1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->master = spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 601 602 if (adev) { 603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 604 return; 605 } 606 607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 608 spi_get_chipselect(spi, 0)); 609 } 610 611 static int spi_dev_check(struct device *dev, void *data) 612 { 613 struct spi_device *spi = to_spi_device(dev); 614 struct spi_device *new_spi = data; 615 int idx, nw_idx; 616 u8 cs, cs_nw; 617 618 if (spi->controller == new_spi->controller) { 619 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 620 cs = spi_get_chipselect(spi, idx); 621 for (nw_idx = 0; nw_idx < SPI_CS_CNT_MAX; nw_idx++) { 622 cs_nw = spi_get_chipselect(new_spi, nw_idx); 623 if (cs != 0xFF && cs_nw != 0xFF && cs == cs_nw) { 624 dev_err(dev, "chipselect %d already in use\n", cs_nw); 625 return -EBUSY; 626 } 627 } 628 } 629 } 630 return 0; 631 } 632 633 static void spi_cleanup(struct spi_device *spi) 634 { 635 if (spi->controller->cleanup) 636 spi->controller->cleanup(spi); 637 } 638 639 static int __spi_add_device(struct spi_device *spi) 640 { 641 struct spi_controller *ctlr = spi->controller; 642 struct device *dev = ctlr->dev.parent; 643 int status, idx, nw_idx; 644 u8 cs, nw_cs; 645 646 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 647 /* Chipselects are numbered 0..max; validate. */ 648 cs = spi_get_chipselect(spi, idx); 649 if (cs != 0xFF && cs >= ctlr->num_chipselect) { 650 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 651 ctlr->num_chipselect); 652 return -EINVAL; 653 } 654 } 655 656 /* 657 * Make sure that multiple logical CS doesn't map to the same physical CS. 658 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 659 */ 660 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 661 cs = spi_get_chipselect(spi, idx); 662 for (nw_idx = idx + 1; nw_idx < SPI_CS_CNT_MAX; nw_idx++) { 663 nw_cs = spi_get_chipselect(spi, nw_idx); 664 if (cs != 0xFF && nw_cs != 0xFF && cs == nw_cs) { 665 dev_err(dev, "chipselect %d already in use\n", nw_cs); 666 return -EBUSY; 667 } 668 } 669 } 670 671 /* Set the bus ID string */ 672 spi_dev_set_name(spi); 673 674 /* 675 * We need to make sure there's no other device with this 676 * chipselect **BEFORE** we call setup(), else we'll trash 677 * its configuration. 678 */ 679 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 680 if (status) 681 return status; 682 683 /* Controller may unregister concurrently */ 684 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 685 !device_is_registered(&ctlr->dev)) { 686 return -ENODEV; 687 } 688 689 if (ctlr->cs_gpiods) { 690 u8 cs; 691 692 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 693 cs = spi_get_chipselect(spi, idx); 694 if (cs != 0xFF) 695 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 696 } 697 } 698 699 /* 700 * Drivers may modify this initial i/o setup, but will 701 * normally rely on the device being setup. Devices 702 * using SPI_CS_HIGH can't coexist well otherwise... 703 */ 704 status = spi_setup(spi); 705 if (status < 0) { 706 dev_err(dev, "can't setup %s, status %d\n", 707 dev_name(&spi->dev), status); 708 return status; 709 } 710 711 /* Device may be bound to an active driver when this returns */ 712 status = device_add(&spi->dev); 713 if (status < 0) { 714 dev_err(dev, "can't add %s, status %d\n", 715 dev_name(&spi->dev), status); 716 spi_cleanup(spi); 717 } else { 718 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 719 } 720 721 return status; 722 } 723 724 /** 725 * spi_add_device - Add spi_device allocated with spi_alloc_device 726 * @spi: spi_device to register 727 * 728 * Companion function to spi_alloc_device. Devices allocated with 729 * spi_alloc_device can be added onto the SPI bus with this function. 730 * 731 * Return: 0 on success; negative errno on failure 732 */ 733 int spi_add_device(struct spi_device *spi) 734 { 735 struct spi_controller *ctlr = spi->controller; 736 int status; 737 738 /* Set the bus ID string */ 739 spi_dev_set_name(spi); 740 741 mutex_lock(&ctlr->add_lock); 742 status = __spi_add_device(spi); 743 mutex_unlock(&ctlr->add_lock); 744 return status; 745 } 746 EXPORT_SYMBOL_GPL(spi_add_device); 747 748 /** 749 * spi_new_device - instantiate one new SPI device 750 * @ctlr: Controller to which device is connected 751 * @chip: Describes the SPI device 752 * Context: can sleep 753 * 754 * On typical mainboards, this is purely internal; and it's not needed 755 * after board init creates the hard-wired devices. Some development 756 * platforms may not be able to use spi_register_board_info though, and 757 * this is exported so that for example a USB or parport based adapter 758 * driver could add devices (which it would learn about out-of-band). 759 * 760 * Return: the new device, or NULL. 761 */ 762 struct spi_device *spi_new_device(struct spi_controller *ctlr, 763 struct spi_board_info *chip) 764 { 765 struct spi_device *proxy; 766 int status; 767 u8 idx; 768 769 /* 770 * NOTE: caller did any chip->bus_num checks necessary. 771 * 772 * Also, unless we change the return value convention to use 773 * error-or-pointer (not NULL-or-pointer), troubleshootability 774 * suggests syslogged diagnostics are best here (ugh). 775 */ 776 777 proxy = spi_alloc_device(ctlr); 778 if (!proxy) 779 return NULL; 780 781 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 782 783 /* 784 * Zero(0) is a valid physical CS value and can be located at any 785 * logical CS in the spi->chip_select[]. If all the physical CS 786 * are initialized to 0 then It would be difficult to differentiate 787 * between a valid physical CS 0 & an unused logical CS whose physical 788 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 789 * Now all the unused logical CS will have 0xFF physical CS value & can be 790 * ignore while performing physical CS validity checks. 791 */ 792 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 793 spi_set_chipselect(proxy, idx, 0xFF); 794 795 spi_set_chipselect(proxy, 0, chip->chip_select); 796 proxy->max_speed_hz = chip->max_speed_hz; 797 proxy->mode = chip->mode; 798 proxy->irq = chip->irq; 799 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 800 proxy->dev.platform_data = (void *) chip->platform_data; 801 proxy->controller_data = chip->controller_data; 802 proxy->controller_state = NULL; 803 /* 804 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 805 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 806 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 807 * spi->chip_select[0] will give the physical CS. 808 * By default spi->chip_select[0] will hold the physical CS number so, set 809 * spi->cs_index_mask as 0x01. 810 */ 811 proxy->cs_index_mask = 0x01; 812 813 if (chip->swnode) { 814 status = device_add_software_node(&proxy->dev, chip->swnode); 815 if (status) { 816 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 817 chip->modalias, status); 818 goto err_dev_put; 819 } 820 } 821 822 status = spi_add_device(proxy); 823 if (status < 0) 824 goto err_dev_put; 825 826 return proxy; 827 828 err_dev_put: 829 device_remove_software_node(&proxy->dev); 830 spi_dev_put(proxy); 831 return NULL; 832 } 833 EXPORT_SYMBOL_GPL(spi_new_device); 834 835 /** 836 * spi_unregister_device - unregister a single SPI device 837 * @spi: spi_device to unregister 838 * 839 * Start making the passed SPI device vanish. Normally this would be handled 840 * by spi_unregister_controller(). 841 */ 842 void spi_unregister_device(struct spi_device *spi) 843 { 844 if (!spi) 845 return; 846 847 if (spi->dev.of_node) { 848 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 849 of_node_put(spi->dev.of_node); 850 } 851 if (ACPI_COMPANION(&spi->dev)) 852 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 853 device_remove_software_node(&spi->dev); 854 device_del(&spi->dev); 855 spi_cleanup(spi); 856 put_device(&spi->dev); 857 } 858 EXPORT_SYMBOL_GPL(spi_unregister_device); 859 860 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 861 struct spi_board_info *bi) 862 { 863 struct spi_device *dev; 864 865 if (ctlr->bus_num != bi->bus_num) 866 return; 867 868 dev = spi_new_device(ctlr, bi); 869 if (!dev) 870 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 871 bi->modalias); 872 } 873 874 /** 875 * spi_register_board_info - register SPI devices for a given board 876 * @info: array of chip descriptors 877 * @n: how many descriptors are provided 878 * Context: can sleep 879 * 880 * Board-specific early init code calls this (probably during arch_initcall) 881 * with segments of the SPI device table. Any device nodes are created later, 882 * after the relevant parent SPI controller (bus_num) is defined. We keep 883 * this table of devices forever, so that reloading a controller driver will 884 * not make Linux forget about these hard-wired devices. 885 * 886 * Other code can also call this, e.g. a particular add-on board might provide 887 * SPI devices through its expansion connector, so code initializing that board 888 * would naturally declare its SPI devices. 889 * 890 * The board info passed can safely be __initdata ... but be careful of 891 * any embedded pointers (platform_data, etc), they're copied as-is. 892 * 893 * Return: zero on success, else a negative error code. 894 */ 895 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 896 { 897 struct boardinfo *bi; 898 int i; 899 900 if (!n) 901 return 0; 902 903 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 904 if (!bi) 905 return -ENOMEM; 906 907 for (i = 0; i < n; i++, bi++, info++) { 908 struct spi_controller *ctlr; 909 910 memcpy(&bi->board_info, info, sizeof(*info)); 911 912 mutex_lock(&board_lock); 913 list_add_tail(&bi->list, &board_list); 914 list_for_each_entry(ctlr, &spi_controller_list, list) 915 spi_match_controller_to_boardinfo(ctlr, 916 &bi->board_info); 917 mutex_unlock(&board_lock); 918 } 919 920 return 0; 921 } 922 923 /*-------------------------------------------------------------------------*/ 924 925 /* Core methods for SPI resource management */ 926 927 /** 928 * spi_res_alloc - allocate a spi resource that is life-cycle managed 929 * during the processing of a spi_message while using 930 * spi_transfer_one 931 * @spi: the SPI device for which we allocate memory 932 * @release: the release code to execute for this resource 933 * @size: size to alloc and return 934 * @gfp: GFP allocation flags 935 * 936 * Return: the pointer to the allocated data 937 * 938 * This may get enhanced in the future to allocate from a memory pool 939 * of the @spi_device or @spi_controller to avoid repeated allocations. 940 */ 941 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 942 size_t size, gfp_t gfp) 943 { 944 struct spi_res *sres; 945 946 sres = kzalloc(sizeof(*sres) + size, gfp); 947 if (!sres) 948 return NULL; 949 950 INIT_LIST_HEAD(&sres->entry); 951 sres->release = release; 952 953 return sres->data; 954 } 955 956 /** 957 * spi_res_free - free an SPI resource 958 * @res: pointer to the custom data of a resource 959 */ 960 static void spi_res_free(void *res) 961 { 962 struct spi_res *sres = container_of(res, struct spi_res, data); 963 964 if (!res) 965 return; 966 967 WARN_ON(!list_empty(&sres->entry)); 968 kfree(sres); 969 } 970 971 /** 972 * spi_res_add - add a spi_res to the spi_message 973 * @message: the SPI message 974 * @res: the spi_resource 975 */ 976 static void spi_res_add(struct spi_message *message, void *res) 977 { 978 struct spi_res *sres = container_of(res, struct spi_res, data); 979 980 WARN_ON(!list_empty(&sres->entry)); 981 list_add_tail(&sres->entry, &message->resources); 982 } 983 984 /** 985 * spi_res_release - release all SPI resources for this message 986 * @ctlr: the @spi_controller 987 * @message: the @spi_message 988 */ 989 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 990 { 991 struct spi_res *res, *tmp; 992 993 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 994 if (res->release) 995 res->release(ctlr, message, res->data); 996 997 list_del(&res->entry); 998 999 kfree(res); 1000 } 1001 } 1002 1003 /*-------------------------------------------------------------------------*/ 1004 static inline bool spi_is_last_cs(struct spi_device *spi) 1005 { 1006 u8 idx; 1007 bool last = false; 1008 1009 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 1010 if ((spi->cs_index_mask >> idx) & 0x01) { 1011 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1012 last = true; 1013 } 1014 } 1015 return last; 1016 } 1017 1018 1019 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1020 { 1021 bool activate = enable; 1022 u8 idx; 1023 1024 /* 1025 * Avoid calling into the driver (or doing delays) if the chip select 1026 * isn't actually changing from the last time this was called. 1027 */ 1028 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1029 spi_is_last_cs(spi)) || 1030 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1031 !spi_is_last_cs(spi))) && 1032 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1033 return; 1034 1035 trace_spi_set_cs(spi, activate); 1036 1037 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1038 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1039 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : -1; 1040 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1041 1042 if (spi->mode & SPI_CS_HIGH) 1043 enable = !enable; 1044 1045 if (spi_is_csgpiod(spi)) { 1046 if (!spi->controller->set_cs_timing && !activate) 1047 spi_delay_exec(&spi->cs_hold, NULL); 1048 1049 if (!(spi->mode & SPI_NO_CS)) { 1050 /* 1051 * Historically ACPI has no means of the GPIO polarity and 1052 * thus the SPISerialBus() resource defines it on the per-chip 1053 * basis. In order to avoid a chain of negations, the GPIO 1054 * polarity is considered being Active High. Even for the cases 1055 * when _DSD() is involved (in the updated versions of ACPI) 1056 * the GPIO CS polarity must be defined Active High to avoid 1057 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1058 * into account. 