1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 static int spi_probe(struct device *dev) 378 { 379 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 380 struct spi_device *spi = to_spi_device(dev); 381 int ret; 382 383 ret = of_clk_set_defaults(dev->of_node, false); 384 if (ret) 385 return ret; 386 387 if (dev->of_node) { 388 spi->irq = of_irq_get(dev->of_node, 0); 389 if (spi->irq == -EPROBE_DEFER) 390 return -EPROBE_DEFER; 391 if (spi->irq < 0) 392 spi->irq = 0; 393 } 394 395 ret = dev_pm_domain_attach(dev, true); 396 if (ret) 397 return ret; 398 399 if (sdrv->probe) { 400 ret = sdrv->probe(spi); 401 if (ret) 402 dev_pm_domain_detach(dev, true); 403 } 404 405 return ret; 406 } 407 408 static int spi_remove(struct device *dev) 409 { 410 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 411 412 if (sdrv->remove) { 413 int ret; 414 415 ret = sdrv->remove(to_spi_device(dev)); 416 if (ret) 417 dev_warn(dev, 418 "Failed to unbind driver (%pe), ignoring\n", 419 ERR_PTR(ret)); 420 } 421 422 dev_pm_domain_detach(dev, true); 423 424 return 0; 425 } 426 427 static void spi_shutdown(struct device *dev) 428 { 429 if (dev->driver) { 430 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 431 432 if (sdrv->shutdown) 433 sdrv->shutdown(to_spi_device(dev)); 434 } 435 } 436 437 struct bus_type spi_bus_type = { 438 .name = "spi", 439 .dev_groups = spi_dev_groups, 440 .match = spi_match_device, 441 .uevent = spi_uevent, 442 .probe = spi_probe, 443 .remove = spi_remove, 444 .shutdown = spi_shutdown, 445 }; 446 EXPORT_SYMBOL_GPL(spi_bus_type); 447 448 /** 449 * __spi_register_driver - register a SPI driver 450 * @owner: owner module of the driver to register 451 * @sdrv: the driver to register 452 * Context: can sleep 453 * 454 * Return: zero on success, else a negative error code. 455 */ 456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 457 { 458 sdrv->driver.owner = owner; 459 sdrv->driver.bus = &spi_bus_type; 460 return driver_register(&sdrv->driver); 461 } 462 EXPORT_SYMBOL_GPL(__spi_register_driver); 463 464 /*-------------------------------------------------------------------------*/ 465 466 /* SPI devices should normally not be created by SPI device drivers; that 467 * would make them board-specific. Similarly with SPI controller drivers. 468 * Device registration normally goes into like arch/.../mach.../board-YYY.c 469 * with other readonly (flashable) information about mainboard devices. 470 */ 471 472 struct boardinfo { 473 struct list_head list; 474 struct spi_board_info board_info; 475 }; 476 477 static LIST_HEAD(board_list); 478 static LIST_HEAD(spi_controller_list); 479 480 /* 481 * Used to protect add/del operation for board_info list and 482 * spi_controller list, and their matching process 483 * also used to protect object of type struct idr 484 */ 485 static DEFINE_MUTEX(board_lock); 486 487 /* 488 * Prevents addition of devices with same chip select and 489 * addition of devices below an unregistering controller. 490 */ 491 static DEFINE_MUTEX(spi_add_lock); 492 493 /** 494 * spi_alloc_device - Allocate a new SPI device 495 * @ctlr: Controller to which device is connected 496 * Context: can sleep 497 * 498 * Allows a driver to allocate and initialize a spi_device without 499 * registering it immediately. This allows a driver to directly 500 * fill the spi_device with device parameters before calling 501 * spi_add_device() on it. 502 * 503 * Caller is responsible to call spi_add_device() on the returned 504 * spi_device structure to add it to the SPI controller. If the caller 505 * needs to discard the spi_device without adding it, then it should 506 * call spi_dev_put() on it. 507 * 508 * Return: a pointer to the new device, or NULL. 509 */ 510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 511 { 512 struct spi_device *spi; 513 514 if (!spi_controller_get(ctlr)) 515 return NULL; 516 517 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 518 if (!spi) { 519 spi_controller_put(ctlr); 520 return NULL; 521 } 522 523 spi->master = spi->controller = ctlr; 524 spi->dev.parent = &ctlr->dev; 525 spi->dev.bus = &spi_bus_type; 526 spi->dev.release = spidev_release; 527 spi->cs_gpio = -ENOENT; 528 spi->mode = ctlr->buswidth_override_bits; 529 530 spin_lock_init(&spi->statistics.lock); 531 532 device_initialize(&spi->dev); 533 return spi; 534 } 535 EXPORT_SYMBOL_GPL(spi_alloc_device); 536 537 static void spi_dev_set_name(struct spi_device *spi) 538 { 539 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 540 541 if (adev) { 542 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 543 return; 544 } 545 546 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 547 spi->chip_select); 548 } 549 550 static int spi_dev_check(struct device *dev, void *data) 551 { 552 struct spi_device *spi = to_spi_device(dev); 553 struct spi_device *new_spi = data; 554 555 if (spi->controller == new_spi->controller && 556 spi->chip_select == new_spi->chip_select) 557 return -EBUSY; 558 return 0; 559 } 560 561 /** 562 * spi_add_device - Add spi_device allocated with spi_alloc_device 563 * @spi: spi_device to register 564 * 565 * Companion function to spi_alloc_device. Devices allocated with 566 * spi_alloc_device can be added onto the spi bus with this function. 567 * 568 * Return: 0 on success; negative errno on failure 569 */ 570 int spi_add_device(struct spi_device *spi) 571 { 572 struct spi_controller *ctlr = spi->controller; 573 struct device *dev = ctlr->dev.parent; 574 int status; 575 576 /* Chipselects are numbered 0..max; validate. */ 577 if (spi->chip_select >= ctlr->num_chipselect) { 578 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 579 ctlr->num_chipselect); 580 return -EINVAL; 581 } 582 583 /* Set the bus ID string */ 584 spi_dev_set_name(spi); 585 586 /* We need to make sure there's no other device with this 587 * chipselect **BEFORE** we call setup(), else we'll trash 588 * its configuration. Lock against concurrent add() calls. 589 */ 590 mutex_lock(&spi_add_lock); 591 592 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 593 if (status) { 594 dev_err(dev, "chipselect %d already in use\n", 595 spi->chip_select); 596 goto done; 597 } 598 599 /* Controller may unregister concurrently */ 600 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 601 !device_is_registered(&ctlr->dev)) { 602 status = -ENODEV; 603 goto done; 604 } 605 606 /* Descriptors take precedence */ 607 if (ctlr->cs_gpiods) 608 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 609 else if (ctlr->cs_gpios) 610 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 611 612 /* Drivers may modify this initial i/o setup, but will 613 * normally rely on the device being setup. Devices 614 * using SPI_CS_HIGH can't coexist well otherwise... 615 */ 616 status = spi_setup(spi); 617 if (status < 0) { 618 dev_err(dev, "can't setup %s, status %d\n", 619 dev_name(&spi->dev), status); 620 goto done; 621 } 622 623 /* Device may be bound to an active driver when this returns */ 624 status = device_add(&spi->dev); 625 if (status < 0) 626 dev_err(dev, "can't add %s, status %d\n", 627 dev_name(&spi->dev), status); 628 else 629 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 630 631 done: 632 mutex_unlock(&spi_add_lock); 633 return status; 634 } 635 EXPORT_SYMBOL_GPL(spi_add_device); 636 637 /** 638 * spi_new_device - instantiate one new SPI device 639 * @ctlr: Controller to which device is connected 640 * @chip: Describes the SPI device 641 * Context: can sleep 642 * 643 * On typical mainboards, this is purely internal; and it's not needed 644 * after board init creates the hard-wired devices. Some development 645 * platforms may not be able to use spi_register_board_info though, and 646 * this is exported so that for example a USB or parport based adapter 647 * driver could add devices (which it would learn about out-of-band). 648 * 649 * Return: the new device, or NULL. 650 */ 651 struct spi_device *spi_new_device(struct spi_controller *ctlr, 652 struct spi_board_info *chip) 653 { 654 struct spi_device *proxy; 655 int status; 656 657 /* NOTE: caller did any chip->bus_num checks necessary. 658 * 659 * Also, unless we change the return value convention to use 660 * error-or-pointer (not NULL-or-pointer), troubleshootability 661 * suggests syslogged diagnostics are best here (ugh). 662 */ 663 664 proxy = spi_alloc_device(ctlr); 665 if (!proxy) 666 return NULL; 667 668 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 669 670 proxy->chip_select = chip->chip_select; 671 proxy->max_speed_hz = chip->max_speed_hz; 672 proxy->mode = chip->mode; 673 proxy->irq = chip->irq; 674 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 675 proxy->dev.platform_data = (void *) chip->platform_data; 676 proxy->controller_data = chip->controller_data; 677 proxy->controller_state = NULL; 678 679 if (chip->swnode) { 680 status = device_add_software_node(&proxy->dev, chip->swnode); 681 if (status) { 682 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 683 chip->modalias, status); 684 goto err_dev_put; 685 } 686 } 687 688 status = spi_add_device(proxy); 689 if (status < 0) 690 goto err_dev_put; 691 692 return proxy; 693 694 err_dev_put: 695 device_remove_software_node(&proxy->dev); 696 spi_dev_put(proxy); 697 return NULL; 698 } 699 EXPORT_SYMBOL_GPL(spi_new_device); 700 701 /** 702 * spi_unregister_device - unregister a single SPI device 703 * @spi: spi_device to unregister 704 * 705 * Start making the passed SPI device vanish. Normally this would be handled 706 * by spi_unregister_controller(). 707 */ 708 void spi_unregister_device(struct spi_device *spi) 709 { 710 if (!spi) 711 return; 712 713 if (spi->dev.of_node) { 714 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 715 of_node_put(spi->dev.of_node); 716 } 717 if (ACPI_COMPANION(&spi->dev)) 718 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 719 device_remove_software_node(&spi->dev); 720 device_unregister(&spi->dev); 721 } 722 EXPORT_SYMBOL_GPL(spi_unregister_device); 723 724 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 725 struct spi_board_info *bi) 726 { 727 struct spi_device *dev; 728 729 if (ctlr->bus_num != bi->bus_num) 730 return; 731 732 dev = spi_new_device(ctlr, bi); 733 if (!dev) 734 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 735 bi->modalias); 736 } 737 738 /** 739 * spi_register_board_info - register SPI devices for a given board 740 * @info: array of chip descriptors 741 * @n: how many descriptors are provided 742 * Context: can sleep 743 * 744 * Board-specific early init code calls this (probably during arch_initcall) 745 * with segments of the SPI device table. Any device nodes are created later, 746 * after the relevant parent SPI controller (bus_num) is defined. We keep 747 * this table of devices forever, so that reloading a controller driver will 748 * not make Linux forget about these hard-wired devices. 749 * 750 * Other code can also call this, e.g. a particular add-on board might provide 751 * SPI devices through its expansion connector, so code initializing that board 752 * would naturally declare its SPI devices. 753 * 754 * The board info passed can safely be __initdata ... but be careful of 755 * any embedded pointers (platform_data, etc), they're copied as-is. 756 * 757 * Return: zero on success, else a negative error code. 758 */ 759 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 760 { 761 struct boardinfo *bi; 762 int i; 763 764 if (!n) 765 return 0; 766 767 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 768 if (!bi) 769 return -ENOMEM; 770 771 for (i = 0; i < n; i++, bi++, info++) { 772 struct spi_controller *ctlr; 773 774 memcpy(&bi->board_info, info, sizeof(*info)); 775 776 mutex_lock(&board_lock); 777 list_add_tail(&bi->list, &board_list); 778 list_for_each_entry(ctlr, &spi_controller_list, list) 779 spi_match_controller_to_boardinfo(ctlr, 780 &bi->board_info); 781 mutex_unlock(&board_lock); 782 } 783 784 return 0; 785 } 786 787 /*-------------------------------------------------------------------------*/ 788 789 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 790 { 791 bool activate = enable; 792 793 /* 794 * Avoid calling into the driver (or doing delays) if the chip select 795 * isn't actually changing from the last time this was called. 796 */ 797 if (!force && (spi->controller->last_cs_enable == enable) && 798 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 799 return; 800 801 spi->controller->last_cs_enable = enable; 802 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 803 804 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 805 !spi->controller->set_cs_timing) { 806 if (activate) 807 spi_delay_exec(&spi->controller->cs_setup, NULL); 808 else 809 spi_delay_exec(&spi->controller->cs_hold, NULL); 810 } 811 812 if (spi->mode & SPI_CS_HIGH) 813 enable = !enable; 814 815 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 816 if (!