xref: /linux/drivers/spi/spi.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_message *msg)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if (spi_valid_txbuf(msg, xfer))
332 		u64_stats_add(&stats->bytes_tx, xfer->len);
333 	if (spi_valid_rxbuf(msg, xfer))
334 		u64_stats_add(&stats->bytes_rx, xfer->len);
335 
336 	u64_stats_update_end(&stats->syncp);
337 	put_cpu();
338 }
339 
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346 	while (id->name[0]) {
347 		if (!strcmp(name, id->name))
348 			return id;
349 		id++;
350 	}
351 	return NULL;
352 }
353 
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357 
358 	return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361 
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364 	const void *match;
365 
366 	match = device_get_match_data(&sdev->dev);
367 	if (match)
368 		return match;
369 
370 	return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373 
374 static int spi_match_device(struct device *dev, const struct device_driver *drv)
375 {
376 	const struct spi_device	*spi = to_spi_device(dev);
377 	const struct spi_driver	*sdrv = to_spi_driver(drv);
378 
379 	/* Check override first, and if set, only use the named driver */
380 	if (spi->driver_override)
381 		return strcmp(spi->driver_override, drv->name) == 0;
382 
383 	/* Attempt an OF style match */
384 	if (of_driver_match_device(dev, drv))
385 		return 1;
386 
387 	/* Then try ACPI */
388 	if (acpi_driver_match_device(dev, drv))
389 		return 1;
390 
391 	if (sdrv->id_table)
392 		return !!spi_match_id(sdrv->id_table, spi->modalias);
393 
394 	return strcmp(spi->modalias, drv->name) == 0;
395 }
396 
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399 	const struct spi_device		*spi = to_spi_device(dev);
400 	int rc;
401 
402 	rc = acpi_device_uevent_modalias(dev, env);
403 	if (rc != -ENODEV)
404 		return rc;
405 
406 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408 
409 static int spi_probe(struct device *dev)
410 {
411 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
412 	struct spi_device		*spi = to_spi_device(dev);
413 	int ret;
414 
415 	ret = of_clk_set_defaults(dev->of_node, false);
416 	if (ret)
417 		return ret;
418 
419 	if (dev->of_node) {
420 		spi->irq = of_irq_get(dev->of_node, 0);
421 		if (spi->irq == -EPROBE_DEFER)
422 			return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n");
423 		if (spi->irq < 0)
424 			spi->irq = 0;
425 	}
426 
427 	if (has_acpi_companion(dev) && spi->irq < 0) {
428 		struct acpi_device *adev = to_acpi_device_node(dev->fwnode);
429 
430 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
431 		if (spi->irq == -EPROBE_DEFER)
432 			return -EPROBE_DEFER;
433 		if (spi->irq < 0)
434 			spi->irq = 0;
435 	}
436 
437 	ret = dev_pm_domain_attach(dev, true);
438 	if (ret)
439 		return ret;
440 
441 	if (sdrv->probe) {
442 		ret = sdrv->probe(spi);
443 		if (ret)
444 			dev_pm_domain_detach(dev, true);
445 	}
446 
447 	return ret;
448 }
449 
450 static void spi_remove(struct device *dev)
451 {
452 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
453 
454 	if (sdrv->remove)
455 		sdrv->remove(to_spi_device(dev));
456 
457 	dev_pm_domain_detach(dev, true);
458 }
459 
460 static void spi_shutdown(struct device *dev)
461 {
462 	if (dev->driver) {
463 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
464 
465 		if (sdrv->shutdown)
466 			sdrv->shutdown(to_spi_device(dev));
467 	}
468 }
469 
470 const struct bus_type spi_bus_type = {
471 	.name		= "spi",
472 	.dev_groups	= spi_dev_groups,
473 	.match		= spi_match_device,
474 	.uevent		= spi_uevent,
475 	.probe		= spi_probe,
476 	.remove		= spi_remove,
477 	.shutdown	= spi_shutdown,
478 };
479 EXPORT_SYMBOL_GPL(spi_bus_type);
480 
481 /**
482  * __spi_register_driver - register a SPI driver
483  * @owner: owner module of the driver to register
484  * @sdrv: the driver to register
485  * Context: can sleep
486  *
487  * Return: zero on success, else a negative error code.
488  */
489 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
490 {
491 	sdrv->driver.owner = owner;
492 	sdrv->driver.bus = &spi_bus_type;
493 
494 	/*
495 	 * For Really Good Reasons we use spi: modaliases not of:
496 	 * modaliases for DT so module autoloading won't work if we
497 	 * don't have a spi_device_id as well as a compatible string.
498 	 */
499 	if (sdrv->driver.of_match_table) {
500 		const struct of_device_id *of_id;
501 
502 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
503 		     of_id++) {
504 			const char *of_name;
505 
506 			/* Strip off any vendor prefix */
507 			of_name = strnchr(of_id->compatible,
508 					  sizeof(of_id->compatible), ',');
509 			if (of_name)
510 				of_name++;
511 			else
512 				of_name = of_id->compatible;
513 
514 			if (sdrv->id_table) {
515 				const struct spi_device_id *spi_id;
516 
517 				spi_id = spi_match_id(sdrv->id_table, of_name);
518 				if (spi_id)
519 					continue;
520 			} else {
521 				if (strcmp(sdrv->driver.name, of_name) == 0)
522 					continue;
523 			}
524 
525 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
526 				sdrv->driver.name, of_id->compatible);
527 		}
528 	}
529 
530 	return driver_register(&sdrv->driver);
531 }
532 EXPORT_SYMBOL_GPL(__spi_register_driver);
533 
534 /*-------------------------------------------------------------------------*/
535 
536 /*
537  * SPI devices should normally not be created by SPI device drivers; that
538  * would make them board-specific.  Similarly with SPI controller drivers.
539  * Device registration normally goes into like arch/.../mach.../board-YYY.c
540  * with other readonly (flashable) information about mainboard devices.
541  */
542 
543 struct boardinfo {
544 	struct list_head	list;
545 	struct spi_board_info	board_info;
546 };
547 
548 static LIST_HEAD(board_list);
549 static LIST_HEAD(spi_controller_list);
550 
551 /*
552  * Used to protect add/del operation for board_info list and
553  * spi_controller list, and their matching process also used
554  * to protect object of type struct idr.
555  */
556 static DEFINE_MUTEX(board_lock);
557 
558 /**
559  * spi_alloc_device - Allocate a new SPI device
560  * @ctlr: Controller to which device is connected
561  * Context: can sleep
562  *
563  * Allows a driver to allocate and initialize a spi_device without
564  * registering it immediately.  This allows a driver to directly
565  * fill the spi_device with device parameters before calling
566  * spi_add_device() on it.
567  *
568  * Caller is responsible to call spi_add_device() on the returned
569  * spi_device structure to add it to the SPI controller.  If the caller
570  * needs to discard the spi_device without adding it, then it should
571  * call spi_dev_put() on it.
572  *
573  * Return: a pointer to the new device, or NULL.
574  */
575 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
576 {
577 	struct spi_device	*spi;
578 
579 	if (!spi_controller_get(ctlr))
580 		return NULL;
581 
582 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
583 	if (!spi) {
584 		spi_controller_put(ctlr);
585 		return NULL;
586 	}
587 
588 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
589 	if (!spi->pcpu_statistics) {
590 		kfree(spi);
591 		spi_controller_put(ctlr);
592 		return NULL;
593 	}
594 
595 	spi->controller = ctlr;
596 	spi->dev.parent = &ctlr->dev;
597 	spi->dev.bus = &spi_bus_type;
598 	spi->dev.release = spidev_release;
599 	spi->mode = ctlr->buswidth_override_bits;
600 
601 	device_initialize(&spi->dev);
602 	return spi;
603 }
604 EXPORT_SYMBOL_GPL(spi_alloc_device);
605 
606 static void spi_dev_set_name(struct spi_device *spi)
607 {
608 	struct device *dev = &spi->dev;
609 	struct fwnode_handle *fwnode = dev_fwnode(dev);
610 
611 	if (is_acpi_device_node(fwnode)) {
612 		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
613 		return;
614 	}
615 
616 	if (is_software_node(fwnode)) {
617 		dev_set_name(dev, "spi-%pfwP", fwnode);
618 		return;
619 	}
620 
621 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
622 		     spi_get_chipselect(spi, 0));
623 }
624 
625 /*
626  * Zero(0) is a valid physical CS value and can be located at any
627  * logical CS in the spi->chip_select[]. If all the physical CS
628  * are initialized to 0 then It would be difficult to differentiate
629  * between a valid physical CS 0 & an unused logical CS whose physical
630  * CS can be 0. As a solution to this issue initialize all the CS to -1.
631  * Now all the unused logical CS will have -1 physical CS value & can be
632  * ignored while performing physical CS validity checks.
633  */
634 #define SPI_INVALID_CS		((s8)-1)
635 
636 static inline bool is_valid_cs(s8 chip_select)
637 {
638 	return chip_select != SPI_INVALID_CS;
639 }
640 
641 static inline int spi_dev_check_cs(struct device *dev,
642 				   struct spi_device *spi, u8 idx,
643 				   struct spi_device *new_spi, u8 new_idx)
644 {
645 	u8 cs, cs_new;
646 	u8 idx_new;
647 
648 	cs = spi_get_chipselect(spi, idx);
649 	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
650 		cs_new = spi_get_chipselect(new_spi, idx_new);
651 		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
652 			dev_err(dev, "chipselect %u already in use\n", cs_new);
653 			return -EBUSY;
654 		}
655 	}
656 	return 0;
657 }
658 
659 static int spi_dev_check(struct device *dev, void *data)
660 {
661 	struct spi_device *spi = to_spi_device(dev);
662 	struct spi_device *new_spi = data;
663 	int status, idx;
664 
665 	if (spi->controller == new_spi->controller) {
666 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
667 			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
668 			if (status)
669 				return status;
670 		}
671 	}
672 	return 0;
673 }
674 
675 static void spi_cleanup(struct spi_device *spi)
676 {
677 	if (spi->controller->cleanup)
678 		spi->controller->cleanup(spi);
679 }
680 
681 static int __spi_add_device(struct spi_device *spi)
682 {
683 	struct spi_controller *ctlr = spi->controller;
684 	struct device *dev = ctlr->dev.parent;
685 	int status, idx;
686 	u8 cs;
687 
688 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689 		/* Chipselects are numbered 0..max; validate. */
690 		cs = spi_get_chipselect(spi, idx);
691 		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
692 			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
693 				ctlr->num_chipselect);
694 			return -EINVAL;
695 		}
696 	}
697 
698 	/*
699 	 * Make sure that multiple logical CS doesn't map to the same physical CS.
700 	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
701 	 */
702 	if (!spi_controller_is_target(ctlr)) {
703 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
704 			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
705 			if (status)
706 				return status;
707 		}
708 	}
709 
710 	/* Set the bus ID string */
711 	spi_dev_set_name(spi);
712 
713 	/*
714 	 * We need to make sure there's no other device with this
715 	 * chipselect **BEFORE** we call setup(), else we'll trash
716 	 * its configuration.
717 	 */
718 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
719 	if (status)
720 		return status;
721 
722 	/* Controller may unregister concurrently */
723 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
724 	    !device_is_registered(&ctlr->dev)) {
725 		return -ENODEV;
726 	}
727 
728 	if (ctlr->cs_gpiods) {
729 		u8 cs;
730 
731 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
732 			cs = spi_get_chipselect(spi, idx);
733 			if (is_valid_cs(cs))
734 				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
735 		}
736 	}
737 
738 	/*
739 	 * Drivers may modify this initial i/o setup, but will
740 	 * normally rely on the device being setup.  Devices
741 	 * using SPI_CS_HIGH can't coexist well otherwise...
742 	 */
743 	status = spi_setup(spi);
744 	if (status < 0) {
745 		dev_err(dev, "can't setup %s, status %d\n",
746 				dev_name(&spi->dev), status);
747 		return status;
748 	}
749 
750 	/* Device may be bound to an active driver when this returns */
751 	status = device_add(&spi->dev);
752 	if (status < 0) {
753 		dev_err(dev, "can't add %s, status %d\n",
754 				dev_name(&spi->dev), status);
755 		spi_cleanup(spi);
756 	} else {
757 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
758 	}
759 
760 	return status;
761 }
762 
763 /**
764  * spi_add_device - Add spi_device allocated with spi_alloc_device
765  * @spi: spi_device to register
766  *
767  * Companion function to spi_alloc_device.  Devices allocated with
768  * spi_alloc_device can be added onto the SPI bus with this function.
