xref: /linux/drivers/spi/spi.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = container_of(dev,			\
88 					      struct spi_device, dev);	\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
127 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
128 				 "transfer_bytes_histo_" number,	\
129 				 transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 
148 static struct attribute *spi_dev_attrs[] = {
149 	&dev_attr_modalias.attr,
150 	NULL,
151 };
152 
153 static const struct attribute_group spi_dev_group = {
154 	.attrs  = spi_dev_attrs,
155 };
156 
157 static struct attribute *spi_device_statistics_attrs[] = {
158 	&dev_attr_spi_device_messages.attr,
159 	&dev_attr_spi_device_transfers.attr,
160 	&dev_attr_spi_device_errors.attr,
161 	&dev_attr_spi_device_timedout.attr,
162 	&dev_attr_spi_device_spi_sync.attr,
163 	&dev_attr_spi_device_spi_sync_immediate.attr,
164 	&dev_attr_spi_device_spi_async.attr,
165 	&dev_attr_spi_device_bytes.attr,
166 	&dev_attr_spi_device_bytes_rx.attr,
167 	&dev_attr_spi_device_bytes_tx.attr,
168 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
185 	NULL,
186 };
187 
188 static const struct attribute_group spi_device_statistics_group = {
189 	.name  = "statistics",
190 	.attrs  = spi_device_statistics_attrs,
191 };
192 
193 static const struct attribute_group *spi_dev_groups[] = {
194 	&spi_dev_group,
195 	&spi_device_statistics_group,
196 	NULL,
197 };
198 
199 static struct attribute *spi_master_statistics_attrs[] = {
200 	&dev_attr_spi_master_messages.attr,
201 	&dev_attr_spi_master_transfers.attr,
202 	&dev_attr_spi_master_errors.attr,
203 	&dev_attr_spi_master_timedout.attr,
204 	&dev_attr_spi_master_spi_sync.attr,
205 	&dev_attr_spi_master_spi_sync_immediate.attr,
206 	&dev_attr_spi_master_spi_async.attr,
207 	&dev_attr_spi_master_bytes.attr,
208 	&dev_attr_spi_master_bytes_rx.attr,
209 	&dev_attr_spi_master_bytes_tx.attr,
210 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
211 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
227 	NULL,
228 };
229 
230 static const struct attribute_group spi_master_statistics_group = {
231 	.name  = "statistics",
232 	.attrs  = spi_master_statistics_attrs,
233 };
234 
235 static const struct attribute_group *spi_master_groups[] = {
236 	&spi_master_statistics_group,
237 	NULL,
238 };
239 
240 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
241 				       struct spi_transfer *xfer,
242 				       struct spi_master *master)
243 {
244 	unsigned long flags;
245 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
246 
247 	if (l2len < 0)
248 		l2len = 0;
249 
250 	spin_lock_irqsave(&stats->lock, flags);
251 
252 	stats->transfers++;
253 	stats->transfer_bytes_histo[l2len]++;
254 
255 	stats->bytes += xfer->len;
256 	if ((xfer->tx_buf) &&
257 	    (xfer->tx_buf != master->dummy_tx))
258 		stats->bytes_tx += xfer->len;
259 	if ((xfer->rx_buf) &&
260 	    (xfer->rx_buf != master->dummy_rx))
261 		stats->bytes_rx += xfer->len;
262 
263 	spin_unlock_irqrestore(&stats->lock, flags);
264 }
265 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
266 
267 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
268  * and the sysfs version makes coldplug work too.
269  */
270 
271 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
272 						const struct spi_device *sdev)
273 {
274 	while (id->name[0]) {
275 		if (!strcmp(sdev->modalias, id->name))
276 			return id;
277 		id++;
278 	}
279 	return NULL;
280 }
281 
282 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
283 {
284 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
285 
286 	return spi_match_id(sdrv->id_table, sdev);
287 }
288 EXPORT_SYMBOL_GPL(spi_get_device_id);
289 
290 static int spi_match_device(struct device *dev, struct device_driver *drv)
291 {
292 	const struct spi_device	*spi = to_spi_device(dev);
293 	const struct spi_driver	*sdrv = to_spi_driver(drv);
294 
295 	/* Attempt an OF style match */
296 	if (of_driver_match_device(dev, drv))
297 		return 1;
298 
299 	/* Then try ACPI */
300 	if (acpi_driver_match_device(dev, drv))
301 		return 1;
302 
303 	if (sdrv->id_table)
304 		return !!spi_match_id(sdrv->id_table, spi);
305 
306 	return strcmp(spi->modalias, drv->name) == 0;
307 }
308 
309 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
310 {
311 	const struct spi_device		*spi = to_spi_device(dev);
312 	int rc;
313 
314 	rc = acpi_device_uevent_modalias(dev, env);
315 	if (rc != -ENODEV)
316 		return rc;
317 
318 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
319 	return 0;
320 }
321 
322 struct bus_type spi_bus_type = {
323 	.name		= "spi",
324 	.dev_groups	= spi_dev_groups,
325 	.match		= spi_match_device,
326 	.uevent		= spi_uevent,
327 };
328 EXPORT_SYMBOL_GPL(spi_bus_type);
329 
330 
331 static int spi_drv_probe(struct device *dev)
332 {
333 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
334 	struct spi_device		*spi = to_spi_device(dev);
335 	int ret;
336 
337 	ret = of_clk_set_defaults(dev->of_node, false);
338 	if (ret)
339 		return ret;
340 
341 	if (dev->of_node) {
342 		spi->irq = of_irq_get(dev->of_node, 0);
343 		if (spi->irq == -EPROBE_DEFER)
344 			return -EPROBE_DEFER;
345 		if (spi->irq < 0)
346 			spi->irq = 0;
347 	}
348 
349 	ret = dev_pm_domain_attach(dev, true);
350 	if (ret != -EPROBE_DEFER) {
351 		ret = sdrv->probe(spi);
352 		if (ret)
353 			dev_pm_domain_detach(dev, true);
354 	}
355 
356 	return ret;
357 }
358 
359 static int spi_drv_remove(struct device *dev)
360 {
361 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
362 	int ret;
363 
364 	ret = sdrv->remove(to_spi_device(dev));
365 	dev_pm_domain_detach(dev, true);
366 
367 	return ret;
368 }
369 
370 static void spi_drv_shutdown(struct device *dev)
371 {
372 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
373 
374 	sdrv->shutdown(to_spi_device(dev));
375 }
376 
377 /**
378  * __spi_register_driver - register a SPI driver
379  * @sdrv: the driver to register
380  * Context: can sleep
381  *
382  * Return: zero on success, else a negative error code.
383  */
384 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
385 {
386 	sdrv->driver.owner = owner;
387 	sdrv->driver.bus = &spi_bus_type;
388 	if (sdrv->probe)
389 		sdrv->driver.probe = spi_drv_probe;
390 	if (sdrv->remove)
391 		sdrv->driver.remove = spi_drv_remove;
392 	if (sdrv->shutdown)
393 		sdrv->driver.shutdown = spi_drv_shutdown;
394 	return driver_register(&sdrv->driver);
395 }
396 EXPORT_SYMBOL_GPL(__spi_register_driver);
397 
398 /*-------------------------------------------------------------------------*/
399 
400 /* SPI devices should normally not be created by SPI device drivers; that
401  * would make them board-specific.  Similarly with SPI master drivers.
402  * Device registration normally goes into like arch/.../mach.../board-YYY.c
403  * with other readonly (flashable) information about mainboard devices.
404  */
405 
406 struct boardinfo {
407 	struct list_head	list;
408 	struct spi_board_info	board_info;
409 };
410 
411 static LIST_HEAD(board_list);
412 static LIST_HEAD(spi_master_list);
413 
414 /*
415  * Used to protect add/del opertion for board_info list and
416  * spi_master list, and their matching process
417  */
418 static DEFINE_MUTEX(board_lock);
419 
420 /**
421  * spi_alloc_device - Allocate a new SPI device
422  * @master: Controller to which device is connected
423  * Context: can sleep
424  *
425  * Allows a driver to allocate and initialize a spi_device without
426  * registering it immediately.  This allows a driver to directly
427  * fill the spi_device with device parameters before calling
428  * spi_add_device() on it.
429  *
430  * Caller is responsible to call spi_add_device() on the returned
431  * spi_device structure to add it to the SPI master.  If the caller
432  * needs to discard the spi_device without adding it, then it should
433  * call spi_dev_put() on it.
434  *
435  * Return: a pointer to the new device, or NULL.
436  */
437 struct spi_device *spi_alloc_device(struct spi_master *master)
438 {
439 	struct spi_device	*spi;
440 
441 	if (!spi_master_get(master))
442 		return NULL;
443 
444 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
445 	if (!spi) {
446 		spi_master_put(master);
447 		return NULL;
448 	}
449 
450 	spi->master = master;
451 	spi->dev.parent = &master->dev;
452 	spi->dev.bus = &spi_bus_type;
453 	spi->dev.release = spidev_release;
454 	spi->cs_gpio = -ENOENT;
455 
456 	spin_lock_init(&spi->statistics.lock);
457 
458 	device_initialize(&spi->dev);
459 	return spi;
460 }
461 EXPORT_SYMBOL_GPL(spi_alloc_device);
462 
463 static void spi_dev_set_name(struct spi_device *spi)
464 {
465 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
466 
467 	if (adev) {
468 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
469 		return;
470 	}
471 
472 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
473 		     spi->chip_select);
474 }
475 
476 static int spi_dev_check(struct device *dev, void *data)
477 {
478 	struct spi_device *spi = to_spi_device(dev);
479 	struct spi_device *new_spi = data;
480 
481 	if (spi->master == new_spi->master &&
482 	    spi->chip_select == new_spi->chip_select)
483 		return -EBUSY;
484 	return 0;
485 }
486 
487 /**
488  * spi_add_device - Add spi_device allocated with spi_alloc_device
489  * @spi: spi_device to register
490  *
491  * Companion function to spi_alloc_device.  Devices allocated with
492  * spi_alloc_device can be added onto the spi bus with this function.