(spi->mode & SPI_NO_CS)) { 817 if (spi->cs_gpiod) 818 /* polarity handled by gpiolib */ 819 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 820 else 821 /* 822 * invert the enable line, as active low is 823 * default for SPI. 824 */ 825 gpio_set_value_cansleep(spi->cs_gpio, !enable); 826 } 827 /* Some SPI masters need both GPIO CS & slave_select */ 828 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 829 spi->controller->set_cs) 830 spi->controller->set_cs(spi, !enable); 831 } else if (spi->controller->set_cs) { 832 spi->controller->set_cs(spi, !enable); 833 } 834 835 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) || 836 !spi->controller->set_cs_timing) { 837 if (!activate) 838 spi_delay_exec(&spi->controller->cs_inactive, NULL); 839 } 840 } 841 842 #ifdef CONFIG_HAS_DMA 843 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 844 struct sg_table *sgt, void *buf, size_t len, 845 enum dma_data_direction dir) 846 { 847 const bool vmalloced_buf = is_vmalloc_addr(buf); 848 unsigned int max_seg_size = dma_get_max_seg_size(dev); 849 #ifdef CONFIG_HIGHMEM 850 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 851 (unsigned long)buf < (PKMAP_BASE + 852 (LAST_PKMAP * PAGE_SIZE))); 853 #else 854 const bool kmap_buf = false; 855 #endif 856 int desc_len; 857 int sgs; 858 struct page *vm_page; 859 struct scatterlist *sg; 860 void *sg_buf; 861 size_t min; 862 int i, ret; 863 864 if (vmalloced_buf || kmap_buf) { 865 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 866 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 867 } else if (virt_addr_valid(buf)) { 868 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 869 sgs = DIV_ROUND_UP(len, desc_len); 870 } else { 871 return -EINVAL; 872 } 873 874 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 875 if (ret != 0) 876 return ret; 877 878 sg = &sgt->sgl[0]; 879 for (i = 0; i < sgs; i++) { 880 881 if (vmalloced_buf || kmap_buf) { 882 /* 883 * Next scatterlist entry size is the minimum between 884 * the desc_len and the remaining buffer length that 885 * fits in a page. 886 */ 887 min = min_t(size_t, desc_len, 888 min_t(size_t, len, 889 PAGE_SIZE - offset_in_page(buf))); 890 if (vmalloced_buf) 891 vm_page = vmalloc_to_page(buf); 892 else 893 vm_page = kmap_to_page(buf); 894 if (!vm_page) { 895 sg_free_table(sgt); 896 return -ENOMEM; 897 } 898 sg_set_page(sg, vm_page, 899 min, offset_in_page(buf)); 900 } else { 901 min = min_t(size_t, len, desc_len); 902 sg_buf = buf; 903 sg_set_buf(sg, sg_buf, min); 904 } 905 906 buf += min; 907 len -= min; 908 sg = sg_next(sg); 909 } 910 911 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 912 if (!ret) 913 ret = -ENOMEM; 914 if (ret < 0) { 915 sg_free_table(sgt); 916 return ret; 917 } 918 919 sgt->nents = ret; 920 921 return 0; 922 } 923 924 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 925 struct sg_table *sgt, enum dma_data_direction dir) 926 { 927 if (sgt->orig_nents) { 928 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 929 sg_free_table(sgt); 930 } 931 } 932 933 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 934 { 935 struct device *tx_dev, *rx_dev; 936 struct spi_transfer *xfer; 937 int ret; 938 939 if (!ctlr->can_dma) 940 return 0; 941 942 if (ctlr->dma_tx) 943 tx_dev = ctlr->dma_tx->device->dev; 944 else 945 tx_dev = ctlr->dev.parent; 946 947 if (ctlr->dma_rx) 948 rx_dev = ctlr->dma_rx->device->dev; 949 else 950 rx_dev = ctlr->dev.parent; 951 952 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 953 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 954 continue; 955 956 if (xfer->tx_buf != NULL) { 957 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 958 (void *)xfer->tx_buf, xfer->len, 959 DMA_TO_DEVICE); 960 if (ret != 0) 961 return ret; 962 } 963 964 if (xfer->rx_buf != NULL) { 965 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 966 xfer->rx_buf, xfer->len, 967 DMA_FROM_DEVICE); 968 if (ret != 0) { 969 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 970 DMA_TO_DEVICE); 971 return ret; 972 } 973 } 974 } 975 976 ctlr->cur_msg_mapped = true; 977 978 return 0; 979 } 980 981 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 982 { 983 struct spi_transfer *xfer; 984 struct device *tx_dev, *rx_dev; 985 986 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 987 return 0; 988 989 if (ctlr->dma_tx) 990 tx_dev = ctlr->dma_tx->device->dev; 991 else 992 tx_dev = ctlr->dev.parent; 993 994 if (ctlr->dma_rx) 995 rx_dev = ctlr->dma_rx->device->dev; 996 else 997 rx_dev = ctlr->dev.parent; 998 999 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1000 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1001 continue; 1002 1003 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1004 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1005 } 1006 1007 ctlr->cur_msg_mapped = false; 1008 1009 return 0; 1010 } 1011 #else /* !CONFIG_HAS_DMA */ 1012 static inline int __spi_map_msg(struct spi_controller *ctlr, 1013 struct spi_message *msg) 1014 { 1015 return 0; 1016 } 1017 1018 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1019 struct spi_message *msg) 1020 { 1021 return 0; 1022 } 1023 #endif /* !CONFIG_HAS_DMA */ 1024 1025 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1026 struct spi_message *msg) 1027 { 1028 struct spi_transfer *xfer; 1029 1030 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1031 /* 1032 * Restore the original value of tx_buf or rx_buf if they are 1033 * NULL. 1034 */ 1035 if (xfer->tx_buf == ctlr->dummy_tx) 1036 xfer->tx_buf = NULL; 1037 if (xfer->rx_buf == ctlr->dummy_rx) 1038 xfer->rx_buf = NULL; 1039 } 1040 1041 return __spi_unmap_msg(ctlr, msg); 1042 } 1043 1044 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1045 { 1046 struct spi_transfer *xfer; 1047 void *tmp; 1048 unsigned int max_tx, max_rx; 1049 1050 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1051 && !(msg->spi->mode & SPI_3WIRE)) { 1052 max_tx = 0; 1053 max_rx = 0; 1054 1055 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1056 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1057 !xfer->tx_buf) 1058 max_tx = max(xfer->len, max_tx); 1059 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1060 !xfer->rx_buf) 1061 max_rx = max(xfer->len, max_rx); 1062 } 1063 1064 if (max_tx) { 1065 tmp = krealloc(ctlr->dummy_tx, max_tx, 1066 GFP_KERNEL | GFP_DMA); 1067 if (!tmp) 1068 return -ENOMEM; 1069 ctlr->dummy_tx = tmp; 1070 memset(tmp, 0, max_tx); 1071 } 1072 1073 if (max_rx) { 1074 tmp = krealloc(ctlr->dummy_rx, max_rx, 1075 GFP_KERNEL | GFP_DMA); 1076 if (!tmp) 1077 return -ENOMEM; 1078 ctlr->dummy_rx = tmp; 1079 } 1080 1081 if (max_tx || max_rx) { 1082 list_for_each_entry(xfer, &msg->transfers, 1083 transfer_list) { 1084 if (!xfer->len) 1085 continue; 1086 if (!xfer->tx_buf) 1087 xfer->tx_buf = ctlr->dummy_tx; 1088 if (!xfer->rx_buf) 1089 xfer->rx_buf = ctlr->dummy_rx; 1090 } 1091 } 1092 } 1093 1094 return __spi_map_msg(ctlr, msg); 1095 } 1096 1097 static int spi_transfer_wait(struct spi_controller *ctlr, 1098 struct spi_message *msg, 1099 struct spi_transfer *xfer) 1100 { 1101 struct spi_statistics *statm = &ctlr->statistics; 1102 struct spi_statistics *stats = &msg->spi->statistics; 1103 u32 speed_hz = xfer->speed_hz; 1104 unsigned long long ms; 1105 1106 if (spi_controller_is_slave(ctlr)) { 1107 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1108 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1109 return -EINTR; 1110 } 1111 } else { 1112 if (!speed_hz) 1113 speed_hz = 100000; 1114 1115 ms = 8LL * 1000LL * xfer->len; 1116 do_div(ms, speed_hz); 1117 ms += ms + 200; /* some tolerance */ 1118 1119 if (ms > UINT_MAX) 1120 ms = UINT_MAX; 1121 1122 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1123 msecs_to_jiffies(ms)); 1124 1125 if (ms == 0) { 1126 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1127 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1128 dev_err(&msg->spi->dev, 1129 "SPI transfer timed out\n"); 1130 return -ETIMEDOUT; 1131 } 1132 } 1133 1134 return 0; 1135 } 1136 1137 static void _spi_transfer_delay_ns(u32 ns) 1138 { 1139 if (!ns) 1140 return; 1141 if (ns <= 1000) { 1142 ndelay(ns); 1143 } else { 1144 u32 us = DIV_ROUND_UP(ns, 1000); 1145 1146 if (us <= 10) 1147 udelay(us); 1148 else 1149 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1150 } 1151 } 1152 1153 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1154 { 1155 u32 delay = _delay->value; 1156 u32 unit = _delay->unit; 1157 u32 hz; 1158 1159 if (!delay) 1160 return 0; 1161 1162 switch (unit) { 1163 case SPI_DELAY_UNIT_USECS: 1164 delay *= 1000; 1165 break; 1166 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1167 break; 1168 case SPI_DELAY_UNIT_SCK: 1169 /* clock cycles need to be obtained from spi_transfer */ 1170 if (!xfer) 1171 return -EINVAL; 1172 /* if there is no effective speed know, then approximate 1173 * by underestimating with half the requested hz 1174 */ 1175 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1176 if (!hz) 1177 return -EINVAL; 1178 delay *= DIV_ROUND_UP(1000000000, hz); 1179 break; 1180 default: 1181 return -EINVAL; 1182 } 1183 1184 return delay; 1185 } 1186 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1187 1188 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1189 { 1190 int delay; 1191 1192 might_sleep(); 1193 1194 if (!_delay) 1195 return -EINVAL; 1196 1197 delay = spi_delay_to_ns(_delay, xfer); 1198 if (delay < 0) 1199 return delay; 1200 1201 _spi_transfer_delay_ns(delay); 1202 1203 return 0; 1204 } 1205 EXPORT_SYMBOL_GPL(spi_delay_exec); 1206 1207 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1208 struct spi_transfer *xfer) 1209 { 1210 u32 delay = xfer->cs_change_delay.value; 1211 u32 unit = xfer->cs_change_delay.unit; 1212 int ret; 1213 1214 /* return early on "fast" mode - for everything but USECS */ 1215 if (!delay) { 1216 if (unit == SPI_DELAY_UNIT_USECS) 1217 _spi_transfer_delay_ns(10000); 1218 return; 1219 } 1220 1221 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1222 if (ret) { 1223 dev_err_once(&msg->spi->dev, 1224 "Use of unsupported delay unit %i, using default of 10us\n", 1225 unit); 1226 _spi_transfer_delay_ns(10000); 1227 } 1228 } 1229 1230 /* 1231 * spi_transfer_one_message - Default implementation of transfer_one_message() 1232 * 1233 * This is a standard implementation of transfer_one_message() for 1234 * drivers which implement a transfer_one() operation. It provides 1235 * standard handling of delays and chip select management. 1236 */ 1237 static int spi_transfer_one_message(struct spi_controller *ctlr, 1238 struct spi_message *msg) 1239 { 1240 struct spi_transfer *xfer; 1241 bool keep_cs = false; 1242 int ret = 0; 1243 struct spi_statistics *statm = &ctlr->statistics; 1244 struct spi_statistics *stats = &msg->spi->statistics; 1245 1246 spi_set_cs(msg->spi, true, false); 1247 1248 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1249 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1250 1251 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1252 trace_spi_transfer_start(msg, xfer); 1253 1254 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1255 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1256 1257 if (!ctlr->ptp_sts_supported) { 1258 xfer->ptp_sts_word_pre = 0; 1259 ptp_read_system_prets(xfer->ptp_sts); 1260 } 1261 1262 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1263 reinit_completion(&ctlr->xfer_completion); 1264 1265 fallback_pio: 1266 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1267 if (ret < 0) { 1268 if (ctlr->cur_msg_mapped && 1269 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1270 __spi_unmap_msg(ctlr, msg); 1271 ctlr->fallback = true; 1272 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1273 goto fallback_pio; 1274 } 1275 1276 SPI_STATISTICS_INCREMENT_FIELD(statm, 1277 errors); 1278 SPI_STATISTICS_INCREMENT_FIELD(stats, 1279 errors); 1280 dev_err(&msg->spi->dev, 1281 "SPI transfer failed: %d\n", ret); 1282 goto out; 1283 } 1284 1285 if (ret > 0) { 1286 ret = spi_transfer_wait(ctlr, msg, xfer); 1287 if (ret < 0) 1288 msg->status = ret; 1289 } 1290 } else { 1291 if (xfer->len) 1292 dev_err(&msg->spi->dev, 1293 "Bufferless transfer has length %u\n", 1294 xfer->len); 1295 } 1296 1297 if (!ctlr->ptp_sts_supported) { 1298 ptp_read_system_postts(xfer->ptp_sts); 1299 xfer->ptp_sts_word_post = xfer->len; 1300 } 1301 1302 trace_spi_transfer_stop(msg, xfer); 1303 1304 if (msg->status != -EINPROGRESS) 1305 goto out; 1306 1307 spi_transfer_delay_exec(xfer); 1308 1309 if (xfer->cs_change) { 1310 if (list_is_last(&xfer->transfer_list, 1311 &msg->transfers)) { 1312 keep_cs = true; 1313 } else { 1314 spi_set_cs(msg->spi, false, false); 1315 _spi_transfer_cs_change_delay(msg, xfer); 1316 spi_set_cs(msg->spi, true, false); 1317 } 1318 } 1319 1320 msg->actual_length += xfer->len; 1321 } 1322 1323 out: 1324 if (ret != 0 || !keep_cs) 1325 spi_set_cs(msg->spi, false, false); 1326 1327 if (msg->status == -EINPROGRESS) 1328 msg->status = ret; 1329 1330 if (msg->status && ctlr->handle_err) 1331 ctlr->handle_err(ctlr, msg); 1332 1333 spi_finalize_current_message(ctlr); 1334 1335 return ret; 1336 } 1337 1338 /** 1339 * spi_finalize_current_transfer - report completion of a transfer 1340 * @ctlr: the controller reporting completion 1341 * 1342 * Called by SPI drivers using the core transfer_one_message() 1343 * implementation to notify it that the current interrupt driven 1344 * transfer has finished and the next one may be scheduled. 1345 */ 1346 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1347 { 1348 complete(&ctlr->xfer_completion); 1349 } 1350 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1351 1352 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1353 { 1354 if (ctlr->auto_runtime_pm) { 1355 pm_runtime_mark_last_busy(ctlr->dev.parent); 1356 pm_runtime_put_autosuspend(ctlr->dev.parent); 1357 } 1358 } 1359 1360 /** 1361 * __spi_pump_messages - function which processes spi message queue 1362 * @ctlr: controller to process queue for 1363 * @in_kthread: true if we are in the context of the message pump thread 1364 * 1365 * This function checks if there is any spi message in the queue that 1366 * needs processing and if so call out to the driver to initialize hardware 1367 * and transfer each message. 1368 * 1369 * Note that it is called both from the kthread itself and also from 1370 * inside spi_sync(); the queue extraction handling at the top of the 1371 * function should deal with this safely. 