1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/offload/types.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi-mem.h> 37 #include <uapi/linux/sched/types.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/spi.h> 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 43 44 #include "internals.h" 45 46 static DEFINE_IDR(spi_master_idr); 47 48 static void spidev_release(struct device *dev) 49 { 50 struct spi_device *spi = to_spi_device(dev); 51 52 spi_controller_put(spi->controller); 53 kfree(spi->driver_override); 54 free_percpu(spi->pcpu_statistics); 55 kfree(spi); 56 } 57 58 static ssize_t 59 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 60 { 61 const struct spi_device *spi = to_spi_device(dev); 62 int len; 63 64 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 65 if (len != -ENODEV) 66 return len; 67 68 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 69 } 70 static DEVICE_ATTR_RO(modalias); 71 72 static ssize_t driver_override_store(struct device *dev, 73 struct device_attribute *a, 74 const char *buf, size_t count) 75 { 76 struct spi_device *spi = to_spi_device(dev); 77 int ret; 78 79 ret = driver_set_override(dev, &spi->driver_override, buf, count); 80 if (ret) 81 return ret; 82 83 return count; 84 } 85 86 static ssize_t driver_override_show(struct device *dev, 87 struct device_attribute *a, char *buf) 88 { 89 const struct spi_device *spi = to_spi_device(dev); 90 ssize_t len; 91 92 device_lock(dev); 93 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 94 device_unlock(dev); 95 return len; 96 } 97 static DEVICE_ATTR_RW(driver_override); 98 99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 100 { 101 struct spi_statistics __percpu *pcpu_stats; 102 103 if (dev) 104 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 105 else 106 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 107 108 if (pcpu_stats) { 109 int cpu; 110 111 for_each_possible_cpu(cpu) { 112 struct spi_statistics *stat; 113 114 stat = per_cpu_ptr(pcpu_stats, cpu); 115 u64_stats_init(&stat->syncp); 116 } 117 } 118 return pcpu_stats; 119 } 120 121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 122 char *buf, size_t offset) 123 { 124 u64 val = 0; 125 int i; 126 127 for_each_possible_cpu(i) { 128 const struct spi_statistics *pcpu_stats; 129 u64_stats_t *field; 130 unsigned int start; 131 u64 inc; 132 133 pcpu_stats = per_cpu_ptr(stat, i); 134 field = (void *)pcpu_stats + offset; 135 do { 136 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 137 inc = u64_stats_read(field); 138 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 139 val += inc; 140 } 141 return sysfs_emit(buf, "%llu\n", val); 142 } 143 144 #define SPI_STATISTICS_ATTRS(field, file) \ 145 static ssize_t spi_controller_##field##_show(struct device *dev, \ 146 struct device_attribute *attr, \ 147 char *buf) \ 148 { \ 149 struct spi_controller *ctlr = container_of(dev, \ 150 struct spi_controller, dev); \ 151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 152 } \ 153 static struct device_attribute dev_attr_spi_controller_##field = { \ 154 .attr = { .name = file, .mode = 0444 }, \ 155 .show = spi_controller_##field##_show, \ 156 }; \ 157 static ssize_t spi_device_##field##_show(struct device *dev, \ 158 struct device_attribute *attr, \ 159 char *buf) \ 160 { \ 161 struct spi_device *spi = to_spi_device(dev); \ 162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 163 } \ 164 static struct device_attribute dev_attr_spi_device_##field = { \ 165 .attr = { .name = file, .mode = 0444 }, \ 166 .show = spi_device_##field##_show, \ 167 } 168 169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 171 char *buf) \ 172 { \ 173 return spi_emit_pcpu_stats(stat, buf, \ 174 offsetof(struct spi_statistics, field)); \ 175 } \ 176 SPI_STATISTICS_ATTRS(name, file) 177 178 #define SPI_STATISTICS_SHOW(field) \ 179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 180 field) 181 182 SPI_STATISTICS_SHOW(messages); 183 SPI_STATISTICS_SHOW(transfers); 184 SPI_STATISTICS_SHOW(errors); 185 SPI_STATISTICS_SHOW(timedout); 186 187 SPI_STATISTICS_SHOW(spi_sync); 188 SPI_STATISTICS_SHOW(spi_sync_immediate); 189 SPI_STATISTICS_SHOW(spi_async); 190 191 SPI_STATISTICS_SHOW(bytes); 192 SPI_STATISTICS_SHOW(bytes_rx); 193 SPI_STATISTICS_SHOW(bytes_tx); 194 195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 197 "transfer_bytes_histo_" number, \ 198 transfer_bytes_histo[index]) 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 216 217 SPI_STATISTICS_SHOW(transfers_split_maxsize); 218 219 static struct attribute *spi_dev_attrs[] = { 220 &dev_attr_modalias.attr, 221 &dev_attr_driver_override.attr, 222 NULL, 223 }; 224 225 static const struct attribute_group spi_dev_group = { 226 .attrs = spi_dev_attrs, 227 }; 228 229 static struct attribute *spi_device_statistics_attrs[] = { 230 &dev_attr_spi_device_messages.attr, 231 &dev_attr_spi_device_transfers.attr, 232 &dev_attr_spi_device_errors.attr, 233 &dev_attr_spi_device_timedout.attr, 234 &dev_attr_spi_device_spi_sync.attr, 235 &dev_attr_spi_device_spi_sync_immediate.attr, 236 &dev_attr_spi_device_spi_async.attr, 237 &dev_attr_spi_device_bytes.attr, 238 &dev_attr_spi_device_bytes_rx.attr, 239 &dev_attr_spi_device_bytes_tx.attr, 240 &dev_attr_spi_device_transfer_bytes_histo0.attr, 241 &dev_attr_spi_device_transfer_bytes_histo1.attr, 242 &dev_attr_spi_device_transfer_bytes_histo2.attr, 243 &dev_attr_spi_device_transfer_bytes_histo3.attr, 244 &dev_attr_spi_device_transfer_bytes_histo4.attr, 245 &dev_attr_spi_device_transfer_bytes_histo5.attr, 246 &dev_attr_spi_device_transfer_bytes_histo6.attr, 247 &dev_attr_spi_device_transfer_bytes_histo7.attr, 248 &dev_attr_spi_device_transfer_bytes_histo8.attr, 249 &dev_attr_spi_device_transfer_bytes_histo9.attr, 250 &dev_attr_spi_device_transfer_bytes_histo10.attr, 251 &dev_attr_spi_device_transfer_bytes_histo11.attr, 252 &dev_attr_spi_device_transfer_bytes_histo12.attr, 253 &dev_attr_spi_device_transfer_bytes_histo13.attr, 254 &dev_attr_spi_device_transfer_bytes_histo14.attr, 255 &dev_attr_spi_device_transfer_bytes_histo15.attr, 256 &dev_attr_spi_device_transfer_bytes_histo16.attr, 257 &dev_attr_spi_device_transfers_split_maxsize.attr, 258 NULL, 259 }; 260 261 static const struct attribute_group spi_device_statistics_group = { 262 .name = "statistics", 263 .attrs = spi_device_statistics_attrs, 264 }; 265 266 static const struct attribute_group *spi_dev_groups[] = { 267 &spi_dev_group, 268 &spi_device_statistics_group, 269 NULL, 270 }; 271 272 static struct attribute *spi_controller_statistics_attrs[] = { 273 &dev_attr_spi_controller_messages.attr, 274 &dev_attr_spi_controller_transfers.attr, 275 &dev_attr_spi_controller_errors.attr, 276 &dev_attr_spi_controller_timedout.attr, 277 &dev_attr_spi_controller_spi_sync.attr, 278 &dev_attr_spi_controller_spi_sync_immediate.attr, 279 &dev_attr_spi_controller_spi_async.attr, 280 &dev_attr_spi_controller_bytes.attr, 281 &dev_attr_spi_controller_bytes_rx.attr, 282 &dev_attr_spi_controller_bytes_tx.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 299 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 300 &dev_attr_spi_controller_transfers_split_maxsize.attr, 301 NULL, 302 }; 303 304 static const struct attribute_group spi_controller_statistics_group = { 305 .name = "statistics", 306 .attrs = spi_controller_statistics_attrs, 307 }; 308 309 static const struct attribute_group *spi_master_groups[] = { 310 &spi_controller_statistics_group, 311 NULL, 312 }; 313 314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 315 struct spi_transfer *xfer, 316 struct spi_message *msg) 317 { 318 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 319 struct spi_statistics *stats; 320 321 if (l2len < 0) 322 l2len = 0; 323 324 get_cpu(); 325 stats = this_cpu_ptr(pcpu_stats); 326 u64_stats_update_begin(&stats->syncp); 327 328 u64_stats_inc(&stats->transfers); 329 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 330 331 u64_stats_add(&stats->bytes, xfer->len); 332 if (spi_valid_txbuf(msg, xfer)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if (spi_valid_rxbuf(msg, xfer)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, const struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 struct fwnode_handle *fwnode = dev_fwnode(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (is_of_node(fwnode)) 422 spi->irq = of_irq_get(dev->of_node, 0); 423 else if (is_acpi_device_node(fwnode) && spi->irq < 0) 424 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0); 425 if (spi->irq == -EPROBE_DEFER) 426 return dev_err_probe(dev, spi->irq, "Failed to get irq\n"); 427 if (spi->irq < 0) 428 spi->irq = 0; 429 430 ret = dev_pm_domain_attach(dev, true); 431 if (ret) 432 return ret; 433 434 if (sdrv->probe) { 435 ret = sdrv->probe(spi); 436 if (ret) 437 dev_pm_domain_detach(dev, true); 438 } 439 440 return ret; 441 } 442 443 static void spi_remove(struct device *dev) 444 { 445 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 446 447 if (sdrv->remove) 448 sdrv->remove(to_spi_device(dev)); 449 450 dev_pm_domain_detach(dev, true); 451 } 452 453 static void spi_shutdown(struct device *dev) 454 { 455 if (dev->driver) { 456 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 457 458 if (sdrv->shutdown) 459 sdrv->shutdown(to_spi_device(dev)); 460 } 461 } 462 463 const struct bus_type spi_bus_type = { 464 .name = "spi", 465 .dev_groups = spi_dev_groups, 466 .match = spi_match_device, 467 .uevent = spi_uevent, 468 .probe = spi_probe, 469 .remove = spi_remove, 470 .shutdown = spi_shutdown, 471 }; 472 EXPORT_SYMBOL_GPL(spi_bus_type); 473 474 /** 475 * __spi_register_driver - register a SPI driver 476 * @owner: owner module of the driver to register 477 * @sdrv: the driver to register 478 * Context: can sleep 479 * 480 * Return: zero on success, else a negative error code. 481 */ 482 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 483 { 484 sdrv->driver.owner = owner; 485 sdrv->driver.bus = &spi_bus_type; 486 487 /* 488 * For Really Good Reasons we use spi: modaliases not of: 489 * modaliases for DT so module autoloading won't work if we 490 * don't have a spi_device_id as well as a compatible string. 491 */ 492 if (sdrv->driver.of_match_table) { 493 const struct of_device_id *of_id; 494 495 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 496 of_id++) { 497 const char *of_name; 498 499 /* Strip off any vendor prefix */ 500 of_name = strnchr(of_id->compatible, 501 sizeof(of_id->compatible), ','); 502 if (of_name) 503 of_name++; 504 else 505 of_name = of_id->compatible; 506 507 if (sdrv->id_table) { 508 const struct spi_device_id *spi_id; 509 510 spi_id = spi_match_id(sdrv->id_table, of_name); 511 if (spi_id) 512 continue; 513 } else { 514 if (strcmp(sdrv->driver.name, of_name) == 0) 515 continue; 516 } 517 518 pr_warn("SPI driver %s has no spi_device_id for %s\n", 519 sdrv->driver.name, of_id->compatible); 520 } 521 } 522 523 return driver_register(&sdrv->driver); 524 } 525 EXPORT_SYMBOL_GPL(__spi_register_driver); 526 527 /*-------------------------------------------------------------------------*/ 528 529 /* 530 * SPI devices should normally not be created by SPI device drivers; that 531 * would make them board-specific. Similarly with SPI controller drivers. 532 * Device registration normally goes into like arch/.../mach.../board-YYY.c 533 * with other readonly (flashable) information about mainboard devices. 534 */ 535 536 struct boardinfo { 537 struct list_head list; 538 struct spi_board_info board_info; 539 }; 540 541 static LIST_HEAD(board_list); 542 static LIST_HEAD(spi_controller_list); 543 544 /* 545 * Used to protect add/del operation for board_info list and 546 * spi_controller list, and their matching process also used 547 * to protect object of type struct idr. 548 */ 549 static DEFINE_MUTEX(board_lock); 550 551 /** 552 * spi_alloc_device - Allocate a new SPI device 553 * @ctlr: Controller to which device is connected 554 * Context: can sleep 555 * 556 * Allows a driver to allocate and initialize a spi_device without 557 * registering it immediately. This allows a driver to directly 558 * fill the spi_device with device parameters before calling 559 * spi_add_device() on it. 560 * 561 * Caller is responsible to call spi_add_device() on the returned 562 * spi_device structure to add it to the SPI controller. If the caller 563 * needs to discard the spi_device without adding it, then it should 564 * call spi_dev_put() on it. 565 * 566 * Return: a pointer to the new device, or NULL. 567 */ 568 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 569 { 570 struct spi_device *spi; 571 572 if (!spi_controller_get(ctlr)) 573 return NULL; 574 575 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 576 if (!spi) { 577 spi_controller_put(ctlr); 578 return NULL; 579 } 580 581 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 582 if (!spi->pcpu_statistics) { 583 kfree(spi); 584 spi_controller_put(ctlr); 585 return NULL; 586 } 587 588 spi->controller = ctlr; 589 spi->dev.parent = &ctlr->dev; 590 spi->dev.bus = &spi_bus_type; 591 spi->dev.release = spidev_release; 592 spi->mode = ctlr->buswidth_override_bits; 593 594 device_initialize(&spi->dev); 595 return spi; 596 } 597 EXPORT_SYMBOL_GPL(spi_alloc_device); 598 599 static void spi_dev_set_name(struct spi_device *spi) 600 { 601 struct device *dev = &spi->dev; 602 struct fwnode_handle *fwnode = dev_fwnode(dev); 603 604 if (is_acpi_device_node(fwnode)) { 605 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 606 return; 607 } 608 609 if (is_software_node(fwnode)) { 610 dev_set_name(dev, "spi-%pfwP", fwnode); 611 return; 612 } 613 614 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 615 spi_get_chipselect(spi, 0)); 616 } 617 618 /* 619 * Zero(0) is a valid physical CS value and can be located at any 620 * logical CS in the spi->chip_select[]. If all the physical CS 621 * are initialized to 0 then It would be difficult to differentiate 622 * between a valid physical CS 0 & an unused logical CS whose physical 623 * CS can be 0. As a solution to this issue initialize all the CS to -1. 624 * Now all the unused logical CS will have -1 physical CS value & can be 625 * ignored while performing physical CS validity checks. 626 */ 627 #define SPI_INVALID_CS ((s8)-1) 628 629 static inline bool is_valid_cs(s8 chip_select) 630 { 631 return chip_select != SPI_INVALID_CS; 632 } 633 634 static inline int spi_dev_check_cs(struct device *dev, 635 struct spi_device *spi, u8 idx, 636 struct spi_device *new_spi, u8 new_idx) 637 { 638 u8 cs, cs_new; 639 u8 idx_new; 640 641 cs = spi_get_chipselect(spi, idx); 642 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 643 cs_new = spi_get_chipselect(new_spi, idx_new); 644 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 645 dev_err(dev, "chipselect %u already in use\n", cs_new); 646 return -EBUSY; 647 } 648 } 649 return 0; 650 } 651 652 static int spi_dev_check(struct device *dev, void *data) 653 { 654 struct spi_device *spi = to_spi_device(dev); 655 struct spi_device *new_spi = data; 656 int status, idx; 657 658 if (spi->controller == new_spi->controller) { 659 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 660 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 661 if (status) 662 return status; 663 } 664 } 665 return 0; 666 } 667 668 static void spi_cleanup(struct spi_device *spi) 669 { 670 if (spi->controller->cleanup) 671 spi->controller->cleanup(spi); 672 } 673 674 static int __spi_add_device(struct spi_device *spi) 675 { 676 struct spi_controller *ctlr = spi->controller; 677 struct device *dev = ctlr->dev.parent; 678 int status, idx; 679 u8 cs; 680 681 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 682 /* Chipselects are numbered 0..max; validate. */ 683 cs = spi_get_chipselect(spi, idx); 684 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 685 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 686 ctlr->num_chipselect); 687 return -EINVAL; 688 } 689 } 690 691 /* 692 * Make sure that multiple logical CS doesn't map to the same physical CS. 693 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 694 */ 695 if (!spi_controller_is_target(ctlr)) { 696 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 697 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 698 if (status) 699 return status; 700 } 701 } 702 703 /* Set the bus ID string */ 704 spi_dev_set_name(spi); 705 706 /* 707 * We need to make sure there's no other device with this 708 * chipselect **BEFORE** we call setup(), else we'll trash 709 * its configuration. 710 */ 711 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 712 if (status) 713 return status; 714 715 /* Controller may unregister concurrently */ 716 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 717 !device_is_registered(&ctlr->dev)) { 718 return -ENODEV; 719 } 720 721 if (ctlr->cs_gpiods) { 722 u8 cs; 723 724 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 725 cs = spi_get_chipselect(spi, idx); 726 if (is_valid_cs(cs)) 727 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 728 } 729 } 730 731 /* 732 * Drivers may modify this initial i/o setup, but will 733 * normally rely on the device being setup. Devices 734 * using SPI_CS_HIGH can't coexist well otherwise... 735 */ 736 status = spi_setup(spi); 737 if (status < 0) { 738 dev_err(dev, "can't setup %s, status %d\n", 739 dev_name(&spi->dev), status); 740 return status; 741 } 742 743 /* Device may be bound to an active driver when this returns */ 744 status = device_add(&spi->dev); 745 if (status < 0) { 746 dev_err(dev, "can't add %s, status %d\n", 747 dev_name(&spi->dev), status); 748 spi_cleanup(spi); 749 } else { 750 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 751 } 752 753 return status; 754 } 755 756 /** 757 * spi_add_device - Add spi_device allocated with spi_alloc_device 758 * @spi: spi_device to register 759 * 760 * Companion function to spi_alloc_device. Devices allocated with 761 * spi_alloc_device can be added onto the SPI bus with this function. 