769  *
770  * Return: 0 on success; negative errno on failure
771  */
772 int spi_add_device(struct spi_device *spi)
773 {
774 	struct spi_controller *ctlr = spi->controller;
775 	int status;
776 
777 	/* Set the bus ID string */
778 	spi_dev_set_name(spi);
779 
780 	mutex_lock(&ctlr->add_lock);
781 	status = __spi_add_device(spi);
782 	mutex_unlock(&ctlr->add_lock);
783 	return status;
784 }
785 EXPORT_SYMBOL_GPL(spi_add_device);
786 
787 static void spi_set_all_cs_unused(struct spi_device *spi)
788 {
789 	u8 idx;
790 
791 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
792 		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
793 }
794 
795 /**
796  * spi_new_device - instantiate one new SPI device
797  * @ctlr: Controller to which device is connected
798  * @chip: Describes the SPI device
799  * Context: can sleep
800  *
801  * On typical mainboards, this is purely internal; and it's not needed
802  * after board init creates the hard-wired devices.  Some development
803  * platforms may not be able to use spi_register_board_info though, and
804  * this is exported so that for example a USB or parport based adapter
805  * driver could add devices (which it would learn about out-of-band).
806  *
807  * Return: the new device, or NULL.
808  */
809 struct spi_device *spi_new_device(struct spi_controller *ctlr,
810 				  struct spi_board_info *chip)
811 {
812 	struct spi_device	*proxy;
813 	int			status;
814 
815 	/*
816 	 * NOTE:  caller did any chip->bus_num checks necessary.
817 	 *
818 	 * Also, unless we change the return value convention to use
819 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
820 	 * suggests syslogged diagnostics are best here (ugh).
821 	 */
822 
823 	proxy = spi_alloc_device(ctlr);
824 	if (!proxy)
825 		return NULL;
826 
827 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
828 
829 	/* Use provided chip-select for proxy device */
830 	spi_set_all_cs_unused(proxy);
831 	spi_set_chipselect(proxy, 0, chip->chip_select);
832 
833 	proxy->max_speed_hz = chip->max_speed_hz;
834 	proxy->mode = chip->mode;
835 	proxy->irq = chip->irq;
836 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
837 	proxy->dev.platform_data = (void *) chip->platform_data;
838 	proxy->controller_data = chip->controller_data;
839 	proxy->controller_state = NULL;
840 	/*
841 	 * By default spi->chip_select[0] will hold the physical CS number,
842 	 * so set bit 0 in spi->cs_index_mask.
843 	 */
844 	proxy->cs_index_mask = BIT(0);
845 
846 	if (chip->swnode) {
847 		status = device_add_software_node(&proxy->dev, chip->swnode);
848 		if (status) {
849 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
850 				chip->modalias, status);
851 			goto err_dev_put;
852 		}
853 	}
854 
855 	status = spi_add_device(proxy);
856 	if (status < 0)
857 		goto err_dev_put;
858 
859 	return proxy;
860 
861 err_dev_put:
862 	device_remove_software_node(&proxy->dev);
863 	spi_dev_put(proxy);
864 	return NULL;
865 }
866 EXPORT_SYMBOL_GPL(spi_new_device);
867 
868 /**
869  * spi_unregister_device - unregister a single SPI device
870  * @spi: spi_device to unregister
871  *
872  * Start making the passed SPI device vanish. Normally this would be handled
873  * by spi_unregister_controller().
874  */
875 void spi_unregister_device(struct spi_device *spi)
876 {
877 	if (!spi)
878 		return;
879 
880 	if (spi->dev.of_node) {
881 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
882 		of_node_put(spi->dev.of_node);
883 	}
884 	if (ACPI_COMPANION(&spi->dev))
885 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
886 	device_remove_software_node(&spi->dev);
887 	device_del(&spi->dev);
888 	spi_cleanup(spi);
889 	put_device(&spi->dev);
890 }
891 EXPORT_SYMBOL_GPL(spi_unregister_device);
892 
893 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
894 					      struct spi_board_info *bi)
895 {
896 	struct spi_device *dev;
897 
898 	if (ctlr->bus_num != bi->bus_num)
899 		return;
900 
901 	dev = spi_new_device(ctlr, bi);
902 	if (!dev)
903 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
904 			bi->modalias);
905 }
906 
907 /**
908  * spi_register_board_info - register SPI devices for a given board
909  * @info: array of chip descriptors
910  * @n: how many descriptors are provided
911  * Context: can sleep
912  *
913  * Board-specific early init code calls this (probably during arch_initcall)
914  * with segments of the SPI device table.  Any device nodes are created later,
915  * after the relevant parent SPI controller (bus_num) is defined.  We keep
916  * this table of devices forever, so that reloading a controller driver will
917  * not make Linux forget about these hard-wired devices.
918  *
919  * Other code can also call this, e.g. a particular add-on board might provide
920  * SPI devices through its expansion connector, so code initializing that board
921  * would naturally declare its SPI devices.
922  *
923  * The board info passed can safely be __initdata ... but be careful of
924  * any embedded pointers (platform_data, etc), they're copied as-is.
925  *
926  * Return: zero on success, else a negative error code.
927  */
928 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
929 {
930 	struct boardinfo *bi;
931 	int i;
932 
933 	if (!n)
934 		return 0;
935 
936 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
937 	if (!bi)
938 		return -ENOMEM;
939 
940 	for (i = 0; i < n; i++, bi++, info++) {
941 		struct spi_controller *ctlr;
942 
943 		memcpy(&bi->board_info, info, sizeof(*info));
944 
945 		mutex_lock(&board_lock);
946 		list_add_tail(&bi->list, &board_list);
947 		list_for_each_entry(ctlr, &spi_controller_list, list)
948 			spi_match_controller_to_boardinfo(ctlr,
949 							  &bi->board_info);
950 		mutex_unlock(&board_lock);
951 	}
952 
953 	return 0;
954 }
955 
956 /*-------------------------------------------------------------------------*/
957 
958 /* Core methods for SPI resource management */
959 
960 /**
961  * spi_res_alloc - allocate a spi resource that is life-cycle managed
962  *                 during the processing of a spi_message while using
963  *                 spi_transfer_one
964  * @spi:     the SPI device for which we allocate memory
965  * @release: the release code to execute for this resource
966  * @size:    size to alloc and return
967  * @gfp:     GFP allocation flags
968  *
969  * Return: the pointer to the allocated data
970  *
971  * This may get enhanced in the future to allocate from a memory pool
972  * of the @spi_device or @spi_controller to avoid repeated allocations.
973  */
974 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
975 			   size_t size, gfp_t gfp)
976 {
977 	struct spi_res *sres;
978 
979 	sres = kzalloc(sizeof(*sres) + size, gfp);
980 	if (!sres)
981 		return NULL;
982 
983 	INIT_LIST_HEAD(&sres->entry);
984 	sres->release = release;
985 
986 	return sres->data;
987 }
988 
989 /**
990  * spi_res_free - free an SPI resource
991  * @res: pointer to the custom data of a resource
992  */
993 static void spi_res_free(void *res)
994 {
995 	struct spi_res *sres = container_of(res, struct spi_res, data);
996 
997 	WARN_ON(!list_empty(&sres->entry));
998 	kfree(sres);
999 }
1000 
1001 /**
1002  * spi_res_add - add a spi_res to the spi_message
1003  * @message: the SPI message
1004  * @res:     the spi_resource
1005  */
1006 static void spi_res_add(struct spi_message *message, void *res)
1007 {
1008 	struct spi_res *sres = container_of(res, struct spi_res, data);
1009 
1010 	WARN_ON(!list_empty(&sres->entry));
1011 	list_add_tail(&sres->entry, &message->resources);
1012 }
1013 
1014 /**
1015  * spi_res_release - release all SPI resources for this message
1016  * @ctlr:  the @spi_controller
1017  * @message: the @spi_message
1018  */
1019 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1020 {
1021 	struct spi_res *res, *tmp;
1022 
1023 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1024 		if (res->release)
1025 			res->release(ctlr, message, res->data);
1026 
1027 		list_del(&res->entry);
1028 
1029 		kfree(res);
1030 	}
1031 }
1032 
1033 /*-------------------------------------------------------------------------*/
1034 #define spi_for_each_valid_cs(spi, idx)				\
1035 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1036 		if (!(spi->cs_index_mask & BIT(idx))) {} else
1037 
1038 static inline bool spi_is_last_cs(struct spi_device *spi)
1039 {
1040 	u8 idx;
1041 	bool last = false;
1042 
1043 	spi_for_each_valid_cs(spi, idx) {
1044 		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1045 			last = true;
1046 	}
1047 	return last;
1048 }
1049 
1050 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1051 {
1052 	/*
1053 	 * Historically ACPI has no means of the GPIO polarity and
1054 	 * thus the SPISerialBus() resource defines it on the per-chip
1055 	 * basis. In order to avoid a chain of negations, the GPIO
1056 	 * polarity is considered being Active High. Even for the cases
1057 	 * when _DSD() is involved (in the updated versions of ACPI)
1058 	 * the GPIO CS polarity must be defined Active High to avoid
1059 	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1060 	 * into account.
1061 	 */
1062 	if (has_acpi_companion(&spi->dev))
1063 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1064 	else
1065 		/* Polarity handled by GPIO library */
1066 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1067 
1068 	if (activate)
1069 		spi_delay_exec(&spi->cs_setup, NULL);
1070 	else
1071 		spi_delay_exec(&spi->cs_inactive, NULL);
1072 }
1073 
1074 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1075 {
1076 	bool activate = enable;
1077 	u8 idx;
1078 
1079 	/*
1080 	 * Avoid calling into the driver (or doing delays) if the chip select
1081 	 * isn't actually changing from the last time this was called.
1082 	 */
1083 	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1084 			spi_is_last_cs(spi)) ||
1085 		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1086 			!spi_is_last_cs(spi))) &&
1087 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1088 		return;
1089 
1090 	trace_spi_set_cs(spi, activate);
1091 
1092 	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1093 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1094 		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1095 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1096 
1097 	if (spi->mode & SPI_CS_HIGH)
1098 		enable = !enable;
1099 
1100 	/*
1101 	 * Handle chip select delays for GPIO based CS or controllers without
1102 	 * programmable chip select timing.
1103 	 */
1104 	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1105 		spi_delay_exec(&spi->cs_hold, NULL);
1106 
1107 	if (spi_is_csgpiod(spi)) {
1108 		if (!(spi->mode & SPI_NO_CS)) {
1109 			spi_for_each_valid_cs(spi, idx) {
1110 				if (spi_get_csgpiod(spi, idx))
1111 					spi_toggle_csgpiod(spi, idx, enable, activate);
1112 			}
1113 		}
1114 		/* Some SPI masters need both GPIO CS & slave_select */
1115 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1116 		    spi->controller->set_cs)
1117 			spi->controller->set_cs(spi, !enable);
1118 	} else if (spi->controller->set_cs) {
1119 		spi->controller->set_cs(spi, !enable);
1120 	}
1121 
1122 	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1123 		if (activate)
1124 			spi_delay_exec(&spi->cs_setup, NULL);
1125 		else
1126 			spi_delay_exec(&spi->cs_inactive, NULL);
1127 	}
1128 }
1129 
1130 #ifdef CONFIG_HAS_DMA
1131 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1132 			     struct sg_table *sgt, void *buf, size_t len,
1133 			     enum dma_data_direction dir, unsigned long attrs)
1134 {
1135 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1136 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1137 #ifdef CONFIG_HIGHMEM
1138 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1139 				(unsigned long)buf < (PKMAP_BASE +
1140 					(LAST_PKMAP * PAGE_SIZE)));
1141 #else
1142 	const bool kmap_buf = false;
1143 #endif
1144 	int desc_len;
1145 	int sgs;
1146 	struct page *vm_page;
1147 	struct scatterlist *sg;
1148 	void *sg_buf;
1149 	size_t min;
1150 	int i, ret;
1151 
1152 	if (vmalloced_buf || kmap_buf) {
1153 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1154 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1155 	} else if (virt_addr_valid(buf)) {
1156 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1157 		sgs = DIV_ROUND_UP(len, desc_len);
1158 	} else {
1159 		return -EINVAL;
1160 	}
1161 
1162 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1163 	if (ret != 0)
1164 		return ret;
1165 
1166 	sg = &sgt->sgl[0];
1167 	for (i = 0; i < sgs; i++) {
1168 
1169 		if (vmalloced_buf || kmap_buf) {
1170 			/*
1171 			 * Next scatterlist entry size is the minimum between
1172 			 * the desc_len and the remaining buffer length that
1173 			 * fits in a page.