1372 */ 1373 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1374 { 1375 struct spi_transfer *xfer; 1376 struct spi_message *msg; 1377 bool was_busy = false; 1378 unsigned long flags; 1379 int ret; 1380 1381 /* Lock queue */ 1382 spin_lock_irqsave(&ctlr->queue_lock, flags); 1383 1384 /* Make sure we are not already running a message */ 1385 if (ctlr->cur_msg) { 1386 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1387 return; 1388 } 1389 1390 /* If another context is idling the device then defer */ 1391 if (ctlr->idling) { 1392 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1393 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1394 return; 1395 } 1396 1397 /* Check if the queue is idle */ 1398 if (list_empty(&ctlr->queue) || !ctlr->running) { 1399 if (!ctlr->busy) { 1400 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1401 return; 1402 } 1403 1404 /* Defer any non-atomic teardown to the thread */ 1405 if (!in_kthread) { 1406 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1407 !ctlr->unprepare_transfer_hardware) { 1408 spi_idle_runtime_pm(ctlr); 1409 ctlr->busy = false; 1410 trace_spi_controller_idle(ctlr); 1411 } else { 1412 kthread_queue_work(ctlr->kworker, 1413 &ctlr->pump_messages); 1414 } 1415 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1416 return; 1417 } 1418 1419 ctlr->busy = false; 1420 ctlr->idling = true; 1421 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1422 1423 kfree(ctlr->dummy_rx); 1424 ctlr->dummy_rx = NULL; 1425 kfree(ctlr->dummy_tx); 1426 ctlr->dummy_tx = NULL; 1427 if (ctlr->unprepare_transfer_hardware && 1428 ctlr->unprepare_transfer_hardware(ctlr)) 1429 dev_err(&ctlr->dev, 1430 "failed to unprepare transfer hardware\n"); 1431 spi_idle_runtime_pm(ctlr); 1432 trace_spi_controller_idle(ctlr); 1433 1434 spin_lock_irqsave(&ctlr->queue_lock, flags); 1435 ctlr->idling = false; 1436 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1437 return; 1438 } 1439 1440 /* Extract head of queue */ 1441 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1442 ctlr->cur_msg = msg; 1443 1444 list_del_init(&msg->queue); 1445 if (ctlr->busy) 1446 was_busy = true; 1447 else 1448 ctlr->busy = true; 1449 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1450 1451 mutex_lock(&ctlr->io_mutex); 1452 1453 if (!was_busy && ctlr->auto_runtime_pm) { 1454 ret = pm_runtime_get_sync(ctlr->dev.parent); 1455 if (ret < 0) { 1456 pm_runtime_put_noidle(ctlr->dev.parent); 1457 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1458 ret); 1459 mutex_unlock(&ctlr->io_mutex); 1460 return; 1461 } 1462 } 1463 1464 if (!was_busy) 1465 trace_spi_controller_busy(ctlr); 1466 1467 if (!was_busy && ctlr->prepare_transfer_hardware) { 1468 ret = ctlr->prepare_transfer_hardware(ctlr); 1469 if (ret) { 1470 dev_err(&ctlr->dev, 1471 "failed to prepare transfer hardware: %d\n", 1472 ret); 1473 1474 if (ctlr->auto_runtime_pm) 1475 pm_runtime_put(ctlr->dev.parent); 1476 1477 msg->status = ret; 1478 spi_finalize_current_message(ctlr); 1479 1480 mutex_unlock(&ctlr->io_mutex); 1481 return; 1482 } 1483 } 1484 1485 trace_spi_message_start(msg); 1486 1487 if (ctlr->prepare_message) { 1488 ret = ctlr->prepare_message(ctlr, msg); 1489 if (ret) { 1490 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1491 ret); 1492 msg->status = ret; 1493 spi_finalize_current_message(ctlr); 1494 goto out; 1495 } 1496 ctlr->cur_msg_prepared = true; 1497 } 1498 1499 ret = spi_map_msg(ctlr, msg); 1500 if (ret) { 1501 msg->status = ret; 1502 spi_finalize_current_message(ctlr); 1503 goto out; 1504 } 1505 1506 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1507 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1508 xfer->ptp_sts_word_pre = 0; 1509 ptp_read_system_prets(xfer->ptp_sts); 1510 } 1511 } 1512 1513 ret = ctlr->transfer_one_message(ctlr, msg); 1514 if (ret) { 1515 dev_err(&ctlr->dev, 1516 "failed to transfer one message from queue\n"); 1517 goto out; 1518 } 1519 1520 out: 1521 mutex_unlock(&ctlr->io_mutex); 1522 1523 /* Prod the scheduler in case transfer_one() was busy waiting */ 1524 if (!ret) 1525 cond_resched(); 1526 } 1527 1528 /** 1529 * spi_pump_messages - kthread work function which processes spi message queue 1530 * @work: pointer to kthread work struct contained in the controller struct 1531 */ 1532 static void spi_pump_messages(struct kthread_work *work) 1533 { 1534 struct spi_controller *ctlr = 1535 container_of(work, struct spi_controller, pump_messages); 1536 1537 __spi_pump_messages(ctlr, true); 1538 } 1539 1540 /** 1541 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1542 * TX timestamp for the requested byte from the SPI 1543 * transfer. The frequency with which this function 1544 * must be called (once per word, once for the whole 1545 * transfer, once per batch of words etc) is arbitrary 1546 * as long as the @tx buffer offset is greater than or 1547 * equal to the requested byte at the time of the 1548 * call. The timestamp is only taken once, at the 1549 * first such call. It is assumed that the driver 1550 * advances its @tx buffer pointer monotonically. 1551 * @ctlr: Pointer to the spi_controller structure of the driver 1552 * @xfer: Pointer to the transfer being timestamped 1553 * @progress: How many words (not bytes) have been transferred so far 1554 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1555 * transfer, for less jitter in time measurement. Only compatible 1556 * with PIO drivers. If true, must follow up with 1557 * spi_take_timestamp_post or otherwise system will crash. 1558 * WARNING: for fully predictable results, the CPU frequency must 1559 * also be under control (governor). 1560 */ 1561 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1562 struct spi_transfer *xfer, 1563 size_t progress, bool irqs_off) 1564 { 1565 if (!xfer->ptp_sts) 1566 return; 1567 1568 if (xfer->timestamped) 1569 return; 1570 1571 if (progress > xfer->ptp_sts_word_pre) 1572 return; 1573 1574 /* Capture the resolution of the timestamp */ 1575 xfer->ptp_sts_word_pre = progress; 1576 1577 if (irqs_off) { 1578 local_irq_save(ctlr->irq_flags); 1579 preempt_disable(); 1580 } 1581 1582 ptp_read_system_prets(xfer->ptp_sts); 1583 } 1584 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1585 1586 /** 1587 * spi_take_timestamp_post - helper for drivers to collect the end of the 1588 * TX timestamp for the requested byte from the SPI 1589 * transfer. Can be called with an arbitrary 1590 * frequency: only the first call where @tx exceeds 1591 * or is equal to the requested word will be 1592 * timestamped. 1593 * @ctlr: Pointer to the spi_controller structure of the driver 1594 * @xfer: Pointer to the transfer being timestamped 1595 * @progress: How many words (not bytes) have been transferred so far 1596 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1597 */ 1598 void spi_take_timestamp_post(struct spi_controller *ctlr, 1599 struct spi_transfer *xfer, 1600 size_t progress, bool irqs_off) 1601 { 1602 if (!xfer->ptp_sts) 1603 return; 1604 1605 if (xfer->timestamped) 1606 return; 1607 1608 if (progress < xfer->ptp_sts_word_post) 1609 return; 1610 1611 ptp_read_system_postts(xfer->ptp_sts); 1612 1613 if (irqs_off) { 1614 local_irq_restore(ctlr->irq_flags); 1615 preempt_enable(); 1616 } 1617 1618 /* Capture the resolution of the timestamp */ 1619 xfer->ptp_sts_word_post = progress; 1620 1621 xfer->timestamped = true; 1622 } 1623 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1624 1625 /** 1626 * spi_set_thread_rt - set the controller to pump at realtime priority 1627 * @ctlr: controller to boost priority of 1628 * 1629 * This can be called because the controller requested realtime priority 1630 * (by setting the ->rt value before calling spi_register_controller()) or 1631 * because a device on the bus said that its transfers needed realtime 1632 * priority. 1633 * 1634 * NOTE: at the moment if any device on a bus says it needs realtime then 1635 * the thread will be at realtime priority for all transfers on that 1636 * controller. If this eventually becomes a problem we may see if we can 1637 * find a way to boost the priority only temporarily during relevant 1638 * transfers. 1639 */ 1640 static void spi_set_thread_rt(struct spi_controller *ctlr) 1641 { 1642 dev_info(&ctlr->dev, 1643 "will run message pump with realtime priority\n"); 1644 sched_set_fifo(ctlr->kworker->task); 1645 } 1646 1647 static int spi_init_queue(struct spi_controller *ctlr) 1648 { 1649 ctlr->running = false; 1650 ctlr->busy = false; 1651 1652 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1653 if (IS_ERR(ctlr->kworker)) { 1654 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1655 return PTR_ERR(ctlr->kworker); 1656 } 1657 1658 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1659 1660 /* 1661 * Controller config will indicate if this controller should run the 1662 * message pump with high (realtime) priority to reduce the transfer 1663 * latency on the bus by minimising the delay between a transfer 1664 * request and the scheduling of the message pump thread. Without this 1665 * setting the message pump thread will remain at default priority. 1666 */ 1667 if (ctlr->rt) 1668 spi_set_thread_rt(ctlr); 1669 1670 return 0; 1671 } 1672 1673 /** 1674 * spi_get_next_queued_message() - called by driver to check for queued 1675 * messages 1676 * @ctlr: the controller to check for queued messages 1677 * 1678 * If there are more messages in the queue, the next message is returned from 1679 * this call. 1680 * 1681 * Return: the next message in the queue, else NULL if the queue is empty. 1682 */ 1683 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1684 { 1685 struct spi_message *next; 1686 unsigned long flags; 1687 1688 /* get a pointer to the next message, if any */ 1689 spin_lock_irqsave(&ctlr->queue_lock, flags); 1690 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1691 queue); 1692 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1693 1694 return next; 1695 } 1696 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1697 1698 /** 1699 * spi_finalize_current_message() - the current message is complete 1700 * @ctlr: the controller to return the message to 1701 * 1702 * Called by the driver to notify the core that the message in the front of the 1703 * queue is complete and can be removed from the queue. 1704 */ 1705 void spi_finalize_current_message(struct spi_controller *ctlr) 1706 { 1707 struct spi_transfer *xfer; 1708 struct spi_message *mesg; 1709 unsigned long flags; 1710 int ret; 1711 1712 spin_lock_irqsave(&ctlr->queue_lock, flags); 1713 mesg = ctlr->cur_msg; 1714 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1715 1716 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1717 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1718 ptp_read_system_postts(xfer->ptp_sts); 1719 xfer->ptp_sts_word_post = xfer->len; 1720 } 1721 } 1722 1723 if (unlikely(ctlr->ptp_sts_supported)) 1724 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1725 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1726 1727 spi_unmap_msg(ctlr, mesg); 1728 1729 /* In the prepare_messages callback the spi bus has the opportunity to 1730 * split a transfer to smaller chunks. 1731 * Release splited transfers here since spi_map_msg is done on the 1732 * splited transfers. 1733 */ 1734 spi_res_release(ctlr, mesg); 1735 1736 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1737 ret = ctlr->unprepare_message(ctlr, mesg); 1738 if (ret) { 1739 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1740 ret); 1741 } 1742 } 1743 1744 spin_lock_irqsave(&ctlr->queue_lock, flags); 1745 ctlr->cur_msg = NULL; 1746 ctlr->cur_msg_prepared = false; 1747 ctlr->fallback = false; 1748 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1749 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1750 1751 trace_spi_message_done(mesg); 1752 1753 mesg->state = NULL; 1754 if (mesg->complete) 1755 mesg->complete(mesg->context); 1756 } 1757 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1758 1759 static int spi_start_queue(struct spi_controller *ctlr) 1760 { 1761 unsigned long flags; 1762 1763 spin_lock_irqsave(&ctlr->queue_lock, flags); 1764 1765 if (ctlr->running || ctlr->busy) { 1766 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1767 return -EBUSY; 1768 } 1769 1770 ctlr->running = true; 1771 ctlr->cur_msg = NULL; 1772 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1773 1774 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1775 1776 return 0; 1777 } 1778 1779 static int spi_stop_queue(struct spi_controller *ctlr) 1780 { 1781 unsigned long flags; 1782 unsigned limit = 500; 1783 int ret = 0; 1784 1785 spin_lock_irqsave(&ctlr->queue_lock, flags); 1786 1787 /* 1788 * This is a bit lame, but is optimized for the common execution path. 1789 * A wait_queue on the ctlr->busy could be used, but then the common 1790 * execution path (pump_messages) would be required to call wake_up or 1791 * friends on every SPI message. Do this instead. 1792 */ 1793 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1794 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1795 usleep_range(10000, 11000); 1796 spin_lock_irqsave(&ctlr->queue_lock, flags); 1797 } 1798 1799 if (!list_empty(&ctlr->queue) || ctlr->busy) 1800 ret = -EBUSY; 1801 else 1802 ctlr->running = false; 1803 1804 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1805 1806 if (ret) { 1807 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1808 return ret; 1809 } 1810 return ret; 1811 } 1812 1813 static int spi_destroy_queue(struct spi_controller *ctlr) 1814 { 1815 int ret; 1816 1817 ret = spi_stop_queue(ctlr); 1818 1819 /* 1820 * kthread_flush_worker will block until all work is done. 1821 * If the reason that stop_queue timed out is that the work will never 1822 * finish, then it does no good to call flush/stop thread, so 1823 * return anyway. 1824 */ 1825 if (ret) { 1826 dev_err(&ctlr->dev, "problem destroying queue\n"); 1827 return ret; 1828 } 1829 1830 kthread_destroy_worker(ctlr->kworker); 1831 1832 return 0; 1833 } 1834 1835 static int __spi_queued_transfer(struct spi_device *spi, 1836 struct spi_message *msg, 1837 bool need_pump) 1838 { 1839 struct spi_controller *ctlr = spi->controller; 1840 unsigned long flags; 1841 1842 spin_lock_irqsave(&ctlr->queue_lock, flags); 1843 1844 if (!ctlr->running) { 1845 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1846 return -ESHUTDOWN; 1847 } 1848 msg->actual_length = 0; 1849 msg->status = -EINPROGRESS; 1850 1851 list_add_tail(&msg->queue, &ctlr->queue); 1852 if (!ctlr->busy && need_pump) 1853 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1854 1855 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1856 return 0; 1857 } 1858 1859 /** 1860 * spi_queued_transfer - transfer function for queued transfers 1861 * @spi: spi device which is requesting transfer 1862 * @msg: spi message which is to handled is queued to driver queue 1863 * 1864 * Return: zero on success, else a negative error code. 1865 */ 1866 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1867 { 1868 return __spi_queued_transfer(spi, msg, true); 1869 } 1870 1871 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1872 { 1873 int ret; 1874 1875 ctlr->transfer = spi_queued_transfer; 1876 if (!ctlr->transfer_one_message) 1877 ctlr->transfer_one_message = spi_transfer_one_message; 1878 1879 /* Initialize and start queue */ 1880 ret = spi_init_queue(ctlr); 1881 if (ret) { 1882 dev_err(&ctlr->dev, "problem initializing queue\n"); 1883 goto err_init_queue; 1884 } 1885 ctlr->queued = true; 1886 ret = spi_start_queue(ctlr); 1887 if (ret) { 1888 dev_err(&ctlr->dev, "problem starting queue\n"); 1889 goto err_start_queue; 1890 } 1891 1892 return 0; 1893 1894 err_start_queue: 1895 spi_destroy_queue(ctlr); 1896 err_init_queue: 1897 return ret; 1898 } 1899 1900 /** 1901 * spi_flush_queue - Send all pending messages in the queue from the callers' 1902 * context 1903 * @ctlr: controller to process queue for 1904 * 1905 * This should be used when one wants to ensure all pending messages have been 1906 * sent before doing something. Is used by the spi-mem code to make sure SPI 1907 * memory operations do not preempt regular SPI transfers that have been queued 1908 * before the spi-mem operation. 