xref: /linux/drivers/spi/spi.c (revision af50e4ba34f4c45e92535364133d4deb5931c1c5)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48 
49 static DEFINE_IDR(spi_master_idr);
50 
51 static void spidev_release(struct device *dev)
52 {
53 	struct spi_device	*spi = to_spi_device(dev);
54 
55 	/* spi controllers may cleanup for released devices */
56 	if (spi->controller->cleanup)
57 		spi->controller->cleanup(spi);
58 
59 	spi_controller_put(spi->controller);
60 	kfree(spi);
61 }
62 
63 static ssize_t
64 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
65 {
66 	const struct spi_device	*spi = to_spi_device(dev);
67 	int len;
68 
69 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
70 	if (len != -ENODEV)
71 		return len;
72 
73 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
74 }
75 static DEVICE_ATTR_RO(modalias);
76 
77 #define SPI_STATISTICS_ATTRS(field, file)				\
78 static ssize_t spi_controller_##field##_show(struct device *dev,	\
79 					     struct device_attribute *attr, \
80 					     char *buf)			\
81 {									\
82 	struct spi_controller *ctlr = container_of(dev,			\
83 					 struct spi_controller, dev);	\
84 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
85 }									\
86 static struct device_attribute dev_attr_spi_controller_##field = {	\
87 	.attr = { .name = file, .mode = 0444 },				\
88 	.show = spi_controller_##field##_show,				\
89 };									\
90 static ssize_t spi_device_##field##_show(struct device *dev,		\
91 					 struct device_attribute *attr,	\
92 					char *buf)			\
93 {									\
94 	struct spi_device *spi = to_spi_device(dev);			\
95 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
96 }									\
97 static struct device_attribute dev_attr_spi_device_##field = {		\
98 	.attr = { .name = file, .mode = 0444 },				\
99 	.show = spi_device_##field##_show,				\
100 }
101 
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
104 					    char *buf)			\
105 {									\
106 	unsigned long flags;						\
107 	ssize_t len;							\
108 	spin_lock_irqsave(&stat->lock, flags);				\
109 	len = sprintf(buf, format_string, stat->field);			\
110 	spin_unlock_irqrestore(&stat->lock, flags);			\
111 	return len;							\
112 }									\
113 SPI_STATISTICS_ATTRS(name, file)
114 
115 #define SPI_STATISTICS_SHOW(field, format_string)			\
116 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
117 				 field, format_string)
118 
119 SPI_STATISTICS_SHOW(messages, "%lu");
120 SPI_STATISTICS_SHOW(transfers, "%lu");
121 SPI_STATISTICS_SHOW(errors, "%lu");
122 SPI_STATISTICS_SHOW(timedout, "%lu");
123 
124 SPI_STATISTICS_SHOW(spi_sync, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
126 SPI_STATISTICS_SHOW(spi_async, "%lu");
127 
128 SPI_STATISTICS_SHOW(bytes, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
131 
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
133 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
134 				 "transfer_bytes_histo_" number,	\
135 				 transfer_bytes_histo[index],  "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
153 
154 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
155 
156 static struct attribute *spi_dev_attrs[] = {
157 	&dev_attr_modalias.attr,
158 	NULL,
159 };
160 
161 static const struct attribute_group spi_dev_group = {
162 	.attrs  = spi_dev_attrs,
163 };
164 
165 static struct attribute *spi_device_statistics_attrs[] = {
166 	&dev_attr_spi_device_messages.attr,
167 	&dev_attr_spi_device_transfers.attr,
168 	&dev_attr_spi_device_errors.attr,
169 	&dev_attr_spi_device_timedout.attr,
170 	&dev_attr_spi_device_spi_sync.attr,
171 	&dev_attr_spi_device_spi_sync_immediate.attr,
172 	&dev_attr_spi_device_spi_async.attr,
173 	&dev_attr_spi_device_bytes.attr,
174 	&dev_attr_spi_device_bytes_rx.attr,
175 	&dev_attr_spi_device_bytes_tx.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
187 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
188 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
189 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
190 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
191 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
192 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
193 	&dev_attr_spi_device_transfers_split_maxsize.attr,
194 	NULL,
195 };
196 
197 static const struct attribute_group spi_device_statistics_group = {
198 	.name  = "statistics",
199 	.attrs  = spi_device_statistics_attrs,
200 };
201 
202 static const struct attribute_group *spi_dev_groups[] = {
203 	&spi_dev_group,
204 	&spi_device_statistics_group,
205 	NULL,
206 };
207 
208 static struct attribute *spi_controller_statistics_attrs[] = {
209 	&dev_attr_spi_controller_messages.attr,
210 	&dev_attr_spi_controller_transfers.attr,
211 	&dev_attr_spi_controller_errors.attr,
212 	&dev_attr_spi_controller_timedout.attr,
213 	&dev_attr_spi_controller_spi_sync.attr,
214 	&dev_attr_spi_controller_spi_sync_immediate.attr,
215 	&dev_attr_spi_controller_spi_async.attr,
216 	&dev_attr_spi_controller_bytes.attr,
217 	&dev_attr_spi_controller_bytes_rx.attr,
218 	&dev_attr_spi_controller_bytes_tx.attr,
219 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
220 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
221 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
222 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
223 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
224 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
225 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
226 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
227 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
228 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
229 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
230 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
231 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
232 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
233 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
234 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
235 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
236 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
237 	NULL,
238 };
239 
240 static const struct attribute_group spi_controller_statistics_group = {
241 	.name  = "statistics",
242 	.attrs  = spi_controller_statistics_attrs,
243 };
244 
245 static const struct attribute_group *spi_master_groups[] = {
246 	&spi_controller_statistics_group,
247 	NULL,
248 };
249 
250 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
251 				       struct spi_transfer *xfer,
252 				       struct spi_controller *ctlr)
253 {
254 	unsigned long flags;
255 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
256 
257 	if (l2len < 0)
258 		l2len = 0;
259 
260 	spin_lock_irqsave(&stats->lock, flags);
261 
262 	stats->transfers++;
263 	stats->transfer_bytes_histo[l2len]++;
264 
265 	stats->bytes += xfer->len;
266 	if ((xfer->tx_buf) &&
267 	    (xfer->tx_buf != ctlr->dummy_tx))
268 		stats->bytes_tx += xfer->len;
269 	if ((xfer->rx_buf) &&
270 	    (xfer->rx_buf != ctlr->dummy_rx))
271 		stats->bytes_rx += xfer->len;
272 
273 	spin_unlock_irqrestore(&stats->lock, flags);
274 }
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
276 
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278  * and the sysfs version makes coldplug work too.
279  */
280 
281 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
282 						const struct spi_device *sdev)
283 {
284 	while (id->name[0]) {
285 		if (!strcmp(sdev->modalias, id->name))
286 			return id;
287 		id++;
288 	}
289 	return NULL;
290 }
291 
292 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
293 {
294 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
295 
296 	return spi_match_id(sdrv->id_table, sdev);
297 }
298 EXPORT_SYMBOL_GPL(spi_get_device_id);
299 
300 static int spi_match_device(struct device *dev, struct device_driver *drv)
301 {
302 	const struct spi_device	*spi = to_spi_device(dev);
303 	const struct spi_driver	*sdrv = to_spi_driver(drv);
304 
305 	/* Attempt an OF style match */
306 	if (of_driver_match_device(dev, drv))
307 		return 1;
308 
309 	/* Then try ACPI */
310 	if (acpi_driver_match_device(dev, drv))
311 		return 1;
312 
313 	if (sdrv->id_table)
314 		return !!spi_match_id(sdrv->id_table, spi);
315 
316 	return strcmp(spi->modalias, drv->name) == 0;
317 }
318 
319 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
320 {
321 	const struct spi_device		*spi = to_spi_device(dev);
322 	int rc;
323 
324 	rc = acpi_device_uevent_modalias(dev, env);
325 	if (rc != -ENODEV)
326 		return rc;
327 
328 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
329 }
330 
331 struct bus_type spi_bus_type = {
332 	.name		= "spi",
333 	.dev_groups	= spi_dev_groups,
334 	.match		= spi_match_device,
335 	.uevent		= spi_uevent,
336 };
337 EXPORT_SYMBOL_GPL(spi_bus_type);
338 
339 
340 static int spi_drv_probe(struct device *dev)
341 {
342 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
343 	struct spi_device		*spi = to_spi_device(dev);
344 	int ret;
345 
346 	ret = of_clk_set_defaults(dev->of_node, false);
347 	if (ret)
348 		return ret;
349 
350 	if (dev->of_node) {
351 		spi->irq = of_irq_get(dev->of_node, 0);
352 		if (spi->irq == -EPROBE_DEFER)
353 			return -EPROBE_DEFER;
354 		if (spi->irq < 0)
355 			spi->irq = 0;
356 	}
357 
358 	ret = dev_pm_domain_attach(dev, true);
359 	if (ret != -EPROBE_DEFER) {
360 		ret = sdrv->probe(spi);
361 		if (ret)
362 			dev_pm_domain_detach(dev, true);
363 	}
364 
365 	return ret;
366 }
367 
368 static int spi_drv_remove(struct device *dev)
369 {
370 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
371 	int ret;
372 
373 	ret = sdrv->remove(to_spi_device(dev));
374 	dev_pm_domain_detach(dev, true);
375 
376 	return ret;
377 }
378 
379 static void spi_drv_shutdown(struct device *dev)
380 {
381 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
382 
383 	sdrv->shutdown(to_spi_device(dev));
384 }
385 
386 /**
387  * __spi_register_driver - register a SPI driver
388  * @owner: owner module of the driver to register
389  * @sdrv: the driver to register
390  * Context: can sleep
391  *
392  * Return: zero on success, else a negative error code.
393  */
394 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
395 {
396 	sdrv->driver.owner = owner;
397 	sdrv->driver.bus = &spi_bus_type;
398 	if (sdrv->probe)
399 		sdrv->driver.probe = spi_drv_probe;
400 	if (sdrv->remove)
401 		sdrv->driver.remove = spi_drv_remove;
402 	if (sdrv->shutdown)
403 		sdrv->driver.shutdown = spi_drv_shutdown;
404 	return driver_register(&sdrv->driver);
405 }
406 EXPORT_SYMBOL_GPL(__spi_register_driver);
407 
408 /*-------------------------------------------------------------------------*/
409 
410 /* SPI devices should normally not be created by SPI device drivers; that
411  * would make them board-specific.  Similarly with SPI controller drivers.
412  * Device registration normally goes into like arch/.../mach.../board-YYY.c
413  * with other readonly (flashable) information about mainboard devices.
414  */
415 
416 struct boardinfo {
417 	struct list_head	list;
418 	struct spi_board_info	board_info;
419 };
420 
421 static LIST_HEAD(board_list);
422 static LIST_HEAD(spi_controller_list);
423 
424 /*
425  * Used to protect add/del opertion for board_info list and
426  * spi_controller list, and their matching process
427  * also used to protect object of type struct idr
428  */
429 static DEFINE_MUTEX(board_lock);
430 
431 /**
432  * spi_alloc_device - Allocate a new SPI device
433  * @ctlr: Controller to which device is connected
434  * Context: can sleep
435  *
436  * Allows a driver to allocate and initialize a spi_device without
437  * registering it immediately.  This allows a driver to directly
438  * fill the spi_device with device parameters before calling
439  * spi_add_device() on it.
440  *
441  * Caller is responsible to call spi_add_device() on the returned
442  * spi_device structure to add it to the SPI controller.  If the caller
443  * needs to discard the spi_device without adding it, then it should
444  * call spi_dev_put() on it.
445  *
446  * Return: a pointer to the new device, or NULL.
447  */
448 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
449 {
450 	struct spi_device	*spi;
451 
452 	if (!spi_controller_get(ctlr))
453 		return NULL;
454 
455 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
456 	if (!spi) {
457 		spi_controller_put(ctlr);
458 		return NULL;
459 	}
460 
461 	spi->master = spi->controller = ctlr;
462 	spi->dev.parent = &ctlr->dev;
463 	spi->dev.bus = &spi_bus_type;
464 	spi->dev.release = spidev_release;
465 	spi->cs_gpio = -ENOENT;
466 
467 	spin_lock_init(&spi->statistics.lock);
468 
469 	device_initialize(&spi->dev);
470 	return spi;
471 }
472 EXPORT_SYMBOL_GPL(spi_alloc_device);
473 
474 static void spi_dev_set_name(struct spi_device *spi)
475 {
476 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
477 
478 	if (adev) {
479 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
480 		return;
481 	}
482 
483 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
484 		     spi->chip_select);
485 }
486 
487 static int spi_dev_check(struct device *dev, void *data)
488 {
489 	struct spi_device *spi = to_spi_device(dev);
490 	struct spi_device *new_spi = data;
491 
492 	if (spi->controller == new_spi->controller &&
493 	    spi->chip_select == new_spi->chip_select)
494 		return -EBUSY;
495 	return 0;
496 }
497 
498 /**
499  * spi_add_device - Add spi_device allocated with spi_alloc_device
500  * @spi: spi_device to register
501  *
502  * Companion function to spi_alloc_device.  Devices allocated with
503  * spi_alloc_device can be added onto the spi bus with this function.