1059 */ 1060 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 1061 if (((spi->cs_index_mask >> idx) & 0x01) && 1062 spi_get_csgpiod(spi, idx)) { 1063 if (has_acpi_companion(&spi->dev)) 1064 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), 1065 !enable); 1066 else 1067 /* Polarity handled by GPIO library */ 1068 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), 1069 activate); 1070 1071 if (activate) 1072 spi_delay_exec(&spi->cs_setup, NULL); 1073 else 1074 spi_delay_exec(&spi->cs_inactive, NULL); 1075 } 1076 } 1077 } 1078 /* Some SPI masters need both GPIO CS & slave_select */ 1079 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1080 spi->controller->set_cs) 1081 spi->controller->set_cs(spi, !enable); 1082 1083 if (!spi->controller->set_cs_timing) { 1084 if (activate) 1085 spi_delay_exec(&spi->cs_setup, NULL); 1086 else 1087 spi_delay_exec(&spi->cs_inactive, NULL); 1088 } 1089 } else if (spi->controller->set_cs) { 1090 spi->controller->set_cs(spi, !enable); 1091 } 1092 } 1093 1094 #ifdef CONFIG_HAS_DMA 1095 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1096 struct sg_table *sgt, void *buf, size_t len, 1097 enum dma_data_direction dir, unsigned long attrs) 1098 { 1099 const bool vmalloced_buf = is_vmalloc_addr(buf); 1100 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1101 #ifdef CONFIG_HIGHMEM 1102 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1103 (unsigned long)buf < (PKMAP_BASE + 1104 (LAST_PKMAP * PAGE_SIZE))); 1105 #else 1106 const bool kmap_buf = false; 1107 #endif 1108 int desc_len; 1109 int sgs; 1110 struct page *vm_page; 1111 struct scatterlist *sg; 1112 void *sg_buf; 1113 size_t min; 1114 int i, ret; 1115 1116 if (vmalloced_buf || kmap_buf) { 1117 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1118 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1119 } else if (virt_addr_valid(buf)) { 1120 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1121 sgs = DIV_ROUND_UP(len, desc_len); 1122 } else { 1123 return -EINVAL; 1124 } 1125 1126 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1127 if (ret != 0) 1128 return ret; 1129 1130 sg = &sgt->sgl[0]; 1131 for (i = 0; i < sgs; i++) { 1132 1133 if (vmalloced_buf || kmap_buf) { 1134 /* 1135 * Next scatterlist entry size is the minimum between 1136 * the desc_len and the remaining buffer length that 1137 * fits in a page. 1138 */ 1139 min = min_t(size_t, desc_len, 1140 min_t(size_t, len, 1141 PAGE_SIZE - offset_in_page(buf))); 1142 if (vmalloced_buf) 1143 vm_page = vmalloc_to_page(buf); 1144 else 1145 vm_page = kmap_to_page(buf); 1146 if (!vm_page) { 1147 sg_free_table(sgt); 1148 return -ENOMEM; 1149 } 1150 sg_set_page(sg, vm_page, 1151 min, offset_in_page(buf)); 1152 } else { 1153 min = min_t(size_t, len, desc_len); 1154 sg_buf = buf; 1155 sg_set_buf(sg, sg_buf, min); 1156 } 1157 1158 buf += min; 1159 len -= min; 1160 sg = sg_next(sg); 1161 } 1162 1163 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1164 if (ret < 0) { 1165 sg_free_table(sgt); 1166 return ret; 1167 } 1168 1169 return 0; 1170 } 1171 1172 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1173 struct sg_table *sgt, void *buf, size_t len, 1174 enum dma_data_direction dir) 1175 { 1176 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1177 } 1178 1179 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1180 struct device *dev, struct sg_table *sgt, 1181 enum dma_data_direction dir, 1182 unsigned long attrs) 1183 { 1184 if (sgt->orig_nents) { 1185 dma_unmap_sgtable(dev, sgt, dir, attrs); 1186 sg_free_table(sgt); 1187 sgt->orig_nents = 0; 1188 sgt->nents = 0; 1189 } 1190 } 1191 1192 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1193 struct sg_table *sgt, enum dma_data_direction dir) 1194 { 1195 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1196 } 1197 1198 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1199 { 1200 struct device *tx_dev, *rx_dev; 1201 struct spi_transfer *xfer; 1202 int ret; 1203 1204 if (!ctlr->can_dma) 1205 return 0; 1206 1207 if (ctlr->dma_tx) 1208 tx_dev = ctlr->dma_tx->device->dev; 1209 else if (ctlr->dma_map_dev) 1210 tx_dev = ctlr->dma_map_dev; 1211 else 1212 tx_dev = ctlr->dev.parent; 1213 1214 if (ctlr->dma_rx) 1215 rx_dev = ctlr->dma_rx->device->dev; 1216 else if (ctlr->dma_map_dev) 1217 rx_dev = ctlr->dma_map_dev; 1218 else 1219 rx_dev = ctlr->dev.parent; 1220 1221 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1222 /* The sync is done before each transfer. */ 1223 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1224 1225 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1226 continue; 1227 1228 if (xfer->tx_buf != NULL) { 1229 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1230 (void *)xfer->tx_buf, 1231 xfer->len, DMA_TO_DEVICE, 1232 attrs); 1233 if (ret != 0) 1234 return ret; 1235 } 1236 1237 if (xfer->rx_buf != NULL) { 1238 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1239 xfer->rx_buf, xfer->len, 1240 DMA_FROM_DEVICE, attrs); 1241 if (ret != 0) { 1242 spi_unmap_buf_attrs(ctlr, tx_dev, 1243 &xfer->tx_sg, DMA_TO_DEVICE, 1244 attrs); 1245 1246 return ret; 1247 } 1248 } 1249 } 1250 1251 ctlr->cur_rx_dma_dev = rx_dev; 1252 ctlr->cur_tx_dma_dev = tx_dev; 1253 ctlr->cur_msg_mapped = true; 1254 1255 return 0; 1256 } 1257 1258 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1259 { 1260 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1261 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1262 struct spi_transfer *xfer; 1263 1264 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1265 return 0; 1266 1267 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1268 /* The sync has already been done after each transfer. */ 1269 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1270 1271 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1272 continue; 1273 1274 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1275 DMA_FROM_DEVICE, attrs); 1276 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1277 DMA_TO_DEVICE, attrs); 1278 } 1279 1280 ctlr->cur_msg_mapped = false; 1281 1282 return 0; 1283 } 1284 1285 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1286 struct spi_transfer *xfer) 1287 { 1288 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1289 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1290 1291 if (!ctlr->cur_msg_mapped) 1292 return; 1293 1294 if (xfer->tx_sg.orig_nents) 1295 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1296 if (xfer->rx_sg.orig_nents) 1297 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1298 } 1299 1300 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1301 struct spi_transfer *xfer) 1302 { 1303 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1304 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1305 1306 if (!ctlr->cur_msg_mapped) 1307 return; 1308 1309 if (xfer->rx_sg.orig_nents) 1310 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1311 if (xfer->tx_sg.orig_nents) 1312 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1313 } 1314 #else /* !CONFIG_HAS_DMA */ 1315 static inline int __spi_map_msg(struct spi_controller *ctlr, 1316 struct spi_message *msg) 1317 { 1318 return 0; 1319 } 1320 1321 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1322 struct spi_message *msg) 1323 { 1324 return 0; 1325 } 1326 1327 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1328 struct spi_transfer *xfer) 1329 { 1330 } 1331 1332 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1333 struct spi_transfer *xfer) 1334 { 1335 } 1336 #endif /* !CONFIG_HAS_DMA */ 1337 1338 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1339 struct spi_message *msg) 1340 { 1341 struct spi_transfer *xfer; 1342 1343 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1344 /* 1345 * Restore the original value of tx_buf or rx_buf if they are 1346 * NULL. 1347 */ 1348 if (xfer->tx_buf == ctlr->dummy_tx) 1349 xfer->tx_buf = NULL; 1350 if (xfer->rx_buf == ctlr->dummy_rx) 1351 xfer->rx_buf = NULL; 1352 } 1353 1354 return __spi_unmap_msg(ctlr, msg); 1355 } 1356 1357 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1358 { 1359 struct spi_transfer *xfer; 1360 void *tmp; 1361 unsigned int max_tx, max_rx; 1362 1363 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1364 && !(msg->spi->mode & SPI_3WIRE)) { 1365 max_tx = 0; 1366 max_rx = 0; 1367 1368 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1369 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1370 !xfer->tx_buf) 1371 max_tx = max(xfer->len, max_tx); 1372 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1373 !xfer->rx_buf) 1374 max_rx = max(xfer->len, max_rx); 1375 } 1376 1377 if (max_tx) { 1378 tmp = krealloc(ctlr->dummy_tx, max_tx, 1379 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1380 if (!tmp) 1381 return -ENOMEM; 1382 ctlr->dummy_tx = tmp; 1383 } 1384 1385 if (max_rx) { 1386 tmp = krealloc(ctlr->dummy_rx, max_rx, 1387 GFP_KERNEL | GFP_DMA); 1388 if (!tmp) 1389 return -ENOMEM; 1390 ctlr->dummy_rx = tmp; 1391 } 1392 1393 if (max_tx || max_rx) { 1394 list_for_each_entry(xfer, &msg->transfers, 1395 transfer_list) { 1396 if (!xfer->len) 1397 continue; 1398 if (!xfer->tx_buf) 1399 xfer->tx_buf = ctlr->dummy_tx; 1400 if (!xfer->rx_buf) 1401 xfer->rx_buf = ctlr->dummy_rx; 1402 } 1403 } 1404 } 1405 1406 return __spi_map_msg(ctlr, msg); 1407 } 1408 1409 static int spi_transfer_wait(struct spi_controller *ctlr, 1410 struct spi_message *msg, 1411 struct spi_transfer *xfer) 1412 { 1413 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1414 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1415 u32 speed_hz = xfer->speed_hz; 1416 unsigned long long ms; 1417 1418 if (spi_controller_is_slave(ctlr)) { 1419 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1420 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1421 return -EINTR; 1422 } 1423 } else { 1424 if (!speed_hz) 1425 speed_hz = 100000; 1426 1427 /* 1428 * For each byte we wait for 8 cycles of the SPI clock. 1429 * Since speed is defined in Hz and we want milliseconds, 1430 * use respective multiplier, but before the division, 1431 * otherwise we may get 0 for short transfers. 1432 */ 1433 ms = 8LL * MSEC_PER_SEC * xfer->len; 1434 do_div(ms, speed_hz); 1435 1436 /* 1437 * Increase it twice and add 200 ms tolerance, use 1438 * predefined maximum in case of overflow. 1439 */ 1440 ms += ms + 200; 1441 if (ms > UINT_MAX) 1442 ms = UINT_MAX; 1443 1444 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1445 msecs_to_jiffies(ms)); 1446 1447 if (ms == 0) { 1448 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1449 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1450 dev_err(&msg->spi->dev, 1451 "SPI transfer timed out\n"); 1452 return -ETIMEDOUT; 1453 } 1454 1455 if (xfer->error & SPI_TRANS_FAIL_IO) 1456 return -EIO; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static void _spi_transfer_delay_ns(u32 ns) 1463 { 1464 if (!ns) 1465 return; 1466 if (ns <= NSEC_PER_USEC) { 1467 ndelay(ns); 1468 } else { 1469 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1470 1471 if (us <= 10) 1472 udelay(us); 1473 else 1474 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1475 } 1476 } 1477 1478 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1479 { 1480 u32 delay = _delay->value; 1481 u32 unit = _delay->unit; 1482 u32 hz; 1483 1484 if (!delay) 1485 return 0; 1486 1487 switch (unit) { 1488 case SPI_DELAY_UNIT_USECS: 1489 delay *= NSEC_PER_USEC; 1490 break; 1491 case SPI_DELAY_UNIT_NSECS: 1492 /* Nothing to do here */ 1493 break; 1494 case SPI_DELAY_UNIT_SCK: 1495 /* Clock cycles need to be obtained from spi_transfer */ 1496 if (!xfer) 1497 return -EINVAL; 1498 /* 1499 * If there is unknown effective speed, approximate it 1500 * by underestimating with half of the requested Hz. 1501 */ 1502 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1503 if (!hz) 1504 return -EINVAL; 1505 1506 /* Convert delay to nanoseconds */ 1507 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1508 break; 1509 default: 1510 return -EINVAL; 1511 } 1512 1513 return delay; 1514 } 1515 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1516 1517 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1518 { 1519 int delay; 1520 1521 might_sleep(); 1522 1523 if (!_delay) 1524 return -EINVAL; 1525 1526 delay = spi_delay_to_ns(_delay, xfer); 1527 if (delay < 0) 1528 return delay; 1529 1530 _spi_transfer_delay_ns(delay); 1531 1532 return 0; 1533 } 1534 EXPORT_SYMBOL_GPL(spi_delay_exec); 1535 1536 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1537 struct spi_transfer *xfer) 1538 { 1539 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1540 u32 delay = xfer->cs_change_delay.value; 1541 u32 unit = xfer->cs_change_delay.unit; 1542 int ret; 1543 1544 /* Return early on "fast" mode - for everything but USECS */ 1545 if (!delay) { 1546 if (unit == SPI_DELAY_UNIT_USECS) 1547 _spi_transfer_delay_ns(default_delay_ns); 1548 return; 1549 } 1550 1551 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1552 if (ret) { 1553 dev_err_once(&msg->spi->dev, 1554 "Use of unsupported delay unit %i, using default of %luus\n", 1555 unit, default_delay_ns / NSEC_PER_USEC); 1556 _spi_transfer_delay_ns(default_delay_ns); 1557 } 1558 } 1559 1560 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1561 struct spi_transfer *xfer) 1562 { 1563 _spi_transfer_cs_change_delay(msg, xfer); 1564 } 1565 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1566 1567 /* 1568 * spi_transfer_one_message - Default implementation of transfer_one_message() 1569 * 1570 * This is a standard implementation of transfer_one_message() for 1571 * drivers which implement a transfer_one() operation. It provides 1572 * standard handling of delays and chip select management. 1573 */ 1574 static int spi_transfer_one_message(struct spi_controller *ctlr, 1575 struct spi_message *msg) 1576 { 1577 struct spi_transfer *xfer; 1578 bool keep_cs = false; 1579 int ret = 0; 1580 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1581 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1582 1583 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1584 spi_set_cs(msg->spi, !xfer->cs_off, false); 1585 1586 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1587 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1588 1589 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1590 trace_spi_transfer_start(msg, xfer); 1591 1592 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1593 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1594 1595 if (!ctlr->ptp_sts_supported) { 1596 xfer->ptp_sts_word_pre = 0; 1597 ptp_read_system_prets(xfer->ptp_sts); 1598 } 1599 1600 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1601 reinit_completion(&ctlr->xfer_completion); 1602 1603 fallback_pio: 1604 spi_dma_sync_for_device(ctlr, xfer); 1605 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1606 if (ret < 0) { 1607 spi_dma_sync_for_cpu(ctlr, xfer); 1608 1609 if (ctlr->cur_msg_mapped && 1610 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1611 __spi_unmap_msg(ctlr, msg); 1612 ctlr->fallback = true; 1613 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1614 goto fallback_pio; 1615 } 1616 1617 SPI_STATISTICS_INCREMENT_FIELD(statm, 1618 errors); 1619 SPI_STATISTICS_INCREMENT_FIELD(stats, 1620 errors); 1621 dev_err(&msg->spi->dev, 1622 "SPI transfer failed: %d\n", ret); 1623 goto out; 1624 } 1625 1626 if (ret > 0) { 1627 ret = spi_transfer_wait(ctlr, msg, xfer); 1628 if (ret < 0) 1629 msg->status = ret; 1630 } 1631 1632 spi_dma_sync_for_cpu(ctlr, xfer); 1633 } else { 1634 if (xfer->len) 1635 dev_err(&msg->spi->dev, 1636 "Bufferless transfer has length %u\n", 1637 xfer->len); 1638 } 1639 1640 if (!ctlr->ptp_sts_supported) { 1641 ptp_read_system_postts(xfer->ptp_sts); 1642 xfer->ptp_sts_word_post = xfer->len; 1643 } 1644 1645 trace_spi_transfer_stop(msg, xfer); 1646 1647 if (msg->status != -EINPROGRESS) 1648 goto out; 1649 1650 spi_transfer_delay_exec(xfer); 1651 1652 if (xfer->cs_change) { 1653 if (list_is_last(&xfer->transfer_list, 1654 &msg->transfers)) { 1655 keep_cs = true; 1656 } else { 1657 if (!xfer->cs_off) 1658 spi_set_cs(msg->spi, false, false); 1659 _spi_transfer_cs_change_delay(msg, xfer); 1660 if (!list_next_entry(xfer, transfer_list)->cs_off) 1661 spi_set_cs(msg->spi, true, false); 1662 } 1663 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1664 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1665 spi_set_cs(msg->spi, xfer->cs_off, false); 1666 } 1667 1668 msg->actual_length += xfer->len; 1669 } 1670 1671 out: 1672 if (ret != 0 || !keep_cs) 1673 spi_set_cs(msg->spi, false, false); 1674 1675 if (msg->status == -EINPROGRESS) 1676 msg->status = ret; 1677 1678 if (msg->status && ctlr->handle_err) 1679 ctlr->handle_err(ctlr, msg); 1680 1681 spi_finalize_current_message(ctlr); 1682 1683 return ret; 1684 } 1685 1686 /** 1687 * spi_finalize_current_transfer - report completion of a transfer 1688 * @ctlr: the controller reporting completion 1689 * 1690 * Called by SPI drivers using the core transfer_one_message() 1691 * implementation to notify it that the current interrupt driven 1692 * transfer has finished and the next one may be scheduled. 