregister(struct device *dev, void *null) 3442 { 3443 spi_unregister_device(to_spi_device(dev)); 3444 return 0; 3445 } 3446 3447 /** 3448 * spi_unregister_controller - unregister SPI master or slave controller 3449 * @ctlr: the controller being unregistered 3450 * Context: can sleep 3451 * 3452 * This call is used only by SPI controller drivers, which are the 3453 * only ones directly touching chip registers. 3454 * 3455 * This must be called from context that can sleep. 3456 * 3457 * Note that this function also drops a reference to the controller. 3458 */ 3459 void spi_unregister_controller(struct spi_controller *ctlr) 3460 { 3461 struct spi_controller *found; 3462 int id = ctlr->bus_num; 3463 3464 /* Prevent addition of new devices, unregister existing ones */ 3465 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3466 mutex_lock(&ctlr->add_lock); 3467 3468 device_for_each_child(&ctlr->dev, NULL, __unregister); 3469 3470 /* First make sure that this controller was ever added */ 3471 mutex_lock(&board_lock); 3472 found = idr_find(&spi_master_idr, id); 3473 mutex_unlock(&board_lock); 3474 if (ctlr->queued) { 3475 if (spi_destroy_queue(ctlr)) 3476 dev_err(&ctlr->dev, "queue remove failed\n"); 3477 } 3478 mutex_lock(&board_lock); 3479 list_del(&ctlr->list); 3480 mutex_unlock(&board_lock); 3481 3482 device_del(&ctlr->dev); 3483 3484 /* Free bus id */ 3485 mutex_lock(&board_lock); 3486 if (found == ctlr) 3487 idr_remove(&spi_master_idr, id); 3488 mutex_unlock(&board_lock); 3489 3490 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3491 mutex_unlock(&ctlr->add_lock); 3492 3493 /* 3494 * Release the last reference on the controller if its driver 3495 * has not yet been converted to devm_spi_alloc_master/slave(). 3496 */ 3497 if (!ctlr->devm_allocated) 3498 put_device(&ctlr->dev); 3499 } 3500 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3501 3502 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3503 { 3504 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3505 } 3506 3507 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3508 { 3509 mutex_lock(&ctlr->bus_lock_mutex); 3510 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3511 mutex_unlock(&ctlr->bus_lock_mutex); 3512 } 3513 3514 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3515 { 3516 mutex_lock(&ctlr->bus_lock_mutex); 3517 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3518 mutex_unlock(&ctlr->bus_lock_mutex); 3519 } 3520 3521 int spi_controller_suspend(struct spi_controller *ctlr) 3522 { 3523 int ret = 0; 3524 3525 /* Basically no-ops for non-queued controllers */ 3526 if (ctlr->queued) { 3527 ret = spi_stop_queue(ctlr); 3528 if (ret) 3529 dev_err(&ctlr->dev, "queue stop failed\n"); 3530 } 3531 3532 __spi_mark_suspended(ctlr); 3533 return ret; 3534 } 3535 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3536 3537 int spi_controller_resume(struct spi_controller *ctlr) 3538 { 3539 int ret = 0; 3540 3541 __spi_mark_resumed(ctlr); 3542 3543 if (ctlr->queued) { 3544 ret = spi_start_queue(ctlr); 3545 if (ret) 3546 dev_err(&ctlr->dev, "queue restart failed\n"); 3547 } 3548 return ret; 3549 } 3550 EXPORT_SYMBOL_GPL(spi_controller_resume); 3551 3552 /*-------------------------------------------------------------------------*/ 3553 3554 /* Core methods for spi_message alterations */ 3555 3556 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3557 struct spi_message *msg, 3558 void *res) 3559 { 3560 struct spi_replaced_transfers *rxfer = res; 3561 size_t i; 3562 3563 /* Call extra callback if requested */ 3564 if (rxfer->release) 3565 rxfer->release(ctlr, msg, res); 3566 3567 /* Insert replaced transfers back into the message */ 3568 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3569 3570 /* Remove the formerly inserted entries */ 3571 for (i = 0; i < rxfer->inserted; i++) 3572 list_del(&rxfer->inserted_transfers[i].transfer_list); 3573 } 3574 3575 /** 3576 * spi_replace_transfers - replace transfers with several transfers 3577 * and register change with spi_message.resources 3578 * @msg: the spi_message we work upon 3579 * @xfer_first: the first spi_transfer we want to replace 3580 * @remove: number of transfers to remove 3581 * @insert: the number of transfers we want to insert instead 3582 * @release: extra release code necessary in some circumstances 3583 * @extradatasize: extra data to allocate (with alignment guarantees 3584 * of struct @spi_transfer) 3585 * @gfp: gfp flags 3586 * 3587 * Returns: pointer to @spi_replaced_transfers, 3588 * PTR_ERR(...) in case of errors. 3589 */ 3590 static struct spi_replaced_transfers *spi_replace_transfers( 3591 struct spi_message *msg, 3592 struct spi_transfer *xfer_first, 3593 size_t remove, 3594 size_t insert, 3595 spi_replaced_release_t release, 3596 size_t extradatasize, 3597 gfp_t gfp) 3598 { 3599 struct spi_replaced_transfers *rxfer; 3600 struct spi_transfer *xfer; 3601 size_t i; 3602 3603 /* Allocate the structure using spi_res */ 3604 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3605 struct_size(rxfer, inserted_transfers, insert) 3606 + extradatasize, 3607 gfp); 3608 if (!rxfer) 3609 return ERR_PTR(-ENOMEM); 3610 3611 /* The release code to invoke before running the generic release */ 3612 rxfer->release = release; 3613 3614 /* Assign extradata */ 3615 if (extradatasize) 3616 rxfer->extradata = 3617 &rxfer->inserted_transfers[insert]; 3618 3619 /* Init the replaced_transfers list */ 3620 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3621 3622 /* 3623 * Assign the list_entry after which we should reinsert 3624 * the @replaced_transfers - it may be spi_message.messages! 