1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/cache.h> 25 #include <linux/mutex.h> 26 #include <linux/slab.h> 27 #include <linux/mod_devicetable.h> 28 #include <linux/spi/spi.h> 29 30 31 /* SPI bustype and spi_master class are registered after board init code 32 * provides the SPI device tables, ensuring that both are present by the 33 * time controller driver registration causes spi_devices to "enumerate". 34 */ 35 static void spidev_release(struct device *dev) 36 { 37 struct spi_device *spi = to_spi_device(dev); 38 39 /* spi masters may cleanup for released devices */ 40 if (spi->master->cleanup) 41 spi->master->cleanup(spi); 42 43 spi_master_put(spi->master); 44 kfree(spi); 45 } 46 47 static ssize_t 48 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 49 { 50 const struct spi_device *spi = to_spi_device(dev); 51 52 return sprintf(buf, "%s\n", spi->modalias); 53 } 54 55 static struct device_attribute spi_dev_attrs[] = { 56 __ATTR_RO(modalias), 57 __ATTR_NULL, 58 }; 59 60 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 61 * and the sysfs version makes coldplug work too. 62 */ 63 64 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 65 const struct spi_device *sdev) 66 { 67 while (id->name[0]) { 68 if (!strcmp(sdev->modalias, id->name)) 69 return id; 70 id++; 71 } 72 return NULL; 73 } 74 75 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 76 { 77 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 78 79 return spi_match_id(sdrv->id_table, sdev); 80 } 81 EXPORT_SYMBOL_GPL(spi_get_device_id); 82 83 static int spi_match_device(struct device *dev, struct device_driver *drv) 84 { 85 const struct spi_device *spi = to_spi_device(dev); 86 const struct spi_driver *sdrv = to_spi_driver(drv); 87 88 if (sdrv->id_table) 89 return !!spi_match_id(sdrv->id_table, spi); 90 91 return strcmp(spi->modalias, drv->name) == 0; 92 } 93 94 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 95 { 96 const struct spi_device *spi = to_spi_device(dev); 97 98 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 99 return 0; 100 } 101 102 #ifdef CONFIG_PM 103 104 static int spi_suspend(struct device *dev, pm_message_t message) 105 { 106 int value = 0; 107 struct spi_driver *drv = to_spi_driver(dev->driver); 108 109 /* suspend will stop irqs and dma; no more i/o */ 110 if (drv) { 111 if (drv->suspend) 112 value = drv->suspend(to_spi_device(dev), message); 113 else 114 dev_dbg(dev, "... can't suspend\n"); 115 } 116 return value; 117 } 118 119 static int spi_resume(struct device *dev) 120 { 121 int value = 0; 122 struct spi_driver *drv = to_spi_driver(dev->driver); 123 124 /* resume may restart the i/o queue */ 125 if (drv) { 126 if (drv->resume) 127 value = drv->resume(to_spi_device(dev)); 128 else 129 dev_dbg(dev, "... can't resume\n"); 130 } 131 return value; 132 } 133 134 #else 135 #define spi_suspend NULL 136 #define spi_resume NULL 137 #endif 138 139 struct bus_type spi_bus_type = { 140 .name = "spi", 141 .dev_attrs = spi_dev_attrs, 142 .match = spi_match_device, 143 .uevent = spi_uevent, 144 .suspend = spi_suspend, 145 .resume = spi_resume, 146 }; 147 EXPORT_SYMBOL_GPL(spi_bus_type); 148 149 150 static int spi_drv_probe(struct device *dev) 151 { 152 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 153 154 return sdrv->probe(to_spi_device(dev)); 155 } 156 157 static int spi_drv_remove(struct device *dev) 158 { 159 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 160 161 return sdrv->remove(to_spi_device(dev)); 162 } 163 164 static void spi_drv_shutdown(struct device *dev) 165 { 166 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 167 168 sdrv->shutdown(to_spi_device(dev)); 169 } 170 171 /** 172 * spi_register_driver - register a SPI driver 173 * @sdrv: the driver to register 174 * Context: can sleep 175 */ 176 int spi_register_driver(struct spi_driver *sdrv) 177 { 178 sdrv->driver.bus = &spi_bus_type; 179 if (sdrv->probe) 180 sdrv->driver.probe = spi_drv_probe; 181 if (sdrv->remove) 182 sdrv->driver.remove = spi_drv_remove; 183 if (sdrv->shutdown) 184 sdrv->driver.shutdown = spi_drv_shutdown; 185 return driver_register(&sdrv->driver); 186 } 187 EXPORT_SYMBOL_GPL(spi_register_driver); 188 189 /*-------------------------------------------------------------------------*/ 190 191 /* SPI devices should normally not be created by SPI device drivers; that 192 * would make them board-specific. Similarly with SPI master drivers. 