1693 */ 1694 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1695 { 1696 complete(&ctlr->xfer_completion); 1697 } 1698 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1699 1700 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1701 { 1702 if (ctlr->auto_runtime_pm) { 1703 pm_runtime_mark_last_busy(ctlr->dev.parent); 1704 pm_runtime_put_autosuspend(ctlr->dev.parent); 1705 } 1706 } 1707 1708 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1709 struct spi_message *msg, bool was_busy) 1710 { 1711 struct spi_transfer *xfer; 1712 int ret; 1713 1714 if (!was_busy && ctlr->auto_runtime_pm) { 1715 ret = pm_runtime_get_sync(ctlr->dev.parent); 1716 if (ret < 0) { 1717 pm_runtime_put_noidle(ctlr->dev.parent); 1718 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1719 ret); 1720 return ret; 1721 } 1722 } 1723 1724 if (!was_busy) 1725 trace_spi_controller_busy(ctlr); 1726 1727 if (!was_busy && ctlr->prepare_transfer_hardware) { 1728 ret = ctlr->prepare_transfer_hardware(ctlr); 1729 if (ret) { 1730 dev_err(&ctlr->dev, 1731 "failed to prepare transfer hardware: %d\n", 1732 ret); 1733 1734 if (ctlr->auto_runtime_pm) 1735 pm_runtime_put(ctlr->dev.parent); 1736 1737 msg->status = ret; 1738 spi_finalize_current_message(ctlr); 1739 1740 return ret; 1741 } 1742 } 1743 1744 trace_spi_message_start(msg); 1745 1746 ret = spi_split_transfers_maxsize(ctlr, msg, 1747 spi_max_transfer_size(msg->spi), 1748 GFP_KERNEL | GFP_DMA); 1749 if (ret) { 1750 msg->status = ret; 1751 spi_finalize_current_message(ctlr); 1752 return ret; 1753 } 1754 1755 if (ctlr->prepare_message) { 1756 ret = ctlr->prepare_message(ctlr, msg); 1757 if (ret) { 1758 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1759 ret); 1760 msg->status = ret; 1761 spi_finalize_current_message(ctlr); 1762 return ret; 1763 } 1764 msg->prepared = true; 1765 } 1766 1767 ret = spi_map_msg(ctlr, msg); 1768 if (ret) { 1769 msg->status = ret; 1770 spi_finalize_current_message(ctlr); 1771 return ret; 1772 } 1773 1774 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1775 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1776 xfer->ptp_sts_word_pre = 0; 1777 ptp_read_system_prets(xfer->ptp_sts); 1778 } 1779 } 1780 1781 /* 1782 * Drivers implementation of transfer_one_message() must arrange for 1783 * spi_finalize_current_message() to get called. Most drivers will do 1784 * this in the calling context, but some don't. For those cases, a 1785 * completion is used to guarantee that this function does not return 1786 * until spi_finalize_current_message() is done accessing 1787 * ctlr->cur_msg. 1788 * Use of the following two flags enable to opportunistically skip the 1789 * use of the completion since its use involves expensive spin locks. 1790 * In case of a race with the context that calls 1791 * spi_finalize_current_message() the completion will always be used, 1792 * due to strict ordering of these flags using barriers. 1793 */ 1794 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1795 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1796 reinit_completion(&ctlr->cur_msg_completion); 1797 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1798 1799 ret = ctlr->transfer_one_message(ctlr, msg); 1800 if (ret) { 1801 dev_err(&ctlr->dev, 1802 "failed to transfer one message from queue\n"); 1803 return ret; 1804 } 1805 1806 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1807 smp_mb(); /* See spi_finalize_current_message()... */ 1808 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1809 wait_for_completion(&ctlr->cur_msg_completion); 1810 1811 return 0; 1812 } 1813 1814 /** 1815 * __spi_pump_messages - function which processes SPI message queue 1816 * @ctlr: controller to process queue for 1817 * @in_kthread: true if we are in the context of the message pump thread 1818 * 1819 * This function checks if there is any SPI message in the queue that 1820 * needs processing and if so call out to the driver to initialize hardware 1821 * and transfer each message. 1822 * 1823 * Note that it is called both from the kthread itself and also from 1824 * inside spi_sync(); the queue extraction handling at the top of the 1825 * function should deal with this safely. 1826 */ 1827 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1828 { 1829 struct spi_message *msg; 1830 bool was_busy = false; 1831 unsigned long flags; 1832 int ret; 1833 1834 /* Take the I/O mutex */ 1835 mutex_lock(&ctlr->io_mutex); 1836 1837 /* Lock queue */ 1838 spin_lock_irqsave(&ctlr->queue_lock, flags); 1839 1840 /* Make sure we are not already running a message */ 1841 if (ctlr->cur_msg) 1842 goto out_unlock; 1843 1844 /* Check if the queue is idle */ 1845 if (list_empty(&ctlr->queue) || !ctlr->running) { 1846 if (!ctlr->busy) 1847 goto out_unlock; 1848 1849 /* Defer any non-atomic teardown to the thread */ 1850 if (!in_kthread) { 1851 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1852 !ctlr->unprepare_transfer_hardware) { 1853 spi_idle_runtime_pm(ctlr); 1854 ctlr->busy = false; 1855 ctlr->queue_empty = true; 1856 trace_spi_controller_idle(ctlr); 1857 } else { 1858 kthread_queue_work(ctlr->kworker, 1859 &ctlr->pump_messages); 1860 } 1861 goto out_unlock; 1862 } 1863 1864 ctlr->busy = false; 1865 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1866 1867 kfree(ctlr->dummy_rx); 1868 ctlr->dummy_rx = NULL; 1869 kfree(ctlr->dummy_tx); 1870 ctlr->dummy_tx = NULL; 1871 if (ctlr->unprepare_transfer_hardware && 1872 ctlr->unprepare_transfer_hardware(ctlr)) 1873 dev_err(&ctlr->dev, 1874 "failed to unprepare transfer hardware\n"); 1875 spi_idle_runtime_pm(ctlr); 1876 trace_spi_controller_idle(ctlr); 1877 1878 spin_lock_irqsave(&ctlr->queue_lock, flags); 1879 ctlr->queue_empty = true; 1880 goto out_unlock; 1881 } 1882 1883 /* Extract head of queue */ 1884 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1885 ctlr->cur_msg = msg; 1886 1887 list_del_init(&msg->queue); 1888 if (ctlr->busy) 1889 was_busy = true; 1890 else 1891 ctlr->busy = true; 1892 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1893 1894 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1895 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1896 1897 ctlr->cur_msg = NULL; 1898 ctlr->fallback = false; 1899 1900 mutex_unlock(&ctlr->io_mutex); 1901 1902 /* Prod the scheduler in case transfer_one() was busy waiting */ 1903 if (!ret) 1904 cond_resched(); 1905 return; 1906 1907 out_unlock: 1908 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1909 mutex_unlock(&ctlr->io_mutex); 1910 } 1911 1912 /** 1913 * spi_pump_messages - kthread work function which processes spi message queue 1914 * @work: pointer to kthread work struct contained in the controller struct 1915 */ 1916 static void spi_pump_messages(struct kthread_work *work) 1917 { 1918 struct spi_controller *ctlr = 1919 container_of(work, struct spi_controller, pump_messages); 1920 1921 __spi_pump_messages(ctlr, true); 1922 } 1923 1924 /** 1925 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1926 * @ctlr: Pointer to the spi_controller structure of the driver 1927 * @xfer: Pointer to the transfer being timestamped 1928 * @progress: How many words (not bytes) have been transferred so far 1929 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1930 * transfer, for less jitter in time measurement. Only compatible 1931 * with PIO drivers. If true, must follow up with 1932 * spi_take_timestamp_post or otherwise system will crash. 1933 * WARNING: for fully predictable results, the CPU frequency must 1934 * also be under control (governor). 1935 * 1936 * This is a helper for drivers to collect the beginning of the TX timestamp 1937 * for the requested byte from the SPI transfer. The frequency with which this 1938 * function must be called (once per word, once for the whole transfer, once 1939 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1940 * greater than or equal to the requested byte at the time of the call. The 1941 * timestamp is only taken once, at the first such call. It is assumed that 1942 * the driver advances its @tx buffer pointer monotonically. 1943 */ 1944 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1945 struct spi_transfer *xfer, 1946 size_t progress, bool irqs_off) 1947 { 1948 if (!xfer->ptp_sts) 1949 return; 1950 1951 if (xfer->timestamped) 1952 return; 1953 1954 if (progress > xfer->ptp_sts_word_pre) 1955 return; 1956 1957 /* Capture the resolution of the timestamp */ 1958 xfer->ptp_sts_word_pre = progress; 1959 1960 if (irqs_off) { 1961 local_irq_save(ctlr->irq_flags); 1962 preempt_disable(); 1963 } 1964 1965 ptp_read_system_prets(xfer->ptp_sts); 1966 } 1967 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1968 1969 /** 1970 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1971 * @ctlr: Pointer to the spi_controller structure of the driver 1972 * @xfer: Pointer to the transfer being timestamped 1973 * @progress: How many words (not bytes) have been transferred so far 1974 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1975 * 1976 * This is a helper for drivers to collect the end of the TX timestamp for 1977 * the requested byte from the SPI transfer. Can be called with an arbitrary 1978 * frequency: only the first call where @tx exceeds or is equal to the 1979 * requested word will be timestamped. 1980 */ 1981 void spi_take_timestamp_post(struct spi_controller *ctlr, 1982 struct spi_transfer *xfer, 1983 size_t progress, bool irqs_off) 1984 { 1985 if (!xfer->ptp_sts) 1986 return; 1987 1988 if (xfer->timestamped) 1989 return; 1990 1991 if (progress < xfer->ptp_sts_word_post) 1992 return; 1993 1994 ptp_read_system_postts(xfer->ptp_sts); 1995 1996 if (irqs_off) { 1997 local_irq_restore(ctlr->irq_flags); 1998 preempt_enable(); 1999 } 2000 2001 /* Capture the resolution of the timestamp */ 2002 xfer->ptp_sts_word_post = progress; 2003 2004 xfer->timestamped = 1; 2005 } 2006 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2007 2008 /** 2009 * spi_set_thread_rt - set the controller to pump at realtime priority 2010 * @ctlr: controller to boost priority of 2011 * 2012 * This can be called because the controller requested realtime priority 2013 * (by setting the ->rt value before calling spi_register_controller()) or 2014 * because a device on the bus said that its transfers needed realtime 2015 * priority. 2016 * 2017 * NOTE: at the moment if any device on a bus says it needs realtime then 2018 * the thread will be at realtime priority for all transfers on that 2019 * controller. If this eventually becomes a problem we may see if we can 2020 * find a way to boost the priority only temporarily during relevant 2021 * transfers. 2022 */ 2023 static void spi_set_thread_rt(struct spi_controller *ctlr) 2024 { 2025 dev_info(&ctlr->dev, 2026 "will run message pump with realtime priority\n"); 2027 sched_set_fifo(ctlr->kworker->task); 2028 } 2029 2030 static int spi_init_queue(struct spi_controller *ctlr) 2031 { 2032 ctlr->running = false; 2033 ctlr->busy = false; 2034 ctlr->queue_empty = true; 2035 2036 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2037 if (IS_ERR(ctlr->kworker)) { 2038 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2039 return PTR_ERR(ctlr->kworker); 2040 } 2041 2042 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2043 2044 /* 2045 * Controller config will indicate if this controller should run the 2046 * message pump with high (realtime) priority to reduce the transfer 2047 * latency on the bus by minimising the delay between a transfer 2048 * request and the scheduling of the message pump thread. Without this 2049 * setting the message pump thread will remain at default priority. 2050 */ 2051 if (ctlr->rt) 2052 spi_set_thread_rt(ctlr); 2053 2054 return 0; 2055 } 2056 2057 /** 2058 * spi_get_next_queued_message() - called by driver to check for queued 2059 * messages 2060 * @ctlr: the controller to check for queued messages 2061 * 2062 * If there are more messages in the queue, the next message is returned from 2063 * this call. 2064 * 2065 * Return: the next message in the queue, else NULL if the queue is empty. 2066 */ 2067 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2068 { 2069 struct spi_message *next; 2070 unsigned long flags; 2071 2072 /* Get a pointer to the next message, if any */ 2073 spin_lock_irqsave(&ctlr->queue_lock, flags); 2074 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2075 queue); 2076 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2077 2078 return next; 2079 } 2080 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2081 2082 /** 2083 * spi_finalize_current_message() - the current message is complete 2084 * @ctlr: the controller to return the message to 2085 * 2086 * Called by the driver to notify the core that the message in the front of the 2087 * queue is complete and can be removed from the queue. 2088 */ 2089 void spi_finalize_current_message(struct spi_controller *ctlr) 2090 { 2091 struct spi_transfer *xfer; 2092 struct spi_message *mesg; 2093 int ret; 2094 2095 mesg = ctlr->cur_msg; 2096 2097 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2098 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2099 ptp_read_system_postts(xfer->ptp_sts); 2100 xfer->ptp_sts_word_post = xfer->len; 2101 } 2102 } 2103 2104 if (unlikely(ctlr->ptp_sts_supported)) 2105 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2106 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2107 2108 spi_unmap_msg(ctlr, mesg); 2109 2110 /* 2111 * In the prepare_messages callback the SPI bus has the opportunity 2112 * to split a transfer to smaller chunks. 2113 * 2114 * Release the split transfers here since spi_map_msg() is done on 2115 * the split transfers. 2116 */ 2117 spi_res_release(ctlr, mesg); 2118 2119 if (mesg->prepared && ctlr->unprepare_message) { 2120 ret = ctlr->unprepare_message(ctlr, mesg); 2121 if (ret) { 2122 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2123 ret); 2124 } 2125 } 2126 2127 mesg->prepared = false; 2128 2129 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2130 smp_mb(); /* See __spi_pump_transfer_message()... */ 2131 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2132 complete(&ctlr->cur_msg_completion); 2133 2134 trace_spi_message_done(mesg); 2135 2136 mesg->state = NULL; 2137 if (mesg->complete) 2138 mesg->complete(mesg->context); 2139 } 2140 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2141 2142 static int spi_start_queue(struct spi_controller *ctlr) 2143 { 2144 unsigned long flags; 2145 2146 spin_lock_irqsave(&ctlr->queue_lock, flags); 2147 2148 if (ctlr->running || ctlr->busy) { 2149 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2150 return -EBUSY; 2151 } 2152 2153 ctlr->running = true; 2154 ctlr->cur_msg = NULL; 2155 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2156 2157 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2158 2159 return 0; 2160 } 2161 2162 static int spi_stop_queue(struct spi_controller *ctlr) 2163 { 2164 unsigned long flags; 2165 unsigned limit = 500; 2166 int ret = 0; 2167 2168 spin_lock_irqsave(&ctlr->queue_lock, flags); 2169 2170 /* 2171 * This is a bit lame, but is optimized for the common execution path. 2172 * A wait_queue on the ctlr->busy could be used, but then the common 2173 * execution path (pump_messages) would be required to call wake_up or 2174 * friends on every SPI message. Do this instead. 2175 */ 2176 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2177 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2178 usleep_range(10000, 11000); 2179 spin_lock_irqsave(&ctlr->queue_lock, flags); 2180 } 2181 2182 if (!list_empty(&ctlr->queue) || ctlr->busy) 2183 ret = -EBUSY; 2184 else 2185 ctlr->running = false; 2186 2187 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2188 2189 return ret; 2190 } 2191 2192 static int spi_destroy_queue(struct spi_controller *ctlr) 2193 { 2194 int ret; 2195 2196 ret = spi_stop_queue(ctlr); 2197 2198 /* 2199 * kthread_flush_worker will block until all work is done. 2200 * If the reason that stop_queue timed out is that the work will never 2201 * finish, then it does no good to call flush/stop thread, so 2202 * return anyway. 