493  *
494  * Return: 0 on success; negative errno on failure
495  */
496 int spi_add_device(struct spi_device *spi)
497 {
498 	static DEFINE_MUTEX(spi_add_lock);
499 	struct spi_master *master = spi->master;
500 	struct device *dev = master->dev.parent;
501 	int status;
502 
503 	/* Chipselects are numbered 0..max; validate. */
504 	if (spi->chip_select >= master->num_chipselect) {
505 		dev_err(dev, "cs%d >= max %d\n",
506 			spi->chip_select,
507 			master->num_chipselect);
508 		return -EINVAL;
509 	}
510 
511 	/* Set the bus ID string */
512 	spi_dev_set_name(spi);
513 
514 	/* We need to make sure there's no other device with this
515 	 * chipselect **BEFORE** we call setup(), else we'll trash
516 	 * its configuration.  Lock against concurrent add() calls.
517 	 */
518 	mutex_lock(&spi_add_lock);
519 
520 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
521 	if (status) {
522 		dev_err(dev, "chipselect %d already in use\n",
523 				spi->chip_select);
524 		goto done;
525 	}
526 
527 	if (master->cs_gpios)
528 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
529 
530 	/* Drivers may modify this initial i/o setup, but will
531 	 * normally rely on the device being setup.  Devices
532 	 * using SPI_CS_HIGH can't coexist well otherwise...
533 	 */
534 	status = spi_setup(spi);
535 	if (status < 0) {
536 		dev_err(dev, "can't setup %s, status %d\n",
537 				dev_name(&spi->dev), status);
538 		goto done;
539 	}
540 
541 	/* Device may be bound to an active driver when this returns */
542 	status = device_add(&spi->dev);
543 	if (status < 0)
544 		dev_err(dev, "can't add %s, status %d\n",
545 				dev_name(&spi->dev), status);
546 	else
547 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
548 
549 done:
550 	mutex_unlock(&spi_add_lock);
551 	return status;
552 }
553 EXPORT_SYMBOL_GPL(spi_add_device);
554 
555 /**
556  * spi_new_device - instantiate one new SPI device
557  * @master: Controller to which device is connected
558  * @chip: Describes the SPI device
559  * Context: can sleep
560  *
561  * On typical mainboards, this is purely internal; and it's not needed
562  * after board init creates the hard-wired devices.  Some development
563  * platforms may not be able to use spi_register_board_info though, and
564  * this is exported so that for example a USB or parport based adapter
565  * driver could add devices (which it would learn about out-of-band).
566  *
567  * Return: the new device, or NULL.
568  */
569 struct spi_device *spi_new_device(struct spi_master *master,
570 				  struct spi_board_info *chip)
571 {
572 	struct spi_device	*proxy;
573 	int			status;
574 
575 	/* NOTE:  caller did any chip->bus_num checks necessary.
576 	 *
577 	 * Also, unless we change the return value convention to use
578 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 	 * suggests syslogged diagnostics are best here (ugh).
580 	 */
581 
582 	proxy = spi_alloc_device(master);
583 	if (!proxy)
584 		return NULL;
585 
586 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
587 
588 	proxy->chip_select = chip->chip_select;
589 	proxy->max_speed_hz = chip->max_speed_hz;
590 	proxy->mode = chip->mode;
591 	proxy->irq = chip->irq;
592 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 	proxy->dev.platform_data = (void *) chip->platform_data;
594 	proxy->controller_data = chip->controller_data;
595 	proxy->controller_state = NULL;
596 
597 	status = spi_add_device(proxy);
598 	if (status < 0) {
599 		spi_dev_put(proxy);
600 		return NULL;
601 	}
602 
603 	return proxy;
604 }
605 EXPORT_SYMBOL_GPL(spi_new_device);
606 
607 static void spi_match_master_to_boardinfo(struct spi_master *master,
608 				struct spi_board_info *bi)
609 {
610 	struct spi_device *dev;
611 
612 	if (master->bus_num != bi->bus_num)
613 		return;
614 
615 	dev = spi_new_device(master, bi);
616 	if (!dev)
617 		dev_err(master->dev.parent, "can't create new device for %s\n",
618 			bi->modalias);
619 }
620 
621 /**
622  * spi_register_board_info - register SPI devices for a given board
623  * @info: array of chip descriptors
624  * @n: how many descriptors are provided
625  * Context: can sleep
626  *
627  * Board-specific early init code calls this (probably during arch_initcall)
628  * with segments of the SPI device table.  Any device nodes are created later,
629  * after the relevant parent SPI controller (bus_num) is defined.  We keep
630  * this table of devices forever, so that reloading a controller driver will
631  * not make Linux forget about these hard-wired devices.
632  *
633  * Other code can also call this, e.g. a particular add-on board might provide
634  * SPI devices through its expansion connector, so code initializing that board
635  * would naturally declare its SPI devices.
636  *
637  * The board info passed can safely be __initdata ... but be careful of
638  * any embedded pointers (platform_data, etc), they're copied as-is.
639  *
640  * Return: zero on success, else a negative error code.
641  */
642 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
643 {
644 	struct boardinfo *bi;
645 	int i;
646 
647 	if (!n)
648 		return -EINVAL;
649 
650 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
651 	if (!bi)
652 		return -ENOMEM;
653 
654 	for (i = 0; i < n; i++, bi++, info++) {
655 		struct spi_master *master;
656 
657 		memcpy(&bi->board_info, info, sizeof(*info));
658 		mutex_lock(&board_lock);
659 		list_add_tail(&bi->list, &board_list);
660 		list_for_each_entry(master, &spi_master_list, list)
661 			spi_match_master_to_boardinfo(master, &bi->board_info);
662 		mutex_unlock(&board_lock);
663 	}
664 
665 	return 0;
666 }
667 
668 /*-------------------------------------------------------------------------*/
669 
670 static void spi_set_cs(struct spi_device *spi, bool enable)
671 {
672 	if (spi->mode & SPI_CS_HIGH)
673 		enable = !enable;
674 
675 	if (gpio_is_valid(spi->cs_gpio))
676 		gpio_set_value(spi->cs_gpio, !enable);
677 	else if (spi->master->set_cs)
678 		spi->master->set_cs(spi, !enable);
679 }
680 
681 #ifdef CONFIG_HAS_DMA
682 static int spi_map_buf(struct spi_master *master, struct device *dev,
683 		       struct sg_table *sgt, void *buf, size_t len,
684 		       enum dma_data_direction dir)
685 {
686 	const bool vmalloced_buf = is_vmalloc_addr(buf);
687 	int desc_len;
688 	int sgs;
689 	struct page *vm_page;
690 	void *sg_buf;
691 	size_t min;
692 	int i, ret;
693 
694 	if (vmalloced_buf) {
695 		desc_len = PAGE_SIZE;
696 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
697 	} else {
698 		desc_len = master->max_dma_len;
699 		sgs = DIV_ROUND_UP(len, desc_len);
700 	}
701 
702 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
703 	if (ret != 0)
704 		return ret;
705 
706 	for (i = 0; i < sgs; i++) {
707 
708 		if (vmalloced_buf) {
709 			min = min_t(size_t,
710 				    len, desc_len - offset_in_page(buf));
711 			vm_page = vmalloc_to_page(buf);
712 			if (!vm_page) {
713 				sg_free_table(sgt);
714 				return -ENOMEM;
715 			}
716 			sg_set_page(&sgt->sgl[i], vm_page,
717 				    min, offset_in_page(buf));
718 		} else {
719 			min = min_t(size_t, len, desc_len);
720 			sg_buf = buf;
721 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
722 		}
723 
724 
725 		buf += min;
726 		len -= min;
727 	}
728 
729 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
730 	if (!ret)
731 		ret = -ENOMEM;
732 	if (ret < 0) {
733 		sg_free_table(sgt);
734 		return ret;
735 	}
736 
737 	sgt->nents = ret;
738 
739 	return 0;
740 }
741 
742 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
743 			  struct sg_table *sgt, enum dma_data_direction dir)
744 {
745 	if (sgt->orig_nents) {
746 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
747 		sg_free_table(sgt);
748 	}
749 }
750 
751 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
752 {
753 	struct device *tx_dev, *rx_dev;
754 	struct spi_transfer *xfer;
755 	int ret;
756 
757 	if (!master->can_dma)
758 		return 0;
759 
760 	if (master->dma_tx)
761 		tx_dev = master->dma_tx->device->dev;
762 	else
763 		tx_dev = &master->dev;
764 
765 	if (master->dma_rx)
766 		rx_dev = master->dma_rx->device->dev;
767 	else
768 		rx_dev = &master->dev;
769 
770 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
771 		if (!master->can_dma(master, msg->spi, xfer))
772 			continue;
773 
774 		if (xfer->tx_buf != NULL) {
775 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
776 					  (void *)xfer->tx_buf, xfer->len,
777 					  DMA_TO_DEVICE);
778 			if (ret != 0)
779 				return ret;
780 		}
781 
782 		if (xfer->rx_buf != NULL) {
783 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
784 					  xfer->rx_buf, xfer->len,
785 					  DMA_FROM_DEVICE);
786 			if (ret != 0) {
787 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
788 					      DMA_TO_DEVICE);
789 				return ret;
790 			}
791 		}
792 	}
793 
794 	master->cur_msg_mapped = true;
795 
796 	return 0;
797 }
798 
799 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
800 {
801 	struct spi_transfer *xfer;
802 	struct device *tx_dev, *rx_dev;
803 
804 	if (!master->cur_msg_mapped || !master->can_dma)
805 		return 0;
806 
807 	if (master->dma_tx)
808 		tx_dev = master->dma_tx->device->dev;
809 	else
810 		tx_dev = &master->dev;
811 
812 	if (master->dma_rx)
813 		rx_dev = master->dma_rx->device->dev;
814 	else
815 		rx_dev = &master->dev;
816 
817 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
818 		if (!master->can_dma(master, msg->spi, xfer))
819 			continue;
820 
821 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
822 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
823 	}
824 
825 	return 0;
826 }
827 #else /* !CONFIG_HAS_DMA */
828 static inline int __spi_map_msg(struct spi_master *master,
829 				struct spi_message *msg)
830 {
831 	return 0;
832 }
833 
834 static inline int __spi_unmap_msg(struct spi_master *master,
835 				  struct spi_message *msg)
836 {
837 	return 0;
838 }
839 #endif /* !CONFIG_HAS_DMA */
840 
841 static inline int spi_unmap_msg(struct spi_master *master,
842 				struct spi_message *msg)
843 {
844 	struct spi_transfer *xfer;
845 
846 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
847 		/*
848 		 * Restore the original value of tx_buf or rx_buf if they are
849 		 * NULL.
