1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_message *msg) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if (spi_valid_txbuf(msg, xfer)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if (spi_valid_rxbuf(msg, xfer)) 334 u64_stats_add(&stats->bytes_rx, xfer->len); 335 336 u64_stats_update_end(&stats->syncp); 337 put_cpu(); 338 } 339 340 /* 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 342 * and the sysfs version makes coldplug work too. 343 */ 344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 345 { 346 while (id->name[0]) { 347 if (!strcmp(name, id->name)) 348 return id; 349 id++; 350 } 351 return NULL; 352 } 353 354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 355 { 356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 357 358 return spi_match_id(sdrv->id_table, sdev->modalias); 359 } 360 EXPORT_SYMBOL_GPL(spi_get_device_id); 361 362 const void *spi_get_device_match_data(const struct spi_device *sdev) 363 { 364 const void *match; 365 366 match = device_get_match_data(&sdev->dev); 367 if (match) 368 return match; 369 370 return (const void *)spi_get_device_id(sdev)->driver_data; 371 } 372 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 373 374 static int spi_match_device(struct device *dev, struct device_driver *drv) 375 { 376 const struct spi_device *spi = to_spi_device(dev); 377 const struct spi_driver *sdrv = to_spi_driver(drv); 378 379 /* Check override first, and if set, only use the named driver */ 380 if (spi->driver_override) 381 return strcmp(spi->driver_override, drv->name) == 0; 382 383 /* Attempt an OF style match */ 384 if (of_driver_match_device(dev, drv)) 385 return 1; 386 387 /* Then try ACPI */ 388 if (acpi_driver_match_device(dev, drv)) 389 return 1; 390 391 if (sdrv->id_table) 392 return !!spi_match_id(sdrv->id_table, spi->modalias); 393 394 return strcmp(spi->modalias, drv->name) == 0; 395 } 396 397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 398 { 399 const struct spi_device *spi = to_spi_device(dev); 400 int rc; 401 402 rc = acpi_device_uevent_modalias(dev, env); 403 if (rc != -ENODEV) 404 return rc; 405 406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 407 } 408 409 static int spi_probe(struct device *dev) 410 { 411 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 412 struct spi_device *spi = to_spi_device(dev); 413 int ret; 414 415 ret = of_clk_set_defaults(dev->of_node, false); 416 if (ret) 417 return ret; 418 419 if (dev->of_node) { 420 spi->irq = of_irq_get(dev->of_node, 0); 421 if (spi->irq == -EPROBE_DEFER) 422 return -EPROBE_DEFER; 423 if (spi->irq < 0) 424 spi->irq = 0; 425 } 426 427 ret = dev_pm_domain_attach(dev, true); 428 if (ret) 429 return ret; 430 431 if (sdrv->probe) { 432 ret = sdrv->probe(spi); 433 if (ret) 434 dev_pm_domain_detach(dev, true); 435 } 436 437 return ret; 438 } 439 440 static void spi_remove(struct device *dev) 441 { 442 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 443 444 if (sdrv->remove) 445 sdrv->remove(to_spi_device(dev)); 446 447 dev_pm_domain_detach(dev, true); 448 } 449 450 static void spi_shutdown(struct device *dev) 451 { 452 if (dev->driver) { 453 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 454 455 if (sdrv->shutdown) 456 sdrv->shutdown(to_spi_device(dev)); 457 } 458 } 459 460 const struct bus_type spi_bus_type = { 461 .name = "spi", 462 .dev_groups = spi_dev_groups, 463 .match = spi_match_device, 464 .uevent = spi_uevent, 465 .probe = spi_probe, 466 .remove = spi_remove, 467 .shutdown = spi_shutdown, 468 }; 469 EXPORT_SYMBOL_GPL(spi_bus_type); 470 471 /** 472 * __spi_register_driver - register a SPI driver 473 * @owner: owner module of the driver to register 474 * @sdrv: the driver to register 475 * Context: can sleep 476 * 477 * Return: zero on success, else a negative error code. 478 */ 479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 480 { 481 sdrv->driver.owner = owner; 482 sdrv->driver.bus = &spi_bus_type; 483 484 /* 485 * For Really Good Reasons we use spi: modaliases not of: 486 * modaliases for DT so module autoloading won't work if we 487 * don't have a spi_device_id as well as a compatible string. 488 */ 489 if (sdrv->driver.of_match_table) { 490 const struct of_device_id *of_id; 491 492 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 493 of_id++) { 494 const char *of_name; 495 496 /* Strip off any vendor prefix */ 497 of_name = strnchr(of_id->compatible, 498 sizeof(of_id->compatible), ','); 499 if (of_name) 500 of_name++; 501 else 502 of_name = of_id->compatible; 503 504 if (sdrv->id_table) { 505 const struct spi_device_id *spi_id; 506 507 spi_id = spi_match_id(sdrv->id_table, of_name); 508 if (spi_id) 509 continue; 510 } else { 511 if (strcmp(sdrv->driver.name, of_name) == 0) 512 continue; 513 } 514 515 pr_warn("SPI driver %s has no spi_device_id for %s\n", 516 sdrv->driver.name, of_id->compatible); 517 } 518 } 519 520 return driver_register(&sdrv->driver); 521 } 522 EXPORT_SYMBOL_GPL(__spi_register_driver); 523 524 /*-------------------------------------------------------------------------*/ 525 526 /* 527 * SPI devices should normally not be created by SPI device drivers; that 528 * would make them board-specific. Similarly with SPI controller drivers. 529 * Device registration normally goes into like arch/.../mach.../board-YYY.c 530 * with other readonly (flashable) information about mainboard devices. 531 */ 532 533 struct boardinfo { 534 struct list_head list; 535 struct spi_board_info board_info; 536 }; 537 538 static LIST_HEAD(board_list); 539 static LIST_HEAD(spi_controller_list); 540 541 /* 542 * Used to protect add/del operation for board_info list and 543 * spi_controller list, and their matching process also used 544 * to protect object of type struct idr. 545 */ 546 static DEFINE_MUTEX(board_lock); 547 548 /** 549 * spi_alloc_device - Allocate a new SPI device 550 * @ctlr: Controller to which device is connected 551 * Context: can sleep 552 * 553 * Allows a driver to allocate and initialize a spi_device without 554 * registering it immediately. This allows a driver to directly 555 * fill the spi_device with device parameters before calling 556 * spi_add_device() on it. 557 * 558 * Caller is responsible to call spi_add_device() on the returned 559 * spi_device structure to add it to the SPI controller. If the caller 560 * needs to discard the spi_device without adding it, then it should 561 * call spi_dev_put() on it. 562 * 563 * Return: a pointer to the new device, or NULL. 564 */ 565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 566 { 567 struct spi_device *spi; 568 569 if (!spi_controller_get(ctlr)) 570 return NULL; 571 572 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 573 if (!spi) { 574 spi_controller_put(ctlr); 575 return NULL; 576 } 577 578 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 579 if (!spi->pcpu_statistics) { 580 kfree(spi); 581 spi_controller_put(ctlr); 582 return NULL; 583 } 584 585 spi->controller = ctlr; 586 spi->dev.parent = &ctlr->dev; 587 spi->dev.bus = &spi_bus_type; 588 spi->dev.release = spidev_release; 589 spi->mode = ctlr->buswidth_override_bits; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline bool is_valid_cs(s8 chip_select) 627 { 628 return chip_select != SPI_INVALID_CS; 629 } 630 631 static inline int spi_dev_check_cs(struct device *dev, 632 struct spi_device *spi, u8 idx, 633 struct spi_device *new_spi, u8 new_idx) 634 { 635 u8 cs, cs_new; 636 u8 idx_new; 637 638 cs = spi_get_chipselect(spi, idx); 639 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 640 cs_new = spi_get_chipselect(new_spi, idx_new); 641 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 642 dev_err(dev, "chipselect %u already in use\n", cs_new); 643 return -EBUSY; 644 } 645 } 646 return 0; 647 } 648 649 static int spi_dev_check(struct device *dev, void *data) 650 { 651 struct spi_device *spi = to_spi_device(dev); 652 struct spi_device *new_spi = data; 653 int status, idx; 654 655 if (spi->controller == new_spi->controller) { 656 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 657 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 658 if (status) 659 return status; 660 } 661 } 662 return 0; 663 } 664 665 static void spi_cleanup(struct spi_device *spi) 666 { 667 if (spi->controller->cleanup) 668 spi->controller->cleanup(spi); 669 } 670 671 static int __spi_add_device(struct spi_device *spi) 672 { 673 struct spi_controller *ctlr = spi->controller; 674 struct device *dev = ctlr->dev.parent; 675 int status, idx; 676 u8 cs; 677 678 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 679 /* Chipselects are numbered 0..max; validate. */ 680 cs = spi_get_chipselect(spi, idx); 681 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 682 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 683 ctlr->num_chipselect); 684 return -EINVAL; 685 } 686 } 687 688 /* 689 * Make sure that multiple logical CS doesn't map to the same physical CS. 690 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 691 */ 692 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 693 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 694 if (status) 695 return status; 696 } 697 698 /* Set the bus ID string */ 699 spi_dev_set_name(spi); 700 701 /* 702 * We need to make sure there's no other device with this 703 * chipselect **BEFORE** we call setup(), else we'll trash 704 * its configuration. 705 */ 706 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 707 if (status) 708 return status; 709 710 /* Controller may unregister concurrently */ 711 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 712 !device_is_registered(&ctlr->dev)) { 713 return -ENODEV; 714 } 715 716 if (ctlr->cs_gpiods) { 717 u8 cs; 718 719 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 720 cs = spi_get_chipselect(spi, idx); 721 if (is_valid_cs(cs)) 722 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 723 } 724 } 725 726 /* 727 * Drivers may modify this initial i/o setup, but will 728 * normally rely on the device being setup. Devices 729 * using SPI_CS_HIGH can't coexist well otherwise... 730 */ 731 status = spi_setup(spi); 732 if (status < 0) { 733 dev_err(dev, "can't setup %s, status %d\n", 734 dev_name(&spi->dev), status); 735 return status; 736 } 737 738 /* Device may be bound to an active driver when this returns */ 739 status = device_add(&spi->dev); 740 if (status < 0) { 741 dev_err(dev, "can't add %s, status %d\n", 742 dev_name(&spi->dev), status); 743 spi_cleanup(spi); 744 } else { 745 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 746 } 747 748 return status; 749 } 750 751 /** 752 * spi_add_device - Add spi_device allocated with spi_alloc_device 753 * @spi: spi_device to register 754 * 755 * Companion function to spi_alloc_device. Devices allocated with 756 * spi_alloc_device can be added onto the SPI bus with this function. 757 * 758 * Return: 0 on success; negative errno on failure 759 */ 760 int spi_add_device(struct spi_device *spi) 761 { 762 struct spi_controller *ctlr = spi->controller; 763 int status; 764 765 /* Set the bus ID string */ 766 spi_dev_set_name(spi); 767 768 mutex_lock(&ctlr->add_lock); 769 status = __spi_add_device(spi); 770 mutex_unlock(&ctlr->add_lock); 771 return status; 772 } 773 EXPORT_SYMBOL_GPL(spi_add_device); 774 775 static void spi_set_all_cs_unused(struct spi_device *spi) 776 { 777 u8 idx; 778 779 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 780 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 781 } 782 783 /** 784 * spi_new_device - instantiate one new SPI device 785 * @ctlr: Controller to which device is connected 786 * @chip: Describes the SPI device 787 * Context: can sleep 788 * 789 * On typical mainboards, this is purely internal; and it's not needed 790 * after board init creates the hard-wired devices. Some development 791 * platforms may not be able to use spi_register_board_info though, and 792 * this is exported so that for example a USB or parport based adapter 793 * driver could add devices (which it would learn about out-of-band). 794 * 795 * Return: the new device, or NULL. 796 */ 797 struct spi_device *spi_new_device(struct spi_controller *ctlr, 798 struct spi_board_info *chip) 799 { 800 struct spi_device *proxy; 801 int status; 802 803 /* 804 * NOTE: caller did any chip->bus_num checks necessary. 805 * 806 * Also, unless we change the return value convention to use 807 * error-or-pointer (not NULL-or-pointer), troubleshootability 808 * suggests syslogged diagnostics are best here (ugh). 809 */ 810 811 proxy = spi_alloc_device(ctlr); 812 if (!proxy) 813 return NULL; 814 815 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 816 817 /* Use provided chip-select for proxy device */ 818 spi_set_all_cs_unused(proxy); 819 spi_set_chipselect(proxy, 0, chip->chip_select); 820 821 proxy->max_speed_hz = chip->max_speed_hz; 822 proxy->mode = chip->mode; 823 proxy->irq = chip->irq; 824 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 825 proxy->dev.platform_data = (void *) chip->platform_data; 826 proxy->controller_data = chip->controller_data; 827 proxy->controller_state = NULL; 828 /* 829 * By default spi->chip_select[0] will hold the physical CS number, 830 * so set bit 0 in spi->cs_index_mask. 831 */ 832 proxy->cs_index_mask = BIT(0); 833 834 if (chip->swnode) { 835 status = device_add_software_node(&proxy->dev, chip->swnode); 836 if (status) { 837 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 838 chip->modalias, status); 839 goto err_dev_put; 840 } 841 } 842 843 status = spi_add_device(proxy); 844 if (status < 0) 845 goto err_dev_put; 846 847 return proxy; 848 849 err_dev_put: 850 device_remove_software_node(&proxy->dev); 851 spi_dev_put(proxy); 852 return NULL; 853 } 854 EXPORT_SYMBOL_GPL(spi_new_device); 855 856 /** 857 * spi_unregister_device - unregister a single SPI device 858 * @spi: spi_device to unregister 859 * 860 * Start making the passed SPI device vanish. Normally this would be handled 861 * by spi_unregister_controller(). 862 */ 863 void spi_unregister_device(struct spi_device *spi) 864 { 865 if (!spi) 866 return; 867 868 if (spi->dev.of_node) { 869 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 870 of_node_put(spi->dev.of_node); 871 } 872 if (ACPI_COMPANION(&spi->dev)) 873 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 874 device_remove_software_node(&spi->dev); 875 device_del(&spi->dev); 876 spi_cleanup(spi); 877 put_device(&spi->dev); 878 } 879 EXPORT_SYMBOL_GPL(spi_unregister_device); 880 881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 882 struct spi_board_info *bi) 883 { 884 struct spi_device *dev; 885 886 if (ctlr->bus_num != bi->bus_num) 887 return; 888 889 dev = spi_new_device(ctlr, bi); 890 if (!dev) 891 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 892 bi->modalias); 893 } 894 895 /** 896 * spi_register_board_info - register SPI devices for a given board 897 * @info: array of chip descriptors 898 * @n: how many descriptors are provided 899 * Context: can sleep 900 * 901 * Board-specific early init code calls this (probably during arch_initcall) 902 * with segments of the SPI device table. Any device nodes are created later, 903 * after the relevant parent SPI controller (bus_num) is defined. We keep 904 * this table of devices forever, so that reloading a controller driver will 905 * not make Linux forget about these hard-wired devices. 906 * 907 * Other code can also call this, e.g. a particular add-on board might provide 908 * SPI devices through its expansion connector, so code initializing that board 909 * would naturally declare its SPI devices. 910 * 911 * The board info passed can safely be __initdata ... but be careful of 912 * any embedded pointers (platform_data, etc), they're copied as-is. 913 * 914 * Return: zero on success, else a negative error code. 915 */ 916 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 917 { 918 struct boardinfo *bi; 919 int i; 920 921 if (!n) 922 return 0; 923 924 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 925 if (!bi) 926 return -ENOMEM; 927 928 for (i = 0; i < n; i++, bi++, info++) { 929 struct spi_controller *ctlr; 930 931 memcpy(&bi->board_info, info, sizeof(*info)); 932 933 mutex_lock(&board_lock); 934 list_add_tail(&bi->list, &board_list); 935 list_for_each_entry(ctlr, &spi_controller_list, list) 936 spi_match_controller_to_boardinfo(ctlr, 937 &bi->board_info); 938 mutex_unlock(&board_lock); 939 } 940 941 return 0; 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 /* Core methods for SPI resource management */ 947 948 /** 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed 950 * during the processing of a spi_message while using 951 * spi_transfer_one 952 * @spi: the SPI device for which we allocate memory 953 * @release: the release code to execute for this resource 954 * @size: size to alloc and return 955 * @gfp: GFP allocation flags 956 * 957 * Return: the pointer to the allocated data 958 * 959 * This may get enhanced in the future to allocate from a memory pool 960 * of the @spi_device or @spi_controller to avoid repeated allocations. 