1174 			 */
1175 			min = min_t(size_t, desc_len,
1176 				    min_t(size_t, len,
1177 					  PAGE_SIZE - offset_in_page(buf)));
1178 			if (vmalloced_buf)
1179 				vm_page = vmalloc_to_page(buf);
1180 			else
1181 				vm_page = kmap_to_page(buf);
1182 			if (!vm_page) {
1183 				sg_free_table(sgt);
1184 				return -ENOMEM;
1185 			}
1186 			sg_set_page(sg, vm_page,
1187 				    min, offset_in_page(buf));
1188 		} else {
1189 			min = min_t(size_t, len, desc_len);
1190 			sg_buf = buf;
1191 			sg_set_buf(sg, sg_buf, min);
1192 		}
1193 
1194 		buf += min;
1195 		len -= min;
1196 		sg = sg_next(sg);
1197 	}
1198 
1199 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1200 	if (ret < 0) {
1201 		sg_free_table(sgt);
1202 		return ret;
1203 	}
1204 
1205 	return 0;
1206 }
1207 
1208 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1209 		struct sg_table *sgt, void *buf, size_t len,
1210 		enum dma_data_direction dir)
1211 {
1212 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1213 }
1214 
1215 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1216 				struct device *dev, struct sg_table *sgt,
1217 				enum dma_data_direction dir,
1218 				unsigned long attrs)
1219 {
1220 	dma_unmap_sgtable(dev, sgt, dir, attrs);
1221 	sg_free_table(sgt);
1222 	sgt->orig_nents = 0;
1223 	sgt->nents = 0;
1224 }
1225 
1226 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1227 		   struct sg_table *sgt, enum dma_data_direction dir)
1228 {
1229 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1230 }
1231 
1232 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1233 {
1234 	struct device *tx_dev, *rx_dev;
1235 	struct spi_transfer *xfer;
1236 	int ret;
1237 
1238 	if (!ctlr->can_dma)
1239 		return 0;
1240 
1241 	if (ctlr->dma_tx)
1242 		tx_dev = ctlr->dma_tx->device->dev;
1243 	else if (ctlr->dma_map_dev)
1244 		tx_dev = ctlr->dma_map_dev;
1245 	else
1246 		tx_dev = ctlr->dev.parent;
1247 
1248 	if (ctlr->dma_rx)
1249 		rx_dev = ctlr->dma_rx->device->dev;
1250 	else if (ctlr->dma_map_dev)
1251 		rx_dev = ctlr->dma_map_dev;
1252 	else
1253 		rx_dev = ctlr->dev.parent;
1254 
1255 	ret = -ENOMSG;
1256 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1257 		/* The sync is done before each transfer. */
1258 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1259 
1260 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1261 			continue;
1262 
1263 		if (xfer->tx_buf != NULL) {
1264 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1265 						(void *)xfer->tx_buf,
1266 						xfer->len, DMA_TO_DEVICE,
1267 						attrs);
1268 			if (ret != 0)
1269 				return ret;
1270 
1271 			xfer->tx_sg_mapped = true;
1272 		}
1273 
1274 		if (xfer->rx_buf != NULL) {
1275 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1276 						xfer->rx_buf, xfer->len,
1277 						DMA_FROM_DEVICE, attrs);
1278 			if (ret != 0) {
1279 				spi_unmap_buf_attrs(ctlr, tx_dev,
1280 						&xfer->tx_sg, DMA_TO_DEVICE,
1281 						attrs);
1282 
1283 				return ret;
1284 			}
1285 
1286 			xfer->rx_sg_mapped = true;
1287 		}
1288 	}
1289 	/* No transfer has been mapped, bail out with success */
1290 	if (ret)
1291 		return 0;
1292 
1293 	ctlr->cur_rx_dma_dev = rx_dev;
1294 	ctlr->cur_tx_dma_dev = tx_dev;
1295 
1296 	return 0;
1297 }
1298 
1299 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1300 {
1301 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1302 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1303 	struct spi_transfer *xfer;
1304 
1305 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1306 		/* The sync has already been done after each transfer. */
1307 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1308 
1309 		if (xfer->rx_sg_mapped)
1310 			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1311 					    DMA_FROM_DEVICE, attrs);
1312 		xfer->rx_sg_mapped = false;
1313 
1314 		if (xfer->tx_sg_mapped)
1315 			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1316 					    DMA_TO_DEVICE, attrs);
1317 		xfer->tx_sg_mapped = false;
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1324 				    struct spi_transfer *xfer)
1325 {
1326 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1327 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1328 
1329 	if (xfer->tx_sg_mapped)
1330 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1331 	if (xfer->rx_sg_mapped)
1332 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333 }
1334 
1335 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1336 				 struct spi_transfer *xfer)
1337 {
1338 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1339 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1340 
1341 	if (xfer->rx_sg_mapped)
1342 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1343 	if (xfer->tx_sg_mapped)
1344 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1345 }
1346 #else /* !CONFIG_HAS_DMA */
1347 static inline int __spi_map_msg(struct spi_controller *ctlr,
1348 				struct spi_message *msg)
1349 {
1350 	return 0;
1351 }
1352 
1353 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1354 				  struct spi_message *msg)
1355 {
1356 	return 0;
1357 }
1358 
1359 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1360 				    struct spi_transfer *xfer)
1361 {
1362 }
1363 
1364 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1365 				 struct spi_transfer *xfer)
1366 {
1367 }
1368 #endif /* !CONFIG_HAS_DMA */
1369 
1370 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1371 				struct spi_message *msg)
1372 {
1373 	struct spi_transfer *xfer;
1374 
1375 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1376 		/*
1377 		 * Restore the original value of tx_buf or rx_buf if they are
1378 		 * NULL.
1379 		 */
1380 		if (xfer->tx_buf == ctlr->dummy_tx)
1381 			xfer->tx_buf = NULL;
1382 		if (xfer->rx_buf == ctlr->dummy_rx)
1383 			xfer->rx_buf = NULL;
1384 	}
1385 
1386 	return __spi_unmap_msg(ctlr, msg);
1387 }
1388 
1389 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1390 {
1391 	struct spi_transfer *xfer;
1392 	void *tmp;
1393 	unsigned int max_tx, max_rx;
1394 
1395 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1396 		&& !(msg->spi->mode & SPI_3WIRE)) {
1397 		max_tx = 0;
1398 		max_rx = 0;
1399 
1400 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1401 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1402 			    !xfer->tx_buf)
1403 				max_tx = max(xfer->len, max_tx);
1404 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1405 			    !xfer->rx_buf)
1406 				max_rx = max(xfer->len, max_rx);
1407 		}
1408 
1409 		if (max_tx) {
1410 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1411 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1412 			if (!tmp)
1413 				return -ENOMEM;
1414 			ctlr->dummy_tx = tmp;
1415 		}
1416 
1417 		if (max_rx) {
1418 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1419 				       GFP_KERNEL | GFP_DMA);
1420 			if (!tmp)
1421 				return -ENOMEM;
1422 			ctlr->dummy_rx = tmp;
1423 		}
1424 
1425 		if (max_tx || max_rx) {
1426 			list_for_each_entry(xfer, &msg->transfers,
1427 					    transfer_list) {
1428 				if (!xfer->len)
1429 					continue;
1430 				if (!xfer->tx_buf)
1431 					xfer->tx_buf = ctlr->dummy_tx;
1432 				if (!xfer->rx_buf)
1433 					xfer->rx_buf = ctlr->dummy_rx;
1434 			}
1435 		}
1436 	}
1437 
1438 	return __spi_map_msg(ctlr, msg);
1439 }
1440 
1441 static int spi_transfer_wait(struct spi_controller *ctlr,
1442 			     struct spi_message *msg,
1443 			     struct spi_transfer *xfer)
1444 {
1445 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1446 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1447 	u32 speed_hz = xfer->speed_hz;
1448 	unsigned long long ms;
1449 
1450 	if (spi_controller_is_target(ctlr)) {
1451 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1452 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1453 			return -EINTR;
1454 		}
1455 	} else {
1456 		if (!speed_hz)
1457 			speed_hz = 100000;
1458 
1459 		/*
1460 		 * For each byte we wait for 8 cycles of the SPI clock.
1461 		 * Since speed is defined in Hz and we want milliseconds,
1462 		 * use respective multiplier, but before the division,
1463 		 * otherwise we may get 0 for short transfers.
1464 		 */
1465 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1466 		do_div(ms, speed_hz);
1467 
1468 		/*
1469 		 * Increase it twice and add 200 ms tolerance, use
1470 		 * predefined maximum in case of overflow.
1471 		 */
1472 		ms += ms + 200;
1473 		if (ms > UINT_MAX)
1474 			ms = UINT_MAX;
1475 
1476 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1477 						 msecs_to_jiffies(ms));
1478 
1479 		if (ms == 0) {
1480 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1481 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1482 			dev_err(&msg->spi->dev,
1483 				"SPI transfer timed out\n");
1484 			return -ETIMEDOUT;
1485 		}
1486 
1487 		if (xfer->error & SPI_TRANS_FAIL_IO)
1488 			return -EIO;
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 static void _spi_transfer_delay_ns(u32 ns)
1495 {
1496 	if (!ns)
1497 		return;
1498 	if (ns <= NSEC_PER_USEC) {
1499 		ndelay(ns);
1500 	} else {
1501 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1502 
1503 		if (us <= 10)
1504 			udelay(us);
1505 		else
1506 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1507 	}
1508 }
1509 
1510 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1511 {
1512 	u32 delay = _delay->value;
1513 	u32 unit = _delay->unit;
1514 	u32 hz;
1515 
1516 	if (!delay)
1517 		return 0;
1518 
1519 	switch (unit) {
1520 	case SPI_DELAY_UNIT_USECS:
1521 		delay *= NSEC_PER_USEC;
1522 		break;
1523 	case SPI_DELAY_UNIT_NSECS:
1524 		/* Nothing to do here */
1525 		break;
1526 	case SPI_DELAY_UNIT_SCK:
1527 		/* Clock cycles need to be obtained from spi_transfer */
1528 		if (!xfer)
1529 			return -EINVAL;
1530 		/*
1531 		 * If there is unknown effective speed, approximate it
1532 		 * by underestimating with half of the requested Hz.
1533 		 */
1534 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1535 		if (!hz)
1536 			return -EINVAL;
1537 
1538 		/* Convert delay to nanoseconds */
1539 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1540 		break;
1541 	default:
1542 		return -EINVAL;
1543 	}
1544 
1545 	return delay;
1546 }
1547 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1548 
1549 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1550 {
1551 	int delay;
1552 
1553 	might_sleep();
1554 
1555 	if (!_delay)
1556 		return -EINVAL;
1557 
1558 	delay = spi_delay_to_ns(_delay, xfer);
1559 	if (delay < 0)
1560 		return delay;
1561 
1562 	_spi_transfer_delay_ns(delay);
1563 
1564 	return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(spi_delay_exec);
1567 
1568 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1569 					  struct spi_transfer *xfer)
1570 {
1571 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1572 	u32 delay = xfer->cs_change_delay.value;
1573 	u32 unit = xfer->cs_change_delay.unit;
1574 	int ret;
1575 
1576 	/* Return early on "fast" mode - for everything but USECS */
1577 	if (!delay) {
1578 		if (unit == SPI_DELAY_UNIT_USECS)
1579 			_spi_transfer_delay_ns(default_delay_ns);
1580 		return;
1581 	}
1582 
1583 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1584 	if (ret) {
1585 		dev_err_once(&msg->spi->dev,
1586 			     "Use of unsupported delay unit %i, using default of %luus\n",
1587 			     unit, default_delay_ns / NSEC_PER_USEC);
1588 		_spi_transfer_delay_ns(default_delay_ns);
1589 	}
1590 }
1591 
1592 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1593 						  struct spi_transfer *xfer)
1594 {
1595 	_spi_transfer_cs_change_delay(msg, xfer);
1596 }
1597 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1598 
1599 /*
1600  * spi_transfer_one_message - Default implementation of transfer_one_message()
1601  *
1602  * This is a standard implementation of transfer_one_message() for
1603  * drivers which implement a transfer_one() operation.  It provides
1604  * standard handling of delays and chip select management.