504  *
505  * Return: 0 on success; negative errno on failure
506  */
507 int spi_add_device(struct spi_device *spi)
508 {
509 	static DEFINE_MUTEX(spi_add_lock);
510 	struct spi_controller *ctlr = spi->controller;
511 	struct device *dev = ctlr->dev.parent;
512 	int status;
513 
514 	/* Chipselects are numbered 0..max; validate. */
515 	if (spi->chip_select >= ctlr->num_chipselect) {
516 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
517 			ctlr->num_chipselect);
518 		return -EINVAL;
519 	}
520 
521 	/* Set the bus ID string */
522 	spi_dev_set_name(spi);
523 
524 	/* We need to make sure there's no other device with this
525 	 * chipselect **BEFORE** we call setup(), else we'll trash
526 	 * its configuration.  Lock against concurrent add() calls.
527 	 */
528 	mutex_lock(&spi_add_lock);
529 
530 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
531 	if (status) {
532 		dev_err(dev, "chipselect %d already in use\n",
533 				spi->chip_select);
534 		goto done;
535 	}
536 
537 	if (ctlr->cs_gpios)
538 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
539 
540 	/* Drivers may modify this initial i/o setup, but will
541 	 * normally rely on the device being setup.  Devices
542 	 * using SPI_CS_HIGH can't coexist well otherwise...
543 	 */
544 	status = spi_setup(spi);
545 	if (status < 0) {
546 		dev_err(dev, "can't setup %s, status %d\n",
547 				dev_name(&spi->dev), status);
548 		goto done;
549 	}
550 
551 	/* Device may be bound to an active driver when this returns */
552 	status = device_add(&spi->dev);
553 	if (status < 0)
554 		dev_err(dev, "can't add %s, status %d\n",
555 				dev_name(&spi->dev), status);
556 	else
557 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
558 
559 done:
560 	mutex_unlock(&spi_add_lock);
561 	return status;
562 }
563 EXPORT_SYMBOL_GPL(spi_add_device);
564 
565 /**
566  * spi_new_device - instantiate one new SPI device
567  * @ctlr: Controller to which device is connected
568  * @chip: Describes the SPI device
569  * Context: can sleep
570  *
571  * On typical mainboards, this is purely internal; and it's not needed
572  * after board init creates the hard-wired devices.  Some development
573  * platforms may not be able to use spi_register_board_info though, and
574  * this is exported so that for example a USB or parport based adapter
575  * driver could add devices (which it would learn about out-of-band).
576  *
577  * Return: the new device, or NULL.
578  */
579 struct spi_device *spi_new_device(struct spi_controller *ctlr,
580 				  struct spi_board_info *chip)
581 {
582 	struct spi_device	*proxy;
583 	int			status;
584 
585 	/* NOTE:  caller did any chip->bus_num checks necessary.
586 	 *
587 	 * Also, unless we change the return value convention to use
588 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 	 * suggests syslogged diagnostics are best here (ugh).
590 	 */
591 
592 	proxy = spi_alloc_device(ctlr);
593 	if (!proxy)
594 		return NULL;
595 
596 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
597 
598 	proxy->chip_select = chip->chip_select;
599 	proxy->max_speed_hz = chip->max_speed_hz;
600 	proxy->mode = chip->mode;
601 	proxy->irq = chip->irq;
602 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
603 	proxy->dev.platform_data = (void *) chip->platform_data;
604 	proxy->controller_data = chip->controller_data;
605 	proxy->controller_state = NULL;
606 
607 	if (chip->properties) {
608 		status = device_add_properties(&proxy->dev, chip->properties);
609 		if (status) {
610 			dev_err(&ctlr->dev,
611 				"failed to add properties to '%s': %d\n",
612 				chip->modalias, status);
613 			goto err_dev_put;
614 		}
615 	}
616 
617 	status = spi_add_device(proxy);
618 	if (status < 0)
619 		goto err_remove_props;
620 
621 	return proxy;
622 
623 err_remove_props:
624 	if (chip->properties)
625 		device_remove_properties(&proxy->dev);
626 err_dev_put:
627 	spi_dev_put(proxy);
628 	return NULL;
629 }
630 EXPORT_SYMBOL_GPL(spi_new_device);
631 
632 /**
633  * spi_unregister_device - unregister a single SPI device
634  * @spi: spi_device to unregister
635  *
636  * Start making the passed SPI device vanish. Normally this would be handled
637  * by spi_unregister_controller().
638  */
639 void spi_unregister_device(struct spi_device *spi)
640 {
641 	if (!spi)
642 		return;
643 
644 	if (spi->dev.of_node) {
645 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
646 		of_node_put(spi->dev.of_node);
647 	}
648 	if (ACPI_COMPANION(&spi->dev))
649 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
650 	device_unregister(&spi->dev);
651 }
652 EXPORT_SYMBOL_GPL(spi_unregister_device);
653 
654 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
655 					      struct spi_board_info *bi)
656 {
657 	struct spi_device *dev;
658 
659 	if (ctlr->bus_num != bi->bus_num)
660 		return;
661 
662 	dev = spi_new_device(ctlr, bi);
663 	if (!dev)
664 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
665 			bi->modalias);
666 }
667 
668 /**
669  * spi_register_board_info - register SPI devices for a given board
670  * @info: array of chip descriptors
671  * @n: how many descriptors are provided
672  * Context: can sleep
673  *
674  * Board-specific early init code calls this (probably during arch_initcall)
675  * with segments of the SPI device table.  Any device nodes are created later,
676  * after the relevant parent SPI controller (bus_num) is defined.  We keep
677  * this table of devices forever, so that reloading a controller driver will
678  * not make Linux forget about these hard-wired devices.
679  *
680  * Other code can also call this, e.g. a particular add-on board might provide
681  * SPI devices through its expansion connector, so code initializing that board
682  * would naturally declare its SPI devices.
683  *
684  * The board info passed can safely be __initdata ... but be careful of
685  * any embedded pointers (platform_data, etc), they're copied as-is.
686  * Device properties are deep-copied though.
687  *
688  * Return: zero on success, else a negative error code.
689  */
690 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
691 {
692 	struct boardinfo *bi;
693 	int i;
694 
695 	if (!n)
696 		return 0;
697 
698 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
699 	if (!bi)
700 		return -ENOMEM;
701 
702 	for (i = 0; i < n; i++, bi++, info++) {
703 		struct spi_controller *ctlr;
704 
705 		memcpy(&bi->board_info, info, sizeof(*info));
706 		if (info->properties) {
707 			bi->board_info.properties =
708 					property_entries_dup(info->properties);
709 			if (IS_ERR(bi->board_info.properties))
710 				return PTR_ERR(bi->board_info.properties);
711 		}
712 
713 		mutex_lock(&board_lock);
714 		list_add_tail(&bi->list, &board_list);
715 		list_for_each_entry(ctlr, &spi_controller_list, list)
716 			spi_match_controller_to_boardinfo(ctlr,
717 							  &bi->board_info);
718 		mutex_unlock(&board_lock);
719 	}
720 
721 	return 0;
722 }
723 
724 /*-------------------------------------------------------------------------*/
725 
726 static void spi_set_cs(struct spi_device *spi, bool enable)
727 {
728 	if (spi->mode & SPI_CS_HIGH)
729 		enable = !enable;
730 
731 	if (gpio_is_valid(spi->cs_gpio)) {
732 		gpio_set_value(spi->cs_gpio, !enable);
733 		/* Some SPI masters need both GPIO CS & slave_select */
734 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
735 		    spi->controller->set_cs)
736 			spi->controller->set_cs(spi, !enable);
737 	} else if (spi->controller->set_cs) {
738 		spi->controller->set_cs(spi, !enable);
739 	}
740 }
741 
742 #ifdef CONFIG_HAS_DMA
743 static int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
744 		       struct sg_table *sgt, void *buf, size_t len,
745 		       enum dma_data_direction dir)
746 {
747 	const bool vmalloced_buf = is_vmalloc_addr(buf);
748 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
749 #ifdef CONFIG_HIGHMEM
750 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
751 				(unsigned long)buf < (PKMAP_BASE +
752 					(LAST_PKMAP * PAGE_SIZE)));
753 #else
754 	const bool kmap_buf = false;
755 #endif
756 	int desc_len;
757 	int sgs;
758 	struct page *vm_page;
759 	struct scatterlist *sg;
760 	void *sg_buf;
761 	size_t min;
762 	int i, ret;
763 
764 	if (vmalloced_buf || kmap_buf) {
765 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
766 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
767 	} else if (virt_addr_valid(buf)) {
768 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
769 		sgs = DIV_ROUND_UP(len, desc_len);
770 	} else {
771 		return -EINVAL;
772 	}
773 
774 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
775 	if (ret != 0)
776 		return ret;
777 
778 	sg = &sgt->sgl[0];
779 	for (i = 0; i < sgs; i++) {
780 
781 		if (vmalloced_buf || kmap_buf) {
782 			/*
783 			 * Next scatterlist entry size is the minimum between
784 			 * the desc_len and the remaining buffer length that
785 			 * fits in a page.
786 			 */
787 			min = min_t(size_t, desc_len,
788 				    min_t(size_t, len,
789 					  PAGE_SIZE - offset_in_page(buf)));
790 			if (vmalloced_buf)
791 				vm_page = vmalloc_to_page(buf);
792 			else
793 				vm_page = kmap_to_page(buf);
794 			if (!vm_page) {
795 				sg_free_table(sgt);
796 				return -ENOMEM;
797 			}
798 			sg_set_page(sg, vm_page,
799 				    min, offset_in_page(buf));
800 		} else {
801 			min = min_t(size_t, len, desc_len);
802 			sg_buf = buf;
803 			sg_set_buf(sg, sg_buf, min);
804 		}
805 
806 		buf += min;
807 		len -= min;
808 		sg = sg_next(sg);
809 	}
810 
811 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
812 	if (!ret)
813 		ret = -ENOMEM;
814 	if (ret < 0) {
815 		sg_free_table(sgt);
816 		return ret;
817 	}
818 
819 	sgt->nents = ret;
820 
821 	return 0;
822 }
823 
824 static void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
825 			  struct sg_table *sgt, enum dma_data_direction dir)
826 {
827 	if (sgt->orig_nents) {
828 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
829 		sg_free_table(sgt);
830 	}
831 }
832 
833 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
834 {
835 	struct device *tx_dev, *rx_dev;
836 	struct spi_transfer *xfer;
837 	int ret;
838 
839 	if (!ctlr->can_dma)
840 		return 0;
841 
842 	if (ctlr->dma_tx)
843 		tx_dev = ctlr->dma_tx->device->dev;
844 	else
845 		tx_dev = ctlr->dev.parent;
846 
847 	if (ctlr->dma_rx)
848 		rx_dev = ctlr->dma_rx->device->dev;
849 	else
850 		rx_dev = ctlr->dev.parent;
851 
852 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
853 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
854 			continue;
855 
856 		if (xfer->tx_buf != NULL) {
857 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
858 					  (void *)xfer->tx_buf, xfer->len,
859 					  DMA_TO_DEVICE);
860 			if (ret != 0)
861 				return ret;
862 		}
863 
864 		if (xfer->rx_buf != NULL) {
865 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
866 					  xfer->rx_buf, xfer->len,
867 					  DMA_FROM_DEVICE);
868 			if (ret != 0) {
869 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
870 					      DMA_TO_DEVICE);
871 				return ret;
872 			}
873 		}
874 	}
875 
876 	ctlr->cur_msg_mapped = true;
877 
878 	return 0;
879 }
880 
881 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
882 {
883 	struct spi_transfer *xfer;
884 	struct device *tx_dev, *rx_dev;
885 
886 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
887 		return 0;
888 
889 	if (ctlr->dma_tx)
890 		tx_dev = ctlr->dma_tx->device->dev;
891 	else
892 		tx_dev = ctlr->dev.parent;
893 
894 	if (ctlr->dma_rx)
895 		rx_dev = ctlr->dma_rx->device->dev;
896 	else
897 		rx_dev = ctlr->dev.parent;
898 
899 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
900 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
901 			continue;
902 
903 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
904 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
905 	}
906 
907 	return 0;
908 }
909 #else /* !CONFIG_HAS_DMA */
910 static inline int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
911 			      struct sg_table *sgt, void *buf, size_t len,
912 			      enum dma_data_direction dir)
913 {
914 	return -EINVAL;
915 }
916 
917 static inline void spi_unmap_buf(struct spi_controller *ctlr,
918 				 struct device *dev, struct sg_table *sgt,
919 				 enum dma_data_direction dir)
920 {
921 }
922 
923 static inline int __spi_map_msg(struct spi_controller *ctlr,
924 				struct spi_message *msg)
925 {
926 	return 0;
927 }
928 
929 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
930 				  struct spi_message *msg)
931 {
932 	return 0;
933 }
934 #endif /* !CONFIG_HAS_DMA */
935 
936 static inline int spi_unmap_msg(struct spi_controller *ctlr,
937 				struct spi_message *msg)
938 {
939 	struct spi_transfer *xfer;
940 
941 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
942 		/*
943 		 * Restore the original value of tx_buf or rx_buf if they are
944 		 * NULL.