1909 */ 1910 void spi_flush_queue(struct spi_controller *ctlr) 1911 { 1912 if (ctlr->transfer == spi_queued_transfer) 1913 __spi_pump_messages(ctlr, false); 1914 } 1915 1916 /*-------------------------------------------------------------------------*/ 1917 1918 #if defined(CONFIG_OF) 1919 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1920 struct device_node *nc) 1921 { 1922 u32 value; 1923 int rc; 1924 1925 /* Mode (clock phase/polarity/etc.) */ 1926 if (of_property_read_bool(nc, "spi-cpha")) 1927 spi->mode |= SPI_CPHA; 1928 if (of_property_read_bool(nc, "spi-cpol")) 1929 spi->mode |= SPI_CPOL; 1930 if (of_property_read_bool(nc, "spi-3wire")) 1931 spi->mode |= SPI_3WIRE; 1932 if (of_property_read_bool(nc, "spi-lsb-first")) 1933 spi->mode |= SPI_LSB_FIRST; 1934 if (of_property_read_bool(nc, "spi-cs-high")) 1935 spi->mode |= SPI_CS_HIGH; 1936 1937 /* Device DUAL/QUAD mode */ 1938 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1939 switch (value) { 1940 case 0: 1941 spi->mode |= SPI_NO_TX; 1942 break; 1943 case 1: 1944 break; 1945 case 2: 1946 spi->mode |= SPI_TX_DUAL; 1947 break; 1948 case 4: 1949 spi->mode |= SPI_TX_QUAD; 1950 break; 1951 case 8: 1952 spi->mode |= SPI_TX_OCTAL; 1953 break; 1954 default: 1955 dev_warn(&ctlr->dev, 1956 "spi-tx-bus-width %d not supported\n", 1957 value); 1958 break; 1959 } 1960 } 1961 1962 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1963 switch (value) { 1964 case 0: 1965 spi->mode |= SPI_NO_RX; 1966 break; 1967 case 1: 1968 break; 1969 case 2: 1970 spi->mode |= SPI_RX_DUAL; 1971 break; 1972 case 4: 1973 spi->mode |= SPI_RX_QUAD; 1974 break; 1975 case 8: 1976 spi->mode |= SPI_RX_OCTAL; 1977 break; 1978 default: 1979 dev_warn(&ctlr->dev, 1980 "spi-rx-bus-width %d not supported\n", 1981 value); 1982 break; 1983 } 1984 } 1985 1986 if (spi_controller_is_slave(ctlr)) { 1987 if (!of_node_name_eq(nc, "slave")) { 1988 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1989 nc); 1990 return -EINVAL; 1991 } 1992 return 0; 1993 } 1994 1995 /* Device address */ 1996 rc = of_property_read_u32(nc, "reg", &value); 1997 if (rc) { 1998 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1999 nc, rc); 2000 return rc; 2001 } 2002 spi->chip_select = value; 2003 2004 /* Device speed */ 2005 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2006 spi->max_speed_hz = value; 2007 2008 return 0; 2009 } 2010 2011 static struct spi_device * 2012 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2013 { 2014 struct spi_device *spi; 2015 int rc; 2016 2017 /* Alloc an spi_device */ 2018 spi = spi_alloc_device(ctlr); 2019 if (!spi) { 2020 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2021 rc = -ENOMEM; 2022 goto err_out; 2023 } 2024 2025 /* Select device driver */ 2026 rc = of_modalias_node(nc, spi->modalias, 2027 sizeof(spi->modalias)); 2028 if (rc < 0) { 2029 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2030 goto err_out; 2031 } 2032 2033 rc = of_spi_parse_dt(ctlr, spi, nc); 2034 if (rc) 2035 goto err_out; 2036 2037 /* Store a pointer to the node in the device structure */ 2038 of_node_get(nc); 2039 spi->dev.of_node = nc; 2040 2041 /* Register the new device */ 2042 rc = spi_add_device(spi); 2043 if (rc) { 2044 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2045 goto err_of_node_put; 2046 } 2047 2048 return spi; 2049 2050 err_of_node_put: 2051 of_node_put(nc); 2052 err_out: 2053 spi_dev_put(spi); 2054 return ERR_PTR(rc); 2055 } 2056 2057 /** 2058 * of_register_spi_devices() - Register child devices onto the SPI bus 2059 * @ctlr: Pointer to spi_controller device 2060 * 2061 * Registers an spi_device for each child node of controller node which 2062 * represents a valid SPI slave. 2063 */ 2064 static void of_register_spi_devices(struct spi_controller *ctlr) 2065 { 2066 struct spi_device *spi; 2067 struct device_node *nc; 2068 2069 if (!ctlr->dev.of_node) 2070 return; 2071 2072 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2073 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2074 continue; 2075 spi = of_register_spi_device(ctlr, nc); 2076 if (IS_ERR(spi)) { 2077 dev_warn(&ctlr->dev, 2078 "Failed to create SPI device for %pOF\n", nc); 2079 of_node_clear_flag(nc, OF_POPULATED); 2080 } 2081 } 2082 } 2083 #else 2084 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2085 #endif 2086 2087 #ifdef CONFIG_ACPI 2088 struct acpi_spi_lookup { 2089 struct spi_controller *ctlr; 2090 u32 max_speed_hz; 2091 u32 mode; 2092 int irq; 2093 u8 bits_per_word; 2094 u8 chip_select; 2095 }; 2096 2097 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2098 struct acpi_spi_lookup *lookup) 2099 { 2100 const union acpi_object *obj; 2101 2102 if (!x86_apple_machine) 2103 return; 2104 2105 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2106 && obj->buffer.length >= 4) 2107 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2108 2109 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2110 && obj->buffer.length == 8) 2111 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2112 2113 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2114 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2115 lookup->mode |= SPI_LSB_FIRST; 2116 2117 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2118 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2119 lookup->mode |= SPI_CPOL; 2120 2121 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2122 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2123 lookup->mode |= SPI_CPHA; 2124 } 2125 2126 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2127 { 2128 struct acpi_spi_lookup *lookup = data; 2129 struct spi_controller *ctlr = lookup->ctlr; 2130 2131 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2132 struct acpi_resource_spi_serialbus *sb; 2133 acpi_handle parent_handle; 2134 acpi_status status; 2135 2136 sb = &ares->data.spi_serial_bus; 2137 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2138 2139 status = acpi_get_handle(NULL, 2140 sb->resource_source.string_ptr, 2141 &parent_handle); 2142 2143 if (ACPI_FAILURE(status) || 2144 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2145 return -ENODEV; 2146 2147 /* 2148 * ACPI DeviceSelection numbering is handled by the 2149 * host controller driver in Windows and can vary 2150 * from driver to driver. In Linux we always expect 2151 * 0 .. max - 1 so we need to ask the driver to 2152 * translate between the two schemes. 2153 */ 2154 if (ctlr->fw_translate_cs) { 2155 int cs = ctlr->fw_translate_cs(ctlr, 2156 sb->device_selection); 2157 if (cs < 0) 2158 return cs; 2159 lookup->chip_select = cs; 2160 } else { 2161 lookup->chip_select = sb->device_selection; 2162 } 2163 2164 lookup->max_speed_hz = sb->connection_speed; 2165 lookup->bits_per_word = sb->data_bit_length; 2166 2167 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2168 lookup->mode |= SPI_CPHA; 2169 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2170 lookup->mode |= SPI_CPOL; 2171 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2172 lookup->mode |= SPI_CS_HIGH; 2173 } 2174 } else if (lookup->irq < 0) { 2175 struct resource r; 2176 2177 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2178 lookup->irq = r.start; 2179 } 2180 2181 /* Always tell the ACPI core to skip this resource */ 2182 return 1; 2183 } 2184 2185 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2186 struct acpi_device *adev) 2187 { 2188 acpi_handle parent_handle = NULL; 2189 struct list_head resource_list; 2190 struct acpi_spi_lookup lookup = {}; 2191 struct spi_device *spi; 2192 int ret; 2193 2194 if (acpi_bus_get_status(adev) || !adev->status.present || 2195 acpi_device_enumerated(adev)) 2196 return AE_OK; 2197 2198 lookup.ctlr = ctlr; 2199 lookup.irq = -1; 2200 2201 INIT_LIST_HEAD(&resource_list); 2202 ret = acpi_dev_get_resources(adev, &resource_list, 2203 acpi_spi_add_resource, &lookup); 2204 acpi_dev_free_resource_list(&resource_list); 2205 2206 if (ret < 0) 2207 /* found SPI in _CRS but it points to another controller */ 2208 return AE_OK; 2209 2210 if (!lookup.max_speed_hz && 2211 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2212 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2213 /* Apple does not use _CRS but nested devices for SPI slaves */ 2214 acpi_spi_parse_apple_properties(adev, &lookup); 2215 } 2216 2217 if (!lookup.max_speed_hz) 2218 return AE_OK; 2219 2220 spi = spi_alloc_device(ctlr); 2221 if (!spi) { 2222 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2223 dev_name(&adev->dev)); 2224 return AE_NO_MEMORY; 2225 } 2226 2227 2228 ACPI_COMPANION_SET(&spi->dev, adev); 2229 spi->max_speed_hz = lookup.max_speed_hz; 2230 spi->mode |= lookup.mode; 2231 spi->irq = lookup.irq; 2232 spi->bits_per_word = lookup.bits_per_word; 2233 spi->chip_select = lookup.chip_select; 2234 2235 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2236 sizeof(spi->modalias)); 2237 2238 if (spi->irq < 0) 2239 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2240 2241 acpi_device_set_enumerated(adev); 2242 2243 adev->power.flags.ignore_parent = true; 2244 if (spi_add_device(spi)) { 2245 adev->power.flags.ignore_parent = false; 2246 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2247 dev_name(&adev->dev)); 2248 spi_dev_put(spi); 2249 } 2250 2251 return AE_OK; 2252 } 2253 2254 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2255 void *data, void **return_value) 2256 { 2257 struct spi_controller *ctlr = data; 2258 struct acpi_device *adev; 2259 2260 if (acpi_bus_get_device(handle, &adev)) 2261 return AE_OK; 2262 2263 return acpi_register_spi_device(ctlr, adev); 2264 } 2265 2266 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2267 2268 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2269 { 2270 acpi_status status; 2271 acpi_handle handle; 2272 2273 handle = ACPI_HANDLE(ctlr->dev.parent); 2274 if (!handle) 2275 return; 2276 2277 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2278 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2279 acpi_spi_add_device, NULL, ctlr, NULL); 2280 if (ACPI_FAILURE(status)) 2281 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2282 } 2283 #else 2284 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2285 #endif /* CONFIG_ACPI */ 2286 2287 static void spi_controller_release(struct device *dev) 2288 { 2289 struct spi_controller *ctlr; 2290 2291 ctlr = container_of(dev, struct spi_controller, dev); 2292 kfree(ctlr); 2293 } 2294 2295 static struct class spi_master_class = { 2296 .name = "spi_master", 2297 .owner = THIS_MODULE, 2298 .dev_release = spi_controller_release, 2299 .dev_groups = spi_master_groups, 2300 }; 2301 2302 #ifdef CONFIG_SPI_SLAVE 2303 /** 2304 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2305 * controller 2306 * @spi: device used for the current transfer 2307 */ 2308 int spi_slave_abort(struct spi_device *spi) 2309 { 2310 struct spi_controller *ctlr = spi->controller; 2311 2312 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2313 return ctlr->slave_abort(ctlr); 2314 2315 return -ENOTSUPP; 2316 } 2317 EXPORT_SYMBOL_GPL(spi_slave_abort); 2318 2319 static int match_true(struct device *dev, void *data) 2320 { 2321 return 1; 2322 } 2323 2324 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2325 char *buf) 2326 { 2327 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2328 dev); 2329 struct device *child; 2330 2331 child = device_find_child(&ctlr->dev, NULL, match_true); 2332 return sprintf(buf, "%s\n", 2333 child ? to_spi_device(child)->modalias : NULL); 2334 } 2335 2336 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2337 const char *buf, size_t count) 2338 { 2339 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2340 dev); 2341 struct spi_device *spi; 2342 struct device *child; 2343 char name[32]; 2344 int rc; 2345 2346 rc = sscanf(buf, "%31s", name); 2347 if (rc != 1 || !name[0]) 2348 return -EINVAL; 2349 2350 child = device_find_child(&ctlr->dev, NULL, match_true); 2351 if (child) { 2352 /* Remove registered slave */ 2353 device_unregister(child); 2354 put_device(child); 2355 } 2356 2357 if (strcmp(name, "(null)")) { 2358 /* Register new slave */ 2359 spi = spi_alloc_device(ctlr); 2360 if (!spi) 2361 return -ENOMEM; 2362 2363 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2364 2365 rc = spi_add_device(spi); 2366 if (rc) { 2367 spi_dev_put(spi); 2368 return rc; 2369 } 2370 } 2371 2372 return count; 2373 } 2374 2375 static DEVICE_ATTR_RW(slave); 2376 2377 static struct attribute *spi_slave_attrs[] = { 2378 &dev_attr_slave.attr, 2379 NULL, 2380 }; 2381 2382 static const struct attribute_group spi_slave_group = { 2383 .attrs = spi_slave_attrs, 2384 }; 2385 2386 static const struct attribute_group *spi_slave_groups[] = { 2387 &spi_controller_statistics_group, 2388 &spi_slave_group, 2389 NULL, 2390 }; 2391 2392 static struct class spi_slave_class = { 2393 .name = "spi_slave", 2394 .owner = THIS_MODULE, 2395 .dev_release = spi_controller_release, 2396 .dev_groups = spi_slave_groups, 2397 }; 2398 #else 2399 extern struct class spi_slave_class; /* dummy */ 2400 #endif 2401 2402 /** 2403 * __spi_alloc_controller - allocate an SPI master or slave controller 2404 * @dev: the controller, possibly using the platform_bus 2405 * @size: how much zeroed driver-private data to allocate; the pointer to this 2406 * memory is in the driver_data field of the returned device, accessible 2407 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2408 * drivers granting DMA access to portions of their private data need to 2409 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2410 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2411 * slave (true) controller 2412 * Context: can sleep 2413 * 2414 * This call is used only by SPI controller drivers, which are the 2415 * only ones directly touching chip registers. It's how they allocate 2416 * an spi_controller structure, prior to calling spi_register_controller(). 2417 * 2418 * This must be called from context that can sleep. 