850 		 */
851 		if (xfer->tx_buf == master->dummy_tx)
852 			xfer->tx_buf = NULL;
853 		if (xfer->rx_buf == master->dummy_rx)
854 			xfer->rx_buf = NULL;
855 	}
856 
857 	return __spi_unmap_msg(master, msg);
858 }
859 
860 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
861 {
862 	struct spi_transfer *xfer;
863 	void *tmp;
864 	unsigned int max_tx, max_rx;
865 
866 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
867 		max_tx = 0;
868 		max_rx = 0;
869 
870 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
871 			if ((master->flags & SPI_MASTER_MUST_TX) &&
872 			    !xfer->tx_buf)
873 				max_tx = max(xfer->len, max_tx);
874 			if ((master->flags & SPI_MASTER_MUST_RX) &&
875 			    !xfer->rx_buf)
876 				max_rx = max(xfer->len, max_rx);
877 		}
878 
879 		if (max_tx) {
880 			tmp = krealloc(master->dummy_tx, max_tx,
881 				       GFP_KERNEL | GFP_DMA);
882 			if (!tmp)
883 				return -ENOMEM;
884 			master->dummy_tx = tmp;
885 			memset(tmp, 0, max_tx);
886 		}
887 
888 		if (max_rx) {
889 			tmp = krealloc(master->dummy_rx, max_rx,
890 				       GFP_KERNEL | GFP_DMA);
891 			if (!tmp)
892 				return -ENOMEM;
893 			master->dummy_rx = tmp;
894 		}
895 
896 		if (max_tx || max_rx) {
897 			list_for_each_entry(xfer, &msg->transfers,
898 					    transfer_list) {
899 				if (!xfer->tx_buf)
900 					xfer->tx_buf = master->dummy_tx;
901 				if (!xfer->rx_buf)
902 					xfer->rx_buf = master->dummy_rx;
903 			}
904 		}
905 	}
906 
907 	return __spi_map_msg(master, msg);
908 }
909 
910 /*
911  * spi_transfer_one_message - Default implementation of transfer_one_message()
912  *
913  * This is a standard implementation of transfer_one_message() for
914  * drivers which impelment a transfer_one() operation.  It provides
915  * standard handling of delays and chip select management.
916  */
917 static int spi_transfer_one_message(struct spi_master *master,
918 				    struct spi_message *msg)
919 {
920 	struct spi_transfer *xfer;
921 	bool keep_cs = false;
922 	int ret = 0;
923 	unsigned long ms = 1;
924 	struct spi_statistics *statm = &master->statistics;
925 	struct spi_statistics *stats = &msg->spi->statistics;
926 
927 	spi_set_cs(msg->spi, true);
928 
929 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
930 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
931 
932 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
933 		trace_spi_transfer_start(msg, xfer);
934 
935 		spi_statistics_add_transfer_stats(statm, xfer, master);
936 		spi_statistics_add_transfer_stats(stats, xfer, master);
937 
938 		if (xfer->tx_buf || xfer->rx_buf) {
939 			reinit_completion(&master->xfer_completion);
940 
941 			ret = master->transfer_one(master, msg->spi, xfer);
942 			if (ret < 0) {
943 				SPI_STATISTICS_INCREMENT_FIELD(statm,
944 							       errors);
945 				SPI_STATISTICS_INCREMENT_FIELD(stats,
946 							       errors);
947 				dev_err(&msg->spi->dev,
948 					"SPI transfer failed: %d\n", ret);
949 				goto out;
950 			}
951 
952 			if (ret > 0) {
953 				ret = 0;
954 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
955 				ms += ms + 100; /* some tolerance */
956 
957 				ms = wait_for_completion_timeout(&master->xfer_completion,
958 								 msecs_to_jiffies(ms));
959 			}
960 
961 			if (ms == 0) {
962 				SPI_STATISTICS_INCREMENT_FIELD(statm,
963 							       timedout);
964 				SPI_STATISTICS_INCREMENT_FIELD(stats,
965 							       timedout);
966 				dev_err(&msg->spi->dev,
967 					"SPI transfer timed out\n");
968 				msg->status = -ETIMEDOUT;
969 			}
970 		} else {
971 			if (xfer->len)
972 				dev_err(&msg->spi->dev,
973 					"Bufferless transfer has length %u\n",
974 					xfer->len);
975 		}
976 
977 		trace_spi_transfer_stop(msg, xfer);
978 
979 		if (msg->status != -EINPROGRESS)
980 			goto out;
981 
982 		if (xfer->delay_usecs)
983 			udelay(xfer->delay_usecs);
984 
985 		if (xfer->cs_change) {
986 			if (list_is_last(&xfer->transfer_list,
987 					 &msg->transfers)) {
988 				keep_cs = true;
989 			} else {
990 				spi_set_cs(msg->spi, false);
991 				udelay(10);
992 				spi_set_cs(msg->spi, true);
993 			}
994 		}
995 
996 		msg->actual_length += xfer->len;
997 	}
998 
999 out:
1000 	if (ret != 0 || !keep_cs)
1001 		spi_set_cs(msg->spi, false);
1002 
1003 	if (msg->status == -EINPROGRESS)
1004 		msg->status = ret;
1005 
1006 	if (msg->status && master->handle_err)
1007 		master->handle_err(master, msg);
1008 
1009 	spi_finalize_current_message(master);
1010 
1011 	return ret;
1012 }
1013 
1014 /**
1015  * spi_finalize_current_transfer - report completion of a transfer
1016  * @master: the master reporting completion
1017  *
1018  * Called by SPI drivers using the core transfer_one_message()
1019  * implementation to notify it that the current interrupt driven
1020  * transfer has finished and the next one may be scheduled.
1021  */
1022 void spi_finalize_current_transfer(struct spi_master *master)
1023 {
1024 	complete(&master->xfer_completion);
1025 }
1026 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1027 
1028 /**
1029  * __spi_pump_messages - function which processes spi message queue
1030  * @master: master to process queue for
1031  * @in_kthread: true if we are in the context of the message pump thread
1032  *
1033  * This function checks if there is any spi message in the queue that
1034  * needs processing and if so call out to the driver to initialize hardware
1035  * and transfer each message.
1036  *
1037  * Note that it is called both from the kthread itself and also from
1038  * inside spi_sync(); the queue extraction handling at the top of the
1039  * function should deal with this safely.
1040  */
1041 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1042 {
1043 	unsigned long flags;
1044 	bool was_busy = false;
1045 	int ret;
1046 
1047 	/* Lock queue */
1048 	spin_lock_irqsave(&master->queue_lock, flags);
1049 
1050 	/* Make sure we are not already running a message */
1051 	if (master->cur_msg) {
1052 		spin_unlock_irqrestore(&master->queue_lock, flags);
1053 		return;
1054 	}
1055 
1056 	/* If another context is idling the device then defer */
1057 	if (master->idling) {
1058 		queue_kthread_work(&master->kworker, &master->pump_messages);
1059 		spin_unlock_irqrestore(&master->queue_lock, flags);
1060 		return;
1061 	}
1062 
1063 	/* Check if the queue is idle */
1064 	if (list_empty(&master->queue) || !master->running) {
1065 		if (!master->busy) {
1066 			spin_unlock_irqrestore(&master->queue_lock, flags);
1067 			return;
1068 		}
1069 
1070 		/* Only do teardown in the thread */
1071 		if (!in_kthread) {
1072 			queue_kthread_work(&master->kworker,
1073 					   &master->pump_messages);
1074 			spin_unlock_irqrestore(&master->queue_lock, flags);
1075 			return;
1076 		}
1077 
1078 		master->busy = false;
1079 		master->idling = true;
1080 		spin_unlock_irqrestore(&master->queue_lock, flags);
1081 
1082 		kfree(master->dummy_rx);
1083 		master->dummy_rx = NULL;
1084 		kfree(master->dummy_tx);
1085 		master->dummy_tx = NULL;
1086 		if (master->unprepare_transfer_hardware &&
1087 		    master->unprepare_transfer_hardware(master))
1088 			dev_err(&master->dev,
1089 				"failed to unprepare transfer hardware\n");
1090 		if (master->auto_runtime_pm) {
1091 			pm_runtime_mark_last_busy(master->dev.parent);
1092 			pm_runtime_put_autosuspend(master->dev.parent);
1093 		}
1094 		trace_spi_master_idle(master);
1095 
1096 		spin_lock_irqsave(&master->queue_lock, flags);
1097 		master->idling = false;
1098 		spin_unlock_irqrestore(&master->queue_lock, flags);
1099 		return;
1100 	}
1101 
1102 	/* Extract head of queue */
1103 	master->cur_msg =
1104 		list_first_entry(&master->queue, struct spi_message, queue);
1105 
1106 	list_del_init(&master->cur_msg->queue);
1107 	if (master->busy)
1108 		was_busy = true;
1109 	else
1110 		master->busy = true;
1111 	spin_unlock_irqrestore(&master->queue_lock, flags);
1112 
1113 	if (!was_busy && master->auto_runtime_pm) {
1114 		ret = pm_runtime_get_sync(master->dev.parent);
1115 		if (ret < 0) {
1116 			dev_err(&master->dev, "Failed to power device: %d\n",
1117 				ret);
1118 			return;
1119 		}
1120 	}
1121 
1122 	if (!was_busy)
1123 		trace_spi_master_busy(master);
1124 
1125 	if (!was_busy && master->prepare_transfer_hardware) {
1126 		ret = master->prepare_transfer_hardware(master);
1127 		if (ret) {
1128 			dev_err(&master->dev,
1129 				"failed to prepare transfer hardware\n");
1130 
1131 			if (master->auto_runtime_pm)
1132 				pm_runtime_put(master->dev.parent);
1133 			return;
1134 		}
1135 	}
1136 
1137 	trace_spi_message_start(master->cur_msg);
1138 
1139 	if (master->prepare_message) {
1140 		ret = master->prepare_message(master, master->cur_msg);
1141 		if (ret) {
1142 			dev_err(&master->dev,
1143 				"failed to prepare message: %d\n", ret);
1144 			master->cur_msg->status = ret;
1145 			spi_finalize_current_message(master);
1146 			return;
1147 		}
1148 		master->cur_msg_prepared = true;
1149 	}
1150 
1151 	ret = spi_map_msg(master, master->cur_msg);
1152 	if (ret) {
1153 		master->cur_msg->status = ret;
1154 		spi_finalize_current_message(master);
1155 		return;
1156 	}
1157 
1158 	ret = master->transfer_one_message(master, master->cur_msg);
1159 	if (ret) {
1160 		dev_err(&master->dev,
1161 			"failed to transfer one message from queue\n");
1162 		return;
1163 	}
1164 }
1165 
1166 /**
1167  * spi_pump_messages - kthread work function which processes spi message queue
1168  * @work: pointer to kthread work struct contained in the master struct
1169  */
1170 static void spi_pump_messages(struct kthread_work *work)
1171 {
1172 	struct spi_master *master =
1173 		container_of(work, struct spi_master, pump_messages);
1174 
1175 	__spi_pump_messages(master, true);
1176 }
1177 
1178 static int spi_init_queue(struct spi_master *master)
1179 {
1180 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1181 
1182 	master->running = false;
1183 	master->busy = false;
1184 
1185 	init_kthread_worker(&master->kworker);
1186 	master->kworker_task = kthread_run(kthread_worker_fn,
1187 					   &master->kworker, "%s",
1188 					   dev_name(&master->dev));
1189 	if (IS_ERR(master->kworker_task)) {
1190 		dev_err(&master->dev, "failed to create message pump task\n");
1191 		return PTR_ERR(master->kworker_task);
1192 	}
1193 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1194 
1195 	/*
1196 	 * Master config will indicate if this controller should run the
1197 	 * message pump with high (realtime) priority to reduce the transfer
1198 	 * latency on the bus by minimising the delay between a transfer
1199 	 * request and the scheduling of the message pump thread. Without this
1200 	 * setting the message pump thread will remain at default priority.