2203 */ 2204 if (ret) { 2205 dev_err(&ctlr->dev, "problem destroying queue\n"); 2206 return ret; 2207 } 2208 2209 kthread_destroy_worker(ctlr->kworker); 2210 2211 return 0; 2212 } 2213 2214 static int __spi_queued_transfer(struct spi_device *spi, 2215 struct spi_message *msg, 2216 bool need_pump) 2217 { 2218 struct spi_controller *ctlr = spi->controller; 2219 unsigned long flags; 2220 2221 spin_lock_irqsave(&ctlr->queue_lock, flags); 2222 2223 if (!ctlr->running) { 2224 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2225 return -ESHUTDOWN; 2226 } 2227 msg->actual_length = 0; 2228 msg->status = -EINPROGRESS; 2229 2230 list_add_tail(&msg->queue, &ctlr->queue); 2231 ctlr->queue_empty = false; 2232 if (!ctlr->busy && need_pump) 2233 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2234 2235 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2236 return 0; 2237 } 2238 2239 /** 2240 * spi_queued_transfer - transfer function for queued transfers 2241 * @spi: SPI device which is requesting transfer 2242 * @msg: SPI message which is to handled is queued to driver queue 2243 * 2244 * Return: zero on success, else a negative error code. 2245 */ 2246 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2247 { 2248 return __spi_queued_transfer(spi, msg, true); 2249 } 2250 2251 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2252 { 2253 int ret; 2254 2255 ctlr->transfer = spi_queued_transfer; 2256 if (!ctlr->transfer_one_message) 2257 ctlr->transfer_one_message = spi_transfer_one_message; 2258 2259 /* Initialize and start queue */ 2260 ret = spi_init_queue(ctlr); 2261 if (ret) { 2262 dev_err(&ctlr->dev, "problem initializing queue\n"); 2263 goto err_init_queue; 2264 } 2265 ctlr->queued = true; 2266 ret = spi_start_queue(ctlr); 2267 if (ret) { 2268 dev_err(&ctlr->dev, "problem starting queue\n"); 2269 goto err_start_queue; 2270 } 2271 2272 return 0; 2273 2274 err_start_queue: 2275 spi_destroy_queue(ctlr); 2276 err_init_queue: 2277 return ret; 2278 } 2279 2280 /** 2281 * spi_flush_queue - Send all pending messages in the queue from the callers' 2282 * context 2283 * @ctlr: controller to process queue for 2284 * 2285 * This should be used when one wants to ensure all pending messages have been 2286 * sent before doing something. Is used by the spi-mem code to make sure SPI 2287 * memory operations do not preempt regular SPI transfers that have been queued 2288 * before the spi-mem operation. 2289 */ 2290 void spi_flush_queue(struct spi_controller *ctlr) 2291 { 2292 if (ctlr->transfer == spi_queued_transfer) 2293 __spi_pump_messages(ctlr, false); 2294 } 2295 2296 /*-------------------------------------------------------------------------*/ 2297 2298 #if defined(CONFIG_OF) 2299 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2300 struct spi_delay *delay, const char *prop) 2301 { 2302 u32 value; 2303 2304 if (!of_property_read_u32(nc, prop, &value)) { 2305 if (value > U16_MAX) { 2306 delay->value = DIV_ROUND_UP(value, 1000); 2307 delay->unit = SPI_DELAY_UNIT_USECS; 2308 } else { 2309 delay->value = value; 2310 delay->unit = SPI_DELAY_UNIT_NSECS; 2311 } 2312 } 2313 } 2314 2315 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2316 struct device_node *nc) 2317 { 2318 u32 value, cs[SPI_CS_CNT_MAX]; 2319 int rc, idx; 2320 2321 /* Mode (clock phase/polarity/etc.) */ 2322 if (of_property_read_bool(nc, "spi-cpha")) 2323 spi->mode |= SPI_CPHA; 2324 if (of_property_read_bool(nc, "spi-cpol")) 2325 spi->mode |= SPI_CPOL; 2326 if (of_property_read_bool(nc, "spi-3wire")) 2327 spi->mode |= SPI_3WIRE; 2328 if (of_property_read_bool(nc, "spi-lsb-first")) 2329 spi->mode |= SPI_LSB_FIRST; 2330 if (of_property_read_bool(nc, "spi-cs-high")) 2331 spi->mode |= SPI_CS_HIGH; 2332 2333 /* Device DUAL/QUAD mode */ 2334 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2335 switch (value) { 2336 case 0: 2337 spi->mode |= SPI_NO_TX; 2338 break; 2339 case 1: 2340 break; 2341 case 2: 2342 spi->mode |= SPI_TX_DUAL; 2343 break; 2344 case 4: 2345 spi->mode |= SPI_TX_QUAD; 2346 break; 2347 case 8: 2348 spi->mode |= SPI_TX_OCTAL; 2349 break; 2350 default: 2351 dev_warn(&ctlr->dev, 2352 "spi-tx-bus-width %d not supported\n", 2353 value); 2354 break; 2355 } 2356 } 2357 2358 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2359 switch (value) { 2360 case 0: 2361 spi->mode |= SPI_NO_RX; 2362 break; 2363 case 1: 2364 break; 2365 case 2: 2366 spi->mode |= SPI_RX_DUAL; 2367 break; 2368 case 4: 2369 spi->mode |= SPI_RX_QUAD; 2370 break; 2371 case 8: 2372 spi->mode |= SPI_RX_OCTAL; 2373 break; 2374 default: 2375 dev_warn(&ctlr->dev, 2376 "spi-rx-bus-width %d not supported\n", 2377 value); 2378 break; 2379 } 2380 } 2381 2382 if (spi_controller_is_slave(ctlr)) { 2383 if (!of_node_name_eq(nc, "slave")) { 2384 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2385 nc); 2386 return -EINVAL; 2387 } 2388 return 0; 2389 } 2390 2391 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2392 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2393 return -EINVAL; 2394 } 2395 2396 /* 2397 * Zero(0) is a valid physical CS value and can be located at any 2398 * logical CS in the spi->chip_select[]. If all the physical CS 2399 * are initialized to 0 then It would be difficult to differentiate 2400 * between a valid physical CS 0 & an unused logical CS whose physical 2401 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 2402 * Now all the unused logical CS will have 0xFF physical CS value & can be 2403 * ignore while performing physical CS validity checks. 2404 */ 2405 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 2406 spi_set_chipselect(spi, idx, 0xFF); 2407 2408 /* Device address */ 2409 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2410 SPI_CS_CNT_MAX); 2411 if (rc < 0) { 2412 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2413 nc, rc); 2414 return rc; 2415 } 2416 if (rc > ctlr->num_chipselect) { 2417 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2418 nc, rc); 2419 return rc; 2420 } 2421 if ((of_property_read_bool(nc, "parallel-memories")) && 2422 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2423 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2424 return -EINVAL; 2425 } 2426 for (idx = 0; idx < rc; idx++) 2427 spi_set_chipselect(spi, idx, cs[idx]); 2428 2429 /* 2430 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 2431 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 2432 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 2433 * spi->chip_select[0] will give the physical CS. 2434 * By default spi->chip_select[0] will hold the physical CS number so, set 2435 * spi->cs_index_mask as 0x01. 2436 */ 2437 spi->cs_index_mask = 0x01; 2438 2439 /* Device speed */ 2440 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2441 spi->max_speed_hz = value; 2442 2443 /* Device CS delays */ 2444 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2445 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2446 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2447 2448 return 0; 2449 } 2450 2451 static struct spi_device * 2452 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2453 { 2454 struct spi_device *spi; 2455 int rc; 2456 2457 /* Alloc an spi_device */ 2458 spi = spi_alloc_device(ctlr); 2459 if (!spi) { 2460 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2461 rc = -ENOMEM; 2462 goto err_out; 2463 } 2464 2465 /* Select device driver */ 2466 rc = of_alias_from_compatible(nc, spi->modalias, 2467 sizeof(spi->modalias)); 2468 if (rc < 0) { 2469 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2470 goto err_out; 2471 } 2472 2473 rc = of_spi_parse_dt(ctlr, spi, nc); 2474 if (rc) 2475 goto err_out; 2476 2477 /* Store a pointer to the node in the device structure */ 2478 of_node_get(nc); 2479 2480 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2481 2482 /* Register the new device */ 2483 rc = spi_add_device(spi); 2484 if (rc) { 2485 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2486 goto err_of_node_put; 2487 } 2488 2489 return spi; 2490 2491 err_of_node_put: 2492 of_node_put(nc); 2493 err_out: 2494 spi_dev_put(spi); 2495 return ERR_PTR(rc); 2496 } 2497 2498 /** 2499 * of_register_spi_devices() - Register child devices onto the SPI bus 2500 * @ctlr: Pointer to spi_controller device 2501 * 2502 * Registers an spi_device for each child node of controller node which 2503 * represents a valid SPI slave. 2504 */ 2505 static void of_register_spi_devices(struct spi_controller *ctlr) 2506 { 2507 struct spi_device *spi; 2508 struct device_node *nc; 2509 2510 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2511 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2512 continue; 2513 spi = of_register_spi_device(ctlr, nc); 2514 if (IS_ERR(spi)) { 2515 dev_warn(&ctlr->dev, 2516 "Failed to create SPI device for %pOF\n", nc); 2517 of_node_clear_flag(nc, OF_POPULATED); 2518 } 2519 } 2520 } 2521 #else 2522 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2523 #endif 2524 2525 /** 2526 * spi_new_ancillary_device() - Register ancillary SPI device 2527 * @spi: Pointer to the main SPI device registering the ancillary device 2528 * @chip_select: Chip Select of the ancillary device 2529 * 2530 * Register an ancillary SPI device; for example some chips have a chip-select 2531 * for normal device usage and another one for setup/firmware upload. 2532 * 2533 * This may only be called from main SPI device's probe routine. 2534 * 2535 * Return: 0 on success; negative errno on failure 2536 */ 2537 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2538 u8 chip_select) 2539 { 2540 struct spi_controller *ctlr = spi->controller; 2541 struct spi_device *ancillary; 2542 int rc = 0; 2543 u8 idx; 2544 2545 /* Alloc an spi_device */ 2546 ancillary = spi_alloc_device(ctlr); 2547 if (!ancillary) { 2548 rc = -ENOMEM; 2549 goto err_out; 2550 } 2551 2552 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2553 2554 /* 2555 * Zero(0) is a valid physical CS value and can be located at any 2556 * logical CS in the spi->chip_select[]. If all the physical CS 2557 * are initialized to 0 then It would be difficult to differentiate 2558 * between a valid physical CS 0 & an unused logical CS whose physical 2559 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 2560 * Now all the unused logical CS will have 0xFF physical CS value & can be 2561 * ignore while performing physical CS validity checks. 2562 */ 2563 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 2564 spi_set_chipselect(ancillary, idx, 0xFF); 2565 2566 /* Use provided chip-select for ancillary device */ 2567 spi_set_chipselect(ancillary, 0, chip_select); 2568 2569 /* Take over SPI mode/speed from SPI main device */ 2570 ancillary->max_speed_hz = spi->max_speed_hz; 2571 ancillary->mode = spi->mode; 2572 /* 2573 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 2574 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 2575 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 2576 * spi->chip_select[0] will give the physical CS. 2577 * By default spi->chip_select[0] will hold the physical CS number so, set 2578 * spi->cs_index_mask as 0x01. 2579 */ 2580 ancillary->cs_index_mask = 0x01; 2581 2582 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2583 2584 /* Register the new device */ 2585 rc = __spi_add_device(ancillary); 2586 if (rc) { 2587 dev_err(&spi->dev, "failed to register ancillary device\n"); 2588 goto err_out; 2589 } 2590 2591 return ancillary; 2592 2593 err_out: 2594 spi_dev_put(ancillary); 2595 return ERR_PTR(rc); 2596 } 2597 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2598 2599 #ifdef CONFIG_ACPI 2600 struct acpi_spi_lookup { 2601 struct spi_controller *ctlr; 2602 u32 max_speed_hz; 2603 u32 mode; 2604 int irq; 2605 u8 bits_per_word; 2606 u8 chip_select; 2607 int n; 2608 int index; 2609 }; 2610 2611 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2612 { 2613 struct acpi_resource_spi_serialbus *sb; 2614 int *count = data; 2615 2616 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2617 return 1; 2618 2619 sb = &ares->data.spi_serial_bus; 2620 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2621 return 1; 2622 2623 *count = *count + 1; 2624 2625 return 1; 2626 } 2627 2628 /** 2629 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2630 * @adev: ACPI device 2631 * 2632 * Return: the number of SpiSerialBus resources in the ACPI-device's 2633 * resource-list; or a negative error code. 2634 */ 2635 int acpi_spi_count_resources(struct acpi_device *adev) 2636 { 2637 LIST_HEAD(r); 2638 int count = 0; 2639 int ret; 2640 2641 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2642 if (ret < 0) 2643 return ret; 2644 2645 acpi_dev_free_resource_list(&r); 2646 2647 return count; 2648 } 2649 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2650 2651 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2652 struct acpi_spi_lookup *lookup) 2653 { 2654 const union acpi_object *obj; 2655 2656 if (!x86_apple_machine) 2657 return; 2658 2659 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2660 && obj->buffer.length >= 4) 2661 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2662 2663 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2664 && obj->buffer.length == 8) 2665 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2666 2667 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2668 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2669 lookup->mode |= SPI_LSB_FIRST; 2670 2671 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2672 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2673 lookup->mode |= SPI_CPOL; 2674 2675 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2676 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2677 lookup->mode |= SPI_CPHA; 2678 } 2679 2680 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2681 { 2682 struct acpi_spi_lookup *lookup = data; 2683 struct spi_controller *ctlr = lookup->ctlr; 2684 2685 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2686 struct acpi_resource_spi_serialbus *sb; 2687 acpi_handle parent_handle; 2688 acpi_status status; 2689 2690 sb = &ares->data.spi_serial_bus; 2691 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2692 2693 if (lookup->index != -1 && lookup->n++ != lookup->index) 2694 return 1; 2695 2696 status = acpi_get_handle(NULL, 2697 sb->resource_source.string_ptr, 2698 &parent_handle); 2699 2700 if (ACPI_FAILURE(status)) 2701 return -ENODEV; 2702 2703 if (ctlr) { 2704 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2705 return -ENODEV; 2706 } else { 2707 struct acpi_device *adev; 2708 2709 adev = acpi_fetch_acpi_dev(parent_handle); 2710 if (!adev) 2711 return -ENODEV; 2712 2713 ctlr = acpi_spi_find_controller_by_adev(adev); 2714 if (!ctlr) 2715 return -EPROBE_DEFER; 2716 2717 lookup->ctlr = ctlr; 2718 } 2719 2720 /* 2721 * ACPI DeviceSelection numbering is handled by the 2722 * host controller driver in Windows and can vary 2723 * from driver to driver. In Linux we always expect 2724 * 0 .. max - 1 so we need to ask the driver to 2725 * translate between the two schemes. 2726 */ 2727 if (ctlr->fw_translate_cs) { 2728 int cs = ctlr->fw_translate_cs(ctlr, 2729 sb->device_selection); 2730 if (cs < 0) 2731 return cs; 2732 lookup->chip_select = cs; 2733 } else { 2734 lookup->chip_select = sb->device_selection; 2735 } 2736 2737 lookup->max_speed_hz = sb->connection_speed; 2738 lookup->bits_per_word = sb->data_bit_length; 2739 2740 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2741 lookup->mode |= SPI_CPHA; 2742 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2743 lookup->mode |= SPI_CPOL; 2744 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2745 lookup->mode |= SPI_CS_HIGH; 2746 } 2747 } else if (lookup->irq < 0) { 2748 struct resource r; 2749 2750 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2751 lookup->irq = r.start; 2752 } 2753 2754 /* Always tell the ACPI core to skip this resource */ 2755 return 1; 2756 } 2757 2758 /** 2759 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2760 * @ctlr: controller to which the spi device belongs 2761 * @adev: ACPI Device for the spi device 2762 * @index: Index of the spi resource inside the ACPI Node 2763 * 2764 * This should be used to allocate a new SPI device from and ACPI Device node. 2765 * The caller is responsible for calling spi_add_device to register the SPI device. 2766 * 2767 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2768 * using the resource. 