945 		 */
946 		if (xfer->tx_buf == ctlr->dummy_tx)
947 			xfer->tx_buf = NULL;
948 		if (xfer->rx_buf == ctlr->dummy_rx)
949 			xfer->rx_buf = NULL;
950 	}
951 
952 	return __spi_unmap_msg(ctlr, msg);
953 }
954 
955 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
956 {
957 	struct spi_transfer *xfer;
958 	void *tmp;
959 	unsigned int max_tx, max_rx;
960 
961 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
962 		max_tx = 0;
963 		max_rx = 0;
964 
965 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
966 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
967 			    !xfer->tx_buf)
968 				max_tx = max(xfer->len, max_tx);
969 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
970 			    !xfer->rx_buf)
971 				max_rx = max(xfer->len, max_rx);
972 		}
973 
974 		if (max_tx) {
975 			tmp = krealloc(ctlr->dummy_tx, max_tx,
976 				       GFP_KERNEL | GFP_DMA);
977 			if (!tmp)
978 				return -ENOMEM;
979 			ctlr->dummy_tx = tmp;
980 			memset(tmp, 0, max_tx);
981 		}
982 
983 		if (max_rx) {
984 			tmp = krealloc(ctlr->dummy_rx, max_rx,
985 				       GFP_KERNEL | GFP_DMA);
986 			if (!tmp)
987 				return -ENOMEM;
988 			ctlr->dummy_rx = tmp;
989 		}
990 
991 		if (max_tx || max_rx) {
992 			list_for_each_entry(xfer, &msg->transfers,
993 					    transfer_list) {
994 				if (!xfer->tx_buf)
995 					xfer->tx_buf = ctlr->dummy_tx;
996 				if (!xfer->rx_buf)
997 					xfer->rx_buf = ctlr->dummy_rx;
998 			}
999 		}
1000 	}
1001 
1002 	return __spi_map_msg(ctlr, msg);
1003 }
1004 
1005 /*
1006  * spi_transfer_one_message - Default implementation of transfer_one_message()
1007  *
1008  * This is a standard implementation of transfer_one_message() for
1009  * drivers which implement a transfer_one() operation.  It provides
1010  * standard handling of delays and chip select management.
1011  */
1012 static int spi_transfer_one_message(struct spi_controller *ctlr,
1013 				    struct spi_message *msg)
1014 {
1015 	struct spi_transfer *xfer;
1016 	bool keep_cs = false;
1017 	int ret = 0;
1018 	unsigned long long ms = 1;
1019 	struct spi_statistics *statm = &ctlr->statistics;
1020 	struct spi_statistics *stats = &msg->spi->statistics;
1021 
1022 	spi_set_cs(msg->spi, true);
1023 
1024 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1025 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1026 
1027 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1028 		trace_spi_transfer_start(msg, xfer);
1029 
1030 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1031 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1032 
1033 		if (xfer->tx_buf || xfer->rx_buf) {
1034 			reinit_completion(&ctlr->xfer_completion);
1035 
1036 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1037 			if (ret < 0) {
1038 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1039 							       errors);
1040 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1041 							       errors);
1042 				dev_err(&msg->spi->dev,
1043 					"SPI transfer failed: %d\n", ret);
1044 				goto out;
1045 			}
1046 
1047 			if (ret > 0) {
1048 				ret = 0;
1049 				ms = 8LL * 1000LL * xfer->len;
1050 				do_div(ms, xfer->speed_hz);
1051 				ms += ms + 200; /* some tolerance */
1052 
1053 				if (ms > UINT_MAX)
1054 					ms = UINT_MAX;
1055 
1056 				ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1057 								 msecs_to_jiffies(ms));
1058 			}
1059 
1060 			if (ms == 0) {
1061 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1062 							       timedout);
1063 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1064 							       timedout);
1065 				dev_err(&msg->spi->dev,
1066 					"SPI transfer timed out\n");
1067 				msg->status = -ETIMEDOUT;
1068 			}
1069 		} else {
1070 			if (xfer->len)
1071 				dev_err(&msg->spi->dev,
1072 					"Bufferless transfer has length %u\n",
1073 					xfer->len);
1074 		}
1075 
1076 		trace_spi_transfer_stop(msg, xfer);
1077 
1078 		if (msg->status != -EINPROGRESS)
1079 			goto out;
1080 
1081 		if (xfer->delay_usecs) {
1082 			u16 us = xfer->delay_usecs;
1083 
1084 			if (us <= 10)
1085 				udelay(us);
1086 			else
1087 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1088 		}
1089 
1090 		if (xfer->cs_change) {
1091 			if (list_is_last(&xfer->transfer_list,
1092 					 &msg->transfers)) {
1093 				keep_cs = true;
1094 			} else {
1095 				spi_set_cs(msg->spi, false);
1096 				udelay(10);
1097 				spi_set_cs(msg->spi, true);
1098 			}
1099 		}
1100 
1101 		msg->actual_length += xfer->len;
1102 	}
1103 
1104 out:
1105 	if (ret != 0 || !keep_cs)
1106 		spi_set_cs(msg->spi, false);
1107 
1108 	if (msg->status == -EINPROGRESS)
1109 		msg->status = ret;
1110 
1111 	if (msg->status && ctlr->handle_err)
1112 		ctlr->handle_err(ctlr, msg);
1113 
1114 	spi_res_release(ctlr, msg);
1115 
1116 	spi_finalize_current_message(ctlr);
1117 
1118 	return ret;
1119 }
1120 
1121 /**
1122  * spi_finalize_current_transfer - report completion of a transfer
1123  * @ctlr: the controller reporting completion
1124  *
1125  * Called by SPI drivers using the core transfer_one_message()
1126  * implementation to notify it that the current interrupt driven
1127  * transfer has finished and the next one may be scheduled.
1128  */
1129 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1130 {
1131 	complete(&ctlr->xfer_completion);
1132 }
1133 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1134 
1135 /**
1136  * __spi_pump_messages - function which processes spi message queue
1137  * @ctlr: controller to process queue for
1138  * @in_kthread: true if we are in the context of the message pump thread
1139  *
1140  * This function checks if there is any spi message in the queue that
1141  * needs processing and if so call out to the driver to initialize hardware
1142  * and transfer each message.
1143  *
1144  * Note that it is called both from the kthread itself and also from
1145  * inside spi_sync(); the queue extraction handling at the top of the
1146  * function should deal with this safely.
1147  */
1148 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1149 {
1150 	unsigned long flags;
1151 	bool was_busy = false;
1152 	int ret;
1153 
1154 	/* Lock queue */
1155 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1156 
1157 	/* Make sure we are not already running a message */
1158 	if (ctlr->cur_msg) {
1159 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1160 		return;
1161 	}
1162 
1163 	/* If another context is idling the device then defer */
1164 	if (ctlr->idling) {
1165 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1166 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1167 		return;
1168 	}
1169 
1170 	/* Check if the queue is idle */
1171 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1172 		if (!ctlr->busy) {
1173 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1174 			return;
1175 		}
1176 
1177 		/* Only do teardown in the thread */
1178 		if (!in_kthread) {
1179 			kthread_queue_work(&ctlr->kworker,
1180 					   &ctlr->pump_messages);
1181 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1182 			return;
1183 		}
1184 
1185 		ctlr->busy = false;
1186 		ctlr->idling = true;
1187 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1188 
1189 		kfree(ctlr->dummy_rx);
1190 		ctlr->dummy_rx = NULL;
1191 		kfree(ctlr->dummy_tx);
1192 		ctlr->dummy_tx = NULL;
1193 		if (ctlr->unprepare_transfer_hardware &&
1194 		    ctlr->unprepare_transfer_hardware(ctlr))
1195 			dev_err(&ctlr->dev,
1196 				"failed to unprepare transfer hardware\n");
1197 		if (ctlr->auto_runtime_pm) {
1198 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1199 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1200 		}
1201 		trace_spi_controller_idle(ctlr);
1202 
1203 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1204 		ctlr->idling = false;
1205 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1206 		return;
1207 	}
1208 
1209 	/* Extract head of queue */
1210 	ctlr->cur_msg =
1211 		list_first_entry(&ctlr->queue, struct spi_message, queue);
1212 
1213 	list_del_init(&ctlr->cur_msg->queue);
1214 	if (ctlr->busy)
1215 		was_busy = true;
1216 	else
1217 		ctlr->busy = true;
1218 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1219 
1220 	mutex_lock(&ctlr->io_mutex);
1221 
1222 	if (!was_busy && ctlr->auto_runtime_pm) {
1223 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1224 		if (ret < 0) {
1225 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1226 				ret);
1227 			mutex_unlock(&ctlr->io_mutex);
1228 			return;
1229 		}
1230 	}
1231 
1232 	if (!was_busy)
1233 		trace_spi_controller_busy(ctlr);
1234 
1235 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1236 		ret = ctlr->prepare_transfer_hardware(ctlr);
1237 		if (ret) {
1238 			dev_err(&ctlr->dev,
1239 				"failed to prepare transfer hardware\n");
1240 
1241 			if (ctlr->auto_runtime_pm)
1242 				pm_runtime_put(ctlr->dev.parent);
1243 			mutex_unlock(&ctlr->io_mutex);
1244 			return;
1245 		}
1246 	}
1247 
1248 	trace_spi_message_start(ctlr->cur_msg);
1249 
1250 	if (ctlr->prepare_message) {
1251 		ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1252 		if (ret) {
1253 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1254 				ret);
1255 			ctlr->cur_msg->status = ret;
1256 			spi_finalize_current_message(ctlr);
1257 			goto out;
1258 		}
1259 		ctlr->cur_msg_prepared = true;
1260 	}
1261 
1262 	ret = spi_map_msg(ctlr, ctlr->cur_msg);
1263 	if (ret) {
1264 		ctlr->cur_msg->status = ret;
1265 		spi_finalize_current_message(ctlr);
1266 		goto out;
1267 	}
1268 
1269 	ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1270 	if (ret) {
1271 		dev_err(&ctlr->dev,
1272 			"failed to transfer one message from queue\n");
1273 		goto out;
1274 	}
1275 
1276 out:
1277 	mutex_unlock(&ctlr->io_mutex);
1278 
1279 	/* Prod the scheduler in case transfer_one() was busy waiting */
1280 	if (!ret)
1281 		cond_resched();
1282 }
1283 
1284 /**
1285  * spi_pump_messages - kthread work function which processes spi message queue
1286  * @work: pointer to kthread work struct contained in the controller struct
1287  */
1288 static void spi_pump_messages(struct kthread_work *work)
1289 {
1290 	struct spi_controller *ctlr =
1291 		container_of(work, struct spi_controller, pump_messages);
1292 
1293 	__spi_pump_messages(ctlr, true);
1294 }
1295 
1296 static int spi_init_queue(struct spi_controller *ctlr)
1297 {
1298 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1299 
1300 	ctlr->running = false;
1301 	ctlr->busy = false;
1302 
1303 	kthread_init_worker(&ctlr->kworker);
1304 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1305 					 "%s", dev_name(&ctlr->dev));
1306 	if (IS_ERR(ctlr->kworker_task)) {
1307 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1308 		return PTR_ERR(ctlr->kworker_task);
1309 	}
1310 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1311 
1312 	/*
1313 	 * Controller config will indicate if this controller should run the
1314 	 * message pump with high (realtime) priority to reduce the transfer
1315 	 * latency on the bus by minimising the delay between a transfer
1316 	 * request and the scheduling of the message pump thread. Without this
1317 	 * setting the message pump thread will remain at default priority.
1318 	 */
1319 	if (ctlr->rt) {
1320 		dev_info(&ctlr->dev,
1321 			"will run message pump with realtime priority\n");
1322 		sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1323 	}
1324 
1325 	return 0;
1326 }
1327 
1328 /**
1329  * spi_get_next_queued_message() - called by driver to check for queued
1330  * messages
1331  * @ctlr: the controller to check for queued messages
1332  *
1333  * If there are more messages in the queue, the next message is returned from
1334  * this call.
1335  *
1336  * Return: the next message in the queue, else NULL if the queue is empty.
1337  */
1338 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1339 {
1340 	struct spi_message *next;
1341 	unsigned long flags;
1342 
1343 	/* get a pointer to the next message, if any */
1344 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1345 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1346 					queue);
1347 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348 
1349 	return next;
1350 }
1351 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1352 
1353 /**
1354  * spi_finalize_current_message() - the current message is complete
1355  * @ctlr: the controller to return the message to
1356  *
1357  * Called by the driver to notify the core that the message in the front of the
1358  * queue is complete and can be removed from the queue.
1359  */
1360 void spi_finalize_current_message(struct spi_controller *ctlr)
1361 {
1362 	struct spi_message *mesg;
1363 	unsigned long flags;
1364 	int ret;
1365 
1366 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1367 	mesg = ctlr->cur_msg;
1368 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1369 
1370 	spi_unmap_msg(ctlr, mesg);
1371 
1372 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1373 		ret = ctlr->unprepare_message(ctlr, mesg);
1374 		if (ret) {
1375 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1376 				ret);
1377 		}
1378 	}
1379 
1380 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1381 	ctlr->cur_msg = NULL;
1382 	ctlr->cur_msg_prepared = false;
1383 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1384 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1385 
1386 	trace_spi_message_done(mesg);
1387 
1388 	mesg->state = NULL;
1389 	if (mesg->complete)
1390 		mesg->complete(mesg->context);
1391 }
1392 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1393 
1394 static int spi_start_queue(struct spi_controller *ctlr)
1395 {
1396 	unsigned long flags;
1397 
1398 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1399 
1400 	if (ctlr->running || ctlr->busy) {
1401 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402 		return -EBUSY;
1403 	}
1404 
1405 	ctlr->running = true;
1406 	ctlr->cur_msg = NULL;
1407 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1408 
1409 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1410 
1411 	return 0;
1412 }
1413 
1414 static int spi_stop_queue(struct spi_controller *ctlr)
1415 {
1416 	unsigned long flags;
1417 	unsigned limit = 500;
1418 	int ret = 0;
1419 
1420 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1421 
1422 	/*
1423 	 * This is a bit lame, but is optimized for the common execution path.