961 */ 962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 963 size_t size, gfp_t gfp) 964 { 965 struct spi_res *sres; 966 967 sres = kzalloc(sizeof(*sres) + size, gfp); 968 if (!sres) 969 return NULL; 970 971 INIT_LIST_HEAD(&sres->entry); 972 sres->release = release; 973 974 return sres->data; 975 } 976 977 /** 978 * spi_res_free - free an SPI resource 979 * @res: pointer to the custom data of a resource 980 */ 981 static void spi_res_free(void *res) 982 { 983 struct spi_res *sres = container_of(res, struct spi_res, data); 984 985 if (!res) 986 return; 987 988 WARN_ON(!list_empty(&sres->entry)); 989 kfree(sres); 990 } 991 992 /** 993 * spi_res_add - add a spi_res to the spi_message 994 * @message: the SPI message 995 * @res: the spi_resource 996 */ 997 static void spi_res_add(struct spi_message *message, void *res) 998 { 999 struct spi_res *sres = container_of(res, struct spi_res, data); 1000 1001 WARN_ON(!list_empty(&sres->entry)); 1002 list_add_tail(&sres->entry, &message->resources); 1003 } 1004 1005 /** 1006 * spi_res_release - release all SPI resources for this message 1007 * @ctlr: the @spi_controller 1008 * @message: the @spi_message 1009 */ 1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1011 { 1012 struct spi_res *res, *tmp; 1013 1014 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1015 if (res->release) 1016 res->release(ctlr, message, res->data); 1017 1018 list_del(&res->entry); 1019 1020 kfree(res); 1021 } 1022 } 1023 1024 /*-------------------------------------------------------------------------*/ 1025 #define spi_for_each_valid_cs(spi, idx) \ 1026 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1027 if (!(spi->cs_index_mask & BIT(idx))) {} else 1028 1029 static inline bool spi_is_last_cs(struct spi_device *spi) 1030 { 1031 u8 idx; 1032 bool last = false; 1033 1034 spi_for_each_valid_cs(spi, idx) { 1035 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1036 last = true; 1037 } 1038 return last; 1039 } 1040 1041 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1042 { 1043 /* 1044 * Historically ACPI has no means of the GPIO polarity and 1045 * thus the SPISerialBus() resource defines it on the per-chip 1046 * basis. In order to avoid a chain of negations, the GPIO 1047 * polarity is considered being Active High. Even for the cases 1048 * when _DSD() is involved (in the updated versions of ACPI) 1049 * the GPIO CS polarity must be defined Active High to avoid 1050 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1051 * into account. 1052 */ 1053 if (has_acpi_companion(&spi->dev)) 1054 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1055 else 1056 /* Polarity handled by GPIO library */ 1057 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1058 1059 if (activate) 1060 spi_delay_exec(&spi->cs_setup, NULL); 1061 else 1062 spi_delay_exec(&spi->cs_inactive, NULL); 1063 } 1064 1065 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1066 { 1067 bool activate = enable; 1068 u8 idx; 1069 1070 /* 1071 * Avoid calling into the driver (or doing delays) if the chip select 1072 * isn't actually changing from the last time this was called. 1073 */ 1074 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1075 spi_is_last_cs(spi)) || 1076 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1077 !spi_is_last_cs(spi))) && 1078 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1079 return; 1080 1081 trace_spi_set_cs(spi, activate); 1082 1083 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1084 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1085 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1086 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1087 1088 if (spi->mode & SPI_CS_HIGH) 1089 enable = !enable; 1090 1091 /* 1092 * Handle chip select delays for GPIO based CS or controllers without 1093 * programmable chip select timing. 1094 */ 1095 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1096 spi_delay_exec(&spi->cs_hold, NULL); 1097 1098 if (spi_is_csgpiod(spi)) { 1099 if (!(spi->mode & SPI_NO_CS)) { 1100 spi_for_each_valid_cs(spi, idx) { 1101 if (spi_get_csgpiod(spi, idx)) 1102 spi_toggle_csgpiod(spi, idx, enable, activate); 1103 } 1104 } 1105 /* Some SPI masters need both GPIO CS & slave_select */ 1106 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1107 spi->controller->set_cs) 1108 spi->controller->set_cs(spi, !enable); 1109 } else if (spi->controller->set_cs) { 1110 spi->controller->set_cs(spi, !enable); 1111 } 1112 1113 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1114 if (activate) 1115 spi_delay_exec(&spi->cs_setup, NULL); 1116 else 1117 spi_delay_exec(&spi->cs_inactive, NULL); 1118 } 1119 } 1120 1121 #ifdef CONFIG_HAS_DMA 1122 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1123 struct sg_table *sgt, void *buf, size_t len, 1124 enum dma_data_direction dir, unsigned long attrs) 1125 { 1126 const bool vmalloced_buf = is_vmalloc_addr(buf); 1127 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1128 #ifdef CONFIG_HIGHMEM 1129 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1130 (unsigned long)buf < (PKMAP_BASE + 1131 (LAST_PKMAP * PAGE_SIZE))); 1132 #else 1133 const bool kmap_buf = false; 1134 #endif 1135 int desc_len; 1136 int sgs; 1137 struct page *vm_page; 1138 struct scatterlist *sg; 1139 void *sg_buf; 1140 size_t min; 1141 int i, ret; 1142 1143 if (vmalloced_buf || kmap_buf) { 1144 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1145 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1146 } else if (virt_addr_valid(buf)) { 1147 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1148 sgs = DIV_ROUND_UP(len, desc_len); 1149 } else { 1150 return -EINVAL; 1151 } 1152 1153 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1154 if (ret != 0) 1155 return ret; 1156 1157 sg = &sgt->sgl[0]; 1158 for (i = 0; i < sgs; i++) { 1159 1160 if (vmalloced_buf || kmap_buf) { 1161 /* 1162 * Next scatterlist entry size is the minimum between 1163 * the desc_len and the remaining buffer length that 1164 * fits in a page. 1165 */ 1166 min = min_t(size_t, desc_len, 1167 min_t(size_t, len, 1168 PAGE_SIZE - offset_in_page(buf))); 1169 if (vmalloced_buf) 1170 vm_page = vmalloc_to_page(buf); 1171 else 1172 vm_page = kmap_to_page(buf); 1173 if (!vm_page) { 1174 sg_free_table(sgt); 1175 return -ENOMEM; 1176 } 1177 sg_set_page(sg, vm_page, 1178 min, offset_in_page(buf)); 1179 } else { 1180 min = min_t(size_t, len, desc_len); 1181 sg_buf = buf; 1182 sg_set_buf(sg, sg_buf, min); 1183 } 1184 1185 buf += min; 1186 len -= min; 1187 sg = sg_next(sg); 1188 } 1189 1190 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1191 if (ret < 0) { 1192 sg_free_table(sgt); 1193 return ret; 1194 } 1195 1196 return 0; 1197 } 1198 1199 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1200 struct sg_table *sgt, void *buf, size_t len, 1201 enum dma_data_direction dir) 1202 { 1203 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1204 } 1205 1206 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1207 struct device *dev, struct sg_table *sgt, 1208 enum dma_data_direction dir, 1209 unsigned long attrs) 1210 { 1211 dma_unmap_sgtable(dev, sgt, dir, attrs); 1212 sg_free_table(sgt); 1213 sgt->orig_nents = 0; 1214 sgt->nents = 0; 1215 } 1216 1217 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1218 struct sg_table *sgt, enum dma_data_direction dir) 1219 { 1220 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1221 } 1222 1223 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1224 { 1225 struct device *tx_dev, *rx_dev; 1226 struct spi_transfer *xfer; 1227 int ret; 1228 1229 if (!ctlr->can_dma) 1230 return 0; 1231 1232 if (ctlr->dma_tx) 1233 tx_dev = ctlr->dma_tx->device->dev; 1234 else if (ctlr->dma_map_dev) 1235 tx_dev = ctlr->dma_map_dev; 1236 else 1237 tx_dev = ctlr->dev.parent; 1238 1239 if (ctlr->dma_rx) 1240 rx_dev = ctlr->dma_rx->device->dev; 1241 else if (ctlr->dma_map_dev) 1242 rx_dev = ctlr->dma_map_dev; 1243 else 1244 rx_dev = ctlr->dev.parent; 1245 1246 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1247 /* The sync is done before each transfer. */ 1248 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1249 1250 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1251 continue; 1252 1253 if (xfer->tx_buf != NULL) { 1254 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1255 (void *)xfer->tx_buf, 1256 xfer->len, DMA_TO_DEVICE, 1257 attrs); 1258 if (ret != 0) 1259 return ret; 1260 } 1261 1262 if (xfer->rx_buf != NULL) { 1263 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1264 xfer->rx_buf, xfer->len, 1265 DMA_FROM_DEVICE, attrs); 1266 if (ret != 0) { 1267 spi_unmap_buf_attrs(ctlr, tx_dev, 1268 &xfer->tx_sg, DMA_TO_DEVICE, 1269 attrs); 1270 1271 return ret; 1272 } 1273 } 1274 } 1275 1276 ctlr->cur_rx_dma_dev = rx_dev; 1277 ctlr->cur_tx_dma_dev = tx_dev; 1278 ctlr->cur_msg_mapped = true; 1279 1280 return 0; 1281 } 1282 1283 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1284 { 1285 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1286 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1287 struct spi_transfer *xfer; 1288 1289 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1290 return 0; 1291 1292 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1293 /* The sync has already been done after each transfer. */ 1294 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1295 1296 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1297 continue; 1298 1299 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1300 DMA_FROM_DEVICE, attrs); 1301 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1302 DMA_TO_DEVICE, attrs); 1303 } 1304 1305 ctlr->cur_msg_mapped = false; 1306 1307 return 0; 1308 } 1309 1310 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1311 struct spi_transfer *xfer) 1312 { 1313 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1314 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1315 1316 if (!ctlr->cur_msg_mapped) 1317 return; 1318 1319 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1320 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1321 } 1322 1323 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1324 struct spi_transfer *xfer) 1325 { 1326 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1327 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1328 1329 if (!ctlr->cur_msg_mapped) 1330 return; 1331 1332 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1333 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1334 } 1335 #else /* !CONFIG_HAS_DMA */ 1336 static inline int __spi_map_msg(struct spi_controller *ctlr, 1337 struct spi_message *msg) 1338 { 1339 return 0; 1340 } 1341 1342 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1343 struct spi_message *msg) 1344 { 1345 return 0; 1346 } 1347 1348 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1349 struct spi_transfer *xfer) 1350 { 1351 } 1352 1353 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1354 struct spi_transfer *xfer) 1355 { 1356 } 1357 #endif /* !CONFIG_HAS_DMA */ 1358 1359 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1360 struct spi_message *msg) 1361 { 1362 struct spi_transfer *xfer; 1363 1364 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1365 /* 1366 * Restore the original value of tx_buf or rx_buf if they are 1367 * NULL. 1368 */ 1369 if (xfer->tx_buf == ctlr->dummy_tx) 1370 xfer->tx_buf = NULL; 1371 if (xfer->rx_buf == ctlr->dummy_rx) 1372 xfer->rx_buf = NULL; 1373 } 1374 1375 return __spi_unmap_msg(ctlr, msg); 1376 } 1377 1378 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1379 { 1380 struct spi_transfer *xfer; 1381 void *tmp; 1382 unsigned int max_tx, max_rx; 1383 1384 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1385 && !(msg->spi->mode & SPI_3WIRE)) { 1386 max_tx = 0; 1387 max_rx = 0; 1388 1389 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1390 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1391 !xfer->tx_buf) 1392 max_tx = max(xfer->len, max_tx); 1393 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1394 !xfer->rx_buf) 1395 max_rx = max(xfer->len, max_rx); 1396 } 1397 1398 if (max_tx) { 1399 tmp = krealloc(ctlr->dummy_tx, max_tx, 1400 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1401 if (!tmp) 1402 return -ENOMEM; 1403 ctlr->dummy_tx = tmp; 1404 } 1405 1406 if (max_rx) { 1407 tmp = krealloc(ctlr->dummy_rx, max_rx, 1408 GFP_KERNEL | GFP_DMA); 1409 if (!tmp) 1410 return -ENOMEM; 1411 ctlr->dummy_rx = tmp; 1412 } 1413 1414 if (max_tx || max_rx) { 1415 list_for_each_entry(xfer, &msg->transfers, 1416 transfer_list) { 1417 if (!xfer->len) 1418 continue; 1419 if (!xfer->tx_buf) 1420 xfer->tx_buf = ctlr->dummy_tx; 1421 if (!xfer->rx_buf) 1422 xfer->rx_buf = ctlr->dummy_rx; 1423 } 1424 } 1425 } 1426 1427 return __spi_map_msg(ctlr, msg); 1428 } 1429 1430 static int spi_transfer_wait(struct spi_controller *ctlr, 1431 struct spi_message *msg, 1432 struct spi_transfer *xfer) 1433 { 1434 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1435 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1436 u32 speed_hz = xfer->speed_hz; 1437 unsigned long long ms; 1438 1439 if (spi_controller_is_slave(ctlr)) { 1440 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1441 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1442 return -EINTR; 1443 } 1444 } else { 1445 if (!speed_hz) 1446 speed_hz = 100000; 1447 1448 /* 1449 * For each byte we wait for 8 cycles of the SPI clock. 1450 * Since speed is defined in Hz and we want milliseconds, 1451 * use respective multiplier, but before the division, 1452 * otherwise we may get 0 for short transfers. 1453 */ 1454 ms = 8LL * MSEC_PER_SEC * xfer->len; 1455 do_div(ms, speed_hz); 1456 1457 /* 1458 * Increase it twice and add 200 ms tolerance, use 1459 * predefined maximum in case of overflow. 1460 */ 1461 ms += ms + 200; 1462 if (ms > UINT_MAX) 1463 ms = UINT_MAX; 1464 1465 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1466 msecs_to_jiffies(ms)); 1467 1468 if (ms == 0) { 1469 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1470 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1471 dev_err(&msg->spi->dev, 1472 "SPI transfer timed out\n"); 1473 return -ETIMEDOUT; 1474 } 1475 1476 if (xfer->error & SPI_TRANS_FAIL_IO) 1477 return -EIO; 1478 } 1479 1480 return 0; 1481 } 1482 1483 static void _spi_transfer_delay_ns(u32 ns) 1484 { 1485 if (!ns) 1486 return; 1487 if (ns <= NSEC_PER_USEC) { 1488 ndelay(ns); 1489 } else { 1490 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1491 1492 if (us <= 10) 1493 udelay(us); 1494 else 1495 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1496 } 1497 } 1498 1499 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1500 { 1501 u32 delay = _delay->value; 1502 u32 unit = _delay->unit; 1503 u32 hz; 1504 1505 if (!delay) 1506 return 0; 1507 1508 switch (unit) { 1509 case SPI_DELAY_UNIT_USECS: 1510 delay *= NSEC_PER_USEC; 1511 break; 1512 case SPI_DELAY_UNIT_NSECS: 1513 /* Nothing to do here */ 1514 break; 1515 case SPI_DELAY_UNIT_SCK: 1516 /* Clock cycles need to be obtained from spi_transfer */ 1517 if (!xfer) 1518 return -EINVAL; 1519 /* 1520 * If there is unknown effective speed, approximate it 1521 * by underestimating with half of the requested Hz. 1522 */ 1523 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1524 if (!hz) 1525 return -EINVAL; 1526 1527 /* Convert delay to nanoseconds */ 1528 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1529 break; 1530 default: 1531 return -EINVAL; 1532 } 1533 1534 return delay; 1535 } 1536 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1537 1538 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1539 { 1540 int delay; 1541 1542 might_sleep(); 1543 1544 if (!_delay) 1545 return -EINVAL; 1546 1547 delay = spi_delay_to_ns(_delay, xfer); 1548 if (delay < 0) 1549 return delay; 1550 1551 _spi_transfer_delay_ns(delay); 1552 1553 return 0; 1554 } 1555 EXPORT_SYMBOL_GPL(spi_delay_exec); 1556 1557 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1558 struct spi_transfer *xfer) 1559 { 1560 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1561 u32 delay = xfer->cs_change_delay.value; 1562 u32 unit = xfer->cs_change_delay.unit; 1563 int ret; 1564 1565 /* Return early on "fast" mode - for everything but USECS */ 1566 if (!delay) { 1567 if (unit == SPI_DELAY_UNIT_USECS) 1568 _spi_transfer_delay_ns(default_delay_ns); 1569 return; 1570 } 1571 1572 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1573 if (ret) { 1574 dev_err_once(&msg->spi->dev, 1575 "Use of unsupported delay unit %i, using default of %luus\n", 1576 unit, default_delay_ns / NSEC_PER_USEC); 1577 _spi_transfer_delay_ns(default_delay_ns); 1578 } 1579 } 1580 1581 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1582 struct spi_transfer *xfer) 1583 { 1584 _spi_transfer_cs_change_delay(msg, xfer); 1585 } 1586 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1587 1588 /* 1589 * spi_transfer_one_message - Default implementation of transfer_one_message() 1590 * 1591 * This is a standard implementation of transfer_one_message() for 1592 * drivers which implement a transfer_one() operation. It provides 1593 * standard handling of delays and chip select management. 