1201 	 */
1202 	if (master->rt) {
1203 		dev_info(&master->dev,
1204 			"will run message pump with realtime priority\n");
1205 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 /**
1212  * spi_get_next_queued_message() - called by driver to check for queued
1213  * messages
1214  * @master: the master to check for queued messages
1215  *
1216  * If there are more messages in the queue, the next message is returned from
1217  * this call.
1218  *
1219  * Return: the next message in the queue, else NULL if the queue is empty.
1220  */
1221 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1222 {
1223 	struct spi_message *next;
1224 	unsigned long flags;
1225 
1226 	/* get a pointer to the next message, if any */
1227 	spin_lock_irqsave(&master->queue_lock, flags);
1228 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1229 					queue);
1230 	spin_unlock_irqrestore(&master->queue_lock, flags);
1231 
1232 	return next;
1233 }
1234 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1235 
1236 /**
1237  * spi_finalize_current_message() - the current message is complete
1238  * @master: the master to return the message to
1239  *
1240  * Called by the driver to notify the core that the message in the front of the
1241  * queue is complete and can be removed from the queue.
1242  */
1243 void spi_finalize_current_message(struct spi_master *master)
1244 {
1245 	struct spi_message *mesg;
1246 	unsigned long flags;
1247 	int ret;
1248 
1249 	spin_lock_irqsave(&master->queue_lock, flags);
1250 	mesg = master->cur_msg;
1251 	spin_unlock_irqrestore(&master->queue_lock, flags);
1252 
1253 	spi_unmap_msg(master, mesg);
1254 
1255 	if (master->cur_msg_prepared && master->unprepare_message) {
1256 		ret = master->unprepare_message(master, mesg);
1257 		if (ret) {
1258 			dev_err(&master->dev,
1259 				"failed to unprepare message: %d\n", ret);
1260 		}
1261 	}
1262 
1263 	spin_lock_irqsave(&master->queue_lock, flags);
1264 	master->cur_msg = NULL;
1265 	master->cur_msg_prepared = false;
1266 	queue_kthread_work(&master->kworker, &master->pump_messages);
1267 	spin_unlock_irqrestore(&master->queue_lock, flags);
1268 
1269 	trace_spi_message_done(mesg);
1270 
1271 	mesg->state = NULL;
1272 	if (mesg->complete)
1273 		mesg->complete(mesg->context);
1274 }
1275 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1276 
1277 static int spi_start_queue(struct spi_master *master)
1278 {
1279 	unsigned long flags;
1280 
1281 	spin_lock_irqsave(&master->queue_lock, flags);
1282 
1283 	if (master->running || master->busy) {
1284 		spin_unlock_irqrestore(&master->queue_lock, flags);
1285 		return -EBUSY;
1286 	}
1287 
1288 	master->running = true;
1289 	master->cur_msg = NULL;
1290 	spin_unlock_irqrestore(&master->queue_lock, flags);
1291 
1292 	queue_kthread_work(&master->kworker, &master->pump_messages);
1293 
1294 	return 0;
1295 }
1296 
1297 static int spi_stop_queue(struct spi_master *master)
1298 {
1299 	unsigned long flags;
1300 	unsigned limit = 500;
1301 	int ret = 0;
1302 
1303 	spin_lock_irqsave(&master->queue_lock, flags);
1304 
1305 	/*
1306 	 * This is a bit lame, but is optimized for the common execution path.
1307 	 * A wait_queue on the master->busy could be used, but then the common
1308 	 * execution path (pump_messages) would be required to call wake_up or
1309 	 * friends on every SPI message. Do this instead.
1310 	 */
1311 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1312 		spin_unlock_irqrestore(&master->queue_lock, flags);
1313 		usleep_range(10000, 11000);
1314 		spin_lock_irqsave(&master->queue_lock, flags);
1315 	}
1316 
1317 	if (!list_empty(&master->queue) || master->busy)
1318 		ret = -EBUSY;
1319 	else
1320 		master->running = false;
1321 
1322 	spin_unlock_irqrestore(&master->queue_lock, flags);
1323 
1324 	if (ret) {
1325 		dev_warn(&master->dev,
1326 			 "could not stop message queue\n");
1327 		return ret;
1328 	}
1329 	return ret;
1330 }
1331 
1332 static int spi_destroy_queue(struct spi_master *master)
1333 {
1334 	int ret;
1335 
1336 	ret = spi_stop_queue(master);
1337 
1338 	/*
1339 	 * flush_kthread_worker will block until all work is done.
1340 	 * If the reason that stop_queue timed out is that the work will never
1341 	 * finish, then it does no good to call flush/stop thread, so
1342 	 * return anyway.
1343 	 */
1344 	if (ret) {
1345 		dev_err(&master->dev, "problem destroying queue\n");
1346 		return ret;
1347 	}
1348 
1349 	flush_kthread_worker(&master->kworker);
1350 	kthread_stop(master->kworker_task);
1351 
1352 	return 0;
1353 }
1354 
1355 static int __spi_queued_transfer(struct spi_device *spi,
1356 				 struct spi_message *msg,
1357 				 bool need_pump)
1358 {
1359 	struct spi_master *master = spi->master;
1360 	unsigned long flags;
1361 
1362 	spin_lock_irqsave(&master->queue_lock, flags);
1363 
1364 	if (!master->running) {
1365 		spin_unlock_irqrestore(&master->queue_lock, flags);
1366 		return -ESHUTDOWN;
1367 	}
1368 	msg->actual_length = 0;
1369 	msg->status = -EINPROGRESS;
1370 
1371 	list_add_tail(&msg->queue, &master->queue);
1372 	if (!master->busy && need_pump)
1373 		queue_kthread_work(&master->kworker, &master->pump_messages);
1374 
1375 	spin_unlock_irqrestore(&master->queue_lock, flags);
1376 	return 0;
1377 }
1378 
1379 /**
1380  * spi_queued_transfer - transfer function for queued transfers
1381  * @spi: spi device which is requesting transfer
1382  * @msg: spi message which is to handled is queued to driver queue
1383  *
1384  * Return: zero on success, else a negative error code.