1424 	 * A wait_queue on the ctlr->busy could be used, but then the common
1425 	 * execution path (pump_messages) would be required to call wake_up or
1426 	 * friends on every SPI message. Do this instead.
1427 	 */
1428 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1429 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1430 		usleep_range(10000, 11000);
1431 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1432 	}
1433 
1434 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1435 		ret = -EBUSY;
1436 	else
1437 		ctlr->running = false;
1438 
1439 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1440 
1441 	if (ret) {
1442 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1443 		return ret;
1444 	}
1445 	return ret;
1446 }
1447 
1448 static int spi_destroy_queue(struct spi_controller *ctlr)
1449 {
1450 	int ret;
1451 
1452 	ret = spi_stop_queue(ctlr);
1453 
1454 	/*
1455 	 * kthread_flush_worker will block until all work is done.
1456 	 * If the reason that stop_queue timed out is that the work will never
1457 	 * finish, then it does no good to call flush/stop thread, so
1458 	 * return anyway.
1459 	 */
1460 	if (ret) {
1461 		dev_err(&ctlr->dev, "problem destroying queue\n");
1462 		return ret;
1463 	}
1464 
1465 	kthread_flush_worker(&ctlr->kworker);
1466 	kthread_stop(ctlr->kworker_task);
1467 
1468 	return 0;
1469 }
1470 
1471 static int __spi_queued_transfer(struct spi_device *spi,
1472 				 struct spi_message *msg,
1473 				 bool need_pump)
1474 {
1475 	struct spi_controller *ctlr = spi->controller;
1476 	unsigned long flags;
1477 
1478 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1479 
1480 	if (!ctlr->running) {
1481 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1482 		return -ESHUTDOWN;
1483 	}
1484 	msg->actual_length = 0;
1485 	msg->status = -EINPROGRESS;
1486 
1487 	list_add_tail(&msg->queue, &ctlr->queue);
1488 	if (!ctlr->busy && need_pump)
1489 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1490 
1491 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492 	return 0;
1493 }
1494 
1495 /**
1496  * spi_queued_transfer - transfer function for queued transfers
1497  * @spi: spi device which is requesting transfer
1498  * @msg: spi message which is to handled is queued to driver queue
1499  *
1500  * Return: zero on success, else a negative error code.
1501  */
1502 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1503 {
1504 	return __spi_queued_transfer(spi, msg, true);
1505 }
1506 
1507 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1508 {
1509 	int ret;
1510 
1511 	ctlr->transfer = spi_queued_transfer;
1512 	if (!ctlr->transfer_one_message)
1513 		ctlr->transfer_one_message = spi_transfer_one_message;
1514 
1515 	/* Initialize and start queue */
1516 	ret = spi_init_queue(ctlr);
1517 	if (ret) {
1518 		dev_err(&ctlr->dev, "problem initializing queue\n");
1519 		goto err_init_queue;
1520 	}
1521 	ctlr->queued = true;
1522 	ret = spi_start_queue(ctlr);
1523 	if (ret) {
1524 		dev_err(&ctlr->dev, "problem starting queue\n");
1525 		goto err_start_queue;
1526 	}
1527 
1528 	return 0;
1529 
1530 err_start_queue:
1531 	spi_destroy_queue(ctlr);
1532 err_init_queue:
1533 	return ret;
1534 }
1535 
1536 /*-------------------------------------------------------------------------*/
1537 
1538 #if defined(CONFIG_OF)
1539 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1540 			   struct device_node *nc)
1541 {
1542 	u32 value;
1543 	int rc;
1544 
1545 	/* Mode (clock phase/polarity/etc.) */
1546 	if (of_property_read_bool(nc, "spi-cpha"))
1547 		spi->mode |= SPI_CPHA;
1548 	if (of_property_read_bool(nc, "spi-cpol"))
1549 		spi->mode |= SPI_CPOL;
1550 	if (of_property_read_bool(nc, "spi-cs-high"))
1551 		spi->mode |= SPI_CS_HIGH;
1552 	if (of_property_read_bool(nc, "spi-3wire"))
1553 		spi->mode |= SPI_3WIRE;
1554 	if (of_property_read_bool(nc, "spi-lsb-first"))
1555 		spi->mode |= SPI_LSB_FIRST;
1556 
1557 	/* Device DUAL/QUAD mode */
1558 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1559 		switch (value) {
1560 		case 1:
1561 			break;
1562 		case 2:
1563 			spi->mode |= SPI_TX_DUAL;
1564 			break;
1565 		case 4:
1566 			spi->mode |= SPI_TX_QUAD;
1567 			break;
1568 		default:
1569 			dev_warn(&ctlr->dev,
1570 				"spi-tx-bus-width %d not supported\n",
1571 				value);
1572 			break;
1573 		}
1574 	}
1575 
1576 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1577 		switch (value) {
1578 		case 1:
1579 			break;
1580 		case 2:
1581 			spi->mode |= SPI_RX_DUAL;
1582 			break;
1583 		case 4:
1584 			spi->mode |= SPI_RX_QUAD;
1585 			break;
1586 		default:
1587 			dev_warn(&ctlr->dev,
1588 				"spi-rx-bus-width %d not supported\n",
1589 				value);
1590 			break;
1591 		}
1592 	}
1593 
1594 	if (spi_controller_is_slave(ctlr)) {
1595 		if (strcmp(nc->name, "slave")) {
1596 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1597 				nc);
1598 			return -EINVAL;
1599 		}
1600 		return 0;
1601 	}
1602 
1603 	/* Device address */
1604 	rc = of_property_read_u32(nc, "reg", &value);
1605 	if (rc) {
1606 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1607 			nc, rc);
1608 		return rc;
1609 	}
1610 	spi->chip_select = value;
1611 
1612 	/* Device speed */
1613 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1614 	if (rc) {
1615 		dev_err(&ctlr->dev,
1616 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1617 		return rc;
1618 	}
1619 	spi->max_speed_hz = value;
1620 
1621 	return 0;
1622 }
1623 
1624 static struct spi_device *
1625 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1626 {
1627 	struct spi_device *spi;
1628 	int rc;
1629 
1630 	/* Alloc an spi_device */
1631 	spi = spi_alloc_device(ctlr);
1632 	if (!spi) {
1633 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1634 		rc = -ENOMEM;
1635 		goto err_out;
1636 	}
1637 
1638 	/* Select device driver */
1639 	rc = of_modalias_node(nc, spi->modalias,
1640 				sizeof(spi->modalias));
1641 	if (rc < 0) {
1642 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1643 		goto err_out;
1644 	}
1645 
1646 	rc = of_spi_parse_dt(ctlr, spi, nc);
1647 	if (rc)
1648 		goto err_out;
1649 
1650 	/* Store a pointer to the node in the device structure */
1651 	of_node_get(nc);
1652 	spi->dev.of_node = nc;
1653 
1654 	/* Register the new device */
1655 	rc = spi_add_device(spi);
1656 	if (rc) {
1657 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1658 		goto err_of_node_put;
1659 	}
1660 
1661 	return spi;
1662 
1663 err_of_node_put:
1664 	of_node_put(nc);
1665 err_out:
1666 	spi_dev_put(spi);
1667 	return ERR_PTR(rc);
1668 }
1669 
1670 /**
1671  * of_register_spi_devices() - Register child devices onto the SPI bus
1672  * @ctlr:	Pointer to spi_controller device
1673  *
1674  * Registers an spi_device for each child node of controller node which
1675  * represents a valid SPI slave.
1676  */
1677 static void of_register_spi_devices(struct spi_controller *ctlr)
1678 {
1679 	struct spi_device *spi;
1680 	struct device_node *nc;
1681 
1682 	if (!ctlr->dev.of_node)
1683 		return;
1684 
1685 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1686 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1687 			continue;
1688 		spi = of_register_spi_device(ctlr, nc);
1689 		if (IS_ERR(spi)) {
1690 			dev_warn(&ctlr->dev,
1691 				 "Failed to create SPI device for %pOF\n", nc);
1692 			of_node_clear_flag(nc, OF_POPULATED);
1693 		}
1694 	}
1695 }
1696 #else
1697 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1698 #endif
1699 
1700 #ifdef CONFIG_ACPI
1701 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1702 {
1703 	struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1704 	const union acpi_object *obj;
1705 
1706 	if (!x86_apple_machine)
1707 		return;
1708 
1709 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1710 	    && obj->buffer.length >= 4)
1711 		spi->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1712 
1713 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1714 	    && obj->buffer.length == 8)
1715 		spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1716 
1717 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1718 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1719 		spi->mode |= SPI_LSB_FIRST;
1720 
1721 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1722 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1723 		spi->mode |= SPI_CPOL;
1724 
1725 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1726 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1727 		spi->mode |= SPI_CPHA;
1728 }
1729 
1730 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1731 {
1732 	struct spi_device *spi = data;
1733 	struct spi_controller *ctlr = spi->controller;
1734 
1735 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1736 		struct acpi_resource_spi_serialbus *sb;
1737 
1738 		sb = &ares->data.spi_serial_bus;
1739 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1740 			/*
1741 			 * ACPI DeviceSelection numbering is handled by the
1742 			 * host controller driver in Windows and can vary
1743 			 * from driver to driver. In Linux we always expect
1744 			 * 0 .. max - 1 so we need to ask the driver to
1745 			 * translate between the two schemes.
1746 			 */
1747 			if (ctlr->fw_translate_cs) {
1748 				int cs = ctlr->fw_translate_cs(ctlr,
1749 						sb->device_selection);
1750 				if (cs < 0)
1751 					return cs;
1752 				spi->chip_select = cs;
1753 			} else {
1754 				spi->chip_select = sb->device_selection;
1755 			}
1756 
1757 			spi->max_speed_hz = sb->connection_speed;
1758 
1759 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1760 				spi->mode |= SPI_CPHA;
1761 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1762 				spi->mode |= SPI_CPOL;
1763 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1764 				spi->mode |= SPI_CS_HIGH;
1765 		}
1766 	} else if (spi->irq < 0) {
1767 		struct resource r;
1768 
1769 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1770 			spi->irq = r.start;
1771 	}
1772 
1773 	/* Always tell the ACPI core to skip this resource */
1774 	return 1;
1775 }
1776 
1777 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1778 					    struct acpi_device *adev)
1779 {
1780 	struct list_head resource_list;
1781 	struct spi_device *spi;
1782 	int ret;
1783 
1784 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1785 	    acpi_device_enumerated(adev))
1786 		return AE_OK;
1787 
1788 	spi = spi_alloc_device(ctlr);
1789 	if (!spi) {
1790 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1791 			dev_name(&adev->dev));
1792 		return AE_NO_MEMORY;
1793 	}
1794 
1795 	ACPI_COMPANION_SET(&spi->dev, adev);
1796 	spi->irq = -1;
1797 
1798 	INIT_LIST_HEAD(&resource_list);
1799 	ret = acpi_dev_get_resources(adev, &resource_list,
1800 				     acpi_spi_add_resource, spi);
1801 	acpi_dev_free_resource_list(&resource_list);
1802 
1803 	acpi_spi_parse_apple_properties(spi);
1804 
1805 	if (ret < 0 || !spi->max_speed_hz) {
1806 		spi_dev_put(spi);
1807 		return AE_OK;
1808 	}
1809 
1810 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1811 			  sizeof(spi->modalias));
1812 
1813 	if (spi->irq < 0)
1814 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1815 
1816 	acpi_device_set_enumerated(adev);
1817 
1818 	adev->power.flags.ignore_parent = true;
1819 	if (spi_add_device(spi)) {
1820 		adev->power.flags.ignore_parent = false;
1821 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1822 			dev_name(&adev->dev));
1823 		spi_dev_put(spi);
1824 	}
1825 
1826 	return AE_OK;
1827 }
1828 
1829 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1830 				       void *data, void **return_value)
1831 {
1832 	struct spi_controller *ctlr = data;
1833 	struct acpi_device *adev;
1834 
1835 	if (acpi_bus_get_device(handle, &adev))
1836 		return AE_OK;
1837 
1838 	return acpi_register_spi_device(ctlr, adev);
1839 }
1840 
1841 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1842 {
1843 	acpi_status status;
1844 	acpi_handle handle;
1845 
1846 	handle = ACPI_HANDLE(ctlr->dev.parent);
1847 	if (!handle)
1848 		return;
1849 
1850 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1851 				     acpi_spi_add_device, NULL, ctlr, NULL);
1852 	if (ACPI_FAILURE(status))
1853 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1854 }
1855 #else
1856 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1857 #endif /* CONFIG_ACPI */
1858 
1859 static void spi_controller_release(struct device *dev)
1860 {
1861 	struct spi_controller *ctlr;
1862 
1863 	ctlr = container_of(dev, struct spi_controller, dev);
1864 	kfree(ctlr);
1865 }
1866 
1867 static struct class spi_master_class = {
1868 	.name		= "spi_master",
1869 	.owner		= THIS_MODULE,
1870 	.dev_release	= spi_controller_release,
1871 	.dev_groups	= spi_master_groups,
1872 };
1873 
1874 #ifdef CONFIG_SPI_SLAVE
1875 /**
1876  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1877  *		     controller
1878  * @spi: device used for the current transfer
1879  */
1880 int spi_slave_abort(struct spi_device *spi)
1881 {
1882 	struct spi_controller *ctlr = spi->controller;
1883 
1884 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1885 		return ctlr->slave_abort(ctlr);
1886 
1887 	return -ENOTSUPP;
1888 }
1889 EXPORT_SYMBOL_GPL(spi_slave_abort);
1890 
1891 static int match_true(struct device *dev, void *data)
1892 {
1893 	return 1;
1894 }
1895 
1896 static ssize_t spi_slave_show(struct device *dev,
1897 			      struct device_attribute *attr, char *buf)
1898 {
1899 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1900 						   dev);
1901 	struct device *child;
1902 
1903 	child = device_find_child(&ctlr->dev, NULL, match_true);
1904 	return sprintf(buf, "%s\n",
1905 		       child ? to_spi_device(child)->modalias : NULL);
1906 }
1907 
1908 static ssize_t spi_slave_store(struct device *dev,
1909 			       struct device_attribute *attr, const char *buf,
1910 			       size_t count)
1911 {
1912 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1913 						   dev);
1914 	struct spi_device *spi;
1915 	struct device *child;
1916 	char name[32];
1917 	int rc;
1918 
1919 	rc = sscanf(buf, "%31s", name);
1920 	if (rc != 1 || !name[0])
1921 		return -EINVAL;
1922 
1923 	child = device_find_child(&ctlr->dev, NULL, match_true);
1924 	if (child) {
1925 		/* Remove registered slave */
1926 		device_unregister(child);
1927 		put_device(child);
1928 	}
1929 
1930 	if (strcmp(name, "(null)")) {
1931 		/* Register new slave */
1932 		spi = spi_alloc_device(ctlr);
1933 		if (!spi)
1934 			return -ENOMEM;
1935 
1936 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
1937 
1938 		rc = spi_add_device(spi);
1939 		if (rc) {
1940 			spi_dev_put(spi);
1941 			return rc;
1942 		}
1943 	}
1944 
1945 	return count;
1946 }
1947 
1948 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
1949 
1950 static struct attribute *spi_slave_attrs[] = {
1951 	&dev_attr_slave.attr,
1952 	NULL,
1953 };
1954 
1955 static const struct attribute_group spi_slave_group = {
1956 	.attrs = spi_slave_attrs,
1957 };
1958 
1959 static const struct attribute_group *spi_slave_groups[] = {
1960 	&spi_controller_statistics_group,
1961 	&spi_slave_group,
1962 	NULL,
1963 };
1964 
1965 static struct class spi_slave_class = {
1966 	.name		= "spi_slave",
1967 	.owner		= THIS_MODULE,
1968 	.dev_release	= spi_controller_release,
1969 	.dev_groups	= spi_slave_groups,
1970 };
1971 #else
1972 extern struct class spi_slave_class;	/* dummy */
1973 #endif
1974 
1975 /**
1976  * __spi_alloc_controller - allocate an SPI master or slave controller
1977  * @dev: the controller, possibly using the platform_bus
1978  * @size: how much zeroed driver-private data to allocate; the pointer to this
1979  *	memory is in the driver_data field of the returned device,
1980  *	accessible with spi_controller_get_devdata().