193 * Device registration normally goes into like arch/.../mach.../board-YYY.c 194 * with other readonly (flashable) information about mainboard devices. 195 */ 196 197 struct boardinfo { 198 struct list_head list; 199 unsigned n_board_info; 200 struct spi_board_info board_info[0]; 201 }; 202 203 static LIST_HEAD(board_list); 204 static DEFINE_MUTEX(board_lock); 205 206 /** 207 * spi_alloc_device - Allocate a new SPI device 208 * @master: Controller to which device is connected 209 * Context: can sleep 210 * 211 * Allows a driver to allocate and initialize a spi_device without 212 * registering it immediately. This allows a driver to directly 213 * fill the spi_device with device parameters before calling 214 * spi_add_device() on it. 215 * 216 * Caller is responsible to call spi_add_device() on the returned 217 * spi_device structure to add it to the SPI master. If the caller 218 * needs to discard the spi_device without adding it, then it should 219 * call spi_dev_put() on it. 220 * 221 * Returns a pointer to the new device, or NULL. 222 */ 223 struct spi_device *spi_alloc_device(struct spi_master *master) 224 { 225 struct spi_device *spi; 226 struct device *dev = master->dev.parent; 227 228 if (!spi_master_get(master)) 229 return NULL; 230 231 spi = kzalloc(sizeof *spi, GFP_KERNEL); 232 if (!spi) { 233 dev_err(dev, "cannot alloc spi_device\n"); 234 spi_master_put(master); 235 return NULL; 236 } 237 238 spi->master = master; 239 spi->dev.parent = dev; 240 spi->dev.bus = &spi_bus_type; 241 spi->dev.release = spidev_release; 242 device_initialize(&spi->dev); 243 return spi; 244 } 245 EXPORT_SYMBOL_GPL(spi_alloc_device); 246 247 /** 248 * spi_add_device - Add spi_device allocated with spi_alloc_device 249 * @spi: spi_device to register 250 * 251 * Companion function to spi_alloc_device. Devices allocated with 252 * spi_alloc_device can be added onto the spi bus with this function. 253 * 254 * Returns 0 on success; negative errno on failure 255 */ 256 int spi_add_device(struct spi_device *spi) 257 { 258 static DEFINE_MUTEX(spi_add_lock); 259 struct device *dev = spi->master->dev.parent; 260 struct device *d; 261 int status; 262 263 /* Chipselects are numbered 0..max; validate. */ 264 if (spi->chip_select >= spi->master->num_chipselect) { 265 dev_err(dev, "cs%d >= max %d\n", 266 spi->chip_select, 267 spi->master->num_chipselect); 268 return -EINVAL; 269 } 270 271 /* Set the bus ID string */ 272 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 273 spi->chip_select); 274 275 276 /* We need to make sure there's no other device with this 277 * chipselect **BEFORE** we call setup(), else we'll trash 278 * its configuration. Lock against concurrent add() calls. 279 */ 280 mutex_lock(&spi_add_lock); 281 282 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)); 283 if (d != NULL) { 284 dev_err(dev, "chipselect %d already in use\n", 285 spi->chip_select); 286 put_device(d); 287 status = -EBUSY; 288 goto done; 289 } 290 291 /* Drivers may modify this initial i/o setup, but will 292 * normally rely on the device being setup. Devices 293 * using SPI_CS_HIGH can't coexist well otherwise... 