2419 * 2420 * The caller is responsible for assigning the bus number and initializing the 2421 * controller's methods before calling spi_register_controller(); and (after 2422 * errors adding the device) calling spi_controller_put() to prevent a memory 2423 * leak. 2424 * 2425 * Return: the SPI controller structure on success, else NULL. 2426 */ 2427 struct spi_controller *__spi_alloc_controller(struct device *dev, 2428 unsigned int size, bool slave) 2429 { 2430 struct spi_controller *ctlr; 2431 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2432 2433 if (!dev) 2434 return NULL; 2435 2436 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2437 if (!ctlr) 2438 return NULL; 2439 2440 device_initialize(&ctlr->dev); 2441 ctlr->bus_num = -1; 2442 ctlr->num_chipselect = 1; 2443 ctlr->slave = slave; 2444 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2445 ctlr->dev.class = &spi_slave_class; 2446 else 2447 ctlr->dev.class = &spi_master_class; 2448 ctlr->dev.parent = dev; 2449 pm_suspend_ignore_children(&ctlr->dev, true); 2450 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2451 2452 return ctlr; 2453 } 2454 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2455 2456 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2457 { 2458 spi_controller_put(*(struct spi_controller **)ctlr); 2459 } 2460 2461 /** 2462 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2463 * @dev: physical device of SPI controller 2464 * @size: how much zeroed driver-private data to allocate 2465 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2466 * Context: can sleep 2467 * 2468 * Allocate an SPI controller and automatically release a reference on it 2469 * when @dev is unbound from its driver. Drivers are thus relieved from 2470 * having to call spi_controller_put(). 2471 * 2472 * The arguments to this function are identical to __spi_alloc_controller(). 2473 * 2474 * Return: the SPI controller structure on success, else NULL. 2475 */ 2476 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2477 unsigned int size, 2478 bool slave) 2479 { 2480 struct spi_controller **ptr, *ctlr; 2481 2482 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2483 GFP_KERNEL); 2484 if (!ptr) 2485 return NULL; 2486 2487 ctlr = __spi_alloc_controller(dev, size, slave); 2488 if (ctlr) { 2489 ctlr->devm_allocated = true; 2490 *ptr = ctlr; 2491 devres_add(dev, ptr); 2492 } else { 2493 devres_free(ptr); 2494 } 2495 2496 return ctlr; 2497 } 2498 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2499 2500 #ifdef CONFIG_OF 2501 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2502 { 2503 int nb, i, *cs; 2504 struct device_node *np = ctlr->dev.of_node; 2505 2506 if (!np) 2507 return 0; 2508 2509 nb = of_gpio_named_count(np, "cs-gpios"); 2510 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2511 2512 /* Return error only for an incorrectly formed cs-gpios property */ 2513 if (nb == 0 || nb == -ENOENT) 2514 return 0; 2515 else if (nb < 0) 2516 return nb; 2517 2518 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2519 GFP_KERNEL); 2520 ctlr->cs_gpios = cs; 2521 2522 if (!ctlr->cs_gpios) 2523 return -ENOMEM; 2524 2525 for (i = 0; i < ctlr->num_chipselect; i++) 2526 cs[i] = -ENOENT; 2527 2528 for (i = 0; i < nb; i++) 2529 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2530 2531 return 0; 2532 } 2533 #else 2534 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2535 { 2536 return 0; 2537 } 2538 #endif 2539 2540 /** 2541 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2542 * @ctlr: The SPI master to grab GPIO descriptors for 2543 */ 2544 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2545 { 2546 int nb, i; 2547 struct gpio_desc **cs; 2548 struct device *dev = &ctlr->dev; 2549 unsigned long native_cs_mask = 0; 2550 unsigned int num_cs_gpios = 0; 2551 2552 nb = gpiod_count(dev, "cs"); 2553 if (nb < 0) { 2554 /* No GPIOs at all is fine, else return the error */ 2555 if (nb == -ENOENT) 2556 return 0; 2557 return nb; 2558 } 2559 2560 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2561 2562 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2563 GFP_KERNEL); 2564 if (!cs) 2565 return -ENOMEM; 2566 ctlr->cs_gpiods = cs; 2567 2568 for (i = 0; i < nb; i++) { 2569 /* 2570 * Most chipselects are active low, the inverted 2571 * semantics are handled by special quirks in gpiolib, 2572 * so initializing them GPIOD_OUT_LOW here means 2573 * "unasserted", in most cases this will drive the physical 2574 * line high. 2575 */ 2576 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2577 GPIOD_OUT_LOW); 2578 if (IS_ERR(cs[i])) 2579 return PTR_ERR(cs[i]); 2580 2581 if (cs[i]) { 2582 /* 2583 * If we find a CS GPIO, name it after the device and 2584 * chip select line. 2585 */ 2586 char *gpioname; 2587 2588 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2589 dev_name(dev), i); 2590 if (!gpioname) 2591 return -ENOMEM; 2592 gpiod_set_consumer_name(cs[i], gpioname); 2593 num_cs_gpios++; 2594 continue; 2595 } 2596 2597 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2598 dev_err(dev, "Invalid native chip select %d\n", i); 2599 return -EINVAL; 2600 } 2601 native_cs_mask |= BIT(i); 2602 } 2603 2604 ctlr->unused_native_cs = ffz(native_cs_mask); 2605 if (num_cs_gpios && ctlr->max_native_cs && 2606 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2607 dev_err(dev, "No unused native chip select available\n"); 2608 return -EINVAL; 2609 } 2610 2611 return 0; 2612 } 2613 2614 static int spi_controller_check_ops(struct spi_controller *ctlr) 2615 { 2616 /* 2617 * The controller may implement only the high-level SPI-memory like 2618 * operations if it does not support regular SPI transfers, and this is 2619 * valid use case. 2620 * If ->mem_ops is NULL, we request that at least one of the 2621 * ->transfer_xxx() method be implemented. 2622 */ 2623 if (ctlr->mem_ops) { 2624 if (!ctlr->mem_ops->exec_op) 2625 return -EINVAL; 2626 } else if (!ctlr->transfer && !ctlr->transfer_one && 2627 !ctlr->transfer_one_message) { 2628 return -EINVAL; 2629 } 2630 2631 return 0; 2632 } 2633 2634 /** 2635 * spi_register_controller - register SPI master or slave controller 2636 * @ctlr: initialized master, originally from spi_alloc_master() or 2637 * spi_alloc_slave() 2638 * Context: can sleep 2639 * 2640 * SPI controllers connect to their drivers using some non-SPI bus, 2641 * such as the platform bus. The final stage of probe() in that code 2642 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2643 * 2644 * SPI controllers use board specific (often SOC specific) bus numbers, 2645 * and board-specific addressing for SPI devices combines those numbers 2646 * with chip select numbers. Since SPI does not directly support dynamic 2647 * device identification, boards need configuration tables telling which 2648 * chip is at which address. 2649 * 2650 * This must be called from context that can sleep. It returns zero on 2651 * success, else a negative error code (dropping the controller's refcount). 2652 * After a successful return, the caller is responsible for calling 2653 * spi_unregister_controller(). 2654 * 2655 * Return: zero on success, else a negative error code. 2656 */ 2657 int spi_register_controller(struct spi_controller *ctlr) 2658 { 2659 struct device *dev = ctlr->dev.parent; 2660 struct boardinfo *bi; 2661 int status; 2662 int id, first_dynamic; 2663 2664 if (!dev) 2665 return -ENODEV; 2666 2667 /* 2668 * Make sure all necessary hooks are implemented before registering 2669 * the SPI controller. 2670 */ 2671 status = spi_controller_check_ops(ctlr); 2672 if (status) 2673 return status; 2674 2675 if (ctlr->bus_num >= 0) { 2676 /* devices with a fixed bus num must check-in with the num */ 2677 mutex_lock(&board_lock); 2678 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2679 ctlr->bus_num + 1, GFP_KERNEL); 2680 mutex_unlock(&board_lock); 2681 if (WARN(id < 0, "couldn't get idr")) 2682 return id == -ENOSPC ? -EBUSY : id; 2683 ctlr->bus_num = id; 2684 } else if (ctlr->dev.of_node) { 2685 /* allocate dynamic bus number using Linux idr */ 2686 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2687 if (id >= 0) { 2688 ctlr->bus_num = id; 2689 mutex_lock(&board_lock); 2690 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2691 ctlr->bus_num + 1, GFP_KERNEL); 2692 mutex_unlock(&board_lock); 2693 if (WARN(id < 0, "couldn't get idr")) 2694 return id == -ENOSPC ? -EBUSY : id; 2695 } 2696 } 2697 if (ctlr->bus_num < 0) { 2698 first_dynamic = of_alias_get_highest_id("spi"); 2699 if (first_dynamic < 0) 2700 first_dynamic = 0; 2701 else 2702 first_dynamic++; 2703 2704 mutex_lock(&board_lock); 2705 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2706 0, GFP_KERNEL); 2707 mutex_unlock(&board_lock); 2708 if (WARN(id < 0, "couldn't get idr")) 2709 return id; 2710 ctlr->bus_num = id; 2711 } 2712 INIT_LIST_HEAD(&ctlr->queue); 2713 spin_lock_init(&ctlr->queue_lock); 2714 spin_lock_init(&ctlr->bus_lock_spinlock); 2715 mutex_init(&ctlr->bus_lock_mutex); 2716 mutex_init(&ctlr->io_mutex); 2717 ctlr->bus_lock_flag = 0; 2718 init_completion(&ctlr->xfer_completion); 2719 if (!ctlr->max_dma_len) 2720 ctlr->max_dma_len = INT_MAX; 2721 2722 /* register the device, then userspace will see it. 2723 * registration fails if the bus ID is in use. 2724 */ 2725 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2726 2727 if (!spi_controller_is_slave(ctlr)) { 2728 if (ctlr->use_gpio_descriptors) { 2729 status = spi_get_gpio_descs(ctlr); 2730 if (status) 2731 goto free_bus_id; 2732 /* 2733 * A controller using GPIO descriptors always 2734 * supports SPI_CS_HIGH if need be. 2735 */ 2736 ctlr->mode_bits |= SPI_CS_HIGH; 2737 } else { 2738 /* Legacy code path for GPIOs from DT */ 2739 status = of_spi_get_gpio_numbers(ctlr); 2740 if (status) 2741 goto free_bus_id; 2742 } 2743 } 2744 2745 /* 2746 * Even if it's just one always-selected device, there must 2747 * be at least one chipselect. 2748 */ 2749 if (!ctlr->num_chipselect) { 2750 status = -EINVAL; 2751 goto free_bus_id; 2752 } 2753 2754 status = device_add(&ctlr->dev); 2755 if (status < 0) 2756 goto free_bus_id; 2757 dev_dbg(dev, "registered %s %s\n", 2758 spi_controller_is_slave(ctlr) ? "slave" : "master", 2759 dev_name(&ctlr->dev)); 2760 2761 /* 2762 * If we're using a queued driver, start the queue. Note that we don't 2763 * need the queueing logic if the driver is only supporting high-level 2764 * memory operations. 2765 */ 2766 if (ctlr->transfer) { 2767 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2768 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2769 status = spi_controller_initialize_queue(ctlr); 2770 if (status) { 2771 device_del(&ctlr->dev); 2772 goto free_bus_id; 2773 } 2774 } 2775 /* add statistics */ 2776 spin_lock_init(&ctlr->statistics.lock); 2777 2778 mutex_lock(&board_lock); 2779 list_add_tail(&ctlr->list, &spi_controller_list); 2780 list_for_each_entry(bi, &board_list, list) 2781 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2782 mutex_unlock(&board_lock); 2783 2784 /* Register devices from the device tree and ACPI */ 2785 of_register_spi_devices(ctlr); 2786 acpi_register_spi_devices(ctlr); 2787 return status; 2788 2789 free_bus_id: 2790 mutex_lock(&board_lock); 2791 idr_remove(&spi_master_idr, ctlr->bus_num); 2792 mutex_unlock(&board_lock); 2793 return status; 2794 } 2795 EXPORT_SYMBOL_GPL(spi_register_controller); 2796 2797 static void devm_spi_unregister(void *ctlr) 2798 { 2799 spi_unregister_controller(ctlr); 2800 } 2801 2802 /** 2803 * devm_spi_register_controller - register managed SPI master or slave 2804 * controller 2805 * @dev: device managing SPI controller 2806 * @ctlr: initialized controller, originally from spi_alloc_master() or 2807 * spi_alloc_slave() 2808 * Context: can sleep 2809 * 2810 * Register a SPI device as with spi_register_controller() which will 2811 * automatically be unregistered and freed. 2812 * 2813 * Return: zero on success, else a negative error code. 2814 */ 2815 int devm_spi_register_controller(struct device *dev, 2816 struct spi_controller *ctlr) 2817 { 2818 int ret; 2819 2820 ret = spi_register_controller(ctlr); 2821 if (ret) 2822 return ret; 2823 2824 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 2825 } 2826 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2827 2828 static int __unregister(struct device *dev, void *null) 2829 { 2830 spi_unregister_device(to_spi_device(dev)); 2831 return 0; 2832 } 2833 2834 /** 2835 * spi_unregister_controller - unregister SPI master or slave controller 2836 * @ctlr: the controller being unregistered 2837 * Context: can sleep 2838 * 2839 * This call is used only by SPI controller drivers, which are the 2840 * only ones directly touching chip registers. 2841 * 2842 * This must be called from context that can sleep. 2843 * 2844 * Note that this function also drops a reference to the controller. 2845 */ 2846 void spi_unregister_controller(struct spi_controller *ctlr) 2847 { 2848 struct spi_controller *found; 2849 int id = ctlr->bus_num; 2850 2851 /* Prevent addition of new devices, unregister existing ones */ 2852 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2853 mutex_lock(&spi_add_lock); 2854 2855 device_for_each_child(&ctlr->dev, NULL, __unregister); 2856 2857 /* First make sure that this controller was ever added */ 2858 mutex_lock(&board_lock); 2859 found = idr_find(&spi_master_idr, id); 2860 mutex_unlock(&board_lock); 2861 if (ctlr->queued) { 2862 if (spi_destroy_queue(ctlr)) 2863 dev_err(&ctlr->dev, "queue remove failed\n"); 2864 } 2865 mutex_lock(&board_lock); 2866 list_del(&ctlr->list); 2867 mutex_unlock(&board_lock); 2868 2869 device_del(&ctlr->dev); 2870 2871 /* Release the last reference on the controller if its driver 2872 * has not yet been converted to devm_spi_alloc_master/slave(). 