1385  */
1386 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1387 {
1388 	return __spi_queued_transfer(spi, msg, true);
1389 }
1390 
1391 static int spi_master_initialize_queue(struct spi_master *master)
1392 {
1393 	int ret;
1394 
1395 	master->transfer = spi_queued_transfer;
1396 	if (!master->transfer_one_message)
1397 		master->transfer_one_message = spi_transfer_one_message;
1398 
1399 	/* Initialize and start queue */
1400 	ret = spi_init_queue(master);
1401 	if (ret) {
1402 		dev_err(&master->dev, "problem initializing queue\n");
1403 		goto err_init_queue;
1404 	}
1405 	master->queued = true;
1406 	ret = spi_start_queue(master);
1407 	if (ret) {
1408 		dev_err(&master->dev, "problem starting queue\n");
1409 		goto err_start_queue;
1410 	}
1411 
1412 	return 0;
1413 
1414 err_start_queue:
1415 	spi_destroy_queue(master);
1416 err_init_queue:
1417 	return ret;
1418 }
1419 
1420 /*-------------------------------------------------------------------------*/
1421 
1422 #if defined(CONFIG_OF)
1423 static struct spi_device *
1424 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1425 {
1426 	struct spi_device *spi;
1427 	int rc;
1428 	u32 value;
1429 
1430 	/* Alloc an spi_device */
1431 	spi = spi_alloc_device(master);
1432 	if (!spi) {
1433 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1434 			nc->full_name);
1435 		rc = -ENOMEM;
1436 		goto err_out;
1437 	}
1438 
1439 	/* Select device driver */
1440 	rc = of_modalias_node(nc, spi->modalias,
1441 				sizeof(spi->modalias));
1442 	if (rc < 0) {
1443 		dev_err(&master->dev, "cannot find modalias for %s\n",
1444 			nc->full_name);
1445 		goto err_out;
1446 	}
1447 
1448 	/* Device address */
1449 	rc = of_property_read_u32(nc, "reg", &value);
1450 	if (rc) {
1451 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1452 			nc->full_name, rc);
1453 		goto err_out;
1454 	}
1455 	spi->chip_select = value;
1456 
1457 	/* Mode (clock phase/polarity/etc.) */
1458 	if (of_find_property(nc, "spi-cpha", NULL))
1459 		spi->mode |= SPI_CPHA;
1460 	if (of_find_property(nc, "spi-cpol", NULL))
1461 		spi->mode |= SPI_CPOL;
1462 	if (of_find_property(nc, "spi-cs-high", NULL))
1463 		spi->mode |= SPI_CS_HIGH;
1464 	if (of_find_property(nc, "spi-3wire", NULL))
1465 		spi->mode |= SPI_3WIRE;
1466 	if (of_find_property(nc, "spi-lsb-first", NULL))
1467 		spi->mode |= SPI_LSB_FIRST;
1468 
1469 	/* Device DUAL/QUAD mode */
1470 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1471 		switch (value) {
1472 		case 1:
1473 			break;
1474 		case 2:
1475 			spi->mode |= SPI_TX_DUAL;
1476 			break;
1477 		case 4:
1478 			spi->mode |= SPI_TX_QUAD;
1479 			break;
1480 		default:
1481 			dev_warn(&master->dev,
1482 				"spi-tx-bus-width %d not supported\n",
1483 				value);
1484 			break;
1485 		}
1486 	}
1487 
1488 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1489 		switch (value) {
1490 		case 1:
1491 			break;
1492 		case 2:
1493 			spi->mode |= SPI_RX_DUAL;
1494 			break;
1495 		case 4:
1496 			spi->mode |= SPI_RX_QUAD;
1497 			break;
1498 		default:
1499 			dev_warn(&master->dev,
1500 				"spi-rx-bus-width %d not supported\n",
1501 				value);
1502 			break;
1503 		}
1504 	}
1505 
1506 	/* Device speed */
1507 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1508 	if (rc) {
1509 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1510 			nc->full_name, rc);
1511 		goto err_out;
1512 	}
1513 	spi->max_speed_hz = value;
1514 
1515 	/* Store a pointer to the node in the device structure */
1516 	of_node_get(nc);
1517 	spi->dev.of_node = nc;
1518 
1519 	/* Register the new device */
1520 	rc = spi_add_device(spi);
1521 	if (rc) {
1522 		dev_err(&master->dev, "spi_device register error %s\n",
1523 			nc->full_name);
1524 		goto err_out;
1525 	}
1526 
1527 	return spi;
1528 
1529 err_out:
1530 	spi_dev_put(spi);
1531 	return ERR_PTR(rc);
1532 }
1533 
1534 /**
1535  * of_register_spi_devices() - Register child devices onto the SPI bus
1536  * @master:	Pointer to spi_master device
1537  *
1538  * Registers an spi_device for each child node of master node which has a 'reg'
1539  * property.
1540  */
1541 static void of_register_spi_devices(struct spi_master *master)
1542 {
1543 	struct spi_device *spi;
1544 	struct device_node *nc;
1545 
1546 	if (!master->dev.of_node)
1547 		return;
1548 
1549 	for_each_available_child_of_node(master->dev.of_node, nc) {
1550 		spi = of_register_spi_device(master, nc);
1551 		if (IS_ERR(spi))
1552 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1553 				nc->full_name);
1554 	}
1555 }
1556 #else
1557 static void of_register_spi_devices(struct spi_master *master) { }
1558 #endif
1559 
1560 #ifdef CONFIG_ACPI
1561 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1562 {
1563 	struct spi_device *spi = data;
1564 
1565 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1566 		struct acpi_resource_spi_serialbus *sb;
1567 
1568 		sb = &ares->data.spi_serial_bus;
1569 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1570 			spi->chip_select = sb->device_selection;
1571 			spi->max_speed_hz = sb->connection_speed;
1572 
1573 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1574 				spi->mode |= SPI_CPHA;
1575 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1576 				spi->mode |= SPI_CPOL;
1577 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1578 				spi->mode |= SPI_CS_HIGH;
1579 		}
1580 	} else if (spi->irq < 0) {
1581 		struct resource r;
1582 
1583 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1584 			spi->irq = r.start;
1585 	}
1586 
1587 	/* Always tell the ACPI core to skip this resource */
1588 	return 1;
1589 }
1590 
1591 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1592 				       void *data, void **return_value)
1593 {
1594 	struct spi_master *master = data;
1595 	struct list_head resource_list;
1596 	struct acpi_device *adev;
1597 	struct spi_device *spi;
1598 	int ret;
1599 
1600 	if (acpi_bus_get_device(handle, &adev))
1601 		return AE_OK;
1602 	if (acpi_bus_get_status(adev) || !adev->status.present)
1603 		return AE_OK;
1604 
1605 	spi = spi_alloc_device(master);
1606 	if (!spi) {
1607 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1608 			dev_name(&adev->dev));
1609 		return AE_NO_MEMORY;
1610 	}
1611 
1612 	ACPI_COMPANION_SET(&spi->dev, adev);
1613 	spi->irq = -1;
1614 
1615 	INIT_LIST_HEAD(&resource_list);
1616 	ret = acpi_dev_get_resources(adev, &resource_list,
1617 				     acpi_spi_add_resource, spi);
1618 	acpi_dev_free_resource_list(&resource_list);
1619 
1620 	if (ret < 0 || !spi->max_speed_hz) {
1621 		spi_dev_put(spi);
1622 		return AE_OK;
1623 	}
1624 
1625 	adev->power.flags.ignore_parent = true;
1626 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1627 	if (spi_add_device(spi)) {
1628 		adev->power.flags.ignore_parent = false;
1629 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1630 			dev_name(&adev->dev));
1631 		spi_dev_put(spi);
1632 	}
1633 
1634 	return AE_OK;
1635 }
1636 
1637 static void acpi_register_spi_devices(struct spi_master *master)
1638 {
1639 	acpi_status status;
1640 	acpi_handle handle;
1641 
1642 	handle = ACPI_HANDLE(master->dev.parent);
1643 	if (!handle)
1644 		return;
1645 
1646 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1647 				     acpi_spi_add_device, NULL,
1648 				     master, NULL);
1649 	if (ACPI_FAILURE(status))
1650 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1651 }
1652 #else
1653 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1654 #endif /* CONFIG_ACPI */
1655 
1656 static void spi_master_release(struct device *dev)
1657 {
1658 	struct spi_master *master;
1659 
1660 	master = container_of(dev, struct spi_master, dev);
1661 	kfree(master);
1662 }
1663 
1664 static struct class spi_master_class = {
1665 	.name		= "spi_master",
1666 	.owner		= THIS_MODULE,
1667 	.dev_release	= spi_master_release,
1668 	.dev_groups	= spi_master_groups,
1669 };
1670 
1671 
1672 /**
1673  * spi_alloc_master - allocate SPI master controller
1674  * @dev: the controller, possibly using the platform_bus
1675  * @size: how much zeroed driver-private data to allocate; the pointer to this
1676  *	memory is in the driver_data field of the returned device,
1677  *	accessible with spi_master_get_devdata().
1678  * Context: can sleep
1679  *
1680  * This call is used only by SPI master controller drivers, which are the
1681  * only ones directly touching chip registers.  It's how they allocate
1682  * an spi_master structure, prior to calling spi_register_master().
1683  *
1684  * This must be called from context that can sleep.
1685  *
1686  * The caller is responsible for assigning the bus number and initializing
1687  * the master's methods before calling spi_register_master(); and (after errors
1688  * adding the device) calling spi_master_put() to prevent a memory leak.
1689  *
1690  * Return: the SPI master structure on success, else NULL.
1691  */
1692 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1693 {
1694 	struct spi_master	*master;
1695 
1696 	if (!dev)
1697 		return NULL;
1698 
1699 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1700 	if (!master)
1701 		return NULL;
1702 
1703 	device_initialize(&master->dev);
1704 	master->bus_num = -1;
1705 	master->num_chipselect = 1;
1706 	master->dev.class = &spi_master_class;
1707 	master->dev.parent = get_device(dev);
1708 	spi_master_set_devdata(master, &master[1]);
1709 
1710 	return master;
1711 }
1712 EXPORT_SYMBOL_GPL(spi_alloc_master);
1713 
1714 #ifdef CONFIG_OF
1715 static int of_spi_register_master(struct spi_master *master)
1716 {
1717 	int nb, i, *cs;
1718 	struct device_node *np = master->dev.of_node;
1719 
1720 	if (!np)
1721 		return 0;
1722 
1723 	nb = of_gpio_named_count(np, "cs-gpios");
1724 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1725 
1726 	/* Return error only for an incorrectly formed cs-gpios property */
1727 	if (nb == 0 || nb == -ENOENT)
1728 		return 0;
1729 	else if (nb < 0)
1730 		return nb;
1731 
1732 	cs = devm_kzalloc(&master->dev,
1733 			  sizeof(int) * master->num_chipselect,
1734 			  GFP_KERNEL);
1735 	master->cs_gpios = cs;
1736 
1737 	if (!master->cs_gpios)
1738 		return -ENOMEM;
1739 
1740 	for (i = 0; i < master->num_chipselect; i++)
1741 		cs[i] = -ENOENT;
1742 
1743 	for (i = 0; i < nb; i++)
1744 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1745 
1746 	return 0;
1747 }
1748 #else
1749 static int of_spi_register_master(struct spi_master *master)
1750 {
1751 	return 0;
1752 }
1753 #endif
1754 
1755 /**
1756  * spi_register_master - register SPI master controller
1757  * @master: initialized master, originally from spi_alloc_master()
1758  * Context: can sleep
1759  *
1760  * SPI master controllers connect to their drivers using some non-SPI bus,
1761  * such as the platform bus.  The final stage of probe() in that code
1762  * includes calling spi_register_master() to hook up to this SPI bus glue.