294 */ 295 status = spi_setup(spi); 296 if (status < 0) { 297 dev_err(dev, "can't %s %s, status %d\n", 298 "setup", dev_name(&spi->dev), status); 299 goto done; 300 } 301 302 /* Device may be bound to an active driver when this returns */ 303 status = device_add(&spi->dev); 304 if (status < 0) 305 dev_err(dev, "can't %s %s, status %d\n", 306 "add", dev_name(&spi->dev), status); 307 else 308 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 309 310 done: 311 mutex_unlock(&spi_add_lock); 312 return status; 313 } 314 EXPORT_SYMBOL_GPL(spi_add_device); 315 316 /** 317 * spi_new_device - instantiate one new SPI device 318 * @master: Controller to which device is connected 319 * @chip: Describes the SPI device 320 * Context: can sleep 321 * 322 * On typical mainboards, this is purely internal; and it's not needed 323 * after board init creates the hard-wired devices. Some development 324 * platforms may not be able to use spi_register_board_info though, and 325 * this is exported so that for example a USB or parport based adapter 326 * driver could add devices (which it would learn about out-of-band). 327 * 328 * Returns the new device, or NULL. 329 */ 330 struct spi_device *spi_new_device(struct spi_master *master, 331 struct spi_board_info *chip) 332 { 333 struct spi_device *proxy; 334 int status; 335 336 /* NOTE: caller did any chip->bus_num checks necessary. 337 * 338 * Also, unless we change the return value convention to use 339 * error-or-pointer (not NULL-or-pointer), troubleshootability 340 * suggests syslogged diagnostics are best here (ugh). 341 */ 342 343 proxy = spi_alloc_device(master); 344 if (!proxy) 345 return NULL; 346 347 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 348 349 proxy->chip_select = chip->chip_select; 350 proxy->max_speed_hz = chip->max_speed_hz; 351 proxy->mode = chip->mode; 352 proxy->irq = chip->irq; 353 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 354 proxy->dev.platform_data = (void *) chip->platform_data; 355 proxy->controller_data = chip->controller_data; 356 proxy->controller_state = NULL; 357 358 status = spi_add_device(proxy); 359 if (status < 0) { 360 spi_dev_put(proxy); 361 return NULL; 362 } 363 364 return proxy; 365 } 366 EXPORT_SYMBOL_GPL(spi_new_device); 367 368 /** 369 * spi_register_board_info - register SPI devices for a given board 370 * @info: array of chip descriptors 371 * @n: how many descriptors are provided 372 * Context: can sleep 373 * 374 * Board-specific early init code calls this (probably during arch_initcall) 375 * with segments of the SPI device table. Any device nodes are created later, 376 * after the relevant parent SPI controller (bus_num) is defined. We keep 377 * this table of devices forever, so that reloading a controller driver will 378 * not make Linux forget about these hard-wired devices. 379 * 380 * Other code can also call this, e.g. a particular add-on board might provide 381 * SPI devices through its expansion connector, so code initializing that board 382 * would naturally declare its SPI devices. 383 * 384 * The board info passed can safely be __initdata ... but be careful of 385 * any embedded pointers (platform_data, etc), they're copied as-is. 386 */ 387 int __init 388 spi_register_board_info(struct spi_board_info const *info, unsigned n) 389 { 390 struct boardinfo *bi; 391 392 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 393 if (!bi) 394 return -ENOMEM; 395 bi->n_board_info = n; 396 memcpy(bi->board_info, info, n * sizeof *info); 397 398 mutex_lock(&board_lock); 399 list_add_tail(&bi->list, &board_list); 400 mutex_unlock(&board_lock); 401 return 0; 402 } 403 404 /* FIXME someone should add support for a __setup("spi", ...) that 405 * creates board info from kernel command lines 406 */ 407 408 static void scan_boardinfo(struct spi_master *master) 409 { 410 struct boardinfo *bi; 411 412 mutex_lock(&board_lock); 413 list_for_each_entry(bi, &board_list, list) { 414 struct spi_board_info *chip = bi->board_info; 415 unsigned n; 416 417 for (n = bi->n_board_info; n > 0; n--, chip++) { 418 if (chip->bus_num != master->bus_num) 419 continue; 420 /* NOTE: this relies on spi_new_device to 421 * issue diagnostics when given bogus inputs 422 */ 423 (void) spi_new_device(master, chip); 424 } 425 } 426 