1605  */
1606 static int spi_transfer_one_message(struct spi_controller *ctlr,
1607 				    struct spi_message *msg)
1608 {
1609 	struct spi_transfer *xfer;
1610 	bool keep_cs = false;
1611 	int ret = 0;
1612 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1613 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1614 
1615 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1616 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1617 
1618 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1619 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1620 
1621 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1622 		trace_spi_transfer_start(msg, xfer);
1623 
1624 		spi_statistics_add_transfer_stats(statm, xfer, msg);
1625 		spi_statistics_add_transfer_stats(stats, xfer, msg);
1626 
1627 		if (!ctlr->ptp_sts_supported) {
1628 			xfer->ptp_sts_word_pre = 0;
1629 			ptp_read_system_prets(xfer->ptp_sts);
1630 		}
1631 
1632 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1633 			reinit_completion(&ctlr->xfer_completion);
1634 
1635 fallback_pio:
1636 			spi_dma_sync_for_device(ctlr, xfer);
1637 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1638 			if (ret < 0) {
1639 				spi_dma_sync_for_cpu(ctlr, xfer);
1640 
1641 				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1642 				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1643 					__spi_unmap_msg(ctlr, msg);
1644 					ctlr->fallback = true;
1645 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1646 					goto fallback_pio;
1647 				}
1648 
1649 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1650 							       errors);
1651 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1652 							       errors);
1653 				dev_err(&msg->spi->dev,
1654 					"SPI transfer failed: %d\n", ret);
1655 				goto out;
1656 			}
1657 
1658 			if (ret > 0) {
1659 				ret = spi_transfer_wait(ctlr, msg, xfer);
1660 				if (ret < 0)
1661 					msg->status = ret;
1662 			}
1663 
1664 			spi_dma_sync_for_cpu(ctlr, xfer);
1665 		} else {
1666 			if (xfer->len)
1667 				dev_err(&msg->spi->dev,
1668 					"Bufferless transfer has length %u\n",
1669 					xfer->len);
1670 		}
1671 
1672 		if (!ctlr->ptp_sts_supported) {
1673 			ptp_read_system_postts(xfer->ptp_sts);
1674 			xfer->ptp_sts_word_post = xfer->len;
1675 		}
1676 
1677 		trace_spi_transfer_stop(msg, xfer);
1678 
1679 		if (msg->status != -EINPROGRESS)
1680 			goto out;
1681 
1682 		spi_transfer_delay_exec(xfer);
1683 
1684 		if (xfer->cs_change) {
1685 			if (list_is_last(&xfer->transfer_list,
1686 					 &msg->transfers)) {
1687 				keep_cs = true;
1688 			} else {
1689 				if (!xfer->cs_off)
1690 					spi_set_cs(msg->spi, false, false);
1691 				_spi_transfer_cs_change_delay(msg, xfer);
1692 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1693 					spi_set_cs(msg->spi, true, false);
1694 			}
1695 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1696 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1697 			spi_set_cs(msg->spi, xfer->cs_off, false);
1698 		}
1699 
1700 		msg->actual_length += xfer->len;
1701 	}
1702 
1703 out:
1704 	if (ret != 0 || !keep_cs)
1705 		spi_set_cs(msg->spi, false, false);
1706 
1707 	if (msg->status == -EINPROGRESS)
1708 		msg->status = ret;
1709 
1710 	if (msg->status && ctlr->handle_err)
1711 		ctlr->handle_err(ctlr, msg);
1712 
1713 	spi_finalize_current_message(ctlr);
1714 
1715 	return ret;
1716 }
1717 
1718 /**
1719  * spi_finalize_current_transfer - report completion of a transfer
1720  * @ctlr: the controller reporting completion
1721  *
1722  * Called by SPI drivers using the core transfer_one_message()
1723  * implementation to notify it that the current interrupt driven
1724  * transfer has finished and the next one may be scheduled.
1725  */
1726 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1727 {
1728 	complete(&ctlr->xfer_completion);
1729 }
1730 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1731 
1732 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1733 {
1734 	if (ctlr->auto_runtime_pm) {
1735 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1736 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1737 	}
1738 }
1739 
1740 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1741 		struct spi_message *msg, bool was_busy)
1742 {
1743 	struct spi_transfer *xfer;
1744 	int ret;
1745 
1746 	if (!was_busy && ctlr->auto_runtime_pm) {
1747 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1748 		if (ret < 0) {
1749 			pm_runtime_put_noidle(ctlr->dev.parent);
1750 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1751 				ret);
1752 
1753 			msg->status = ret;
1754 			spi_finalize_current_message(ctlr);
1755 
1756 			return ret;
1757 		}
1758 	}
1759 
1760 	if (!was_busy)
1761 		trace_spi_controller_busy(ctlr);
1762 
1763 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1764 		ret = ctlr->prepare_transfer_hardware(ctlr);
1765 		if (ret) {
1766 			dev_err(&ctlr->dev,
1767 				"failed to prepare transfer hardware: %d\n",
1768 				ret);
1769 
1770 			if (ctlr->auto_runtime_pm)
1771 				pm_runtime_put(ctlr->dev.parent);
1772 
1773 			msg->status = ret;
1774 			spi_finalize_current_message(ctlr);
1775 
1776 			return ret;
1777 		}
1778 	}
1779 
1780 	trace_spi_message_start(msg);
1781 
1782 	if (ctlr->prepare_message) {
1783 		ret = ctlr->prepare_message(ctlr, msg);
1784 		if (ret) {
1785 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1786 				ret);
1787 			msg->status = ret;
1788 			spi_finalize_current_message(ctlr);
1789 			return ret;
1790 		}
1791 		msg->prepared = true;
1792 	}
1793 
1794 	ret = spi_map_msg(ctlr, msg);
1795 	if (ret) {
1796 		msg->status = ret;
1797 		spi_finalize_current_message(ctlr);
1798 		return ret;
1799 	}
1800 
1801 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1802 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1803 			xfer->ptp_sts_word_pre = 0;
1804 			ptp_read_system_prets(xfer->ptp_sts);
1805 		}
1806 	}
1807 
1808 	/*
1809 	 * Drivers implementation of transfer_one_message() must arrange for
1810 	 * spi_finalize_current_message() to get called. Most drivers will do
1811 	 * this in the calling context, but some don't. For those cases, a
1812 	 * completion is used to guarantee that this function does not return
1813 	 * until spi_finalize_current_message() is done accessing
1814 	 * ctlr->cur_msg.
1815 	 * Use of the following two flags enable to opportunistically skip the
1816 	 * use of the completion since its use involves expensive spin locks.
1817 	 * In case of a race with the context that calls
1818 	 * spi_finalize_current_message() the completion will always be used,
1819 	 * due to strict ordering of these flags using barriers.
1820 	 */
1821 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1822 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1823 	reinit_completion(&ctlr->cur_msg_completion);
1824 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1825 
1826 	ret = ctlr->transfer_one_message(ctlr, msg);
1827 	if (ret) {
1828 		dev_err(&ctlr->dev,
1829 			"failed to transfer one message from queue\n");
1830 		return ret;
1831 	}
1832 
1833 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1834 	smp_mb(); /* See spi_finalize_current_message()... */
1835 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1836 		wait_for_completion(&ctlr->cur_msg_completion);
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  * __spi_pump_messages - function which processes SPI message queue
1843  * @ctlr: controller to process queue for
1844  * @in_kthread: true if we are in the context of the message pump thread
1845  *
1846  * This function checks if there is any SPI message in the queue that
1847  * needs processing and if so call out to the driver to initialize hardware
1848  * and transfer each message.
1849  *
1850  * Note that it is called both from the kthread itself and also from
1851  * inside spi_sync(); the queue extraction handling at the top of the
1852  * function should deal with this safely.
1853  */
1854 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1855 {
1856 	struct spi_message *msg;
1857 	bool was_busy = false;
1858 	unsigned long flags;
1859 	int ret;
1860 
1861 	/* Take the I/O mutex */
1862 	mutex_lock(&ctlr->io_mutex);
1863 
1864 	/* Lock queue */
1865 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1866 
1867 	/* Make sure we are not already running a message */
1868 	if (ctlr->cur_msg)
1869 		goto out_unlock;
1870 
1871 	/* Check if the queue is idle */
1872 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1873 		if (!ctlr->busy)
1874 			goto out_unlock;
1875 
1876 		/* Defer any non-atomic teardown to the thread */
1877 		if (!in_kthread) {
1878 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1879 			    !ctlr->unprepare_transfer_hardware) {
1880 				spi_idle_runtime_pm(ctlr);
1881 				ctlr->busy = false;
1882 				ctlr->queue_empty = true;
1883 				trace_spi_controller_idle(ctlr);
1884 			} else {
1885 				kthread_queue_work(ctlr->kworker,
1886 						   &ctlr->pump_messages);
1887 			}
1888 			goto out_unlock;
1889 		}
1890 
1891 		ctlr->busy = false;
1892 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893 
1894 		kfree(ctlr->dummy_rx);
1895 		ctlr->dummy_rx = NULL;
1896 		kfree(ctlr->dummy_tx);
1897 		ctlr->dummy_tx = NULL;
1898 		if (ctlr->unprepare_transfer_hardware &&
1899 		    ctlr->unprepare_transfer_hardware(ctlr))
1900 			dev_err(&ctlr->dev,
1901 				"failed to unprepare transfer hardware\n");
1902 		spi_idle_runtime_pm(ctlr);
1903 		trace_spi_controller_idle(ctlr);
1904 
1905 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1906 		ctlr->queue_empty = true;
1907 		goto out_unlock;
1908 	}
1909 
1910 	/* Extract head of queue */
1911 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1912 	ctlr->cur_msg = msg;
1913 
1914 	list_del_init(&msg->queue);
1915 	if (ctlr->busy)
1916 		was_busy = true;
1917 	else
1918 		ctlr->busy = true;
1919 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1920 
1921 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1922 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1923 
1924 	ctlr->cur_msg = NULL;
1925 	ctlr->fallback = false;
1926 
1927 	mutex_unlock(&ctlr->io_mutex);
1928 
1929 	/* Prod the scheduler in case transfer_one() was busy waiting */
1930 	if (!ret)
1931 		cond_resched();
1932 	return;
1933 
1934 out_unlock:
1935 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1936 	mutex_unlock(&ctlr->io_mutex);
1937 }
1938 
1939 /**
1940  * spi_pump_messages - kthread work function which processes spi message queue
1941  * @work: pointer to kthread work struct contained in the controller struct
1942  */
1943 static void spi_pump_messages(struct kthread_work *work)
1944 {
1945 	struct spi_controller *ctlr =
1946 		container_of(work, struct spi_controller, pump_messages);
1947 
1948 	__spi_pump_messages(ctlr, true);
1949 }
1950 
1951 /**
1952  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1953  * @ctlr: Pointer to the spi_controller structure of the driver
1954  * @xfer: Pointer to the transfer being timestamped
1955  * @progress: How many words (not bytes) have been transferred so far
1956  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1957  *	      transfer, for less jitter in time measurement. Only compatible
1958  *	      with PIO drivers. If true, must follow up with
1959  *	      spi_take_timestamp_post or otherwise system will crash.
1960  *	      WARNING: for fully predictable results, the CPU frequency must
1961  *	      also be under control (governor).
1962  *
1963  * This is a helper for drivers to collect the beginning of the TX timestamp
1964  * for the requested byte from the SPI transfer. The frequency with which this
1965  * function must be called (once per word, once for the whole transfer, once
1966  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1967  * greater than or equal to the requested byte at the time of the call. The
1968  * timestamp is only taken once, at the first such call. It is assumed that
1969  * the driver advances its @tx buffer pointer monotonically.
1970  */
1971 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1972 			    struct spi_transfer *xfer,
1973 			    size_t progress, bool irqs_off)
1974 {
1975 	if (!xfer->ptp_sts)
1976 		return;
1977 
1978 	if (xfer->timestamped)
1979 		return;
1980 
1981 	if (progress > xfer->ptp_sts_word_pre)
1982 		return;
1983 
1984 	/* Capture the resolution of the timestamp */
1985 	xfer->ptp_sts_word_pre = progress;
1986 
1987 	if (irqs_off) {
1988 		local_irq_save(ctlr->irq_flags);
1989 		preempt_disable();
1990 	}
1991 
1992 	ptp_read_system_prets(xfer->ptp_sts);
1993 }
1994 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1995 
1996 /**
1997  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1998  * @ctlr: Pointer to the spi_controller structure of the driver
1999  * @xfer: Pointer to the transfer being timestamped
2000  * @progress: How many words (not bytes) have been transferred so far
2001  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
2002  *
2003  * This is a helper for drivers to collect the end of the TX timestamp for
2004  * the requested byte from the SPI transfer. Can be called with an arbitrary
2005  * frequency: only the first call where @tx exceeds or is equal to the
2006  * requested word will be timestamped.
2007  */
2008 void spi_take_timestamp_post(struct spi_controller *ctlr,
2009 			     struct spi_transfer *xfer,
2010 			     size_t progress, bool irqs_off)
2011 {
2012 	if (!xfer->ptp_sts)
2013 		return;
2014 
2015 	if (xfer->timestamped)
2016 		return;
2017 
2018 	if (progress < xfer->ptp_sts_word_post)
2019 		return;
2020 
2021 	ptp_read_system_postts(xfer->ptp_sts);
2022 
2023 	if (irqs_off) {
2024 		local_irq_restore(ctlr->irq_flags);
2025 		preempt_enable();
2026 	}
2027 
2028 	/* Capture the resolution of the timestamp */
2029 	xfer->ptp_sts_word_post = progress;
2030 
2031 	xfer->timestamped = 1;
2032 }
2033 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2034 
2035 /**
2036  * spi_set_thread_rt - set the controller to pump at realtime priority
2037  * @ctlr: controller to boost priority of
2038  *
2039  * This can be called because the controller requested realtime priority
2040  * (by setting the ->rt value before calling spi_register_controller()) or
2041  * because a device on the bus said that its transfers needed realtime
2042  * priority.
2043  *
2044  * NOTE: at the moment if any device on a bus says it needs realtime then
2045  * the thread will be at realtime priority for all transfers on that
2046  * controller.  If this eventually becomes a problem we may see if we can
2047  * find a way to boost the priority only temporarily during relevant
2048  * transfers.