1981  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1982  *	slave (true) controller
1983  * Context: can sleep
1984  *
1985  * This call is used only by SPI controller drivers, which are the
1986  * only ones directly touching chip registers.  It's how they allocate
1987  * an spi_controller structure, prior to calling spi_register_controller().
1988  *
1989  * This must be called from context that can sleep.
1990  *
1991  * The caller is responsible for assigning the bus number and initializing the
1992  * controller's methods before calling spi_register_controller(); and (after
1993  * errors adding the device) calling spi_controller_put() to prevent a memory
1994  * leak.
1995  *
1996  * Return: the SPI controller structure on success, else NULL.
1997  */
1998 struct spi_controller *__spi_alloc_controller(struct device *dev,
1999 					      unsigned int size, bool slave)
2000 {
2001 	struct spi_controller	*ctlr;
2002 
2003 	if (!dev)
2004 		return NULL;
2005 
2006 	ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2007 	if (!ctlr)
2008 		return NULL;
2009 
2010 	device_initialize(&ctlr->dev);
2011 	ctlr->bus_num = -1;
2012 	ctlr->num_chipselect = 1;
2013 	ctlr->slave = slave;
2014 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2015 		ctlr->dev.class = &spi_slave_class;
2016 	else
2017 		ctlr->dev.class = &spi_master_class;
2018 	ctlr->dev.parent = dev;
2019 	pm_suspend_ignore_children(&ctlr->dev, true);
2020 	spi_controller_set_devdata(ctlr, &ctlr[1]);
2021 
2022 	return ctlr;
2023 }
2024 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2025 
2026 #ifdef CONFIG_OF
2027 static int of_spi_register_master(struct spi_controller *ctlr)
2028 {
2029 	int nb, i, *cs;
2030 	struct device_node *np = ctlr->dev.of_node;
2031 
2032 	if (!np)
2033 		return 0;
2034 
2035 	nb = of_gpio_named_count(np, "cs-gpios");
2036 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2037 
2038 	/* Return error only for an incorrectly formed cs-gpios property */
2039 	if (nb == 0 || nb == -ENOENT)
2040 		return 0;
2041 	else if (nb < 0)
2042 		return nb;
2043 
2044 	cs = devm_kzalloc(&ctlr->dev, sizeof(int) * ctlr->num_chipselect,
2045 			  GFP_KERNEL);
2046 	ctlr->cs_gpios = cs;
2047 
2048 	if (!ctlr->cs_gpios)
2049 		return -ENOMEM;
2050 
2051 	for (i = 0; i < ctlr->num_chipselect; i++)
2052 		cs[i] = -ENOENT;
2053 
2054 	for (i = 0; i < nb; i++)
2055 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2056 
2057 	return 0;
2058 }
2059 #else
2060 static int of_spi_register_master(struct spi_controller *ctlr)
2061 {
2062 	return 0;
2063 }
2064 #endif
2065 
2066 /**
2067  * spi_register_controller - register SPI master or slave controller
2068  * @ctlr: initialized master, originally from spi_alloc_master() or
2069  *	spi_alloc_slave()
2070  * Context: can sleep
2071  *
2072  * SPI controllers connect to their drivers using some non-SPI bus,
2073  * such as the platform bus.  The final stage of probe() in that code
2074  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2075  *
2076  * SPI controllers use board specific (often SOC specific) bus numbers,
2077  * and board-specific addressing for SPI devices combines those numbers
2078  * with chip select numbers.  Since SPI does not directly support dynamic
2079  * device identification, boards need configuration tables telling which
2080  * chip is at which address.
2081  *
2082  * This must be called from context that can sleep.  It returns zero on
2083  * success, else a negative error code (dropping the controller's refcount).
2084  * After a successful return, the caller is responsible for calling
2085  * spi_unregister_controller().
2086  *
2087  * Return: zero on success, else a negative error code.
2088  */
2089 int spi_register_controller(struct spi_controller *ctlr)
2090 {
2091 	struct device		*dev = ctlr->dev.parent;
2092 	struct boardinfo	*bi;
2093 	int			status = -ENODEV;
2094 	int			id, first_dynamic;
2095 
2096 	if (!dev)
2097 		return -ENODEV;
2098 
2099 	if (!spi_controller_is_slave(ctlr)) {
2100 		status = of_spi_register_master(ctlr);
2101 		if (status)
2102 			return status;
2103 	}
2104 
2105 	/* even if it's just one always-selected device, there must
2106 	 * be at least one chipselect
2107 	 */
2108 	if (ctlr->num_chipselect == 0)
2109 		return -EINVAL;
2110 	/* allocate dynamic bus number using Linux idr */
2111 	if ((ctlr->bus_num < 0) && ctlr->dev.of_node) {
2112 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2113 		if (id >= 0) {
2114 			ctlr->bus_num = id;
2115 			mutex_lock(&board_lock);
2116 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2117 				       ctlr->bus_num + 1, GFP_KERNEL);
2118 			mutex_unlock(&board_lock);
2119 			if (WARN(id < 0, "couldn't get idr"))
2120 				return id == -ENOSPC ? -EBUSY : id;
2121 		}
2122 	}
2123 	if (ctlr->bus_num < 0) {
2124 		first_dynamic = of_alias_get_highest_id("spi");
2125 		if (first_dynamic < 0)
2126 			first_dynamic = 0;
2127 		else
2128 			first_dynamic++;
2129 
2130 		mutex_lock(&board_lock);
2131 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2132 			       0, GFP_KERNEL);
2133 		mutex_unlock(&board_lock);
2134 		if (WARN(id < 0, "couldn't get idr"))
2135 			return id;
2136 		ctlr->bus_num = id;
2137 	}
2138 	INIT_LIST_HEAD(&ctlr->queue);
2139 	spin_lock_init(&ctlr->queue_lock);
2140 	spin_lock_init(&ctlr->bus_lock_spinlock);
2141 	mutex_init(&ctlr->bus_lock_mutex);
2142 	mutex_init(&ctlr->io_mutex);
2143 	ctlr->bus_lock_flag = 0;
2144 	init_completion(&ctlr->xfer_completion);
2145 	if (!ctlr->max_dma_len)
2146 		ctlr->max_dma_len = INT_MAX;
2147 
2148 	/* register the device, then userspace will see it.
2149 	 * registration fails if the bus ID is in use.
2150 	 */
2151 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2152 	status = device_add(&ctlr->dev);
2153 	if (status < 0) {
2154 		/* free bus id */
2155 		mutex_lock(&board_lock);
2156 		idr_remove(&spi_master_idr, ctlr->bus_num);
2157 		mutex_unlock(&board_lock);
2158 		goto done;
2159 	}
2160 	dev_dbg(dev, "registered %s %s\n",
2161 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2162 			dev_name(&ctlr->dev));
2163 
2164 	/* If we're using a queued driver, start the queue */
2165 	if (ctlr->transfer)
2166 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2167 	else {
2168 		status = spi_controller_initialize_queue(ctlr);
2169 		if (status) {
2170 			device_del(&ctlr->dev);
2171 			/* free bus id */
2172 			mutex_lock(&board_lock);
2173 			idr_remove(&spi_master_idr, ctlr->bus_num);
2174 			mutex_unlock(&board_lock);
2175 			goto done;
2176 		}
2177 	}
2178 	/* add statistics */
2179 	spin_lock_init(&ctlr->statistics.lock);
2180 
2181 	mutex_lock(&board_lock);
2182 	list_add_tail(&ctlr->list, &spi_controller_list);
2183 	list_for_each_entry(bi, &board_list, list)
2184 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2185 	mutex_unlock(&board_lock);
2186 
2187 	/* Register devices from the device tree and ACPI */
2188 	of_register_spi_devices(ctlr);
2189 	acpi_register_spi_devices(ctlr);
2190 done:
2191 	return status;
2192 }
2193 EXPORT_SYMBOL_GPL(spi_register_controller);
2194 
2195 static void devm_spi_unregister(struct device *dev, void *res)
2196 {
2197 	spi_unregister_controller(*(struct spi_controller **)res);
2198 }
2199 
2200 /**
2201  * devm_spi_register_controller - register managed SPI master or slave
2202  *	controller
2203  * @dev:    device managing SPI controller
2204  * @ctlr: initialized controller, originally from spi_alloc_master() or
2205  *	spi_alloc_slave()
2206  * Context: can sleep
2207  *
2208  * Register a SPI device as with spi_register_controller() which will
2209  * automatically be unregistered and freed.
2210  *
2211  * Return: zero on success, else a negative error code.
2212  */
2213 int devm_spi_register_controller(struct device *dev,
2214 				 struct spi_controller *ctlr)
2215 {
2216 	struct spi_controller **ptr;
2217 	int ret;
2218 
2219 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2220 	if (!ptr)
2221 		return -ENOMEM;
2222 
2223 	ret = spi_register_controller(ctlr);
2224 	if (!ret) {
2225 		*ptr = ctlr;
2226 		devres_add(dev, ptr);
2227 	} else {
2228 		devres_free(ptr);
2229 	}
2230 
2231 	return ret;
2232 }
2233 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2234 
2235 static int __unregister(struct device *dev, void *null)
2236 {
2237 	spi_unregister_device(to_spi_device(dev));
2238 	return 0;
2239 }
2240 
2241 /**
2242  * spi_unregister_controller - unregister SPI master or slave controller
2243  * @ctlr: the controller being unregistered
2244  * Context: can sleep
2245  *
2246  * This call is used only by SPI controller drivers, which are the
2247  * only ones directly touching chip registers.
2248  *
2249  * This must be called from context that can sleep.
2250  *
2251  * Note that this function also drops a reference to the controller.