mutex_unlock(&board_lock); 427 } 428 429 /*-------------------------------------------------------------------------*/ 430 431 static void spi_master_release(struct device *dev) 432 { 433 struct spi_master *master; 434 435 master = container_of(dev, struct spi_master, dev); 436 kfree(master); 437 } 438 439 static struct class spi_master_class = { 440 .name = "spi_master", 441 .owner = THIS_MODULE, 442 .dev_release = spi_master_release, 443 }; 444 445 446 /** 447 * spi_alloc_master - allocate SPI master controller 448 * @dev: the controller, possibly using the platform_bus 449 * @size: how much zeroed driver-private data to allocate; the pointer to this 450 * memory is in the driver_data field of the returned device, 451 * accessible with spi_master_get_devdata(). 452 * Context: can sleep 453 * 454 * This call is used only by SPI master controller drivers, which are the 455 * only ones directly touching chip registers. It's how they allocate 456 * an spi_master structure, prior to calling spi_register_master(). 457 * 458 * This must be called from context that can sleep. It returns the SPI 459 * master structure on success, else NULL. 460 * 461 * The caller is responsible for assigning the bus number and initializing 462 * the master's methods before calling spi_register_master(); and (after errors 463 * adding the device) calling spi_master_put() to prevent a memory leak. 464 */ 465 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 466 { 467 struct spi_master *master; 468 469 if (!dev) 470 return NULL; 471 472 master = kzalloc(size + sizeof *master, GFP_KERNEL); 473 if (!master) 474 return NULL; 475 476 device_initialize(&master->dev); 477 master->dev.class = &spi_master_class; 478 master->dev.parent = get_device(dev); 479 spi_master_set_devdata(master, &master[1]); 480 481 return master; 482 } 483 EXPORT_SYMBOL_GPL(spi_alloc_master); 484 485 /** 486 * spi_register_master - register SPI master controller 487 * @master: initialized master, originally from spi_alloc_master() 488 * Context: can sleep 489 * 490 * SPI master controllers connect to their drivers using some non-SPI bus, 491 * such as the platform bus. The final stage of probe() in that code 492 * includes calling spi_register_master() to hook up to this SPI bus glue. 493 * 494 * SPI controllers use board specific (often SOC specific) bus numbers, 495 * and board-specific addressing for SPI devices combines those numbers 496 * with chip select numbers. Since SPI does not directly support dynamic 497 * device identification, boards need configuration tables telling which 498 * chip is at which address. 499 * 500 * This must be called from context that can sleep. It returns zero on 501 * success, else a negative error code (dropping the master's refcount). 502 * After a successful return, the caller is responsible for calling 503 * spi_unregister_master(). 504 */ 505 int spi_register_master(struct spi_master *master) 506 { 507 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 508 struct device *dev = master->dev.parent; 509 int status = -ENODEV; 510 int dynamic = 0; 511 512 if (!dev) 513 return -ENODEV; 514 515 /* even if it's just one always-selected device, there must 516 * be at least one chipselect 517 */ 518 if (master->num_chipselect == 0) 519 return -EINVAL; 520 521 /* convention: dynamically assigned bus IDs count down from the max */ 522 if (master->bus_num < 0) { 523 /* FIXME switch to an IDR based scheme, something like 524 * I2C now uses, so we can't run out of "dynamic" IDs 525 */ 526 master->bus_num = atomic_dec_return(&dyn_bus_id); 527 dynamic = 1; 528 } 529 530 /* register the device, then userspace will see it. 531 * registration fails if the bus ID is in use. 532 */ 533 dev_set_name(&master->dev, "spi%u", master->bus_num); 534 status = device_add(&master->dev); 535 if (status < 0) 536 goto done; 537 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 538 dynamic ? " (dynamic)" : ""); 539 540 /* populate