2049  */
2050 static void spi_set_thread_rt(struct spi_controller *ctlr)
2051 {
2052 	dev_info(&ctlr->dev,
2053 		"will run message pump with realtime priority\n");
2054 	sched_set_fifo(ctlr->kworker->task);
2055 }
2056 
2057 static int spi_init_queue(struct spi_controller *ctlr)
2058 {
2059 	ctlr->running = false;
2060 	ctlr->busy = false;
2061 	ctlr->queue_empty = true;
2062 
2063 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2064 	if (IS_ERR(ctlr->kworker)) {
2065 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2066 		return PTR_ERR(ctlr->kworker);
2067 	}
2068 
2069 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2070 
2071 	/*
2072 	 * Controller config will indicate if this controller should run the
2073 	 * message pump with high (realtime) priority to reduce the transfer
2074 	 * latency on the bus by minimising the delay between a transfer
2075 	 * request and the scheduling of the message pump thread. Without this
2076 	 * setting the message pump thread will remain at default priority.
2077 	 */
2078 	if (ctlr->rt)
2079 		spi_set_thread_rt(ctlr);
2080 
2081 	return 0;
2082 }
2083 
2084 /**
2085  * spi_get_next_queued_message() - called by driver to check for queued
2086  * messages
2087  * @ctlr: the controller to check for queued messages
2088  *
2089  * If there are more messages in the queue, the next message is returned from
2090  * this call.
2091  *
2092  * Return: the next message in the queue, else NULL if the queue is empty.
2093  */
2094 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2095 {
2096 	struct spi_message *next;
2097 	unsigned long flags;
2098 
2099 	/* Get a pointer to the next message, if any */
2100 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2101 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2102 					queue);
2103 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104 
2105 	return next;
2106 }
2107 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2108 
2109 /*
2110  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2111  *                            and spi_maybe_unoptimize_message()
2112  * @msg: the message to unoptimize
2113  *
2114  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2115  * core should use spi_maybe_unoptimize_message() rather than calling this
2116  * function directly.
2117  *
2118  * It is not valid to call this on a message that is not currently optimized.
2119  */
2120 static void __spi_unoptimize_message(struct spi_message *msg)
2121 {
2122 	struct spi_controller *ctlr = msg->spi->controller;
2123 
2124 	if (ctlr->unoptimize_message)
2125 		ctlr->unoptimize_message(msg);
2126 
2127 	spi_res_release(ctlr, msg);
2128 
2129 	msg->optimized = false;
2130 	msg->opt_state = NULL;
2131 }
2132 
2133 /*
2134  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2135  * @msg: the message to unoptimize
2136  *
2137  * This function is used to unoptimize a message if and only if it was
2138  * optimized by the core (via spi_maybe_optimize_message()).
2139  */
2140 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2141 {
2142 	if (!msg->pre_optimized && msg->optimized &&
2143 	    !msg->spi->controller->defer_optimize_message)
2144 		__spi_unoptimize_message(msg);
2145 }
2146 
2147 /**
2148  * spi_finalize_current_message() - the current message is complete
2149  * @ctlr: the controller to return the message to
2150  *
2151  * Called by the driver to notify the core that the message in the front of the
2152  * queue is complete and can be removed from the queue.
2153  */
2154 void spi_finalize_current_message(struct spi_controller *ctlr)
2155 {
2156 	struct spi_transfer *xfer;
2157 	struct spi_message *mesg;
2158 	int ret;
2159 
2160 	mesg = ctlr->cur_msg;
2161 
2162 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2163 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2164 			ptp_read_system_postts(xfer->ptp_sts);
2165 			xfer->ptp_sts_word_post = xfer->len;
2166 		}
2167 	}
2168 
2169 	if (unlikely(ctlr->ptp_sts_supported))
2170 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2171 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2172 
2173 	spi_unmap_msg(ctlr, mesg);
2174 
2175 	if (mesg->prepared && ctlr->unprepare_message) {
2176 		ret = ctlr->unprepare_message(ctlr, mesg);
2177 		if (ret) {
2178 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2179 				ret);
2180 		}
2181 	}
2182 
2183 	mesg->prepared = false;
2184 
2185 	spi_maybe_unoptimize_message(mesg);
2186 
2187 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2188 	smp_mb(); /* See __spi_pump_transfer_message()... */
2189 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2190 		complete(&ctlr->cur_msg_completion);
2191 
2192 	trace_spi_message_done(mesg);
2193 
2194 	mesg->state = NULL;
2195 	if (mesg->complete)
2196 		mesg->complete(mesg->context);
2197 }
2198 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2199 
2200 static int spi_start_queue(struct spi_controller *ctlr)
2201 {
2202 	unsigned long flags;
2203 
2204 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2205 
2206 	if (ctlr->running || ctlr->busy) {
2207 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2208 		return -EBUSY;
2209 	}
2210 
2211 	ctlr->running = true;
2212 	ctlr->cur_msg = NULL;
2213 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2214 
2215 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2216 
2217 	return 0;
2218 }
2219 
2220 static int spi_stop_queue(struct spi_controller *ctlr)
2221 {
2222 	unsigned int limit = 500;
2223 	unsigned long flags;
2224 
2225 	/*
2226 	 * This is a bit lame, but is optimized for the common execution path.
2227 	 * A wait_queue on the ctlr->busy could be used, but then the common
2228 	 * execution path (pump_messages) would be required to call wake_up or
2229 	 * friends on every SPI message. Do this instead.
2230 	 */
2231 	do {
2232 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233 		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2234 			ctlr->running = false;
2235 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2236 			return 0;
2237 		}
2238 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2239 		usleep_range(10000, 11000);
2240 	} while (--limit);
2241 
2242 	return -EBUSY;
2243 }
2244 
2245 static int spi_destroy_queue(struct spi_controller *ctlr)
2246 {
2247 	int ret;
2248 
2249 	ret = spi_stop_queue(ctlr);
2250 
2251 	/*
2252 	 * kthread_flush_worker will block until all work is done.
2253 	 * If the reason that stop_queue timed out is that the work will never
2254 	 * finish, then it does no good to call flush/stop thread, so
2255 	 * return anyway.
2256 	 */
2257 	if (ret) {
2258 		dev_err(&ctlr->dev, "problem destroying queue\n");
2259 		return ret;
2260 	}
2261 
2262 	kthread_destroy_worker(ctlr->kworker);
2263 
2264 	return 0;
2265 }
2266 
2267 static int __spi_queued_transfer(struct spi_device *spi,
2268 				 struct spi_message *msg,
2269 				 bool need_pump)
2270 {
2271 	struct spi_controller *ctlr = spi->controller;
2272 	unsigned long flags;
2273 
2274 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275 
2276 	if (!ctlr->running) {
2277 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278 		return -ESHUTDOWN;
2279 	}
2280 	msg->actual_length = 0;
2281 	msg->status = -EINPROGRESS;
2282 
2283 	list_add_tail(&msg->queue, &ctlr->queue);
2284 	ctlr->queue_empty = false;
2285 	if (!ctlr->busy && need_pump)
2286 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287 
2288 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289 	return 0;
2290 }
2291 
2292 /**
2293  * spi_queued_transfer - transfer function for queued transfers
2294  * @spi: SPI device which is requesting transfer
2295  * @msg: SPI message which is to handled is queued to driver queue
2296  *
2297  * Return: zero on success, else a negative error code.
2298  */
2299 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300 {
2301 	return __spi_queued_transfer(spi, msg, true);
2302 }
2303 
2304 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305 {
2306 	int ret;
2307 
2308 	ctlr->transfer = spi_queued_transfer;
2309 	if (!ctlr->transfer_one_message)
2310 		ctlr->transfer_one_message = spi_transfer_one_message;
2311 
2312 	/* Initialize and start queue */
2313 	ret = spi_init_queue(ctlr);
2314 	if (ret) {
2315 		dev_err(&ctlr->dev, "problem initializing queue\n");
2316 		goto err_init_queue;
2317 	}
2318 	ctlr->queued = true;
2319 	ret = spi_start_queue(ctlr);
2320 	if (ret) {
2321 		dev_err(&ctlr->dev, "problem starting queue\n");
2322 		goto err_start_queue;
2323 	}
2324 
2325 	return 0;
2326 
2327 err_start_queue:
2328 	spi_destroy_queue(ctlr);
2329 err_init_queue:
2330 	return ret;
2331 }
2332 
2333 /**
2334  * spi_flush_queue - Send all pending messages in the queue from the callers'
2335  *		     context
2336  * @ctlr: controller to process queue for
2337  *
2338  * This should be used when one wants to ensure all pending messages have been
2339  * sent before doing something. Is used by the spi-mem code to make sure SPI
2340  * memory operations do not preempt regular SPI transfers that have been queued
2341  * before the spi-mem operation.
2342  */
2343 void spi_flush_queue(struct spi_controller *ctlr)
2344 {
2345 	if (ctlr->transfer == spi_queued_transfer)
2346 		__spi_pump_messages(ctlr, false);
2347 }
2348 
2349 /*-------------------------------------------------------------------------*/
2350 
2351 #if defined(CONFIG_OF)
2352 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353 				     struct spi_delay *delay, const char *prop)
2354 {
2355 	u32 value;
2356 
2357 	if (!of_property_read_u32(nc, prop, &value)) {
2358 		if (value > U16_MAX) {
2359 			delay->value = DIV_ROUND_UP(value, 1000);
2360 			delay->unit = SPI_DELAY_UNIT_USECS;
2361 		} else {
2362 			delay->value = value;
2363 			delay->unit = SPI_DELAY_UNIT_NSECS;
2364 		}
2365 	}
2366 }
2367 
2368 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369 			   struct device_node *nc)
2370 {
2371 	u32 value, cs[SPI_CS_CNT_MAX];
2372 	int rc, idx;
2373 
2374 	/* Mode (clock phase/polarity/etc.) */
2375 	if (of_property_read_bool(nc, "spi-cpha"))
2376 		spi->mode |= SPI_CPHA;
2377 	if (of_property_read_bool(nc, "spi-cpol"))
2378 		spi->mode |= SPI_CPOL;
2379 	if (of_property_read_bool(nc, "spi-3wire"))
2380 		spi->mode |= SPI_3WIRE;
2381 	if (of_property_read_bool(nc, "spi-lsb-first"))
2382 		spi->mode |= SPI_LSB_FIRST;
2383 	if (of_property_read_bool(nc, "spi-cs-high"))
2384 		spi->mode |= SPI_CS_HIGH;
2385 
2386 	/* Device DUAL/QUAD mode */
2387 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388 		switch (value) {
2389 		case 0:
2390 			spi->mode |= SPI_NO_TX;
2391 			break;
2392 		case 1:
2393 			break;
2394 		case 2:
2395 			spi->mode |= SPI_TX_DUAL;
2396 			break;
2397 		case 4:
2398 			spi->mode |= SPI_TX_QUAD;
2399 			break;
2400 		case 8:
2401 			spi->mode |= SPI_TX_OCTAL;
2402 			break;
2403 		default:
2404 			dev_warn(&ctlr->dev,
2405 				"spi-tx-bus-width %d not supported\n",
2406 				value);
2407 			break;
2408 		}
2409 	}
2410 
2411 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412 		switch (value) {
2413 		case 0:
2414 			spi->mode |= SPI_NO_RX;
2415 			break;
2416 		case 1:
2417 			break;
2418 		case 2:
2419 			spi->mode |= SPI_RX_DUAL;
2420 			break;
2421 		case 4:
2422 			spi->mode |= SPI_RX_QUAD;
2423 			break;
2424 		case 8:
2425 			spi->mode |= SPI_RX_OCTAL;
2426 			break;
2427 		default:
2428 			dev_warn(&ctlr->dev,
2429 				"spi-rx-bus-width %d not supported\n",
2430 				value);
2431 			break;
2432 		}
2433 	}
2434 
2435 	if (spi_controller_is_target(ctlr)) {
2436 		if (!of_node_name_eq(nc, "slave")) {
2437 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438 				nc);
2439 			return -EINVAL;
2440 		}
2441 		return 0;
2442 	}
2443 
2444 	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445 		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446 		return -EINVAL;
2447 	}
2448 
2449 	spi_set_all_cs_unused(spi);
2450 
2451 	/* Device address */
2452 	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453 						 SPI_CS_CNT_MAX);
2454 	if (rc < 0) {
2455 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456 			nc, rc);
2457 		return rc;
2458 	}
2459 	if (rc > ctlr->num_chipselect) {
2460 		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461 			nc, rc);
2462 		return rc;
2463 	}
2464 	if ((of_property_present(nc, "parallel-memories")) &&
2465 	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466 		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467 		return -EINVAL;
2468 	}
2469 	for (idx = 0; idx < rc; idx++)
2470 		spi_set_chipselect(spi, idx, cs[idx]);
2471 
2472 	/*
2473 	 * By default spi->chip_select[0] will hold the physical CS number,
2474 	 * so set bit 0 in spi->cs_index_mask.