2873 */ 2874 if (!ctlr->devm_allocated) 2875 put_device(&ctlr->dev); 2876 2877 /* free bus id */ 2878 mutex_lock(&board_lock); 2879 if (found == ctlr) 2880 idr_remove(&spi_master_idr, id); 2881 mutex_unlock(&board_lock); 2882 2883 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 2884 mutex_unlock(&spi_add_lock); 2885 } 2886 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2887 2888 int spi_controller_suspend(struct spi_controller *ctlr) 2889 { 2890 int ret; 2891 2892 /* Basically no-ops for non-queued controllers */ 2893 if (!ctlr->queued) 2894 return 0; 2895 2896 ret = spi_stop_queue(ctlr); 2897 if (ret) 2898 dev_err(&ctlr->dev, "queue stop failed\n"); 2899 2900 return ret; 2901 } 2902 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2903 2904 int spi_controller_resume(struct spi_controller *ctlr) 2905 { 2906 int ret; 2907 2908 if (!ctlr->queued) 2909 return 0; 2910 2911 ret = spi_start_queue(ctlr); 2912 if (ret) 2913 dev_err(&ctlr->dev, "queue restart failed\n"); 2914 2915 return ret; 2916 } 2917 EXPORT_SYMBOL_GPL(spi_controller_resume); 2918 2919 static int __spi_controller_match(struct device *dev, const void *data) 2920 { 2921 struct spi_controller *ctlr; 2922 const u16 *bus_num = data; 2923 2924 ctlr = container_of(dev, struct spi_controller, dev); 2925 return ctlr->bus_num == *bus_num; 2926 } 2927 2928 /** 2929 * spi_busnum_to_master - look up master associated with bus_num 2930 * @bus_num: the master's bus number 2931 * Context: can sleep 2932 * 2933 * This call may be used with devices that are registered after 2934 * arch init time. It returns a refcounted pointer to the relevant 2935 * spi_controller (which the caller must release), or NULL if there is 2936 * no such master registered. 2937 * 2938 * Return: the SPI master structure on success, else NULL. 2939 */ 2940 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2941 { 2942 struct device *dev; 2943 struct spi_controller *ctlr = NULL; 2944 2945 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2946 __spi_controller_match); 2947 if (dev) 2948 ctlr = container_of(dev, struct spi_controller, dev); 2949 /* reference got in class_find_device */ 2950 return ctlr; 2951 } 2952 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2953 2954 /*-------------------------------------------------------------------------*/ 2955 2956 /* Core methods for SPI resource management */ 2957 2958 /** 2959 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2960 * during the processing of a spi_message while using 2961 * spi_transfer_one 2962 * @spi: the spi device for which we allocate memory 2963 * @release: the release code to execute for this resource 2964 * @size: size to alloc and return 2965 * @gfp: GFP allocation flags 2966 * 2967 * Return: the pointer to the allocated data 2968 * 2969 * This may get enhanced in the future to allocate from a memory pool 2970 * of the @spi_device or @spi_controller to avoid repeated allocations. 2971 */ 2972 void *spi_res_alloc(struct spi_device *spi, 2973 spi_res_release_t release, 2974 size_t size, gfp_t gfp) 2975 { 2976 struct spi_res *sres; 2977 2978 sres = kzalloc(sizeof(*sres) + size, gfp); 2979 if (!sres) 2980 return NULL; 2981 2982 INIT_LIST_HEAD(&sres->entry); 2983 sres->release = release; 2984 2985 return sres->data; 2986 } 2987 EXPORT_SYMBOL_GPL(spi_res_alloc); 2988 2989 /** 2990 * spi_res_free - free an spi resource 2991 * @res: pointer to the custom data of a resource 2992 * 2993 */ 2994 void spi_res_free(void *res) 2995 { 2996 struct spi_res *sres = container_of(res, struct spi_res, data); 2997 2998 if (!res) 2999 return; 3000 3001 WARN_ON(!list_empty(&sres->entry)); 3002 kfree(sres); 3003 } 3004 EXPORT_SYMBOL_GPL(spi_res_free); 3005 3006 /** 3007 * spi_res_add - add a spi_res to the spi_message 3008 * @message: the spi message 3009 * @res: the spi_resource 3010 */ 3011 void spi_res_add(struct spi_message *message, void *res) 3012 { 3013 struct spi_res *sres = container_of(res, struct spi_res, data); 3014 3015 WARN_ON(!list_empty(&sres->entry)); 3016 list_add_tail(&sres->entry, &message->resources); 3017 } 3018 EXPORT_SYMBOL_GPL(spi_res_add); 3019 3020 /** 3021 * spi_res_release - release all spi resources for this message 3022 * @ctlr: the @spi_controller 3023 * @message: the @spi_message 3024 */ 3025 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 3026 { 3027 struct spi_res *res, *tmp; 3028 3029 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 3030 if (res->release) 3031 res->release(ctlr, message, res->data); 3032 3033 list_del(&res->entry); 3034 3035 kfree(res); 3036 } 3037 } 3038 EXPORT_SYMBOL_GPL(spi_res_release); 3039 3040 /*-------------------------------------------------------------------------*/ 3041 3042 /* Core methods for spi_message alterations */ 3043 3044 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3045 struct spi_message *msg, 3046 void *res) 3047 { 3048 struct spi_replaced_transfers *rxfer = res; 3049 size_t i; 3050 3051 /* call extra callback if requested */ 3052 if (rxfer->release) 3053 rxfer->release(ctlr, msg, res); 3054 3055 /* insert replaced transfers back into the message */ 3056 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3057 3058 /* remove the formerly inserted entries */ 3059 for (i = 0; i < rxfer->inserted; i++) 3060 list_del(&rxfer->inserted_transfers[i].transfer_list); 3061 } 3062 3063 /** 3064 * spi_replace_transfers - replace transfers with several transfers 3065 * and register change with spi_message.resources 3066 * @msg: the spi_message we work upon 3067 * @xfer_first: the first spi_transfer we want to replace 3068 * @remove: number of transfers to remove 3069 * @insert: the number of transfers we want to insert instead 3070 * @release: extra release code necessary in some circumstances 3071 * @extradatasize: extra data to allocate (with alignment guarantees 3072 * of struct @spi_transfer) 3073 * @gfp: gfp flags 3074 * 3075 * Returns: pointer to @spi_replaced_transfers, 3076 * PTR_ERR(...) in case of errors. 3077 */ 3078 struct spi_replaced_transfers *spi_replace_transfers( 3079 struct spi_message *msg, 3080 struct spi_transfer *xfer_first, 3081 size_t remove, 3082 size_t insert, 3083 spi_replaced_release_t release, 3084 size_t extradatasize, 3085 gfp_t gfp) 3086 { 3087 struct spi_replaced_transfers *rxfer; 3088 struct spi_transfer *xfer; 3089 size_t i; 3090 3091 /* allocate the structure using spi_res */ 3092 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3093 struct_size(rxfer, inserted_transfers, insert) 3094 + extradatasize, 3095 gfp); 3096 if (!rxfer) 3097 return ERR_PTR(-ENOMEM); 3098 3099 /* the release code to invoke before running the generic release */ 3100 rxfer->release = release; 3101 3102 /* assign extradata */ 3103 if (extradatasize) 3104 rxfer->extradata = 3105 &rxfer->inserted_transfers[insert]; 3106 3107 /* init the replaced_transfers list */ 3108 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3109 3110 /* assign the list_entry after which we should reinsert 3111 * the @replaced_transfers - it may be spi_message.messages! 3112 */ 3113 rxfer->replaced_after = xfer_first->transfer_list.prev; 3114 3115 /* remove the requested number of transfers */ 3116 for (i = 0; i < remove; i++) { 3117 /* if the entry after replaced_after it is msg->transfers 3118 * then we have been requested to remove more transfers 3119 * than are in the list 3120 */ 3121 if (rxfer->replaced_after->next == &msg->transfers) { 3122 dev_err(&msg->spi->dev, 3123 "requested to remove more spi_transfers than are available\n"); 3124 /* insert replaced transfers back into the message */ 3125 list_splice(&rxfer->replaced_transfers, 3126 rxfer->replaced_after); 3127 3128 /* free the spi_replace_transfer structure */ 3129 spi_res_free(rxfer); 3130 3131 /* and return with an error */ 3132 return ERR_PTR(-EINVAL); 3133 } 3134 3135 /* remove the entry after replaced_after from list of 3136 * transfers and add it to list of replaced_transfers 3137 */ 3138 list_move_tail(rxfer->replaced_after->next, 3139 &rxfer->replaced_transfers); 3140 } 3141 3142 /* create copy of the given xfer with identical settings 3143 * based on the first transfer to get removed 3144 */ 3145 for (i = 0; i < insert; i++) { 3146 /* we need to run in reverse order */ 3147 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3148 3149 /* copy all spi_transfer data */ 3150 memcpy(xfer, xfer_first, sizeof(*xfer)); 3151 3152 /* add to list */ 3153 list_add(&xfer->transfer_list, rxfer->replaced_after); 3154 3155 /* clear cs_change and delay for all but the last */ 3156 if (i) { 3157 xfer->cs_change = false; 3158 xfer->delay.value = 0; 3159 } 3160 } 3161 3162 /* set up inserted */ 3163 rxfer->inserted = insert; 3164 3165 /* and register it with spi_res/spi_message */ 3166 spi_res_add(msg, rxfer); 3167 3168 return rxfer; 3169 } 3170 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3171 3172 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3173 struct spi_message *msg, 3174 struct spi_transfer **xferp, 3175 size_t maxsize, 3176 gfp_t gfp) 3177 { 3178 struct spi_transfer *xfer = *xferp, *xfers; 3179 struct spi_replaced_transfers *srt; 3180 size_t offset; 3181 size_t count, i; 3182 3183 /* calculate how many we have to replace */ 3184 count = DIV_ROUND_UP(xfer->len, maxsize); 3185 3186 /* create replacement */ 3187 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3188 if (IS_ERR(srt)) 3189 return PTR_ERR(srt); 3190 xfers = srt->inserted_transfers; 3191 3192 /* now handle each of those newly inserted spi_transfers 3193 * note that the replacements spi_transfers all are preset 3194 * to the same values as *xferp, so tx_buf, rx_buf and len 3195 * are all identical (as well as most others) 3196 * so we just have to fix up len and the pointers. 3197 * 3198 * this also includes support for the depreciated 3199 * spi_message.is_dma_mapped interface 3200 */ 3201 3202 /* the first transfer just needs the length modified, so we 3203 * run it outside the loop 3204 */ 3205 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3206 3207 /* all the others need rx_buf/tx_buf also set */ 3208 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3209 /* update rx_buf, tx_buf and dma */ 3210 if (xfers[i].rx_buf) 3211 xfers[i].rx_buf += offset; 3212 if (xfers[i].rx_dma) 3213 xfers[i].rx_dma += offset; 3214 if (xfers[i].tx_buf) 3215 xfers[i].tx_buf += offset; 3216 if (xfers[i].tx_dma) 3217 xfers[i].tx_dma += offset; 3218 3219 /* update length */ 3220 xfers[i].len = min(maxsize, xfers[i].len - offset); 3221 } 3222 3223 /* we set up xferp to the last entry we have inserted, 3224 * so that we skip those already split transfers 3225 */ 3226 *xferp = &xfers[count - 1]; 3227 3228 /* increment statistics counters */ 3229 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3230 transfers_split_maxsize); 3231 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3232 transfers_split_maxsize); 3233 3234 return 0; 3235 } 3236 3237 /** 3238 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3239 * when an individual transfer exceeds a 3240 * certain size 3241 * @ctlr: the @spi_controller for this transfer 3242 * @msg: the @spi_message to transform 3243 * @maxsize: the maximum when to apply this 3244 * @gfp: GFP allocation flags 3245 * 3246 * Return: status of transformation 3247 */ 3248 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3249 struct spi_message *msg, 3250 size_t maxsize, 3251 gfp_t gfp) 3252 { 3253 struct spi_transfer *xfer; 3254 int ret; 3255 3256 /* iterate over the transfer_list, 3257 * but note that xfer is advanced to the last transfer inserted 3258 * to avoid checking sizes again unnecessarily (also xfer does 3259 * potentiall belong to a different list by the time the 3260 * replacement has happened 3261 */ 3262 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3263 if (xfer->len > maxsize) { 3264 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3265 maxsize, gfp); 3266 if (ret) 3267 return ret; 3268 } 3269 } 3270 3271 return 0; 3272 } 3273 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3274 3275 /*-------------------------------------------------------------------------*/ 3276 3277 /* Core methods for SPI controller protocol drivers. Some of the 3278 * other core methods are currently defined as inline functions. 3279 */ 3280 3281 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3282 u8 bits_per_word) 3283 { 3284 if (ctlr->bits_per_word_mask) { 3285 /* Only 32 bits fit in the mask */ 3286 if (bits_per_word > 32) 3287 return -EINVAL; 3288 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3289 return -EINVAL; 3290 } 3291 3292 return 0; 3293 } 3294 3295 /** 3296 * spi_setup - setup SPI mode and clock rate 3297 * @spi: the device whose settings are being modified 3298 * Context: can sleep, and no requests are queued to the device 3299 * 3300 * SPI protocol drivers may need to update the transfer mode if the 3301 * device doesn't work with its default. They may likewise need 3302 * to update clock rates or word sizes from initial values. This function 3303 * changes those settings, and must be called from a context that can sleep. 3304 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3305 * effect the next time the device is selected and data is transferred to 3306 * or from it. When this function returns, the spi device is deselected. 3307 * 3308 * Note that this call will fail if the protocol driver specifies an option 3309 * that the underlying controller or its driver does not support. For 3310 * example, not all hardware supports wire transfers using nine bit words, 3311 * LSB-first wire encoding, or active-high chipselects. 3312 * 3313 * Return: zero on success, else a negative error code. 3314 */ 3315 int spi_setup(struct spi_device *spi) 3316 { 3317 unsigned bad_bits, ugly_bits; 3318 int status; 3319 3320 /* 3321 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3322 * are set at the same time 3323 */ 3324 if ((hweight_long(spi->mode & 3325 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3326 (hweight_long(spi->mode & 3327 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3328 dev_err(&spi->dev, 3329 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3330 return -EINVAL; 3331 } 3332 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3333 */ 3334 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3335 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3336 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3337 return -EINVAL; 3338 /* help drivers fail *cleanly* when they need options 3339 * that aren't supported with their current controller 3340 * SPI_CS_WORD has a fallback software implementation, 3341 * so it is ignored here. 3342 */ 3343 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3344 SPI_NO_TX | SPI_NO_RX); 3345 /* nothing prevents from working with active-high CS in case if it 3346 * is driven by GPIO. 3347 */ 3348 if (gpio_is_valid(spi->cs_gpio)) 3349 bad_bits &= ~SPI_CS_HIGH; 3350 ugly_bits = bad_bits & 3351 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3352 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3353 if (ugly_bits) { 3354 dev_warn(&spi->dev, 3355 "setup: ignoring unsupported mode bits %x\n", 3356 ugly_bits); 3357 spi->mode &= ~ugly_bits; 3358 bad_bits &= ~ugly_bits; 3359 } 3360 if (bad_bits) { 3361 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3362 bad_bits); 3363 return -EINVAL; 3364 } 3365 3366 if (!spi->bits_per_word) 3367 spi->bits_per_word = 8; 3368 3369 status = __spi_validate_bits_per_word(spi->controller, 3370 spi->bits_per_word); 3371 if (status) 3372 return status; 3373 3374 if (spi->controller->max_speed_hz && 3375 (!spi->max_speed_hz || 3376 spi->max_speed_hz > spi->controller->max_speed_hz)) 3377 spi->max_speed_hz = spi->controller->max_speed_hz; 3378 3379 mutex_lock(&spi->controller->io_mutex); 3380 3381 if (spi->controller->setup) { 3382 status = spi->controller->setup(spi); 3383 if (status) { 3384 mutex_unlock(&spi->controller->io_mutex); 3385 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3386 status); 3387 return status; 3388 } 3389 } 3390 3391 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3392 status = pm_runtime_get_sync(spi->controller->dev.parent); 3393 if (status < 0) { 3394 mutex_unlock(&spi->controller->io_mutex); 3395 pm_runtime_put_noidle(spi->controller->dev.parent); 3396 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3397 status); 3398 return status; 3399 } 3400 3401 /* 3402 * We do not want to return positive value from pm_runtime_get, 3403 * there are many instances of devices calling spi_setup() and 3404 * checking for a non-zero return value instead of a negative 3405 * return value. 