1763  *
1764  * SPI controllers use board specific (often SOC specific) bus numbers,
1765  * and board-specific addressing for SPI devices combines those numbers
1766  * with chip select numbers.  Since SPI does not directly support dynamic
1767  * device identification, boards need configuration tables telling which
1768  * chip is at which address.
1769  *
1770  * This must be called from context that can sleep.  It returns zero on
1771  * success, else a negative error code (dropping the master's refcount).
1772  * After a successful return, the caller is responsible for calling
1773  * spi_unregister_master().
1774  *
1775  * Return: zero on success, else a negative error code.
1776  */
1777 int spi_register_master(struct spi_master *master)
1778 {
1779 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1780 	struct device		*dev = master->dev.parent;
1781 	struct boardinfo	*bi;
1782 	int			status = -ENODEV;
1783 	int			dynamic = 0;
1784 
1785 	if (!dev)
1786 		return -ENODEV;
1787 
1788 	status = of_spi_register_master(master);
1789 	if (status)
1790 		return status;
1791 
1792 	/* even if it's just one always-selected device, there must
1793 	 * be at least one chipselect
1794 	 */
1795 	if (master->num_chipselect == 0)
1796 		return -EINVAL;
1797 
1798 	if ((master->bus_num < 0) && master->dev.of_node)
1799 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1800 
1801 	/* convention:  dynamically assigned bus IDs count down from the max */
1802 	if (master->bus_num < 0) {
1803 		/* FIXME switch to an IDR based scheme, something like
1804 		 * I2C now uses, so we can't run out of "dynamic" IDs
1805 		 */
1806 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1807 		dynamic = 1;
1808 	}
1809 
1810 	INIT_LIST_HEAD(&master->queue);
1811 	spin_lock_init(&master->queue_lock);
1812 	spin_lock_init(&master->bus_lock_spinlock);
1813 	mutex_init(&master->bus_lock_mutex);
1814 	master->bus_lock_flag = 0;
1815 	init_completion(&master->xfer_completion);
1816 	if (!master->max_dma_len)
1817 		master->max_dma_len = INT_MAX;
1818 
1819 	/* register the device, then userspace will see it.
1820 	 * registration fails if the bus ID is in use.
1821 	 */
1822 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1823 	status = device_add(&master->dev);
1824 	if (status < 0)
1825 		goto done;
1826 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1827 			dynamic ? " (dynamic)" : "");
1828 
1829 	/* If we're using a queued driver, start the queue */
1830 	if (master->transfer)
1831 		dev_info(dev, "master is unqueued, this is deprecated\n");
1832 	else {
1833 		status = spi_master_initialize_queue(master);
1834 		if (status) {
1835 			device_del(&master->dev);
1836 			goto done;
1837 		}
1838 	}
1839 	/* add statistics */
1840 	spin_lock_init(&master->statistics.lock);
1841 
1842 	mutex_lock(&board_lock);
1843 	list_add_tail(&master->list, &spi_master_list);
1844 	list_for_each_entry(bi, &board_list, list)
1845 		spi_match_master_to_boardinfo(master, &bi->board_info);
1846 	mutex_unlock(&board_lock);
1847 
1848 	/* Register devices from the device tree and ACPI */
1849 	of_register_spi_devices(master);
1850 	acpi_register_spi_devices(master);
1851 done:
1852 	return status;
1853 }
1854 EXPORT_SYMBOL_GPL(spi_register_master);
1855 
1856 static void devm_spi_unregister(struct device *dev, void *res)
1857 {
1858 	spi_unregister_master(*(struct spi_master **)res);
1859 }
1860 
1861 /**
1862  * dev_spi_register_master - register managed SPI master controller
1863  * @dev:    device managing SPI master
1864  * @master: initialized master, originally from spi_alloc_master()
1865  * Context: can sleep
1866  *
1867  * Register a SPI device as with spi_register_master() which will
1868  * automatically be unregister
1869  *
1870  * Return: zero on success, else a negative error code.
1871  */
1872 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1873 {
1874 	struct spi_master **ptr;
1875 	int ret;
1876 
1877 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1878 	if (!ptr)
1879 		return -ENOMEM;
1880 
1881 	ret = spi_register_master(master);
1882 	if (!ret) {
1883 		*ptr = master;
1884 		devres_add(dev, ptr);
1885 	} else {
1886 		devres_free(ptr);
1887 	}
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1892 
1893 static int __unregister(struct device *dev, void *null)
1894 {
1895 	spi_unregister_device(to_spi_device(dev));
1896 	return 0;
1897 }
1898 
1899 /**
1900  * spi_unregister_master - unregister SPI master controller
1901  * @master: the master being unregistered
1902  * Context: can sleep
1903  *
1904  * This call is used only by SPI master controller drivers, which are the
1905  * only ones directly touching chip registers.
1906  *
1907  * This must be called from context that can sleep.
1908  */
1909 void spi_unregister_master(struct spi_master *master)
1910 {
1911 	int dummy;
1912 
1913 	if (master->queued) {
1914 		if (spi_destroy_queue(master))
1915 			dev_err(&master->dev, "queue remove failed\n");
1916 	}
1917 
1918 	mutex_lock(&board_lock);
1919 	list_del(&master->list);
1920 	mutex_unlock(&board_lock);
1921 
1922 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1923 	device_unregister(&master->dev);
1924 }
1925 EXPORT_SYMBOL_GPL(spi_unregister_master);
1926 
1927 int spi_master_suspend(struct spi_master *master)
1928 {
1929 	int ret;
1930 
1931 	/* Basically no-ops for non-queued masters */
1932 	if (!master->queued)
1933 		return 0;
1934 
1935 	ret = spi_stop_queue(master);
1936 	if (ret)
1937 		dev_err(&master->dev, "queue stop failed\n");
1938 
1939 	return ret;
1940 }
1941 EXPORT_SYMBOL_GPL(spi_master_suspend);
1942 
1943 int spi_master_resume(struct spi_master *master)
1944 {
1945 	int ret;
1946 
1947 	if (!master->queued)
1948 		return 0;
1949 
1950 	ret = spi_start_queue(master);
1951 	if (ret)
1952 		dev_err(&master->dev, "queue restart failed\n");
1953 
1954 	return ret;
1955 }
1956 EXPORT_SYMBOL_GPL(spi_master_resume);
1957 
1958 static int __spi_master_match(struct device *dev, const void *data)
1959 {
1960 	struct spi_master *m;
1961 	const u16 *bus_num = data;
1962 
1963 	m = container_of(dev, struct spi_master, dev);
1964 	return m->bus_num == *bus_num;
1965 }
1966 
1967 /**
1968  * spi_busnum_to_master - look up master associated with bus_num
1969  * @bus_num: the master's bus number
1970  * Context: can sleep
1971  *
1972  * This call may be used with devices that are registered after
1973  * arch init time.  It returns a refcounted pointer to the relevant
1974  * spi_master (which the caller must release), or NULL if there is
1975  * no such master registered.
1976  *
1977  * Return: the SPI master structure on success, else NULL.
1978  */
1979 struct spi_master *spi_busnum_to_master(u16 bus_num)
1980 {
1981 	struct device		*dev;
1982 	struct spi_master	*master = NULL;
1983 
1984 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1985 				__spi_master_match);
1986 	if (dev)
1987 		master = container_of(dev, struct spi_master, dev);
1988 	/* reference got in class_find_device */
1989 	return master;
1990 }
1991 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1992 
1993 
1994 /*-------------------------------------------------------------------------*/
1995 
1996 /* Core methods for SPI master protocol drivers.  Some of the
1997  * other core methods are currently defined as inline functions.
1998  */
1999 
2000 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2001 {
2002 	if (master->bits_per_word_mask) {
2003 		/* Only 32 bits fit in the mask */
2004 		if (bits_per_word > 32)
2005 			return -EINVAL;
2006 		if (!(master->bits_per_word_mask &
2007 				SPI_BPW_MASK(bits_per_word)))
2008 			return -EINVAL;
2009 	}
2010 
2011 	return 0;
2012 }
2013 
2014 /**
2015  * spi_setup - setup SPI mode and clock rate
2016  * @spi: the device whose settings are being modified
2017  * Context: can sleep, and no requests are queued to the device
2018  *
2019  * SPI protocol drivers may need to update the transfer mode if the
2020  * device doesn't work with its default.  They may likewise need
2021  * to update clock rates or word sizes from initial values.  This function
2022  * changes those settings, and must be called from a context that can sleep.
2023  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2024  * effect the next time the device is selected and data is transferred to
2025  * or from it.  When this function returns, the spi device is deselected.
2026  *
2027  * Note that this call will fail if the protocol driver specifies an option
2028  * that the underlying controller or its driver does not support.  For
2029  * example, not all hardware supports wire transfers using nine bit words,
2030  * LSB-first wire encoding, or active-high chipselects.
2031  *
2032  * Return: zero on success, else a negative error code.