2769 * If index is set to -1, index is not used. 2770 * Note: If index is -1, ctlr must be set. 2771 * 2772 * Return: a pointer to the new device, or ERR_PTR on error. 2773 */ 2774 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2775 struct acpi_device *adev, 2776 int index) 2777 { 2778 acpi_handle parent_handle = NULL; 2779 struct list_head resource_list; 2780 struct acpi_spi_lookup lookup = {}; 2781 struct spi_device *spi; 2782 int ret; 2783 u8 idx; 2784 2785 if (!ctlr && index == -1) 2786 return ERR_PTR(-EINVAL); 2787 2788 lookup.ctlr = ctlr; 2789 lookup.irq = -1; 2790 lookup.index = index; 2791 lookup.n = 0; 2792 2793 INIT_LIST_HEAD(&resource_list); 2794 ret = acpi_dev_get_resources(adev, &resource_list, 2795 acpi_spi_add_resource, &lookup); 2796 acpi_dev_free_resource_list(&resource_list); 2797 2798 if (ret < 0) 2799 /* Found SPI in _CRS but it points to another controller */ 2800 return ERR_PTR(ret); 2801 2802 if (!lookup.max_speed_hz && 2803 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2804 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2805 /* Apple does not use _CRS but nested devices for SPI slaves */ 2806 acpi_spi_parse_apple_properties(adev, &lookup); 2807 } 2808 2809 if (!lookup.max_speed_hz) 2810 return ERR_PTR(-ENODEV); 2811 2812 spi = spi_alloc_device(lookup.ctlr); 2813 if (!spi) { 2814 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2815 dev_name(&adev->dev)); 2816 return ERR_PTR(-ENOMEM); 2817 } 2818 2819 /* 2820 * Zero(0) is a valid physical CS value and can be located at any 2821 * logical CS in the spi->chip_select[]. If all the physical CS 2822 * are initialized to 0 then It would be difficult to differentiate 2823 * between a valid physical CS 0 & an unused logical CS whose physical 2824 * CS can be 0. As a solution to this issue initialize all the CS to 0xFF. 2825 * Now all the unused logical CS will have 0xFF physical CS value & can be 2826 * ignore while performing physical CS validity checks. 2827 */ 2828 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 2829 spi_set_chipselect(spi, idx, 0xFF); 2830 2831 ACPI_COMPANION_SET(&spi->dev, adev); 2832 spi->max_speed_hz = lookup.max_speed_hz; 2833 spi->mode |= lookup.mode; 2834 spi->irq = lookup.irq; 2835 spi->bits_per_word = lookup.bits_per_word; 2836 spi_set_chipselect(spi, 0, lookup.chip_select); 2837 /* 2838 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 2839 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 2840 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 2841 * spi->chip_select[0] will give the physical CS. 2842 * By default spi->chip_select[0] will hold the physical CS number so, set 2843 * spi->cs_index_mask as 0x01. 2844 */ 2845 spi->cs_index_mask = 0x01; 2846 2847 return spi; 2848 } 2849 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2850 2851 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2852 struct acpi_device *adev) 2853 { 2854 struct spi_device *spi; 2855 2856 if (acpi_bus_get_status(adev) || !adev->status.present || 2857 acpi_device_enumerated(adev)) 2858 return AE_OK; 2859 2860 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2861 if (IS_ERR(spi)) { 2862 if (PTR_ERR(spi) == -ENOMEM) 2863 return AE_NO_MEMORY; 2864 else 2865 return AE_OK; 2866 } 2867 2868 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2869 sizeof(spi->modalias)); 2870 2871 if (spi->irq < 0) 2872 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2873 2874 acpi_device_set_enumerated(adev); 2875 2876 adev->power.flags.ignore_parent = true; 2877 if (spi_add_device(spi)) { 2878 adev->power.flags.ignore_parent = false; 2879 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2880 dev_name(&adev->dev)); 2881 spi_dev_put(spi); 2882 } 2883 2884 return AE_OK; 2885 } 2886 2887 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2888 void *data, void **return_value) 2889 { 2890 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2891 struct spi_controller *ctlr = data; 2892 2893 if (!adev) 2894 return AE_OK; 2895 2896 return acpi_register_spi_device(ctlr, adev); 2897 } 2898 2899 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2900 2901 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2902 { 2903 acpi_status status; 2904 acpi_handle handle; 2905 2906 handle = ACPI_HANDLE(ctlr->dev.parent); 2907 if (!handle) 2908 return; 2909 2910 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2911 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2912 acpi_spi_add_device, NULL, ctlr, NULL); 2913 if (ACPI_FAILURE(status)) 2914 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2915 } 2916 #else 2917 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2918 #endif /* CONFIG_ACPI */ 2919 2920 static void spi_controller_release(struct device *dev) 2921 { 2922 struct spi_controller *ctlr; 2923 2924 ctlr = container_of(dev, struct spi_controller, dev); 2925 kfree(ctlr); 2926 } 2927 2928 static struct class spi_master_class = { 2929 .name = "spi_master", 2930 .dev_release = spi_controller_release, 2931 .dev_groups = spi_master_groups, 2932 }; 2933 2934 #ifdef CONFIG_SPI_SLAVE 2935 /** 2936 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2937 * controller 2938 * @spi: device used for the current transfer 2939 */ 2940 int spi_slave_abort(struct spi_device *spi) 2941 { 2942 struct spi_controller *ctlr = spi->controller; 2943 2944 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2945 return ctlr->slave_abort(ctlr); 2946 2947 return -ENOTSUPP; 2948 } 2949 EXPORT_SYMBOL_GPL(spi_slave_abort); 2950 2951 int spi_target_abort(struct spi_device *spi) 2952 { 2953 struct spi_controller *ctlr = spi->controller; 2954 2955 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2956 return ctlr->target_abort(ctlr); 2957 2958 return -ENOTSUPP; 2959 } 2960 EXPORT_SYMBOL_GPL(spi_target_abort); 2961 2962 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2963 char *buf) 2964 { 2965 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2966 dev); 2967 struct device *child; 2968 2969 child = device_find_any_child(&ctlr->dev); 2970 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2971 } 2972 2973 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2974 const char *buf, size_t count) 2975 { 2976 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2977 dev); 2978 struct spi_device *spi; 2979 struct device *child; 2980 char name[32]; 2981 int rc; 2982 2983 rc = sscanf(buf, "%31s", name); 2984 if (rc != 1 || !name[0]) 2985 return -EINVAL; 2986 2987 child = device_find_any_child(&ctlr->dev); 2988 if (child) { 2989 /* Remove registered slave */ 2990 device_unregister(child); 2991 put_device(child); 2992 } 2993 2994 if (strcmp(name, "(null)")) { 2995 /* Register new slave */ 2996 spi = spi_alloc_device(ctlr); 2997 if (!spi) 2998 return -ENOMEM; 2999 3000 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3001 3002 rc = spi_add_device(spi); 3003 if (rc) { 3004 spi_dev_put(spi); 3005 return rc; 3006 } 3007 } 3008 3009 return count; 3010 } 3011 3012 static DEVICE_ATTR_RW(slave); 3013 3014 static struct attribute *spi_slave_attrs[] = { 3015 &dev_attr_slave.attr, 3016 NULL, 3017 }; 3018 3019 static const struct attribute_group spi_slave_group = { 3020 .attrs = spi_slave_attrs, 3021 }; 3022 3023 static const struct attribute_group *spi_slave_groups[] = { 3024 &spi_controller_statistics_group, 3025 &spi_slave_group, 3026 NULL, 3027 }; 3028 3029 static struct class spi_slave_class = { 3030 .name = "spi_slave", 3031 .dev_release = spi_controller_release, 3032 .dev_groups = spi_slave_groups, 3033 }; 3034 #else 3035 extern struct class spi_slave_class; /* dummy */ 3036 #endif 3037 3038 /** 3039 * __spi_alloc_controller - allocate an SPI master or slave controller 3040 * @dev: the controller, possibly using the platform_bus 3041 * @size: how much zeroed driver-private data to allocate; the pointer to this 3042 * memory is in the driver_data field of the returned device, accessible 3043 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3044 * drivers granting DMA access to portions of their private data need to 3045 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3046 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3047 * slave (true) controller 3048 * Context: can sleep 3049 * 3050 * This call is used only by SPI controller drivers, which are the 3051 * only ones directly touching chip registers. It's how they allocate 3052 * an spi_controller structure, prior to calling spi_register_controller(). 3053 * 3054 * This must be called from context that can sleep. 3055 * 3056 * The caller is responsible for assigning the bus number and initializing the 3057 * controller's methods before calling spi_register_controller(); and (after 3058 * errors adding the device) calling spi_controller_put() to prevent a memory 3059 * leak. 3060 * 3061 * Return: the SPI controller structure on success, else NULL. 3062 */ 3063 struct spi_controller *__spi_alloc_controller(struct device *dev, 3064 unsigned int size, bool slave) 3065 { 3066 struct spi_controller *ctlr; 3067 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3068 3069 if (!dev) 3070 return NULL; 3071 3072 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3073 if (!ctlr) 3074 return NULL; 3075 3076 device_initialize(&ctlr->dev); 3077 INIT_LIST_HEAD(&ctlr->queue); 3078 spin_lock_init(&ctlr->queue_lock); 3079 spin_lock_init(&ctlr->bus_lock_spinlock); 3080 mutex_init(&ctlr->bus_lock_mutex); 3081 mutex_init(&ctlr->io_mutex); 3082 mutex_init(&ctlr->add_lock); 3083 ctlr->bus_num = -1; 3084 ctlr->num_chipselect = 1; 3085 ctlr->slave = slave; 3086 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3087 ctlr->dev.class = &spi_slave_class; 3088 else 3089 ctlr->dev.class = &spi_master_class; 3090 ctlr->dev.parent = dev; 3091 pm_suspend_ignore_children(&ctlr->dev, true); 3092 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3093 3094 return ctlr; 3095 } 3096 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3097 3098 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3099 { 3100 spi_controller_put(*(struct spi_controller **)ctlr); 3101 } 3102 3103 /** 3104 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3105 * @dev: physical device of SPI controller 3106 * @size: how much zeroed driver-private data to allocate 3107 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3108 * Context: can sleep 3109 * 3110 * Allocate an SPI controller and automatically release a reference on it 3111 * when @dev is unbound from its driver. Drivers are thus relieved from 3112 * having to call spi_controller_put(). 3113 * 3114 * The arguments to this function are identical to __spi_alloc_controller(). 3115 * 3116 * Return: the SPI controller structure on success, else NULL. 3117 */ 3118 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3119 unsigned int size, 3120 bool slave) 3121 { 3122 struct spi_controller **ptr, *ctlr; 3123 3124 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3125 GFP_KERNEL); 3126 if (!ptr) 3127 return NULL; 3128 3129 ctlr = __spi_alloc_controller(dev, size, slave); 3130 if (ctlr) { 3131 ctlr->devm_allocated = true; 3132 *ptr = ctlr; 3133 devres_add(dev, ptr); 3134 } else { 3135 devres_free(ptr); 3136 } 3137 3138 return ctlr; 3139 } 3140 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3141 3142 /** 3143 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3144 * @ctlr: The SPI master to grab GPIO descriptors for 3145 */ 3146 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3147 { 3148 int nb, i; 3149 struct gpio_desc **cs; 3150 struct device *dev = &ctlr->dev; 3151 unsigned long native_cs_mask = 0; 3152 unsigned int num_cs_gpios = 0; 3153 3154 nb = gpiod_count(dev, "cs"); 3155 if (nb < 0) { 3156 /* No GPIOs at all is fine, else return the error */ 3157 if (nb == -ENOENT) 3158 return 0; 3159 return nb; 3160 } 3161 3162 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3163 3164 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3165 GFP_KERNEL); 3166 if (!cs) 3167 return -ENOMEM; 3168 ctlr->cs_gpiods = cs; 3169 3170 for (i = 0; i < nb; i++) { 3171 /* 3172 * Most chipselects are active low, the inverted 3173 * semantics are handled by special quirks in gpiolib, 3174 * so initializing them GPIOD_OUT_LOW here means 3175 * "unasserted", in most cases this will drive the physical 3176 * line high. 3177 */ 3178 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3179 GPIOD_OUT_LOW); 3180 if (IS_ERR(cs[i])) 3181 return PTR_ERR(cs[i]); 3182 3183 if (cs[i]) { 3184 /* 3185 * If we find a CS GPIO, name it after the device and 3186 * chip select line. 3187 */ 3188 char *gpioname; 3189 3190 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3191 dev_name(dev), i); 3192 if (!gpioname) 3193 return -ENOMEM; 3194 gpiod_set_consumer_name(cs[i], gpioname); 3195 num_cs_gpios++; 3196 continue; 3197 } 3198 3199 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3200 dev_err(dev, "Invalid native chip select %d\n", i); 3201 return -EINVAL; 3202 } 3203 native_cs_mask |= BIT(i); 3204 } 3205 3206 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3207 3208 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3209 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3210 dev_err(dev, "No unused native chip select available\n"); 3211 return -EINVAL; 3212 } 3213 3214 return 0; 3215 } 3216 3217 static int spi_controller_check_ops(struct spi_controller *ctlr) 3218 { 3219 /* 3220 * The controller may implement only the high-level SPI-memory like 3221 * operations if it does not support regular SPI transfers, and this is 3222 * valid use case. 3223 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3224 * one of the ->transfer_xxx() method be implemented. 3225 */ 3226 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3227 if (!ctlr->transfer && !ctlr->transfer_one && 3228 !ctlr->transfer_one_message) { 3229 return -EINVAL; 3230 } 3231 } 3232 3233 return 0; 3234 } 3235 3236 /* Allocate dynamic bus number using Linux idr */ 3237 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3238 { 3239 int id; 3240 3241 mutex_lock(&board_lock); 3242 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3243 mutex_unlock(&board_lock); 3244 if (WARN(id < 0, "couldn't get idr")) 3245 return id == -ENOSPC ? -EBUSY : id; 3246 ctlr->bus_num = id; 3247 return 0; 3248 } 3249 3250 /** 3251 * spi_register_controller - register SPI master or slave controller 3252 * @ctlr: initialized master, originally from spi_alloc_master() or 3253 * spi_alloc_slave() 3254 * Context: can sleep 3255 * 3256 * SPI controllers connect to their drivers using some non-SPI bus, 3257 * such as the platform bus. The final stage of probe() in that code 3258 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3259 * 3260 * SPI controllers use board specific (often SOC specific) bus numbers, 3261 * and board-specific addressing for SPI devices combines those numbers 3262 * with chip select numbers. Since SPI does not directly support dynamic 3263 * device identification, boards need configuration tables telling which 3264 * chip is at which address. 3265 * 3266 * This must be called from context that can sleep. It returns zero on 3267 * success, else a negative error code (dropping the controller's refcount). 3268 * After a successful return, the caller is responsible for calling 3269 * spi_unregister_controller(). 3270 * 3271 * Return: zero on success, else a negative error code. 3272 */ 3273 int spi_register_controller(struct spi_controller *ctlr) 3274 { 3275 struct device *dev = ctlr->dev.parent; 3276 struct boardinfo *bi; 3277 int first_dynamic; 3278 int status; 3279 int idx; 3280 3281 if (!dev) 3282 return -ENODEV; 3283 3284 /* 3285 * Make sure all necessary hooks are implemented before registering 3286 * the SPI controller. 