3406 */ 3407 status = 0; 3408 3409 spi_set_cs(spi, false, true); 3410 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3411 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3412 } else { 3413 spi_set_cs(spi, false, true); 3414 } 3415 3416 mutex_unlock(&spi->controller->io_mutex); 3417 3418 if (spi->rt && !spi->controller->rt) { 3419 spi->controller->rt = true; 3420 spi_set_thread_rt(spi->controller); 3421 } 3422 3423 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3424 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3425 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3426 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3427 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3428 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3429 spi->bits_per_word, spi->max_speed_hz, 3430 status); 3431 3432 return status; 3433 } 3434 EXPORT_SYMBOL_GPL(spi_setup); 3435 3436 /** 3437 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3438 * @spi: the device that requires specific CS timing configuration 3439 * @setup: CS setup time specified via @spi_delay 3440 * @hold: CS hold time specified via @spi_delay 3441 * @inactive: CS inactive delay between transfers specified via @spi_delay 3442 * 3443 * Return: zero on success, else a negative error code. 3444 */ 3445 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3446 struct spi_delay *hold, struct spi_delay *inactive) 3447 { 3448 struct device *parent = spi->controller->dev.parent; 3449 size_t len; 3450 int status; 3451 3452 if (spi->controller->set_cs_timing && 3453 !(spi->cs_gpiod || gpio_is_valid(spi->cs_gpio))) { 3454 if (spi->controller->auto_runtime_pm) { 3455 status = pm_runtime_get_sync(parent); 3456 if (status < 0) { 3457 pm_runtime_put_noidle(parent); 3458 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3459 status); 3460 return status; 3461 } 3462 3463 status = spi->controller->set_cs_timing(spi, setup, 3464 hold, inactive); 3465 pm_runtime_mark_last_busy(parent); 3466 pm_runtime_put_autosuspend(parent); 3467 return status; 3468 } else { 3469 return spi->controller->set_cs_timing(spi, setup, hold, 3470 inactive); 3471 } 3472 } 3473 3474 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3475 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3476 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3477 dev_err(&spi->dev, 3478 "Clock-cycle delays for CS not supported in SW mode\n"); 3479 return -ENOTSUPP; 3480 } 3481 3482 len = sizeof(struct spi_delay); 3483 3484 /* copy delays to controller */ 3485 if (setup) 3486 memcpy(&spi->controller->cs_setup, setup, len); 3487 else 3488 memset(&spi->controller->cs_setup, 0, len); 3489 3490 if (hold) 3491 memcpy(&spi->controller->cs_hold, hold, len); 3492 else 3493 memset(&spi->controller->cs_hold, 0, len); 3494 3495 if (inactive) 3496 memcpy(&spi->controller->cs_inactive, inactive, len); 3497 else 3498 memset(&spi->controller->cs_inactive, 0, len); 3499 3500 return 0; 3501 } 3502 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3503 3504 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3505 struct spi_device *spi) 3506 { 3507 int delay1, delay2; 3508 3509 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3510 if (delay1 < 0) 3511 return delay1; 3512 3513 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3514 if (delay2 < 0) 3515 return delay2; 3516 3517 if (delay1 < delay2) 3518 memcpy(&xfer->word_delay, &spi->word_delay, 3519 sizeof(xfer->word_delay)); 3520 3521 return 0; 3522 } 3523 3524 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3525 { 3526 struct spi_controller *ctlr = spi->controller; 3527 struct spi_transfer *xfer; 3528 int w_size; 3529 3530 if (list_empty(&message->transfers)) 3531 return -EINVAL; 3532 3533 /* If an SPI controller does not support toggling the CS line on each 3534 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3535 * for the CS line, we can emulate the CS-per-word hardware function by 3536 * splitting transfers into one-word transfers and ensuring that 3537 * cs_change is set for each transfer. 3538 */ 3539 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3540 spi->cs_gpiod || 3541 gpio_is_valid(spi->cs_gpio))) { 3542 size_t maxsize; 3543 int ret; 3544 3545 maxsize = (spi->bits_per_word + 7) / 8; 3546 3547 /* spi_split_transfers_maxsize() requires message->spi */ 3548 message->spi = spi; 3549 3550 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3551 GFP_KERNEL); 3552 if (ret) 3553 return ret; 3554 3555 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3556 /* don't change cs_change on the last entry in the list */ 3557 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3558 break; 3559 xfer->cs_change = 1; 3560 } 3561 } 3562 3563 /* Half-duplex links include original MicroWire, and ones with 3564 * only one data pin like SPI_3WIRE (switches direction) or where 3565 * either MOSI or MISO is missing. They can also be caused by 3566 * software limitations. 3567 */ 3568 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3569 (spi->mode & SPI_3WIRE)) { 3570 unsigned flags = ctlr->flags; 3571 3572 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3573 if (xfer->rx_buf && xfer->tx_buf) 3574 return -EINVAL; 3575 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3576 return -EINVAL; 3577 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3578 return -EINVAL; 3579 } 3580 } 3581 3582 /** 3583 * Set transfer bits_per_word and max speed as spi device default if 3584 * it is not set for this transfer. 3585 * Set transfer tx_nbits and rx_nbits as single transfer default 3586 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3587 * Ensure transfer word_delay is at least as long as that required by 3588 * device itself. 3589 */ 3590 message->frame_length = 0; 3591 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3592 xfer->effective_speed_hz = 0; 3593 message->frame_length += xfer->len; 3594 if (!xfer->bits_per_word) 3595 xfer->bits_per_word = spi->bits_per_word; 3596 3597 if (!xfer->speed_hz) 3598 xfer->speed_hz = spi->max_speed_hz; 3599 3600 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3601 xfer->speed_hz = ctlr->max_speed_hz; 3602 3603 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3604 return -EINVAL; 3605 3606 /* 3607 * SPI transfer length should be multiple of SPI word size 3608 * where SPI word size should be power-of-two multiple 3609 */ 3610 if (xfer->bits_per_word <= 8) 3611 w_size = 1; 3612 else if (xfer->bits_per_word <= 16) 3613 w_size = 2; 3614 else 3615 w_size = 4; 3616 3617 /* No partial transfers accepted */ 3618 if (xfer->len % w_size) 3619 return -EINVAL; 3620 3621 if (xfer->speed_hz && ctlr->min_speed_hz && 3622 xfer->speed_hz < ctlr->min_speed_hz) 3623 return -EINVAL; 3624 3625 if (xfer->tx_buf && !xfer->tx_nbits) 3626 xfer->tx_nbits = SPI_NBITS_SINGLE; 3627 if (xfer->rx_buf && !xfer->rx_nbits) 3628 xfer->rx_nbits = SPI_NBITS_SINGLE; 3629 /* check transfer tx/rx_nbits: 3630 * 1. check the value matches one of single, dual and quad 3631 * 2. check tx/rx_nbits match the mode in spi_device 3632 */ 3633 if (xfer->tx_buf) { 3634 if (spi->mode & SPI_NO_TX) 3635 return -EINVAL; 3636 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3637 xfer->tx_nbits != SPI_NBITS_DUAL && 3638 xfer->tx_nbits != SPI_NBITS_QUAD) 3639 return -EINVAL; 3640 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3641 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3642 return -EINVAL; 3643 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3644 !(spi->mode & SPI_TX_QUAD)) 3645 return -EINVAL; 3646 } 3647 /* check transfer rx_nbits */ 3648 if (xfer->rx_buf) { 3649 if (spi->mode & SPI_NO_RX) 3650 return -EINVAL; 3651 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3652 xfer->rx_nbits != SPI_NBITS_DUAL && 3653 xfer->rx_nbits != SPI_NBITS_QUAD) 3654 return -EINVAL; 3655 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3656 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3657 return -EINVAL; 3658 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3659 !(spi->mode & SPI_RX_QUAD)) 3660 return -EINVAL; 3661 } 3662 3663 if (_spi_xfer_word_delay_update(xfer, spi)) 3664 return -EINVAL; 3665 } 3666 3667 message->status = -EINPROGRESS; 3668 3669 return 0; 3670 } 3671 3672 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3673 { 3674 struct spi_controller *ctlr = spi->controller; 3675 struct spi_transfer *xfer; 3676 3677 /* 3678 * Some controllers do not support doing regular SPI transfers. Return 3679 * ENOTSUPP when this is the case. 3680 */ 3681 if (!ctlr->transfer) 3682 return -ENOTSUPP; 3683 3684 message->spi = spi; 3685 3686 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3687 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3688 3689 trace_spi_message_submit(message); 3690 3691 if (!ctlr->ptp_sts_supported) { 3692 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3693 xfer->ptp_sts_word_pre = 0; 3694 ptp_read_system_prets(xfer->ptp_sts); 3695 } 3696 } 3697 3698 return ctlr->transfer(spi, message); 3699 } 3700 3701 /** 3702 * spi_async - asynchronous SPI transfer 3703 * @spi: device with which data will be exchanged 3704 * @message: describes the data transfers, including completion callback 3705 * Context: any (irqs may be blocked, etc) 3706 * 3707 * This call may be used in_irq and other contexts which can't sleep, 3708 * as well as from task contexts which can sleep. 3709 * 3710 * The completion callback is invoked in a context which can't sleep. 3711 * Before that invocation, the value of message->status is undefined. 3712 * When the callback is issued, message->status holds either zero (to 3713 * indicate complete success) or a negative error code. After that 3714 * callback returns, the driver which issued the transfer request may 3715 * deallocate the associated memory; it's no longer in use by any SPI 3716 * core or controller driver code. 3717 * 3718 * Note that although all messages to a spi_device are handled in 3719 * FIFO order, messages may go to different devices in other orders. 3720 * Some device might be higher priority, or have various "hard" access 3721 * time requirements, for example. 3722 * 3723 * On detection of any fault during the transfer, processing of 3724 * the entire message is aborted, and the device is deselected. 3725 * Until returning from the associated message completion callback, 3726 * no other spi_message queued to that device will be processed. 3727 * (This rule applies equally to all the synchronous transfer calls, 3728 * which are wrappers around this core asynchronous primitive.) 3729 * 3730 * Return: zero on success, else a negative error code. 3731 */ 3732 int spi_async(struct spi_device *spi, struct spi_message *message) 3733 { 3734 struct spi_controller *ctlr = spi->controller; 3735 int ret; 3736 unsigned long flags; 3737 3738 ret = __spi_validate(spi, message); 3739 if (ret != 0) 3740 return ret; 3741 3742 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3743 3744 if (ctlr->bus_lock_flag) 3745 ret = -EBUSY; 3746 else 3747 ret = __spi_async(spi, message); 3748 3749 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3750 3751 return ret; 3752 } 3753 EXPORT_SYMBOL_GPL(spi_async); 3754 3755 /** 3756 * spi_async_locked - version of spi_async with exclusive bus usage 3757 * @spi: device with which data will be exchanged 3758 * @message: describes the data transfers, including completion callback 3759 * Context: any (irqs may be blocked, etc) 3760 * 3761 * This call may be used in_irq and other contexts which can't sleep, 3762 * as well as from task contexts which can sleep. 3763 * 3764 * The completion callback is invoked in a context which can't sleep. 3765 * Before that invocation, the value of message->status is undefined. 3766 * When the callback is issued, message->status holds either zero (to 3767 * indicate complete success) or a negative error code. After that 3768 * callback returns, the driver which issued the transfer request may 3769 * deallocate the associated memory; it's no longer in use by any SPI 3770 * core or controller driver code. 3771 * 3772 * Note that although all messages to a spi_device are handled in 3773 * FIFO order, messages may go to different devices in other orders. 3774 * Some device might be higher priority, or have various "hard" access 3775 * time requirements, for example. 3776 * 3777 * On detection of any fault during the transfer, processing of 3778 * the entire message is aborted, and the device is deselected. 3779 * Until returning from the associated message completion callback, 3780 * no other spi_message queued to that device will be processed. 3781 * (This rule applies equally to all the synchronous transfer calls, 3782 * which are wrappers around this core asynchronous primitive.) 