3625 */ 3626 rxfer->replaced_after = xfer_first->transfer_list.prev; 3627 3628 /* Remove the requested number of transfers */ 3629 for (i = 0; i < remove; i++) { 3630 /* 3631 * If the entry after replaced_after it is msg->transfers 3632 * then we have been requested to remove more transfers 3633 * than are in the list. 3634 */ 3635 if (rxfer->replaced_after->next == &msg->transfers) { 3636 dev_err(&msg->spi->dev, 3637 "requested to remove more spi_transfers than are available\n"); 3638 /* Insert replaced transfers back into the message */ 3639 list_splice(&rxfer->replaced_transfers, 3640 rxfer->replaced_after); 3641 3642 /* Free the spi_replace_transfer structure... */ 3643 spi_res_free(rxfer); 3644 3645 /* ...and return with an error */ 3646 return ERR_PTR(-EINVAL); 3647 } 3648 3649 /* 3650 * Remove the entry after replaced_after from list of 3651 * transfers and add it to list of replaced_transfers. 3652 */ 3653 list_move_tail(rxfer->replaced_after->next, 3654 &rxfer->replaced_transfers); 3655 } 3656 3657 /* 3658 * Create copy of the given xfer with identical settings 3659 * based on the first transfer to get removed. 3660 */ 3661 for (i = 0; i < insert; i++) { 3662 /* We need to run in reverse order */ 3663 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3664 3665 /* Copy all spi_transfer data */ 3666 memcpy(xfer, xfer_first, sizeof(*xfer)); 3667 3668 /* Add to list */ 3669 list_add(&xfer->transfer_list, rxfer->replaced_after); 3670 3671 /* Clear cs_change and delay for all but the last */ 3672 if (i) { 3673 xfer->cs_change = false; 3674 xfer->delay.value = 0; 3675 } 3676 } 3677 3678 /* Set up inserted... */ 3679 rxfer->inserted = insert; 3680 3681 /* ...and register it with spi_res/spi_message */ 3682 spi_res_add(msg, rxfer); 3683 3684 return rxfer; 3685 } 3686 3687 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3688 struct spi_message *msg, 3689 struct spi_transfer **xferp, 3690 size_t maxsize, 3691 gfp_t gfp) 3692 { 3693 struct spi_transfer *xfer = *xferp, *xfers; 3694 struct spi_replaced_transfers *srt; 3695 size_t offset; 3696 size_t count, i; 3697 3698 /* Calculate how many we have to replace */ 3699 count = DIV_ROUND_UP(xfer->len, maxsize); 3700 3701 /* Create replacement */ 3702 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3703 if (IS_ERR(srt)) 3704 return PTR_ERR(srt); 3705 xfers = srt->inserted_transfers; 3706 3707 /* 3708 * Now handle each of those newly inserted spi_transfers. 3709 * Note that the replacements spi_transfers all are preset 3710 * to the same values as *xferp, so tx_buf, rx_buf and len 3711 * are all identical (as well as most others) 3712 * so we just have to fix up len and the pointers. 3713 * 3714 * This also includes support for the depreciated 3715 * spi_message.is_dma_mapped interface. 3716 */ 3717 3718 /* 3719 * The first transfer just needs the length modified, so we 3720 * run it outside the loop. 3721 */ 3722 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3723 3724 /* All the others need rx_buf/tx_buf also set */ 3725 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3726 /* Update rx_buf, tx_buf and DMA */ 3727 if (xfers[i].rx_buf) 3728 xfers[i].rx_buf += offset; 3729 if (xfers[i].rx_dma) 3730 xfers[i].rx_dma += offset; 3731 if (xfers[i].tx_buf) 3732 xfers[i].tx_buf += offset; 3733 if (xfers[i].tx_dma) 3734 xfers[i].tx_dma += offset; 3735 3736 /* Update length */ 3737 xfers[i].len = min(maxsize, xfers[i].len - offset); 3738 } 3739 3740 /* 3741 * We set up xferp to the last entry we have inserted, 3742 * so that we skip those already split transfers. 3743 */ 3744 *xferp = &xfers[count - 1]; 3745 3746 /* Increment statistics counters */ 3747 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3748 transfers_split_maxsize); 3749 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3750 transfers_split_maxsize); 3751 3752 return 0; 3753 } 3754 3755 /** 3756 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3757 * when an individual transfer exceeds a 3758 * certain size 3759 * @ctlr: the @spi_controller for this transfer 3760 * @msg: the @spi_message to transform 3761 * @maxsize: the maximum when to apply this 3762 * @gfp: GFP allocation flags 3763 * 3764 * Return: status of transformation 3765 */ 3766 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3767 struct spi_message *msg, 3768 size_t maxsize, 3769 gfp_t gfp) 3770 { 3771 struct spi_transfer *xfer; 3772 int ret; 3773 3774 /* 3775 * Iterate over the transfer_list, 3776 * but note that xfer is advanced to the last transfer inserted 3777 * to avoid checking sizes again unnecessarily (also xfer does 3778 * potentially belong to a different list by the time the 3779 * replacement has happened). 3780 */ 3781 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3782 if (xfer->len > maxsize) { 3783 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3784 maxsize, gfp); 3785 if (ret) 3786 return ret; 3787 } 3788 } 3789 3790 return 0; 3791 } 3792 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3793 3794 3795 /** 3796 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3797 * when an individual transfer exceeds a 3798 * certain number of SPI words 3799 * @ctlr: the @spi_controller for this transfer 3800 * @msg: the @spi_message to transform 3801 * @maxwords: the number of words to limit each transfer to 3802 * @gfp: GFP allocation flags 3803 * 3804 * Return: status of transformation 3805 */ 3806 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3807 struct spi_message *msg, 3808 size_t maxwords, 3809 gfp_t gfp) 3810 { 3811 struct spi_transfer *xfer; 3812 3813 /* 3814 * Iterate over the transfer_list, 3815 * but note that xfer is advanced to the last transfer inserted 3816 * to avoid checking sizes again unnecessarily (also xfer does 3817 * potentially belong to a different list by the time the 3818 * replacement has happened). 