3287 */ 3288 status = spi_controller_check_ops(ctlr); 3289 if (status) 3290 return status; 3291 3292 if (ctlr->bus_num < 0) 3293 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3294 if (ctlr->bus_num >= 0) { 3295 /* Devices with a fixed bus num must check-in with the num */ 3296 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3297 if (status) 3298 return status; 3299 } 3300 if (ctlr->bus_num < 0) { 3301 first_dynamic = of_alias_get_highest_id("spi"); 3302 if (first_dynamic < 0) 3303 first_dynamic = 0; 3304 else 3305 first_dynamic++; 3306 3307 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3308 if (status) 3309 return status; 3310 } 3311 ctlr->bus_lock_flag = 0; 3312 init_completion(&ctlr->xfer_completion); 3313 init_completion(&ctlr->cur_msg_completion); 3314 if (!ctlr->max_dma_len) 3315 ctlr->max_dma_len = INT_MAX; 3316 3317 /* 3318 * Register the device, then userspace will see it. 3319 * Registration fails if the bus ID is in use. 3320 */ 3321 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3322 3323 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3324 status = spi_get_gpio_descs(ctlr); 3325 if (status) 3326 goto free_bus_id; 3327 /* 3328 * A controller using GPIO descriptors always 3329 * supports SPI_CS_HIGH if need be. 3330 */ 3331 ctlr->mode_bits |= SPI_CS_HIGH; 3332 } 3333 3334 /* 3335 * Even if it's just one always-selected device, there must 3336 * be at least one chipselect. 3337 */ 3338 if (!ctlr->num_chipselect) { 3339 status = -EINVAL; 3340 goto free_bus_id; 3341 } 3342 3343 /* Setting last_cs to -1 means no chip selected */ 3344 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3345 ctlr->last_cs[idx] = -1; 3346 3347 status = device_add(&ctlr->dev); 3348 if (status < 0) 3349 goto free_bus_id; 3350 dev_dbg(dev, "registered %s %s\n", 3351 spi_controller_is_slave(ctlr) ? "slave" : "master", 3352 dev_name(&ctlr->dev)); 3353 3354 /* 3355 * If we're using a queued driver, start the queue. Note that we don't 3356 * need the queueing logic if the driver is only supporting high-level 3357 * memory operations. 3358 */ 3359 if (ctlr->transfer) { 3360 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3361 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3362 status = spi_controller_initialize_queue(ctlr); 3363 if (status) { 3364 device_del(&ctlr->dev); 3365 goto free_bus_id; 3366 } 3367 } 3368 /* Add statistics */ 3369 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3370 if (!ctlr->pcpu_statistics) { 3371 dev_err(dev, "Error allocating per-cpu statistics\n"); 3372 status = -ENOMEM; 3373 goto destroy_queue; 3374 } 3375 3376 mutex_lock(&board_lock); 3377 list_add_tail(&ctlr->list, &spi_controller_list); 3378 list_for_each_entry(bi, &board_list, list) 3379 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3380 mutex_unlock(&board_lock); 3381 3382 /* Register devices from the device tree and ACPI */ 3383 of_register_spi_devices(ctlr); 3384 acpi_register_spi_devices(ctlr); 3385 return status; 3386 3387 destroy_queue: 3388 spi_destroy_queue(ctlr); 3389 free_bus_id: 3390 mutex_lock(&board_lock); 3391 idr_remove(&spi_master_idr, ctlr->bus_num); 3392 mutex_unlock(&board_lock); 3393 return status; 3394 } 3395 EXPORT_SYMBOL_GPL(spi_register_controller); 3396 3397 static void devm_spi_unregister(struct device *dev, void *res) 3398 { 3399 spi_unregister_controller(*(struct spi_controller **)res); 3400 } 3401 3402 /** 3403 * devm_spi_register_controller - register managed SPI master or slave 3404 * controller 3405 * @dev: device managing SPI controller 3406 * @ctlr: initialized controller, originally from spi_alloc_master() or 3407 * spi_alloc_slave() 3408 * Context: can sleep 3409 * 3410 * Register a SPI device as with spi_register_controller() which will 3411 * automatically be unregistered and freed. 3412 * 3413 * Return: zero on success, else a negative error code. 3414 */ 3415 int devm_spi_register_controller(struct device *dev, 3416 struct spi_controller *ctlr) 3417 { 3418 struct spi_controller **ptr; 3419 int ret; 3420 3421 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3422 if (!ptr) 3423 return -ENOMEM; 3424 3425 ret = spi_register_controller(ctlr); 3426 if (!ret) { 3427 *ptr = ctlr; 3428 devres_add(dev, ptr); 3429 } else { 3430 devres_free(ptr); 3431 } 3432 3433 return ret; 3434 } 3435 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3436 3437 static int __unregister(struct device *dev, void *null) 3438 { 3439 spi_unregister_device(to_spi_device(dev)); 3440 return 0; 3441 } 3442 3443 /** 3444 * spi_unregister_controller - unregister SPI master or slave controller 3445 * @ctlr: the controller being unregistered 3446 * Context: can sleep 3447 * 3448 * This call is used only by SPI controller drivers, which are the 3449 * only ones directly touching chip registers. 3450 * 3451 * This must be called from context that can sleep. 3452 * 3453 * Note that this function also drops a reference to the controller. 3454 */ 3455 void spi_unregister_controller(struct spi_controller *ctlr) 3456 { 3457 struct spi_controller *found; 3458 int id = ctlr->bus_num; 3459 3460 /* Prevent addition of new devices, unregister existing ones */ 3461 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3462 mutex_lock(&ctlr->add_lock); 3463 3464 device_for_each_child(&ctlr->dev, NULL, __unregister); 3465 3466 /* First make sure that this controller was ever added */ 3467 mutex_lock(&board_lock); 3468 found = idr_find(&spi_master_idr, id); 3469 mutex_unlock(&board_lock); 3470 if (ctlr->queued) { 3471 if (spi_destroy_queue(ctlr)) 3472 dev_err(&ctlr->dev, "queue remove failed\n"); 3473 } 3474 mutex_lock(&board_lock); 3475 list_del(&ctlr->list); 3476 mutex_unlock(&board_lock); 3477 3478 device_del(&ctlr->dev); 3479 3480 /* Free bus id */ 3481 mutex_lock(&board_lock); 3482 if (found == ctlr) 3483 idr_remove(&spi_master_idr, id); 3484 mutex_unlock(&board_lock); 3485 3486 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3487 mutex_unlock(&ctlr->add_lock); 3488 3489 /* 3490 * Release the last reference on the controller if its driver 3491 * has not yet been converted to devm_spi_alloc_master/slave(). 3492 */ 3493 if (!ctlr->devm_allocated) 3494 put_device(&ctlr->dev); 3495 } 3496 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3497 3498 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3499 { 3500 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3501 } 3502 3503 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3504 { 3505 mutex_lock(&ctlr->bus_lock_mutex); 3506 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3507 mutex_unlock(&ctlr->bus_lock_mutex); 3508 } 3509 3510 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3511 { 3512 mutex_lock(&ctlr->bus_lock_mutex); 3513 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3514 mutex_unlock(&ctlr->bus_lock_mutex); 3515 } 3516 3517 int spi_controller_suspend(struct spi_controller *ctlr) 3518 { 3519 int ret = 0; 3520 3521 /* Basically no-ops for non-queued controllers */ 3522 if (ctlr->queued) { 3523 ret = spi_stop_queue(ctlr); 3524 if (ret) 3525 dev_err(&ctlr->dev, "queue stop failed\n"); 3526 } 3527 3528 __spi_mark_suspended(ctlr); 3529 return ret; 3530 } 3531 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3532 3533 int spi_controller_resume(struct spi_controller *ctlr) 3534 { 3535 int ret = 0; 3536 3537 __spi_mark_resumed(ctlr); 3538 3539 if (ctlr->queued) { 3540 ret = spi_start_queue(ctlr); 3541 if (ret) 3542 dev_err(&ctlr->dev, "queue restart failed\n"); 3543 } 3544 return ret; 3545 } 3546 EXPORT_SYMBOL_GPL(spi_controller_resume); 3547 3548 /*-------------------------------------------------------------------------*/ 3549 3550 /* Core methods for spi_message alterations */ 3551 3552 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3553 struct spi_message *msg, 3554 void *res) 3555 { 3556 struct spi_replaced_transfers *rxfer = res; 3557 size_t i; 3558 3559 /* Call extra callback if requested */ 3560 if (rxfer->release) 3561 rxfer->release(ctlr, msg, res); 3562 3563 /* Insert replaced transfers back into the message */ 3564 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3565 3566 /* Remove the formerly inserted entries */ 3567 for (i = 0; i < rxfer->inserted; i++) 3568 list_del(&rxfer->inserted_transfers[i].transfer_list); 3569 } 3570 3571 /** 3572 * spi_replace_transfers - replace transfers with several transfers 3573 * and register change with spi_message.resources 3574 * @msg: the spi_message we work upon 3575 * @xfer_first: the first spi_transfer we want to replace 3576 * @remove: number of transfers to remove 3577 * @insert: the number of transfers we want to insert instead 3578 * @release: extra release code necessary in some circumstances 3579 * @extradatasize: extra data to allocate (with alignment guarantees 3580 * of struct @spi_transfer) 3581 * @gfp: gfp flags 3582 * 3583 * Returns: pointer to @spi_replaced_transfers, 3584 * PTR_ERR(...) in case of errors. 3585 */ 3586 static struct spi_replaced_transfers *spi_replace_transfers( 3587 struct spi_message *msg, 3588 struct spi_transfer *xfer_first, 3589 size_t remove, 3590 size_t insert, 3591 spi_replaced_release_t release, 3592 size_t extradatasize, 3593 gfp_t gfp) 3594 { 3595 struct spi_replaced_transfers *rxfer; 3596 struct spi_transfer *xfer; 3597 size_t i; 3598 3599 /* Allocate the structure using spi_res */ 3600 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3601 struct_size(rxfer, inserted_transfers, insert) 3602 + extradatasize, 3603 gfp); 3604 if (!rxfer) 3605 return ERR_PTR(-ENOMEM); 3606 3607 /* The release code to invoke before running the generic release */ 3608 rxfer->release = release; 3609 3610 /* Assign extradata */ 3611 if (extradatasize) 3612 rxfer->extradata = 3613 &rxfer->inserted_transfers[insert]; 3614 3615 /* Init the replaced_transfers list */ 3616 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3617 3618 /* 3619 * Assign the list_entry after which we should reinsert 3620 * the @replaced_transfers - it may be spi_message.messages! 3621 */ 3622 rxfer->replaced_after = xfer_first->transfer_list.prev; 3623 3624 /* Remove the requested number of transfers */ 3625 for (i = 0; i < remove; i++) { 3626 /* 3627 * If the entry after replaced_after it is msg->transfers 3628 * then we have been requested to remove more transfers 3629 * than are in the list. 3630 */ 3631 if (rxfer->replaced_after->next == &msg->transfers) { 3632 dev_err(&msg->spi->dev, 3633 "requested to remove more spi_transfers than are available\n"); 3634 /* Insert replaced transfers back into the message */ 3635 list_splice(&rxfer->replaced_transfers, 3636 rxfer->replaced_after); 3637 3638 /* Free the spi_replace_transfer structure... */ 3639 spi_res_free(rxfer); 3640 3641 /* ...and return with an error */ 3642 return ERR_PTR(-EINVAL); 3643 } 3644 3645 /* 3646 * Remove the entry after replaced_after from list of 3647 * transfers and add it to list of replaced_transfers. 3648 */ 3649 list_move_tail(rxfer->replaced_after->next, 3650 &rxfer->replaced_transfers); 3651 } 3652 3653 /* 3654 * Create copy of the given xfer with identical settings 3655 * based on the first transfer to get removed. 3656 */ 3657 for (i = 0; i < insert; i++) { 3658 /* We need to run in reverse order */ 3659 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3660 3661 /* Copy all spi_transfer data */ 3662 memcpy(xfer, xfer_first, sizeof(*xfer)); 3663 3664 /* Add to list */ 3665 list_add(&xfer->transfer_list, rxfer->replaced_after); 3666 3667 /* Clear cs_change and delay for all but the last */ 3668 if (i) { 3669 xfer->cs_change = false; 3670 xfer->delay.value = 0; 3671 } 3672 } 3673 3674 /* Set up inserted... */ 3675 rxfer->inserted = insert; 3676 3677 /* ...and register it with spi_res/spi_message */ 3678 spi_res_add(msg, rxfer); 3679 3680 return rxfer; 3681 } 3682 3683 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3684 struct spi_message *msg, 3685 struct spi_transfer **xferp, 3686 size_t maxsize, 3687 gfp_t gfp) 3688 { 3689 struct spi_transfer *xfer = *xferp, *xfers; 3690 struct spi_replaced_transfers *srt; 3691 size_t offset; 3692 size_t count, i; 3693 3694 /* Calculate how many we have to replace */ 3695 count = DIV_ROUND_UP(xfer->len, maxsize); 3696 3697 /* Create replacement */ 3698 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3699 if (IS_ERR(srt)) 3700 return PTR_ERR(srt); 3701 xfers = srt->inserted_transfers; 3702 3703 /* 3704 * Now handle each of those newly inserted spi_transfers. 3705 * Note that the replacements spi_transfers all are preset 3706 * to the same values as *xferp, so tx_buf, rx_buf and len 3707 * are all identical (as well as most others) 3708 * so we just have to fix up len and the pointers. 3709 * 3710 * This also includes support for the depreciated 3711 * spi_message.is_dma_mapped interface. 3712 */ 3713 3714 /* 3715 * The first transfer just needs the length modified, so we 3716 * run it outside the loop. 3717 */ 3718 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3719 3720 /* All the others need rx_buf/tx_buf also set */ 3721 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3722 /* Update rx_buf, tx_buf and DMA */ 3723 if (xfers[i].rx_buf) 3724 xfers[i].rx_buf += offset; 3725 if (xfers[i].rx_dma) 3726 xfers[i].rx_dma += offset; 3727 if (xfers[i].tx_buf) 3728 xfers[i].tx_buf += offset; 3729 if (xfers[i].tx_dma) 3730 xfers[i].tx_dma += offset; 3731 3732 /* Update length */ 3733 xfers[i].len = min(maxsize, xfers[i].len - offset); 3734 } 3735 3736 /* 3737 * We set up xferp to the last entry we have inserted, 3738 * so that we skip those already split transfers. 3739 */ 3740 *xferp = &xfers[count - 1]; 3741 3742 /* Increment statistics counters */ 3743 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3744 transfers_split_maxsize); 3745 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3746 transfers_split_maxsize); 3747 3748 return 0; 3749 } 3750 3751 /** 3752 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3753 * when an individual transfer exceeds a 3754 * certain size 3755 * @ctlr: the @spi_controller for this transfer 3756 * @msg: the @spi_message to transform 3757 * @maxsize: the maximum when to apply this 3758 * @gfp: GFP allocation flags 3759 * 3760 * Return: status of transformation 3761 */ 3762 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3763 struct spi_message *msg, 3764 size_t maxsize, 3765 gfp_t gfp) 3766 { 3767 struct spi_transfer *xfer; 3768 int ret; 3769 3770 /* 3771 * Iterate over the transfer_list, 3772 * but note that xfer is advanced to the last transfer inserted 3773 * to avoid checking sizes again unnecessarily (also xfer does 3774 * potentially belong to a different list by the time the 3775 * replacement has happened). 3776 */ 3777 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3778 if (xfer->len > maxsize) { 3779 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3780 maxsize, gfp); 3781 if (ret) 3782 return ret; 3783 } 3784 } 3785 3786 return 0; 3787 } 3788 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3789 3790 3791 /** 3792 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3793 * when an individual transfer exceeds a 3794 * certain number of SPI words 3795 * @ctlr: the @spi_controller for this transfer 3796 * @msg: the @spi_message to transform 3797 * @maxwords: the number of words to limit each transfer to 3798 * @gfp: GFP allocation flags 3799 * 3800 * Return: status of transformation 3801 */ 3802 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3803 struct spi_message *msg, 3804 size_t maxwords, 3805 gfp_t gfp) 3806 { 3807 struct spi_transfer *xfer; 3808 3809 /* 3810 * Iterate over the transfer_list, 3811 * but note that xfer is advanced to the last transfer inserted 3812 * to avoid checking sizes again unnecessarily (also xfer does 3813 * potentially belong to a different list by the time the 3814 * replacement has happened). 3815 */ 3816 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3817 size_t maxsize; 3818 int ret; 3819 3820 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3821 if (xfer->len > maxsize) { 3822 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3823 maxsize, gfp); 3824 if (ret) 3825 return ret; 3826 } 3827 } 3828 3829 return 0; 3830 } 3831 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3832 3833 /*-------------------------------------------------------------------------*/ 3834 3835 /* 3836 * Core methods for SPI controller protocol drivers. Some of the 3837 * other core methods are currently defined as inline functions. 