1594 */ 1595 static int spi_transfer_one_message(struct spi_controller *ctlr, 1596 struct spi_message *msg) 1597 { 1598 struct spi_transfer *xfer; 1599 bool keep_cs = false; 1600 int ret = 0; 1601 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1602 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1603 1604 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1605 spi_set_cs(msg->spi, !xfer->cs_off, false); 1606 1607 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1608 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1609 1610 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1611 trace_spi_transfer_start(msg, xfer); 1612 1613 spi_statistics_add_transfer_stats(statm, xfer, msg); 1614 spi_statistics_add_transfer_stats(stats, xfer, msg); 1615 1616 if (!ctlr->ptp_sts_supported) { 1617 xfer->ptp_sts_word_pre = 0; 1618 ptp_read_system_prets(xfer->ptp_sts); 1619 } 1620 1621 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1622 reinit_completion(&ctlr->xfer_completion); 1623 1624 fallback_pio: 1625 spi_dma_sync_for_device(ctlr, xfer); 1626 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1627 if (ret < 0) { 1628 spi_dma_sync_for_cpu(ctlr, xfer); 1629 1630 if (ctlr->cur_msg_mapped && 1631 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1632 __spi_unmap_msg(ctlr, msg); 1633 ctlr->fallback = true; 1634 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1635 goto fallback_pio; 1636 } 1637 1638 SPI_STATISTICS_INCREMENT_FIELD(statm, 1639 errors); 1640 SPI_STATISTICS_INCREMENT_FIELD(stats, 1641 errors); 1642 dev_err(&msg->spi->dev, 1643 "SPI transfer failed: %d\n", ret); 1644 goto out; 1645 } 1646 1647 if (ret > 0) { 1648 ret = spi_transfer_wait(ctlr, msg, xfer); 1649 if (ret < 0) 1650 msg->status = ret; 1651 } 1652 1653 spi_dma_sync_for_cpu(ctlr, xfer); 1654 } else { 1655 if (xfer->len) 1656 dev_err(&msg->spi->dev, 1657 "Bufferless transfer has length %u\n", 1658 xfer->len); 1659 } 1660 1661 if (!ctlr->ptp_sts_supported) { 1662 ptp_read_system_postts(xfer->ptp_sts); 1663 xfer->ptp_sts_word_post = xfer->len; 1664 } 1665 1666 trace_spi_transfer_stop(msg, xfer); 1667 1668 if (msg->status != -EINPROGRESS) 1669 goto out; 1670 1671 spi_transfer_delay_exec(xfer); 1672 1673 if (xfer->cs_change) { 1674 if (list_is_last(&xfer->transfer_list, 1675 &msg->transfers)) { 1676 keep_cs = true; 1677 } else { 1678 if (!xfer->cs_off) 1679 spi_set_cs(msg->spi, false, false); 1680 _spi_transfer_cs_change_delay(msg, xfer); 1681 if (!list_next_entry(xfer, transfer_list)->cs_off) 1682 spi_set_cs(msg->spi, true, false); 1683 } 1684 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1685 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1686 spi_set_cs(msg->spi, xfer->cs_off, false); 1687 } 1688 1689 msg->actual_length += xfer->len; 1690 } 1691 1692 out: 1693 if (ret != 0 || !keep_cs) 1694 spi_set_cs(msg->spi, false, false); 1695 1696 if (msg->status == -EINPROGRESS) 1697 msg->status = ret; 1698 1699 if (msg->status && ctlr->handle_err) 1700 ctlr->handle_err(ctlr, msg); 1701 1702 spi_finalize_current_message(ctlr); 1703 1704 return ret; 1705 } 1706 1707 /** 1708 * spi_finalize_current_transfer - report completion of a transfer 1709 * @ctlr: the controller reporting completion 1710 * 1711 * Called by SPI drivers using the core transfer_one_message() 1712 * implementation to notify it that the current interrupt driven 1713 * transfer has finished and the next one may be scheduled. 1714 */ 1715 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1716 { 1717 complete(&ctlr->xfer_completion); 1718 } 1719 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1720 1721 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1722 { 1723 if (ctlr->auto_runtime_pm) { 1724 pm_runtime_mark_last_busy(ctlr->dev.parent); 1725 pm_runtime_put_autosuspend(ctlr->dev.parent); 1726 } 1727 } 1728 1729 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1730 struct spi_message *msg, bool was_busy) 1731 { 1732 struct spi_transfer *xfer; 1733 int ret; 1734 1735 if (!was_busy && ctlr->auto_runtime_pm) { 1736 ret = pm_runtime_get_sync(ctlr->dev.parent); 1737 if (ret < 0) { 1738 pm_runtime_put_noidle(ctlr->dev.parent); 1739 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1740 ret); 1741 1742 msg->status = ret; 1743 spi_finalize_current_message(ctlr); 1744 1745 return ret; 1746 } 1747 } 1748 1749 if (!was_busy) 1750 trace_spi_controller_busy(ctlr); 1751 1752 if (!was_busy && ctlr->prepare_transfer_hardware) { 1753 ret = ctlr->prepare_transfer_hardware(ctlr); 1754 if (ret) { 1755 dev_err(&ctlr->dev, 1756 "failed to prepare transfer hardware: %d\n", 1757 ret); 1758 1759 if (ctlr->auto_runtime_pm) 1760 pm_runtime_put(ctlr->dev.parent); 1761 1762 msg->status = ret; 1763 spi_finalize_current_message(ctlr); 1764 1765 return ret; 1766 } 1767 } 1768 1769 trace_spi_message_start(msg); 1770 1771 if (ctlr->prepare_message) { 1772 ret = ctlr->prepare_message(ctlr, msg); 1773 if (ret) { 1774 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1775 ret); 1776 msg->status = ret; 1777 spi_finalize_current_message(ctlr); 1778 return ret; 1779 } 1780 msg->prepared = true; 1781 } 1782 1783 ret = spi_map_msg(ctlr, msg); 1784 if (ret) { 1785 msg->status = ret; 1786 spi_finalize_current_message(ctlr); 1787 return ret; 1788 } 1789 1790 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1791 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1792 xfer->ptp_sts_word_pre = 0; 1793 ptp_read_system_prets(xfer->ptp_sts); 1794 } 1795 } 1796 1797 /* 1798 * Drivers implementation of transfer_one_message() must arrange for 1799 * spi_finalize_current_message() to get called. Most drivers will do 1800 * this in the calling context, but some don't. For those cases, a 1801 * completion is used to guarantee that this function does not return 1802 * until spi_finalize_current_message() is done accessing 1803 * ctlr->cur_msg. 1804 * Use of the following two flags enable to opportunistically skip the 1805 * use of the completion since its use involves expensive spin locks. 1806 * In case of a race with the context that calls 1807 * spi_finalize_current_message() the completion will always be used, 1808 * due to strict ordering of these flags using barriers. 1809 */ 1810 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1811 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1812 reinit_completion(&ctlr->cur_msg_completion); 1813 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1814 1815 ret = ctlr->transfer_one_message(ctlr, msg); 1816 if (ret) { 1817 dev_err(&ctlr->dev, 1818 "failed to transfer one message from queue\n"); 1819 return ret; 1820 } 1821 1822 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1823 smp_mb(); /* See spi_finalize_current_message()... */ 1824 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1825 wait_for_completion(&ctlr->cur_msg_completion); 1826 1827 return 0; 1828 } 1829 1830 /** 1831 * __spi_pump_messages - function which processes SPI message queue 1832 * @ctlr: controller to process queue for 1833 * @in_kthread: true if we are in the context of the message pump thread 1834 * 1835 * This function checks if there is any SPI message in the queue that 1836 * needs processing and if so call out to the driver to initialize hardware 1837 * and transfer each message. 1838 * 1839 * Note that it is called both from the kthread itself and also from 1840 * inside spi_sync(); the queue extraction handling at the top of the 1841 * function should deal with this safely. 1842 */ 1843 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1844 { 1845 struct spi_message *msg; 1846 bool was_busy = false; 1847 unsigned long flags; 1848 int ret; 1849 1850 /* Take the I/O mutex */ 1851 mutex_lock(&ctlr->io_mutex); 1852 1853 /* Lock queue */ 1854 spin_lock_irqsave(&ctlr->queue_lock, flags); 1855 1856 /* Make sure we are not already running a message */ 1857 if (ctlr->cur_msg) 1858 goto out_unlock; 1859 1860 /* Check if the queue is idle */ 1861 if (list_empty(&ctlr->queue) || !ctlr->running) { 1862 if (!ctlr->busy) 1863 goto out_unlock; 1864 1865 /* Defer any non-atomic teardown to the thread */ 1866 if (!in_kthread) { 1867 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1868 !ctlr->unprepare_transfer_hardware) { 1869 spi_idle_runtime_pm(ctlr); 1870 ctlr->busy = false; 1871 ctlr->queue_empty = true; 1872 trace_spi_controller_idle(ctlr); 1873 } else { 1874 kthread_queue_work(ctlr->kworker, 1875 &ctlr->pump_messages); 1876 } 1877 goto out_unlock; 1878 } 1879 1880 ctlr->busy = false; 1881 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1882 1883 kfree(ctlr->dummy_rx); 1884 ctlr->dummy_rx = NULL; 1885 kfree(ctlr->dummy_tx); 1886 ctlr->dummy_tx = NULL; 1887 if (ctlr->unprepare_transfer_hardware && 1888 ctlr->unprepare_transfer_hardware(ctlr)) 1889 dev_err(&ctlr->dev, 1890 "failed to unprepare transfer hardware\n"); 1891 spi_idle_runtime_pm(ctlr); 1892 trace_spi_controller_idle(ctlr); 1893 1894 spin_lock_irqsave(&ctlr->queue_lock, flags); 1895 ctlr->queue_empty = true; 1896 goto out_unlock; 1897 } 1898 1899 /* Extract head of queue */ 1900 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1901 ctlr->cur_msg = msg; 1902 1903 list_del_init(&msg->queue); 1904 if (ctlr->busy) 1905 was_busy = true; 1906 else 1907 ctlr->busy = true; 1908 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1909 1910 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1911 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1912 1913 ctlr->cur_msg = NULL; 1914 ctlr->fallback = false; 1915 1916 mutex_unlock(&ctlr->io_mutex); 1917 1918 /* Prod the scheduler in case transfer_one() was busy waiting */ 1919 if (!ret) 1920 cond_resched(); 1921 return; 1922 1923 out_unlock: 1924 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1925 mutex_unlock(&ctlr->io_mutex); 1926 } 1927 1928 /** 1929 * spi_pump_messages - kthread work function which processes spi message queue 1930 * @work: pointer to kthread work struct contained in the controller struct 1931 */ 1932 static void spi_pump_messages(struct kthread_work *work) 1933 { 1934 struct spi_controller *ctlr = 1935 container_of(work, struct spi_controller, pump_messages); 1936 1937 __spi_pump_messages(ctlr, true); 1938 } 1939 1940 /** 1941 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1942 * @ctlr: Pointer to the spi_controller structure of the driver 1943 * @xfer: Pointer to the transfer being timestamped 1944 * @progress: How many words (not bytes) have been transferred so far 1945 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1946 * transfer, for less jitter in time measurement. Only compatible 1947 * with PIO drivers. If true, must follow up with 1948 * spi_take_timestamp_post or otherwise system will crash. 1949 * WARNING: for fully predictable results, the CPU frequency must 1950 * also be under control (governor). 1951 * 1952 * This is a helper for drivers to collect the beginning of the TX timestamp 1953 * for the requested byte from the SPI transfer. The frequency with which this 1954 * function must be called (once per word, once for the whole transfer, once 1955 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1956 * greater than or equal to the requested byte at the time of the call. The 1957 * timestamp is only taken once, at the first such call. It is assumed that 1958 * the driver advances its @tx buffer pointer monotonically. 1959 */ 1960 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1961 struct spi_transfer *xfer, 1962 size_t progress, bool irqs_off) 1963 { 1964 if (!xfer->ptp_sts) 1965 return; 1966 1967 if (xfer->timestamped) 1968 return; 1969 1970 if (progress > xfer->ptp_sts_word_pre) 1971 return; 1972 1973 /* Capture the resolution of the timestamp */ 1974 xfer->ptp_sts_word_pre = progress; 1975 1976 if (irqs_off) { 1977 local_irq_save(ctlr->irq_flags); 1978 preempt_disable(); 1979 } 1980 1981 ptp_read_system_prets(xfer->ptp_sts); 1982 } 1983 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1984 1985 /** 1986 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1987 * @ctlr: Pointer to the spi_controller structure of the driver 1988 * @xfer: Pointer to the transfer being timestamped 1989 * @progress: How many words (not bytes) have been transferred so far 1990 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1991 * 1992 * This is a helper for drivers to collect the end of the TX timestamp for 1993 * the requested byte from the SPI transfer. Can be called with an arbitrary 1994 * frequency: only the first call where @tx exceeds or is equal to the 1995 * requested word will be timestamped. 1996 */ 1997 void spi_take_timestamp_post(struct spi_controller *ctlr, 1998 struct spi_transfer *xfer, 1999 size_t progress, bool irqs_off) 2000 { 2001 if (!xfer->ptp_sts) 2002 return; 2003 2004 if (xfer->timestamped) 2005 return; 2006 2007 if (progress < xfer->ptp_sts_word_post) 2008 return; 2009 2010 ptp_read_system_postts(xfer->ptp_sts); 2011 2012 if (irqs_off) { 2013 local_irq_restore(ctlr->irq_flags); 2014 preempt_enable(); 2015 } 2016 2017 /* Capture the resolution of the timestamp */ 2018 xfer->ptp_sts_word_post = progress; 2019 2020 xfer->timestamped = 1; 2021 } 2022 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2023 2024 /** 2025 * spi_set_thread_rt - set the controller to pump at realtime priority 2026 * @ctlr: controller to boost priority of 2027 * 2028 * This can be called because the controller requested realtime priority 2029 * (by setting the ->rt value before calling spi_register_controller()) or 2030 * because a device on the bus said that its transfers needed realtime 2031 * priority. 2032 * 2033 * NOTE: at the moment if any device on a bus says it needs realtime then 2034 * the thread will be at realtime priority for all transfers on that 2035 * controller. If this eventually becomes a problem we may see if we can 2036 * find a way to boost the priority only temporarily during relevant 2037 * transfers. 2038 */ 2039 static void spi_set_thread_rt(struct spi_controller *ctlr) 2040 { 2041 dev_info(&ctlr->dev, 2042 "will run message pump with realtime priority\n"); 2043 sched_set_fifo(ctlr->kworker->task); 2044 } 2045 2046 static int spi_init_queue(struct spi_controller *ctlr) 2047 { 2048 ctlr->running = false; 2049 ctlr->busy = false; 2050 ctlr->queue_empty = true; 2051 2052 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2053 if (IS_ERR(ctlr->kworker)) { 2054 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2055 return PTR_ERR(ctlr->kworker); 2056 } 2057 2058 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2059 2060 /* 2061 * Controller config will indicate if this controller should run the 2062 * message pump with high (realtime) priority to reduce the transfer 2063 * latency on the bus by minimising the delay between a transfer 2064 * request and the scheduling of the message pump thread. Without this 2065 * setting the message pump thread will remain at default priority. 2066 */ 2067 if (ctlr->rt) 2068 spi_set_thread_rt(ctlr); 2069 2070 return 0; 2071 } 2072 2073 /** 2074 * spi_get_next_queued_message() - called by driver to check for queued 2075 * messages 2076 * @ctlr: the controller to check for queued messages 2077 * 2078 * If there are more messages in the queue, the next message is returned from 2079 * this call. 2080 * 2081 * Return: the next message in the queue, else NULL if the queue is empty. 2082 */ 2083 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2084 { 2085 struct spi_message *next; 2086 unsigned long flags; 2087 2088 /* Get a pointer to the next message, if any */ 2089 spin_lock_irqsave(&ctlr->queue_lock, flags); 2090 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2091 queue); 2092 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2093 2094 return next; 2095 } 2096 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2097 2098 /* 2099 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2100 * and spi_maybe_unoptimize_message() 2101 * @msg: the message to unoptimize 2102 * 2103 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2104 * core should use spi_maybe_unoptimize_message() rather than calling this 2105 * function directly. 2106 * 2107 * It is not valid to call this on a message that is not currently optimized. 