3819 */ 3820 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3821 size_t maxsize; 3822 int ret; 3823 3824 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3825 if (xfer->len > maxsize) { 3826 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3827 maxsize, gfp); 3828 if (ret) 3829 return ret; 3830 } 3831 } 3832 3833 return 0; 3834 } 3835 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3836 3837 /*-------------------------------------------------------------------------*/ 3838 3839 /* 3840 * Core methods for SPI controller protocol drivers. Some of the 3841 * other core methods are currently defined as inline functions. 3842 */ 3843 3844 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3845 u8 bits_per_word) 3846 { 3847 if (ctlr->bits_per_word_mask) { 3848 /* Only 32 bits fit in the mask */ 3849 if (bits_per_word > 32) 3850 return -EINVAL; 3851 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3852 return -EINVAL; 3853 } 3854 3855 return 0; 3856 } 3857 3858 /** 3859 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3860 * @spi: the device that requires specific CS timing configuration 3861 * 3862 * Return: zero on success, else a negative error code. 3863 */ 3864 static int spi_set_cs_timing(struct spi_device *spi) 3865 { 3866 struct device *parent = spi->controller->dev.parent; 3867 int status = 0; 3868 3869 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3870 if (spi->controller->auto_runtime_pm) { 3871 status = pm_runtime_get_sync(parent); 3872 if (status < 0) { 3873 pm_runtime_put_noidle(parent); 3874 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3875 status); 3876 return status; 3877 } 3878 3879 status = spi->controller->set_cs_timing(spi); 3880 pm_runtime_mark_last_busy(parent); 3881 pm_runtime_put_autosuspend(parent); 3882 } else { 3883 status = spi->controller->set_cs_timing(spi); 3884 } 3885 } 3886 return status; 3887 } 3888 3889 /** 3890 * spi_setup - setup SPI mode and clock rate 3891 * @spi: the device whose settings are being modified 3892 * Context: can sleep, and no requests are queued to the device 3893 * 3894 * SPI protocol drivers may need to update the transfer mode if the 3895 * device doesn't work with its default. They may likewise need 3896 * to update clock rates or word sizes from initial values. This function 3897 * changes those settings, and must be called from a context that can sleep. 3898 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3899 * effect the next time the device is selected and data is transferred to 3900 * or from it. When this function returns, the SPI device is deselected. 3901 * 3902 * Note that this call will fail if the protocol driver specifies an option 3903 * that the underlying controller or its driver does not support. For 3904 * example, not all hardware supports wire transfers using nine bit words, 3905 * LSB-first wire encoding, or active-high chipselects. 3906 * 3907 * Return: zero on success, else a negative error code. 3908 */ 3909 int spi_setup(struct spi_device *spi) 3910 { 3911 unsigned bad_bits, ugly_bits; 3912 int status = 0; 3913 3914 /* 3915 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3916 * are set at the same time. 3917 */ 3918 if ((hweight_long(spi->mode & 3919 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3920 (hweight_long(spi->mode & 3921 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3922 dev_err(&spi->dev, 3923 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3924 return -EINVAL; 3925 } 3926 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3927 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3928 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3929 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3930 return -EINVAL; 3931 /* 3932 * Help drivers fail *cleanly* when they need options 3933 * that aren't supported with their current controller. 3934 * SPI_CS_WORD has a fallback software implementation, 3935 * so it is ignored here. 3936 */ 3937 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3938 SPI_NO_TX | SPI_NO_RX); 3939 ugly_bits = bad_bits & 3940 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3941 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3942 if (ugly_bits) { 3943 dev_warn(&spi->dev, 3944 "setup: ignoring unsupported mode bits %x\n", 3945 ugly_bits); 3946 spi->mode &= ~ugly_bits; 3947 bad_bits &= ~ugly_bits; 3948 } 3949 if (bad_bits) { 3950 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3951 bad_bits); 3952 return -EINVAL; 3953 } 3954 3955 if (!spi->bits_per_word) { 3956 spi->bits_per_word = 8; 3957 } else { 3958 /* 3959 * Some controllers may not support the default 8 bits-per-word 3960 * so only perform the check when this is explicitly provided. 