2252  */
2253 void spi_unregister_controller(struct spi_controller *ctlr)
2254 {
2255 	struct spi_controller *found;
2256 	int id = ctlr->bus_num;
2257 	int dummy;
2258 
2259 	/* First make sure that this controller was ever added */
2260 	mutex_lock(&board_lock);
2261 	found = idr_find(&spi_master_idr, id);
2262 	mutex_unlock(&board_lock);
2263 	if (ctlr->queued) {
2264 		if (spi_destroy_queue(ctlr))
2265 			dev_err(&ctlr->dev, "queue remove failed\n");
2266 	}
2267 	mutex_lock(&board_lock);
2268 	list_del(&ctlr->list);
2269 	mutex_unlock(&board_lock);
2270 
2271 	dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2272 	device_unregister(&ctlr->dev);
2273 	/* free bus id */
2274 	mutex_lock(&board_lock);
2275 	if (found == ctlr)
2276 		idr_remove(&spi_master_idr, id);
2277 	mutex_unlock(&board_lock);
2278 }
2279 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2280 
2281 int spi_controller_suspend(struct spi_controller *ctlr)
2282 {
2283 	int ret;
2284 
2285 	/* Basically no-ops for non-queued controllers */
2286 	if (!ctlr->queued)
2287 		return 0;
2288 
2289 	ret = spi_stop_queue(ctlr);
2290 	if (ret)
2291 		dev_err(&ctlr->dev, "queue stop failed\n");
2292 
2293 	return ret;
2294 }
2295 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2296 
2297 int spi_controller_resume(struct spi_controller *ctlr)
2298 {
2299 	int ret;
2300 
2301 	if (!ctlr->queued)
2302 		return 0;
2303 
2304 	ret = spi_start_queue(ctlr);
2305 	if (ret)
2306 		dev_err(&ctlr->dev, "queue restart failed\n");
2307 
2308 	return ret;
2309 }
2310 EXPORT_SYMBOL_GPL(spi_controller_resume);
2311 
2312 static int __spi_controller_match(struct device *dev, const void *data)
2313 {
2314 	struct spi_controller *ctlr;
2315 	const u16 *bus_num = data;
2316 
2317 	ctlr = container_of(dev, struct spi_controller, dev);
2318 	return ctlr->bus_num == *bus_num;
2319 }
2320 
2321 /**
2322  * spi_busnum_to_master - look up master associated with bus_num
2323  * @bus_num: the master's bus number
2324  * Context: can sleep
2325  *
2326  * This call may be used with devices that are registered after
2327  * arch init time.  It returns a refcounted pointer to the relevant
2328  * spi_controller (which the caller must release), or NULL if there is
2329  * no such master registered.
2330  *
2331  * Return: the SPI master structure on success, else NULL.
2332  */
2333 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2334 {
2335 	struct device		*dev;
2336 	struct spi_controller	*ctlr = NULL;
2337 
2338 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2339 				__spi_controller_match);
2340 	if (dev)
2341 		ctlr = container_of(dev, struct spi_controller, dev);
2342 	/* reference got in class_find_device */
2343 	return ctlr;
2344 }
2345 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2346 
2347 /*-------------------------------------------------------------------------*/
2348 
2349 /* Core methods for SPI resource management */
2350 
2351 /**
2352  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2353  *                 during the processing of a spi_message while using
2354  *                 spi_transfer_one
2355  * @spi:     the spi device for which we allocate memory
2356  * @release: the release code to execute for this resource
2357  * @size:    size to alloc and return
2358  * @gfp:     GFP allocation flags
2359  *
2360  * Return: the pointer to the allocated data
2361  *
2362  * This may get enhanced in the future to allocate from a memory pool
2363  * of the @spi_device or @spi_controller to avoid repeated allocations.
2364  */
2365 void *spi_res_alloc(struct spi_device *spi,
2366 		    spi_res_release_t release,
2367 		    size_t size, gfp_t gfp)
2368 {
2369 	struct spi_res *sres;
2370 
2371 	sres = kzalloc(sizeof(*sres) + size, gfp);
2372 	if (!sres)
2373 		return NULL;
2374 
2375 	INIT_LIST_HEAD(&sres->entry);
2376 	sres->release = release;
2377 
2378 	return sres->data;
2379 }
2380 EXPORT_SYMBOL_GPL(spi_res_alloc);
2381 
2382 /**
2383  * spi_res_free - free an spi resource
2384  * @res: pointer to the custom data of a resource
2385  *
2386  */
2387 void spi_res_free(void *res)
2388 {
2389 	struct spi_res *sres = container_of(res, struct spi_res, data);
2390 
2391 	if (!res)
2392 		return;
2393 
2394 	WARN_ON(!list_empty(&sres->entry));
2395 	kfree(sres);
2396 }
2397 EXPORT_SYMBOL_GPL(spi_res_free);
2398 
2399 /**
2400  * spi_res_add - add a spi_res to the spi_message
2401  * @message: the spi message
2402  * @res:     the spi_resource
2403  */
2404 void spi_res_add(struct spi_message *message, void *res)
2405 {
2406 	struct spi_res *sres = container_of(res, struct spi_res, data);
2407 
2408 	WARN_ON(!list_empty(&sres->entry));
2409 	list_add_tail(&sres->entry, &message->resources);
2410 }
2411 EXPORT_SYMBOL_GPL(spi_res_add);
2412 
2413 /**
2414  * spi_res_release - release all spi resources for this message
2415  * @ctlr:  the @spi_controller
2416  * @message: the @spi_message
2417  */
2418 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2419 {
2420 	struct spi_res *res;
2421 
2422 	while (!list_empty(&message->resources)) {
2423 		res = list_last_entry(&message->resources,
2424 				      struct spi_res, entry);
2425 
2426 		if (res->release)
2427 			res->release(ctlr, message, res->data);
2428 
2429 		list_del(&res->entry);
2430 
2431 		kfree(res);
2432 	}
2433 }
2434 EXPORT_SYMBOL_GPL(spi_res_release);
2435 
2436 /*-------------------------------------------------------------------------*/
2437 
2438 /* Core methods for spi_message alterations */
2439 
2440 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2441 					    struct spi_message *msg,
2442 					    void *res)
2443 {
2444 	struct spi_replaced_transfers *rxfer = res;
2445 	size_t i;
2446 
2447 	/* call extra callback if requested */
2448 	if (rxfer->release)
2449 		rxfer->release(ctlr, msg, res);
2450 
2451 	/* insert replaced transfers back into the message */
2452 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2453 
2454 	/* remove the formerly inserted entries */
2455 	for (i = 0; i < rxfer->inserted; i++)
2456 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2457 }
2458 
2459 /**
2460  * spi_replace_transfers - replace transfers with several transfers
2461  *                         and register change with spi_message.resources
2462  * @msg:           the spi_message we work upon
2463  * @xfer_first:    the first spi_transfer we want to replace
2464  * @remove:        number of transfers to remove
2465  * @insert:        the number of transfers we want to insert instead
2466  * @release:       extra release code necessary in some circumstances
2467  * @extradatasize: extra data to allocate (with alignment guarantees
2468  *                 of struct @spi_transfer)
2469  * @gfp:           gfp flags
2470  *
2471  * Returns: pointer to @spi_replaced_transfers,
2472  *          PTR_ERR(...) in case of errors.
2473  */
2474 struct spi_replaced_transfers *spi_replace_transfers(
2475 	struct spi_message *msg,
2476 	struct spi_transfer *xfer_first,
2477 	size_t remove,
2478 	size_t insert,
2479 	spi_replaced_release_t release,
2480 	size_t extradatasize,
2481 	gfp_t gfp)
2482 {
2483 	struct spi_replaced_transfers *rxfer;
2484 	struct spi_transfer *xfer;
2485 	size_t i;
2486 
2487 	/* allocate the structure using spi_res */
2488 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2489 			      insert * sizeof(struct spi_transfer)
2490 			      + sizeof(struct spi_replaced_transfers)
2491 			      + extradatasize,
2492 			      gfp);
2493 	if (!rxfer)
2494 		return ERR_PTR(-ENOMEM);
2495 
2496 	/* the release code to invoke before running the generic release */
2497 	rxfer->release = release;
2498 
2499 	/* assign extradata */
2500 	if (extradatasize)
2501 		rxfer->extradata =
2502 			&rxfer->inserted_transfers[insert];
2503 
2504 	/* init the replaced_transfers list */
2505 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2506 
2507 	/* assign the list_entry after which we should reinsert
2508 	 * the @replaced_transfers - it may be spi_message.messages!
2509 	 */
2510 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2511 
2512 	/* remove the requested number of transfers */
2513 	for (i = 0; i < remove; i++) {
2514 		/* if the entry after replaced_after it is msg->transfers
2515 		 * then we have been requested to remove more transfers
2516 		 * than are in the list
2517 		 */
2518 		if (rxfer->replaced_after->next == &msg->transfers) {
2519 			dev_err(&msg->spi->dev,
2520 				"requested to remove more spi_transfers than are available\n");
2521 			/* insert replaced transfers back into the message */
2522 			list_splice(&rxfer->replaced_transfers,
2523 				    rxfer->replaced_after);
2524 
2525 			/* free the spi_replace_transfer structure */
2526 			spi_res_free(rxfer);
2527 
2528 			/* and return with an error */
2529 			return ERR_PTR(-EINVAL);
2530 		}
2531 
2532 		/* remove the entry after replaced_after from list of
2533 		 * transfers and add it to list of replaced_transfers
2534 		 */
2535 		list_move_tail(rxfer->replaced_after->next,
2536 			       &rxfer->replaced_transfers);
2537 	}
2538 
2539 	/* create copy of the given xfer with identical settings
2540 	 * based on the first transfer to get removed
2541 	 */
2542 	for (i = 0; i < insert; i++) {
2543 		/* we need to run in reverse order */
2544 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2545 
2546 		/* copy all spi_transfer data */
2547 		memcpy(xfer, xfer_first, sizeof(*xfer));
2548 
2549 		/* add to list */
2550 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2551 
2552 		/* clear cs_change and delay_usecs for all but the last */
2553 		if (i) {
2554 			xfer->cs_change = false;
2555 			xfer->delay_usecs = 0;
2556 		}
2557 	}
2558 
2559 	/* set up inserted */
2560 	rxfer->inserted = insert;
2561 
2562 	/* and register it with spi_res/spi_message */
2563 	spi_res_add(msg, rxfer);
2564 
2565 	return rxfer;
2566 }
2567 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2568 
2569 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2570 					struct spi_message *msg,
2571 					struct spi_transfer **xferp,
2572 					size_t maxsize,
2573 					gfp_t gfp)
2574 {
2575 	struct spi_transfer *xfer = *xferp, *xfers;
2576 	struct spi_replaced_transfers *srt;
2577 	size_t offset;
2578 	size_t count, i;
2579 
2580 	/* warn once about this fact that we are splitting a transfer */
2581 	dev_warn_once(&msg->spi->dev,
2582 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2583 		      xfer->len, maxsize);
2584 
2585 	/* calculate how many we have to replace */
2586 	count = DIV_ROUND_UP(xfer->len, maxsize);
2587 
2588 	/* create replacement */
2589 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2590 	if (IS_ERR(srt))
2591 		return PTR_ERR(srt);
2592 	xfers = srt->inserted_transfers;
2593 
2594 	/* now handle each of those newly inserted spi_transfers
2595 	 * note that the replacements spi_transfers all are preset
2596 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2597 	 * are all identical (as well as most others)
2598 	 * so we just have to fix up len and the pointers.
2599 	 *
2600 	 * this also includes support for the depreciated
2601 	 * spi_message.is_dma_mapped interface
2602 	 */
2603 
2604 	/* the first transfer just needs the length modified, so we
2605 	 * run it outside the loop
2606 	 */
2607 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2608 
2609 	/* all the others need rx_buf/tx_buf also set */
2610 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2611 		/* update rx_buf, tx_buf and dma */
2612 		if (xfers[i].rx_buf)
2613 			xfers[i].rx_buf += offset;
2614 		if (xfers[i].rx_dma)
2615 			xfers[i].rx_dma += offset;
2616 		if (xfers[i].tx_buf)
2617 			xfers[i].tx_buf += offset;
2618 		if (xfers[i].tx_dma)
2619 			xfers[i].tx_dma += offset;
2620 
2621 		/* update length */
2622 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2623 	}
2624 
2625 	/* we set up xferp to the last entry we have inserted,
2626 	 * so that we skip those already split transfers
2627 	 */
2628 	*xferp = &xfers[count - 1];
2629 
2630 	/* increment statistics counters */
2631 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2632 				       transfers_split_maxsize);
2633 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2634 				       transfers_split_maxsize);
2635 
2636 	return 0;
2637 }
2638 
2639 /**
2640  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2641  *                              when an individual transfer exceeds a
2642  *                              certain size
2643  * @ctlr:    the @spi_controller for this transfer
2644  * @msg:   the @spi_message to transform
2645  * @maxsize:  the maximum when to apply this
2646  * @gfp: GFP allocation flags
2647  *
2648  * Return: status of transformation
2649  */
2650 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2651 				struct spi_message *msg,
2652 				size_t maxsize,
2653 				gfp_t gfp)
2654 {
2655 	struct spi_transfer *xfer;
2656 	int ret;
2657 
2658 	/* iterate over the transfer_list,
2659 	 * but note that xfer is advanced to the last transfer inserted
2660 	 * to avoid checking sizes again unnecessarily (also xfer does
2661 	 * potentiall belong to a different list by the time the
2662 	 * replacement has happened
2663 	 */
2664 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2665 		if (xfer->len > maxsize) {
2666 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2667 							   maxsize, gfp);
2668 			if (ret)
2669 				return ret;
2670 		}
2671 	}
2672 
2673 	return 0;
2674 }
2675 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2676 
2677 /*-------------------------------------------------------------------------*/
2678 
2679 /* Core methods for SPI controller protocol drivers.  Some of the
2680  * other core methods are currently defined as inline functions.
2681  */
2682 
2683 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2684 					u8 bits_per_word)
2685 {
2686 	if (ctlr->bits_per_word_mask) {
2687 		/* Only 32 bits fit in the mask */
2688 		if (bits_per_word > 32)
2689 			return -EINVAL;
2690 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2691 			return -EINVAL;
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 /**
2698  * spi_setup - setup SPI mode and clock rate
2699  * @spi: the device whose settings are being modified
2700  * Context: can sleep, and no requests are queued to the device
2701  *
2702  * SPI protocol drivers may need to update the transfer mode if the
2703  * device doesn't work with its default.  They may likewise need
2704  * to update clock rates or word sizes from initial values.  This function
2705  * changes those settings, and must be called from a context that can sleep.