2108 */ 2109 static void __spi_unoptimize_message(struct spi_message *msg) 2110 { 2111 struct spi_controller *ctlr = msg->spi->controller; 2112 2113 if (ctlr->unoptimize_message) 2114 ctlr->unoptimize_message(msg); 2115 2116 spi_res_release(ctlr, msg); 2117 2118 msg->optimized = false; 2119 msg->opt_state = NULL; 2120 } 2121 2122 /* 2123 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2124 * @msg: the message to unoptimize 2125 * 2126 * This function is used to unoptimize a message if and only if it was 2127 * optimized by the core (via spi_maybe_optimize_message()). 2128 */ 2129 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2130 { 2131 if (!msg->pre_optimized && msg->optimized) 2132 __spi_unoptimize_message(msg); 2133 } 2134 2135 /** 2136 * spi_finalize_current_message() - the current message is complete 2137 * @ctlr: the controller to return the message to 2138 * 2139 * Called by the driver to notify the core that the message in the front of the 2140 * queue is complete and can be removed from the queue. 2141 */ 2142 void spi_finalize_current_message(struct spi_controller *ctlr) 2143 { 2144 struct spi_transfer *xfer; 2145 struct spi_message *mesg; 2146 int ret; 2147 2148 mesg = ctlr->cur_msg; 2149 2150 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2151 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2152 ptp_read_system_postts(xfer->ptp_sts); 2153 xfer->ptp_sts_word_post = xfer->len; 2154 } 2155 } 2156 2157 if (unlikely(ctlr->ptp_sts_supported)) 2158 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2159 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2160 2161 spi_unmap_msg(ctlr, mesg); 2162 2163 if (mesg->prepared && ctlr->unprepare_message) { 2164 ret = ctlr->unprepare_message(ctlr, mesg); 2165 if (ret) { 2166 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2167 ret); 2168 } 2169 } 2170 2171 mesg->prepared = false; 2172 2173 spi_maybe_unoptimize_message(mesg); 2174 2175 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2176 smp_mb(); /* See __spi_pump_transfer_message()... */ 2177 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2178 complete(&ctlr->cur_msg_completion); 2179 2180 trace_spi_message_done(mesg); 2181 2182 mesg->state = NULL; 2183 if (mesg->complete) 2184 mesg->complete(mesg->context); 2185 } 2186 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2187 2188 static int spi_start_queue(struct spi_controller *ctlr) 2189 { 2190 unsigned long flags; 2191 2192 spin_lock_irqsave(&ctlr->queue_lock, flags); 2193 2194 if (ctlr->running || ctlr->busy) { 2195 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2196 return -EBUSY; 2197 } 2198 2199 ctlr->running = true; 2200 ctlr->cur_msg = NULL; 2201 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2202 2203 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2204 2205 return 0; 2206 } 2207 2208 static int spi_stop_queue(struct spi_controller *ctlr) 2209 { 2210 unsigned long flags; 2211 unsigned limit = 500; 2212 int ret = 0; 2213 2214 spin_lock_irqsave(&ctlr->queue_lock, flags); 2215 2216 /* 2217 * This is a bit lame, but is optimized for the common execution path. 2218 * A wait_queue on the ctlr->busy could be used, but then the common 2219 * execution path (pump_messages) would be required to call wake_up or 2220 * friends on every SPI message. Do this instead. 2221 */ 2222 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2223 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2224 usleep_range(10000, 11000); 2225 spin_lock_irqsave(&ctlr->queue_lock, flags); 2226 } 2227 2228 if (!list_empty(&ctlr->queue) || ctlr->busy) 2229 ret = -EBUSY; 2230 else 2231 ctlr->running = false; 2232 2233 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2234 2235 return ret; 2236 } 2237 2238 static int spi_destroy_queue(struct spi_controller *ctlr) 2239 { 2240 int ret; 2241 2242 ret = spi_stop_queue(ctlr); 2243 2244 /* 2245 * kthread_flush_worker will block until all work is done. 2246 * If the reason that stop_queue timed out is that the work will never 2247 * finish, then it does no good to call flush/stop thread, so 2248 * return anyway. 2249 */ 2250 if (ret) { 2251 dev_err(&ctlr->dev, "problem destroying queue\n"); 2252 return ret; 2253 } 2254 2255 kthread_destroy_worker(ctlr->kworker); 2256 2257 return 0; 2258 } 2259 2260 static int __spi_queued_transfer(struct spi_device *spi, 2261 struct spi_message *msg, 2262 bool need_pump) 2263 { 2264 struct spi_controller *ctlr = spi->controller; 2265 unsigned long flags; 2266 2267 spin_lock_irqsave(&ctlr->queue_lock, flags); 2268 2269 if (!ctlr->running) { 2270 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2271 return -ESHUTDOWN; 2272 } 2273 msg->actual_length = 0; 2274 msg->status = -EINPROGRESS; 2275 2276 list_add_tail(&msg->queue, &ctlr->queue); 2277 ctlr->queue_empty = false; 2278 if (!ctlr->busy && need_pump) 2279 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2280 2281 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2282 return 0; 2283 } 2284 2285 /** 2286 * spi_queued_transfer - transfer function for queued transfers 2287 * @spi: SPI device which is requesting transfer 2288 * @msg: SPI message which is to handled is queued to driver queue 2289 * 2290 * Return: zero on success, else a negative error code. 2291 */ 2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2293 { 2294 return __spi_queued_transfer(spi, msg, true); 2295 } 2296 2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2298 { 2299 int ret; 2300 2301 ctlr->transfer = spi_queued_transfer; 2302 if (!ctlr->transfer_one_message) 2303 ctlr->transfer_one_message = spi_transfer_one_message; 2304 2305 /* Initialize and start queue */ 2306 ret = spi_init_queue(ctlr); 2307 if (ret) { 2308 dev_err(&ctlr->dev, "problem initializing queue\n"); 2309 goto err_init_queue; 2310 } 2311 ctlr->queued = true; 2312 ret = spi_start_queue(ctlr); 2313 if (ret) { 2314 dev_err(&ctlr->dev, "problem starting queue\n"); 2315 goto err_start_queue; 2316 } 2317 2318 return 0; 2319 2320 err_start_queue: 2321 spi_destroy_queue(ctlr); 2322 err_init_queue: 2323 return ret; 2324 } 2325 2326 /** 2327 * spi_flush_queue - Send all pending messages in the queue from the callers' 2328 * context 2329 * @ctlr: controller to process queue for 2330 * 2331 * This should be used when one wants to ensure all pending messages have been 2332 * sent before doing something. Is used by the spi-mem code to make sure SPI 2333 * memory operations do not preempt regular SPI transfers that have been queued 2334 * before the spi-mem operation. 2335 */ 2336 void spi_flush_queue(struct spi_controller *ctlr) 2337 { 2338 if (ctlr->transfer == spi_queued_transfer) 2339 __spi_pump_messages(ctlr, false); 2340 } 2341 2342 /*-------------------------------------------------------------------------*/ 2343 2344 #if defined(CONFIG_OF) 2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2346 struct spi_delay *delay, const char *prop) 2347 { 2348 u32 value; 2349 2350 if (!of_property_read_u32(nc, prop, &value)) { 2351 if (value > U16_MAX) { 2352 delay->value = DIV_ROUND_UP(value, 1000); 2353 delay->unit = SPI_DELAY_UNIT_USECS; 2354 } else { 2355 delay->value = value; 2356 delay->unit = SPI_DELAY_UNIT_NSECS; 2357 } 2358 } 2359 } 2360 2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2362 struct device_node *nc) 2363 { 2364 u32 value, cs[SPI_CS_CNT_MAX]; 2365 int rc, idx; 2366 2367 /* Mode (clock phase/polarity/etc.) */ 2368 if (of_property_read_bool(nc, "spi-cpha")) 2369 spi->mode |= SPI_CPHA; 2370 if (of_property_read_bool(nc, "spi-cpol")) 2371 spi->mode |= SPI_CPOL; 2372 if (of_property_read_bool(nc, "spi-3wire")) 2373 spi->mode |= SPI_3WIRE; 2374 if (of_property_read_bool(nc, "spi-lsb-first")) 2375 spi->mode |= SPI_LSB_FIRST; 2376 if (of_property_read_bool(nc, "spi-cs-high")) 2377 spi->mode |= SPI_CS_HIGH; 2378 2379 /* Device DUAL/QUAD mode */ 2380 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2381 switch (value) { 2382 case 0: 2383 spi->mode |= SPI_NO_TX; 2384 break; 2385 case 1: 2386 break; 2387 case 2: 2388 spi->mode |= SPI_TX_DUAL; 2389 break; 2390 case 4: 2391 spi->mode |= SPI_TX_QUAD; 2392 break; 2393 case 8: 2394 spi->mode |= SPI_TX_OCTAL; 2395 break; 2396 default: 2397 dev_warn(&ctlr->dev, 2398 "spi-tx-bus-width %d not supported\n", 2399 value); 2400 break; 2401 } 2402 } 2403 2404 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2405 switch (value) { 2406 case 0: 2407 spi->mode |= SPI_NO_RX; 2408 break; 2409 case 1: 2410 break; 2411 case 2: 2412 spi->mode |= SPI_RX_DUAL; 2413 break; 2414 case 4: 2415 spi->mode |= SPI_RX_QUAD; 2416 break; 2417 case 8: 2418 spi->mode |= SPI_RX_OCTAL; 2419 break; 2420 default: 2421 dev_warn(&ctlr->dev, 2422 "spi-rx-bus-width %d not supported\n", 2423 value); 2424 break; 2425 } 2426 } 2427 2428 if (spi_controller_is_slave(ctlr)) { 2429 if (!of_node_name_eq(nc, "slave")) { 2430 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2431 nc); 2432 return -EINVAL; 2433 } 2434 return 0; 2435 } 2436 2437 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2438 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2439 return -EINVAL; 2440 } 2441 2442 spi_set_all_cs_unused(spi); 2443 2444 /* Device address */ 2445 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2446 SPI_CS_CNT_MAX); 2447 if (rc < 0) { 2448 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2449 nc, rc); 2450 return rc; 2451 } 2452 if (rc > ctlr->num_chipselect) { 2453 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2454 nc, rc); 2455 return rc; 2456 } 2457 if ((of_property_read_bool(nc, "parallel-memories")) && 2458 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2459 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2460 return -EINVAL; 2461 } 2462 for (idx = 0; idx < rc; idx++) 2463 spi_set_chipselect(spi, idx, cs[idx]); 2464 2465 /* 2466 * By default spi->chip_select[0] will hold the physical CS number, 2467 * so set bit 0 in spi->cs_index_mask. 2468 */ 2469 spi->cs_index_mask = BIT(0); 2470 2471 /* Device speed */ 2472 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2473 spi->max_speed_hz = value; 2474 2475 /* Device CS delays */ 2476 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2477 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2478 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2479 2480 return 0; 2481 } 2482 2483 static struct spi_device * 2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2485 { 2486 struct spi_device *spi; 2487 int rc; 2488 2489 /* Alloc an spi_device */ 2490 spi = spi_alloc_device(ctlr); 2491 if (!spi) { 2492 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2493 rc = -ENOMEM; 2494 goto err_out; 2495 } 2496 2497 /* Select device driver */ 2498 rc = of_alias_from_compatible(nc, spi->modalias, 2499 sizeof(spi->modalias)); 2500 if (rc < 0) { 2501 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2502 goto err_out; 2503 } 2504 2505 rc = of_spi_parse_dt(ctlr, spi, nc); 2506 if (rc) 2507 goto err_out; 2508 2509 /* Store a pointer to the node in the device structure */ 2510 of_node_get(nc); 2511 2512 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2513 2514 /* Register the new device */ 2515 rc = spi_add_device(spi); 2516 if (rc) { 2517 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2518 goto err_of_node_put; 2519 } 2520 2521 return spi; 2522 2523 err_of_node_put: 2524 of_node_put(nc); 2525 err_out: 2526 spi_dev_put(spi); 2527 return ERR_PTR(rc); 2528 } 2529 2530 /** 2531 * of_register_spi_devices() - Register child devices onto the SPI bus 2532 * @ctlr: Pointer to spi_controller device 2533 * 2534 * Registers an spi_device for each child node of controller node which 2535 * represents a valid SPI slave. 2536 */ 2537 static void of_register_spi_devices(struct spi_controller *ctlr) 2538 { 2539 struct spi_device *spi; 2540 struct device_node *nc; 2541 2542 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2543 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2544 continue; 2545 spi = of_register_spi_device(ctlr, nc); 2546 if (IS_ERR(spi)) { 2547 dev_warn(&ctlr->dev, 2548 "Failed to create SPI device for %pOF\n", nc); 2549 of_node_clear_flag(nc, OF_POPULATED); 2550 } 2551 } 2552 } 2553 #else 2554 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2555 #endif 2556 2557 /** 2558 * spi_new_ancillary_device() - Register ancillary SPI device 2559 * @spi: Pointer to the main SPI device registering the ancillary device 2560 * @chip_select: Chip Select of the ancillary device 2561 * 2562 * Register an ancillary SPI device; for example some chips have a chip-select 2563 * for normal device usage and another one for setup/firmware upload. 2564 * 2565 * This may only be called from main SPI device's probe routine. 2566 * 2567 * Return: 0 on success; negative errno on failure 2568 */ 2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2570 u8 chip_select) 2571 { 2572 struct spi_controller *ctlr = spi->controller; 2573 struct spi_device *ancillary; 2574 int rc = 0; 2575 2576 /* Alloc an spi_device */ 2577 ancillary = spi_alloc_device(ctlr); 2578 if (!ancillary) { 2579 rc = -ENOMEM; 2580 goto err_out; 2581 } 2582 2583 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2584 2585 /* Use provided chip-select for ancillary device */ 2586 spi_set_all_cs_unused(ancillary); 2587 spi_set_chipselect(ancillary, 0, chip_select); 2588 2589 /* Take over SPI mode/speed from SPI main device */ 2590 ancillary->max_speed_hz = spi->max_speed_hz; 2591 ancillary->mode = spi->mode; 2592 /* 2593 * By default spi->chip_select[0] will hold the physical CS number, 2594 * so set bit 0 in spi->cs_index_mask. 2595 */ 2596 ancillary->cs_index_mask = BIT(0); 2597 2598 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2599 2600 /* Register the new device */ 2601 rc = __spi_add_device(ancillary); 2602 if (rc) { 2603 dev_err(&spi->dev, "failed to register ancillary device\n"); 2604 goto err_out; 2605 } 2606 2607 return ancillary; 2608 2609 err_out: 2610 spi_dev_put(ancillary); 2611 return ERR_PTR(rc); 2612 } 2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2614 2615 #ifdef CONFIG_ACPI 2616 struct acpi_spi_lookup { 2617 struct spi_controller *ctlr; 2618 u32 max_speed_hz; 2619 u32 mode; 2620 int irq; 2621 u8 bits_per_word; 2622 u8 chip_select; 2623 int n; 2624 int index; 2625 }; 2626 2627 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2628 { 2629 struct acpi_resource_spi_serialbus *sb; 2630 int *count = data; 2631 2632 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2633 return 1; 2634 2635 sb = &ares->data.spi_serial_bus; 2636 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2637 return 1; 2638 2639 *count = *count + 1; 2640 2641 return 1; 2642 } 2643 2644 /** 2645 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2646 * @adev: ACPI device 2647 * 2648 * Return: the number of SpiSerialBus resources in the ACPI-device's 2649 * resource-list; or a negative error code. 2650 */ 2651 int acpi_spi_count_resources(struct acpi_device *adev) 2652 { 2653 LIST_HEAD(r); 2654 int count = 0; 2655 int ret; 2656 2657 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2658 if (ret < 0) 2659 return ret; 2660 2661 acpi_dev_free_resource_list(&r); 2662 2663 return count; 2664 } 2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2666 2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2668 struct acpi_spi_lookup *lookup) 2669 { 2670 const union acpi_object *obj; 2671 2672 if (!x86_apple_machine) 2673 return; 2674 2675 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2676 && obj->buffer.length >= 4) 2677 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2678 2679 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2680 && obj->buffer.length == 8) 2681 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2682 2683 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2684 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2685 lookup->mode |= SPI_LSB_FIRST; 2686 2687 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2688 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2689 lookup->mode |= SPI_CPOL; 2690 2691 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2692 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2693 lookup->mode |= SPI_CPHA; 2694 } 2695 2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2697 { 2698 struct acpi_spi_lookup *lookup = data; 2699 struct spi_controller *ctlr = lookup->ctlr; 2700 2701 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2702 struct acpi_resource_spi_serialbus *sb; 2703 acpi_handle parent_handle; 2704 acpi_status status; 2705 2706 sb = &ares->data.spi_serial_bus; 2707 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2708 2709 if (lookup->index != -1 && lookup->n++ != lookup->index) 2710 return 1; 2711 2712 status = acpi_get_handle(NULL, 2713 sb->resource_source.string_ptr, 2714 &parent_handle); 2715 2716 if (ACPI_FAILURE(status)) 2717 return -ENODEV; 2718 2719 if (ctlr) { 2720 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2721 return -ENODEV; 2722 } else { 2723 struct acpi_device *adev; 2724 2725 adev = acpi_fetch_acpi_dev(parent_handle); 2726 if (!adev) 2727 return -ENODEV; 2728 2729 ctlr = acpi_spi_find_controller_by_adev(adev); 2730 if (!ctlr) 2731 return -EPROBE_DEFER; 2732 2733 lookup->ctlr = ctlr; 2734 } 2735 2736 /* 2737 * ACPI DeviceSelection numbering is handled by the 2738 * host controller driver in Windows and can vary 2739 * from driver to driver. In Linux we always expect 2740 * 0 .. max - 1 so we need to ask the driver to 2741 * translate between the two schemes. 