children from any spi device tables */ 541 scan_boardinfo(master); 542 status = 0; 543 done: 544 return status; 545 } 546 EXPORT_SYMBOL_GPL(spi_register_master); 547 548 549 static int __unregister(struct device *dev, void *master_dev) 550 { 551 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 552 if (dev != master_dev) 553 spi_unregister_device(to_spi_device(dev)); 554 return 0; 555 } 556 557 /** 558 * spi_unregister_master - unregister SPI master controller 559 * @master: the master being unregistered 560 * Context: can sleep 561 * 562 * This call is used only by SPI master controller drivers, which are the 563 * only ones directly touching chip registers. 564 * 565 * This must be called from context that can sleep. 566 */ 567 void spi_unregister_master(struct spi_master *master) 568 { 569 int dummy; 570 571 dummy = device_for_each_child(master->dev.parent, &master->dev, 572 __unregister); 573 device_unregister(&master->dev); 574 } 575 EXPORT_SYMBOL_GPL(spi_unregister_master); 576 577 static int __spi_master_match(struct device *dev, void *data) 578 { 579 struct spi_master *m; 580 u16 *bus_num = data; 581 582 m = container_of(dev, struct spi_master, dev); 583 return m->bus_num == *bus_num; 584 } 585 586 /** 587 * spi_busnum_to_master - look up master associated with bus_num 588 * @bus_num: the master's bus number 589 * Context: can sleep 590 * 591 * This call may be used with devices that are registered after 592 * arch init time. It returns a refcounted pointer to the relevant 593 * spi_master (which the caller must release), or NULL if there is 594 * no such master registered. 595 */ 596 struct spi_master *spi_busnum_to_master(u16 bus_num) 597 { 598 struct device *dev; 599 struct spi_master *master = NULL; 600 601 dev = class_find_device(&spi_master_class, NULL, &bus_num, 602 __spi_master_match); 603 if (dev) 604 master = container_of(dev, struct spi_master, dev); 605 /* reference got in class_find_device */ 606 return master; 607 } 608 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 609 610 611 /*-------------------------------------------------------------------------*/ 612 613 /* Core methods for SPI master protocol drivers. Some of the 614 * other core methods are currently defined as inline functions. 615 */ 616 617 /** 618 * spi_setup - setup SPI mode and clock rate 619 * @spi: the device whose settings are being modified 620 * Context: can sleep, and no requests are queued to the device 621 * 622 * SPI protocol drivers may need to update the transfer mode if the 623 * device doesn't work with its default. They may likewise need 624 * to update clock rates or word sizes from initial values. This function 625 * changes those settings, and must be called from a context that can sleep. 626 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 627 * effect the next time the device is selected and data is transferred to 628 * or from it. When this function returns, the spi device is deselected. 629 * 630 * Note that this call will fail if the protocol driver specifies an option 631 * that the underlying controller or its driver does not support. For 632 * example, not all hardware supports wire transfers using nine bit words, 633 * LSB-first wire encoding, or active-high chipselects. 634 */ 635 int spi_setup(struct spi_device *spi) 636 { 637 unsigned bad_bits; 638 int status; 639 640 /* help drivers fail *cleanly* when they need options 641 * that aren't supported with their current master 642 */ 643 bad_bits = spi->mode & ~spi->master->mode_bits; 644 if (bad_bits) { 645 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n", 646 bad_bits); 647 return -EINVAL; 648 } 649 650 if (!spi->bits_per_word) 651 spi->bits_per_word = 8; 652 653 status = spi->master->setup(spi); 654 655 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s" 656 "%u bits/w, %u Hz max --> %d\n", 657 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 658 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 