2706  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2707  * effect the next time the device is selected and data is transferred to
2708  * or from it.  When this function returns, the spi device is deselected.
2709  *
2710  * Note that this call will fail if the protocol driver specifies an option
2711  * that the underlying controller or its driver does not support.  For
2712  * example, not all hardware supports wire transfers using nine bit words,
2713  * LSB-first wire encoding, or active-high chipselects.
2714  *
2715  * Return: zero on success, else a negative error code.
2716  */
2717 int spi_setup(struct spi_device *spi)
2718 {
2719 	unsigned	bad_bits, ugly_bits;
2720 	int		status;
2721 
2722 	/* check mode to prevent that DUAL and QUAD set at the same time
2723 	 */
2724 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2725 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2726 		dev_err(&spi->dev,
2727 		"setup: can not select dual and quad at the same time\n");
2728 		return -EINVAL;
2729 	}
2730 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2731 	 */
2732 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2733 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2734 		return -EINVAL;
2735 	/* help drivers fail *cleanly* when they need options
2736 	 * that aren't supported with their current controller
2737 	 */
2738 	bad_bits = spi->mode & ~spi->controller->mode_bits;
2739 	ugly_bits = bad_bits &
2740 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2741 	if (ugly_bits) {
2742 		dev_warn(&spi->dev,
2743 			 "setup: ignoring unsupported mode bits %x\n",
2744 			 ugly_bits);
2745 		spi->mode &= ~ugly_bits;
2746 		bad_bits &= ~ugly_bits;
2747 	}
2748 	if (bad_bits) {
2749 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2750 			bad_bits);
2751 		return -EINVAL;
2752 	}
2753 
2754 	if (!spi->bits_per_word)
2755 		spi->bits_per_word = 8;
2756 
2757 	status = __spi_validate_bits_per_word(spi->controller,
2758 					      spi->bits_per_word);
2759 	if (status)
2760 		return status;
2761 
2762 	if (!spi->max_speed_hz)
2763 		spi->max_speed_hz = spi->controller->max_speed_hz;
2764 
2765 	if (spi->controller->setup)
2766 		status = spi->controller->setup(spi);
2767 
2768 	spi_set_cs(spi, false);
2769 
2770 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2771 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2772 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2773 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2774 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2775 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2776 			spi->bits_per_word, spi->max_speed_hz,
2777 			status);
2778 
2779 	return status;
2780 }
2781 EXPORT_SYMBOL_GPL(spi_setup);
2782 
2783 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2784 {
2785 	struct spi_controller *ctlr = spi->controller;
2786 	struct spi_transfer *xfer;
2787 	int w_size;
2788 
2789 	if (list_empty(&message->transfers))
2790 		return -EINVAL;
2791 
2792 	/* Half-duplex links include original MicroWire, and ones with
2793 	 * only one data pin like SPI_3WIRE (switches direction) or where
2794 	 * either MOSI or MISO is missing.  They can also be caused by
2795 	 * software limitations.
2796 	 */
2797 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
2798 	    (spi->mode & SPI_3WIRE)) {
2799 		unsigned flags = ctlr->flags;
2800 
2801 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2802 			if (xfer->rx_buf && xfer->tx_buf)
2803 				return -EINVAL;
2804 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
2805 				return -EINVAL;
2806 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
2807 				return -EINVAL;
2808 		}
2809 	}
2810 
2811 	/**
2812 	 * Set transfer bits_per_word and max speed as spi device default if
2813 	 * it is not set for this transfer.
2814 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2815 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2816 	 */
2817 	message->frame_length = 0;
2818 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2819 		message->frame_length += xfer->len;
2820 		if (!xfer->bits_per_word)
2821 			xfer->bits_per_word = spi->bits_per_word;
2822 
2823 		if (!xfer->speed_hz)
2824 			xfer->speed_hz = spi->max_speed_hz;
2825 		if (!xfer->speed_hz)
2826 			xfer->speed_hz = ctlr->max_speed_hz;
2827 
2828 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
2829 			xfer->speed_hz = ctlr->max_speed_hz;
2830 
2831 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
2832 			return -EINVAL;
2833 
2834 		/*
2835 		 * SPI transfer length should be multiple of SPI word size
2836 		 * where SPI word size should be power-of-two multiple
2837 		 */
2838 		if (xfer->bits_per_word <= 8)
2839 			w_size = 1;
2840 		else if (xfer->bits_per_word <= 16)
2841 			w_size = 2;
2842 		else
2843 			w_size = 4;
2844 
2845 		/* No partial transfers accepted */
2846 		if (xfer->len % w_size)
2847 			return -EINVAL;
2848 
2849 		if (xfer->speed_hz && ctlr->min_speed_hz &&
2850 		    xfer->speed_hz < ctlr->min_speed_hz)
2851 			return -EINVAL;
2852 
2853 		if (xfer->tx_buf && !xfer->tx_nbits)
2854 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2855 		if (xfer->rx_buf && !xfer->rx_nbits)
2856 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2857 		/* check transfer tx/rx_nbits:
2858 		 * 1. check the value matches one of single, dual and quad
2859 		 * 2. check tx/rx_nbits match the mode in spi_device
2860 		 */
2861 		if (xfer->tx_buf) {
2862 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2863 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2864 				xfer->tx_nbits != SPI_NBITS_QUAD)
2865 				return -EINVAL;
2866 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2867 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2868 				return -EINVAL;
2869 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2870 				!(spi->mode & SPI_TX_QUAD))
2871 				return -EINVAL;
2872 		}
2873 		/* check transfer rx_nbits */
2874 		if (xfer->rx_buf) {
2875 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2876 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2877 				xfer->rx_nbits != SPI_NBITS_QUAD)
2878 				return -EINVAL;
2879 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2880 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2881 				return -EINVAL;
2882 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2883 				!(spi->mode & SPI_RX_QUAD))
2884 				return -EINVAL;
2885 		}
2886 	}
2887 
2888 	message->status = -EINPROGRESS;
2889 
2890 	return 0;
2891 }
2892 
2893 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2894 {
2895 	struct spi_controller *ctlr = spi->controller;
2896 
2897 	message->spi = spi;
2898 
2899 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
2900 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2901 
2902 	trace_spi_message_submit(message);
2903 
2904 	return ctlr->transfer(spi, message);
2905 }
2906 
2907 /**
2908  * spi_async - asynchronous SPI transfer
2909  * @spi: device with which data will be exchanged
2910  * @message: describes the data transfers, including completion callback
2911  * Context: any (irqs may be blocked, etc)
2912  *
2913  * This call may be used in_irq and other contexts which can't sleep,
2914  * as well as from task contexts which can sleep.
2915  *
2916  * The completion callback is invoked in a context which can't sleep.
2917  * Before that invocation, the value of message->status is undefined.
2918  * When the callback is issued, message->status holds either zero (to
2919  * indicate complete success) or a negative error code.  After that
2920  * callback returns, the driver which issued the transfer request may
2921  * deallocate the associated memory; it's no longer in use by any SPI
2922  * core or controller driver code.
2923  *
2924  * Note that although all messages to a spi_device are handled in
2925  * FIFO order, messages may go to different devices in other orders.
2926  * Some device might be higher priority, or have various "hard" access
2927  * time requirements, for example.
2928  *
2929  * On detection of any fault during the transfer, processing of
2930  * the entire message is aborted, and the device is deselected.
2931  * Until returning from the associated message completion callback,
2932  * no other spi_message queued to that device will be processed.
2933  * (This rule applies equally to all the synchronous transfer calls,
2934  * which are wrappers around this core asynchronous primitive.)
2935  *
2936  * Return: zero on success, else a negative error code.
2937  */
2938 int spi_async(struct spi_device *spi, struct spi_message *message)
2939 {
2940 	struct spi_controller *ctlr = spi->controller;
2941 	int ret;
2942 	unsigned long flags;
2943 
2944 	ret = __spi_validate(spi, message);
2945 	if (ret != 0)
2946 		return ret;
2947 
2948 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
2949 
2950 	if (ctlr->bus_lock_flag)
2951 		ret = -EBUSY;
2952 	else
2953 		ret = __spi_async(spi, message);
2954 
2955 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
2956 
2957 	return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(spi_async);
2960 
2961 /**
2962  * spi_async_locked - version of spi_async with exclusive bus usage
2963  * @spi: device with which data will be exchanged
2964  * @message: describes the data transfers, including completion callback
2965  * Context: any (irqs may be blocked, etc)
2966  *
2967  * This call may be used in_irq and other contexts which can't sleep,
2968  * as well as from task contexts which can sleep.
2969  *
2970  * The completion callback is invoked in a context which can't sleep.
2971  * Before that invocation, the value of message->status is undefined.
2972  * When the callback is issued, message->status holds either zero (to
2973  * indicate complete success) or a negative error code.  After that
2974  * callback returns, the driver which issued the transfer request may
2975  * deallocate the associated memory; it's no longer in use by any SPI
2976  * core or controller driver code.
2977  *
2978  * Note that although all messages to a spi_device are handled in
2979  * FIFO order, messages may go to different devices in other orders.
2980  * Some device might be higher priority, or have various "hard" access
2981  * time requirements, for example.
2982  *
2983  * On detection of any fault during the transfer, processing of
2984  * the entire message is aborted, and the device is deselected.
2985  * Until returning from the associated message completion callback,
2986  * no other spi_message queued to that device will be processed.
2987  * (This rule applies equally to all the synchronous transfer calls,
2988  * which are wrappers around this core asynchronous primitive.)
2989  *
2990  * Return: zero on success, else a negative error code.
2991  */
2992 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2993 {
2994 	struct spi_controller *ctlr = spi->controller;
2995 	int ret;
2996 	unsigned long flags;
2997 
2998 	ret = __spi_validate(spi, message);
2999 	if (ret != 0)
3000 		return ret;
3001 
3002 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3003 
3004 	ret = __spi_async(spi, message);
3005 
3006 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3007 
3008 	return ret;
3009 
3010 }
3011 EXPORT_SYMBOL_GPL(spi_async_locked);
3012 
3013 
3014 int spi_flash_read(struct spi_device *spi,
3015 		   struct spi_flash_read_message *msg)
3016 
3017 {
3018 	struct spi_controller *master = spi->controller;
3019 	struct device *rx_dev = NULL;
3020 	int ret;
3021 
3022 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
3023 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
3024 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3025 		return -EINVAL;
3026 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
3027 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
3028 	    !(spi->mode & SPI_TX_QUAD))
3029 		return -EINVAL;
3030 	if (msg->data_nbits == SPI_NBITS_DUAL &&
3031 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3032 		return -EINVAL;
3033 	if (msg->data_nbits == SPI_NBITS_QUAD &&
3034 	    !(spi->mode &  SPI_RX_QUAD))
3035 		return -EINVAL;
3036 
3037 	if (master->auto_runtime_pm) {
3038 		ret = pm_runtime_get_sync(master->dev.parent);
3039 		if (ret < 0) {
3040 			dev_err(&master->dev, "Failed to power device: %d\n",
3041 				ret);
3042 			return ret;
3043 		}
3044 	}
3045 
3046 	mutex_lock(&master->bus_lock_mutex);
3047 	mutex_lock(&master->io_mutex);
3048 	if (master->dma_rx && master->spi_flash_can_dma(spi, msg)) {
3049 		rx_dev = master->dma_rx->device->dev;
3050 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
3051 				  msg->buf, msg->len,
3052 				  DMA_FROM_DEVICE);
3053 		if (!ret)
3054 			msg->cur_msg_mapped = true;
3055 	}
3056 	ret = master->spi_flash_read(spi, msg);
3057 	if (msg->cur_msg_mapped)
3058 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
3059 			      DMA_FROM_DEVICE);
3060 	mutex_unlock(&master->io_mutex);
3061 	mutex_unlock(&master->bus_lock_mutex);
3062 
3063 	if (master->auto_runtime_pm)
3064 		pm_runtime_put(master->dev.parent);
3065 
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(spi_flash_read);
3069 
3070 /*-------------------------------------------------------------------------*/
3071 
3072 /* Utility methods for SPI protocol drivers, layered on
3073  * top of the core.  Some other utility methods are defined as
3074  * inline functions.
3075  */
3076 
3077 static void spi_complete(void *arg)
3078 {
3079 	complete(arg);
3080 }
3081 
3082 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3083 {
3084 	DECLARE_COMPLETION_ONSTACK(done);
3085 	int status;
3086 	struct spi_controller *ctlr = spi->controller;
3087 	unsigned long flags;
3088 
3089 	status = __spi_validate(spi, message);
3090 	if (status != 0)
3091 		return status;
3092 
3093 	message->complete = spi_complete;
3094 	message->context = &done;
3095 	message->spi = spi;
3096 
3097 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3098 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3099 
3100 	/* If we're not using the legacy transfer method then we will
3101 	 * try to transfer in the calling context so special case.
3102 	 * This code would be less tricky if we could remove the
3103 	 * support for driver implemented message queues.
3104 	 */
3105 	if (ctlr->transfer == spi_queued_transfer) {
3106 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3107 
3108 		trace_spi_message_submit(message);
3109 
3110 		status = __spi_queued_transfer(spi, message, false);
3111 
3112 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3113 	} else {
3114 		status = spi_async_locked(spi, message);
3115 	}
3116 
3117 	if (status == 0) {
3118 		/* Push out the messages in the calling context if we
3119 		 * can.