762 * 763 * Return: 0 on success; negative errno on failure 764 */ 765 int spi_add_device(struct spi_device *spi) 766 { 767 struct spi_controller *ctlr = spi->controller; 768 int status; 769 770 /* Set the bus ID string */ 771 spi_dev_set_name(spi); 772 773 mutex_lock(&ctlr->add_lock); 774 status = __spi_add_device(spi); 775 mutex_unlock(&ctlr->add_lock); 776 return status; 777 } 778 EXPORT_SYMBOL_GPL(spi_add_device); 779 780 static void spi_set_all_cs_unused(struct spi_device *spi) 781 { 782 u8 idx; 783 784 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 785 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 786 } 787 788 /** 789 * spi_new_device - instantiate one new SPI device 790 * @ctlr: Controller to which device is connected 791 * @chip: Describes the SPI device 792 * Context: can sleep 793 * 794 * On typical mainboards, this is purely internal; and it's not needed 795 * after board init creates the hard-wired devices. Some development 796 * platforms may not be able to use spi_register_board_info though, and 797 * this is exported so that for example a USB or parport based adapter 798 * driver could add devices (which it would learn about out-of-band). 799 * 800 * Return: the new device, or NULL. 801 */ 802 struct spi_device *spi_new_device(struct spi_controller *ctlr, 803 struct spi_board_info *chip) 804 { 805 struct spi_device *proxy; 806 int status; 807 808 /* 809 * NOTE: caller did any chip->bus_num checks necessary. 810 * 811 * Also, unless we change the return value convention to use 812 * error-or-pointer (not NULL-or-pointer), troubleshootability 813 * suggests syslogged diagnostics are best here (ugh). 814 */ 815 816 proxy = spi_alloc_device(ctlr); 817 if (!proxy) 818 return NULL; 819 820 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 821 822 /* Use provided chip-select for proxy device */ 823 spi_set_all_cs_unused(proxy); 824 spi_set_chipselect(proxy, 0, chip->chip_select); 825 826 proxy->max_speed_hz = chip->max_speed_hz; 827 proxy->mode = chip->mode; 828 proxy->irq = chip->irq; 829 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 830 proxy->dev.platform_data = (void *) chip->platform_data; 831 proxy->controller_data = chip->controller_data; 832 proxy->controller_state = NULL; 833 /* 834 * By default spi->chip_select[0] will hold the physical CS number, 835 * so set bit 0 in spi->cs_index_mask. 836 */ 837 proxy->cs_index_mask = BIT(0); 838 839 if (chip->swnode) { 840 status = device_add_software_node(&proxy->dev, chip->swnode); 841 if (status) { 842 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 843 chip->modalias, status); 844 goto err_dev_put; 845 } 846 } 847 848 status = spi_add_device(proxy); 849 if (status < 0) 850 goto err_dev_put; 851 852 return proxy; 853 854 err_dev_put: 855 device_remove_software_node(&proxy->dev); 856 spi_dev_put(proxy); 857 return NULL; 858 } 859 EXPORT_SYMBOL_GPL(spi_new_device); 860 861 /** 862 * spi_unregister_device - unregister a single SPI device 863 * @spi: spi_device to unregister 864 * 865 * Start making the passed SPI device vanish. Normally this would be handled 866 * by spi_unregister_controller(). 867 */ 868 void spi_unregister_device(struct spi_device *spi) 869 { 870 struct fwnode_handle *fwnode; 871 872 if (!spi) 873 return; 874 875 fwnode = dev_fwnode(&spi->dev); 876 if (is_of_node(fwnode)) { 877 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED); 878 of_node_put(to_of_node(fwnode)); 879 } else if (is_acpi_device_node(fwnode)) { 880 acpi_device_clear_enumerated(to_acpi_device_node(fwnode)); 881 } 882 device_remove_software_node(&spi->dev); 883 device_del(&spi->dev); 884 spi_cleanup(spi); 885 put_device(&spi->dev); 886 } 887 EXPORT_SYMBOL_GPL(spi_unregister_device); 888 889 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 890 struct spi_board_info *bi) 891 { 892 struct spi_device *dev; 893 894 if (ctlr->bus_num != bi->bus_num) 895 return; 896 897 dev = spi_new_device(ctlr, bi); 898 if (!dev) 899 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 900 bi->modalias); 901 } 902 903 /** 904 * spi_register_board_info - register SPI devices for a given board 905 * @info: array of chip descriptors 906 * @n: how many descriptors are provided 907 * Context: can sleep 908 * 909 * Board-specific early init code calls this (probably during arch_initcall) 910 * with segments of the SPI device table. Any device nodes are created later, 911 * after the relevant parent SPI controller (bus_num) is defined. We keep 912 * this table of devices forever, so that reloading a controller driver will 913 * not make Linux forget about these hard-wired devices. 914 * 915 * Other code can also call this, e.g. a particular add-on board might provide 916 * SPI devices through its expansion connector, so code initializing that board 917 * would naturally declare its SPI devices. 918 * 919 * The board info passed can safely be __initdata ... but be careful of 920 * any embedded pointers (platform_data, etc), they're copied as-is. 921 * 922 * Return: zero on success, else a negative error code. 923 */ 924 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 925 { 926 struct boardinfo *bi; 927 int i; 928 929 if (!n) 930 return 0; 931 932 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 933 if (!bi) 934 return -ENOMEM; 935 936 for (i = 0; i < n; i++, bi++, info++) { 937 struct spi_controller *ctlr; 938 939 memcpy(&bi->board_info, info, sizeof(*info)); 940 941 mutex_lock(&board_lock); 942 list_add_tail(&bi->list, &board_list); 943 list_for_each_entry(ctlr, &spi_controller_list, list) 944 spi_match_controller_to_boardinfo(ctlr, 945 &bi->board_info); 946 mutex_unlock(&board_lock); 947 } 948 949 return 0; 950 } 951 952 /*-------------------------------------------------------------------------*/ 953 954 /* Core methods for SPI resource management */ 955 956 /** 957 * spi_res_alloc - allocate a spi resource that is life-cycle managed 958 * during the processing of a spi_message while using 959 * spi_transfer_one 960 * @spi: the SPI device for which we allocate memory 961 * @release: the release code to execute for this resource 962 * @size: size to alloc and return 963 * @gfp: GFP allocation flags 964 * 965 * Return: the pointer to the allocated data 966 * 967 * This may get enhanced in the future to allocate from a memory pool 968 * of the @spi_device or @spi_controller to avoid repeated allocations. 969 */ 970 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 971 size_t size, gfp_t gfp) 972 { 973 struct spi_res *sres; 974 975 sres = kzalloc(sizeof(*sres) + size, gfp); 976 if (!sres) 977 return NULL; 978 979 INIT_LIST_HEAD(&sres->entry); 980 sres->release = release; 981 982 return sres->data; 983 } 984 985 /** 986 * spi_res_free - free an SPI resource 987 * @res: pointer to the custom data of a resource 988 */ 989 static void spi_res_free(void *res) 990 { 991 struct spi_res *sres = container_of(res, struct spi_res, data); 992 993 WARN_ON(!list_empty(&sres->entry)); 994 kfree(sres); 995 } 996 997 /** 998 * spi_res_add - add a spi_res to the spi_message 999 * @message: the SPI message 1000 * @res: the spi_resource 1001 */ 1002 static void spi_res_add(struct spi_message *message, void *res) 1003 { 1004 struct spi_res *sres = container_of(res, struct spi_res, data); 1005 1006 WARN_ON(!list_empty(&sres->entry)); 1007 list_add_tail(&sres->entry, &message->resources); 1008 } 1009 1010 /** 1011 * spi_res_release - release all SPI resources for this message 1012 * @ctlr: the @spi_controller 1013 * @message: the @spi_message 1014 */ 1015 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1016 { 1017 struct spi_res *res, *tmp; 1018 1019 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1020 if (res->release) 1021 res->release(ctlr, message, res->data); 1022 1023 list_del(&res->entry); 1024 1025 kfree(res); 1026 } 1027 } 1028 1029 /*-------------------------------------------------------------------------*/ 1030 #define spi_for_each_valid_cs(spi, idx) \ 1031 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1032 if (!(spi->cs_index_mask & BIT(idx))) {} else 1033 1034 static inline bool spi_is_last_cs(struct spi_device *spi) 1035 { 1036 u8 idx; 1037 bool last = false; 1038 1039 spi_for_each_valid_cs(spi, idx) { 1040 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1041 last = true; 1042 } 1043 return last; 1044 } 1045 1046 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1047 { 1048 /* 1049 * Historically ACPI has no means of the GPIO polarity and 1050 * thus the SPISerialBus() resource defines it on the per-chip 1051 * basis. In order to avoid a chain of negations, the GPIO 1052 * polarity is considered being Active High. Even for the cases 1053 * when _DSD() is involved (in the updated versions of ACPI) 1054 * the GPIO CS polarity must be defined Active High to avoid 1055 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1056 * into account. 1057 */ 1058 if (is_acpi_device_node(dev_fwnode(&spi->dev))) 1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1060 else 1061 /* Polarity handled by GPIO library */ 1062 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1063 1064 if (activate) 1065 spi_delay_exec(&spi->cs_setup, NULL); 1066 else 1067 spi_delay_exec(&spi->cs_inactive, NULL); 1068 } 1069 1070 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1071 { 1072 bool activate = enable; 1073 u8 idx; 1074 1075 /* 1076 * Avoid calling into the driver (or doing delays) if the chip select 1077 * isn't actually changing from the last time this was called. 1078 */ 1079 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1080 spi_is_last_cs(spi)) || 1081 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1082 !spi_is_last_cs(spi))) && 1083 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1084 return; 1085 1086 trace_spi_set_cs(spi, activate); 1087 1088 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1089 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1090 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1091 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1092 1093 if (spi->mode & SPI_CS_HIGH) 1094 enable = !enable; 1095 1096 /* 1097 * Handle chip select delays for GPIO based CS or controllers without 1098 * programmable chip select timing. 1099 */ 1100 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1101 spi_delay_exec(&spi->cs_hold, NULL); 1102 1103 if (spi_is_csgpiod(spi)) { 1104 if (!(spi->mode & SPI_NO_CS)) { 1105 spi_for_each_valid_cs(spi, idx) { 1106 if (spi_get_csgpiod(spi, idx)) 1107 spi_toggle_csgpiod(spi, idx, enable, activate); 1108 } 1109 } 1110 /* Some SPI masters need both GPIO CS & slave_select */ 1111 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1112 spi->controller->set_cs) 1113 spi->controller->set_cs(spi, !enable); 1114 } else if (spi->controller->set_cs) { 1115 spi->controller->set_cs(spi, !enable); 1116 } 1117 1118 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1119 if (activate) 1120 spi_delay_exec(&spi->cs_setup, NULL); 1121 else 1122 spi_delay_exec(&spi->cs_inactive, NULL); 1123 } 1124 } 1125 1126 #ifdef CONFIG_HAS_DMA 1127 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1128 struct sg_table *sgt, void *buf, size_t len, 1129 enum dma_data_direction dir, unsigned long attrs) 1130 { 1131 const bool vmalloced_buf = is_vmalloc_addr(buf); 1132 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1133 #ifdef CONFIG_HIGHMEM 1134 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1135 (unsigned long)buf < (PKMAP_BASE + 1136 (LAST_PKMAP * PAGE_SIZE))); 1137 #else 1138 const bool kmap_buf = false; 1139 #endif 1140 int desc_len; 1141 int sgs; 1142 struct page *vm_page; 1143 struct scatterlist *sg; 1144 void *sg_buf; 1145 size_t min; 1146 int i, ret; 1147 1148 if (vmalloced_buf || kmap_buf) { 1149 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1150 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1151 } else if (virt_addr_valid(buf)) { 1152 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1153 sgs = DIV_ROUND_UP(len, desc_len); 1154 } else { 1155 return -EINVAL; 1156 } 1157 1158 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1159 if (ret != 0) 1160 return ret; 1161 1162 sg = &sgt->sgl[0]; 1163 for (i = 0; i < sgs; i++) { 1164 1165 if (vmalloced_buf || kmap_buf) { 1166 /* 1167 * Next scatterlist entry size is the minimum between 1168 * the desc_len and the remaining buffer length that 1169 * fits in a page. 1170 */ 1171 min = min_t(size_t, desc_len, 1172 min_t(size_t, len, 1173 PAGE_SIZE - offset_in_page(buf))); 1174 if (vmalloced_buf) 1175 vm_page = vmalloc_to_page(buf); 1176 else 1177 vm_page = kmap_to_page(buf); 1178 if (!vm_page) { 1179 sg_free_table(sgt); 1180 return -ENOMEM; 1181 } 1182 sg_set_page(sg, vm_page, 1183 min, offset_in_page(buf)); 1184 } else { 1185 min = min_t(size_t, len, desc_len); 1186 sg_buf = buf; 1187 sg_set_buf(sg, sg_buf, min); 1188 } 1189 1190 buf += min; 1191 len -= min; 1192 sg = sg_next(sg); 1193 } 1194 1195 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1196 if (ret < 0) { 1197 sg_free_table(sgt); 1198 return ret; 1199 } 1200 1201 return 0; 1202 } 1203 1204 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1205 struct sg_table *sgt, void *buf, size_t len, 1206 enum dma_data_direction dir) 1207 { 1208 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1209 } 1210 1211 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1212 struct device *dev, struct sg_table *sgt, 1213 enum dma_data_direction dir, 1214 unsigned long attrs) 1215 { 1216 dma_unmap_sgtable(dev, sgt, dir, attrs); 1217 sg_free_table(sgt); 1218 sgt->orig_nents = 0; 1219 sgt->nents = 0; 1220 } 1221 1222 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1223 struct sg_table *sgt, enum dma_data_direction dir) 1224 { 1225 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1226 } 1227 1228 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1229 { 1230 struct device *tx_dev, *rx_dev; 1231 struct spi_transfer *xfer; 1232 int ret; 1233 1234 if (!ctlr->can_dma) 1235 return 0; 1236 1237 if (ctlr->dma_tx) 1238 tx_dev = ctlr->dma_tx->device->dev; 1239 else if (ctlr->dma_map_dev) 1240 tx_dev = ctlr->dma_map_dev; 1241 else 1242 tx_dev = ctlr->dev.parent; 1243 1244 if (ctlr->dma_rx) 1245 rx_dev = ctlr->dma_rx->device->dev; 1246 else if (ctlr->dma_map_dev) 1247 rx_dev = ctlr->dma_map_dev; 1248 else 1249 rx_dev = ctlr->dev.parent; 1250 1251 ret = -ENOMSG; 1252 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1253 /* The sync is done before each transfer. */ 1254 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1255 1256 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1257 continue; 1258 1259 if (xfer->tx_buf != NULL) { 1260 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1261 (void *)xfer->tx_buf, 1262 xfer->len, DMA_TO_DEVICE, 1263 attrs); 1264 if (ret != 0) 1265 return ret; 1266 1267 xfer->tx_sg_mapped = true; 1268 } 1269 1270 if (xfer->rx_buf != NULL) { 1271 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1272 xfer->rx_buf, xfer->len, 1273 DMA_FROM_DEVICE, attrs); 1274 if (ret != 0) { 1275 spi_unmap_buf_attrs(ctlr, tx_dev, 1276 &xfer->tx_sg, DMA_TO_DEVICE, 1277 attrs); 1278 1279 return ret; 1280 } 1281 1282 xfer->rx_sg_mapped = true; 1283 } 1284 } 1285 /* No transfer has been mapped, bail out with success */ 1286 if (ret) 1287 return 0; 1288 1289 ctlr->cur_rx_dma_dev = rx_dev; 1290 ctlr->cur_tx_dma_dev = tx_dev; 1291 1292 return 0; 1293 } 1294 1295 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1296 { 1297 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1298 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1299 struct spi_transfer *xfer; 1300 1301 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1302 /* The sync has already been done after each transfer. */ 1303 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1304 1305 if (xfer->rx_sg_mapped) 1306 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1307 DMA_FROM_DEVICE, attrs); 1308 xfer->rx_sg_mapped = false; 1309 1310 if (xfer->tx_sg_mapped) 1311 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1312 DMA_TO_DEVICE, attrs); 1313 xfer->tx_sg_mapped = false; 1314 } 1315 1316 return 0; 1317 } 1318 1319 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1320 struct spi_transfer *xfer) 1321 { 1322 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1323 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1324 1325 if (xfer->tx_sg_mapped) 1326 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1327 if (xfer->rx_sg_mapped) 1328 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1329 } 1330 1331 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1332 struct spi_transfer *xfer) 1333 { 1334 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1335 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1336 1337 if (xfer->rx_sg_mapped) 1338 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1339 if (xfer->tx_sg_mapped) 1340 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1341 } 1342 #else /* !CONFIG_HAS_DMA */ 1343 static inline int __spi_map_msg(struct spi_controller *ctlr, 1344 struct spi_message *msg) 1345 { 1346 return 0; 1347 } 1348 1349 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1350 struct spi_message *msg) 1351 { 1352 return 0; 1353 } 1354 1355 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1356 struct spi_transfer *xfer) 1357 { 1358 } 1359 1360 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1361 struct spi_transfer *xfer) 1362 { 1363 } 1364 #endif /* !CONFIG_HAS_DMA */ 1365 1366 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1367 struct spi_message *msg) 1368 { 1369 struct spi_transfer *xfer; 1370 1371 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1372 /* 1373 * Restore the original value of tx_buf or rx_buf if they are 1374 * NULL. 1375 */ 1376 if (xfer->tx_buf == ctlr->dummy_tx) 1377 xfer->tx_buf = NULL; 1378 if (xfer->rx_buf == ctlr->dummy_rx) 1379 xfer->rx_buf = NULL; 1380 } 1381 1382 return __spi_unmap_msg(ctlr, msg); 1383 } 1384 1385 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1386 { 1387 struct spi_transfer *xfer; 1388 void *tmp; 1389 unsigned int max_tx, max_rx; 1390 1391 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1392 && !