3961 */ 3962 status = __spi_validate_bits_per_word(spi->controller, 3963 spi->bits_per_word); 3964 if (status) 3965 return status; 3966 } 3967 3968 if (spi->controller->max_speed_hz && 3969 (!spi->max_speed_hz || 3970 spi->max_speed_hz > spi->controller->max_speed_hz)) 3971 spi->max_speed_hz = spi->controller->max_speed_hz; 3972 3973 mutex_lock(&spi->controller->io_mutex); 3974 3975 if (spi->controller->setup) { 3976 status = spi->controller->setup(spi); 3977 if (status) { 3978 mutex_unlock(&spi->controller->io_mutex); 3979 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3980 status); 3981 return status; 3982 } 3983 } 3984 3985 status = spi_set_cs_timing(spi); 3986 if (status) { 3987 mutex_unlock(&spi->controller->io_mutex); 3988 return status; 3989 } 3990 3991 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3992 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3993 if (status < 0) { 3994 mutex_unlock(&spi->controller->io_mutex); 3995 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3996 status); 3997 return status; 3998 } 3999 4000 /* 4001 * We do not want to return positive value from pm_runtime_get, 4002 * there are many instances of devices calling spi_setup() and 4003 * checking for a non-zero return value instead of a negative 4004 * return value. 4005 */ 4006 status = 0; 4007 4008 spi_set_cs(spi, false, true); 4009 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4010 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4011 } else { 4012 spi_set_cs(spi, false, true); 4013 } 4014 4015 mutex_unlock(&spi->controller->io_mutex); 4016 4017 if (spi->rt && !spi->controller->rt) { 4018 spi->controller->rt = true; 4019 spi_set_thread_rt(spi->controller); 4020 } 4021 4022 trace_spi_setup(spi, status); 4023 4024 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4025 spi->mode & SPI_MODE_X_MASK, 4026 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4027 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4028 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4029 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4030 spi->bits_per_word, spi->max_speed_hz, 4031 status); 4032 4033 return status; 4034 } 4035 EXPORT_SYMBOL_GPL(spi_setup); 4036 4037 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4038 struct spi_device *spi) 4039 { 4040 int delay1, delay2; 4041 4042 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4043 if (delay1 < 0) 4044 return delay1; 4045 4046 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4047 if (delay2 < 0) 4048 return delay2; 4049 4050 if (delay1 < delay2) 4051 memcpy(&xfer->word_delay, &spi->word_delay, 4052 sizeof(xfer->word_delay)); 4053 4054 return 0; 4055 } 4056 4057 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4058 { 4059 struct spi_controller *ctlr = spi->controller; 4060 struct spi_transfer *xfer; 4061 int w_size; 4062 4063 if (list_empty(&message->transfers)) 4064 return -EINVAL; 4065 4066 /* 4067 * If an SPI controller does not support toggling the CS line on each 4068 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4069 * for the CS line, we can emulate the CS-per-word hardware function by 4070 * splitting transfers into one-word transfers and ensuring that 4071 * cs_change is set for each transfer. 4072 */ 4073 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 4074 spi_is_csgpiod(spi))) { 4075 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word); 4076 int ret; 4077 4078 /* spi_split_transfers_maxsize() requires message->spi */ 4079 message->spi = spi; 4080 4081 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 4082 GFP_KERNEL); 4083 if (ret) 4084 return ret; 4085 4086 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4087 /* Don't change cs_change on the last entry in the list */ 4088 if (list_is_last(&xfer->transfer_list, &message->transfers)) 4089 break; 4090 xfer->cs_change = 1; 4091 } 4092 } 4093 4094 /* 4095 * Half-duplex links include original MicroWire, and ones with 4096 * only one data pin like SPI_3WIRE (switches direction) or where 4097 * either MOSI or MISO is missing. They can also be caused by 4098 * software limitations. 4099 */ 4100 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4101 (spi->mode & SPI_3WIRE)) { 4102 unsigned flags = ctlr->flags; 4103 4104 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4105 if (xfer->rx_buf && xfer->tx_buf) 4106 return -EINVAL; 4107 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4108 return -EINVAL; 4109 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4110 return -EINVAL; 4111 } 4112 } 4113 4114 /* 4115 * Set transfer bits_per_word and max speed as spi device default if 4116 * it is not set for this transfer. 4117 * Set transfer tx_nbits and rx_nbits as single transfer default 4118 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4119 * Ensure transfer word_delay is at least as long as that required by 4120 * device itself. 4121 */ 4122 message->frame_length = 0; 4123 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4124 xfer->effective_speed_hz = 0; 4125 message->frame_length += xfer->len; 4126 if (!xfer->bits_per_word) 4127 xfer->bits_per_word = spi->bits_per_word; 4128 4129 if (!xfer->speed_hz) 4130 xfer->speed_hz = spi->max_speed_hz; 4131 4132 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4133 xfer->speed_hz = ctlr->max_speed_hz; 4134 4135 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4136 return -EINVAL; 4137 4138 /* 4139 * SPI transfer length should be multiple of SPI word size 4140 * where SPI word size should be power-of-two multiple. 