659 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 660 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 661 (spi->mode & SPI_LOOP) ? "loopback, " : "", 662 spi->bits_per_word, spi->max_speed_hz, 663 status); 664 665 return status; 666 } 667 EXPORT_SYMBOL_GPL(spi_setup); 668 669 /** 670 * spi_async - asynchronous SPI transfer 671 * @spi: device with which data will be exchanged 672 * @message: describes the data transfers, including completion callback 673 * Context: any (irqs may be blocked, etc) 674 * 675 * This call may be used in_irq and other contexts which can't sleep, 676 * as well as from task contexts which can sleep. 677 * 678 * The completion callback is invoked in a context which can't sleep. 679 * Before that invocation, the value of message->status is undefined. 680 * When the callback is issued, message->status holds either zero (to 681 * indicate complete success) or a negative error code. After that 682 * callback returns, the driver which issued the transfer request may 683 * deallocate the associated memory; it's no longer in use by any SPI 684 * core or controller driver code. 685 * 686 * Note that although all messages to a spi_device are handled in 687 * FIFO order, messages may go to different devices in other orders. 688 * Some device might be higher priority, or have various "hard" access 689 * time requirements, for example. 690 * 691 * On detection of any fault during the transfer, processing of 692 * the entire message is aborted, and the device is deselected. 693 * Until returning from the associated message completion callback, 694 * no other spi_message queued to that device will be processed. 695 * (This rule applies equally to all the synchronous transfer calls, 696 * which are wrappers around this core asynchronous primitive.) 697 */ 698 int spi_async(struct spi_device *spi, struct spi_message *message) 699 { 700 struct spi_master *master = spi->master; 701 702 /* Half-duplex links include original MicroWire, and ones with 703 * only one data pin like SPI_3WIRE (switches direction) or where 704 * either MOSI or MISO is missing. They can also be caused by 705 * software limitations. 706 */ 707 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 708 || (spi->mode & SPI_3WIRE)) { 709 struct spi_transfer *xfer; 710 unsigned flags = master->flags; 711 712 list_for_each_entry(xfer, &message->transfers, transfer_list) { 713 if (xfer->rx_buf && xfer->tx_buf) 714 return -EINVAL; 715 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 716 return -EINVAL; 717 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 718 return -EINVAL; 719 } 720 } 721 722 message->spi = spi; 723 message->status = -EINPROGRESS; 724 return master->transfer(spi, message); 725 } 726 EXPORT_SYMBOL_GPL(spi_async); 727 728 729 /*-------------------------------------------------------------------------*/ 730 731 /* Utility methods for SPI master protocol drivers, layered on 732 * top of the core. Some other utility methods are defined as 733 * inline functions. 734 */ 735 736 static void spi_complete(void *arg) 737 { 738 complete(arg); 739 } 740 741 /** 742 * spi_sync - blocking/synchronous SPI data transfers 743 * @spi: device with which data will be exchanged 744 * @message: describes the data transfers 745 * Context: can sleep 746 * 747 * This call may only be used from a context that may sleep. The sleep 748 * is non-interruptible, and has no timeout. Low-overhead controller 749 * drivers may DMA directly into and out of the message buffers. 750 * 751 * Note that the SPI device's chip select is active during the message, 752 * and then is normally disabled between messages. Drivers for some 753 * frequently-used devices may want to minimize costs of selecting a chip, 754 * by leaving it selected in anticipation that the next message will go 755 * to the same chip. (That may increase power usage.) 