(msg->spi->mode & SPI_3WIRE)) { 1393 max_tx = 0; 1394 max_rx = 0; 1395 1396 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1397 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1398 !xfer->tx_buf) 1399 max_tx = max(xfer->len, max_tx); 1400 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1401 !xfer->rx_buf) 1402 max_rx = max(xfer->len, max_rx); 1403 } 1404 1405 if (max_tx) { 1406 tmp = krealloc(ctlr->dummy_tx, max_tx, 1407 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1408 if (!tmp) 1409 return -ENOMEM; 1410 ctlr->dummy_tx = tmp; 1411 } 1412 1413 if (max_rx) { 1414 tmp = krealloc(ctlr->dummy_rx, max_rx, 1415 GFP_KERNEL | GFP_DMA); 1416 if (!tmp) 1417 return -ENOMEM; 1418 ctlr->dummy_rx = tmp; 1419 } 1420 1421 if (max_tx || max_rx) { 1422 list_for_each_entry(xfer, &msg->transfers, 1423 transfer_list) { 1424 if (!xfer->len) 1425 continue; 1426 if (!xfer->tx_buf) 1427 xfer->tx_buf = ctlr->dummy_tx; 1428 if (!xfer->rx_buf) 1429 xfer->rx_buf = ctlr->dummy_rx; 1430 } 1431 } 1432 } 1433 1434 return __spi_map_msg(ctlr, msg); 1435 } 1436 1437 static int spi_transfer_wait(struct spi_controller *ctlr, 1438 struct spi_message *msg, 1439 struct spi_transfer *xfer) 1440 { 1441 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1442 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1443 u32 speed_hz = xfer->speed_hz; 1444 unsigned long long ms; 1445 1446 if (spi_controller_is_target(ctlr)) { 1447 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1448 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1449 return -EINTR; 1450 } 1451 } else { 1452 if (!speed_hz) 1453 speed_hz = 100000; 1454 1455 /* 1456 * For each byte we wait for 8 cycles of the SPI clock. 1457 * Since speed is defined in Hz and we want milliseconds, 1458 * use respective multiplier, but before the division, 1459 * otherwise we may get 0 for short transfers. 1460 */ 1461 ms = 8LL * MSEC_PER_SEC * xfer->len; 1462 do_div(ms, speed_hz); 1463 1464 /* 1465 * Increase it twice and add 200 ms tolerance, use 1466 * predefined maximum in case of overflow. 1467 */ 1468 ms += ms + 200; 1469 if (ms > UINT_MAX) 1470 ms = UINT_MAX; 1471 1472 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1473 msecs_to_jiffies(ms)); 1474 1475 if (ms == 0) { 1476 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1477 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1478 dev_err(&msg->spi->dev, 1479 "SPI transfer timed out\n"); 1480 return -ETIMEDOUT; 1481 } 1482 1483 if (xfer->error & SPI_TRANS_FAIL_IO) 1484 return -EIO; 1485 } 1486 1487 return 0; 1488 } 1489 1490 static void _spi_transfer_delay_ns(u32 ns) 1491 { 1492 if (!ns) 1493 return; 1494 if (ns <= NSEC_PER_USEC) { 1495 ndelay(ns); 1496 } else { 1497 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1498 1499 if (us <= 10) 1500 udelay(us); 1501 else 1502 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1503 } 1504 } 1505 1506 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1507 { 1508 u32 delay = _delay->value; 1509 u32 unit = _delay->unit; 1510 u32 hz; 1511 1512 if (!delay) 1513 return 0; 1514 1515 switch (unit) { 1516 case SPI_DELAY_UNIT_USECS: 1517 delay *= NSEC_PER_USEC; 1518 break; 1519 case SPI_DELAY_UNIT_NSECS: 1520 /* Nothing to do here */ 1521 break; 1522 case SPI_DELAY_UNIT_SCK: 1523 /* Clock cycles need to be obtained from spi_transfer */ 1524 if (!xfer) 1525 return -EINVAL; 1526 /* 1527 * If there is unknown effective speed, approximate it 1528 * by underestimating with half of the requested Hz. 1529 */ 1530 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1531 if (!hz) 1532 return -EINVAL; 1533 1534 /* Convert delay to nanoseconds */ 1535 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1536 break; 1537 default: 1538 return -EINVAL; 1539 } 1540 1541 return delay; 1542 } 1543 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1544 1545 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1546 { 1547 int delay; 1548 1549 might_sleep(); 1550 1551 if (!_delay) 1552 return -EINVAL; 1553 1554 delay = spi_delay_to_ns(_delay, xfer); 1555 if (delay < 0) 1556 return delay; 1557 1558 _spi_transfer_delay_ns(delay); 1559 1560 return 0; 1561 } 1562 EXPORT_SYMBOL_GPL(spi_delay_exec); 1563 1564 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1565 struct spi_transfer *xfer) 1566 { 1567 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1568 u32 delay = xfer->cs_change_delay.value; 1569 u32 unit = xfer->cs_change_delay.unit; 1570 int ret; 1571 1572 /* Return early on "fast" mode - for everything but USECS */ 1573 if (!delay) { 1574 if (unit == SPI_DELAY_UNIT_USECS) 1575 _spi_transfer_delay_ns(default_delay_ns); 1576 return; 1577 } 1578 1579 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1580 if (ret) { 1581 dev_err_once(&msg->spi->dev, 1582 "Use of unsupported delay unit %i, using default of %luus\n", 1583 unit, default_delay_ns / NSEC_PER_USEC); 1584 _spi_transfer_delay_ns(default_delay_ns); 1585 } 1586 } 1587 1588 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1589 struct spi_transfer *xfer) 1590 { 1591 _spi_transfer_cs_change_delay(msg, xfer); 1592 } 1593 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1594 1595 /* 1596 * spi_transfer_one_message - Default implementation of transfer_one_message() 1597 * 1598 * This is a standard implementation of transfer_one_message() for 1599 * drivers which implement a transfer_one() operation. It provides 1600 * standard handling of delays and chip select management. 1601 */ 1602 static int spi_transfer_one_message(struct spi_controller *ctlr, 1603 struct spi_message *msg) 1604 { 1605 struct spi_transfer *xfer; 1606 bool keep_cs = false; 1607 int ret = 0; 1608 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1609 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1610 1611 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1612 spi_set_cs(msg->spi, !xfer->cs_off, false); 1613 1614 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1615 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1616 1617 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1618 trace_spi_transfer_start(msg, xfer); 1619 1620 spi_statistics_add_transfer_stats(statm, xfer, msg); 1621 spi_statistics_add_transfer_stats(stats, xfer, msg); 1622 1623 if (!ctlr->ptp_sts_supported) { 1624 xfer->ptp_sts_word_pre = 0; 1625 ptp_read_system_prets(xfer->ptp_sts); 1626 } 1627 1628 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1629 reinit_completion(&ctlr->xfer_completion); 1630 1631 fallback_pio: 1632 spi_dma_sync_for_device(ctlr, xfer); 1633 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1634 if (ret < 0) { 1635 spi_dma_sync_for_cpu(ctlr, xfer); 1636 1637 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1638 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1639 __spi_unmap_msg(ctlr, msg); 1640 ctlr->fallback = true; 1641 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1642 goto fallback_pio; 1643 } 1644 1645 SPI_STATISTICS_INCREMENT_FIELD(statm, 1646 errors); 1647 SPI_STATISTICS_INCREMENT_FIELD(stats, 1648 errors); 1649 dev_err(&msg->spi->dev, 1650 "SPI transfer failed: %d\n", ret); 1651 goto out; 1652 } 1653 1654 if (ret > 0) { 1655 ret = spi_transfer_wait(ctlr, msg, xfer); 1656 if (ret < 0) 1657 msg->status = ret; 1658 } 1659 1660 spi_dma_sync_for_cpu(ctlr, xfer); 1661 } else { 1662 if (xfer->len) 1663 dev_err(&msg->spi->dev, 1664 "Bufferless transfer has length %u\n", 1665 xfer->len); 1666 } 1667 1668 if (!ctlr->ptp_sts_supported) { 1669 ptp_read_system_postts(xfer->ptp_sts); 1670 xfer->ptp_sts_word_post = xfer->len; 1671 } 1672 1673 trace_spi_transfer_stop(msg, xfer); 1674 1675 if (msg->status != -EINPROGRESS) 1676 goto out; 1677 1678 spi_transfer_delay_exec(xfer); 1679 1680 if (xfer->cs_change) { 1681 if (list_is_last(&xfer->transfer_list, 1682 &msg->transfers)) { 1683 keep_cs = true; 1684 } else { 1685 if (!xfer->cs_off) 1686 spi_set_cs(msg->spi, false, false); 1687 _spi_transfer_cs_change_delay(msg, xfer); 1688 if (!list_next_entry(xfer, transfer_list)->cs_off) 1689 spi_set_cs(msg->spi, true, false); 1690 } 1691 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1692 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1693 spi_set_cs(msg->spi, xfer->cs_off, false); 1694 } 1695 1696 msg->actual_length += xfer->len; 1697 } 1698 1699 out: 1700 if (ret != 0 || !keep_cs) 1701 spi_set_cs(msg->spi, false, false); 1702 1703 if (msg->status == -EINPROGRESS) 1704 msg->status = ret; 1705 1706 if (msg->status && ctlr->handle_err) 1707 ctlr->handle_err(ctlr, msg); 1708 1709 spi_finalize_current_message(ctlr); 1710 1711 return ret; 1712 } 1713 1714 /** 1715 * spi_finalize_current_transfer - report completion of a transfer 1716 * @ctlr: the controller reporting completion 1717 * 1718 * Called by SPI drivers using the core transfer_one_message() 1719 * implementation to notify it that the current interrupt driven 1720 * transfer has finished and the next one may be scheduled. 1721 */ 1722 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1723 { 1724 complete(&ctlr->xfer_completion); 1725 } 1726 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1727 1728 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1729 { 1730 if (ctlr->auto_runtime_pm) { 1731 pm_runtime_mark_last_busy(ctlr->dev.parent); 1732 pm_runtime_put_autosuspend(ctlr->dev.parent); 1733 } 1734 } 1735 1736 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1737 struct spi_message *msg, bool was_busy) 1738 { 1739 struct spi_transfer *xfer; 1740 int ret; 1741 1742 if (!was_busy && ctlr->auto_runtime_pm) { 1743 ret = pm_runtime_get_sync(ctlr->dev.parent); 1744 if (ret < 0) { 1745 pm_runtime_put_noidle(ctlr->dev.parent); 1746 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1747 ret); 1748 1749 msg->status = ret; 1750 spi_finalize_current_message(ctlr); 1751 1752 return ret; 1753 } 1754 } 1755 1756 if (!was_busy) 1757 trace_spi_controller_busy(ctlr); 1758 1759 if (!was_busy && ctlr->prepare_transfer_hardware) { 1760 ret = ctlr->prepare_transfer_hardware(ctlr); 1761 if (ret) { 1762 dev_err(&ctlr->dev, 1763 "failed to prepare transfer hardware: %d\n", 1764 ret); 1765 1766 if (ctlr->auto_runtime_pm) 1767 pm_runtime_put(ctlr->dev.parent); 1768 1769 msg->status = ret; 1770 spi_finalize_current_message(ctlr); 1771 1772 return ret; 1773 } 1774 } 1775 1776 trace_spi_message_start(msg); 1777 1778 if (ctlr->prepare_message) { 1779 ret = ctlr->prepare_message(ctlr, msg); 1780 if (ret) { 1781 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1782 ret); 1783 msg->status = ret; 1784 spi_finalize_current_message(ctlr); 1785 return ret; 1786 } 1787 msg->prepared = true; 1788 } 1789 1790 ret = spi_map_msg(ctlr, msg); 1791 if (ret) { 1792 msg->status = ret; 1793 spi_finalize_current_message(ctlr); 1794 return ret; 1795 } 1796 1797 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1798 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1799 xfer->ptp_sts_word_pre = 0; 1800 ptp_read_system_prets(xfer->ptp_sts); 1801 } 1802 } 1803 1804 /* 1805 * Drivers implementation of transfer_one_message() must arrange for 1806 * spi_finalize_current_message() to get called. Most drivers will do 1807 * this in the calling context, but some don't. For those cases, a 1808 * completion is used to guarantee that this function does not return 1809 * until spi_finalize_current_message() is done accessing 1810 * ctlr->cur_msg. 1811 * Use of the following two flags enable to opportunistically skip the 1812 * use of the completion since its use involves expensive spin locks. 1813 * In case of a race with the context that calls 1814 * spi_finalize_current_message() the completion will always be used, 1815 * due to strict ordering of these flags using barriers. 1816 */ 1817 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1818 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1819 reinit_completion(&ctlr->cur_msg_completion); 1820 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1821 1822 ret = ctlr->transfer_one_message(ctlr, msg); 1823 if (ret) { 1824 dev_err(&ctlr->dev, 1825 "failed to transfer one message from queue\n"); 1826 return ret; 1827 } 1828 1829 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1830 smp_mb(); /* See spi_finalize_current_message()... */ 1831 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1832 wait_for_completion(&ctlr->cur_msg_completion); 1833 1834 return 0; 1835 } 1836 1837 /** 1838 * __spi_pump_messages - function which processes SPI message queue 1839 * @ctlr: controller to process queue for 1840 * @in_kthread: true if we are in the context of the message pump thread 1841 * 1842 * This function checks if there is any SPI message in the queue that 1843 * needs processing and if so call out to the driver to initialize hardware 1844 * and transfer each message. 1845 * 1846 * Note that it is called both from the kthread itself and also from 1847 * inside spi_sync(); the queue extraction handling at the top of the 1848 * function should deal with this safely. 1849 */ 1850 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1851 { 1852 struct spi_message *msg; 1853 bool was_busy = false; 1854 unsigned long flags; 1855 int ret; 1856 1857 /* Take the I/O mutex */ 1858 mutex_lock(&ctlr->io_mutex); 1859 1860 /* Lock queue */ 1861 spin_lock_irqsave(&ctlr->queue_lock, flags); 1862 1863 /* Make sure we are not already running a message */ 1864 if (ctlr->cur_msg) 1865 goto out_unlock; 1866 1867 /* Check if the queue is idle */ 1868 if (list_empty(&ctlr->queue) || !ctlr->running) { 1869 if (!ctlr->busy) 1870 goto out_unlock; 1871 1872 /* Defer any non-atomic teardown to the thread */ 1873 if (!in_kthread) { 1874 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1875 !ctlr->unprepare_transfer_hardware) { 1876 spi_idle_runtime_pm(ctlr); 1877 ctlr->busy = false; 1878 ctlr->queue_empty = true; 1879 trace_spi_controller_idle(ctlr); 1880 } else { 1881 kthread_queue_work(ctlr->kworker, 1882 &ctlr->pump_messages); 1883 } 1884 goto out_unlock; 1885 } 1886 1887 ctlr->busy = false; 1888 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1889 1890 kfree(ctlr->dummy_rx); 1891 ctlr->dummy_rx = NULL; 1892 kfree(ctlr->dummy_tx); 1893 ctlr->dummy_tx = NULL; 1894 if (ctlr->unprepare_transfer_hardware && 1895 ctlr->unprepare_transfer_hardware(ctlr)) 1896 dev_err(&ctlr->dev, 1897 "failed to unprepare transfer hardware\n"); 1898 spi_idle_runtime_pm(ctlr); 1899 trace_spi_controller_idle(ctlr); 1900 1901 spin_lock_irqsave(&ctlr->queue_lock, flags); 1902 ctlr->queue_empty = true; 1903 goto out_unlock; 1904 } 1905 1906 /* Extract head of queue */ 1907 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1908 ctlr->cur_msg = msg; 1909 1910 list_del_init(&msg->queue); 1911 if (ctlr->busy) 1912 was_busy = true; 1913 else 1914 ctlr->busy = true; 1915 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1916 1917 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1918 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1919 1920 ctlr->cur_msg = NULL; 1921 ctlr->fallback = false; 1922 1923 mutex_unlock(&ctlr->io_mutex); 1924 1925 /* Prod the scheduler in case transfer_one() was busy waiting */ 1926 if (!ret) 1927 cond_resched(); 1928 return; 1929 1930 out_unlock: 1931 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1932 mutex_unlock(&ctlr->io_mutex); 1933 } 1934 1935 /** 1936 * spi_pump_messages - kthread work function which processes spi message queue 1937 * @work: pointer to kthread work struct contained in the controller struct 1938 */ 1939 static void spi_pump_messages(struct kthread_work *work) 1940 { 1941 struct spi_controller *ctlr = 1942 container_of(work, struct spi_controller, pump_messages); 1943 1944 __spi_pump_messages(ctlr, true); 1945 } 1946 1947 /** 1948 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1949 * @ctlr: Pointer to the spi_controller structure of the driver 1950 * @xfer: Pointer to the transfer being timestamped 1951 * @progress: How many words (not bytes) have been transferred so far 1952 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1953 * transfer, for less jitter in time measurement. Only compatible 1954 * with PIO drivers. If true, must follow up with 1955 * spi_take_timestamp_post or otherwise system will crash. 1956 * WARNING: for fully predictable results, the CPU frequency must 1957 * also be under control (governor). 1958 * 1959 * This is a helper for drivers to collect the beginning of the TX timestamp 1960 * for the requested byte from the SPI transfer. The frequency with which this 1961 * function must be called (once per word, once for the whole transfer, once 1962 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1963 * greater than or equal to the requested byte at the time of the call. The 1964 * timestamp is only taken once, at the first such call. It is assumed that 1965 * the driver advances its @tx buffer pointer monotonically. 1966 */ 1967 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1968 struct spi_transfer *xfer, 1969 size_t progress, bool irqs_off) 1970 { 1971 if (!xfer->ptp_sts) 1972 return; 1973 1974 if (xfer->timestamped) 1975 return; 1976 1977 if (progress > xfer->ptp_sts_word_pre) 1978 return; 1979 1980 /* Capture the resolution of the timestamp */ 1981 xfer->ptp_sts_word_pre = progress; 1982 1983 if (irqs_off) { 1984 local_irq_save(ctlr->irq_flags); 1985 preempt_disable(); 1986 } 1987 1988 ptp_read_system_prets(xfer->ptp_sts); 1989 } 1990 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1991 1992 /** 1993 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1994 * @ctlr: Pointer to the spi_controller structure of the driver 1995 * @xfer: Pointer to the transfer being timestamped 1996 * @progress: How many words (not bytes) have been transferred so far 1997 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1998 * 1999 * This is a helper for drivers to collect the end of the TX timestamp for 2000 * the requested byte from the SPI transfer. Can be called with an arbitrary 2001 * frequency: only the first call where @tx exceeds or is equal to the 2002 * requested word will be timestamped. 