4141 */ 4142 if (xfer->bits_per_word <= 8) 4143 w_size = 1; 4144 else if (xfer->bits_per_word <= 16) 4145 w_size = 2; 4146 else 4147 w_size = 4; 4148 4149 /* No partial transfers accepted */ 4150 if (xfer->len % w_size) 4151 return -EINVAL; 4152 4153 if (xfer->speed_hz && ctlr->min_speed_hz && 4154 xfer->speed_hz < ctlr->min_speed_hz) 4155 return -EINVAL; 4156 4157 if (xfer->tx_buf && !xfer->tx_nbits) 4158 xfer->tx_nbits = SPI_NBITS_SINGLE; 4159 if (xfer->rx_buf && !xfer->rx_nbits) 4160 xfer->rx_nbits = SPI_NBITS_SINGLE; 4161 /* 4162 * Check transfer tx/rx_nbits: 4163 * 1. check the value matches one of single, dual and quad 4164 * 2. check tx/rx_nbits match the mode in spi_device 4165 */ 4166 if (xfer->tx_buf) { 4167 if (spi->mode & SPI_NO_TX) 4168 return -EINVAL; 4169 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4170 xfer->tx_nbits != SPI_NBITS_DUAL && 4171 xfer->tx_nbits != SPI_NBITS_QUAD) 4172 return -EINVAL; 4173 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4174 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4175 return -EINVAL; 4176 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4177 !(spi->mode & SPI_TX_QUAD)) 4178 return -EINVAL; 4179 } 4180 /* Check transfer rx_nbits */ 4181 if (xfer->rx_buf) { 4182 if (spi->mode & SPI_NO_RX) 4183 return -EINVAL; 4184 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4185 xfer->rx_nbits != SPI_NBITS_DUAL && 4186 xfer->rx_nbits != SPI_NBITS_QUAD) 4187 return -EINVAL; 4188 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4189 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4190 return -EINVAL; 4191 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4192 !(spi->mode & SPI_RX_QUAD)) 4193 return -EINVAL; 4194 } 4195 4196 if (_spi_xfer_word_delay_update(xfer, spi)) 4197 return -EINVAL; 4198 } 4199 4200 message->status = -EINPROGRESS; 4201 4202 return 0; 4203 } 4204 4205 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4206 { 4207 struct spi_controller *ctlr = spi->controller; 4208 struct spi_transfer *xfer; 4209 4210 /* 4211 * Some controllers do not support doing regular SPI transfers. Return 4212 * ENOTSUPP when this is the case. 4213 */ 4214 if (!ctlr->transfer) 4215 return -ENOTSUPP; 4216 4217 message->spi = spi; 4218 4219 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4220 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4221 4222 trace_spi_message_submit(message); 4223 4224 if (!ctlr->ptp_sts_supported) { 4225 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4226 xfer->ptp_sts_word_pre = 0; 4227 ptp_read_system_prets(xfer->ptp_sts); 4228 } 4229 } 4230 4231 return ctlr->transfer(spi, message); 4232 } 4233 4234 /** 4235 * spi_async - asynchronous SPI transfer 4236 * @spi: device with which data will be exchanged 4237 * @message: describes the data transfers, including completion callback 4238 * Context: any (IRQs may be blocked, etc) 4239 * 4240 * This call may be used in_irq and other contexts which can't sleep, 4241 * as well as from task contexts which can sleep. 4242 * 4243 * The completion callback is invoked in a context which can't sleep. 4244 * Before that invocation, the value of message->status is undefined. 4245 * When the callback is issued, message->status holds either zero (to 4246 * indicate complete success) or a negative error code. After that 4247 * callback returns, the driver which issued the transfer request may 4248 * deallocate the associated memory; it's no longer in use by any SPI 4249 * core or controller driver code. 4250 * 4251 * Note that although all messages to a spi_device are handled in 4252 * FIFO order, messages may go to different devices in other orders. 4253 * Some device might be higher priority, or have various "hard" access 4254 * time requirements, for example. 4255 * 4256 * On detection of any fault during the transfer, processing of 4257 * the entire message is aborted, and the device is deselected. 4258 * Until returning from the associated message completion callback, 4259 * no other spi_message queued to that device will be processed. 4260 * (This rule applies equally to all the synchronous transfer calls, 4261 * which are wrappers around this core asynchronous primitive.) 4262 * 4263 * Return: zero on success, else a negative error code. 4264 */ 4265 int spi_async(struct spi_device *spi, struct spi_message *message) 4266 { 4267 struct spi_controller *ctlr = spi->controller; 4268 int ret; 4269 unsigned long flags; 4270 4271 ret = __spi_validate(spi, message); 4272 if (ret != 0) 4273 return ret; 4274 4275 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4276 4277 if (ctlr->bus_lock_flag) 4278 ret = -EBUSY; 4279 else 4280 ret = __spi_async(spi, message); 4281 4282 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4283 4284 return ret; 4285 } 4286 EXPORT_SYMBOL_GPL(spi_async); 4287 4288 /** 4289 * spi_async_locked - version of spi_async with exclusive bus usage 4290 * @spi: device with which data will be exchanged 4291 * @message: describes the data transfers, including completion callback 4292 * Context: any (IRQs may be blocked, etc) 4293 * 4294 * This call may be used in_irq and other contexts which can't sleep, 4295 * as well as from task contexts which can sleep. 4296 * 4297 * The completion callback is invoked in a context which can't sleep. 4298 * Before that invocation, the value of message->status is undefined. 4299 * When the callback is issued, message->status holds either zero (to 4300 * indicate complete success) or a negative error code. After that 4301 * callback returns, the driver which issued the transfer request may 4302 * deallocate the associated memory; it's no longer in use by any SPI 4303 * core or controller driver code. 4304 * 4305 * Note that although all messages to a spi_device are handled in 4306 * FIFO order, messages may go to different devices in other orders. 