2742 */ 2743 if (ctlr->fw_translate_cs) { 2744 int cs = ctlr->fw_translate_cs(ctlr, 2745 sb->device_selection); 2746 if (cs < 0) 2747 return cs; 2748 lookup->chip_select = cs; 2749 } else { 2750 lookup->chip_select = sb->device_selection; 2751 } 2752 2753 lookup->max_speed_hz = sb->connection_speed; 2754 lookup->bits_per_word = sb->data_bit_length; 2755 2756 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2757 lookup->mode |= SPI_CPHA; 2758 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2759 lookup->mode |= SPI_CPOL; 2760 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2761 lookup->mode |= SPI_CS_HIGH; 2762 } 2763 } else if (lookup->irq < 0) { 2764 struct resource r; 2765 2766 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2767 lookup->irq = r.start; 2768 } 2769 2770 /* Always tell the ACPI core to skip this resource */ 2771 return 1; 2772 } 2773 2774 /** 2775 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2776 * @ctlr: controller to which the spi device belongs 2777 * @adev: ACPI Device for the spi device 2778 * @index: Index of the spi resource inside the ACPI Node 2779 * 2780 * This should be used to allocate a new SPI device from and ACPI Device node. 2781 * The caller is responsible for calling spi_add_device to register the SPI device. 2782 * 2783 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2784 * using the resource. 2785 * If index is set to -1, index is not used. 2786 * Note: If index is -1, ctlr must be set. 2787 * 2788 * Return: a pointer to the new device, or ERR_PTR on error. 2789 */ 2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2791 struct acpi_device *adev, 2792 int index) 2793 { 2794 acpi_handle parent_handle = NULL; 2795 struct list_head resource_list; 2796 struct acpi_spi_lookup lookup = {}; 2797 struct spi_device *spi; 2798 int ret; 2799 2800 if (!ctlr && index == -1) 2801 return ERR_PTR(-EINVAL); 2802 2803 lookup.ctlr = ctlr; 2804 lookup.irq = -1; 2805 lookup.index = index; 2806 lookup.n = 0; 2807 2808 INIT_LIST_HEAD(&resource_list); 2809 ret = acpi_dev_get_resources(adev, &resource_list, 2810 acpi_spi_add_resource, &lookup); 2811 acpi_dev_free_resource_list(&resource_list); 2812 2813 if (ret < 0) 2814 /* Found SPI in _CRS but it points to another controller */ 2815 return ERR_PTR(ret); 2816 2817 if (!lookup.max_speed_hz && 2818 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2819 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2820 /* Apple does not use _CRS but nested devices for SPI slaves */ 2821 acpi_spi_parse_apple_properties(adev, &lookup); 2822 } 2823 2824 if (!lookup.max_speed_hz) 2825 return ERR_PTR(-ENODEV); 2826 2827 spi = spi_alloc_device(lookup.ctlr); 2828 if (!spi) { 2829 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2830 dev_name(&adev->dev)); 2831 return ERR_PTR(-ENOMEM); 2832 } 2833 2834 spi_set_all_cs_unused(spi); 2835 spi_set_chipselect(spi, 0, lookup.chip_select); 2836 2837 ACPI_COMPANION_SET(&spi->dev, adev); 2838 spi->max_speed_hz = lookup.max_speed_hz; 2839 spi->mode |= lookup.mode; 2840 spi->irq = lookup.irq; 2841 spi->bits_per_word = lookup.bits_per_word; 2842 /* 2843 * By default spi->chip_select[0] will hold the physical CS number, 2844 * so set bit 0 in spi->cs_index_mask. 2845 */ 2846 spi->cs_index_mask = BIT(0); 2847 2848 return spi; 2849 } 2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2851 2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2853 struct acpi_device *adev) 2854 { 2855 struct spi_device *spi; 2856 2857 if (acpi_bus_get_status(adev) || !adev->status.present || 2858 acpi_device_enumerated(adev)) 2859 return AE_OK; 2860 2861 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2862 if (IS_ERR(spi)) { 2863 if (PTR_ERR(spi) == -ENOMEM) 2864 return AE_NO_MEMORY; 2865 else 2866 return AE_OK; 2867 } 2868 2869 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2870 sizeof(spi->modalias)); 2871 2872 if (spi->irq < 0) 2873 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2874 2875 acpi_device_set_enumerated(adev); 2876 2877 adev->power.flags.ignore_parent = true; 2878 if (spi_add_device(spi)) { 2879 adev->power.flags.ignore_parent = false; 2880 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2881 dev_name(&adev->dev)); 2882 spi_dev_put(spi); 2883 } 2884 2885 return AE_OK; 2886 } 2887 2888 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2889 void *data, void **return_value) 2890 { 2891 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2892 struct spi_controller *ctlr = data; 2893 2894 if (!adev) 2895 return AE_OK; 2896 2897 return acpi_register_spi_device(ctlr, adev); 2898 } 2899 2900 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2901 2902 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2903 { 2904 acpi_status status; 2905 acpi_handle handle; 2906 2907 handle = ACPI_HANDLE(ctlr->dev.parent); 2908 if (!handle) 2909 return; 2910 2911 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2912 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2913 acpi_spi_add_device, NULL, ctlr, NULL); 2914 if (ACPI_FAILURE(status)) 2915 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2916 } 2917 #else 2918 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2919 #endif /* CONFIG_ACPI */ 2920 2921 static void spi_controller_release(struct device *dev) 2922 { 2923 struct spi_controller *ctlr; 2924 2925 ctlr = container_of(dev, struct spi_controller, dev); 2926 kfree(ctlr); 2927 } 2928 2929 static struct class spi_master_class = { 2930 .name = "spi_master", 2931 .dev_release = spi_controller_release, 2932 .dev_groups = spi_master_groups, 2933 }; 2934 2935 #ifdef CONFIG_SPI_SLAVE 2936 /** 2937 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2938 * controller 2939 * @spi: device used for the current transfer 2940 */ 2941 int spi_slave_abort(struct spi_device *spi) 2942 { 2943 struct spi_controller *ctlr = spi->controller; 2944 2945 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2946 return ctlr->slave_abort(ctlr); 2947 2948 return -ENOTSUPP; 2949 } 2950 EXPORT_SYMBOL_GPL(spi_slave_abort); 2951 2952 int spi_target_abort(struct spi_device *spi) 2953 { 2954 struct spi_controller *ctlr = spi->controller; 2955 2956 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2957 return ctlr->target_abort(ctlr); 2958 2959 return -ENOTSUPP; 2960 } 2961 EXPORT_SYMBOL_GPL(spi_target_abort); 2962 2963 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2964 char *buf) 2965 { 2966 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2967 dev); 2968 struct device *child; 2969 2970 child = device_find_any_child(&ctlr->dev); 2971 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2972 } 2973 2974 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2975 const char *buf, size_t count) 2976 { 2977 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2978 dev); 2979 struct spi_device *spi; 2980 struct device *child; 2981 char name[32]; 2982 int rc; 2983 2984 rc = sscanf(buf, "%31s", name); 2985 if (rc != 1 || !name[0]) 2986 return -EINVAL; 2987 2988 child = device_find_any_child(&ctlr->dev); 2989 if (child) { 2990 /* Remove registered slave */ 2991 device_unregister(child); 2992 put_device(child); 2993 } 2994 2995 if (strcmp(name, "(null)")) { 2996 /* Register new slave */ 2997 spi = spi_alloc_device(ctlr); 2998 if (!spi) 2999 return -ENOMEM; 3000 3001 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3002 3003 rc = spi_add_device(spi); 3004 if (rc) { 3005 spi_dev_put(spi); 3006 return rc; 3007 } 3008 } 3009 3010 return count; 3011 } 3012 3013 static DEVICE_ATTR_RW(slave); 3014 3015 static struct attribute *spi_slave_attrs[] = { 3016 &dev_attr_slave.attr, 3017 NULL, 3018 }; 3019 3020 static const struct attribute_group spi_slave_group = { 3021 .attrs = spi_slave_attrs, 3022 }; 3023 3024 static const struct attribute_group *spi_slave_groups[] = { 3025 &spi_controller_statistics_group, 3026 &spi_slave_group, 3027 NULL, 3028 }; 3029 3030 static struct class spi_slave_class = { 3031 .name = "spi_slave", 3032 .dev_release = spi_controller_release, 3033 .dev_groups = spi_slave_groups, 3034 }; 3035 #else 3036 extern struct class spi_slave_class; /* dummy */ 3037 #endif 3038 3039 /** 3040 * __spi_alloc_controller - allocate an SPI master or slave controller 3041 * @dev: the controller, possibly using the platform_bus 3042 * @size: how much zeroed driver-private data to allocate; the pointer to this 3043 * memory is in the driver_data field of the returned device, accessible 3044 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3045 * drivers granting DMA access to portions of their private data need to 3046 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3047 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3048 * slave (true) controller 3049 * Context: can sleep 3050 * 3051 * This call is used only by SPI controller drivers, which are the 3052 * only ones directly touching chip registers. It's how they allocate 3053 * an spi_controller structure, prior to calling spi_register_controller(). 3054 * 3055 * This must be called from context that can sleep. 3056 * 3057 * The caller is responsible for assigning the bus number and initializing the 3058 * controller's methods before calling spi_register_controller(); and (after 3059 * errors adding the device) calling spi_controller_put() to prevent a memory 3060 * leak. 3061 * 3062 * Return: the SPI controller structure on success, else NULL. 3063 */ 3064 struct spi_controller *__spi_alloc_controller(struct device *dev, 3065 unsigned int size, bool slave) 3066 { 3067 struct spi_controller *ctlr; 3068 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3069 3070 if (!dev) 3071 return NULL; 3072 3073 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3074 if (!ctlr) 3075 return NULL; 3076 3077 device_initialize(&ctlr->dev); 3078 INIT_LIST_HEAD(&ctlr->queue); 3079 spin_lock_init(&ctlr->queue_lock); 3080 spin_lock_init(&ctlr->bus_lock_spinlock); 3081 mutex_init(&ctlr->bus_lock_mutex); 3082 mutex_init(&ctlr->io_mutex); 3083 mutex_init(&ctlr->add_lock); 3084 ctlr->bus_num = -1; 3085 ctlr->num_chipselect = 1; 3086 ctlr->slave = slave; 3087 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3088 ctlr->dev.class = &spi_slave_class; 3089 else 3090 ctlr->dev.class = &spi_master_class; 3091 ctlr->dev.parent = dev; 3092 pm_suspend_ignore_children(&ctlr->dev, true); 3093 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3094 3095 return ctlr; 3096 } 3097 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3098 3099 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3100 { 3101 spi_controller_put(*(struct spi_controller **)ctlr); 3102 } 3103 3104 /** 3105 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3106 * @dev: physical device of SPI controller 3107 * @size: how much zeroed driver-private data to allocate 3108 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3109 * Context: can sleep 3110 * 3111 * Allocate an SPI controller and automatically release a reference on it 3112 * when @dev is unbound from its driver. Drivers are thus relieved from 3113 * having to call spi_controller_put(). 3114 * 3115 * The arguments to this function are identical to __spi_alloc_controller(). 3116 * 3117 * Return: the SPI controller structure on success, else NULL. 3118 */ 3119 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3120 unsigned int size, 3121 bool slave) 3122 { 3123 struct spi_controller **ptr, *ctlr; 3124 3125 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3126 GFP_KERNEL); 3127 if (!ptr) 3128 return NULL; 3129 3130 ctlr = __spi_alloc_controller(dev, size, slave); 3131 if (ctlr) { 3132 ctlr->devm_allocated = true; 3133 *ptr = ctlr; 3134 devres_add(dev, ptr); 3135 } else { 3136 devres_free(ptr); 3137 } 3138 3139 return ctlr; 3140 } 3141 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3142 3143 /** 3144 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3145 * @ctlr: The SPI master to grab GPIO descriptors for 3146 */ 3147 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3148 { 3149 int nb, i; 3150 struct gpio_desc **cs; 3151 struct device *dev = &ctlr->dev; 3152 unsigned long native_cs_mask = 0; 3153 unsigned int num_cs_gpios = 0; 3154 3155 nb = gpiod_count(dev, "cs"); 3156 if (nb < 0) { 3157 /* No GPIOs at all is fine, else return the error */ 3158 if (nb == -ENOENT) 3159 return 0; 3160 return nb; 3161 } 3162 3163 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3164 3165 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3166 GFP_KERNEL); 3167 if (!cs) 3168 return -ENOMEM; 3169 ctlr->cs_gpiods = cs; 3170 3171 for (i = 0; i < nb; i++) { 3172 /* 3173 * Most chipselects are active low, the inverted 3174 * semantics are handled by special quirks in gpiolib, 3175 * so initializing them GPIOD_OUT_LOW here means 3176 * "unasserted", in most cases this will drive the physical 3177 * line high. 3178 */ 3179 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3180 GPIOD_OUT_LOW); 3181 if (IS_ERR(cs[i])) 3182 return PTR_ERR(cs[i]); 3183 3184 if (cs[i]) { 3185 /* 3186 * If we find a CS GPIO, name it after the device and 3187 * chip select line. 3188 */ 3189 char *gpioname; 3190 3191 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3192 dev_name(dev), i); 3193 if (!gpioname) 3194 return -ENOMEM; 3195 gpiod_set_consumer_name(cs[i], gpioname); 3196 num_cs_gpios++; 3197 continue; 3198 } 3199 3200 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3201 dev_err(dev, "Invalid native chip select %d\n", i); 3202 return -EINVAL; 3203 } 3204 native_cs_mask |= BIT(i); 3205 } 3206 3207 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3208 3209 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3210 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3211 dev_err(dev, "No unused native chip select available\n"); 3212 return -EINVAL; 3213 } 3214 3215 return 0; 3216 } 3217 3218 static int spi_controller_check_ops(struct spi_controller *ctlr) 3219 { 3220 /* 3221 * The controller may implement only the high-level SPI-memory like 3222 * operations if it does not support regular SPI transfers, and this is 3223 * valid use case. 3224 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3225 * one of the ->transfer_xxx() method be implemented. 3226 */ 3227 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3228 if (!ctlr->transfer && !ctlr->transfer_one && 3229 !ctlr->transfer_one_message) { 3230 return -EINVAL; 3231 } 3232 } 3233 3234 return 0; 3235 } 3236 3237 /* Allocate dynamic bus number using Linux idr */ 3238 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3239 { 3240 int id; 3241 3242 mutex_lock(&board_lock); 3243 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3244 mutex_unlock(&board_lock); 3245 if (WARN(id < 0, "couldn't get idr")) 3246 return id == -ENOSPC ? -EBUSY : id; 3247 ctlr->bus_num = id; 3248 return 0; 3249 } 3250 3251 /** 3252 * spi_register_controller - register SPI master or slave controller 3253 * @ctlr: initialized master, originally from spi_alloc_master() or 3254 * spi_alloc_slave() 3255 * Context: can sleep 3256 * 3257 * SPI controllers connect to their drivers using some non-SPI bus, 3258 * such as the platform bus. The final stage of probe() in that code 3259 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3260 * 3261 * SPI controllers use board specific (often SOC specific) bus numbers, 3262 * and board-specific addressing for SPI devices combines those numbers 3263 * with chip select numbers. Since SPI does not directly support dynamic 3264 * device identification, boards need configuration tables telling which 3265 * chip is at which address. 3266 * 3267 * This must be called from context that can sleep. It returns zero on 3268 * success, else a negative error code (dropping the controller's refcount). 3269 * After a successful return, the caller is responsible for calling 3270 * spi_unregister_controller(). 3271 * 3272 * Return: zero on success, else a negative error code. 3273 */ 3274 int spi_register_controller(struct spi_controller *ctlr) 3275 { 3276 struct device *dev = ctlr->dev.parent; 3277 struct boardinfo *bi; 3278 int first_dynamic; 3279 int status; 3280 int idx; 3281 3282 if (!dev) 3283 return -ENODEV; 3284 3285 /* 3286 * Make sure all necessary hooks are implemented before registering 3287 * the SPI controller. 