2003 */ 2004 void spi_take_timestamp_post(struct spi_controller *ctlr, 2005 struct spi_transfer *xfer, 2006 size_t progress, bool irqs_off) 2007 { 2008 if (!xfer->ptp_sts) 2009 return; 2010 2011 if (xfer->timestamped) 2012 return; 2013 2014 if (progress < xfer->ptp_sts_word_post) 2015 return; 2016 2017 ptp_read_system_postts(xfer->ptp_sts); 2018 2019 if (irqs_off) { 2020 local_irq_restore(ctlr->irq_flags); 2021 preempt_enable(); 2022 } 2023 2024 /* Capture the resolution of the timestamp */ 2025 xfer->ptp_sts_word_post = progress; 2026 2027 xfer->timestamped = 1; 2028 } 2029 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2030 2031 /** 2032 * spi_set_thread_rt - set the controller to pump at realtime priority 2033 * @ctlr: controller to boost priority of 2034 * 2035 * This can be called because the controller requested realtime priority 2036 * (by setting the ->rt value before calling spi_register_controller()) or 2037 * because a device on the bus said that its transfers needed realtime 2038 * priority. 2039 * 2040 * NOTE: at the moment if any device on a bus says it needs realtime then 2041 * the thread will be at realtime priority for all transfers on that 2042 * controller. If this eventually becomes a problem we may see if we can 2043 * find a way to boost the priority only temporarily during relevant 2044 * transfers. 2045 */ 2046 static void spi_set_thread_rt(struct spi_controller *ctlr) 2047 { 2048 dev_info(&ctlr->dev, 2049 "will run message pump with realtime priority\n"); 2050 sched_set_fifo(ctlr->kworker->task); 2051 } 2052 2053 static int spi_init_queue(struct spi_controller *ctlr) 2054 { 2055 ctlr->running = false; 2056 ctlr->busy = false; 2057 ctlr->queue_empty = true; 2058 2059 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev)); 2060 if (IS_ERR(ctlr->kworker)) { 2061 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2062 return PTR_ERR(ctlr->kworker); 2063 } 2064 2065 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2066 2067 /* 2068 * Controller config will indicate if this controller should run the 2069 * message pump with high (realtime) priority to reduce the transfer 2070 * latency on the bus by minimising the delay between a transfer 2071 * request and the scheduling of the message pump thread. Without this 2072 * setting the message pump thread will remain at default priority. 2073 */ 2074 if (ctlr->rt) 2075 spi_set_thread_rt(ctlr); 2076 2077 return 0; 2078 } 2079 2080 /** 2081 * spi_get_next_queued_message() - called by driver to check for queued 2082 * messages 2083 * @ctlr: the controller to check for queued messages 2084 * 2085 * If there are more messages in the queue, the next message is returned from 2086 * this call. 2087 * 2088 * Return: the next message in the queue, else NULL if the queue is empty. 2089 */ 2090 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2091 { 2092 struct spi_message *next; 2093 unsigned long flags; 2094 2095 /* Get a pointer to the next message, if any */ 2096 spin_lock_irqsave(&ctlr->queue_lock, flags); 2097 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2098 queue); 2099 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2100 2101 return next; 2102 } 2103 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2104 2105 /* 2106 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2107 * and spi_maybe_unoptimize_message() 2108 * @msg: the message to unoptimize 2109 * 2110 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2111 * core should use spi_maybe_unoptimize_message() rather than calling this 2112 * function directly. 2113 * 2114 * It is not valid to call this on a message that is not currently optimized. 2115 */ 2116 static void __spi_unoptimize_message(struct spi_message *msg) 2117 { 2118 struct spi_controller *ctlr = msg->spi->controller; 2119 2120 if (ctlr->unoptimize_message) 2121 ctlr->unoptimize_message(msg); 2122 2123 spi_res_release(ctlr, msg); 2124 2125 msg->optimized = false; 2126 msg->opt_state = NULL; 2127 } 2128 2129 /* 2130 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2131 * @msg: the message to unoptimize 2132 * 2133 * This function is used to unoptimize a message if and only if it was 2134 * optimized by the core (via spi_maybe_optimize_message()). 2135 */ 2136 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2137 { 2138 if (!msg->pre_optimized && msg->optimized && 2139 !msg->spi->controller->defer_optimize_message) 2140 __spi_unoptimize_message(msg); 2141 } 2142 2143 /** 2144 * spi_finalize_current_message() - the current message is complete 2145 * @ctlr: the controller to return the message to 2146 * 2147 * Called by the driver to notify the core that the message in the front of the 2148 * queue is complete and can be removed from the queue. 2149 */ 2150 void spi_finalize_current_message(struct spi_controller *ctlr) 2151 { 2152 struct spi_transfer *xfer; 2153 struct spi_message *mesg; 2154 int ret; 2155 2156 mesg = ctlr->cur_msg; 2157 2158 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2159 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2160 ptp_read_system_postts(xfer->ptp_sts); 2161 xfer->ptp_sts_word_post = xfer->len; 2162 } 2163 } 2164 2165 if (unlikely(ctlr->ptp_sts_supported)) 2166 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2167 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2168 2169 spi_unmap_msg(ctlr, mesg); 2170 2171 if (mesg->prepared && ctlr->unprepare_message) { 2172 ret = ctlr->unprepare_message(ctlr, mesg); 2173 if (ret) { 2174 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2175 ret); 2176 } 2177 } 2178 2179 mesg->prepared = false; 2180 2181 spi_maybe_unoptimize_message(mesg); 2182 2183 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2184 smp_mb(); /* See __spi_pump_transfer_message()... */ 2185 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2186 complete(&ctlr->cur_msg_completion); 2187 2188 trace_spi_message_done(mesg); 2189 2190 mesg->state = NULL; 2191 if (mesg->complete) 2192 mesg->complete(mesg->context); 2193 } 2194 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2195 2196 static int spi_start_queue(struct spi_controller *ctlr) 2197 { 2198 unsigned long flags; 2199 2200 spin_lock_irqsave(&ctlr->queue_lock, flags); 2201 2202 if (ctlr->running || ctlr->busy) { 2203 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2204 return -EBUSY; 2205 } 2206 2207 ctlr->running = true; 2208 ctlr->cur_msg = NULL; 2209 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2210 2211 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2212 2213 return 0; 2214 } 2215 2216 static int spi_stop_queue(struct spi_controller *ctlr) 2217 { 2218 unsigned int limit = 500; 2219 unsigned long flags; 2220 2221 /* 2222 * This is a bit lame, but is optimized for the common execution path. 2223 * A wait_queue on the ctlr->busy could be used, but then the common 2224 * execution path (pump_messages) would be required to call wake_up or 2225 * friends on every SPI message. Do this instead. 2226 */ 2227 do { 2228 spin_lock_irqsave(&ctlr->queue_lock, flags); 2229 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2230 ctlr->running = false; 2231 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2232 return 0; 2233 } 2234 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2235 usleep_range(10000, 11000); 2236 } while (--limit); 2237 2238 return -EBUSY; 2239 } 2240 2241 static int spi_destroy_queue(struct spi_controller *ctlr) 2242 { 2243 int ret; 2244 2245 ret = spi_stop_queue(ctlr); 2246 2247 /* 2248 * kthread_flush_worker will block until all work is done. 2249 * If the reason that stop_queue timed out is that the work will never 2250 * finish, then it does no good to call flush/stop thread, so 2251 * return anyway. 2252 */ 2253 if (ret) { 2254 dev_err(&ctlr->dev, "problem destroying queue\n"); 2255 return ret; 2256 } 2257 2258 kthread_destroy_worker(ctlr->kworker); 2259 2260 return 0; 2261 } 2262 2263 static int __spi_queued_transfer(struct spi_device *spi, 2264 struct spi_message *msg, 2265 bool need_pump) 2266 { 2267 struct spi_controller *ctlr = spi->controller; 2268 unsigned long flags; 2269 2270 spin_lock_irqsave(&ctlr->queue_lock, flags); 2271 2272 if (!ctlr->running) { 2273 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2274 return -ESHUTDOWN; 2275 } 2276 msg->actual_length = 0; 2277 msg->status = -EINPROGRESS; 2278 2279 list_add_tail(&msg->queue, &ctlr->queue); 2280 ctlr->queue_empty = false; 2281 if (!ctlr->busy && need_pump) 2282 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2283 2284 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2285 return 0; 2286 } 2287 2288 /** 2289 * spi_queued_transfer - transfer function for queued transfers 2290 * @spi: SPI device which is requesting transfer 2291 * @msg: SPI message which is to handled is queued to driver queue 2292 * 2293 * Return: zero on success, else a negative error code. 2294 */ 2295 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2296 { 2297 return __spi_queued_transfer(spi, msg, true); 2298 } 2299 2300 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2301 { 2302 int ret; 2303 2304 ctlr->transfer = spi_queued_transfer; 2305 if (!ctlr->transfer_one_message) 2306 ctlr->transfer_one_message = spi_transfer_one_message; 2307 2308 /* Initialize and start queue */ 2309 ret = spi_init_queue(ctlr); 2310 if (ret) { 2311 dev_err(&ctlr->dev, "problem initializing queue\n"); 2312 goto err_init_queue; 2313 } 2314 ctlr->queued = true; 2315 ret = spi_start_queue(ctlr); 2316 if (ret) { 2317 dev_err(&ctlr->dev, "problem starting queue\n"); 2318 goto err_start_queue; 2319 } 2320 2321 return 0; 2322 2323 err_start_queue: 2324 spi_destroy_queue(ctlr); 2325 err_init_queue: 2326 return ret; 2327 } 2328 2329 /** 2330 * spi_flush_queue - Send all pending messages in the queue from the callers' 2331 * context 2332 * @ctlr: controller to process queue for 2333 * 2334 * This should be used when one wants to ensure all pending messages have been 2335 * sent before doing something. Is used by the spi-mem code to make sure SPI 2336 * memory operations do not preempt regular SPI transfers that have been queued 2337 * before the spi-mem operation. 2338 */ 2339 void spi_flush_queue(struct spi_controller *ctlr) 2340 { 2341 if (ctlr->transfer == spi_queued_transfer) 2342 __spi_pump_messages(ctlr, false); 2343 } 2344 2345 /*-------------------------------------------------------------------------*/ 2346 2347 #if defined(CONFIG_OF) 2348 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2349 struct spi_delay *delay, const char *prop) 2350 { 2351 u32 value; 2352 2353 if (!of_property_read_u32(nc, prop, &value)) { 2354 if (value > U16_MAX) { 2355 delay->value = DIV_ROUND_UP(value, 1000); 2356 delay->unit = SPI_DELAY_UNIT_USECS; 2357 } else { 2358 delay->value = value; 2359 delay->unit = SPI_DELAY_UNIT_NSECS; 2360 } 2361 } 2362 } 2363 2364 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2365 struct device_node *nc) 2366 { 2367 u32 value, cs[SPI_CS_CNT_MAX]; 2368 int rc, idx; 2369 2370 /* Mode (clock phase/polarity/etc.) */ 2371 if (of_property_read_bool(nc, "spi-cpha")) 2372 spi->mode |= SPI_CPHA; 2373 if (of_property_read_bool(nc, "spi-cpol")) 2374 spi->mode |= SPI_CPOL; 2375 if (of_property_read_bool(nc, "spi-3wire")) 2376 spi->mode |= SPI_3WIRE; 2377 if (of_property_read_bool(nc, "spi-lsb-first")) 2378 spi->mode |= SPI_LSB_FIRST; 2379 if (of_property_read_bool(nc, "spi-cs-high")) 2380 spi->mode |= SPI_CS_HIGH; 2381 2382 /* Device DUAL/QUAD mode */ 2383 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2384 switch (value) { 2385 case 0: 2386 spi->mode |= SPI_NO_TX; 2387 break; 2388 case 1: 2389 break; 2390 case 2: 2391 spi->mode |= SPI_TX_DUAL; 2392 break; 2393 case 4: 2394 spi->mode |= SPI_TX_QUAD; 2395 break; 2396 case 8: 2397 spi->mode |= SPI_TX_OCTAL; 2398 break; 2399 default: 2400 dev_warn(&ctlr->dev, 2401 "spi-tx-bus-width %d not supported\n", 2402 value); 2403 break; 2404 } 2405 } 2406 2407 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2408 switch (value) { 2409 case 0: 2410 spi->mode |= SPI_NO_RX; 2411 break; 2412 case 1: 2413 break; 2414 case 2: 2415 spi->mode |= SPI_RX_DUAL; 2416 break; 2417 case 4: 2418 spi->mode |= SPI_RX_QUAD; 2419 break; 2420 case 8: 2421 spi->mode |= SPI_RX_OCTAL; 2422 break; 2423 default: 2424 dev_warn(&ctlr->dev, 2425 "spi-rx-bus-width %d not supported\n", 2426 value); 2427 break; 2428 } 2429 } 2430 2431 if (spi_controller_is_target(ctlr)) { 2432 if (!of_node_name_eq(nc, "slave")) { 2433 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2434 nc); 2435 return -EINVAL; 2436 } 2437 return 0; 2438 } 2439 2440 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2441 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2442 return -EINVAL; 2443 } 2444 2445 spi_set_all_cs_unused(spi); 2446 2447 /* Device address */ 2448 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2449 SPI_CS_CNT_MAX); 2450 if (rc < 0) { 2451 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2452 nc, rc); 2453 return rc; 2454 } 2455 if (rc > ctlr->num_chipselect) { 2456 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2457 nc, rc); 2458 return rc; 2459 } 2460 if ((of_property_present(nc, "parallel-memories")) && 2461 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2462 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2463 return -EINVAL; 2464 } 2465 for (idx = 0; idx < rc; idx++) 2466 spi_set_chipselect(spi, idx, cs[idx]); 2467 2468 /* 2469 * By default spi->chip_select[0] will hold the physical CS number, 2470 * so set bit 0 in spi->cs_index_mask. 2471 */ 2472 spi->cs_index_mask = BIT(0); 2473 2474 /* Device speed */ 2475 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2476 spi->max_speed_hz = value; 2477 2478 /* Device CS delays */ 2479 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2480 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2481 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2482 2483 return 0; 2484 } 2485 2486 static struct spi_device * 2487 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2488 { 2489 struct spi_device *spi; 2490 int rc; 2491 2492 /* Alloc an spi_device */ 2493 spi = spi_alloc_device(ctlr); 2494 if (!spi) { 2495 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2496 rc = -ENOMEM; 2497 goto err_out; 2498 } 2499 2500 /* Select device driver */ 2501 rc = of_alias_from_compatible(nc, spi->modalias, 2502 sizeof(spi->modalias)); 2503 if (rc < 0) { 2504 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2505 goto err_out; 2506 } 2507 2508 rc = of_spi_parse_dt(ctlr, spi, nc); 2509 if (rc) 2510 goto err_out; 2511 2512 /* Store a pointer to the node in the device structure */ 2513 of_node_get(nc); 2514 2515 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2516 2517 /* Register the new device */ 2518 rc = spi_add_device(spi); 2519 if (rc) { 2520 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2521 goto err_of_node_put; 2522 } 2523 2524 return spi; 2525 2526 err_of_node_put: 2527 of_node_put(nc); 2528 err_out: 2529 spi_dev_put(spi); 2530 return ERR_PTR(rc); 2531 } 2532 2533 /** 2534 * of_register_spi_devices() - Register child devices onto the SPI bus 2535 * @ctlr: Pointer to spi_controller device 2536 * 2537 * Registers an spi_device for each child node of controller node which 2538 * represents a valid SPI slave. 2539 */ 2540 static void of_register_spi_devices(struct spi_controller *ctlr) 2541 { 2542 struct spi_device *spi; 2543 struct device_node *nc; 2544 2545 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2546 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2547 continue; 2548 spi = of_register_spi_device(ctlr, nc); 2549 if (IS_ERR(spi)) { 2550 dev_warn(&ctlr->dev, 2551 "Failed to create SPI device for %pOF\n", nc); 2552 of_node_clear_flag(nc, OF_POPULATED); 2553 } 2554 } 2555 } 2556 #else 2557 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2558 #endif 2559 2560 /** 2561 * spi_new_ancillary_device() - Register ancillary SPI device 2562 * @spi: Pointer to the main SPI device registering the ancillary device 2563 * @chip_select: Chip Select of the ancillary device 2564 * 2565 * Register an ancillary SPI device; for example some chips have a chip-select 2566 * for normal device usage and another one for setup/firmware upload. 2567 * 2568 * This may only be called from main SPI device's probe routine. 