4307 * Some device might be higher priority, or have various "hard" access 4308 * time requirements, for example. 4309 * 4310 * On detection of any fault during the transfer, processing of 4311 * the entire message is aborted, and the device is deselected. 4312 * Until returning from the associated message completion callback, 4313 * no other spi_message queued to that device will be processed. 4314 * (This rule applies equally to all the synchronous transfer calls, 4315 * which are wrappers around this core asynchronous primitive.) 4316 * 4317 * Return: zero on success, else a negative error code. 4318 */ 4319 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4320 { 4321 struct spi_controller *ctlr = spi->controller; 4322 int ret; 4323 unsigned long flags; 4324 4325 ret = __spi_validate(spi, message); 4326 if (ret != 0) 4327 return ret; 4328 4329 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4330 4331 ret = __spi_async(spi, message); 4332 4333 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4334 4335 return ret; 4336 4337 } 4338 4339 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4340 { 4341 bool was_busy; 4342 int ret; 4343 4344 mutex_lock(&ctlr->io_mutex); 4345 4346 was_busy = ctlr->busy; 4347 4348 ctlr->cur_msg = msg; 4349 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4350 if (ret) 4351 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4352 ctlr->cur_msg = NULL; 4353 ctlr->fallback = false; 4354 4355 if (!was_busy) { 4356 kfree(ctlr->dummy_rx); 4357 ctlr->dummy_rx = NULL; 4358 kfree(ctlr->dummy_tx); 4359 ctlr->dummy_tx = NULL; 4360 if (ctlr->unprepare_transfer_hardware && 4361 ctlr->unprepare_transfer_hardware(ctlr)) 4362 dev_err(&ctlr->dev, 4363 "failed to unprepare transfer hardware\n"); 4364 spi_idle_runtime_pm(ctlr); 4365 } 4366 4367 mutex_unlock(&ctlr->io_mutex); 4368 } 4369 4370 /*-------------------------------------------------------------------------*/ 4371 4372 /* 4373 * Utility methods for SPI protocol drivers, layered on 4374 * top of the core. Some other utility methods are defined as 4375 * inline functions. 4376 */ 4377 4378 static void spi_complete(void *arg) 4379 { 4380 complete(arg); 4381 } 4382 4383 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4384 { 4385 DECLARE_COMPLETION_ONSTACK(done); 4386 int status; 4387 struct spi_controller *ctlr = spi->controller; 4388 4389 if (__spi_check_suspended(ctlr)) { 4390 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4391 return -ESHUTDOWN; 4392 } 4393 4394 status = __spi_validate(spi, message); 4395 if (status != 0) 4396 return status; 4397 4398 message->spi = spi; 4399 4400 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4401 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4402 4403 /* 4404 * Checking queue_empty here only guarantees async/sync message 4405 * ordering when coming from the same context. It does not need to 4406 * guard against reentrancy from a different context. The io_mutex 4407 * will catch those cases. 4408 */ 4409 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4410 message->actual_length = 0; 4411 message->status = -EINPROGRESS; 4412 4413 trace_spi_message_submit(message); 4414 4415 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4416 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4417 4418 __spi_transfer_message_noqueue(ctlr, message); 4419 4420 return message->status; 4421 } 4422 4423 /* 4424 * There are messages in the async queue that could have originated 4425 * from the same context, so we need to preserve ordering. 4426 * Therefor we send the message to the async queue and wait until they 4427 * are completed. 4428 */ 4429 message->complete = spi_complete; 4430 message->context = &done; 4431 status = spi_async_locked(spi, message); 4432 if (status == 0) { 4433 wait_for_completion(&done); 4434 status = message->status; 4435 } 4436 message->context = NULL; 4437 4438 return status; 4439 } 4440 4441 /** 4442 * spi_sync - blocking/synchronous SPI data transfers 4443 * @spi: device with which data will be exchanged 4444 * @message: describes the data transfers 4445 * Context: can sleep 4446 * 4447 * This call may only be used from a context that may sleep. The sleep 4448 * is non-interruptible, and has no timeout. Low-overhead controller 4449 * drivers may DMA directly into and out of the message buffers. 4450 * 4451 * Note that the SPI device's chip select is active during the message, 4452 * and then is normally disabled between messages. Drivers for some 4453 * frequently-used devices may want to minimize costs of selecting a chip, 4454 * by leaving it selected in anticipation that the next message will go 4455 * to the same chip. (That may increase power usage.) 4456 * 4457 * Also, the caller is guaranteeing that the memory associated with the 4458 * message will not be freed before this call returns. 