3783 * 3784 * Return: zero on success, else a negative error code. 3785 */ 3786 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3787 { 3788 struct spi_controller *ctlr = spi->controller; 3789 int ret; 3790 unsigned long flags; 3791 3792 ret = __spi_validate(spi, message); 3793 if (ret != 0) 3794 return ret; 3795 3796 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3797 3798 ret = __spi_async(spi, message); 3799 3800 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3801 3802 return ret; 3803 3804 } 3805 EXPORT_SYMBOL_GPL(spi_async_locked); 3806 3807 /*-------------------------------------------------------------------------*/ 3808 3809 /* Utility methods for SPI protocol drivers, layered on 3810 * top of the core. Some other utility methods are defined as 3811 * inline functions. 3812 */ 3813 3814 static void spi_complete(void *arg) 3815 { 3816 complete(arg); 3817 } 3818 3819 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3820 { 3821 DECLARE_COMPLETION_ONSTACK(done); 3822 int status; 3823 struct spi_controller *ctlr = spi->controller; 3824 unsigned long flags; 3825 3826 status = __spi_validate(spi, message); 3827 if (status != 0) 3828 return status; 3829 3830 message->complete = spi_complete; 3831 message->context = &done; 3832 message->spi = spi; 3833 3834 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3835 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3836 3837 /* If we're not using the legacy transfer method then we will 3838 * try to transfer in the calling context so special case. 3839 * This code would be less tricky if we could remove the 3840 * support for driver implemented message queues. 3841 */ 3842 if (ctlr->transfer == spi_queued_transfer) { 3843 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3844 3845 trace_spi_message_submit(message); 3846 3847 status = __spi_queued_transfer(spi, message, false); 3848 3849 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3850 } else { 3851 status = spi_async_locked(spi, message); 3852 } 3853 3854 if (status == 0) { 3855 /* Push out the messages in the calling context if we 3856 * can. 3857 */ 3858 if (ctlr->transfer == spi_queued_transfer) { 3859 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3860 spi_sync_immediate); 3861 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3862 spi_sync_immediate); 3863 __spi_pump_messages(ctlr, false); 3864 } 3865 3866 wait_for_completion(&done); 3867 status = message->status; 3868 } 3869 message->context = NULL; 3870 return status; 3871 } 3872 3873 /** 3874 * spi_sync - blocking/synchronous SPI data transfers 3875 * @spi: device with which data will be exchanged 3876 * @message: describes the data transfers 3877 * Context: can sleep 3878 * 3879 * This call may only be used from a context that may sleep. The sleep 3880 * is non-interruptible, and has no timeout. Low-overhead controller 3881 * drivers may DMA directly into and out of the message buffers. 3882 * 3883 * Note that the SPI device's chip select is active during the message, 3884 * and then is normally disabled between messages. Drivers for some 3885 * frequently-used devices may want to minimize costs of selecting a chip, 3886 * by leaving it selected in anticipation that the next message will go 3887 * to the same chip. (That may increase power usage.) 3888 * 3889 * Also, the caller is guaranteeing that the memory associated with the 3890 * message will not be freed before this call returns. 3891 * 3892 * Return: zero on success, else a negative error code. 3893 */ 3894 int spi_sync(struct spi_device *spi, struct spi_message *message) 3895 { 3896 int ret; 3897 3898 mutex_lock(&spi->controller->bus_lock_mutex); 3899 ret = __spi_sync(spi, message); 3900 mutex_unlock(&spi->controller->bus_lock_mutex); 3901 3902 return ret; 3903 } 3904 EXPORT_SYMBOL_GPL(spi_sync); 3905 3906 /** 3907 * spi_sync_locked - version of spi_sync with exclusive bus usage 3908 * @spi: device with which data will be exchanged 3909 * @message: describes the data transfers 3910 * Context: can sleep 3911 * 3912 * This call may only be used from a context that may sleep. The sleep 3913 * is non-interruptible, and has no timeout. Low-overhead controller 3914 * drivers may DMA directly into and out of the message buffers. 3915 * 3916 * This call should be used by drivers that require exclusive access to the 3917 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3918 * be released by a spi_bus_unlock call when the exclusive access is over. 3919 * 3920 * Return: zero on success, else a negative error code. 3921 */ 3922 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3923 { 3924 return __spi_sync(spi, message); 3925 } 3926 EXPORT_SYMBOL_GPL(spi_sync_locked); 3927 3928 /** 3929 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3930 * @ctlr: SPI bus master that should be locked for exclusive bus access 3931 * Context: can sleep 3932 * 3933 * This call may only be used from a context that may sleep. The sleep 3934 * is non-interruptible, and has no timeout. 3935 * 3936 * This call should be used by drivers that require exclusive access to the 3937 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3938 * exclusive access is over. Data transfer must be done by spi_sync_locked 3939 * and spi_async_locked calls when the SPI bus lock is held. 3940 * 3941 * Return: always zero. 3942 */ 3943 int spi_bus_lock(struct spi_controller *ctlr) 3944 { 3945 unsigned long flags; 3946 3947 mutex_lock(&ctlr->bus_lock_mutex); 3948 3949 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3950 ctlr->bus_lock_flag = 1; 3951 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3952 3953 /* mutex remains locked until spi_bus_unlock is called */ 3954 3955 return 0; 3956 } 3957 EXPORT_SYMBOL_GPL(spi_bus_lock); 3958 3959 /** 3960 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3961 * @ctlr: SPI bus master that was locked for exclusive bus access 3962 * Context: can sleep 3963 * 3964 * This call may only be used from a context that may sleep. The sleep 3965 * is non-interruptible, and has no timeout. 3966 * 3967 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3968 * call. 3969 * 3970 * Return: always zero. 3971 */ 3972 int spi_bus_unlock(struct spi_controller *ctlr) 3973 { 3974 ctlr->bus_lock_flag = 0; 3975 3976 mutex_unlock(&ctlr->bus_lock_mutex); 3977 3978 return 0; 3979 } 3980 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3981 3982 /* portable code must never pass more than 32 bytes */ 3983 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3984 3985 static u8 *buf; 3986 3987 /** 3988 * spi_write_then_read - SPI synchronous write followed by read 3989 * @spi: device with which data will be exchanged 3990 * @txbuf: data to be written (need not be dma-safe) 3991 * @n_tx: size of txbuf, in bytes 3992 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3993 * @n_rx: size of rxbuf, in bytes 3994 * Context: can sleep 3995 * 3996 * This performs a half duplex MicroWire style transaction with the 3997 * device, sending txbuf and then reading rxbuf. The return value 3998 * is zero for success, else a negative errno status code. 3999 * This call may only be used from a context that may sleep. 4000 * 4001 * Parameters to this routine are always copied using a small buffer. 4002 * Performance-sensitive or bulk transfer code should instead use 4003 * spi_{async,sync}() calls with dma-safe buffers. 4004 * 4005 * Return: zero on success, else a negative error code. 4006 */ 4007 int spi_write_then_read(struct spi_device *spi, 4008 const void *txbuf, unsigned n_tx, 4009 void *rxbuf, unsigned n_rx) 4010 { 4011 static DEFINE_MUTEX(lock); 4012 4013 int status; 4014 struct spi_message message; 4015 struct spi_transfer x[2]; 4016 u8 *local_buf; 4017 4018 /* Use preallocated DMA-safe buffer if we can. We can't avoid 4019 * copying here, (as a pure convenience thing), but we can 4020 * keep heap costs out of the hot path unless someone else is 4021 * using the pre-allocated buffer or the transfer is too large. 4022 */ 4023 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4024 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4025 GFP_KERNEL | GFP_DMA); 4026 if (!local_buf) 4027 return -ENOMEM; 4028 } else { 4029 local_buf = buf; 4030 } 4031 4032 spi_message_init(&message); 4033 memset(x, 0, sizeof(x)); 4034 if (n_tx) { 4035 x[0].len = n_tx; 4036 spi_message_add_tail(&x[0], &message); 4037 } 4038 if (n_rx) { 4039 x[1].len = n_rx; 4040 spi_message_add_tail(&x[1], &message); 4041 } 4042 4043 memcpy(local_buf, txbuf, n_tx); 4044 x[0].tx_buf = local_buf; 4045 x[1].rx_buf = local_buf + n_tx; 4046 4047 /* do the i/o */ 4048 status = spi_sync(spi, &message); 4049 if (status == 0) 4050 memcpy(rxbuf, x[1].rx_buf, n_rx); 4051 4052 if (x[0].tx_buf == buf) 4053 mutex_unlock(&lock); 4054 else 4055 kfree(local_buf); 4056 4057 return status; 4058 } 4059 EXPORT_SYMBOL_GPL(spi_write_then_read); 4060 4061 /*-------------------------------------------------------------------------*/ 4062 4063 #if IS_ENABLED(CONFIG_OF) 4064 /* must call put_device() when done with returned spi_device device */ 4065 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4066 { 4067 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4068 4069 return dev ? to_spi_device(dev) : NULL; 4070 } 4071 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 4072 #endif /* IS_ENABLED(CONFIG_OF) */ 4073 4074 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4075 /* the spi controllers are not using spi_bus, so we find it with another way */ 4076 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4077 { 4078 struct device *dev; 4079 4080 dev = class_find_device_by_of_node(&spi_master_class, node); 4081 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4082 dev = class_find_device_by_of_node(&spi_slave_class, node); 4083 if (!dev) 4084 return NULL; 4085 4086 /* reference got in class_find_device */ 4087 return container_of(dev, struct spi_controller, dev); 4088 } 4089 4090 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4091 void *arg) 4092 { 4093 struct of_reconfig_data *rd = arg; 4094 struct spi_controller *ctlr; 4095 struct spi_device *spi; 4096 4097 switch (of_reconfig_get_state_change(action, arg)) { 4098 case OF_RECONFIG_CHANGE_ADD: 4099 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4100 if (ctlr == NULL) 4101 return NOTIFY_OK; /* not for us */ 4102 4103 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4104 put_device(&ctlr->dev); 4105 return NOTIFY_OK; 4106 } 4107 4108 spi = of_register_spi_device(ctlr, rd->dn); 4109 put_device(&ctlr->dev); 4110 4111 if (IS_ERR(spi)) { 4112 pr_err("%s: failed to create for '%pOF'\n", 4113 __func__, rd->dn); 4114 of_node_clear_flag(rd->dn, OF_POPULATED); 4115 return notifier_from_errno(PTR_ERR(spi)); 4116 } 4117 break; 4118 4119 case OF_RECONFIG_CHANGE_REMOVE: 4120 /* already depopulated? */ 4121 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4122 return NOTIFY_OK; 4123 4124 /* find our device by node */ 4125 spi = of_find_spi_device_by_node(rd->dn); 4126 if (spi == NULL) 4127 return NOTIFY_OK; /* no? not meant for us */ 4128 4129 /* unregister takes one ref away */ 4130 spi_unregister_device(spi); 4131 4132 /* and put the reference of the find */ 4133 put_device(&spi->dev); 4134 break; 4135 } 4136 4137 return NOTIFY_OK; 4138 } 4139 4140 static struct notifier_block spi_of_notifier = { 4141 .notifier_call = of_spi_notify, 4142 }; 4143 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4144 extern struct notifier_block spi_of_notifier; 4145 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4146 4147 #if IS_ENABLED(CONFIG_ACPI) 4148 static int spi_acpi_controller_match(struct device *dev, const void *data) 4149 { 4150 return ACPI_COMPANION(dev->parent) == data; 4151 } 4152 4153 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4154 { 4155 struct device *dev; 4156 4157 dev = class_find_device(&spi_master_class, NULL, adev, 4158 spi_acpi_controller_match); 4159 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4160 dev = class_find_device(&spi_slave_class, NULL, adev, 4161 spi_acpi_controller_match); 4162 if (!dev) 4163 return NULL; 4164 4165 return container_of(dev, struct spi_controller, dev); 4166 } 4167 4168 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4169 { 4170 struct device *dev; 4171 4172 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4173 return to_spi_device(dev); 4174 } 4175 4176 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4177 void *arg) 4178 { 4179 struct acpi_device *adev = arg; 4180 struct spi_controller *ctlr; 4181 struct spi_device *spi; 4182 4183 switch (value) { 4184 case ACPI_RECONFIG_DEVICE_ADD: 4185 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4186 if (!ctlr) 4187 break; 4188 4189 acpi_register_spi_device(ctlr, adev); 4190 put_device(&ctlr->dev); 4191 break; 4192 case ACPI_RECONFIG_DEVICE_REMOVE: 4193 if (!acpi_device_enumerated(adev)) 4194 break; 4195 4196 spi = acpi_spi_find_device_by_adev(adev); 4197 if (!spi) 4198 break; 4199 4200 spi_unregister_device(spi); 4201 put_device(&spi->dev); 4202 break; 4203 } 4204 4205 return NOTIFY_OK; 4206 } 4207 4208 static struct notifier_block spi_acpi_notifier = { 4209 .notifier_call = acpi_spi_notify, 4210 }; 4211 #else 4212 extern struct notifier_block spi_acpi_notifier; 4213 #endif 4214 4215 static int __init spi_init(void) 4216 { 4217 int status; 4218 4219 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4220 if (!buf) { 4221 status = -ENOMEM; 4222 goto err0; 4223 } 4224 4225 status = bus_register(&spi_bus_type); 4226 if (status < 0) 4227 goto err1; 4228 4229 status = class_register(&spi_master_class); 4230 if (status < 0) 4231 goto err2; 4232 4233 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4234 status = class_register(&spi_slave_class); 4235 if (status < 0) 4236 goto err3; 4237 } 4238 4239 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4240 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4241 if (IS_ENABLED(CONFIG_ACPI)) 4242 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4243 4244 return 0; 4245 4246 err3: 4247 class_unregister(&spi_master_class); 4248 err2: 4249 bus_unregister(&spi_bus_type); 4250 err1: 4251 kfree(buf); 4252 buf = NULL; 4253 err0: 4254 return status; 4255 } 4256 4257 /* board_info is normally registered in arch_initcall(), 4258 * but even essential drivers wait till later 4259 * 4260 * REVISIT only boardinfo really needs static linking. the rest (device and 4261 * driver registration) _could_ be dynamically linked (modular) ... costs 4262 * include needing to have boardinfo data structures be much more public. 4263 */ 4264 postcore_initcall(spi_init); 4265