2569 * 2570 * Return: 0 on success; negative errno on failure 2571 */ 2572 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2573 u8 chip_select) 2574 { 2575 struct spi_controller *ctlr = spi->controller; 2576 struct spi_device *ancillary; 2577 int rc; 2578 2579 /* Alloc an spi_device */ 2580 ancillary = spi_alloc_device(ctlr); 2581 if (!ancillary) { 2582 rc = -ENOMEM; 2583 goto err_out; 2584 } 2585 2586 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2587 2588 /* Use provided chip-select for ancillary device */ 2589 spi_set_all_cs_unused(ancillary); 2590 spi_set_chipselect(ancillary, 0, chip_select); 2591 2592 /* Take over SPI mode/speed from SPI main device */ 2593 ancillary->max_speed_hz = spi->max_speed_hz; 2594 ancillary->mode = spi->mode; 2595 /* 2596 * By default spi->chip_select[0] will hold the physical CS number, 2597 * so set bit 0 in spi->cs_index_mask. 2598 */ 2599 ancillary->cs_index_mask = BIT(0); 2600 2601 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2602 2603 /* Register the new device */ 2604 rc = __spi_add_device(ancillary); 2605 if (rc) { 2606 dev_err(&spi->dev, "failed to register ancillary device\n"); 2607 goto err_out; 2608 } 2609 2610 return ancillary; 2611 2612 err_out: 2613 spi_dev_put(ancillary); 2614 return ERR_PTR(rc); 2615 } 2616 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2617 2618 #ifdef CONFIG_ACPI 2619 struct acpi_spi_lookup { 2620 struct spi_controller *ctlr; 2621 u32 max_speed_hz; 2622 u32 mode; 2623 int irq; 2624 u8 bits_per_word; 2625 u8 chip_select; 2626 int n; 2627 int index; 2628 }; 2629 2630 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2631 { 2632 struct acpi_resource_spi_serialbus *sb; 2633 int *count = data; 2634 2635 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2636 return 1; 2637 2638 sb = &ares->data.spi_serial_bus; 2639 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2640 return 1; 2641 2642 *count = *count + 1; 2643 2644 return 1; 2645 } 2646 2647 /** 2648 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2649 * @adev: ACPI device 2650 * 2651 * Return: the number of SpiSerialBus resources in the ACPI-device's 2652 * resource-list; or a negative error code. 2653 */ 2654 int acpi_spi_count_resources(struct acpi_device *adev) 2655 { 2656 LIST_HEAD(r); 2657 int count = 0; 2658 int ret; 2659 2660 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2661 if (ret < 0) 2662 return ret; 2663 2664 acpi_dev_free_resource_list(&r); 2665 2666 return count; 2667 } 2668 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2669 2670 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2671 struct acpi_spi_lookup *lookup) 2672 { 2673 const union acpi_object *obj; 2674 2675 if (!x86_apple_machine) 2676 return; 2677 2678 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2679 && obj->buffer.length >= 4) 2680 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2681 2682 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2683 && obj->buffer.length == 8) 2684 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2685 2686 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2687 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2688 lookup->mode |= SPI_LSB_FIRST; 2689 2690 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2691 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2692 lookup->mode |= SPI_CPOL; 2693 2694 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2695 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2696 lookup->mode |= SPI_CPHA; 2697 } 2698 2699 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2700 { 2701 struct acpi_spi_lookup *lookup = data; 2702 struct spi_controller *ctlr = lookup->ctlr; 2703 2704 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2705 struct acpi_resource_spi_serialbus *sb; 2706 acpi_handle parent_handle; 2707 acpi_status status; 2708 2709 sb = &ares->data.spi_serial_bus; 2710 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2711 2712 if (lookup->index != -1 && lookup->n++ != lookup->index) 2713 return 1; 2714 2715 status = acpi_get_handle(NULL, 2716 sb->resource_source.string_ptr, 2717 &parent_handle); 2718 2719 if (ACPI_FAILURE(status)) 2720 return -ENODEV; 2721 2722 if (ctlr) { 2723 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2724 return -ENODEV; 2725 } else { 2726 struct acpi_device *adev; 2727 2728 adev = acpi_fetch_acpi_dev(parent_handle); 2729 if (!adev) 2730 return -ENODEV; 2731 2732 ctlr = acpi_spi_find_controller_by_adev(adev); 2733 if (!ctlr) 2734 return -EPROBE_DEFER; 2735 2736 lookup->ctlr = ctlr; 2737 } 2738 2739 /* 2740 * ACPI DeviceSelection numbering is handled by the 2741 * host controller driver in Windows and can vary 2742 * from driver to driver. In Linux we always expect 2743 * 0 .. max - 1 so we need to ask the driver to 2744 * translate between the two schemes. 2745 */ 2746 if (ctlr->fw_translate_cs) { 2747 int cs = ctlr->fw_translate_cs(ctlr, 2748 sb->device_selection); 2749 if (cs < 0) 2750 return cs; 2751 lookup->chip_select = cs; 2752 } else { 2753 lookup->chip_select = sb->device_selection; 2754 } 2755 2756 lookup->max_speed_hz = sb->connection_speed; 2757 lookup->bits_per_word = sb->data_bit_length; 2758 2759 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2760 lookup->mode |= SPI_CPHA; 2761 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2762 lookup->mode |= SPI_CPOL; 2763 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2764 lookup->mode |= SPI_CS_HIGH; 2765 } 2766 } else if (lookup->irq < 0) { 2767 struct resource r; 2768 2769 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2770 lookup->irq = r.start; 2771 } 2772 2773 /* Always tell the ACPI core to skip this resource */ 2774 return 1; 2775 } 2776 2777 /** 2778 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2779 * @ctlr: controller to which the spi device belongs 2780 * @adev: ACPI Device for the spi device 2781 * @index: Index of the spi resource inside the ACPI Node 2782 * 2783 * This should be used to allocate a new SPI device from and ACPI Device node. 2784 * The caller is responsible for calling spi_add_device to register the SPI device. 2785 * 2786 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2787 * using the resource. 2788 * If index is set to -1, index is not used. 2789 * Note: If index is -1, ctlr must be set. 2790 * 2791 * Return: a pointer to the new device, or ERR_PTR on error. 2792 */ 2793 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2794 struct acpi_device *adev, 2795 int index) 2796 { 2797 acpi_handle parent_handle = NULL; 2798 struct list_head resource_list; 2799 struct acpi_spi_lookup lookup = {}; 2800 struct spi_device *spi; 2801 int ret; 2802 2803 if (!ctlr && index == -1) 2804 return ERR_PTR(-EINVAL); 2805 2806 lookup.ctlr = ctlr; 2807 lookup.irq = -1; 2808 lookup.index = index; 2809 lookup.n = 0; 2810 2811 INIT_LIST_HEAD(&resource_list); 2812 ret = acpi_dev_get_resources(adev, &resource_list, 2813 acpi_spi_add_resource, &lookup); 2814 acpi_dev_free_resource_list(&resource_list); 2815 2816 if (ret < 0) 2817 /* Found SPI in _CRS but it points to another controller */ 2818 return ERR_PTR(ret); 2819 2820 if (!lookup.max_speed_hz && 2821 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2822 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2823 /* Apple does not use _CRS but nested devices for SPI slaves */ 2824 acpi_spi_parse_apple_properties(adev, &lookup); 2825 } 2826 2827 if (!lookup.max_speed_hz) 2828 return ERR_PTR(-ENODEV); 2829 2830 spi = spi_alloc_device(lookup.ctlr); 2831 if (!spi) { 2832 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2833 dev_name(&adev->dev)); 2834 return ERR_PTR(-ENOMEM); 2835 } 2836 2837 spi_set_all_cs_unused(spi); 2838 spi_set_chipselect(spi, 0, lookup.chip_select); 2839 2840 ACPI_COMPANION_SET(&spi->dev, adev); 2841 spi->max_speed_hz = lookup.max_speed_hz; 2842 spi->mode |= lookup.mode; 2843 spi->irq = lookup.irq; 2844 spi->bits_per_word = lookup.bits_per_word; 2845 /* 2846 * By default spi->chip_select[0] will hold the physical CS number, 2847 * so set bit 0 in spi->cs_index_mask. 2848 */ 2849 spi->cs_index_mask = BIT(0); 2850 2851 return spi; 2852 } 2853 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2854 2855 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2856 struct acpi_device *adev) 2857 { 2858 struct spi_device *spi; 2859 2860 if (acpi_bus_get_status(adev) || !adev->status.present || 2861 acpi_device_enumerated(adev)) 2862 return AE_OK; 2863 2864 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2865 if (IS_ERR(spi)) { 2866 if (PTR_ERR(spi) == -ENOMEM) 2867 return AE_NO_MEMORY; 2868 else 2869 return AE_OK; 2870 } 2871 2872 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2873 sizeof(spi->modalias)); 2874 2875 acpi_device_set_enumerated(adev); 2876 2877 adev->power.flags.ignore_parent = true; 2878 if (spi_add_device(spi)) { 2879 adev->power.flags.ignore_parent = false; 2880 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2881 dev_name(&adev->dev)); 2882 spi_dev_put(spi); 2883 } 2884 2885 return AE_OK; 2886 } 2887 2888 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2889 void *data, void **return_value) 2890 { 2891 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2892 struct spi_controller *ctlr = data; 2893 2894 if (!adev) 2895 return AE_OK; 2896 2897 return acpi_register_spi_device(ctlr, adev); 2898 } 2899 2900 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2901 2902 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2903 { 2904 acpi_status status; 2905 acpi_handle handle; 2906 2907 handle = ACPI_HANDLE(ctlr->dev.parent); 2908 if (!handle) 2909 return; 2910 2911 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2912 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2913 acpi_spi_add_device, NULL, ctlr, NULL); 2914 if (ACPI_FAILURE(status)) 2915 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2916 } 2917 #else 2918 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2919 #endif /* CONFIG_ACPI */ 2920 2921 static void spi_controller_release(struct device *dev) 2922 { 2923 struct spi_controller *ctlr; 2924 2925 ctlr = container_of(dev, struct spi_controller, dev); 2926 kfree(ctlr); 2927 } 2928 2929 static const struct class spi_master_class = { 2930 .name = "spi_master", 2931 .dev_release = spi_controller_release, 2932 .dev_groups = spi_master_groups, 2933 }; 2934 2935 #ifdef CONFIG_SPI_SLAVE 2936 /** 2937 * spi_target_abort - abort the ongoing transfer request on an SPI slave 2938 * controller 2939 * @spi: device used for the current transfer 2940 */ 2941 int spi_target_abort(struct spi_device *spi) 2942 { 2943 struct spi_controller *ctlr = spi->controller; 2944 2945 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2946 return ctlr->target_abort(ctlr); 2947 2948 return -ENOTSUPP; 2949 } 2950 EXPORT_SYMBOL_GPL(spi_target_abort); 2951 2952 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2953 char *buf) 2954 { 2955 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2956 dev); 2957 struct device *child; 2958 2959 child = device_find_any_child(&ctlr->dev); 2960 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2961 } 2962 2963 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2964 const char *buf, size_t count) 2965 { 2966 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2967 dev); 2968 struct spi_device *spi; 2969 struct device *child; 2970 char name[32]; 2971 int rc; 2972 2973 rc = sscanf(buf, "%31s", name); 2974 if (rc != 1 || !name[0]) 2975 return -EINVAL; 2976 2977 child = device_find_any_child(&ctlr->dev); 2978 if (child) { 2979 /* Remove registered slave */ 2980 device_unregister(child); 2981 put_device(child); 2982 } 2983 2984 if (strcmp(name, "(null)")) { 2985 /* Register new slave */ 2986 spi = spi_alloc_device(ctlr); 2987 if (!spi) 2988 return -ENOMEM; 2989 2990 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2991 2992 rc = spi_add_device(spi); 2993 if (rc) { 2994 spi_dev_put(spi); 2995 return rc; 2996 } 2997 } 2998 2999 return count; 3000 } 3001 3002 static DEVICE_ATTR_RW(slave); 3003 3004 static struct attribute *spi_slave_attrs[] = { 3005 &dev_attr_slave.attr, 3006 NULL, 3007 }; 3008 3009 static const struct attribute_group spi_slave_group = { 3010 .attrs = spi_slave_attrs, 3011 }; 3012 3013 static const struct attribute_group *spi_slave_groups[] = { 3014 &spi_controller_statistics_group, 3015 &spi_slave_group, 3016 NULL, 3017 }; 3018 3019 static const struct class spi_slave_class = { 3020 .name = "spi_slave", 3021 .dev_release = spi_controller_release, 3022 .dev_groups = spi_slave_groups, 3023 }; 3024 #else 3025 extern struct class spi_slave_class; /* dummy */ 3026 #endif 3027 3028 /** 3029 * __spi_alloc_controller - allocate an SPI master or slave controller 3030 * @dev: the controller, possibly using the platform_bus 3031 * @size: how much zeroed driver-private data to allocate; the pointer to this 3032 * memory is in the driver_data field of the returned device, accessible 3033 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3034 * drivers granting DMA access to portions of their private data need to 3035 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3036 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3037 * slave (true) controller 3038 * Context: can sleep 3039 * 3040 * This call is used only by SPI controller drivers, which are the 3041 * only ones directly touching chip registers. It's how they allocate 3042 * an spi_controller structure, prior to calling spi_register_controller(). 3043 * 3044 * This must be called from context that can sleep. 3045 * 3046 * The caller is responsible for assigning the bus number and initializing the 3047 * controller's methods before calling spi_register_controller(); and (after 3048 * errors adding the device) calling spi_controller_put() to prevent a memory 3049 * leak. 3050 * 3051 * Return: the SPI controller structure on success, else NULL. 3052 */ 3053 struct spi_controller *__spi_alloc_controller(struct device *dev, 3054 unsigned int size, bool slave) 3055 { 3056 struct spi_controller *ctlr; 3057 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3058 3059 if (!dev) 3060 return NULL; 3061 3062 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3063 if (!ctlr) 3064 return NULL; 3065 3066 device_initialize(&ctlr->dev); 3067 INIT_LIST_HEAD(&ctlr->queue); 3068 spin_lock_init(&ctlr->queue_lock); 3069 spin_lock_init(&ctlr->bus_lock_spinlock); 3070 mutex_init(&ctlr->bus_lock_mutex); 3071 mutex_init(&ctlr->io_mutex); 3072 mutex_init(&ctlr->add_lock); 3073 ctlr->bus_num = -1; 3074 ctlr->num_chipselect = 1; 3075 ctlr->slave = slave; 3076 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3077 ctlr->dev.class = &spi_slave_class; 3078 else 3079 ctlr->dev.class = &spi_master_class; 3080 ctlr->dev.parent = dev; 3081 pm_suspend_ignore_children(&ctlr->dev, true); 3082 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3083 3084 return ctlr; 3085 } 3086 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3087 3088 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3089 { 3090 spi_controller_put(*(struct spi_controller **)ctlr); 3091 } 3092 3093 /** 3094 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3095 * @dev: physical device of SPI controller 3096 * @size: how much zeroed driver-private data to allocate 3097 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3098 * Context: can sleep 3099 * 3100 * Allocate an SPI controller and automatically release a reference on it 3101 * when @dev is unbound from its driver. Drivers are thus relieved from 3102 * having to call spi_controller_put(). 3103 * 3104 * The arguments to this function are identical to __spi_alloc_controller(). 3105 * 3106 * Return: the SPI controller structure on success, else NULL. 3107 */ 3108 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3109 unsigned int size, 3110 bool slave) 3111 { 3112 struct spi_controller **ptr, *ctlr; 3113 3114 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3115 GFP_KERNEL); 3116 if (!ptr) 3117 return NULL; 3118 3119 ctlr = __spi_alloc_controller(dev, size, slave); 3120 if (ctlr) { 3121 ctlr->devm_allocated = true; 3122 *ptr = ctlr; 3123 devres_add(dev, ptr); 3124 } else { 3125 devres_free(ptr); 3126 } 3127 3128 return ctlr; 3129 } 3130 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3131 3132 /** 3133 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3134 * @ctlr: The SPI master to grab GPIO descriptors for 3135 */ 3136 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3137 { 3138 int nb, i; 3139 struct gpio_desc **cs; 3140 struct device *dev = &ctlr->dev; 3141 unsigned long native_cs_mask = 0; 3142 unsigned int num_cs_gpios = 0; 3143 3144 nb = gpiod_count(dev, "cs"); 3145 if (nb < 0) { 3146 /* No GPIOs at all is fine, else return the error */ 3147 if (nb == -ENOENT) 3148 return 0; 3149 return nb; 3150 } 3151 3152 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3153 3154 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3155 GFP_KERNEL); 3156 if (!cs) 3157 return -ENOMEM; 3158 ctlr->cs_gpiods = cs; 3159 3160 for (i = 0; i < nb; i++) { 3161 /* 3162 * Most chipselects are active low, the inverted 3163 * semantics are handled by special quirks in gpiolib, 3164 * so initializing them GPIOD_OUT_LOW here means 3165 * "unasserted", in most cases this will drive the physical 3166 * line high. 3167 */ 3168 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3169 GPIOD_OUT_LOW); 3170 if (IS_ERR(cs[i])) 3171 return PTR_ERR(cs[i]); 3172 3173 if (cs[i]) { 3174 /* 3175 * If we find a CS GPIO, name it after the device and 3176 * chip select line. 3177 */ 3178 char *gpioname; 3179 3180 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3181 dev_name(dev), i); 3182 if (!gpioname) 3183 return -ENOMEM; 3184 gpiod_set_consumer_name(cs[i], gpioname); 3185 num_cs_gpios++; 3186 continue; 3187 } 3188 3189 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3190 dev_err(dev, "Invalid native chip select %d\n", i); 3191 return -EINVAL; 3192 } 3193 native_cs_mask |= BIT(i); 3194 } 3195 3196 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3197 3198 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3199 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3200 dev_err(dev, "No unused native chip select available\n"); 3201 return -EINVAL; 3202 } 3203 3204 return 0; 3205 } 3206 3207 static int spi_controller_check_ops(struct spi_controller *ctlr) 3208 { 3209 /* 3210 * The controller may implement only the high-level SPI-memory like 3211 * operations if it does not support regular SPI transfers, and this is 3212 * valid use case. 3213 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3214 * one of the ->transfer_xxx() method be implemented. 