2475 	 */
2476 	spi->cs_index_mask = BIT(0);
2477 
2478 	/* Device speed */
2479 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480 		spi->max_speed_hz = value;
2481 
2482 	/* Device CS delays */
2483 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486 
2487 	return 0;
2488 }
2489 
2490 static struct spi_device *
2491 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492 {
2493 	struct spi_device *spi;
2494 	int rc;
2495 
2496 	/* Alloc an spi_device */
2497 	spi = spi_alloc_device(ctlr);
2498 	if (!spi) {
2499 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500 		rc = -ENOMEM;
2501 		goto err_out;
2502 	}
2503 
2504 	/* Select device driver */
2505 	rc = of_alias_from_compatible(nc, spi->modalias,
2506 				      sizeof(spi->modalias));
2507 	if (rc < 0) {
2508 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509 		goto err_out;
2510 	}
2511 
2512 	rc = of_spi_parse_dt(ctlr, spi, nc);
2513 	if (rc)
2514 		goto err_out;
2515 
2516 	/* Store a pointer to the node in the device structure */
2517 	of_node_get(nc);
2518 
2519 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520 
2521 	/* Register the new device */
2522 	rc = spi_add_device(spi);
2523 	if (rc) {
2524 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525 		goto err_of_node_put;
2526 	}
2527 
2528 	return spi;
2529 
2530 err_of_node_put:
2531 	of_node_put(nc);
2532 err_out:
2533 	spi_dev_put(spi);
2534 	return ERR_PTR(rc);
2535 }
2536 
2537 /**
2538  * of_register_spi_devices() - Register child devices onto the SPI bus
2539  * @ctlr:	Pointer to spi_controller device
2540  *
2541  * Registers an spi_device for each child node of controller node which
2542  * represents a valid SPI slave.
2543  */
2544 static void of_register_spi_devices(struct spi_controller *ctlr)
2545 {
2546 	struct spi_device *spi;
2547 	struct device_node *nc;
2548 
2549 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551 			continue;
2552 		spi = of_register_spi_device(ctlr, nc);
2553 		if (IS_ERR(spi)) {
2554 			dev_warn(&ctlr->dev,
2555 				 "Failed to create SPI device for %pOF\n", nc);
2556 			of_node_clear_flag(nc, OF_POPULATED);
2557 		}
2558 	}
2559 }
2560 #else
2561 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562 #endif
2563 
2564 /**
2565  * spi_new_ancillary_device() - Register ancillary SPI device
2566  * @spi:         Pointer to the main SPI device registering the ancillary device
2567  * @chip_select: Chip Select of the ancillary device
2568  *
2569  * Register an ancillary SPI device; for example some chips have a chip-select
2570  * for normal device usage and another one for setup/firmware upload.
2571  *
2572  * This may only be called from main SPI device's probe routine.
2573  *
2574  * Return: 0 on success; negative errno on failure
2575  */
2576 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577 					     u8 chip_select)
2578 {
2579 	struct spi_controller *ctlr = spi->controller;
2580 	struct spi_device *ancillary;
2581 	int rc;
2582 
2583 	/* Alloc an spi_device */
2584 	ancillary = spi_alloc_device(ctlr);
2585 	if (!ancillary) {
2586 		rc = -ENOMEM;
2587 		goto err_out;
2588 	}
2589 
2590 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591 
2592 	/* Use provided chip-select for ancillary device */
2593 	spi_set_all_cs_unused(ancillary);
2594 	spi_set_chipselect(ancillary, 0, chip_select);
2595 
2596 	/* Take over SPI mode/speed from SPI main device */
2597 	ancillary->max_speed_hz = spi->max_speed_hz;
2598 	ancillary->mode = spi->mode;
2599 	/*
2600 	 * By default spi->chip_select[0] will hold the physical CS number,
2601 	 * so set bit 0 in spi->cs_index_mask.
2602 	 */
2603 	ancillary->cs_index_mask = BIT(0);
2604 
2605 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606 
2607 	/* Register the new device */
2608 	rc = __spi_add_device(ancillary);
2609 	if (rc) {
2610 		dev_err(&spi->dev, "failed to register ancillary device\n");
2611 		goto err_out;
2612 	}
2613 
2614 	return ancillary;
2615 
2616 err_out:
2617 	spi_dev_put(ancillary);
2618 	return ERR_PTR(rc);
2619 }
2620 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621 
2622 #ifdef CONFIG_ACPI
2623 struct acpi_spi_lookup {
2624 	struct spi_controller 	*ctlr;
2625 	u32			max_speed_hz;
2626 	u32			mode;
2627 	int			irq;
2628 	u8			bits_per_word;
2629 	u8			chip_select;
2630 	int			n;
2631 	int			index;
2632 };
2633 
2634 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635 {
2636 	struct acpi_resource_spi_serialbus *sb;
2637 	int *count = data;
2638 
2639 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640 		return 1;
2641 
2642 	sb = &ares->data.spi_serial_bus;
2643 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644 		return 1;
2645 
2646 	*count = *count + 1;
2647 
2648 	return 1;
2649 }
2650 
2651 /**
2652  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653  * @adev:	ACPI device
2654  *
2655  * Return: the number of SpiSerialBus resources in the ACPI-device's
2656  * resource-list; or a negative error code.
2657  */
2658 int acpi_spi_count_resources(struct acpi_device *adev)
2659 {
2660 	LIST_HEAD(r);
2661 	int count = 0;
2662 	int ret;
2663 
2664 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665 	if (ret < 0)
2666 		return ret;
2667 
2668 	acpi_dev_free_resource_list(&r);
2669 
2670 	return count;
2671 }
2672 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673 
2674 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675 					    struct acpi_spi_lookup *lookup)
2676 {
2677 	const union acpi_object *obj;
2678 
2679 	if (!x86_apple_machine)
2680 		return;
2681 
2682 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683 	    && obj->buffer.length >= 4)
2684 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685 
2686 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687 	    && obj->buffer.length == 8)
2688 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689 
2690 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692 		lookup->mode |= SPI_LSB_FIRST;
2693 
2694 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696 		lookup->mode |= SPI_CPOL;
2697 
2698 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700 		lookup->mode |= SPI_CPHA;
2701 }
2702 
2703 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704 {
2705 	struct acpi_spi_lookup *lookup = data;
2706 	struct spi_controller *ctlr = lookup->ctlr;
2707 
2708 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709 		struct acpi_resource_spi_serialbus *sb;
2710 		acpi_handle parent_handle;
2711 		acpi_status status;
2712 
2713 		sb = &ares->data.spi_serial_bus;
2714 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715 
2716 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717 				return 1;
2718 
2719 			status = acpi_get_handle(NULL,
2720 						 sb->resource_source.string_ptr,
2721 						 &parent_handle);
2722 
2723 			if (ACPI_FAILURE(status))
2724 				return -ENODEV;
2725 
2726 			if (ctlr) {
2727 				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2728 					return -ENODEV;
2729 			} else {
2730 				struct acpi_device *adev;
2731 
2732 				adev = acpi_fetch_acpi_dev(parent_handle);
2733 				if (!adev)
2734 					return -ENODEV;
2735 
2736 				ctlr = acpi_spi_find_controller_by_adev(adev);
2737 				if (!ctlr)
2738 					return -EPROBE_DEFER;
2739 
2740 				lookup->ctlr = ctlr;
2741 			}
2742 
2743 			/*
2744 			 * ACPI DeviceSelection numbering is handled by the
2745 			 * host controller driver in Windows and can vary
2746 			 * from driver to driver. In Linux we always expect
2747 			 * 0 .. max - 1 so we need to ask the driver to
2748 			 * translate between the two schemes.
2749 			 */
2750 			if (ctlr->fw_translate_cs) {
2751 				int cs = ctlr->fw_translate_cs(ctlr,
2752 						sb->device_selection);
2753 				if (cs < 0)
2754 					return cs;
2755 				lookup->chip_select = cs;
2756 			} else {
2757 				lookup->chip_select = sb->device_selection;
2758 			}
2759 
2760 			lookup->max_speed_hz = sb->connection_speed;
2761 			lookup->bits_per_word = sb->data_bit_length;
2762 
2763 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764 				lookup->mode |= SPI_CPHA;
2765 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766 				lookup->mode |= SPI_CPOL;
2767 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768 				lookup->mode |= SPI_CS_HIGH;
2769 		}
2770 	} else if (lookup->irq < 0) {
2771 		struct resource r;
2772 
2773 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774 			lookup->irq = r.start;
2775 	}
2776 
2777 	/* Always tell the ACPI core to skip this resource */
2778 	return 1;
2779 }
2780 
2781 /**
2782  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783  * @ctlr: controller to which the spi device belongs
2784  * @adev: ACPI Device for the spi device
2785  * @index: Index of the spi resource inside the ACPI Node
2786  *
2787  * This should be used to allocate a new SPI device from and ACPI Device node.
2788  * The caller is responsible for calling spi_add_device to register the SPI device.
2789  *
2790  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791  * using the resource.
2792  * If index is set to -1, index is not used.
2793  * Note: If index is -1, ctlr must be set.
2794  *
2795  * Return: a pointer to the new device, or ERR_PTR on error.
2796  */
2797 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798 					 struct acpi_device *adev,
2799 					 int index)
2800 {
2801 	acpi_handle parent_handle = NULL;
2802 	struct list_head resource_list;
2803 	struct acpi_spi_lookup lookup = {};
2804 	struct spi_device *spi;
2805 	int ret;
2806 
2807 	if (!ctlr && index == -1)
2808 		return ERR_PTR(-EINVAL);
2809 
2810 	lookup.ctlr		= ctlr;
2811 	lookup.irq		= -1;
2812 	lookup.index		= index;
2813 	lookup.n		= 0;
2814 
2815 	INIT_LIST_HEAD(&resource_list);
2816 	ret = acpi_dev_get_resources(adev, &resource_list,
2817 				     acpi_spi_add_resource, &lookup);
2818 	acpi_dev_free_resource_list(&resource_list);
2819 
2820 	if (ret < 0)
2821 		/* Found SPI in _CRS but it points to another controller */
2822 		return ERR_PTR(ret);
2823 
2824 	if (!lookup.max_speed_hz &&
2825 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826 	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2827 		/* Apple does not use _CRS but nested devices for SPI slaves */
2828 		acpi_spi_parse_apple_properties(adev, &lookup);
2829 	}
2830 
2831 	if (!lookup.max_speed_hz)
2832 		return ERR_PTR(-ENODEV);
2833 
2834 	spi = spi_alloc_device(lookup.ctlr);
2835 	if (!spi) {
2836 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837 			dev_name(&adev->dev));
2838 		return ERR_PTR(-ENOMEM);
2839 	}
2840 
2841 	spi_set_all_cs_unused(spi);
2842 	spi_set_chipselect(spi, 0, lookup.chip_select);
2843 
2844 	ACPI_COMPANION_SET(&spi->dev, adev);
2845 	spi->max_speed_hz	= lookup.max_speed_hz;
2846 	spi->mode		|= lookup.mode;
2847 	spi->irq		= lookup.irq;
2848 	spi->bits_per_word	= lookup.bits_per_word;
2849 	/*
2850 	 * By default spi->chip_select[0] will hold the physical CS number,
2851 	 * so set bit 0 in spi->cs_index_mask.