2033  */
2034 int spi_setup(struct spi_device *spi)
2035 {
2036 	unsigned	bad_bits, ugly_bits;
2037 	int		status;
2038 
2039 	/* check mode to prevent that DUAL and QUAD set at the same time
2040 	 */
2041 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2042 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2043 		dev_err(&spi->dev,
2044 		"setup: can not select dual and quad at the same time\n");
2045 		return -EINVAL;
2046 	}
2047 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2048 	 */
2049 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2050 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2051 		return -EINVAL;
2052 	/* help drivers fail *cleanly* when they need options
2053 	 * that aren't supported with their current master
2054 	 */
2055 	bad_bits = spi->mode & ~spi->master->mode_bits;
2056 	ugly_bits = bad_bits &
2057 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2058 	if (ugly_bits) {
2059 		dev_warn(&spi->dev,
2060 			 "setup: ignoring unsupported mode bits %x\n",
2061 			 ugly_bits);
2062 		spi->mode &= ~ugly_bits;
2063 		bad_bits &= ~ugly_bits;
2064 	}
2065 	if (bad_bits) {
2066 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2067 			bad_bits);
2068 		return -EINVAL;
2069 	}
2070 
2071 	if (!spi->bits_per_word)
2072 		spi->bits_per_word = 8;
2073 
2074 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2075 	if (status)
2076 		return status;
2077 
2078 	if (!spi->max_speed_hz)
2079 		spi->max_speed_hz = spi->master->max_speed_hz;
2080 
2081 	if (spi->master->setup)
2082 		status = spi->master->setup(spi);
2083 
2084 	spi_set_cs(spi, false);
2085 
2086 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2087 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2088 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2089 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2090 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2091 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2092 			spi->bits_per_word, spi->max_speed_hz,
2093 			status);
2094 
2095 	return status;
2096 }
2097 EXPORT_SYMBOL_GPL(spi_setup);
2098 
2099 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2100 {
2101 	struct spi_master *master = spi->master;
2102 	struct spi_transfer *xfer;
2103 	int w_size;
2104 
2105 	if (list_empty(&message->transfers))
2106 		return -EINVAL;
2107 
2108 	/* Half-duplex links include original MicroWire, and ones with
2109 	 * only one data pin like SPI_3WIRE (switches direction) or where
2110 	 * either MOSI or MISO is missing.  They can also be caused by
2111 	 * software limitations.
2112 	 */
2113 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2114 			|| (spi->mode & SPI_3WIRE)) {
2115 		unsigned flags = master->flags;
2116 
2117 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2118 			if (xfer->rx_buf && xfer->tx_buf)
2119 				return -EINVAL;
2120 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2121 				return -EINVAL;
2122 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2123 				return -EINVAL;
2124 		}
2125 	}
2126 
2127 	/**
2128 	 * Set transfer bits_per_word and max speed as spi device default if
2129 	 * it is not set for this transfer.
2130 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2131 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2132 	 */
2133 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2134 		message->frame_length += xfer->len;
2135 		if (!xfer->bits_per_word)
2136 			xfer->bits_per_word = spi->bits_per_word;
2137 
2138 		if (!xfer->speed_hz)
2139 			xfer->speed_hz = spi->max_speed_hz;
2140 		if (!xfer->speed_hz)
2141 			xfer->speed_hz = master->max_speed_hz;
2142 
2143 		if (master->max_speed_hz &&
2144 		    xfer->speed_hz > master->max_speed_hz)
2145 			xfer->speed_hz = master->max_speed_hz;
2146 
2147 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2148 			return -EINVAL;
2149 
2150 		/*
2151 		 * SPI transfer length should be multiple of SPI word size
2152 		 * where SPI word size should be power-of-two multiple
2153 		 */
2154 		if (xfer->bits_per_word <= 8)
2155 			w_size = 1;
2156 		else if (xfer->bits_per_word <= 16)
2157 			w_size = 2;
2158 		else
2159 			w_size = 4;
2160 
2161 		/* No partial transfers accepted */
2162 		if (xfer->len % w_size)
2163 			return -EINVAL;
2164 
2165 		if (xfer->speed_hz && master->min_speed_hz &&
2166 		    xfer->speed_hz < master->min_speed_hz)
2167 			return -EINVAL;
2168 
2169 		if (xfer->tx_buf && !xfer->tx_nbits)
2170 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2171 		if (xfer->rx_buf && !xfer->rx_nbits)
2172 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2173 		/* check transfer tx/rx_nbits:
2174 		 * 1. check the value matches one of single, dual and quad
2175 		 * 2. check tx/rx_nbits match the mode in spi_device
2176 		 */
2177 		if (xfer->tx_buf) {
2178 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2179 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2180 				xfer->tx_nbits != SPI_NBITS_QUAD)
2181 				return -EINVAL;
2182 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2183 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2184 				return -EINVAL;
2185 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2186 				!(spi->mode & SPI_TX_QUAD))
2187 				return -EINVAL;
2188 		}
2189 		/* check transfer rx_nbits */
2190 		if (xfer->rx_buf) {
2191 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2192 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2193 				xfer->rx_nbits != SPI_NBITS_QUAD)
2194 				return -EINVAL;
2195 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2196 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2197 				return -EINVAL;
2198 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2199 				!(spi->mode & SPI_RX_QUAD))
2200 				return -EINVAL;
2201 		}
2202 	}
2203 
2204 	message->status = -EINPROGRESS;
2205 
2206 	return 0;
2207 }
2208 
2209 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2210 {
2211 	struct spi_master *master = spi->master;
2212 
2213 	message->spi = spi;
2214 
2215 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2216 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2217 
2218 	trace_spi_message_submit(message);
2219 
2220 	return master->transfer(spi, message);
2221 }
2222 
2223 /**
2224  * spi_async - asynchronous SPI transfer
2225  * @spi: device with which data will be exchanged
2226  * @message: describes the data transfers, including completion callback
2227  * Context: any (irqs may be blocked, etc)
2228  *
2229  * This call may be used in_irq and other contexts which can't sleep,
2230  * as well as from task contexts which can sleep.
2231  *
2232  * The completion callback is invoked in a context which can't sleep.
2233  * Before that invocation, the value of message->status is undefined.
2234  * When the callback is issued, message->status holds either zero (to
2235  * indicate complete success) or a negative error code.  After that
2236  * callback returns, the driver which issued the transfer request may
2237  * deallocate the associated memory; it's no longer in use by any SPI
2238  * core or controller driver code.
2239  *
2240  * Note that although all messages to a spi_device are handled in
2241  * FIFO order, messages may go to different devices in other orders.
2242  * Some device might be higher priority, or have various "hard" access
2243  * time requirements, for example.
2244  *
2245  * On detection of any fault during the transfer, processing of
2246  * the entire message is aborted, and the device is deselected.
2247  * Until returning from the associated message completion callback,
2248  * no other spi_message queued to that device will be processed.
2249  * (This rule applies equally to all the synchronous transfer calls,
2250  * which are wrappers around this core asynchronous primitive.)
2251  *
2252  * Return: zero on success, else a negative error code.
2253  */
2254 int spi_async(struct spi_device *spi, struct spi_message *message)
2255 {
2256 	struct spi_master *master = spi->master;
2257 	int ret;
2258 	unsigned long flags;
2259 
2260 	ret = __spi_validate(spi, message);
2261 	if (ret != 0)
2262 		return ret;
2263 
2264 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2265 
2266 	if (master->bus_lock_flag)
2267 		ret = -EBUSY;
2268 	else
2269 		ret = __spi_async(spi, message);
2270 
2271 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2272 
2273 	return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(spi_async);
2276 
2277 /**
2278  * spi_async_locked - version of spi_async with exclusive bus usage
2279  * @spi: device with which data will be exchanged
2280  * @message: describes the data transfers, including completion callback
2281  * Context: any (irqs may be blocked, etc)
2282  *
2283  * This call may be used in_irq and other contexts which can't sleep,
2284  * as well as from task contexts which can sleep.
2285  *
2286  * The completion callback is invoked in a context which can't sleep.
2287  * Before that invocation, the value of message->status is undefined.
2288  * When the callback is issued, message->status holds either zero (to
2289  * indicate complete success) or a negative error code.  After that
2290  * callback returns, the driver which issued the transfer request may
2291  * deallocate the associated memory; it's no longer in use by any SPI
2292  * core or controller driver code.
2293  *
2294  * Note that although all messages to a spi_device are handled in
2295  * FIFO order, messages may go to different devices in other orders.
2296  * Some device might be higher priority, or have various "hard" access
2297  * time requirements, for example.
2298  *
2299  * On detection of any fault during the transfer, processing of
2300  * the entire message is aborted, and the device is deselected.
2301  * Until returning from the associated message completion callback,
2302  * no other spi_message queued to that device will be processed.
2303  * (This rule applies equally to all the synchronous transfer calls,
2304  * which are wrappers around this core asynchronous primitive.)
2305  *
2306  * Return: zero on success, else a negative error code.
2307  */
2308 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2309 {
2310 	struct spi_master *master = spi->master;
2311 	int ret;
2312 	unsigned long flags;
2313 
2314 	ret = __spi_validate(spi, message);
2315 	if (ret != 0)
2316 		return ret;
2317 
2318 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2319 
2320 	ret = __spi_async(spi, message);
2321 
2322 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2323 
2324 	return ret;
2325 
2326 }
2327 EXPORT_SYMBOL_GPL(spi_async_locked);
2328 
2329 
2330 /*-------------------------------------------------------------------------*/
2331 
2332 /* Utility methods for SPI master protocol drivers, layered on
2333  * top of the core.  Some other utility methods are defined as
2334  * inline functions.
2335  */
2336 
2337 static void spi_complete(void *arg)
2338 {
2339 	complete(arg);
2340 }
2341 
2342 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2343 		      int bus_locked)
2344 {
2345 	DECLARE_COMPLETION_ONSTACK(done);
2346 	int status;
2347 	struct spi_master *master = spi->master;
2348 	unsigned long flags;
2349 
2350 	status = __spi_validate(spi, message);
2351 	if (status != 0)
2352 		return status;
2353 
2354 	message->complete = spi_complete;
2355 	message->context = &done;
2356 	message->spi = spi;
2357 
2358 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2359 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2360 
2361 	if (!bus_locked)
2362 		mutex_lock(&master->bus_lock_mutex);
2363 
2364 	/* If we're not using the legacy transfer method then we will
2365 	 * try to transfer in the calling context so special case.
2366 	 * This code would be less tricky if we could remove the
2367 	 * support for driver implemented message queues.
2368 	 */
2369 	if (master->transfer == spi_queued_transfer) {
2370 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2371 
2372 		trace_spi_message_submit(message);
2373 
2374 		status = __spi_queued_transfer(spi, message, false);
2375 
2376 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2377 	} else {
2378 		status = spi_async_locked(spi, message);
2379 	}
2380 
2381 	if (!bus_locked)
2382 		mutex_unlock(&master->bus_lock_mutex);
2383 
2384 	if (status == 0) {
2385 		/* Push out the messages in the calling context if we
2386 		 * can.