3288 */ 3289 status = spi_controller_check_ops(ctlr); 3290 if (status) 3291 return status; 3292 3293 if (ctlr->bus_num < 0) 3294 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3295 if (ctlr->bus_num >= 0) { 3296 /* Devices with a fixed bus num must check-in with the num */ 3297 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3298 if (status) 3299 return status; 3300 } 3301 if (ctlr->bus_num < 0) { 3302 first_dynamic = of_alias_get_highest_id("spi"); 3303 if (first_dynamic < 0) 3304 first_dynamic = 0; 3305 else 3306 first_dynamic++; 3307 3308 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3309 if (status) 3310 return status; 3311 } 3312 ctlr->bus_lock_flag = 0; 3313 init_completion(&ctlr->xfer_completion); 3314 init_completion(&ctlr->cur_msg_completion); 3315 if (!ctlr->max_dma_len) 3316 ctlr->max_dma_len = INT_MAX; 3317 3318 /* 3319 * Register the device, then userspace will see it. 3320 * Registration fails if the bus ID is in use. 3321 */ 3322 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3323 3324 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3325 status = spi_get_gpio_descs(ctlr); 3326 if (status) 3327 goto free_bus_id; 3328 /* 3329 * A controller using GPIO descriptors always 3330 * supports SPI_CS_HIGH if need be. 3331 */ 3332 ctlr->mode_bits |= SPI_CS_HIGH; 3333 } 3334 3335 /* 3336 * Even if it's just one always-selected device, there must 3337 * be at least one chipselect. 3338 */ 3339 if (!ctlr->num_chipselect) { 3340 status = -EINVAL; 3341 goto free_bus_id; 3342 } 3343 3344 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3345 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3346 ctlr->last_cs[idx] = SPI_INVALID_CS; 3347 3348 status = device_add(&ctlr->dev); 3349 if (status < 0) 3350 goto free_bus_id; 3351 dev_dbg(dev, "registered %s %s\n", 3352 spi_controller_is_slave(ctlr) ? "slave" : "master", 3353 dev_name(&ctlr->dev)); 3354 3355 /* 3356 * If we're using a queued driver, start the queue. Note that we don't 3357 * need the queueing logic if the driver is only supporting high-level 3358 * memory operations. 3359 */ 3360 if (ctlr->transfer) { 3361 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3362 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3363 status = spi_controller_initialize_queue(ctlr); 3364 if (status) { 3365 device_del(&ctlr->dev); 3366 goto free_bus_id; 3367 } 3368 } 3369 /* Add statistics */ 3370 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3371 if (!ctlr->pcpu_statistics) { 3372 dev_err(dev, "Error allocating per-cpu statistics\n"); 3373 status = -ENOMEM; 3374 goto destroy_queue; 3375 } 3376 3377 mutex_lock(&board_lock); 3378 list_add_tail(&ctlr->list, &spi_controller_list); 3379 list_for_each_entry(bi, &board_list, list) 3380 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3381 mutex_unlock(&board_lock); 3382 3383 /* Register devices from the device tree and ACPI */ 3384 of_register_spi_devices(ctlr); 3385 acpi_register_spi_devices(ctlr); 3386 return status; 3387 3388 destroy_queue: 3389 spi_destroy_queue(ctlr); 3390 free_bus_id: 3391 mutex_lock(&board_lock); 3392 idr_remove(&spi_master_idr, ctlr->bus_num); 3393 mutex_unlock(&board_lock); 3394 return status; 3395 } 3396 EXPORT_SYMBOL_GPL(spi_register_controller); 3397 3398 static void devm_spi_unregister(struct device *dev, void *res) 3399 { 3400 spi_unregister_controller(*(struct spi_controller **)res); 3401 } 3402 3403 /** 3404 * devm_spi_register_controller - register managed SPI master or slave 3405 * controller 3406 * @dev: device managing SPI controller 3407 * @ctlr: initialized controller, originally from spi_alloc_master() or 3408 * spi_alloc_slave() 3409 * Context: can sleep 3410 * 3411 * Register a SPI device as with spi_register_controller() which will 3412 * automatically be unregistered and freed. 3413 * 3414 * Return: zero on success, else a negative error code. 3415 */ 3416 int devm_spi_register_controller(struct device *dev, 3417 struct spi_controller *ctlr) 3418 { 3419 struct spi_controller **ptr; 3420 int ret; 3421 3422 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3423 if (!ptr) 3424 return -ENOMEM; 3425 3426 ret = spi_register_controller(ctlr); 3427 if (!ret) { 3428 *ptr = ctlr; 3429 devres_add(dev, ptr); 3430 } else { 3431 devres_free(ptr); 3432 } 3433 3434 return ret; 3435 } 3436 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3437 3438 static int __unregister(struct device *dev, void *null) 3439 { 3440 spi_unregister_device(to_spi_device(dev)); 3441 return 0; 3442 } 3443 3444 /** 3445 * spi_unregister_controller - unregister SPI master or slave controller 3446 * @ctlr: the controller being unregistered 3447 * Context: can sleep 3448 * 3449 * This call is used only by SPI controller drivers, which are the 3450 * only ones directly touching chip registers. 3451 * 3452 * This must be called from context that can sleep. 3453 * 3454 * Note that this function also drops a reference to the controller. 3455 */ 3456 void spi_unregister_controller(struct spi_controller *ctlr) 3457 { 3458 struct spi_controller *found; 3459 int id = ctlr->bus_num; 3460 3461 /* Prevent addition of new devices, unregister existing ones */ 3462 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3463 mutex_lock(&ctlr->add_lock); 3464 3465 device_for_each_child(&ctlr->dev, NULL, __unregister); 3466 3467 /* First make sure that this controller was ever added */ 3468 mutex_lock(&board_lock); 3469 found = idr_find(&spi_master_idr, id); 3470 mutex_unlock(&board_lock); 3471 if (ctlr->queued) { 3472 if (spi_destroy_queue(ctlr)) 3473 dev_err(&ctlr->dev, "queue remove failed\n"); 3474 } 3475 mutex_lock(&board_lock); 3476 list_del(&ctlr->list); 3477 mutex_unlock(&board_lock); 3478 3479 device_del(&ctlr->dev); 3480 3481 /* Free bus id */ 3482 mutex_lock(&board_lock); 3483 if (found == ctlr) 3484 idr_remove(&spi_master_idr, id); 3485 mutex_unlock(&board_lock); 3486 3487 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3488 mutex_unlock(&ctlr->add_lock); 3489 3490 /* 3491 * Release the last reference on the controller if its driver 3492 * has not yet been converted to devm_spi_alloc_master/slave(). 3493 */ 3494 if (!ctlr->devm_allocated) 3495 put_device(&ctlr->dev); 3496 } 3497 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3498 3499 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3500 { 3501 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3502 } 3503 3504 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3505 { 3506 mutex_lock(&ctlr->bus_lock_mutex); 3507 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3508 mutex_unlock(&ctlr->bus_lock_mutex); 3509 } 3510 3511 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3512 { 3513 mutex_lock(&ctlr->bus_lock_mutex); 3514 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3515 mutex_unlock(&ctlr->bus_lock_mutex); 3516 } 3517 3518 int spi_controller_suspend(struct spi_controller *ctlr) 3519 { 3520 int ret = 0; 3521 3522 /* Basically no-ops for non-queued controllers */ 3523 if (ctlr->queued) { 3524 ret = spi_stop_queue(ctlr); 3525 if (ret) 3526 dev_err(&ctlr->dev, "queue stop failed\n"); 3527 } 3528 3529 __spi_mark_suspended(ctlr); 3530 return ret; 3531 } 3532 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3533 3534 int spi_controller_resume(struct spi_controller *ctlr) 3535 { 3536 int ret = 0; 3537 3538 __spi_mark_resumed(ctlr); 3539 3540 if (ctlr->queued) { 3541 ret = spi_start_queue(ctlr); 3542 if (ret) 3543 dev_err(&ctlr->dev, "queue restart failed\n"); 3544 } 3545 return ret; 3546 } 3547 EXPORT_SYMBOL_GPL(spi_controller_resume); 3548 3549 /*-------------------------------------------------------------------------*/ 3550 3551 /* Core methods for spi_message alterations */ 3552 3553 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3554 struct spi_message *msg, 3555 void *res) 3556 { 3557 struct spi_replaced_transfers *rxfer = res; 3558 size_t i; 3559 3560 /* Call extra callback if requested */ 3561 if (rxfer->release) 3562 rxfer->release(ctlr, msg, res); 3563 3564 /* Insert replaced transfers back into the message */ 3565 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3566 3567 /* Remove the formerly inserted entries */ 3568 for (i = 0; i < rxfer->inserted; i++) 3569 list_del(&rxfer->inserted_transfers[i].transfer_list); 3570 } 3571 3572 /** 3573 * spi_replace_transfers - replace transfers with several transfers 3574 * and register change with spi_message.resources 3575 * @msg: the spi_message we work upon 3576 * @xfer_first: the first spi_transfer we want to replace 3577 * @remove: number of transfers to remove 3578 * @insert: the number of transfers we want to insert instead 3579 * @release: extra release code necessary in some circumstances 3580 * @extradatasize: extra data to allocate (with alignment guarantees 3581 * of struct @spi_transfer) 3582 * @gfp: gfp flags 3583 * 3584 * Returns: pointer to @spi_replaced_transfers, 3585 * PTR_ERR(...) in case of errors. 3586 */ 3587 static struct spi_replaced_transfers *spi_replace_transfers( 3588 struct spi_message *msg, 3589 struct spi_transfer *xfer_first, 3590 size_t remove, 3591 size_t insert, 3592 spi_replaced_release_t release, 3593 size_t extradatasize, 3594 gfp_t gfp) 3595 { 3596 struct spi_replaced_transfers *rxfer; 3597 struct spi_transfer *xfer; 3598 size_t i; 3599 3600 /* Allocate the structure using spi_res */ 3601 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3602 struct_size(rxfer, inserted_transfers, insert) 3603 + extradatasize, 3604 gfp); 3605 if (!rxfer) 3606 return ERR_PTR(-ENOMEM); 3607 3608 /* The release code to invoke before running the generic release */ 3609 rxfer->release = release; 3610 3611 /* Assign extradata */ 3612 if (extradatasize) 3613 rxfer->extradata = 3614 &rxfer->inserted_transfers[insert]; 3615 3616 /* Init the replaced_transfers list */ 3617 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3618 3619 /* 3620 * Assign the list_entry after which we should reinsert 3621 * the @replaced_transfers - it may be spi_message.messages! 3622 */ 3623 rxfer->replaced_after = xfer_first->transfer_list.prev; 3624 3625 /* Remove the requested number of transfers */ 3626 for (i = 0; i < remove; i++) { 3627 /* 3628 * If the entry after replaced_after it is msg->transfers 3629 * then we have been requested to remove more transfers 3630 * than are in the list. 3631 */ 3632 if (rxfer->replaced_after->next == &msg->transfers) { 3633 dev_err(&msg->spi->dev, 3634 "requested to remove more spi_transfers than are available\n"); 3635 /* Insert replaced transfers back into the message */ 3636 list_splice(&rxfer->replaced_transfers, 3637 rxfer->replaced_after); 3638 3639 /* Free the spi_replace_transfer structure... */ 3640 spi_res_free(rxfer); 3641 3642 /* ...and return with an error */ 3643 return ERR_PTR(-EINVAL); 3644 } 3645 3646 /* 3647 * Remove the entry after replaced_after from list of 3648 * transfers and add it to list of replaced_transfers. 3649 */ 3650 list_move_tail(rxfer->replaced_after->next, 3651 &rxfer->replaced_transfers); 3652 } 3653 3654 /* 3655 * Create copy of the given xfer with identical settings 3656 * based on the first transfer to get removed. 3657 */ 3658 for (i = 0; i < insert; i++) { 3659 /* We need to run in reverse order */ 3660 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3661 3662 /* Copy all spi_transfer data */ 3663 memcpy(xfer, xfer_first, sizeof(*xfer)); 3664 3665 /* Add to list */ 3666 list_add(&xfer->transfer_list, rxfer->replaced_after); 3667 3668 /* Clear cs_change and delay for all but the last */ 3669 if (i) { 3670 xfer->cs_change = false; 3671 xfer->delay.value = 0; 3672 } 3673 } 3674 3675 /* Set up inserted... */ 3676 rxfer->inserted = insert; 3677 3678 /* ...and register it with spi_res/spi_message */ 3679 spi_res_add(msg, rxfer); 3680 3681 return rxfer; 3682 } 3683 3684 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3685 struct spi_message *msg, 3686 struct spi_transfer **xferp, 3687 size_t maxsize) 3688 { 3689 struct spi_transfer *xfer = *xferp, *xfers; 3690 struct spi_replaced_transfers *srt; 3691 size_t offset; 3692 size_t count, i; 3693 3694 /* Calculate how many we have to replace */ 3695 count = DIV_ROUND_UP(xfer->len, maxsize); 3696 3697 /* Create replacement */ 3698 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3699 if (IS_ERR(srt)) 3700 return PTR_ERR(srt); 3701 xfers = srt->inserted_transfers; 3702 3703 /* 3704 * Now handle each of those newly inserted spi_transfers. 3705 * Note that the replacements spi_transfers all are preset 3706 * to the same values as *xferp, so tx_buf, rx_buf and len 3707 * are all identical (as well as most others) 3708 * so we just have to fix up len and the pointers. 3709 */ 3710 3711 /* 3712 * The first transfer just needs the length modified, so we 3713 * run it outside the loop. 3714 */ 3715 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3716 3717 /* All the others need rx_buf/tx_buf also set */ 3718 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3719 /* Update rx_buf, tx_buf and DMA */ 3720 if (xfers[i].rx_buf) 3721 xfers[i].rx_buf += offset; 3722 if (xfers[i].tx_buf) 3723 xfers[i].tx_buf += offset; 3724 3725 /* Update length */ 3726 xfers[i].len = min(maxsize, xfers[i].len - offset); 3727 } 3728 3729 /* 3730 * We set up xferp to the last entry we have inserted, 3731 * so that we skip those already split transfers. 3732 */ 3733 *xferp = &xfers[count - 1]; 3734 3735 /* Increment statistics counters */ 3736 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3737 transfers_split_maxsize); 3738 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3739 transfers_split_maxsize); 3740 3741 return 0; 3742 } 3743 3744 /** 3745 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3746 * when an individual transfer exceeds a 3747 * certain size 3748 * @ctlr: the @spi_controller for this transfer 3749 * @msg: the @spi_message to transform 3750 * @maxsize: the maximum when to apply this 3751 * 3752 * This function allocates resources that are automatically freed during the 3753 * spi message unoptimize phase so this function should only be called from 3754 * optimize_message callbacks. 3755 * 3756 * Return: status of transformation 3757 */ 3758 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3759 struct spi_message *msg, 3760 size_t maxsize) 3761 { 3762 struct spi_transfer *xfer; 3763 int ret; 3764 3765 /* 3766 * Iterate over the transfer_list, 3767 * but note that xfer is advanced to the last transfer inserted 3768 * to avoid checking sizes again unnecessarily (also xfer does 3769 * potentially belong to a different list by the time the 3770 * replacement has happened). 3771 */ 3772 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3773 if (xfer->len > maxsize) { 3774 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3775 maxsize); 3776 if (ret) 3777 return ret; 3778 } 3779 } 3780 3781 return 0; 3782 } 3783 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3784 3785 3786 /** 3787 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3788 * when an individual transfer exceeds a 3789 * certain number of SPI words 3790 * @ctlr: the @spi_controller for this transfer 3791 * @msg: the @spi_message to transform 3792 * @maxwords: the number of words to limit each transfer to 3793 * 3794 * This function allocates resources that are automatically freed during the 3795 * spi message unoptimize phase so this function should only be called from 3796 * optimize_message callbacks. 3797 * 3798 * Return: status of transformation 3799 */ 3800 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3801 struct spi_message *msg, 3802 size_t maxwords) 3803 { 3804 struct spi_transfer *xfer; 3805 3806 /* 3807 * Iterate over the transfer_list, 3808 * but note that xfer is advanced to the last transfer inserted 3809 * to avoid checking sizes again unnecessarily (also xfer does 3810 * potentially belong to a different list by the time the 3811 * replacement has happened). 3812 */ 3813 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3814 size_t maxsize; 3815 int ret; 3816 3817 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3818 if (xfer->len > maxsize) { 3819 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3820 maxsize); 3821 if (ret) 3822 return ret; 3823 } 3824 } 3825 3826 return 0; 3827 } 3828 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3829 3830 /*-------------------------------------------------------------------------*/ 3831 3832 /* 3833 * Core methods for SPI controller protocol drivers. Some of the 3834 * other core methods are currently defined as inline functions. 