2852 	 */
2853 	spi->cs_index_mask	= BIT(0);
2854 
2855 	return spi;
2856 }
2857 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858 
2859 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860 					    struct acpi_device *adev)
2861 {
2862 	struct spi_device *spi;
2863 
2864 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865 	    acpi_device_enumerated(adev))
2866 		return AE_OK;
2867 
2868 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869 	if (IS_ERR(spi)) {
2870 		if (PTR_ERR(spi) == -ENOMEM)
2871 			return AE_NO_MEMORY;
2872 		else
2873 			return AE_OK;
2874 	}
2875 
2876 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877 			  sizeof(spi->modalias));
2878 
2879 	acpi_device_set_enumerated(adev);
2880 
2881 	adev->power.flags.ignore_parent = true;
2882 	if (spi_add_device(spi)) {
2883 		adev->power.flags.ignore_parent = false;
2884 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2885 			dev_name(&adev->dev));
2886 		spi_dev_put(spi);
2887 	}
2888 
2889 	return AE_OK;
2890 }
2891 
2892 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2893 				       void *data, void **return_value)
2894 {
2895 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2896 	struct spi_controller *ctlr = data;
2897 
2898 	if (!adev)
2899 		return AE_OK;
2900 
2901 	return acpi_register_spi_device(ctlr, adev);
2902 }
2903 
2904 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2905 
2906 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2907 {
2908 	acpi_status status;
2909 	acpi_handle handle;
2910 
2911 	handle = ACPI_HANDLE(ctlr->dev.parent);
2912 	if (!handle)
2913 		return;
2914 
2915 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2916 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2917 				     acpi_spi_add_device, NULL, ctlr, NULL);
2918 	if (ACPI_FAILURE(status))
2919 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2920 }
2921 #else
2922 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2923 #endif /* CONFIG_ACPI */
2924 
2925 static void spi_controller_release(struct device *dev)
2926 {
2927 	struct spi_controller *ctlr;
2928 
2929 	ctlr = container_of(dev, struct spi_controller, dev);
2930 	kfree(ctlr);
2931 }
2932 
2933 static const struct class spi_master_class = {
2934 	.name		= "spi_master",
2935 	.dev_release	= spi_controller_release,
2936 	.dev_groups	= spi_master_groups,
2937 };
2938 
2939 #ifdef CONFIG_SPI_SLAVE
2940 /**
2941  * spi_target_abort - abort the ongoing transfer request on an SPI slave
2942  *		     controller
2943  * @spi: device used for the current transfer
2944  */
2945 int spi_target_abort(struct spi_device *spi)
2946 {
2947 	struct spi_controller *ctlr = spi->controller;
2948 
2949 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2950 		return ctlr->target_abort(ctlr);
2951 
2952 	return -ENOTSUPP;
2953 }
2954 EXPORT_SYMBOL_GPL(spi_target_abort);
2955 
2956 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2957 			  char *buf)
2958 {
2959 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2960 						   dev);
2961 	struct device *child;
2962 
2963 	child = device_find_any_child(&ctlr->dev);
2964 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2965 }
2966 
2967 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2968 			   const char *buf, size_t count)
2969 {
2970 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2971 						   dev);
2972 	struct spi_device *spi;
2973 	struct device *child;
2974 	char name[32];
2975 	int rc;
2976 
2977 	rc = sscanf(buf, "%31s", name);
2978 	if (rc != 1 || !name[0])
2979 		return -EINVAL;
2980 
2981 	child = device_find_any_child(&ctlr->dev);
2982 	if (child) {
2983 		/* Remove registered slave */
2984 		device_unregister(child);
2985 		put_device(child);
2986 	}
2987 
2988 	if (strcmp(name, "(null)")) {
2989 		/* Register new slave */
2990 		spi = spi_alloc_device(ctlr);
2991 		if (!spi)
2992 			return -ENOMEM;
2993 
2994 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2995 
2996 		rc = spi_add_device(spi);
2997 		if (rc) {
2998 			spi_dev_put(spi);
2999 			return rc;
3000 		}
3001 	}
3002 
3003 	return count;
3004 }
3005 
3006 static DEVICE_ATTR_RW(slave);
3007 
3008 static struct attribute *spi_slave_attrs[] = {
3009 	&dev_attr_slave.attr,
3010 	NULL,
3011 };
3012 
3013 static const struct attribute_group spi_slave_group = {
3014 	.attrs = spi_slave_attrs,
3015 };
3016 
3017 static const struct attribute_group *spi_slave_groups[] = {
3018 	&spi_controller_statistics_group,
3019 	&spi_slave_group,
3020 	NULL,
3021 };
3022 
3023 static const struct class spi_slave_class = {
3024 	.name		= "spi_slave",
3025 	.dev_release	= spi_controller_release,
3026 	.dev_groups	= spi_slave_groups,
3027 };
3028 #else
3029 extern struct class spi_slave_class;	/* dummy */
3030 #endif
3031 
3032 /**
3033  * __spi_alloc_controller - allocate an SPI master or slave controller
3034  * @dev: the controller, possibly using the platform_bus
3035  * @size: how much zeroed driver-private data to allocate; the pointer to this
3036  *	memory is in the driver_data field of the returned device, accessible
3037  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3038  *	drivers granting DMA access to portions of their private data need to
3039  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3040  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3041  *	slave (true) controller
3042  * Context: can sleep
3043  *
3044  * This call is used only by SPI controller drivers, which are the
3045  * only ones directly touching chip registers.  It's how they allocate
3046  * an spi_controller structure, prior to calling spi_register_controller().
3047  *
3048  * This must be called from context that can sleep.
3049  *
3050  * The caller is responsible for assigning the bus number and initializing the
3051  * controller's methods before calling spi_register_controller(); and (after
3052  * errors adding the device) calling spi_controller_put() to prevent a memory
3053  * leak.
3054  *
3055  * Return: the SPI controller structure on success, else NULL.
3056  */
3057 struct spi_controller *__spi_alloc_controller(struct device *dev,
3058 					      unsigned int size, bool slave)
3059 {
3060 	struct spi_controller	*ctlr;
3061 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3062 
3063 	if (!dev)
3064 		return NULL;
3065 
3066 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3067 	if (!ctlr)
3068 		return NULL;
3069 
3070 	device_initialize(&ctlr->dev);
3071 	INIT_LIST_HEAD(&ctlr->queue);
3072 	spin_lock_init(&ctlr->queue_lock);
3073 	spin_lock_init(&ctlr->bus_lock_spinlock);
3074 	mutex_init(&ctlr->bus_lock_mutex);
3075 	mutex_init(&ctlr->io_mutex);
3076 	mutex_init(&ctlr->add_lock);
3077 	ctlr->bus_num = -1;
3078 	ctlr->num_chipselect = 1;
3079 	ctlr->slave = slave;
3080 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3081 		ctlr->dev.class = &spi_slave_class;
3082 	else
3083 		ctlr->dev.class = &spi_master_class;
3084 	ctlr->dev.parent = dev;
3085 	pm_suspend_ignore_children(&ctlr->dev, true);
3086 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3087 
3088 	return ctlr;
3089 }
3090 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3091 
3092 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3093 {
3094 	spi_controller_put(*(struct spi_controller **)ctlr);
3095 }
3096 
3097 /**
3098  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3099  * @dev: physical device of SPI controller
3100  * @size: how much zeroed driver-private data to allocate
3101  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3102  * Context: can sleep
3103  *
3104  * Allocate an SPI controller and automatically release a reference on it
3105  * when @dev is unbound from its driver.  Drivers are thus relieved from
3106  * having to call spi_controller_put().
3107  *
3108  * The arguments to this function are identical to __spi_alloc_controller().
3109  *
3110  * Return: the SPI controller structure on success, else NULL.
3111  */
3112 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3113 						   unsigned int size,
3114 						   bool slave)
3115 {
3116 	struct spi_controller **ptr, *ctlr;
3117 
3118 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3119 			   GFP_KERNEL);
3120 	if (!ptr)
3121 		return NULL;
3122 
3123 	ctlr = __spi_alloc_controller(dev, size, slave);
3124 	if (ctlr) {
3125 		ctlr->devm_allocated = true;
3126 		*ptr = ctlr;
3127 		devres_add(dev, ptr);
3128 	} else {
3129 		devres_free(ptr);
3130 	}
3131 
3132 	return ctlr;
3133 }
3134 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3135 
3136 /**
3137  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3138  * @ctlr: The SPI master to grab GPIO descriptors for
3139  */
3140 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3141 {
3142 	int nb, i;
3143 	struct gpio_desc **cs;
3144 	struct device *dev = &ctlr->dev;
3145 	unsigned long native_cs_mask = 0;
3146 	unsigned int num_cs_gpios = 0;
3147 
3148 	nb = gpiod_count(dev, "cs");
3149 	if (nb < 0) {
3150 		/* No GPIOs at all is fine, else return the error */
3151 		if (nb == -ENOENT)
3152 			return 0;
3153 		return nb;
3154 	}
3155 
3156 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3157 
3158 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3159 			  GFP_KERNEL);
3160 	if (!cs)
3161 		return -ENOMEM;
3162 	ctlr->cs_gpiods = cs;
3163 
3164 	for (i = 0; i < nb; i++) {
3165 		/*
3166 		 * Most chipselects are active low, the inverted
3167 		 * semantics are handled by special quirks in gpiolib,
3168 		 * so initializing them GPIOD_OUT_LOW here means
3169 		 * "unasserted", in most cases this will drive the physical
3170 		 * line high.
3171 		 */
3172 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3173 						      GPIOD_OUT_LOW);
3174 		if (IS_ERR(cs[i]))
3175 			return PTR_ERR(cs[i]);
3176 
3177 		if (cs[i]) {
3178 			/*
3179 			 * If we find a CS GPIO, name it after the device and
3180 			 * chip select line.
3181 			 */
3182 			char *gpioname;
3183 
3184 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3185 						  dev_name(dev), i);
3186 			if (!gpioname)
3187 				return -ENOMEM;
3188 			gpiod_set_consumer_name(cs[i], gpioname);
3189 			num_cs_gpios++;
3190 			continue;
3191 		}
3192 
3193 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3194 			dev_err(dev, "Invalid native chip select %d\n", i);
3195 			return -EINVAL;
3196 		}
3197 		native_cs_mask |= BIT(i);
3198 	}
3199 
3200 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3201 
3202 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3203 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3204 		dev_err(dev, "No unused native chip select available\n");
3205 		return -EINVAL;
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 static int spi_controller_check_ops(struct spi_controller *ctlr)
3212 {
3213 	/*
3214 	 * The controller may implement only the high-level SPI-memory like
3215 	 * operations if it does not support regular SPI transfers, and this is
3216 	 * valid use case.
3217 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3218 	 * one of the ->transfer_xxx() method be implemented.
3219 	 */
3220 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3221 		if (!ctlr->transfer && !ctlr->transfer_one &&
3222 		   !ctlr->transfer_one_message) {
3223 			return -EINVAL;
3224 		}
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 /* Allocate dynamic bus number using Linux idr */
3231 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3232 {
3233 	int id;
3234 
3235 	mutex_lock(&board_lock);
3236 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3237 	mutex_unlock(&board_lock);
3238 	if (WARN(id < 0, "couldn't get idr"))
3239 		return id == -ENOSPC ? -EBUSY : id;
3240 	ctlr->bus_num = id;
3241 	return 0;
3242 }
3243 
3244 /**
3245  * spi_register_controller - register SPI host or target controller
3246  * @ctlr: initialized controller, originally from spi_alloc_host() or
3247  *	spi_alloc_target()
3248  * Context: can sleep
3249  *
3250  * SPI controllers connect to their drivers using some non-SPI bus,
3251  * such as the platform bus.  The final stage of probe() in that code
3252  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3253  *
3254  * SPI controllers use board specific (often SOC specific) bus numbers,
3255  * and board-specific addressing for SPI devices combines those numbers
3256  * with chip select numbers.  Since SPI does not directly support dynamic
3257  * device identification, boards need configuration tables telling which
3258  * chip is at which address.
3259  *
3260  * This must be called from context that can sleep.  It returns zero on
3261  * success, else a negative error code (dropping the controller's refcount).
3262  * After a successful return, the caller is responsible for calling
3263  * spi_unregister_controller().
3264  *
3265  * Return: zero on success, else a negative error code.
3266  */
3267 int spi_register_controller(struct spi_controller *ctlr)
3268 {
3269 	struct device		*dev = ctlr->dev.parent;
3270 	struct boardinfo	*bi;
3271 	int			first_dynamic;
3272 	int			status;
3273 	int			idx;
3274 
3275 	if (!dev)
3276 		return -ENODEV;
3277 
3278 	/*
3279 	 * Make sure all necessary hooks are implemented before registering
3280 	 * the SPI controller.
3281 	 */
3282 	status = spi_controller_check_ops(ctlr);
3283 	if (status)
3284 		return status;
3285 
3286 	if (ctlr->bus_num < 0)
3287 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3288 	if (ctlr->bus_num >= 0) {
3289 		/* Devices with a fixed bus num must check-in with the num */
3290 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3291 		if (status)
3292 			return status;
3293 	}
3294 	if (ctlr->bus_num < 0) {
3295 		first_dynamic = of_alias_get_highest_id("spi");
3296 		if (first_dynamic < 0)
3297 			first_dynamic = 0;
3298 		else
3299 			first_dynamic++;
3300 
3301 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3302 		if (status)
3303 			return status;
3304 	}
3305 	ctlr->bus_lock_flag = 0;
3306 	init_completion(&ctlr->xfer_completion);
3307 	init_completion(&ctlr->cur_msg_completion);
3308 	if (!ctlr->max_dma_len)
3309 		ctlr->max_dma_len = INT_MAX;
3310 
3311 	/*
3312 	 * Register the device, then userspace will see it.
3313 	 * Registration fails if the bus ID is in use.
3314 	 */
3315 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3316 
3317 	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3318 		status = spi_get_gpio_descs(ctlr);
3319 		if (status)
3320 			goto free_bus_id;
3321 		/*
3322 		 * A controller using GPIO descriptors always
3323 		 * supports SPI_CS_HIGH if need be.
3324 		 */
3325 		ctlr->mode_bits |= SPI_CS_HIGH;
3326 	}
3327 
3328 	/*
3329 	 * Even if it's just one always-selected device, there must
3330 	 * be at least one chipselect.