2387 		 */
2388 		if (master->transfer == spi_queued_transfer) {
2389 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2390 						       spi_sync_immediate);
2391 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2392 						       spi_sync_immediate);
2393 			__spi_pump_messages(master, false);
2394 		}
2395 
2396 		wait_for_completion(&done);
2397 		status = message->status;
2398 	}
2399 	message->context = NULL;
2400 	return status;
2401 }
2402 
2403 /**
2404  * spi_sync - blocking/synchronous SPI data transfers
2405  * @spi: device with which data will be exchanged
2406  * @message: describes the data transfers
2407  * Context: can sleep
2408  *
2409  * This call may only be used from a context that may sleep.  The sleep
2410  * is non-interruptible, and has no timeout.  Low-overhead controller
2411  * drivers may DMA directly into and out of the message buffers.
2412  *
2413  * Note that the SPI device's chip select is active during the message,
2414  * and then is normally disabled between messages.  Drivers for some
2415  * frequently-used devices may want to minimize costs of selecting a chip,
2416  * by leaving it selected in anticipation that the next message will go
2417  * to the same chip.  (That may increase power usage.)
2418  *
2419  * Also, the caller is guaranteeing that the memory associated with the
2420  * message will not be freed before this call returns.
2421  *
2422  * Return: zero on success, else a negative error code.
2423  */
2424 int spi_sync(struct spi_device *spi, struct spi_message *message)
2425 {
2426 	return __spi_sync(spi, message, 0);
2427 }
2428 EXPORT_SYMBOL_GPL(spi_sync);
2429 
2430 /**
2431  * spi_sync_locked - version of spi_sync with exclusive bus usage
2432  * @spi: device with which data will be exchanged
2433  * @message: describes the data transfers
2434  * Context: can sleep
2435  *
2436  * This call may only be used from a context that may sleep.  The sleep
2437  * is non-interruptible, and has no timeout.  Low-overhead controller
2438  * drivers may DMA directly into and out of the message buffers.
2439  *
2440  * This call should be used by drivers that require exclusive access to the
2441  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2442  * be released by a spi_bus_unlock call when the exclusive access is over.
2443  *
2444  * Return: zero on success, else a negative error code.
2445  */
2446 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2447 {
2448 	return __spi_sync(spi, message, 1);
2449 }
2450 EXPORT_SYMBOL_GPL(spi_sync_locked);
2451 
2452 /**
2453  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2454  * @master: SPI bus master that should be locked for exclusive bus access
2455  * Context: can sleep
2456  *
2457  * This call may only be used from a context that may sleep.  The sleep
2458  * is non-interruptible, and has no timeout.
2459  *
2460  * This call should be used by drivers that require exclusive access to the
2461  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2462  * exclusive access is over. Data transfer must be done by spi_sync_locked
2463  * and spi_async_locked calls when the SPI bus lock is held.
2464  *
2465  * Return: always zero.
2466  */
2467 int spi_bus_lock(struct spi_master *master)
2468 {
2469 	unsigned long flags;
2470 
2471 	mutex_lock(&master->bus_lock_mutex);
2472 
2473 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2474 	master->bus_lock_flag = 1;
2475 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2476 
2477 	/* mutex remains locked until spi_bus_unlock is called */
2478 
2479 	return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(spi_bus_lock);
2482 
2483 /**
2484  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2485  * @master: SPI bus master that was locked for exclusive bus access
2486  * Context: can sleep
2487  *
2488  * This call may only be used from a context that may sleep.  The sleep
2489  * is non-interruptible, and has no timeout.
2490  *
2491  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2492  * call.
2493  *
2494  * Return: always zero.
2495  */
2496 int spi_bus_unlock(struct spi_master *master)
2497 {
2498 	master->bus_lock_flag = 0;
2499 
2500 	mutex_unlock(&master->bus_lock_mutex);
2501 
2502 	return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2505 
2506 /* portable code must never pass more than 32 bytes */
2507 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2508 
2509 static u8	*buf;
2510 
2511 /**
2512  * spi_write_then_read - SPI synchronous write followed by read
2513  * @spi: device with which data will be exchanged
2514  * @txbuf: data to be written (need not be dma-safe)
2515  * @n_tx: size of txbuf, in bytes
2516  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2517  * @n_rx: size of rxbuf, in bytes
2518  * Context: can sleep
2519  *
2520  * This performs a half duplex MicroWire style transaction with the
2521  * device, sending txbuf and then reading rxbuf.  The return value
2522  * is zero for success, else a negative errno status code.
2523  * This call may only be used from a context that may sleep.
2524  *
2525  * Parameters to this routine are always copied using a small buffer;
2526  * portable code should never use this for more than 32 bytes.
2527  * Performance-sensitive or bulk transfer code should instead use
2528  * spi_{async,sync}() calls with dma-safe buffers.
2529  *
2530  * Return: zero on success, else a negative error code.
2531  */
2532 int spi_write_then_read(struct spi_device *spi,
2533 		const void *txbuf, unsigned n_tx,
2534 		void *rxbuf, unsigned n_rx)
2535 {
2536 	static DEFINE_MUTEX(lock);
2537 
2538 	int			status;
2539 	struct spi_message	message;
2540 	struct spi_transfer	x[2];
2541 	u8			*local_buf;
2542 
2543 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2544 	 * copying here, (as a pure convenience thing), but we can
2545 	 * keep heap costs out of the hot path unless someone else is
2546 	 * using the pre-allocated buffer or the transfer is too large.
2547 	 */
2548 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2549 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2550 				    GFP_KERNEL | GFP_DMA);
2551 		if (!local_buf)
2552 			return -ENOMEM;
2553 	} else {
2554 		local_buf = buf;
2555 	}
2556 
2557 	spi_message_init(&message);
2558 	memset(x, 0, sizeof(x));
2559 	if (n_tx) {
2560 		x[0].len = n_tx;
2561 		spi_message_add_tail(&x[0], &message);
2562 	}
2563 	if (n_rx) {
2564 		x[1].len = n_rx;
2565 		spi_message_add_tail(&x[1], &message);
2566 	}
2567 
2568 	memcpy(local_buf, txbuf, n_tx);
2569 	x[0].tx_buf = local_buf;
2570 	x[1].rx_buf = local_buf + n_tx;
2571 
2572 	/* do the i/o */
2573 	status = spi_sync(spi, &message);
2574 	if (status == 0)
2575 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2576 
2577 	if (x[0].tx_buf == buf)
2578 		mutex_unlock(&lock);
2579 	else
2580 		kfree(local_buf);
2581 
2582 	return status;
2583 }
2584 EXPORT_SYMBOL_GPL(spi_write_then_read);
2585 
2586 /*-------------------------------------------------------------------------*/
2587 
2588 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2589 static int __spi_of_device_match(struct device *dev, void *data)
2590 {
2591 	return dev->of_node == data;
2592 }
2593 
2594 /* must call put_device() when done with returned spi_device device */
2595 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2596 {
2597 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2598 						__spi_of_device_match);
2599 	return dev ? to_spi_device(dev) : NULL;
2600 }
2601 
2602 static int __spi_of_master_match(struct device *dev, const void *data)
2603 {
2604 	return dev->of_node == data;
2605 }
2606 
2607 /* the spi masters are not using spi_bus, so we find it with another way */
2608 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2609 {
2610 	struct device *dev;
2611 
2612 	dev = class_find_device(&spi_master_class, NULL, node,
2613 				__spi_of_master_match);
2614 	if (!dev)
2615 		return NULL;
2616 
2617 	/* reference got in class_find_device */
2618 	return container_of(dev, struct spi_master, dev);
2619 }
2620 
2621 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2622 			 void *arg)
2623 {
2624 	struct of_reconfig_data *rd = arg;
2625 	struct spi_master *master;
2626 	struct spi_device *spi;
2627 
2628 	switch (of_reconfig_get_state_change(action, arg)) {
2629 	case OF_RECONFIG_CHANGE_ADD:
2630 		master = of_find_spi_master_by_node(rd->dn->parent);
2631 		if (master == NULL)
2632 			return NOTIFY_OK;	/* not for us */
2633 
2634 		spi = of_register_spi_device(master, rd->dn);
2635 		put_device(&master->dev);
2636 
2637 		if (IS_ERR(spi)) {
2638 			pr_err("%s: failed to create for '%s'\n",
2639 					__func__, rd->dn->full_name);
2640 			return notifier_from_errno(PTR_ERR(spi));
2641 		}
2642 		break;
2643 
2644 	case OF_RECONFIG_CHANGE_REMOVE:
2645 		/* find our device by node */
2646 		spi = of_find_spi_device_by_node(rd->dn);
2647 		if (spi == NULL)
2648 			return NOTIFY_OK;	/* no? not meant for us */
2649 
2650 		/* unregister takes one ref away */
2651 		spi_unregister_device(spi);
2652 
2653 		/* and put the reference of the find */
2654 		put_device(&spi->dev);
2655 		break;
2656 	}
2657 
2658 	return NOTIFY_OK;
2659 }
2660 
2661 static struct notifier_block spi_of_notifier = {
2662 	.notifier_call = of_spi_notify,
2663 };
2664 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2665 extern struct notifier_block spi_of_notifier;
2666 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2667 
2668 static int __init spi_init(void)
2669 {
2670 	int	status;
2671 
2672 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2673 	if (!buf) {
2674 		status = -ENOMEM;
2675 		goto err0;
2676 	}
2677 
2678 	status = bus_register(&spi_bus_type);
2679 	if (status < 0)
2680 		goto err1;
2681 
2682 	status = class_register(&spi_master_class);
2683 	if (status < 0)
2684 		goto err2;
2685 
2686 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2687 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2688 
2689 	return 0;
2690 
2691 err2:
2692 	bus_unregister(&spi_bus_type);
2693 err1:
2694 	kfree(buf);
2695 	buf = NULL;
2696 err0:
2697 	return status;
2698 }
2699 
2700 /* board_info is normally registered in arch_initcall(),
2701  * but even essential drivers wait till later
2702  *
2703  * REVISIT only boardinfo really needs static linking. the rest (device and
2704  * driver registration) _could_ be dynamically linked (modular) ... costs
2705  * include needing to have boardinfo data structures be much more public.
2706  */
2707 postcore_initcall(spi_init);
2708 
2709