3215 */ 3216 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3217 if (!ctlr->transfer && !ctlr->transfer_one && 3218 !ctlr->transfer_one_message) { 3219 return -EINVAL; 3220 } 3221 } 3222 3223 return 0; 3224 } 3225 3226 /* Allocate dynamic bus number using Linux idr */ 3227 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3228 { 3229 int id; 3230 3231 mutex_lock(&board_lock); 3232 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3233 mutex_unlock(&board_lock); 3234 if (WARN(id < 0, "couldn't get idr")) 3235 return id == -ENOSPC ? -EBUSY : id; 3236 ctlr->bus_num = id; 3237 return 0; 3238 } 3239 3240 /** 3241 * spi_register_controller - register SPI host or target controller 3242 * @ctlr: initialized controller, originally from spi_alloc_host() or 3243 * spi_alloc_target() 3244 * Context: can sleep 3245 * 3246 * SPI controllers connect to their drivers using some non-SPI bus, 3247 * such as the platform bus. The final stage of probe() in that code 3248 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3249 * 3250 * SPI controllers use board specific (often SOC specific) bus numbers, 3251 * and board-specific addressing for SPI devices combines those numbers 3252 * with chip select numbers. Since SPI does not directly support dynamic 3253 * device identification, boards need configuration tables telling which 3254 * chip is at which address. 3255 * 3256 * This must be called from context that can sleep. It returns zero on 3257 * success, else a negative error code (dropping the controller's refcount). 3258 * After a successful return, the caller is responsible for calling 3259 * spi_unregister_controller(). 3260 * 3261 * Return: zero on success, else a negative error code. 3262 */ 3263 int spi_register_controller(struct spi_controller *ctlr) 3264 { 3265 struct device *dev = ctlr->dev.parent; 3266 struct boardinfo *bi; 3267 int first_dynamic; 3268 int status; 3269 int idx; 3270 3271 if (!dev) 3272 return -ENODEV; 3273 3274 /* 3275 * Make sure all necessary hooks are implemented before registering 3276 * the SPI controller. 3277 */ 3278 status = spi_controller_check_ops(ctlr); 3279 if (status) 3280 return status; 3281 3282 if (ctlr->bus_num < 0) 3283 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3284 if (ctlr->bus_num >= 0) { 3285 /* Devices with a fixed bus num must check-in with the num */ 3286 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3287 if (status) 3288 return status; 3289 } 3290 if (ctlr->bus_num < 0) { 3291 first_dynamic = of_alias_get_highest_id("spi"); 3292 if (first_dynamic < 0) 3293 first_dynamic = 0; 3294 else 3295 first_dynamic++; 3296 3297 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3298 if (status) 3299 return status; 3300 } 3301 ctlr->bus_lock_flag = 0; 3302 init_completion(&ctlr->xfer_completion); 3303 init_completion(&ctlr->cur_msg_completion); 3304 if (!ctlr->max_dma_len) 3305 ctlr->max_dma_len = INT_MAX; 3306 3307 /* 3308 * Register the device, then userspace will see it. 3309 * Registration fails if the bus ID is in use. 3310 */ 3311 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3312 3313 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3314 status = spi_get_gpio_descs(ctlr); 3315 if (status) 3316 goto free_bus_id; 3317 /* 3318 * A controller using GPIO descriptors always 3319 * supports SPI_CS_HIGH if need be. 3320 */ 3321 ctlr->mode_bits |= SPI_CS_HIGH; 3322 } 3323 3324 /* 3325 * Even if it's just one always-selected device, there must 3326 * be at least one chipselect. 3327 */ 3328 if (!ctlr->num_chipselect) { 3329 status = -EINVAL; 3330 goto free_bus_id; 3331 } 3332 3333 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3334 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3335 ctlr->last_cs[idx] = SPI_INVALID_CS; 3336 3337 status = device_add(&ctlr->dev); 3338 if (status < 0) 3339 goto free_bus_id; 3340 dev_dbg(dev, "registered %s %s\n", 3341 spi_controller_is_target(ctlr) ? "target" : "host", 3342 dev_name(&ctlr->dev)); 3343 3344 /* 3345 * If we're using a queued driver, start the queue. Note that we don't 3346 * need the queueing logic if the driver is only supporting high-level 3347 * memory operations. 3348 */ 3349 if (ctlr->transfer) { 3350 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3351 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3352 status = spi_controller_initialize_queue(ctlr); 3353 if (status) { 3354 device_del(&ctlr->dev); 3355 goto free_bus_id; 3356 } 3357 } 3358 /* Add statistics */ 3359 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3360 if (!ctlr->pcpu_statistics) { 3361 dev_err(dev, "Error allocating per-cpu statistics\n"); 3362 status = -ENOMEM; 3363 goto destroy_queue; 3364 } 3365 3366 mutex_lock(&board_lock); 3367 list_add_tail(&ctlr->list, &spi_controller_list); 3368 list_for_each_entry(bi, &board_list, list) 3369 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3370 mutex_unlock(&board_lock); 3371 3372 /* Register devices from the device tree and ACPI */ 3373 of_register_spi_devices(ctlr); 3374 acpi_register_spi_devices(ctlr); 3375 return status; 3376 3377 destroy_queue: 3378 spi_destroy_queue(ctlr); 3379 free_bus_id: 3380 mutex_lock(&board_lock); 3381 idr_remove(&spi_master_idr, ctlr->bus_num); 3382 mutex_unlock(&board_lock); 3383 return status; 3384 } 3385 EXPORT_SYMBOL_GPL(spi_register_controller); 3386 3387 static void devm_spi_unregister(struct device *dev, void *res) 3388 { 3389 spi_unregister_controller(*(struct spi_controller **)res); 3390 } 3391 3392 /** 3393 * devm_spi_register_controller - register managed SPI host or target 3394 * controller 3395 * @dev: device managing SPI controller 3396 * @ctlr: initialized controller, originally from spi_alloc_host() or 3397 * spi_alloc_target() 3398 * Context: can sleep 3399 * 3400 * Register a SPI device as with spi_register_controller() which will 3401 * automatically be unregistered and freed. 3402 * 3403 * Return: zero on success, else a negative error code. 3404 */ 3405 int devm_spi_register_controller(struct device *dev, 3406 struct spi_controller *ctlr) 3407 { 3408 struct spi_controller **ptr; 3409 int ret; 3410 3411 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3412 if (!ptr) 3413 return -ENOMEM; 3414 3415 ret = spi_register_controller(ctlr); 3416 if (!ret) { 3417 *ptr = ctlr; 3418 devres_add(dev, ptr); 3419 } else { 3420 devres_free(ptr); 3421 } 3422 3423 return ret; 3424 } 3425 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3426 3427 static int __unregister(struct device *dev, void *null) 3428 { 3429 spi_unregister_device(to_spi_device(dev)); 3430 return 0; 3431 } 3432 3433 /** 3434 * spi_unregister_controller - unregister SPI master or slave controller 3435 * @ctlr: the controller being unregistered 3436 * Context: can sleep 3437 * 3438 * This call is used only by SPI controller drivers, which are the 3439 * only ones directly touching chip registers. 3440 * 3441 * This must be called from context that can sleep. 3442 * 3443 * Note that this function also drops a reference to the controller. 3444 */ 3445 void spi_unregister_controller(struct spi_controller *ctlr) 3446 { 3447 struct spi_controller *found; 3448 int id = ctlr->bus_num; 3449 3450 /* Prevent addition of new devices, unregister existing ones */ 3451 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3452 mutex_lock(&ctlr->add_lock); 3453 3454 device_for_each_child(&ctlr->dev, NULL, __unregister); 3455 3456 /* First make sure that this controller was ever added */ 3457 mutex_lock(&board_lock); 3458 found = idr_find(&spi_master_idr, id); 3459 mutex_unlock(&board_lock); 3460 if (ctlr->queued) { 3461 if (spi_destroy_queue(ctlr)) 3462 dev_err(&ctlr->dev, "queue remove failed\n"); 3463 } 3464 mutex_lock(&board_lock); 3465 list_del(&ctlr->list); 3466 mutex_unlock(&board_lock); 3467 3468 device_del(&ctlr->dev); 3469 3470 /* Free bus id */ 3471 mutex_lock(&board_lock); 3472 if (found == ctlr) 3473 idr_remove(&spi_master_idr, id); 3474 mutex_unlock(&board_lock); 3475 3476 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3477 mutex_unlock(&ctlr->add_lock); 3478 3479 /* 3480 * Release the last reference on the controller if its driver 3481 * has not yet been converted to devm_spi_alloc_host/target(). 3482 */ 3483 if (!ctlr->devm_allocated) 3484 put_device(&ctlr->dev); 3485 } 3486 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3487 3488 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3489 { 3490 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3491 } 3492 3493 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3494 { 3495 mutex_lock(&ctlr->bus_lock_mutex); 3496 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3497 mutex_unlock(&ctlr->bus_lock_mutex); 3498 } 3499 3500 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3501 { 3502 mutex_lock(&ctlr->bus_lock_mutex); 3503 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3504 mutex_unlock(&ctlr->bus_lock_mutex); 3505 } 3506 3507 int spi_controller_suspend(struct spi_controller *ctlr) 3508 { 3509 int ret = 0; 3510 3511 /* Basically no-ops for non-queued controllers */ 3512 if (ctlr->queued) { 3513 ret = spi_stop_queue(ctlr); 3514 if (ret) 3515 dev_err(&ctlr->dev, "queue stop failed\n"); 3516 } 3517 3518 __spi_mark_suspended(ctlr); 3519 return ret; 3520 } 3521 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3522 3523 int spi_controller_resume(struct spi_controller *ctlr) 3524 { 3525 int ret = 0; 3526 3527 __spi_mark_resumed(ctlr); 3528 3529 if (ctlr->queued) { 3530 ret = spi_start_queue(ctlr); 3531 if (ret) 3532 dev_err(&ctlr->dev, "queue restart failed\n"); 3533 } 3534 return ret; 3535 } 3536 EXPORT_SYMBOL_GPL(spi_controller_resume); 3537 3538 /*-------------------------------------------------------------------------*/ 3539 3540 /* Core methods for spi_message alterations */ 3541 3542 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3543 struct spi_message *msg, 3544 void *res) 3545 { 3546 struct spi_replaced_transfers *rxfer = res; 3547 size_t i; 3548 3549 /* Call extra callback if requested */ 3550 if (rxfer->release) 3551 rxfer->release(ctlr, msg, res); 3552 3553 /* Insert replaced transfers back into the message */ 3554 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3555 3556 /* Remove the formerly inserted entries */ 3557 for (i = 0; i < rxfer->inserted; i++) 3558 list_del(&rxfer->inserted_transfers[i].transfer_list); 3559 } 3560 3561 /** 3562 * spi_replace_transfers - replace transfers with several transfers 3563 * and register change with spi_message.resources 3564 * @msg: the spi_message we work upon 3565 * @xfer_first: the first spi_transfer we want to replace 3566 * @remove: number of transfers to remove 3567 * @insert: the number of transfers we want to insert instead 3568 * @release: extra release code necessary in some circumstances 3569 * @extradatasize: extra data to allocate (with alignment guarantees 3570 * of struct @spi_transfer) 3571 * @gfp: gfp flags 3572 * 3573 * Returns: pointer to @spi_replaced_transfers, 3574 * PTR_ERR(...) in case of errors. 3575 */ 3576 static struct spi_replaced_transfers *spi_replace_transfers( 3577 struct spi_message *msg, 3578 struct spi_transfer *xfer_first, 3579 size_t remove, 3580 size_t insert, 3581 spi_replaced_release_t release, 3582 size_t extradatasize, 3583 gfp_t gfp) 3584 { 3585 struct spi_replaced_transfers *rxfer; 3586 struct spi_transfer *xfer; 3587 size_t i; 3588 3589 /* Allocate the structure using spi_res */ 3590 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3591 struct_size(rxfer, inserted_transfers, insert) 3592 + extradatasize, 3593 gfp); 3594 if (!rxfer) 3595 return ERR_PTR(-ENOMEM); 3596 3597 /* The release code to invoke before running the generic release */ 3598 rxfer->release = release; 3599 3600 /* Assign extradata */ 3601 if (extradatasize) 3602 rxfer->extradata = 3603 &rxfer->inserted_transfers[insert]; 3604 3605 /* Init the replaced_transfers list */ 3606 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3607 3608 /* 3609 * Assign the list_entry after which we should reinsert 3610 * the @replaced_transfers - it may be spi_message.messages! 3611 */ 3612 rxfer->replaced_after = xfer_first->transfer_list.prev; 3613 3614 /* Remove the requested number of transfers */ 3615 for (i = 0; i < remove; i++) { 3616 /* 3617 * If the entry after replaced_after it is msg->transfers 3618 * then we have been requested to remove more transfers 3619 * than are in the list. 3620 */ 3621 if (rxfer->replaced_after->next == &msg->transfers) { 3622 dev_err(&msg->spi->dev, 3623 "requested to remove more spi_transfers than are available\n"); 3624 /* Insert replaced transfers back into the message */ 3625 list_splice(&rxfer->replaced_transfers, 3626 rxfer->replaced_after); 3627 3628 /* Free the spi_replace_transfer structure... */ 3629 spi_res_free(rxfer); 3630 3631 /* ...and return with an error */ 3632 return ERR_PTR(-EINVAL); 3633 } 3634 3635 /* 3636 * Remove the entry after replaced_after from list of 3637 * transfers and add it to list of replaced_transfers. 3638 */ 3639 list_move_tail(rxfer->replaced_after->next, 3640 &rxfer->replaced_transfers); 3641 } 3642 3643 /* 3644 * Create copy of the given xfer with identical settings 3645 * based on the first transfer to get removed. 3646 */ 3647 for (i = 0; i < insert; i++) { 3648 /* We need to run in reverse order */ 3649 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3650 3651 /* Copy all spi_transfer data */ 3652 memcpy(xfer, xfer_first, sizeof(*xfer)); 3653 3654 /* Add to list */ 3655 list_add(&xfer->transfer_list, rxfer->replaced_after); 3656 3657 /* Clear cs_change and delay for all but the last */ 3658 if (i) { 3659 xfer->cs_change = false; 3660 xfer->delay.value = 0; 3661 } 3662 } 3663 3664 /* Set up inserted... */ 3665 rxfer->inserted = insert; 3666 3667 /* ...and register it with spi_res/spi_message */ 3668 spi_res_add(msg, rxfer); 3669 3670 return rxfer; 3671 } 3672 3673 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3674 struct spi_message *msg, 3675 struct spi_transfer **xferp, 3676 size_t maxsize) 3677 { 3678 struct spi_transfer *xfer = *xferp, *xfers; 3679 struct spi_replaced_transfers *srt; 3680 size_t offset; 3681 size_t count, i; 3682 3683 /* Calculate how many we have to replace */ 3684 count = DIV_ROUND_UP(xfer->len, maxsize); 3685 3686 /* Create replacement */ 3687 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3688 if (IS_ERR(srt)) 3689 return PTR_ERR(srt); 3690 xfers = srt->inserted_transfers; 3691 3692 /* 3693 * Now handle each of those newly inserted spi_transfers. 3694 * Note that the replacements spi_transfers all are preset 3695 * to the same values as *xferp, so tx_buf, rx_buf and len 3696 * are all identical (as well as most others) 3697 * so we just have to fix up len and the pointers. 3698 */ 3699 3700 /* 3701 * The first transfer just needs the length modified, so we 3702 * run it outside the loop. 3703 */ 3704 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3705 3706 /* All the others need rx_buf/tx_buf also set */ 3707 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3708 /* Update rx_buf, tx_buf and DMA */ 3709 if (xfers[i].rx_buf) 3710 xfers[i].rx_buf += offset; 3711 if (xfers[i].tx_buf) 3712 xfers[i].tx_buf += offset; 3713 3714 /* Update length */ 3715 xfers[i].len = min(maxsize, xfers[i].len - offset); 3716 } 3717 3718 /* 3719 * We set up xferp to the last entry we have inserted, 3720 * so that we skip those already split transfers. 3721 */ 3722 *xferp = &xfers[count - 1]; 3723 3724 /* Increment statistics counters */ 3725 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3726 transfers_split_maxsize); 3727 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3728 transfers_split_maxsize); 3729 3730 return 0; 3731 } 3732 3733 /** 3734 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3735 * when an individual transfer exceeds a 3736 * certain size 3737 * @ctlr: the @spi_controller for this transfer 3738 * @msg: the @spi_message to transform 3739 * @maxsize: the maximum when to apply this 3740 * 3741 * This function allocates resources that are automatically freed during the 3742 * spi message unoptimize phase so this function should only be called from 3743 * optimize_message callbacks. 3744 * 3745 * Return: status of transformation 3746 */ 3747 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3748 struct spi_message *msg, 3749 size_t maxsize) 3750 { 3751 struct spi_transfer *xfer; 3752 int ret; 3753 3754 /* 3755 * Iterate over the transfer_list, 3756 * but note that xfer is advanced to the last transfer inserted 3757 * to avoid checking sizes again unnecessarily (also xfer does 3758 * potentially belong to a different list by the time the 3759 * replacement has happened). 3760 */ 3761 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3762 if (xfer->len > maxsize) { 3763 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3764 maxsize); 3765 if (ret) 3766 return ret; 3767 } 3768 } 3769 3770 return 0; 3771 } 3772 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3773 3774 3775 /** 3776 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3777 * when an individual transfer exceeds a 3778 * certain number of SPI words 3779 * @ctlr: the @spi_controller for this transfer 3780 * @msg: the @spi_message to transform 3781 * @maxwords: the number of words to limit each transfer to 3782 * 3783 * This function allocates resources that are automatically freed during the 3784 * spi message unoptimize phase so this function should only be called from 3785 * optimize_message callbacks. 3786 * 3787 * Return: status of transformation 3788 */ 3789 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3790 struct spi_message *msg, 3791 size_t maxwords) 3792 { 3793 struct spi_transfer *xfer; 3794 3795 /* 3796 * Iterate over the transfer_list, 3797 * but note that xfer is advanced to the last transfer inserted 3798 * to avoid checking sizes again unnecessarily (also xfer does 3799 * potentially belong to a different list by the time the 3800 * replacement has happened). 3801 */ 3802 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3803 size_t maxsize; 3804 int ret; 3805 3806 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3807 if (xfer->len > maxsize) { 3808 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3809 maxsize); 3810 if (ret) 3811 return ret; 3812 } 3813 } 3814 3815 return 0; 3816 } 3817 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3818 3819 /*-------------------------------------------------------------------------*/ 3820 3821 /* 3822 * Core methods for SPI controller protocol drivers. Some of the 3823 * other core methods are currently defined as inline functions. 