3120 		 */
3121 		if (ctlr->transfer == spi_queued_transfer) {
3122 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3123 						       spi_sync_immediate);
3124 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3125 						       spi_sync_immediate);
3126 			__spi_pump_messages(ctlr, false);
3127 		}
3128 
3129 		wait_for_completion(&done);
3130 		status = message->status;
3131 	}
3132 	message->context = NULL;
3133 	return status;
3134 }
3135 
3136 /**
3137  * spi_sync - blocking/synchronous SPI data transfers
3138  * @spi: device with which data will be exchanged
3139  * @message: describes the data transfers
3140  * Context: can sleep
3141  *
3142  * This call may only be used from a context that may sleep.  The sleep
3143  * is non-interruptible, and has no timeout.  Low-overhead controller
3144  * drivers may DMA directly into and out of the message buffers.
3145  *
3146  * Note that the SPI device's chip select is active during the message,
3147  * and then is normally disabled between messages.  Drivers for some
3148  * frequently-used devices may want to minimize costs of selecting a chip,
3149  * by leaving it selected in anticipation that the next message will go
3150  * to the same chip.  (That may increase power usage.)
3151  *
3152  * Also, the caller is guaranteeing that the memory associated with the
3153  * message will not be freed before this call returns.
3154  *
3155  * Return: zero on success, else a negative error code.
3156  */
3157 int spi_sync(struct spi_device *spi, struct spi_message *message)
3158 {
3159 	int ret;
3160 
3161 	mutex_lock(&spi->controller->bus_lock_mutex);
3162 	ret = __spi_sync(spi, message);
3163 	mutex_unlock(&spi->controller->bus_lock_mutex);
3164 
3165 	return ret;
3166 }
3167 EXPORT_SYMBOL_GPL(spi_sync);
3168 
3169 /**
3170  * spi_sync_locked - version of spi_sync with exclusive bus usage
3171  * @spi: device with which data will be exchanged
3172  * @message: describes the data transfers
3173  * Context: can sleep
3174  *
3175  * This call may only be used from a context that may sleep.  The sleep
3176  * is non-interruptible, and has no timeout.  Low-overhead controller
3177  * drivers may DMA directly into and out of the message buffers.
3178  *
3179  * This call should be used by drivers that require exclusive access to the
3180  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3181  * be released by a spi_bus_unlock call when the exclusive access is over.
3182  *
3183  * Return: zero on success, else a negative error code.
3184  */
3185 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3186 {
3187 	return __spi_sync(spi, message);
3188 }
3189 EXPORT_SYMBOL_GPL(spi_sync_locked);
3190 
3191 /**
3192  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3193  * @ctlr: SPI bus master that should be locked for exclusive bus access
3194  * Context: can sleep
3195  *
3196  * This call may only be used from a context that may sleep.  The sleep
3197  * is non-interruptible, and has no timeout.
3198  *
3199  * This call should be used by drivers that require exclusive access to the
3200  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3201  * exclusive access is over. Data transfer must be done by spi_sync_locked
3202  * and spi_async_locked calls when the SPI bus lock is held.
3203  *
3204  * Return: always zero.
3205  */
3206 int spi_bus_lock(struct spi_controller *ctlr)
3207 {
3208 	unsigned long flags;
3209 
3210 	mutex_lock(&ctlr->bus_lock_mutex);
3211 
3212 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3213 	ctlr->bus_lock_flag = 1;
3214 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3215 
3216 	/* mutex remains locked until spi_bus_unlock is called */
3217 
3218 	return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(spi_bus_lock);
3221 
3222 /**
3223  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3224  * @ctlr: SPI bus master that was locked for exclusive bus access
3225  * Context: can sleep
3226  *
3227  * This call may only be used from a context that may sleep.  The sleep
3228  * is non-interruptible, and has no timeout.
3229  *
3230  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3231  * call.
3232  *
3233  * Return: always zero.
3234  */
3235 int spi_bus_unlock(struct spi_controller *ctlr)
3236 {
3237 	ctlr->bus_lock_flag = 0;
3238 
3239 	mutex_unlock(&ctlr->bus_lock_mutex);
3240 
3241 	return 0;
3242 }
3243 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3244 
3245 /* portable code must never pass more than 32 bytes */
3246 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3247 
3248 static u8	*buf;
3249 
3250 /**
3251  * spi_write_then_read - SPI synchronous write followed by read
3252  * @spi: device with which data will be exchanged
3253  * @txbuf: data to be written (need not be dma-safe)
3254  * @n_tx: size of txbuf, in bytes
3255  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3256  * @n_rx: size of rxbuf, in bytes
3257  * Context: can sleep
3258  *
3259  * This performs a half duplex MicroWire style transaction with the
3260  * device, sending txbuf and then reading rxbuf.  The return value
3261  * is zero for success, else a negative errno status code.
3262  * This call may only be used from a context that may sleep.
3263  *
3264  * Parameters to this routine are always copied using a small buffer;
3265  * portable code should never use this for more than 32 bytes.
3266  * Performance-sensitive or bulk transfer code should instead use
3267  * spi_{async,sync}() calls with dma-safe buffers.
3268  *
3269  * Return: zero on success, else a negative error code.
3270  */
3271 int spi_write_then_read(struct spi_device *spi,
3272 		const void *txbuf, unsigned n_tx,
3273 		void *rxbuf, unsigned n_rx)
3274 {
3275 	static DEFINE_MUTEX(lock);
3276 
3277 	int			status;
3278 	struct spi_message	message;
3279 	struct spi_transfer	x[2];
3280 	u8			*local_buf;
3281 
3282 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3283 	 * copying here, (as a pure convenience thing), but we can
3284 	 * keep heap costs out of the hot path unless someone else is
3285 	 * using the pre-allocated buffer or the transfer is too large.
3286 	 */
3287 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3288 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3289 				    GFP_KERNEL | GFP_DMA);
3290 		if (!local_buf)
3291 			return -ENOMEM;
3292 	} else {
3293 		local_buf = buf;
3294 	}
3295 
3296 	spi_message_init(&message);
3297 	memset(x, 0, sizeof(x));
3298 	if (n_tx) {
3299 		x[0].len = n_tx;
3300 		spi_message_add_tail(&x[0], &message);
3301 	}
3302 	if (n_rx) {
3303 		x[1].len = n_rx;
3304 		spi_message_add_tail(&x[1], &message);
3305 	}
3306 
3307 	memcpy(local_buf, txbuf, n_tx);
3308 	x[0].tx_buf = local_buf;
3309 	x[1].rx_buf = local_buf + n_tx;
3310 
3311 	/* do the i/o */
3312 	status = spi_sync(spi, &message);
3313 	if (status == 0)
3314 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3315 
3316 	if (x[0].tx_buf == buf)
3317 		mutex_unlock(&lock);
3318 	else
3319 		kfree(local_buf);
3320 
3321 	return status;
3322 }
3323 EXPORT_SYMBOL_GPL(spi_write_then_read);
3324 
3325 /*-------------------------------------------------------------------------*/
3326 
3327 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3328 static int __spi_of_device_match(struct device *dev, void *data)
3329 {
3330 	return dev->of_node == data;
3331 }
3332 
3333 /* must call put_device() when done with returned spi_device device */
3334 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3335 {
3336 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3337 						__spi_of_device_match);
3338 	return dev ? to_spi_device(dev) : NULL;
3339 }
3340 
3341 static int __spi_of_controller_match(struct device *dev, const void *data)
3342 {
3343 	return dev->of_node == data;
3344 }
3345 
3346 /* the spi controllers are not using spi_bus, so we find it with another way */
3347 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3348 {
3349 	struct device *dev;
3350 
3351 	dev = class_find_device(&spi_master_class, NULL, node,
3352 				__spi_of_controller_match);
3353 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3354 		dev = class_find_device(&spi_slave_class, NULL, node,
3355 					__spi_of_controller_match);
3356 	if (!dev)
3357 		return NULL;
3358 
3359 	/* reference got in class_find_device */
3360 	return container_of(dev, struct spi_controller, dev);
3361 }
3362 
3363 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3364 			 void *arg)
3365 {
3366 	struct of_reconfig_data *rd = arg;
3367 	struct spi_controller *ctlr;
3368 	struct spi_device *spi;
3369 
3370 	switch (of_reconfig_get_state_change(action, arg)) {
3371 	case OF_RECONFIG_CHANGE_ADD:
3372 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3373 		if (ctlr == NULL)
3374 			return NOTIFY_OK;	/* not for us */
3375 
3376 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3377 			put_device(&ctlr->dev);
3378 			return NOTIFY_OK;
3379 		}
3380 
3381 		spi = of_register_spi_device(ctlr, rd->dn);
3382 		put_device(&ctlr->dev);
3383 
3384 		if (IS_ERR(spi)) {
3385 			pr_err("%s: failed to create for '%pOF'\n",
3386 					__func__, rd->dn);
3387 			of_node_clear_flag(rd->dn, OF_POPULATED);
3388 			return notifier_from_errno(PTR_ERR(spi));
3389 		}
3390 		break;
3391 
3392 	case OF_RECONFIG_CHANGE_REMOVE:
3393 		/* already depopulated? */
3394 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3395 			return NOTIFY_OK;
3396 
3397 		/* find our device by node */
3398 		spi = of_find_spi_device_by_node(rd->dn);
3399 		if (spi == NULL)
3400 			return NOTIFY_OK;	/* no? not meant for us */
3401 
3402 		/* unregister takes one ref away */
3403 		spi_unregister_device(spi);
3404 
3405 		/* and put the reference of the find */
3406 		put_device(&spi->dev);
3407 		break;
3408 	}
3409 
3410 	return NOTIFY_OK;
3411 }
3412 
3413 static struct notifier_block spi_of_notifier = {
3414 	.notifier_call = of_spi_notify,
3415 };
3416 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3417 extern struct notifier_block spi_of_notifier;
3418 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3419 
3420 #if IS_ENABLED(CONFIG_ACPI)
3421 static int spi_acpi_controller_match(struct device *dev, const void *data)
3422 {
3423 	return ACPI_COMPANION(dev->parent) == data;
3424 }
3425 
3426 static int spi_acpi_device_match(struct device *dev, void *data)
3427 {
3428 	return ACPI_COMPANION(dev) == data;
3429 }
3430 
3431 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3432 {
3433 	struct device *dev;
3434 
3435 	dev = class_find_device(&spi_master_class, NULL, adev,
3436 				spi_acpi_controller_match);
3437 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3438 		dev = class_find_device(&spi_slave_class, NULL, adev,
3439 					spi_acpi_controller_match);
3440 	if (!dev)
3441 		return NULL;
3442 
3443 	return container_of(dev, struct spi_controller, dev);
3444 }
3445 
3446 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3447 {
3448 	struct device *dev;
3449 
3450 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3451 
3452 	return dev ? to_spi_device(dev) : NULL;
3453 }
3454 
3455 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3456 			   void *arg)
3457 {
3458 	struct acpi_device *adev = arg;
3459 	struct spi_controller *ctlr;
3460 	struct spi_device *spi;
3461 
3462 	switch (value) {
3463 	case ACPI_RECONFIG_DEVICE_ADD:
3464 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3465 		if (!ctlr)
3466 			break;
3467 
3468 		acpi_register_spi_device(ctlr, adev);
3469 		put_device(&ctlr->dev);
3470 		break;
3471 	case ACPI_RECONFIG_DEVICE_REMOVE:
3472 		if (!acpi_device_enumerated(adev))
3473 			break;
3474 
3475 		spi = acpi_spi_find_device_by_adev(adev);
3476 		if (!spi)
3477 			break;
3478 
3479 		spi_unregister_device(spi);
3480 		put_device(&spi->dev);
3481 		break;
3482 	}
3483 
3484 	return NOTIFY_OK;
3485 }
3486 
3487 static struct notifier_block spi_acpi_notifier = {
3488 	.notifier_call = acpi_spi_notify,
3489 };
3490 #else
3491 extern struct notifier_block spi_acpi_notifier;
3492 #endif
3493 
3494 static int __init spi_init(void)
3495 {
3496 	int	status;
3497 
3498 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3499 	if (!buf) {
3500 		status = -ENOMEM;
3501 		goto err0;
3502 	}
3503 
3504 	status = bus_register(&spi_bus_type);
3505 	if (status < 0)
3506 		goto err1;
3507 
3508 	status = class_register(&spi_master_class);
3509 	if (status < 0)
3510 		goto err2;
3511 
3512 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3513 		status = class_register(&spi_slave_class);
3514 		if (status < 0)
3515 			goto err3;
3516 	}
3517 
3518 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3519 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3520 	if (IS_ENABLED(CONFIG_ACPI))
3521 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3522 
3523 	return 0;
3524 
3525 err3:
3526 	class_unregister(&spi_master_class);
3527 err2:
3528 	bus_unregister(&spi_bus_type);
3529 err1:
3530 	kfree(buf);
3531 	buf = NULL;
3532 err0:
3533 	return status;
3534 }
3535 
3536 /* board_info is normally registered in arch_initcall(),
3537  * but even essential drivers wait till later
3538  *
3539  * REVISIT only boardinfo really needs static linking. the rest (device and
3540  * driver registration) _could_ be dynamically linked (modular) ... costs
3541  * include needing to have boardinfo data structures be much more public.
3542  */
3543 postcore_initcall(spi_init);
3544 
3545