3835 */ 3836 3837 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3838 u8 bits_per_word) 3839 { 3840 if (ctlr->bits_per_word_mask) { 3841 /* Only 32 bits fit in the mask */ 3842 if (bits_per_word > 32) 3843 return -EINVAL; 3844 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3845 return -EINVAL; 3846 } 3847 3848 return 0; 3849 } 3850 3851 /** 3852 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3853 * @spi: the device that requires specific CS timing configuration 3854 * 3855 * Return: zero on success, else a negative error code. 3856 */ 3857 static int spi_set_cs_timing(struct spi_device *spi) 3858 { 3859 struct device *parent = spi->controller->dev.parent; 3860 int status = 0; 3861 3862 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3863 if (spi->controller->auto_runtime_pm) { 3864 status = pm_runtime_get_sync(parent); 3865 if (status < 0) { 3866 pm_runtime_put_noidle(parent); 3867 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3868 status); 3869 return status; 3870 } 3871 3872 status = spi->controller->set_cs_timing(spi); 3873 pm_runtime_mark_last_busy(parent); 3874 pm_runtime_put_autosuspend(parent); 3875 } else { 3876 status = spi->controller->set_cs_timing(spi); 3877 } 3878 } 3879 return status; 3880 } 3881 3882 /** 3883 * spi_setup - setup SPI mode and clock rate 3884 * @spi: the device whose settings are being modified 3885 * Context: can sleep, and no requests are queued to the device 3886 * 3887 * SPI protocol drivers may need to update the transfer mode if the 3888 * device doesn't work with its default. They may likewise need 3889 * to update clock rates or word sizes from initial values. This function 3890 * changes those settings, and must be called from a context that can sleep. 3891 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3892 * effect the next time the device is selected and data is transferred to 3893 * or from it. When this function returns, the SPI device is deselected. 3894 * 3895 * Note that this call will fail if the protocol driver specifies an option 3896 * that the underlying controller or its driver does not support. For 3897 * example, not all hardware supports wire transfers using nine bit words, 3898 * LSB-first wire encoding, or active-high chipselects. 3899 * 3900 * Return: zero on success, else a negative error code. 3901 */ 3902 int spi_setup(struct spi_device *spi) 3903 { 3904 unsigned bad_bits, ugly_bits; 3905 int status = 0; 3906 3907 /* 3908 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3909 * are set at the same time. 3910 */ 3911 if ((hweight_long(spi->mode & 3912 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3913 (hweight_long(spi->mode & 3914 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3915 dev_err(&spi->dev, 3916 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3917 return -EINVAL; 3918 } 3919 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3920 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3921 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3922 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3923 return -EINVAL; 3924 /* 3925 * Help drivers fail *cleanly* when they need options 3926 * that aren't supported with their current controller. 3927 * SPI_CS_WORD has a fallback software implementation, 3928 * so it is ignored here. 3929 */ 3930 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3931 SPI_NO_TX | SPI_NO_RX); 3932 ugly_bits = bad_bits & 3933 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3934 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3935 if (ugly_bits) { 3936 dev_warn(&spi->dev, 3937 "setup: ignoring unsupported mode bits %x\n", 3938 ugly_bits); 3939 spi->mode &= ~ugly_bits; 3940 bad_bits &= ~ugly_bits; 3941 } 3942 if (bad_bits) { 3943 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3944 bad_bits); 3945 return -EINVAL; 3946 } 3947 3948 if (!spi->bits_per_word) { 3949 spi->bits_per_word = 8; 3950 } else { 3951 /* 3952 * Some controllers may not support the default 8 bits-per-word 3953 * so only perform the check when this is explicitly provided. 3954 */ 3955 status = __spi_validate_bits_per_word(spi->controller, 3956 spi->bits_per_word); 3957 if (status) 3958 return status; 3959 } 3960 3961 if (spi->controller->max_speed_hz && 3962 (!spi->max_speed_hz || 3963 spi->max_speed_hz > spi->controller->max_speed_hz)) 3964 spi->max_speed_hz = spi->controller->max_speed_hz; 3965 3966 mutex_lock(&spi->controller->io_mutex); 3967 3968 if (spi->controller->setup) { 3969 status = spi->controller->setup(spi); 3970 if (status) { 3971 mutex_unlock(&spi->controller->io_mutex); 3972 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3973 status); 3974 return status; 3975 } 3976 } 3977 3978 status = spi_set_cs_timing(spi); 3979 if (status) { 3980 mutex_unlock(&spi->controller->io_mutex); 3981 return status; 3982 } 3983 3984 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3985 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3986 if (status < 0) { 3987 mutex_unlock(&spi->controller->io_mutex); 3988 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3989 status); 3990 return status; 3991 } 3992 3993 /* 3994 * We do not want to return positive value from pm_runtime_get, 3995 * there are many instances of devices calling spi_setup() and 3996 * checking for a non-zero return value instead of a negative 3997 * return value. 3998 */ 3999 status = 0; 4000 4001 spi_set_cs(spi, false, true); 4002 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4003 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4004 } else { 4005 spi_set_cs(spi, false, true); 4006 } 4007 4008 mutex_unlock(&spi->controller->io_mutex); 4009 4010 if (spi->rt && !spi->controller->rt) { 4011 spi->controller->rt = true; 4012 spi_set_thread_rt(spi->controller); 4013 } 4014 4015 trace_spi_setup(spi, status); 4016 4017 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4018 spi->mode & SPI_MODE_X_MASK, 4019 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4020 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4021 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4022 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4023 spi->bits_per_word, spi->max_speed_hz, 4024 status); 4025 4026 return status; 4027 } 4028 EXPORT_SYMBOL_GPL(spi_setup); 4029 4030 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4031 struct spi_device *spi) 4032 { 4033 int delay1, delay2; 4034 4035 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4036 if (delay1 < 0) 4037 return delay1; 4038 4039 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4040 if (delay2 < 0) 4041 return delay2; 4042 4043 if (delay1 < delay2) 4044 memcpy(&xfer->word_delay, &spi->word_delay, 4045 sizeof(xfer->word_delay)); 4046 4047 return 0; 4048 } 4049 4050 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4051 { 4052 struct spi_controller *ctlr = spi->controller; 4053 struct spi_transfer *xfer; 4054 int w_size; 4055 4056 if (list_empty(&message->transfers)) 4057 return -EINVAL; 4058 4059 message->spi = spi; 4060 4061 /* 4062 * Half-duplex links include original MicroWire, and ones with 4063 * only one data pin like SPI_3WIRE (switches direction) or where 4064 * either MOSI or MISO is missing. They can also be caused by 4065 * software limitations. 4066 */ 4067 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4068 (spi->mode & SPI_3WIRE)) { 4069 unsigned flags = ctlr->flags; 4070 4071 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4072 if (xfer->rx_buf && xfer->tx_buf) 4073 return -EINVAL; 4074 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4075 return -EINVAL; 4076 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4077 return -EINVAL; 4078 } 4079 } 4080 4081 /* 4082 * Set transfer bits_per_word and max speed as spi device default if 4083 * it is not set for this transfer. 4084 * Set transfer tx_nbits and rx_nbits as single transfer default 4085 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4086 * Ensure transfer word_delay is at least as long as that required by 4087 * device itself. 4088 */ 4089 message->frame_length = 0; 4090 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4091 xfer->effective_speed_hz = 0; 4092 message->frame_length += xfer->len; 4093 if (!xfer->bits_per_word) 4094 xfer->bits_per_word = spi->bits_per_word; 4095 4096 if (!xfer->speed_hz) 4097 xfer->speed_hz = spi->max_speed_hz; 4098 4099 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4100 xfer->speed_hz = ctlr->max_speed_hz; 4101 4102 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4103 return -EINVAL; 4104 4105 /* 4106 * SPI transfer length should be multiple of SPI word size 4107 * where SPI word size should be power-of-two multiple. 4108 */ 4109 if (xfer->bits_per_word <= 8) 4110 w_size = 1; 4111 else if (xfer->bits_per_word <= 16) 4112 w_size = 2; 4113 else 4114 w_size = 4; 4115 4116 /* No partial transfers accepted */ 4117 if (xfer->len % w_size) 4118 return -EINVAL; 4119 4120 if (xfer->speed_hz && ctlr->min_speed_hz && 4121 xfer->speed_hz < ctlr->min_speed_hz) 4122 return -EINVAL; 4123 4124 if (xfer->tx_buf && !xfer->tx_nbits) 4125 xfer->tx_nbits = SPI_NBITS_SINGLE; 4126 if (xfer->rx_buf && !xfer->rx_nbits) 4127 xfer->rx_nbits = SPI_NBITS_SINGLE; 4128 /* 4129 * Check transfer tx/rx_nbits: 4130 * 1. check the value matches one of single, dual and quad 4131 * 2. check tx/rx_nbits match the mode in spi_device 4132 */ 4133 if (xfer->tx_buf) { 4134 if (spi->mode & SPI_NO_TX) 4135 return -EINVAL; 4136 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4137 xfer->tx_nbits != SPI_NBITS_DUAL && 4138 xfer->tx_nbits != SPI_NBITS_QUAD) 4139 return -EINVAL; 4140 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4141 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4142 return -EINVAL; 4143 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4144 !(spi->mode & SPI_TX_QUAD)) 4145 return -EINVAL; 4146 } 4147 /* Check transfer rx_nbits */ 4148 if (xfer->rx_buf) { 4149 if (spi->mode & SPI_NO_RX) 4150 return -EINVAL; 4151 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4152 xfer->rx_nbits != SPI_NBITS_DUAL && 4153 xfer->rx_nbits != SPI_NBITS_QUAD) 4154 return -EINVAL; 4155 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4156 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4157 return -EINVAL; 4158 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4159 !(spi->mode & SPI_RX_QUAD)) 4160 return -EINVAL; 4161 } 4162 4163 if (_spi_xfer_word_delay_update(xfer, spi)) 4164 return -EINVAL; 4165 } 4166 4167 message->status = -EINPROGRESS; 4168 4169 return 0; 4170 } 4171 4172 /* 4173 * spi_split_transfers - generic handling of transfer splitting 4174 * @msg: the message to split 4175 * 4176 * Under certain conditions, a SPI controller may not support arbitrary 4177 * transfer sizes or other features required by a peripheral. This function 4178 * will split the transfers in the message into smaller transfers that are 4179 * supported by the controller. 4180 * 4181 * Controllers with special requirements not covered here can also split 4182 * transfers in the optimize_message() callback. 4183 * 4184 * Context: can sleep 4185 * Return: zero on success, else a negative error code 4186 */ 4187 static int spi_split_transfers(struct spi_message *msg) 4188 { 4189 struct spi_controller *ctlr = msg->spi->controller; 4190 struct spi_transfer *xfer; 4191 int ret; 4192 4193 /* 4194 * If an SPI controller does not support toggling the CS line on each 4195 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4196 * for the CS line, we can emulate the CS-per-word hardware function by 4197 * splitting transfers into one-word transfers and ensuring that 4198 * cs_change is set for each transfer. 4199 */ 4200 if ((msg->spi->mode & SPI_CS_WORD) && 4201 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4202 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4203 if (ret) 4204 return ret; 4205 4206 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4207 /* Don't change cs_change on the last entry in the list */ 4208 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4209 break; 4210 4211 xfer->cs_change = 1; 4212 } 4213 } else { 4214 ret = spi_split_transfers_maxsize(ctlr, msg, 4215 spi_max_transfer_size(msg->spi)); 4216 if (ret) 4217 return ret; 4218 } 4219 4220 return 0; 4221 } 4222 4223 /* 4224 * __spi_optimize_message - shared implementation for spi_optimize_message() 4225 * and spi_maybe_optimize_message() 4226 * @spi: the device that will be used for the message 4227 * @msg: the message to optimize 4228 * 4229 * Peripheral drivers will call spi_optimize_message() and the spi core will 4230 * call spi_maybe_optimize_message() instead of calling this directly. 4231 * 4232 * It is not valid to call this on a message that has already been optimized. 4233 * 4234 * Return: zero on success, else a negative error code 4235 */ 4236 static int __spi_optimize_message(struct spi_device *spi, 4237 struct spi_message *msg) 4238 { 4239 struct spi_controller *ctlr = spi->controller; 4240 int ret; 4241 4242 ret = __spi_validate(spi, msg); 4243 if (ret) 4244 return ret; 4245 4246 ret = spi_split_transfers(msg); 4247 if (ret) 4248 return ret; 4249 4250 if (ctlr->optimize_message) { 4251 ret = ctlr->optimize_message(msg); 4252 if (ret) { 4253 spi_res_release(ctlr, msg); 4254 return ret; 4255 } 4256 } 4257 4258 msg->optimized = true; 4259 4260 return 0; 4261 } 4262 4263 /* 4264 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4265 * @spi: the device that will be used for the message 4266 * @msg: the message to optimize 4267 * Return: zero on success, else a negative error code 4268 */ 4269 static int spi_maybe_optimize_message(struct spi_device *spi, 4270 struct spi_message *msg) 4271 { 4272 if (msg->pre_optimized) 4273 return 0; 4274 4275 return __spi_optimize_message(spi, msg); 4276 } 4277 4278 /** 4279 * spi_optimize_message - do any one-time validation and setup for a SPI message 4280 * @spi: the device that will be used for the message 4281 * @msg: the message to optimize 4282 * 4283 * Peripheral drivers that reuse the same message repeatedly may call this to 4284 * perform as much message prep as possible once, rather than repeating it each 4285 * time a message transfer is performed to improve throughput and reduce CPU 4286 * usage. 4287 * 4288 * Once a message has been optimized, it cannot be modified with the exception 4289 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4290 * only the data in the memory it points to). 4291 * 4292 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4293 * to avoid leaking resources. 4294 * 4295 * Context: can sleep 4296 * Return: zero on success, else a negative error code 4297 */ 4298 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4299 { 4300 int ret; 4301 4302 ret = __spi_optimize_message(spi, msg); 4303 if (ret) 4304 return ret; 4305 4306 /* 4307 * This flag indicates that the peripheral driver called spi_optimize_message() 4308 * and therefore we shouldn't unoptimize message automatically when finalizing 4309 * the message but rather wait until spi_unoptimize_message() is called 4310 * by the peripheral driver. 4311 */ 4312 msg->pre_optimized = true; 4313 4314 return 0; 4315 } 4316 EXPORT_SYMBOL_GPL(spi_optimize_message); 4317 4318 /** 4319 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4320 * @msg: the message to unoptimize 4321 * 4322 * Calls to this function must be balanced with calls to spi_optimize_message(). 4323 * 4324 * Context: can sleep 4325 */ 4326 void spi_unoptimize_message(struct spi_message *msg) 4327 { 4328 __spi_unoptimize_message(msg); 4329 msg->pre_optimized = false; 4330 } 4331 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4332 4333 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4334 { 4335 struct spi_controller *ctlr = spi->controller; 4336 struct spi_transfer *xfer; 4337 4338 /* 4339 * Some controllers do not support doing regular SPI transfers. Return 4340 * ENOTSUPP when this is the case. 4341 */ 4342 if (!ctlr->transfer) 4343 return -ENOTSUPP; 4344 4345 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4346 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4347 4348 trace_spi_message_submit(message); 4349 4350 if (!ctlr->ptp_sts_supported) { 4351 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4352 xfer->ptp_sts_word_pre = 0; 4353 ptp_read_system_prets(xfer->ptp_sts); 4354 } 4355 } 4356 4357 return ctlr->transfer(spi, message); 4358 } 4359 4360 /** 4361 * spi_async - asynchronous SPI transfer 4362 * @spi: device with which data will be exchanged 4363 * @message: describes the data transfers, including completion callback 4364 * Context: any (IRQs may be blocked, etc) 4365 * 4366 * This call may be used in_irq and other contexts which can't sleep, 4367 * as well as from task contexts which can sleep. 4368 * 4369 * The completion callback is invoked in a context which can't sleep. 4370 * Before that invocation, the value of message->status is undefined. 