3824 */ 3825 3826 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3827 u8 bits_per_word) 3828 { 3829 if (ctlr->bits_per_word_mask) { 3830 /* Only 32 bits fit in the mask */ 3831 if (bits_per_word > 32) 3832 return -EINVAL; 3833 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3834 return -EINVAL; 3835 } 3836 3837 return 0; 3838 } 3839 3840 /** 3841 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3842 * @spi: the device that requires specific CS timing configuration 3843 * 3844 * Return: zero on success, else a negative error code. 3845 */ 3846 static int spi_set_cs_timing(struct spi_device *spi) 3847 { 3848 struct device *parent = spi->controller->dev.parent; 3849 int status = 0; 3850 3851 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3852 if (spi->controller->auto_runtime_pm) { 3853 status = pm_runtime_get_sync(parent); 3854 if (status < 0) { 3855 pm_runtime_put_noidle(parent); 3856 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3857 status); 3858 return status; 3859 } 3860 3861 status = spi->controller->set_cs_timing(spi); 3862 pm_runtime_mark_last_busy(parent); 3863 pm_runtime_put_autosuspend(parent); 3864 } else { 3865 status = spi->controller->set_cs_timing(spi); 3866 } 3867 } 3868 return status; 3869 } 3870 3871 /** 3872 * spi_setup - setup SPI mode and clock rate 3873 * @spi: the device whose settings are being modified 3874 * Context: can sleep, and no requests are queued to the device 3875 * 3876 * SPI protocol drivers may need to update the transfer mode if the 3877 * device doesn't work with its default. They may likewise need 3878 * to update clock rates or word sizes from initial values. This function 3879 * changes those settings, and must be called from a context that can sleep. 3880 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3881 * effect the next time the device is selected and data is transferred to 3882 * or from it. When this function returns, the SPI device is deselected. 3883 * 3884 * Note that this call will fail if the protocol driver specifies an option 3885 * that the underlying controller or its driver does not support. For 3886 * example, not all hardware supports wire transfers using nine bit words, 3887 * LSB-first wire encoding, or active-high chipselects. 3888 * 3889 * Return: zero on success, else a negative error code. 3890 */ 3891 int spi_setup(struct spi_device *spi) 3892 { 3893 unsigned bad_bits, ugly_bits; 3894 int status; 3895 3896 /* 3897 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3898 * are set at the same time. 3899 */ 3900 if ((hweight_long(spi->mode & 3901 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3902 (hweight_long(spi->mode & 3903 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3904 dev_err(&spi->dev, 3905 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3906 return -EINVAL; 3907 } 3908 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3909 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3910 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3911 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3912 return -EINVAL; 3913 /* Check against conflicting MOSI idle configuration */ 3914 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 3915 dev_err(&spi->dev, 3916 "setup: MOSI configured to idle low and high at the same time.\n"); 3917 return -EINVAL; 3918 } 3919 /* 3920 * Help drivers fail *cleanly* when they need options 3921 * that aren't supported with their current controller. 3922 * SPI_CS_WORD has a fallback software implementation, 3923 * so it is ignored here. 3924 */ 3925 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3926 SPI_NO_TX | SPI_NO_RX); 3927 ugly_bits = bad_bits & 3928 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3929 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3930 if (ugly_bits) { 3931 dev_warn(&spi->dev, 3932 "setup: ignoring unsupported mode bits %x\n", 3933 ugly_bits); 3934 spi->mode &= ~ugly_bits; 3935 bad_bits &= ~ugly_bits; 3936 } 3937 if (bad_bits) { 3938 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3939 bad_bits); 3940 return -EINVAL; 3941 } 3942 3943 if (!spi->bits_per_word) { 3944 spi->bits_per_word = 8; 3945 } else { 3946 /* 3947 * Some controllers may not support the default 8 bits-per-word 3948 * so only perform the check when this is explicitly provided. 3949 */ 3950 status = __spi_validate_bits_per_word(spi->controller, 3951 spi->bits_per_word); 3952 if (status) 3953 return status; 3954 } 3955 3956 if (spi->controller->max_speed_hz && 3957 (!spi->max_speed_hz || 3958 spi->max_speed_hz > spi->controller->max_speed_hz)) 3959 spi->max_speed_hz = spi->controller->max_speed_hz; 3960 3961 mutex_lock(&spi->controller->io_mutex); 3962 3963 if (spi->controller->setup) { 3964 status = spi->controller->setup(spi); 3965 if (status) { 3966 mutex_unlock(&spi->controller->io_mutex); 3967 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3968 status); 3969 return status; 3970 } 3971 } 3972 3973 status = spi_set_cs_timing(spi); 3974 if (status) { 3975 mutex_unlock(&spi->controller->io_mutex); 3976 return status; 3977 } 3978 3979 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3980 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3981 if (status < 0) { 3982 mutex_unlock(&spi->controller->io_mutex); 3983 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3984 status); 3985 return status; 3986 } 3987 3988 /* 3989 * We do not want to return positive value from pm_runtime_get, 3990 * there are many instances of devices calling spi_setup() and 3991 * checking for a non-zero return value instead of a negative 3992 * return value. 3993 */ 3994 status = 0; 3995 3996 spi_set_cs(spi, false, true); 3997 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3998 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3999 } else { 4000 spi_set_cs(spi, false, true); 4001 } 4002 4003 mutex_unlock(&spi->controller->io_mutex); 4004 4005 if (spi->rt && !spi->controller->rt) { 4006 spi->controller->rt = true; 4007 spi_set_thread_rt(spi->controller); 4008 } 4009 4010 trace_spi_setup(spi, status); 4011 4012 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4013 spi->mode & SPI_MODE_X_MASK, 4014 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4015 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4016 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4017 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4018 spi->bits_per_word, spi->max_speed_hz, 4019 status); 4020 4021 return status; 4022 } 4023 EXPORT_SYMBOL_GPL(spi_setup); 4024 4025 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4026 struct spi_device *spi) 4027 { 4028 int delay1, delay2; 4029 4030 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4031 if (delay1 < 0) 4032 return delay1; 4033 4034 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4035 if (delay2 < 0) 4036 return delay2; 4037 4038 if (delay1 < delay2) 4039 memcpy(&xfer->word_delay, &spi->word_delay, 4040 sizeof(xfer->word_delay)); 4041 4042 return 0; 4043 } 4044 4045 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4046 { 4047 struct spi_controller *ctlr = spi->controller; 4048 struct spi_transfer *xfer; 4049 int w_size; 4050 4051 if (list_empty(&message->transfers)) 4052 return -EINVAL; 4053 4054 message->spi = spi; 4055 4056 /* 4057 * Half-duplex links include original MicroWire, and ones with 4058 * only one data pin like SPI_3WIRE (switches direction) or where 4059 * either MOSI or MISO is missing. They can also be caused by 4060 * software limitations. 4061 */ 4062 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4063 (spi->mode & SPI_3WIRE)) { 4064 unsigned flags = ctlr->flags; 4065 4066 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4067 if (xfer->rx_buf && xfer->tx_buf) 4068 return -EINVAL; 4069 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4070 return -EINVAL; 4071 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4072 return -EINVAL; 4073 } 4074 } 4075 4076 /* 4077 * Set transfer bits_per_word and max speed as spi device default if 4078 * it is not set for this transfer. 4079 * Set transfer tx_nbits and rx_nbits as single transfer default 4080 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4081 * Ensure transfer word_delay is at least as long as that required by 4082 * device itself. 4083 */ 4084 message->frame_length = 0; 4085 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4086 xfer->effective_speed_hz = 0; 4087 message->frame_length += xfer->len; 4088 if (!xfer->bits_per_word) 4089 xfer->bits_per_word = spi->bits_per_word; 4090 4091 if (!xfer->speed_hz) 4092 xfer->speed_hz = spi->max_speed_hz; 4093 4094 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4095 xfer->speed_hz = ctlr->max_speed_hz; 4096 4097 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4098 return -EINVAL; 4099 4100 /* 4101 * SPI transfer length should be multiple of SPI word size 4102 * where SPI word size should be power-of-two multiple. 4103 */ 4104 if (xfer->bits_per_word <= 8) 4105 w_size = 1; 4106 else if (xfer->bits_per_word <= 16) 4107 w_size = 2; 4108 else 4109 w_size = 4; 4110 4111 /* No partial transfers accepted */ 4112 if (xfer->len % w_size) 4113 return -EINVAL; 4114 4115 if (xfer->speed_hz && ctlr->min_speed_hz && 4116 xfer->speed_hz < ctlr->min_speed_hz) 4117 return -EINVAL; 4118 4119 if (xfer->tx_buf && !xfer->tx_nbits) 4120 xfer->tx_nbits = SPI_NBITS_SINGLE; 4121 if (xfer->rx_buf && !xfer->rx_nbits) 4122 xfer->rx_nbits = SPI_NBITS_SINGLE; 4123 /* 4124 * Check transfer tx/rx_nbits: 4125 * 1. check the value matches one of single, dual and quad 4126 * 2. check tx/rx_nbits match the mode in spi_device 4127 */ 4128 if (xfer->tx_buf) { 4129 if (spi->mode & SPI_NO_TX) 4130 return -EINVAL; 4131 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4132 xfer->tx_nbits != SPI_NBITS_DUAL && 4133 xfer->tx_nbits != SPI_NBITS_QUAD && 4134 xfer->tx_nbits != SPI_NBITS_OCTAL) 4135 return -EINVAL; 4136 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4137 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4138 return -EINVAL; 4139 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4140 !(spi->mode & SPI_TX_QUAD)) 4141 return -EINVAL; 4142 } 4143 /* Check transfer rx_nbits */ 4144 if (xfer->rx_buf) { 4145 if (spi->mode & SPI_NO_RX) 4146 return -EINVAL; 4147 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4148 xfer->rx_nbits != SPI_NBITS_DUAL && 4149 xfer->rx_nbits != SPI_NBITS_QUAD && 4150 xfer->rx_nbits != SPI_NBITS_OCTAL) 4151 return -EINVAL; 4152 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4153 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4154 return -EINVAL; 4155 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4156 !(spi->mode & SPI_RX_QUAD)) 4157 return -EINVAL; 4158 } 4159 4160 if (_spi_xfer_word_delay_update(xfer, spi)) 4161 return -EINVAL; 4162 4163 /* Make sure controller supports required offload features. */ 4164 if (xfer->offload_flags) { 4165 if (!message->offload) 4166 return -EINVAL; 4167 4168 if (xfer->offload_flags & ~message->offload->xfer_flags) 4169 return -EINVAL; 4170 } 4171 } 4172 4173 message->status = -EINPROGRESS; 4174 4175 return 0; 4176 } 4177 4178 /* 4179 * spi_split_transfers - generic handling of transfer splitting 4180 * @msg: the message to split 4181 * 4182 * Under certain conditions, a SPI controller may not support arbitrary 4183 * transfer sizes or other features required by a peripheral. This function 4184 * will split the transfers in the message into smaller transfers that are 4185 * supported by the controller. 4186 * 4187 * Controllers with special requirements not covered here can also split 4188 * transfers in the optimize_message() callback. 4189 * 4190 * Context: can sleep 4191 * Return: zero on success, else a negative error code 4192 */ 4193 static int spi_split_transfers(struct spi_message *msg) 4194 { 4195 struct spi_controller *ctlr = msg->spi->controller; 4196 struct spi_transfer *xfer; 4197 int ret; 4198 4199 /* 4200 * If an SPI controller does not support toggling the CS line on each 4201 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4202 * for the CS line, we can emulate the CS-per-word hardware function by 4203 * splitting transfers into one-word transfers and ensuring that 4204 * cs_change is set for each transfer. 4205 */ 4206 if ((msg->spi->mode & SPI_CS_WORD) && 4207 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4208 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4209 if (ret) 4210 return ret; 4211 4212 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4213 /* Don't change cs_change on the last entry in the list */ 4214 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4215 break; 4216 4217 xfer->cs_change = 1; 4218 } 4219 } else { 4220 ret = spi_split_transfers_maxsize(ctlr, msg, 4221 spi_max_transfer_size(msg->spi)); 4222 if (ret) 4223 return ret; 4224 } 4225 4226 return 0; 4227 } 4228 4229 /* 4230 * __spi_optimize_message - shared implementation for spi_optimize_message() 4231 * and spi_maybe_optimize_message() 4232 * @spi: the device that will be used for the message 4233 * @msg: the message to optimize 4234 * 4235 * Peripheral drivers will call spi_optimize_message() and the spi core will 4236 * call spi_maybe_optimize_message() instead of calling this directly. 4237 * 4238 * It is not valid to call this on a message that has already been optimized. 4239 * 4240 * Return: zero on success, else a negative error code 4241 */ 4242 static int __spi_optimize_message(struct spi_device *spi, 4243 struct spi_message *msg) 4244 { 4245 struct spi_controller *ctlr = spi->controller; 4246 int ret; 4247 4248 ret = __spi_validate(spi, msg); 4249 if (ret) 4250 return ret; 4251 4252 ret = spi_split_transfers(msg); 4253 if (ret) 4254 return ret; 4255 4256 if (ctlr->optimize_message) { 4257 ret = ctlr->optimize_message(msg); 4258 if (ret) { 4259 spi_res_release(ctlr, msg); 4260 return ret; 4261 } 4262 } 4263 4264 msg->optimized = true; 4265 4266 return 0; 4267 } 4268 4269 /* 4270 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4271 * @spi: the device that will be used for the message 4272 * @msg: the message to optimize 4273 * Return: zero on success, else a negative error code 4274 */ 4275 static int spi_maybe_optimize_message(struct spi_device *spi, 4276 struct spi_message *msg) 4277 { 4278 if (spi->controller->defer_optimize_message) { 4279 msg->spi = spi; 4280 return 0; 4281 } 4282 4283 if (msg->pre_optimized) 4284 return 0; 4285 4286 return __spi_optimize_message(spi, msg); 4287 } 4288 4289 /** 4290 * spi_optimize_message - do any one-time validation and setup for a SPI message 4291 * @spi: the device that will be used for the message 4292 * @msg: the message to optimize 4293 * 4294 * Peripheral drivers that reuse the same message repeatedly may call this to 4295 * perform as much message prep as possible once, rather than repeating it each 4296 * time a message transfer is performed to improve throughput and reduce CPU 4297 * usage. 4298 * 4299 * Once a message has been optimized, it cannot be modified with the exception 4300 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4301 * only the data in the memory it points to). 4302 * 4303 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4304 * to avoid leaking resources. 4305 * 4306 * Context: can sleep 4307 * Return: zero on success, else a negative error code 4308 */ 4309 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4310 { 4311 int ret; 4312 4313 /* 4314 * Pre-optimization is not supported and optimization is deferred e.g. 4315 * when using spi-mux. 4316 */ 4317 if (spi->controller->defer_optimize_message) 4318 return 0; 4319 4320 ret = __spi_optimize_message(spi, msg); 4321 if (ret) 4322 return ret; 4323 4324 /* 4325 * This flag indicates that the peripheral driver called spi_optimize_message() 4326 * and therefore we shouldn't unoptimize message automatically when finalizing 4327 * the message but rather wait until spi_unoptimize_message() is called 4328 * by the peripheral driver. 4329 */ 4330 msg->pre_optimized = true; 4331 4332 return 0; 4333 } 4334 EXPORT_SYMBOL_GPL(spi_optimize_message); 4335 4336 /** 4337 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4338 * @msg: the message to unoptimize 4339 * 4340 * Calls to this function must be balanced with calls to spi_optimize_message(). 4341 * 4342 * Context: can sleep 4343 */ 4344 void spi_unoptimize_message(struct spi_message *msg) 4345 { 4346 if (msg->spi->controller->defer_optimize_message) 4347 return; 4348 4349 __spi_unoptimize_message(msg); 4350 msg->pre_optimized = false; 4351 } 4352 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4353 4354 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4355 { 4356 struct spi_controller *ctlr = spi->controller; 4357 struct spi_transfer *xfer; 4358 4359 /* 4360 * Some controllers do not support doing regular SPI transfers. Return 4361 * ENOTSUPP when this is the case. 4362 */ 4363 if (!ctlr->transfer) 4364 return -ENOTSUPP; 4365 4366 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4367 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4368 4369 trace_spi_message_submit(message); 4370 4371 if (!ctlr->ptp_sts_supported) { 4372 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4373 xfer->ptp_sts_word_pre = 0; 4374 ptp_read_system_prets(xfer->ptp_sts); 4375 } 4376 } 4377 4378 return ctlr->transfer(spi, message); 4379 } 4380 4381 static void devm_spi_unoptimize_message(void *msg) 4382 { 4383 spi_unoptimize_message(msg); 4384 } 4385 4386 /** 4387 * devm_spi_optimize_message - managed version of spi_optimize_message() 4388 * @dev: the device that manages @msg (usually @spi->dev) 4389 * @spi: the device that will be used for the message 4390 * @msg: the message to optimize 4391 * Return: zero on success, else a negative error code 4392 * 4393 * spi_unoptimize_message() will automatically be called when the device is 4394 * removed. 