3838 */ 3839 3840 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3841 u8 bits_per_word) 3842 { 3843 if (ctlr->bits_per_word_mask) { 3844 /* Only 32 bits fit in the mask */ 3845 if (bits_per_word > 32) 3846 return -EINVAL; 3847 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3848 return -EINVAL; 3849 } 3850 3851 return 0; 3852 } 3853 3854 /** 3855 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3856 * @spi: the device that requires specific CS timing configuration 3857 * 3858 * Return: zero on success, else a negative error code. 3859 */ 3860 static int spi_set_cs_timing(struct spi_device *spi) 3861 { 3862 struct device *parent = spi->controller->dev.parent; 3863 int status = 0; 3864 3865 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3866 if (spi->controller->auto_runtime_pm) { 3867 status = pm_runtime_get_sync(parent); 3868 if (status < 0) { 3869 pm_runtime_put_noidle(parent); 3870 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3871 status); 3872 return status; 3873 } 3874 3875 status = spi->controller->set_cs_timing(spi); 3876 pm_runtime_mark_last_busy(parent); 3877 pm_runtime_put_autosuspend(parent); 3878 } else { 3879 status = spi->controller->set_cs_timing(spi); 3880 } 3881 } 3882 return status; 3883 } 3884 3885 /** 3886 * spi_setup - setup SPI mode and clock rate 3887 * @spi: the device whose settings are being modified 3888 * Context: can sleep, and no requests are queued to the device 3889 * 3890 * SPI protocol drivers may need to update the transfer mode if the 3891 * device doesn't work with its default. They may likewise need 3892 * to update clock rates or word sizes from initial values. This function 3893 * changes those settings, and must be called from a context that can sleep. 3894 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3895 * effect the next time the device is selected and data is transferred to 3896 * or from it. When this function returns, the SPI device is deselected. 3897 * 3898 * Note that this call will fail if the protocol driver specifies an option 3899 * that the underlying controller or its driver does not support. For 3900 * example, not all hardware supports wire transfers using nine bit words, 3901 * LSB-first wire encoding, or active-high chipselects. 3902 * 3903 * Return: zero on success, else a negative error code. 3904 */ 3905 int spi_setup(struct spi_device *spi) 3906 { 3907 unsigned bad_bits, ugly_bits; 3908 int status = 0; 3909 3910 /* 3911 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3912 * are set at the same time. 3913 */ 3914 if ((hweight_long(spi->mode & 3915 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3916 (hweight_long(spi->mode & 3917 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3918 dev_err(&spi->dev, 3919 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3920 return -EINVAL; 3921 } 3922 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3923 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3924 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3925 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3926 return -EINVAL; 3927 /* 3928 * Help drivers fail *cleanly* when they need options 3929 * that aren't supported with their current controller. 3930 * SPI_CS_WORD has a fallback software implementation, 3931 * so it is ignored here. 3932 */ 3933 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3934 SPI_NO_TX | SPI_NO_RX); 3935 ugly_bits = bad_bits & 3936 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3937 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3938 if (ugly_bits) { 3939 dev_warn(&spi->dev, 3940 "setup: ignoring unsupported mode bits %x\n", 3941 ugly_bits); 3942 spi->mode &= ~ugly_bits; 3943 bad_bits &= ~ugly_bits; 3944 } 3945 if (bad_bits) { 3946 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3947 bad_bits); 3948 return -EINVAL; 3949 } 3950 3951 if (!spi->bits_per_word) { 3952 spi->bits_per_word = 8; 3953 } else { 3954 /* 3955 * Some controllers may not support the default 8 bits-per-word 3956 * so only perform the check when this is explicitly provided. 3957 */ 3958 status = __spi_validate_bits_per_word(spi->controller, 3959 spi->bits_per_word); 3960 if (status) 3961 return status; 3962 } 3963 3964 if (spi->controller->max_speed_hz && 3965 (!spi->max_speed_hz || 3966 spi->max_speed_hz > spi->controller->max_speed_hz)) 3967 spi->max_speed_hz = spi->controller->max_speed_hz; 3968 3969 mutex_lock(&spi->controller->io_mutex); 3970 3971 if (spi->controller->setup) { 3972 status = spi->controller->setup(spi); 3973 if (status) { 3974 mutex_unlock(&spi->controller->io_mutex); 3975 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3976 status); 3977 return status; 3978 } 3979 } 3980 3981 status = spi_set_cs_timing(spi); 3982 if (status) { 3983 mutex_unlock(&spi->controller->io_mutex); 3984 return status; 3985 } 3986 3987 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3988 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3989 if (status < 0) { 3990 mutex_unlock(&spi->controller->io_mutex); 3991 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3992 status); 3993 return status; 3994 } 3995 3996 /* 3997 * We do not want to return positive value from pm_runtime_get, 3998 * there are many instances of devices calling spi_setup() and 3999 * checking for a non-zero return value instead of a negative 4000 * return value. 4001 */ 4002 status = 0; 4003 4004 spi_set_cs(spi, false, true); 4005 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4006 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4007 } else { 4008 spi_set_cs(spi, false, true); 4009 } 4010 4011 mutex_unlock(&spi->controller->io_mutex); 4012 4013 if (spi->rt && !spi->controller->rt) { 4014 spi->controller->rt = true; 4015 spi_set_thread_rt(spi->controller); 4016 } 4017 4018 trace_spi_setup(spi, status); 4019 4020 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4021 spi->mode & SPI_MODE_X_MASK, 4022 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4023 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4024 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4025 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4026 spi->bits_per_word, spi->max_speed_hz, 4027 status); 4028 4029 return status; 4030 } 4031 EXPORT_SYMBOL_GPL(spi_setup); 4032 4033 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4034 struct spi_device *spi) 4035 { 4036 int delay1, delay2; 4037 4038 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4039 if (delay1 < 0) 4040 return delay1; 4041 4042 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4043 if (delay2 < 0) 4044 return delay2; 4045 4046 if (delay1 < delay2) 4047 memcpy(&xfer->word_delay, &spi->word_delay, 4048 sizeof(xfer->word_delay)); 4049 4050 return 0; 4051 } 4052 4053 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4054 { 4055 struct spi_controller *ctlr = spi->controller; 4056 struct spi_transfer *xfer; 4057 int w_size; 4058 4059 if (list_empty(&message->transfers)) 4060 return -EINVAL; 4061 4062 /* 4063 * If an SPI controller does not support toggling the CS line on each 4064 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4065 * for the CS line, we can emulate the CS-per-word hardware function by 4066 * splitting transfers into one-word transfers and ensuring that 4067 * cs_change is set for each transfer. 4068 */ 4069 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 4070 spi_is_csgpiod(spi))) { 4071 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word); 4072 int ret; 4073 4074 /* spi_split_transfers_maxsize() requires message->spi */ 4075 message->spi = spi; 4076 4077 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 4078 GFP_KERNEL); 4079 if (ret) 4080 return ret; 4081 4082 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4083 /* Don't change cs_change on the last entry in the list */ 4084 if (list_is_last(&xfer->transfer_list, &message->transfers)) 4085 break; 4086 xfer->cs_change = 1; 4087 } 4088 } 4089 4090 /* 4091 * Half-duplex links include original MicroWire, and ones with 4092 * only one data pin like SPI_3WIRE (switches direction) or where 4093 * either MOSI or MISO is missing. They can also be caused by 4094 * software limitations. 4095 */ 4096 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4097 (spi->mode & SPI_3WIRE)) { 4098 unsigned flags = ctlr->flags; 4099 4100 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4101 if (xfer->rx_buf && xfer->tx_buf) 4102 return -EINVAL; 4103 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4104 return -EINVAL; 4105 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4106 return -EINVAL; 4107 } 4108 } 4109 4110 /* 4111 * Set transfer bits_per_word and max speed as spi device default if 4112 * it is not set for this transfer. 4113 * Set transfer tx_nbits and rx_nbits as single transfer default 4114 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4115 * Ensure transfer word_delay is at least as long as that required by 4116 * device itself. 4117 */ 4118 message->frame_length = 0; 4119 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4120 xfer->effective_speed_hz = 0; 4121 message->frame_length += xfer->len; 4122 if (!xfer->bits_per_word) 4123 xfer->bits_per_word = spi->bits_per_word; 4124 4125 if (!xfer->speed_hz) 4126 xfer->speed_hz = spi->max_speed_hz; 4127 4128 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4129 xfer->speed_hz = ctlr->max_speed_hz; 4130 4131 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4132 return -EINVAL; 4133 4134 /* 4135 * SPI transfer length should be multiple of SPI word size 4136 * where SPI word size should be power-of-two multiple. 4137 */ 4138 if (xfer->bits_per_word <= 8) 4139 w_size = 1; 4140 else if (xfer->bits_per_word <= 16) 4141 w_size = 2; 4142 else 4143 w_size = 4; 4144 4145 /* No partial transfers accepted */ 4146 if (xfer->len % w_size) 4147 return -EINVAL; 4148 4149 if (xfer->speed_hz && ctlr->min_speed_hz && 4150 xfer->speed_hz < ctlr->min_speed_hz) 4151 return -EINVAL; 4152 4153 if (xfer->tx_buf && !xfer->tx_nbits) 4154 xfer->tx_nbits = SPI_NBITS_SINGLE; 4155 if (xfer->rx_buf && !xfer->rx_nbits) 4156 xfer->rx_nbits = SPI_NBITS_SINGLE; 4157 /* 4158 * Check transfer tx/rx_nbits: 4159 * 1. check the value matches one of single, dual and quad 4160 * 2. check tx/rx_nbits match the mode in spi_device 4161 */ 4162 if (xfer->tx_buf) { 4163 if (spi->mode & SPI_NO_TX) 4164 return -EINVAL; 4165 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4166 xfer->tx_nbits != SPI_NBITS_DUAL && 4167 xfer->tx_nbits != SPI_NBITS_QUAD) 4168 return -EINVAL; 4169 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4170 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4171 return -EINVAL; 4172 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4173 !(spi->mode & SPI_TX_QUAD)) 4174 return -EINVAL; 4175 } 4176 /* Check transfer rx_nbits */ 4177 if (xfer->rx_buf) { 4178 if (spi->mode & SPI_NO_RX) 4179 return -EINVAL; 4180 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4181 xfer->rx_nbits != SPI_NBITS_DUAL && 4182 xfer->rx_nbits != SPI_NBITS_QUAD) 4183 return -EINVAL; 4184 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4185 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4186 return -EINVAL; 4187 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4188 !(spi->mode & SPI_RX_QUAD)) 4189 return -EINVAL; 4190 } 4191 4192 if (_spi_xfer_word_delay_update(xfer, spi)) 4193 return -EINVAL; 4194 } 4195 4196 message->status = -EINPROGRESS; 4197 4198 return 0; 4199 } 4200 4201 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4202 { 4203 struct spi_controller *ctlr = spi->controller; 4204 struct spi_transfer *xfer; 4205 4206 /* 4207 * Some controllers do not support doing regular SPI transfers. Return 4208 * ENOTSUPP when this is the case. 4209 */ 4210 if (!ctlr->transfer) 4211 return -ENOTSUPP; 4212 4213 message->spi = spi; 4214 4215 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4216 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4217 4218 trace_spi_message_submit(message); 4219 4220 if (!ctlr->ptp_sts_supported) { 4221 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4222 xfer->ptp_sts_word_pre = 0; 4223 ptp_read_system_prets(xfer->ptp_sts); 4224 } 4225 } 4226 4227 return ctlr->transfer(spi, message); 4228 } 4229 4230 /** 4231 * spi_async - asynchronous SPI transfer 4232 * @spi: device with which data will be exchanged 4233 * @message: describes the data transfers, including completion callback 4234 * Context: any (IRQs may be blocked, etc) 4235 * 4236 * This call may be used in_irq and other contexts which can't sleep, 4237 * as well as from task contexts which can sleep. 4238 * 4239 * The completion callback is invoked in a context which can't sleep. 4240 * Before that invocation, the value of message->status is undefined. 4241 * When the callback is issued, message->status holds either zero (to 4242 * indicate complete success) or a negative error code. After that 4243 * callback returns, the driver which issued the transfer request may 4244 * deallocate the associated memory; it's no longer in use by any SPI 4245 * core or controller driver code. 4246 * 4247 * Note that although all messages to a spi_device are handled in 4248 * FIFO order, messages may go to different devices in other orders. 4249 * Some device might be higher priority, or have various "hard" access 4250 * time requirements, for example. 4251 * 4252 * On detection of any fault during the transfer, processing of 4253 * the entire message is aborted, and the device is deselected. 4254 * Until returning from the associated message completion callback, 4255 * no other spi_message queued to that device will be processed. 4256 * (This rule applies equally to all the synchronous transfer calls, 4257 * which are wrappers around this core asynchronous primitive.) 4258 * 4259 * Return: zero on success, else a negative error code. 4260 */ 4261 int spi_async(struct spi_device *spi, struct spi_message *message) 4262 { 4263 struct spi_controller *ctlr = spi->controller; 4264 int ret; 4265 unsigned long flags; 4266 4267 ret = __spi_validate(spi, message); 4268 if (ret != 0) 4269 return ret; 4270 4271 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4272 4273 if (ctlr->bus_lock_flag) 4274 ret = -EBUSY; 4275 else 4276 ret = __spi_async(spi, message); 4277 4278 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4279 4280 return ret; 4281 } 4282 EXPORT_SYMBOL_GPL(spi_async); 4283 4284 /** 4285 * spi_async_locked - version of spi_async with exclusive bus usage 4286 * @spi: device with which data will be exchanged 4287 * @message: describes the data transfers, including completion callback 4288 * Context: any (IRQs may be blocked, etc) 4289 * 4290 * This call may be used in_irq and other contexts which can't sleep, 4291 * as well as from task contexts which can sleep. 4292 * 4293 * The completion callback is invoked in a context which can't sleep. 4294 * Before that invocation, the value of message->status is undefined. 4295 * When the callback is issued, message->status holds either zero (to 4296 * indicate complete success) or a negative error code. After that 4297 * callback returns, the driver which issued the transfer request may 4298 * deallocate the associated memory; it's no longer in use by any SPI 4299 * core or controller driver code. 4300 * 4301 * Note that although all messages to a spi_device are handled in 4302 * FIFO order, messages may go to different devices in other orders. 4303 * Some device might be higher priority, or have various "hard" access 4304 * time requirements, for example. 4305 * 4306 * On detection of any fault during the transfer, processing of 4307 * the entire message is aborted, and the device is deselected. 