4459 * 4460 * Return: zero on success, else a negative error code. 4461 */ 4462 int spi_sync(struct spi_device *spi, struct spi_message *message) 4463 { 4464 int ret; 4465 4466 mutex_lock(&spi->controller->bus_lock_mutex); 4467 ret = __spi_sync(spi, message); 4468 mutex_unlock(&spi->controller->bus_lock_mutex); 4469 4470 return ret; 4471 } 4472 EXPORT_SYMBOL_GPL(spi_sync); 4473 4474 /** 4475 * spi_sync_locked - version of spi_sync with exclusive bus usage 4476 * @spi: device with which data will be exchanged 4477 * @message: describes the data transfers 4478 * Context: can sleep 4479 * 4480 * This call may only be used from a context that may sleep. The sleep 4481 * is non-interruptible, and has no timeout. Low-overhead controller 4482 * drivers may DMA directly into and out of the message buffers. 4483 * 4484 * This call should be used by drivers that require exclusive access to the 4485 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4486 * be released by a spi_bus_unlock call when the exclusive access is over. 4487 * 4488 * Return: zero on success, else a negative error code. 4489 */ 4490 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4491 { 4492 return __spi_sync(spi, message); 4493 } 4494 EXPORT_SYMBOL_GPL(spi_sync_locked); 4495 4496 /** 4497 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4498 * @ctlr: SPI bus master that should be locked for exclusive bus access 4499 * Context: can sleep 4500 * 4501 * This call may only be used from a context that may sleep. The sleep 4502 * is non-interruptible, and has no timeout. 4503 * 4504 * This call should be used by drivers that require exclusive access to the 4505 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4506 * exclusive access is over. Data transfer must be done by spi_sync_locked 4507 * and spi_async_locked calls when the SPI bus lock is held. 4508 * 4509 * Return: always zero. 4510 */ 4511 int spi_bus_lock(struct spi_controller *ctlr) 4512 { 4513 unsigned long flags; 4514 4515 mutex_lock(&ctlr->bus_lock_mutex); 4516 4517 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4518 ctlr->bus_lock_flag = 1; 4519 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4520 4521 /* Mutex remains locked until spi_bus_unlock() is called */ 4522 4523 return 0; 4524 } 4525 EXPORT_SYMBOL_GPL(spi_bus_lock); 4526 4527 /** 4528 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4529 * @ctlr: SPI bus master that was locked for exclusive bus access 4530 * Context: can sleep 4531 * 4532 * This call may only be used from a context that may sleep. The sleep 4533 * is non-interruptible, and has no timeout. 4534 * 4535 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4536 * call. 4537 * 4538 * Return: always zero. 4539 */ 4540 int spi_bus_unlock(struct spi_controller *ctlr) 4541 { 4542 ctlr->bus_lock_flag = 0; 4543 4544 mutex_unlock(&ctlr->bus_lock_mutex); 4545 4546 return 0; 4547 } 4548 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4549 4550 /* Portable code must never pass more than 32 bytes */ 4551 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4552 4553 static u8 *buf; 4554 4555 /** 4556 * spi_write_then_read - SPI synchronous write followed by read 4557 * @spi: device with which data will be exchanged 4558 * @txbuf: data to be written (need not be DMA-safe) 4559 * @n_tx: size of txbuf, in bytes 4560 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4561 * @n_rx: size of rxbuf, in bytes 4562 * Context: can sleep 4563 * 4564 * This performs a half duplex MicroWire style transaction with the 4565 * device, sending txbuf and then reading rxbuf. The return value 4566 * is zero for success, else a negative errno status code. 4567 * This call may only be used from a context that may sleep. 4568 * 4569 * Parameters to this routine are always copied using a small buffer. 4570 * Performance-sensitive or bulk transfer code should instead use 4571 * spi_{async,sync}() calls with DMA-safe buffers. 4572 * 4573 * Return: zero on success, else a negative error code. 4574 */ 4575 int spi_write_then_read(struct spi_device *spi, 4576 const void *txbuf, unsigned n_tx, 4577 void *rxbuf, unsigned n_rx) 4578 { 4579 static DEFINE_MUTEX(lock); 4580 4581 int status; 4582 struct spi_message message; 4583 struct spi_transfer x[2]; 4584 u8 *local_buf; 4585 4586 /* 4587 * Use preallocated DMA-safe buffer if we can. We can't avoid 4588 * copying here, (as a pure convenience thing), but we can 4589 * keep heap costs out of the hot path unless someone else is 4590 * using the pre-allocated buffer or the transfer is too large. 4591 */ 4592 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4593 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4594 GFP_KERNEL | GFP_DMA); 4595 if (!local_buf) 4596 return -ENOMEM; 4597 } else { 4598 local_buf = buf; 4599 } 4600 4601 spi_message_init(&message); 4602 memset(x, 0, sizeof(x)); 4603 if (n_tx) { 4604 x[0].len = n_tx; 4605 spi_message_add_tail(&x[0], &message); 4606 } 4607 if (n_rx) { 4608 x[1].len = n_rx; 4609 spi_message_add_tail(&x[1], &message); 4610 } 4611 4612 memcpy(local_buf, txbuf, n_tx); 4613 x[0].tx_buf = local_buf; 4614 x[1].rx_buf = local_buf + n_tx; 4615 4616 /* Do the I/O */ 4617 status = spi_sync(spi, &message); 4618 if (status == 0) 4619 memcpy(rxbuf, x[1].rx_buf, n_rx); 4620 4621 if (x[0].tx_buf == buf) 4622 mutex_unlock(&lock); 4623 else 4624 kfree(local_buf); 4625 4626 return status; 4627 } 4628 EXPORT_SYMBOL_GPL(spi_write_then_read); 4629 4630 /*-------------------------------------------------------------------------*/ 4631 4632 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4633 /* Must call put_device() when done with returned spi_device device */ 4634 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4635 { 4636 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4637 4638 return dev ? to_spi_device(dev) : NULL; 4639 } 4640 