4395 */ 4396 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4397 struct spi_message *msg) 4398 { 4399 int ret; 4400 4401 ret = spi_optimize_message(spi, msg); 4402 if (ret) 4403 return ret; 4404 4405 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4406 } 4407 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4408 4409 /** 4410 * spi_async - asynchronous SPI transfer 4411 * @spi: device with which data will be exchanged 4412 * @message: describes the data transfers, including completion callback 4413 * Context: any (IRQs may be blocked, etc) 4414 * 4415 * This call may be used in_irq and other contexts which can't sleep, 4416 * as well as from task contexts which can sleep. 4417 * 4418 * The completion callback is invoked in a context which can't sleep. 4419 * Before that invocation, the value of message->status is undefined. 4420 * When the callback is issued, message->status holds either zero (to 4421 * indicate complete success) or a negative error code. After that 4422 * callback returns, the driver which issued the transfer request may 4423 * deallocate the associated memory; it's no longer in use by any SPI 4424 * core or controller driver code. 4425 * 4426 * Note that although all messages to a spi_device are handled in 4427 * FIFO order, messages may go to different devices in other orders. 4428 * Some device might be higher priority, or have various "hard" access 4429 * time requirements, for example. 4430 * 4431 * On detection of any fault during the transfer, processing of 4432 * the entire message is aborted, and the device is deselected. 4433 * Until returning from the associated message completion callback, 4434 * no other spi_message queued to that device will be processed. 4435 * (This rule applies equally to all the synchronous transfer calls, 4436 * which are wrappers around this core asynchronous primitive.) 4437 * 4438 * Return: zero on success, else a negative error code. 4439 */ 4440 int spi_async(struct spi_device *spi, struct spi_message *message) 4441 { 4442 struct spi_controller *ctlr = spi->controller; 4443 int ret; 4444 unsigned long flags; 4445 4446 ret = spi_maybe_optimize_message(spi, message); 4447 if (ret) 4448 return ret; 4449 4450 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4451 4452 if (ctlr->bus_lock_flag) 4453 ret = -EBUSY; 4454 else 4455 ret = __spi_async(spi, message); 4456 4457 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4458 4459 return ret; 4460 } 4461 EXPORT_SYMBOL_GPL(spi_async); 4462 4463 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4464 { 4465 bool was_busy; 4466 int ret; 4467 4468 mutex_lock(&ctlr->io_mutex); 4469 4470 was_busy = ctlr->busy; 4471 4472 ctlr->cur_msg = msg; 4473 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4474 if (ret) 4475 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4476 ctlr->cur_msg = NULL; 4477 ctlr->fallback = false; 4478 4479 if (!was_busy) { 4480 kfree(ctlr->dummy_rx); 4481 ctlr->dummy_rx = NULL; 4482 kfree(ctlr->dummy_tx); 4483 ctlr->dummy_tx = NULL; 4484 if (ctlr->unprepare_transfer_hardware && 4485 ctlr->unprepare_transfer_hardware(ctlr)) 4486 dev_err(&ctlr->dev, 4487 "failed to unprepare transfer hardware\n"); 4488 spi_idle_runtime_pm(ctlr); 4489 } 4490 4491 mutex_unlock(&ctlr->io_mutex); 4492 } 4493 4494 /*-------------------------------------------------------------------------*/ 4495 4496 /* 4497 * Utility methods for SPI protocol drivers, layered on 4498 * top of the core. Some other utility methods are defined as 4499 * inline functions. 4500 */ 4501 4502 static void spi_complete(void *arg) 4503 { 4504 complete(arg); 4505 } 4506 4507 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4508 { 4509 DECLARE_COMPLETION_ONSTACK(done); 4510 unsigned long flags; 4511 int status; 4512 struct spi_controller *ctlr = spi->controller; 4513 4514 if (__spi_check_suspended(ctlr)) { 4515 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4516 return -ESHUTDOWN; 4517 } 4518 4519 status = spi_maybe_optimize_message(spi, message); 4520 if (status) 4521 return status; 4522 4523 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4524 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4525 4526 /* 4527 * Checking queue_empty here only guarantees async/sync message 4528 * ordering when coming from the same context. It does not need to 4529 * guard against reentrancy from a different context. The io_mutex 4530 * will catch those cases. 4531 */ 4532 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4533 message->actual_length = 0; 4534 message->status = -EINPROGRESS; 4535 4536 trace_spi_message_submit(message); 4537 4538 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4539 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4540 4541 __spi_transfer_message_noqueue(ctlr, message); 4542 4543 return message->status; 4544 } 4545 4546 /* 4547 * There are messages in the async queue that could have originated 4548 * from the same context, so we need to preserve ordering. 4549 * Therefor we send the message to the async queue and wait until they 4550 * are completed. 4551 */ 4552 message->complete = spi_complete; 4553 message->context = &done; 4554 4555 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4556 status = __spi_async(spi, message); 4557 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4558 4559 if (status == 0) { 4560 wait_for_completion(&done); 4561 status = message->status; 4562 } 4563 message->complete = NULL; 4564 message->context = NULL; 4565 4566 return status; 4567 } 4568 4569 /** 4570 * spi_sync - blocking/synchronous SPI data transfers 4571 * @spi: device with which data will be exchanged 4572 * @message: describes the data transfers 4573 * Context: can sleep 4574 * 4575 * This call may only be used from a context that may sleep. The sleep 4576 * is non-interruptible, and has no timeout. Low-overhead controller 4577 * drivers may DMA directly into and out of the message buffers. 4578 * 4579 * Note that the SPI device's chip select is active during the message, 4580 * and then is normally disabled between messages. Drivers for some 4581 * frequently-used devices may want to minimize costs of selecting a chip, 4582 * by leaving it selected in anticipation that the next message will go 4583 * to the same chip. (That may increase power usage.) 4584 * 4585 * Also, the caller is guaranteeing that the memory associated with the 4586 * message will not be freed before this call returns. 4587 * 4588 * Return: zero on success, else a negative error code. 4589 */ 4590 int spi_sync(struct spi_device *spi, struct spi_message *message) 4591 { 4592 int ret; 4593 4594 mutex_lock(&spi->controller->bus_lock_mutex); 4595 ret = __spi_sync(spi, message); 4596 mutex_unlock(&spi->controller->bus_lock_mutex); 4597 4598 return ret; 4599 } 4600 EXPORT_SYMBOL_GPL(spi_sync); 4601 4602 /** 4603 * spi_sync_locked - version of spi_sync with exclusive bus usage 4604 * @spi: device with which data will be exchanged 4605 * @message: describes the data transfers 4606 * Context: can sleep 4607 * 4608 * This call may only be used from a context that may sleep. The sleep 4609 * is non-interruptible, and has no timeout. Low-overhead controller 4610 * drivers may DMA directly into and out of the message buffers. 4611 * 4612 * This call should be used by drivers that require exclusive access to the 4613 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4614 * be released by a spi_bus_unlock call when the exclusive access is over. 4615 * 4616 * Return: zero on success, else a negative error code. 4617 */ 4618 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4619 { 4620 return __spi_sync(spi, message); 4621 } 4622 EXPORT_SYMBOL_GPL(spi_sync_locked); 4623 4624 /** 4625 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4626 * @ctlr: SPI bus master that should be locked for exclusive bus access 4627 * Context: can sleep 4628 * 4629 * This call may only be used from a context that may sleep. The sleep 4630 * is non-interruptible, and has no timeout. 4631 * 4632 * This call should be used by drivers that require exclusive access to the 4633 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4634 * exclusive access is over. Data transfer must be done by spi_sync_locked 4635 * and spi_async_locked calls when the SPI bus lock is held. 4636 * 4637 * Return: always zero. 4638 */ 4639 int spi_bus_lock(struct spi_controller *ctlr) 4640 { 4641 unsigned long flags; 4642 4643 mutex_lock(&ctlr->bus_lock_mutex); 4644 4645 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4646 ctlr->bus_lock_flag = 1; 4647 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4648 4649 /* Mutex remains locked until spi_bus_unlock() is called */ 4650 4651 return 0; 4652 } 4653 EXPORT_SYMBOL_GPL(spi_bus_lock); 4654 4655 /** 4656 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4657 * @ctlr: SPI bus master that was locked for exclusive bus access 4658 * Context: can sleep 4659 * 4660 * This call may only be used from a context that may sleep. The sleep 4661 * is non-interruptible, and has no timeout. 4662 * 4663 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4664 * call. 4665 * 4666 * Return: always zero. 4667 */ 4668 int spi_bus_unlock(struct spi_controller *ctlr) 4669 { 4670 ctlr->bus_lock_flag = 0; 4671 4672 mutex_unlock(&ctlr->bus_lock_mutex); 4673 4674 return 0; 4675 } 4676 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4677 4678 /* Portable code must never pass more than 32 bytes */ 4679 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4680 4681 static u8 *buf; 4682 4683 /** 4684 * spi_write_then_read - SPI synchronous write followed by read 4685 * @spi: device with which data will be exchanged 4686 * @txbuf: data to be written (need not be DMA-safe) 4687 * @n_tx: size of txbuf, in bytes 4688 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4689 * @n_rx: size of rxbuf, in bytes 4690 * Context: can sleep 4691 * 4692 * This performs a half duplex MicroWire style transaction with the 4693 * device, sending txbuf and then reading rxbuf. The return value 4694 * is zero for success, else a negative errno status code. 4695 * This call may only be used from a context that may sleep. 4696 * 4697 * Parameters to this routine are always copied using a small buffer. 4698 * Performance-sensitive or bulk transfer code should instead use 4699 * spi_{async,sync}() calls with DMA-safe buffers. 4700 * 4701 * Return: zero on success, else a negative error code. 4702 */ 4703 int spi_write_then_read(struct spi_device *spi, 4704 const void *txbuf, unsigned n_tx, 4705 void *rxbuf, unsigned n_rx) 4706 { 4707 static DEFINE_MUTEX(lock); 4708 4709 int status; 4710 struct spi_message message; 4711 struct spi_transfer x[2]; 4712 u8 *local_buf; 4713 4714 /* 4715 * Use preallocated DMA-safe buffer if we can. We can't avoid 4716 * copying here, (as a pure convenience thing), but we can 4717 * keep heap costs out of the hot path unless someone else is 4718 * using the pre-allocated buffer or the transfer is too large. 4719 */ 4720 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4721 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4722 GFP_KERNEL | GFP_DMA); 4723 if (!local_buf) 4724 return -ENOMEM; 4725 } else { 4726 local_buf = buf; 4727 } 4728 4729 spi_message_init(&message); 4730 memset(x, 0, sizeof(x)); 4731 if (n_tx) { 4732 x[0].len = n_tx; 4733 spi_message_add_tail(&x[0], &message); 4734 } 4735 if (n_rx) { 4736 x[1].len = n_rx; 4737 spi_message_add_tail(&x[1], &message); 4738 } 4739 4740 memcpy(local_buf, txbuf, n_tx); 4741 x[0].tx_buf = local_buf; 4742 x[1].rx_buf = local_buf + n_tx; 4743 4744 /* Do the I/O */ 4745 status = spi_sync(spi, &message); 4746 if (status == 0) 4747 memcpy(rxbuf, x[1].rx_buf, n_rx); 4748 4749 if (x[0].tx_buf == buf) 4750 mutex_unlock(&lock); 4751 else 4752 kfree(local_buf); 4753 4754 return status; 4755 } 4756 EXPORT_SYMBOL_GPL(spi_write_then_read); 4757 4758 /*-------------------------------------------------------------------------*/ 4759 4760 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4761 /* Must call put_device() when done with returned spi_device device */ 4762 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4763 { 4764 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4765 4766 return dev ? to_spi_device(dev) : NULL; 4767 } 4768 4769 /* The spi controllers are not using spi_bus, so we find it with another way */ 4770 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4771 { 4772 struct device *dev; 4773 4774 dev = class_find_device_by_of_node(&spi_master_class, node); 4775 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4776 dev = class_find_device_by_of_node(&spi_slave_class, node); 4777 if (!dev) 4778 return NULL; 4779 4780 /* Reference got in class_find_device */ 4781 return container_of(dev, struct spi_controller, dev); 4782 } 4783 4784 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4785 void *arg) 4786 { 4787 struct of_reconfig_data *rd = arg; 4788 struct spi_controller *ctlr; 4789 struct spi_device *spi; 4790 4791 switch (of_reconfig_get_state_change(action, arg)) { 4792 case OF_RECONFIG_CHANGE_ADD: 4793 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4794 if (ctlr == NULL) 4795 return NOTIFY_OK; /* Not for us */ 4796 4797 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4798 put_device(&ctlr->dev); 4799 return NOTIFY_OK; 4800 } 4801 4802 /* 4803 * Clear the flag before adding the device so that fw_devlink 4804 * doesn't skip adding consumers to this device. 4805 */ 4806 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4807 spi = of_register_spi_device(ctlr, rd->dn); 4808 put_device(&ctlr->dev); 4809 4810 if (IS_ERR(spi)) { 4811 pr_err("%s: failed to create for '%pOF'\n", 4812 __func__, rd->dn); 4813 of_node_clear_flag(rd->dn, OF_POPULATED); 4814 return notifier_from_errno(PTR_ERR(spi)); 4815 } 4816 break; 4817 4818 case OF_RECONFIG_CHANGE_REMOVE: 4819 /* Already depopulated? */ 4820 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4821 return NOTIFY_OK; 4822 4823 /* Find our device by node */ 4824 spi = of_find_spi_device_by_node(rd->dn); 4825 if (spi == NULL) 4826 return NOTIFY_OK; /* No? not meant for us */ 4827 4828 /* Unregister takes one ref away */ 4829 spi_unregister_device(spi); 4830 4831 /* And put the reference of the find */ 4832 put_device(&spi->dev); 4833 break; 4834 } 4835 4836 return NOTIFY_OK; 4837 } 4838 4839 static struct notifier_block spi_of_notifier = { 4840 .notifier_call = of_spi_notify, 4841 }; 4842 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4843 extern struct notifier_block spi_of_notifier; 4844 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4845 4846 #if IS_ENABLED(CONFIG_ACPI) 4847 static int spi_acpi_controller_match(struct device *dev, const void *data) 4848 { 4849 return device_match_acpi_dev(dev->parent, data); 4850 } 4851 4852 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4853 { 4854 struct device *dev; 4855 4856 dev = class_find_device(&spi_master_class, NULL, adev, 4857 spi_acpi_controller_match); 4858 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4859 dev = class_find_device(&spi_slave_class, NULL, adev, 4860 spi_acpi_controller_match); 4861 if (!dev) 4862 return NULL; 4863 4864 return container_of(dev, struct spi_controller, dev); 4865 } 4866 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4867 4868 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4869 { 4870 struct device *dev; 4871 4872 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4873 return to_spi_device(dev); 4874 } 4875 4876 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4877 void *arg) 4878 { 4879 struct acpi_device *adev = arg; 4880 struct spi_controller *ctlr; 4881 struct spi_device *spi; 4882 4883 switch (value) { 4884 case ACPI_RECONFIG_DEVICE_ADD: 4885 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4886 if (!ctlr) 4887 break; 4888 4889 acpi_register_spi_device(ctlr, adev); 4890 put_device(&ctlr->dev); 4891 break; 4892 case ACPI_RECONFIG_DEVICE_REMOVE: 4893 if (!acpi_device_enumerated(adev)) 4894 break; 4895 4896 spi = acpi_spi_find_device_by_adev(adev); 4897 if (!spi) 4898 break; 4899 4900 spi_unregister_device(spi); 4901 put_device(&spi->dev); 4902 break; 4903 } 4904 4905 return NOTIFY_OK; 4906 } 4907 4908 static struct notifier_block spi_acpi_notifier = { 4909 .notifier_call = acpi_spi_notify, 4910 }; 4911 #else 4912 extern struct notifier_block spi_acpi_notifier; 4913 #endif 4914 4915 static int __init spi_init(void) 4916 { 4917 int status; 4918 4919 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4920 if (!buf) { 4921 status = -ENOMEM; 4922 goto err0; 4923 } 4924 4925 status = bus_register(&spi_bus_type); 4926 if (status < 0) 4927 goto err1; 4928 4929 status = class_register(&spi_master_class); 4930 if (status < 0) 4931 goto err2; 4932 4933 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4934 status = class_register(&spi_slave_class); 4935 if (status < 0) 4936 goto err3; 4937 } 4938 4939 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4940 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4941 if (IS_ENABLED(CONFIG_ACPI)) 4942 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4943 4944 return 0; 4945 4946 err3: 4947 class_unregister(&spi_master_class); 4948 err2: 4949 bus_unregister(&spi_bus_type); 4950 err1: 4951 kfree(buf); 4952 buf = NULL; 4953 err0: 4954 return status; 4955 } 4956 4957 /* 4958 * A board_info is normally registered in arch_initcall(), 4959 * but even essential drivers wait till later. 4960 * 4961 * REVISIT only boardinfo really needs static linking. The rest (device and 4962 * driver registration) _could_ be dynamically linked (modular) ... Costs 4963 * include needing to have boardinfo data structures be much more public. 4964 */ 4965 postcore_initcall(spi_init); 4966