4308 * Until returning from the associated message completion callback, 4309 * no other spi_message queued to that device will be processed. 4310 * (This rule applies equally to all the synchronous transfer calls, 4311 * which are wrappers around this core asynchronous primitive.) 4312 * 4313 * Return: zero on success, else a negative error code. 4314 */ 4315 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4316 { 4317 struct spi_controller *ctlr = spi->controller; 4318 int ret; 4319 unsigned long flags; 4320 4321 ret = __spi_validate(spi, message); 4322 if (ret != 0) 4323 return ret; 4324 4325 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4326 4327 ret = __spi_async(spi, message); 4328 4329 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4330 4331 return ret; 4332 4333 } 4334 4335 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4336 { 4337 bool was_busy; 4338 int ret; 4339 4340 mutex_lock(&ctlr->io_mutex); 4341 4342 was_busy = ctlr->busy; 4343 4344 ctlr->cur_msg = msg; 4345 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4346 if (ret) 4347 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4348 ctlr->cur_msg = NULL; 4349 ctlr->fallback = false; 4350 4351 if (!was_busy) { 4352 kfree(ctlr->dummy_rx); 4353 ctlr->dummy_rx = NULL; 4354 kfree(ctlr->dummy_tx); 4355 ctlr->dummy_tx = NULL; 4356 if (ctlr->unprepare_transfer_hardware && 4357 ctlr->unprepare_transfer_hardware(ctlr)) 4358 dev_err(&ctlr->dev, 4359 "failed to unprepare transfer hardware\n"); 4360 spi_idle_runtime_pm(ctlr); 4361 } 4362 4363 mutex_unlock(&ctlr->io_mutex); 4364 } 4365 4366 /*-------------------------------------------------------------------------*/ 4367 4368 /* 4369 * Utility methods for SPI protocol drivers, layered on 4370 * top of the core. Some other utility methods are defined as 4371 * inline functions. 4372 */ 4373 4374 static void spi_complete(void *arg) 4375 { 4376 complete(arg); 4377 } 4378 4379 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4380 { 4381 DECLARE_COMPLETION_ONSTACK(done); 4382 int status; 4383 struct spi_controller *ctlr = spi->controller; 4384 4385 if (__spi_check_suspended(ctlr)) { 4386 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4387 return -ESHUTDOWN; 4388 } 4389 4390 status = __spi_validate(spi, message); 4391 if (status != 0) 4392 return status; 4393 4394 message->spi = spi; 4395 4396 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4397 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4398 4399 /* 4400 * Checking queue_empty here only guarantees async/sync message 4401 * ordering when coming from the same context. It does not need to 4402 * guard against reentrancy from a different context. The io_mutex 4403 * will catch those cases. 4404 */ 4405 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4406 message->actual_length = 0; 4407 message->status = -EINPROGRESS; 4408 4409 trace_spi_message_submit(message); 4410 4411 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4412 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4413 4414 __spi_transfer_message_noqueue(ctlr, message); 4415 4416 return message->status; 4417 } 4418 4419 /* 4420 * There are messages in the async queue that could have originated 4421 * from the same context, so we need to preserve ordering. 4422 * Therefor we send the message to the async queue and wait until they 4423 * are completed. 4424 */ 4425 message->complete = spi_complete; 4426 message->context = &done; 4427 status = spi_async_locked(spi, message); 4428 if (status == 0) { 4429 wait_for_completion(&done); 4430 status = message->status; 4431 } 4432 message->context = NULL; 4433 4434 return status; 4435 } 4436 4437 /** 4438 * spi_sync - blocking/synchronous SPI data transfers 4439 * @spi: device with which data will be exchanged 4440 * @message: describes the data transfers 4441 * Context: can sleep 4442 * 4443 * This call may only be used from a context that may sleep. The sleep 4444 * is non-interruptible, and has no timeout. Low-overhead controller 4445 * drivers may DMA directly into and out of the message buffers. 4446 * 4447 * Note that the SPI device's chip select is active during the message, 4448 * and then is normally disabled between messages. Drivers for some 4449 * frequently-used devices may want to minimize costs of selecting a chip, 4450 * by leaving it selected in anticipation that the next message will go 4451 * to the same chip. (That may increase power usage.) 4452 * 4453 * Also, the caller is guaranteeing that the memory associated with the 4454 * message will not be freed before this call returns. 4455 * 4456 * Return: zero on success, else a negative error code. 4457 */ 4458 int spi_sync(struct spi_device *spi, struct spi_message *message) 4459 { 4460 int ret; 4461 4462 mutex_lock(&spi->controller->bus_lock_mutex); 4463 ret = __spi_sync(spi, message); 4464 mutex_unlock(&spi->controller->bus_lock_mutex); 4465 4466 return ret; 4467 } 4468 EXPORT_SYMBOL_GPL(spi_sync); 4469 4470 /** 4471 * spi_sync_locked - version of spi_sync with exclusive bus usage 4472 * @spi: device with which data will be exchanged 4473 * @message: describes the data transfers 4474 * Context: can sleep 4475 * 4476 * This call may only be used from a context that may sleep. The sleep 4477 * is non-interruptible, and has no timeout. Low-overhead controller 4478 * drivers may DMA directly into and out of the message buffers. 4479 * 4480 * This call should be used by drivers that require exclusive access to the 4481 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4482 * be released by a spi_bus_unlock call when the exclusive access is over. 4483 * 4484 * Return: zero on success, else a negative error code. 4485 */ 4486 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4487 { 4488 return __spi_sync(spi, message); 4489 } 4490 EXPORT_SYMBOL_GPL(spi_sync_locked); 4491 4492 /** 4493 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4494 * @ctlr: SPI bus master that should be locked for exclusive bus access 4495 * Context: can sleep 4496 * 4497 * This call may only be used from a context that may sleep. The sleep 4498 * is non-interruptible, and has no timeout. 4499 * 4500 * This call should be used by drivers that require exclusive access to the 4501 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4502 * exclusive access is over. Data transfer must be done by spi_sync_locked 4503 * and spi_async_locked calls when the SPI bus lock is held. 4504 * 4505 * Return: always zero. 4506 */ 4507 int spi_bus_lock(struct spi_controller *ctlr) 4508 { 4509 unsigned long flags; 4510 4511 mutex_lock(&ctlr->bus_lock_mutex); 4512 4513 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4514 ctlr->bus_lock_flag = 1; 4515 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4516 4517 /* Mutex remains locked until spi_bus_unlock() is called */ 4518 4519 return 0; 4520 } 4521 EXPORT_SYMBOL_GPL(spi_bus_lock); 4522 4523 /** 4524 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4525 * @ctlr: SPI bus master that was locked for exclusive bus access 4526 * Context: can sleep 4527 * 4528 * This call may only be used from a context that may sleep. The sleep 4529 * is non-interruptible, and has no timeout. 4530 * 4531 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4532 * call. 4533 * 4534 * Return: always zero. 4535 */ 4536 int spi_bus_unlock(struct spi_controller *ctlr) 4537 { 4538 ctlr->bus_lock_flag = 0; 4539 4540 mutex_unlock(&ctlr->bus_lock_mutex); 4541 4542 return 0; 4543 } 4544 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4545 4546 /* Portable code must never pass more than 32 bytes */ 4547 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4548 4549 static u8 *buf; 4550 4551 /** 4552 * spi_write_then_read - SPI synchronous write followed by read 4553 * @spi: device with which data will be exchanged 4554 * @txbuf: data to be written (need not be DMA-safe) 4555 * @n_tx: size of txbuf, in bytes 4556 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4557 * @n_rx: size of rxbuf, in bytes 4558 * Context: can sleep 4559 * 4560 * This performs a half duplex MicroWire style transaction with the 4561 * device, sending txbuf and then reading rxbuf. The return value 4562 * is zero for success, else a negative errno status code. 4563 * This call may only be used from a context that may sleep. 4564 * 4565 * Parameters to this routine are always copied using a small buffer. 4566 * Performance-sensitive or bulk transfer code should instead use 4567 * spi_{async,sync}() calls with DMA-safe buffers. 4568 * 4569 * Return: zero on success, else a negative error code. 4570 */ 4571 int spi_write_then_read(struct spi_device *spi, 4572 const void *txbuf, unsigned n_tx, 4573 void *rxbuf, unsigned n_rx) 4574 { 4575 static DEFINE_MUTEX(lock); 4576 4577 int status; 4578 struct spi_message message; 4579 struct spi_transfer x[2]; 4580 u8 *local_buf; 4581 4582 /* 4583 * Use preallocated DMA-safe buffer if we can. We can't avoid 4584 * copying here, (as a pure convenience thing), but we can 4585 * keep heap costs out of the hot path unless someone else is 4586 * using the pre-allocated buffer or the transfer is too large. 4587 */ 4588 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4589 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4590 GFP_KERNEL | GFP_DMA); 4591 if (!local_buf) 4592 return -ENOMEM; 4593 } else { 4594 local_buf = buf; 4595 } 4596 4597 spi_message_init(&message); 4598 memset(x, 0, sizeof(x)); 4599 if (n_tx) { 4600 x[0].len = n_tx; 4601 spi_message_add_tail(&x[0], &message); 4602 } 4603 if (n_rx) { 4604 x[1].len = n_rx; 4605 spi_message_add_tail(&x[1], &message); 4606 } 4607 4608 memcpy(local_buf, txbuf, n_tx); 4609 x[0].tx_buf = local_buf; 4610 x[1].rx_buf = local_buf + n_tx; 4611 4612 /* Do the I/O */ 4613 status = spi_sync(spi, &message); 4614 if (status == 0) 4615 memcpy(rxbuf, x[1].rx_buf, n_rx); 4616 4617 if (x[0].tx_buf == buf) 4618 mutex_unlock(&lock); 4619 else 4620 kfree(local_buf); 4621 4622 return status; 4623 } 4624 EXPORT_SYMBOL_GPL(spi_write_then_read); 4625 4626 /*-------------------------------------------------------------------------*/ 4627 4628 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4629 /* Must call put_device() when done with returned spi_device device */ 4630 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4631 { 4632 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4633 4634 return dev ? to_spi_device(dev) : NULL; 4635 } 4636 4637 /* The spi controllers are not using spi_bus, so we find it with another way */ 4638 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4639 { 4640 struct device *dev; 4641 4642 dev = class_find_device_by_of_node(&spi_master_class, node); 4643 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4644 dev = class_find_device_by_of_node(&spi_slave_class, node); 4645 if (!dev) 4646 return NULL; 4647 4648 /* Reference got in class_find_device */ 4649 return container_of(dev, struct spi_controller, dev); 4650 } 4651 4652 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4653 void *arg) 4654 { 4655 struct of_reconfig_data *rd = arg; 4656 struct spi_controller *ctlr; 4657 struct spi_device *spi; 4658 4659 switch (of_reconfig_get_state_change(action, arg)) { 4660 case OF_RECONFIG_CHANGE_ADD: 4661 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4662 if (ctlr == NULL) 4663 return NOTIFY_OK; /* Not for us */ 4664 4665 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4666 put_device(&ctlr->dev); 4667 return NOTIFY_OK; 4668 } 4669 4670 /* 4671 * Clear the flag before adding the device so that fw_devlink 4672 * doesn't skip adding consumers to this device. 4673 */ 4674 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4675 spi = of_register_spi_device(ctlr, rd->dn); 4676 put_device(&ctlr->dev); 4677 4678 if (IS_ERR(spi)) { 4679 pr_err("%s: failed to create for '%pOF'\n", 4680 __func__, rd->dn); 4681 of_node_clear_flag(rd->dn, OF_POPULATED); 4682 return notifier_from_errno(PTR_ERR(spi)); 4683 } 4684 break; 4685 4686 case OF_RECONFIG_CHANGE_REMOVE: 4687 /* Already depopulated? */ 4688 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4689 return NOTIFY_OK; 4690 4691 /* Find our device by node */ 4692 spi = of_find_spi_device_by_node(rd->dn); 4693 if (spi == NULL) 4694 return NOTIFY_OK; /* No? not meant for us */ 4695 4696 /* Unregister takes one ref away */ 4697 spi_unregister_device(spi); 4698 4699 /* And put the reference of the find */ 4700 put_device(&spi->dev); 4701 break; 4702 } 4703 4704 return NOTIFY_OK; 4705 } 4706 4707 static struct notifier_block spi_of_notifier = { 4708 .notifier_call = of_spi_notify, 4709 }; 4710 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4711 extern struct notifier_block spi_of_notifier; 4712 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4713 4714 #if IS_ENABLED(CONFIG_ACPI) 4715 static int spi_acpi_controller_match(struct device *dev, const void *data) 4716 { 4717 return ACPI_COMPANION(dev->parent) == data; 4718 } 4719 4720 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4721 { 4722 struct device *dev; 4723 4724 dev = class_find_device(&spi_master_class, NULL, adev, 4725 spi_acpi_controller_match); 4726 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4727 dev = class_find_device(&spi_slave_class, NULL, adev, 4728 spi_acpi_controller_match); 4729 if (!dev) 4730 return NULL; 4731 4732 return container_of(dev, struct spi_controller, dev); 4733 } 4734 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4735 4736 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4737 { 4738 struct device *dev; 4739 4740 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4741 return to_spi_device(dev); 4742 } 4743 4744 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4745 void *arg) 4746 { 4747 struct acpi_device *adev = arg; 4748 struct spi_controller *ctlr; 4749 struct spi_device *spi; 4750 4751 switch (value) { 4752 case ACPI_RECONFIG_DEVICE_ADD: 4753 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4754 if (!ctlr) 4755 break; 4756 4757 acpi_register_spi_device(ctlr, adev); 4758 put_device(&ctlr->dev); 4759 break; 4760 case ACPI_RECONFIG_DEVICE_REMOVE: 4761 if (!acpi_device_enumerated(adev)) 4762 break; 4763 4764 spi = acpi_spi_find_device_by_adev(adev); 4765 if (!spi) 4766 break; 4767 4768 spi_unregister_device(spi); 4769 put_device(&spi->dev); 4770 break; 4771 } 4772 4773 return NOTIFY_OK; 4774 } 4775 4776 static struct notifier_block spi_acpi_notifier = { 4777 .notifier_call = acpi_spi_notify, 4778 }; 4779 #else 4780 extern struct notifier_block spi_acpi_notifier; 4781 #endif 4782 4783 static int __init spi_init(void) 4784 { 4785 int status; 4786 4787 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4788 if (!buf) { 4789 status = -ENOMEM; 4790 goto err0; 4791 } 4792 4793 status = bus_register(&spi_bus_type); 4794 if (status < 0) 4795 goto err1; 4796 4797 status = class_register(&spi_master_class); 4798 if (status < 0) 4799 goto err2; 4800 4801 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4802 status = class_register(&spi_slave_class); 4803 if (status < 0) 4804 goto err3; 4805 } 4806 4807 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4808 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4809 if (IS_ENABLED(CONFIG_ACPI)) 4810 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4811 4812 return 0; 4813 4814 err3: 4815 class_unregister(&spi_master_class); 4816 err2: 4817 bus_unregister(&spi_bus_type); 4818 err1: 4819 kfree(buf); 4820 buf = NULL; 4821 err0: 4822 return status; 4823 } 4824 4825 /* 4826 * A board_info is normally registered in arch_initcall(), 4827 * but even essential drivers wait till later. 4828 * 4829 * REVISIT only boardinfo really needs static linking. The rest (device and 4830 * driver registration) _could_ be dynamically linked (modular) ... Costs 4831 * include needing to have boardinfo data structures be much more public. 4832 */ 4833 postcore_initcall(spi_init); 4834