4641 /* The spi controllers are not using spi_bus, so we find it with another way */ 4642 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4643 { 4644 struct device *dev; 4645 4646 dev = class_find_device_by_of_node(&spi_master_class, node); 4647 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4648 dev = class_find_device_by_of_node(&spi_slave_class, node); 4649 if (!dev) 4650 return NULL; 4651 4652 /* Reference got in class_find_device */ 4653 return container_of(dev, struct spi_controller, dev); 4654 } 4655 4656 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4657 void *arg) 4658 { 4659 struct of_reconfig_data *rd = arg; 4660 struct spi_controller *ctlr; 4661 struct spi_device *spi; 4662 4663 switch (of_reconfig_get_state_change(action, arg)) { 4664 case OF_RECONFIG_CHANGE_ADD: 4665 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4666 if (ctlr == NULL) 4667 return NOTIFY_OK; /* Not for us */ 4668 4669 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4670 put_device(&ctlr->dev); 4671 return NOTIFY_OK; 4672 } 4673 4674 /* 4675 * Clear the flag before adding the device so that fw_devlink 4676 * doesn't skip adding consumers to this device. 4677 */ 4678 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4679 spi = of_register_spi_device(ctlr, rd->dn); 4680 put_device(&ctlr->dev); 4681 4682 if (IS_ERR(spi)) { 4683 pr_err("%s: failed to create for '%pOF'\n", 4684 __func__, rd->dn); 4685 of_node_clear_flag(rd->dn, OF_POPULATED); 4686 return notifier_from_errno(PTR_ERR(spi)); 4687 } 4688 break; 4689 4690 case OF_RECONFIG_CHANGE_REMOVE: 4691 /* Already depopulated? */ 4692 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4693 return NOTIFY_OK; 4694 4695 /* Find our device by node */ 4696 spi = of_find_spi_device_by_node(rd->dn); 4697 if (spi == NULL) 4698 return NOTIFY_OK; /* No? not meant for us */ 4699 4700 /* Unregister takes one ref away */ 4701 spi_unregister_device(spi); 4702 4703 /* And put the reference of the find */ 4704 put_device(&spi->dev); 4705 break; 4706 } 4707 4708 return NOTIFY_OK; 4709 } 4710 4711 static struct notifier_block spi_of_notifier = { 4712 .notifier_call = of_spi_notify, 4713 }; 4714 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4715 extern struct notifier_block spi_of_notifier; 4716 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4717 4718 #if IS_ENABLED(CONFIG_ACPI) 4719 static int spi_acpi_controller_match(struct device *dev, const void *data) 4720 { 4721 return ACPI_COMPANION(dev->parent) == data; 4722 } 4723 4724 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4725 { 4726 struct device *dev; 4727 4728 dev = class_find_device(&spi_master_class, NULL, adev, 4729 spi_acpi_controller_match); 4730 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4731 dev = class_find_device(&spi_slave_class, NULL, adev, 4732 spi_acpi_controller_match); 4733 if (!dev) 4734 return NULL; 4735 4736 return container_of(dev, struct spi_controller, dev); 4737 } 4738 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4739 4740 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4741 { 4742 struct device *dev; 4743 4744 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4745 return to_spi_device(dev); 4746 } 4747 4748 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4749 void *arg) 4750 { 4751 struct acpi_device *adev = arg; 4752 struct spi_controller *ctlr; 4753 struct spi_device *spi; 4754 4755 switch (value) { 4756 case ACPI_RECONFIG_DEVICE_ADD: 4757 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4758 if (!ctlr) 4759 break; 4760 4761 acpi_register_spi_device(ctlr, adev); 4762 put_device(&ctlr->dev); 4763 break; 4764 case ACPI_RECONFIG_DEVICE_REMOVE: 4765 if (!acpi_device_enumerated(adev)) 4766 break; 4767 4768 spi = acpi_spi_find_device_by_adev(adev); 4769 if (!spi) 4770 break; 4771 4772 spi_unregister_device(spi); 4773 put_device(&spi->dev); 4774 break; 4775 } 4776 4777 return NOTIFY_OK; 4778 } 4779 4780 static struct notifier_block spi_acpi_notifier = { 4781 .notifier_call = acpi_spi_notify, 4782 }; 4783 #else 4784 extern struct notifier_block spi_acpi_notifier; 4785 #endif 4786 4787 static int __init spi_init(void) 4788 { 4789 int status; 4790 4791 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4792 if (!buf) { 4793 status = -ENOMEM; 4794 goto err0; 4795 } 4796 4797 status = bus_register(&spi_bus_type); 4798 if (status < 0) 4799 goto err1; 4800 4801 status = class_register(&spi_master_class); 4802 if (status < 0) 4803 goto err2; 4804 4805 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4806 status = class_register(&spi_slave_class); 4807 if (status < 0) 4808 goto err3; 4809 } 4810 4811 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4812 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4813 if (IS_ENABLED(CONFIG_ACPI)) 4814 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4815 4816 return 0; 4817 4818 err3: 4819 class_unregister(&spi_master_class); 4820 err2: 4821 bus_unregister(&spi_bus_type); 4822 err1: 4823 kfree(buf); 4824 buf = NULL; 4825 err0: 4826 return status; 4827 } 4828 4829 /* 4830 * A board_info is normally registered in arch_initcall(), 4831 * but even essential drivers wait till later. 4832 * 4833 * REVISIT only boardinfo really needs static linking. The rest (device and 4834 * driver registration) _could_ be dynamically linked (modular) ... Costs 4835 * include needing to have boardinfo data structures be much more public. 4836 */ 4837 postcore_initcall(spi_init); 4838