4371 * When the callback is issued, message->status holds either zero (to 4372 * indicate complete success) or a negative error code. After that 4373 * callback returns, the driver which issued the transfer request may 4374 * deallocate the associated memory; it's no longer in use by any SPI 4375 * core or controller driver code. 4376 * 4377 * Note that although all messages to a spi_device are handled in 4378 * FIFO order, messages may go to different devices in other orders. 4379 * Some device might be higher priority, or have various "hard" access 4380 * time requirements, for example. 4381 * 4382 * On detection of any fault during the transfer, processing of 4383 * the entire message is aborted, and the device is deselected. 4384 * Until returning from the associated message completion callback, 4385 * no other spi_message queued to that device will be processed. 4386 * (This rule applies equally to all the synchronous transfer calls, 4387 * which are wrappers around this core asynchronous primitive.) 4388 * 4389 * Return: zero on success, else a negative error code. 4390 */ 4391 int spi_async(struct spi_device *spi, struct spi_message *message) 4392 { 4393 struct spi_controller *ctlr = spi->controller; 4394 int ret; 4395 unsigned long flags; 4396 4397 ret = spi_maybe_optimize_message(spi, message); 4398 if (ret) 4399 return ret; 4400 4401 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4402 4403 if (ctlr->bus_lock_flag) 4404 ret = -EBUSY; 4405 else 4406 ret = __spi_async(spi, message); 4407 4408 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4409 4410 spi_maybe_unoptimize_message(message); 4411 4412 return ret; 4413 } 4414 EXPORT_SYMBOL_GPL(spi_async); 4415 4416 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4417 { 4418 bool was_busy; 4419 int ret; 4420 4421 mutex_lock(&ctlr->io_mutex); 4422 4423 was_busy = ctlr->busy; 4424 4425 ctlr->cur_msg = msg; 4426 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4427 if (ret) 4428 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4429 ctlr->cur_msg = NULL; 4430 ctlr->fallback = false; 4431 4432 if (!was_busy) { 4433 kfree(ctlr->dummy_rx); 4434 ctlr->dummy_rx = NULL; 4435 kfree(ctlr->dummy_tx); 4436 ctlr->dummy_tx = NULL; 4437 if (ctlr->unprepare_transfer_hardware && 4438 ctlr->unprepare_transfer_hardware(ctlr)) 4439 dev_err(&ctlr->dev, 4440 "failed to unprepare transfer hardware\n"); 4441 spi_idle_runtime_pm(ctlr); 4442 } 4443 4444 mutex_unlock(&ctlr->io_mutex); 4445 } 4446 4447 /*-------------------------------------------------------------------------*/ 4448 4449 /* 4450 * Utility methods for SPI protocol drivers, layered on 4451 * top of the core. Some other utility methods are defined as 4452 * inline functions. 4453 */ 4454 4455 static void spi_complete(void *arg) 4456 { 4457 complete(arg); 4458 } 4459 4460 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4461 { 4462 DECLARE_COMPLETION_ONSTACK(done); 4463 unsigned long flags; 4464 int status; 4465 struct spi_controller *ctlr = spi->controller; 4466 4467 if (__spi_check_suspended(ctlr)) { 4468 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4469 return -ESHUTDOWN; 4470 } 4471 4472 status = spi_maybe_optimize_message(spi, message); 4473 if (status) 4474 return status; 4475 4476 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4477 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4478 4479 /* 4480 * Checking queue_empty here only guarantees async/sync message 4481 * ordering when coming from the same context. It does not need to 4482 * guard against reentrancy from a different context. The io_mutex 4483 * will catch those cases. 4484 */ 4485 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4486 message->actual_length = 0; 4487 message->status = -EINPROGRESS; 4488 4489 trace_spi_message_submit(message); 4490 4491 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4492 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4493 4494 __spi_transfer_message_noqueue(ctlr, message); 4495 4496 return message->status; 4497 } 4498 4499 /* 4500 * There are messages in the async queue that could have originated 4501 * from the same context, so we need to preserve ordering. 4502 * Therefor we send the message to the async queue and wait until they 4503 * are completed. 4504 */ 4505 message->complete = spi_complete; 4506 message->context = &done; 4507 4508 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4509 status = __spi_async(spi, message); 4510 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4511 4512 if (status == 0) { 4513 wait_for_completion(&done); 4514 status = message->status; 4515 } 4516 message->complete = NULL; 4517 message->context = NULL; 4518 4519 return status; 4520 } 4521 4522 /** 4523 * spi_sync - blocking/synchronous SPI data transfers 4524 * @spi: device with which data will be exchanged 4525 * @message: describes the data transfers 4526 * Context: can sleep 4527 * 4528 * This call may only be used from a context that may sleep. The sleep 4529 * is non-interruptible, and has no timeout. Low-overhead controller 4530 * drivers may DMA directly into and out of the message buffers. 4531 * 4532 * Note that the SPI device's chip select is active during the message, 4533 * and then is normally disabled between messages. Drivers for some 4534 * frequently-used devices may want to minimize costs of selecting a chip, 4535 * by leaving it selected in anticipation that the next message will go 4536 * to the same chip. (That may increase power usage.) 4537 * 4538 * Also, the caller is guaranteeing that the memory associated with the 4539 * message will not be freed before this call returns. 4540 * 4541 * Return: zero on success, else a negative error code. 4542 */ 4543 int spi_sync(struct spi_device *spi, struct spi_message *message) 4544 { 4545 int ret; 4546 4547 mutex_lock(&spi->controller->bus_lock_mutex); 4548 ret = __spi_sync(spi, message); 4549 mutex_unlock(&spi->controller->bus_lock_mutex); 4550 4551 return ret; 4552 } 4553 EXPORT_SYMBOL_GPL(spi_sync); 4554 4555 /** 4556 * spi_sync_locked - version of spi_sync with exclusive bus usage 4557 * @spi: device with which data will be exchanged 4558 * @message: describes the data transfers 4559 * Context: can sleep 4560 * 4561 * This call may only be used from a context that may sleep. The sleep 4562 * is non-interruptible, and has no timeout. Low-overhead controller 4563 * drivers may DMA directly into and out of the message buffers. 4564 * 4565 * This call should be used by drivers that require exclusive access to the 4566 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4567 * be released by a spi_bus_unlock call when the exclusive access is over. 4568 * 4569 * Return: zero on success, else a negative error code. 4570 */ 4571 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4572 { 4573 return __spi_sync(spi, message); 4574 } 4575 EXPORT_SYMBOL_GPL(spi_sync_locked); 4576 4577 /** 4578 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4579 * @ctlr: SPI bus master that should be locked for exclusive bus access 4580 * Context: can sleep 4581 * 4582 * This call may only be used from a context that may sleep. The sleep 4583 * is non-interruptible, and has no timeout. 4584 * 4585 * This call should be used by drivers that require exclusive access to the 4586 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4587 * exclusive access is over. Data transfer must be done by spi_sync_locked 4588 * and spi_async_locked calls when the SPI bus lock is held. 4589 * 4590 * Return: always zero. 4591 */ 4592 int spi_bus_lock(struct spi_controller *ctlr) 4593 { 4594 unsigned long flags; 4595 4596 mutex_lock(&ctlr->bus_lock_mutex); 4597 4598 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4599 ctlr->bus_lock_flag = 1; 4600 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4601 4602 /* Mutex remains locked until spi_bus_unlock() is called */ 4603 4604 return 0; 4605 } 4606 EXPORT_SYMBOL_GPL(spi_bus_lock); 4607 4608 /** 4609 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4610 * @ctlr: SPI bus master that was locked for exclusive bus access 4611 * Context: can sleep 4612 * 4613 * This call may only be used from a context that may sleep. The sleep 4614 * is non-interruptible, and has no timeout. 4615 * 4616 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4617 * call. 4618 * 4619 * Return: always zero. 4620 */ 4621 int spi_bus_unlock(struct spi_controller *ctlr) 4622 { 4623 ctlr->bus_lock_flag = 0; 4624 4625 mutex_unlock(&ctlr->bus_lock_mutex); 4626 4627 return 0; 4628 } 4629 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4630 4631 /* Portable code must never pass more than 32 bytes */ 4632 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4633 4634 static u8 *buf; 4635 4636 /** 4637 * spi_write_then_read - SPI synchronous write followed by read 4638 * @spi: device with which data will be exchanged 4639 * @txbuf: data to be written (need not be DMA-safe) 4640 * @n_tx: size of txbuf, in bytes 4641 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4642 * @n_rx: size of rxbuf, in bytes 4643 * Context: can sleep 4644 * 4645 * This performs a half duplex MicroWire style transaction with the 4646 * device, sending txbuf and then reading rxbuf. The return value 4647 * is zero for success, else a negative errno status code. 4648 * This call may only be used from a context that may sleep. 4649 * 4650 * Parameters to this routine are always copied using a small buffer. 4651 * Performance-sensitive or bulk transfer code should instead use 4652 * spi_{async,sync}() calls with DMA-safe buffers. 4653 * 4654 * Return: zero on success, else a negative error code. 4655 */ 4656 int spi_write_then_read(struct spi_device *spi, 4657 const void *txbuf, unsigned n_tx, 4658 void *rxbuf, unsigned n_rx) 4659 { 4660 static DEFINE_MUTEX(lock); 4661 4662 int status; 4663 struct spi_message message; 4664 struct spi_transfer x[2]; 4665 u8 *local_buf; 4666 4667 /* 4668 * Use preallocated DMA-safe buffer if we can. We can't avoid 4669 * copying here, (as a pure convenience thing), but we can 4670 * keep heap costs out of the hot path unless someone else is 4671 * using the pre-allocated buffer or the transfer is too large. 4672 */ 4673 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4674 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4675 GFP_KERNEL | GFP_DMA); 4676 if (!local_buf) 4677 return -ENOMEM; 4678 } else { 4679 local_buf = buf; 4680 } 4681 4682 spi_message_init(&message); 4683 memset(x, 0, sizeof(x)); 4684 if (n_tx) { 4685 x[0].len = n_tx; 4686 spi_message_add_tail(&x[0], &message); 4687 } 4688 if (n_rx) { 4689 x[1].len = n_rx; 4690 spi_message_add_tail(&x[1], &message); 4691 } 4692 4693 memcpy(local_buf, txbuf, n_tx); 4694 x[0].tx_buf = local_buf; 4695 x[1].rx_buf = local_buf + n_tx; 4696 4697 /* Do the I/O */ 4698 status = spi_sync(spi, &message); 4699 if (status == 0) 4700 memcpy(rxbuf, x[1].rx_buf, n_rx); 4701 4702 if (x[0].tx_buf == buf) 4703 mutex_unlock(&lock); 4704 else 4705 kfree(local_buf); 4706 4707 return status; 4708 } 4709 EXPORT_SYMBOL_GPL(spi_write_then_read); 4710 4711 /*-------------------------------------------------------------------------*/ 4712 4713 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4714 /* Must call put_device() when done with returned spi_device device */ 4715 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4716 { 4717 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4718 4719 return dev ? to_spi_device(dev) : NULL; 4720 } 4721 4722 /* The spi controllers are not using spi_bus, so we find it with another way */ 4723 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4724 { 4725 struct device *dev; 4726 4727 dev = class_find_device_by_of_node(&spi_master_class, node); 4728 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4729 dev = class_find_device_by_of_node(&spi_slave_class, node); 4730 if (!dev) 4731 return NULL; 4732 4733 /* Reference got in class_find_device */ 4734 return container_of(dev, struct spi_controller, dev); 4735 } 4736 4737 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4738 void *arg) 4739 { 4740 struct of_reconfig_data *rd = arg; 4741 struct spi_controller *ctlr; 4742 struct spi_device *spi; 4743 4744 switch (of_reconfig_get_state_change(action, arg)) { 4745 case OF_RECONFIG_CHANGE_ADD: 4746 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4747 if (ctlr == NULL) 4748 return NOTIFY_OK; /* Not for us */ 4749 4750 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4751 put_device(&ctlr->dev); 4752 return NOTIFY_OK; 4753 } 4754 4755 /* 4756 * Clear the flag before adding the device so that fw_devlink 4757 * doesn't skip adding consumers to this device. 4758 */ 4759 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4760 spi = of_register_spi_device(ctlr, rd->dn); 4761 put_device(&ctlr->dev); 4762 4763 if (IS_ERR(spi)) { 4764 pr_err("%s: failed to create for '%pOF'\n", 4765 __func__, rd->dn); 4766 of_node_clear_flag(rd->dn, OF_POPULATED); 4767 return notifier_from_errno(PTR_ERR(spi)); 4768 } 4769 break; 4770 4771 case OF_RECONFIG_CHANGE_REMOVE: 4772 /* Already depopulated? */ 4773 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4774 return NOTIFY_OK; 4775 4776 /* Find our device by node */ 4777 spi = of_find_spi_device_by_node(rd->dn); 4778 if (spi == NULL) 4779 return NOTIFY_OK; /* No? not meant for us */ 4780 4781 /* Unregister takes one ref away */ 4782 spi_unregister_device(spi); 4783 4784 /* And put the reference of the find */ 4785 put_device(&spi->dev); 4786 break; 4787 } 4788 4789 return NOTIFY_OK; 4790 } 4791 4792 static struct notifier_block spi_of_notifier = { 4793 .notifier_call = of_spi_notify, 4794 }; 4795 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4796 extern struct notifier_block spi_of_notifier; 4797 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4798 4799 #if IS_ENABLED(CONFIG_ACPI) 4800 static int spi_acpi_controller_match(struct device *dev, const void *data) 4801 { 4802 return ACPI_COMPANION(dev->parent) == data; 4803 } 4804 4805 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4806 { 4807 struct device *dev; 4808 4809 dev = class_find_device(&spi_master_class, NULL, adev, 4810 spi_acpi_controller_match); 4811 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4812 dev = class_find_device(&spi_slave_class, NULL, adev, 4813 spi_acpi_controller_match); 4814 if (!dev) 4815 return NULL; 4816 4817 return container_of(dev, struct spi_controller, dev); 4818 } 4819 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4820 4821 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4822 { 4823 struct device *dev; 4824 4825 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4826 return to_spi_device(dev); 4827 } 4828 4829 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4830 void *arg) 4831 { 4832 struct acpi_device *adev = arg; 4833 struct spi_controller *ctlr; 4834 struct spi_device *spi; 4835 4836 switch (value) { 4837 case ACPI_RECONFIG_DEVICE_ADD: 4838 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4839 if (!ctlr) 4840 break; 4841 4842 acpi_register_spi_device(ctlr, adev); 4843 put_device(&ctlr->dev); 4844 break; 4845 case ACPI_RECONFIG_DEVICE_REMOVE: 4846 if (!acpi_device_enumerated(adev)) 4847 break; 4848 4849 spi = acpi_spi_find_device_by_adev(adev); 4850 if (!spi) 4851 break; 4852 4853 spi_unregister_device(spi); 4854 put_device(&spi->dev); 4855 break; 4856 } 4857 4858 return NOTIFY_OK; 4859 } 4860 4861 static struct notifier_block spi_acpi_notifier = { 4862 .notifier_call = acpi_spi_notify, 4863 }; 4864 #else 4865 extern struct notifier_block spi_acpi_notifier; 4866 #endif 4867 4868 static int __init spi_init(void) 4869 { 4870 int status; 4871 4872 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4873 if (!buf) { 4874 status = -ENOMEM; 4875 goto err0; 4876 } 4877 4878 status = bus_register(&spi_bus_type); 4879 if (status < 0) 4880 goto err1; 4881 4882 status = class_register(&spi_master_class); 4883 if (status < 0) 4884 goto err2; 4885 4886 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4887 status = class_register(&spi_slave_class); 4888 if (status < 0) 4889 goto err3; 4890 } 4891 4892 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4893 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4894 if (IS_ENABLED(CONFIG_ACPI)) 4895 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4896 4897 return 0; 4898 4899 err3: 4900 class_unregister(&spi_master_class); 4901 err2: 4902 bus_unregister(&spi_bus_type); 4903 err1: 4904 kfree(buf); 4905 buf = NULL; 4906 err0: 4907 return status; 4908 } 4909 4910 /* 4911 * A board_info is normally registered in arch_initcall(), 4912 * but even essential drivers wait till later. 4913 * 4914 * REVISIT only boardinfo really needs static linking. The rest (device and 4915 * driver registration) _could_ be dynamically linked (modular) ... Costs 4916 * include needing to have boardinfo data structures be much more public. 4917 */ 4918 postcore_initcall(spi_init); 4919