756 * 757 * Also, the caller is guaranteeing that the memory associated with the 758 * message will not be freed before this call returns. 759 * 760 * It returns zero on success, else a negative error code. 761 */ 762 int spi_sync(struct spi_device *spi, struct spi_message *message) 763 { 764 DECLARE_COMPLETION_ONSTACK(done); 765 int status; 766 767 message->complete = spi_complete; 768 message->context = &done; 769 status = spi_async(spi, message); 770 if (status == 0) { 771 wait_for_completion(&done); 772 status = message->status; 773 } 774 message->context = NULL; 775 return status; 776 } 777 EXPORT_SYMBOL_GPL(spi_sync); 778 779 /* portable code must never pass more than 32 bytes */ 780 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 781 782 static u8 *buf; 783 784 /** 785 * spi_write_then_read - SPI synchronous write followed by read 786 * @spi: device with which data will be exchanged 787 * @txbuf: data to be written (need not be dma-safe) 788 * @n_tx: size of txbuf, in bytes 789 * @rxbuf: buffer into which data will be read (need not be dma-safe) 790 * @n_rx: size of rxbuf, in bytes 791 * Context: can sleep 792 * 793 * This performs a half duplex MicroWire style transaction with the 794 * device, sending txbuf and then reading rxbuf. The return value 795 * is zero for success, else a negative errno status code. 796 * This call may only be used from a context that may sleep. 797 * 798 * Parameters to this routine are always copied using a small buffer; 799 * portable code should never use this for more than 32 bytes. 800 * Performance-sensitive or bulk transfer code should instead use 801 * spi_{async,sync}() calls with dma-safe buffers. 802 */ 803 int spi_write_then_read(struct spi_device *spi, 804 const u8 *txbuf, unsigned n_tx, 805 u8 *rxbuf, unsigned n_rx) 806 { 807 static DEFINE_MUTEX(lock); 808 809 int status; 810 struct spi_message message; 811 struct spi_transfer x[2]; 812 u8 *local_buf; 813 814 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 815 * (as a pure convenience thing), but we can keep heap costs 816 * out of the hot path ... 817 */ 818 if ((n_tx + n_rx) > SPI_BUFSIZ) 819 return -EINVAL; 820 821 spi_message_init(&message); 822 memset(x, 0, sizeof x); 823 if (n_tx) { 824 x[0].len = n_tx; 825 spi_message_add_tail(&x[0], &message); 826 } 827 if (n_rx) { 828 x[1].len = n_rx; 829 spi_message_add_tail(&x[1], &message); 830 } 831 832 /* ... unless someone else is using the pre-allocated buffer */ 833 if (!mutex_trylock(&lock)) { 834 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 835 if (!local_buf) 836 return -ENOMEM; 837 } else 838 local_buf = buf; 839 840 memcpy(local_buf, txbuf, n_tx); 841 x[0].tx_buf = local_buf; 842 x[1].rx_buf = local_buf + n_tx; 843 844 /* do the i/o */ 845 status = spi_sync(spi, &message); 846 if (status == 0) 847 memcpy(rxbuf, x[1].rx_buf, n_rx); 848 849 if (x[0].tx_buf == buf) 850 mutex_unlock(&lock); 851 else 852 kfree(local_buf); 853 854 return status; 855 } 856 EXPORT_SYMBOL_GPL(spi_write_then_read); 857 858 /*-------------------------------------------------------------------------*/ 859 860 static int __init spi_init(void) 861 { 862 int status; 863 864 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 865 if (!buf) { 866 status = -ENOMEM; 867 goto err0; 868 } 869 870 status = bus_register(&spi_bus_type); 871 if (status < 0) 872 goto err1; 873 874 status = class_register(&spi_master_class); 875 if (status < 0) 876 goto err2; 877 return 0; 878 879 err2: 880 bus_unregister(&spi_bus_type); 881 err1: 882 kfree(buf); 883 buf = NULL; 884 err0: 885 return status; 886 } 887 888 /* board_info is normally registered in arch_initcall(), 889 * but even essential drivers wait till later 890 * 891 * REVISIT only boardinfo really needs static linking. the rest (device and 892 * driver registration) _could_ be dynamically linked (modular) ... costs 893 * include needing to have boardinfo data structures be much more public. 894 */ 895 postcore_initcall(spi_init); 896 897