3331 	 */
3332 	if (!ctlr->num_chipselect) {
3333 		status = -EINVAL;
3334 		goto free_bus_id;
3335 	}
3336 
3337 	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3338 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3339 		ctlr->last_cs[idx] = SPI_INVALID_CS;
3340 
3341 	status = device_add(&ctlr->dev);
3342 	if (status < 0)
3343 		goto free_bus_id;
3344 	dev_dbg(dev, "registered %s %s\n",
3345 			spi_controller_is_target(ctlr) ? "target" : "host",
3346 			dev_name(&ctlr->dev));
3347 
3348 	/*
3349 	 * If we're using a queued driver, start the queue. Note that we don't
3350 	 * need the queueing logic if the driver is only supporting high-level
3351 	 * memory operations.
3352 	 */
3353 	if (ctlr->transfer) {
3354 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3355 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3356 		status = spi_controller_initialize_queue(ctlr);
3357 		if (status) {
3358 			device_del(&ctlr->dev);
3359 			goto free_bus_id;
3360 		}
3361 	}
3362 	/* Add statistics */
3363 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3364 	if (!ctlr->pcpu_statistics) {
3365 		dev_err(dev, "Error allocating per-cpu statistics\n");
3366 		status = -ENOMEM;
3367 		goto destroy_queue;
3368 	}
3369 
3370 	mutex_lock(&board_lock);
3371 	list_add_tail(&ctlr->list, &spi_controller_list);
3372 	list_for_each_entry(bi, &board_list, list)
3373 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3374 	mutex_unlock(&board_lock);
3375 
3376 	/* Register devices from the device tree and ACPI */
3377 	of_register_spi_devices(ctlr);
3378 	acpi_register_spi_devices(ctlr);
3379 	return status;
3380 
3381 destroy_queue:
3382 	spi_destroy_queue(ctlr);
3383 free_bus_id:
3384 	mutex_lock(&board_lock);
3385 	idr_remove(&spi_master_idr, ctlr->bus_num);
3386 	mutex_unlock(&board_lock);
3387 	return status;
3388 }
3389 EXPORT_SYMBOL_GPL(spi_register_controller);
3390 
3391 static void devm_spi_unregister(struct device *dev, void *res)
3392 {
3393 	spi_unregister_controller(*(struct spi_controller **)res);
3394 }
3395 
3396 /**
3397  * devm_spi_register_controller - register managed SPI host or target
3398  *	controller
3399  * @dev:    device managing SPI controller
3400  * @ctlr: initialized controller, originally from spi_alloc_host() or
3401  *	spi_alloc_target()
3402  * Context: can sleep
3403  *
3404  * Register a SPI device as with spi_register_controller() which will
3405  * automatically be unregistered and freed.
3406  *
3407  * Return: zero on success, else a negative error code.
3408  */
3409 int devm_spi_register_controller(struct device *dev,
3410 				 struct spi_controller *ctlr)
3411 {
3412 	struct spi_controller **ptr;
3413 	int ret;
3414 
3415 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3416 	if (!ptr)
3417 		return -ENOMEM;
3418 
3419 	ret = spi_register_controller(ctlr);
3420 	if (!ret) {
3421 		*ptr = ctlr;
3422 		devres_add(dev, ptr);
3423 	} else {
3424 		devres_free(ptr);
3425 	}
3426 
3427 	return ret;
3428 }
3429 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3430 
3431 static int __unregister(struct device *dev, void *null)
3432 {
3433 	spi_unregister_device(to_spi_device(dev));
3434 	return 0;
3435 }
3436 
3437 /**
3438  * spi_unregister_controller - unregister SPI master or slave controller
3439  * @ctlr: the controller being unregistered
3440  * Context: can sleep
3441  *
3442  * This call is used only by SPI controller drivers, which are the
3443  * only ones directly touching chip registers.
3444  *
3445  * This must be called from context that can sleep.
3446  *
3447  * Note that this function also drops a reference to the controller.
3448  */
3449 void spi_unregister_controller(struct spi_controller *ctlr)
3450 {
3451 	struct spi_controller *found;
3452 	int id = ctlr->bus_num;
3453 
3454 	/* Prevent addition of new devices, unregister existing ones */
3455 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3456 		mutex_lock(&ctlr->add_lock);
3457 
3458 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3459 
3460 	/* First make sure that this controller was ever added */
3461 	mutex_lock(&board_lock);
3462 	found = idr_find(&spi_master_idr, id);
3463 	mutex_unlock(&board_lock);
3464 	if (ctlr->queued) {
3465 		if (spi_destroy_queue(ctlr))
3466 			dev_err(&ctlr->dev, "queue remove failed\n");
3467 	}
3468 	mutex_lock(&board_lock);
3469 	list_del(&ctlr->list);
3470 	mutex_unlock(&board_lock);
3471 
3472 	device_del(&ctlr->dev);
3473 
3474 	/* Free bus id */
3475 	mutex_lock(&board_lock);
3476 	if (found == ctlr)
3477 		idr_remove(&spi_master_idr, id);
3478 	mutex_unlock(&board_lock);
3479 
3480 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3481 		mutex_unlock(&ctlr->add_lock);
3482 
3483 	/*
3484 	 * Release the last reference on the controller if its driver
3485 	 * has not yet been converted to devm_spi_alloc_host/target().
3486 	 */
3487 	if (!ctlr->devm_allocated)
3488 		put_device(&ctlr->dev);
3489 }
3490 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3491 
3492 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3493 {
3494 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3495 }
3496 
3497 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3498 {
3499 	mutex_lock(&ctlr->bus_lock_mutex);
3500 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3501 	mutex_unlock(&ctlr->bus_lock_mutex);
3502 }
3503 
3504 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3505 {
3506 	mutex_lock(&ctlr->bus_lock_mutex);
3507 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3508 	mutex_unlock(&ctlr->bus_lock_mutex);
3509 }
3510 
3511 int spi_controller_suspend(struct spi_controller *ctlr)
3512 {
3513 	int ret = 0;
3514 
3515 	/* Basically no-ops for non-queued controllers */
3516 	if (ctlr->queued) {
3517 		ret = spi_stop_queue(ctlr);
3518 		if (ret)
3519 			dev_err(&ctlr->dev, "queue stop failed\n");
3520 	}
3521 
3522 	__spi_mark_suspended(ctlr);
3523 	return ret;
3524 }
3525 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3526 
3527 int spi_controller_resume(struct spi_controller *ctlr)
3528 {
3529 	int ret = 0;
3530 
3531 	__spi_mark_resumed(ctlr);
3532 
3533 	if (ctlr->queued) {
3534 		ret = spi_start_queue(ctlr);
3535 		if (ret)
3536 			dev_err(&ctlr->dev, "queue restart failed\n");
3537 	}
3538 	return ret;
3539 }
3540 EXPORT_SYMBOL_GPL(spi_controller_resume);
3541 
3542 /*-------------------------------------------------------------------------*/
3543 
3544 /* Core methods for spi_message alterations */
3545 
3546 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3547 					    struct spi_message *msg,
3548 					    void *res)
3549 {
3550 	struct spi_replaced_transfers *rxfer = res;
3551 	size_t i;
3552 
3553 	/* Call extra callback if requested */
3554 	if (rxfer->release)
3555 		rxfer->release(ctlr, msg, res);
3556 
3557 	/* Insert replaced transfers back into the message */
3558 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3559 
3560 	/* Remove the formerly inserted entries */
3561 	for (i = 0; i < rxfer->inserted; i++)
3562 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3563 }
3564 
3565 /**
3566  * spi_replace_transfers - replace transfers with several transfers
3567  *                         and register change with spi_message.resources
3568  * @msg:           the spi_message we work upon
3569  * @xfer_first:    the first spi_transfer we want to replace
3570  * @remove:        number of transfers to remove
3571  * @insert:        the number of transfers we want to insert instead
3572  * @release:       extra release code necessary in some circumstances
3573  * @extradatasize: extra data to allocate (with alignment guarantees
3574  *                 of struct @spi_transfer)
3575  * @gfp:           gfp flags
3576  *
3577  * Returns: pointer to @spi_replaced_transfers,
3578  *          PTR_ERR(...) in case of errors.
3579  */
3580 static struct spi_replaced_transfers *spi_replace_transfers(
3581 	struct spi_message *msg,
3582 	struct spi_transfer *xfer_first,
3583 	size_t remove,
3584 	size_t insert,
3585 	spi_replaced_release_t release,
3586 	size_t extradatasize,
3587 	gfp_t gfp)
3588 {
3589 	struct spi_replaced_transfers *rxfer;
3590 	struct spi_transfer *xfer;
3591 	size_t i;
3592 
3593 	/* Allocate the structure using spi_res */
3594 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3595 			      struct_size(rxfer, inserted_transfers, insert)
3596 			      + extradatasize,
3597 			      gfp);
3598 	if (!rxfer)
3599 		return ERR_PTR(-ENOMEM);
3600 
3601 	/* The release code to invoke before running the generic release */
3602 	rxfer->release = release;
3603 
3604 	/* Assign extradata */
3605 	if (extradatasize)
3606 		rxfer->extradata =
3607 			&rxfer->inserted_transfers[insert];
3608 
3609 	/* Init the replaced_transfers list */
3610 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3611 
3612 	/*
3613 	 * Assign the list_entry after which we should reinsert
3614 	 * the @replaced_transfers - it may be spi_message.messages!
3615 	 */
3616 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3617 
3618 	/* Remove the requested number of transfers */
3619 	for (i = 0; i < remove; i++) {
3620 		/*
3621 		 * If the entry after replaced_after it is msg->transfers
3622 		 * then we have been requested to remove more transfers
3623 		 * than are in the list.
3624 		 */
3625 		if (rxfer->replaced_after->next == &msg->transfers) {
3626 			dev_err(&msg->spi->dev,
3627 				"requested to remove more spi_transfers than are available\n");
3628 			/* Insert replaced transfers back into the message */
3629 			list_splice(&rxfer->replaced_transfers,
3630 				    rxfer->replaced_after);
3631 
3632 			/* Free the spi_replace_transfer structure... */
3633 			spi_res_free(rxfer);
3634 
3635 			/* ...and return with an error */
3636 			return ERR_PTR(-EINVAL);
3637 		}
3638 
3639 		/*
3640 		 * Remove the entry after replaced_after from list of
3641 		 * transfers and add it to list of replaced_transfers.
3642 		 */
3643 		list_move_tail(rxfer->replaced_after->next,
3644 			       &rxfer->replaced_transfers);
3645 	}
3646 
3647 	/*
3648 	 * Create copy of the given xfer with identical settings
3649 	 * based on the first transfer to get removed.
3650 	 */
3651 	for (i = 0; i < insert; i++) {
3652 		/* We need to run in reverse order */
3653 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3654 
3655 		/* Copy all spi_transfer data */
3656 		memcpy(xfer, xfer_first, sizeof(*xfer));
3657 
3658 		/* Add to list */
3659 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3660 
3661 		/* Clear cs_change and delay for all but the last */
3662 		if (i) {
3663 			xfer->cs_change = false;
3664 			xfer->delay.value = 0;
3665 		}
3666 	}
3667 
3668 	/* Set up inserted... */
3669 	rxfer->inserted = insert;
3670 
3671 	/* ...and register it with spi_res/spi_message */
3672 	spi_res_add(msg, rxfer);
3673 
3674 	return rxfer;
3675 }
3676 
3677 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3678 					struct spi_message *msg,
3679 					struct spi_transfer **xferp,
3680 					size_t maxsize)
3681 {
3682 	struct spi_transfer *xfer = *xferp, *xfers;
3683 	struct spi_replaced_transfers *srt;
3684 	size_t offset;
3685 	size_t count, i;
3686 
3687 	/* Calculate how many we have to replace */
3688 	count = DIV_ROUND_UP(xfer->len, maxsize);
3689 
3690 	/* Create replacement */
3691 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3692 	if (IS_ERR(srt))
3693 		return PTR_ERR(srt);
3694 	xfers = srt->inserted_transfers;
3695 
3696 	/*
3697 	 * Now handle each of those newly inserted spi_transfers.
3698 	 * Note that the replacements spi_transfers all are preset
3699 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3700 	 * are all identical (as well as most others)
3701 	 * so we just have to fix up len and the pointers.
3702 	 */
3703 
3704 	/*
3705 	 * The first transfer just needs the length modified, so we
3706 	 * run it outside the loop.
3707 	 */
3708 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3709 
3710 	/* All the others need rx_buf/tx_buf also set */
3711 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3712 		/* Update rx_buf, tx_buf and DMA */
3713 		if (xfers[i].rx_buf)
3714 			xfers[i].rx_buf += offset;
3715 		if (xfers[i].tx_buf)
3716 			xfers[i].tx_buf += offset;
3717 
3718 		/* Update length */
3719 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3720 	}
3721 
3722 	/*
3723 	 * We set up xferp to the last entry we have inserted,
3724 	 * so that we skip those already split transfers.
3725 	 */
3726 	*xferp = &xfers[count - 1];
3727 
3728 	/* Increment statistics counters */
3729 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3730 				       transfers_split_maxsize);
3731 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3732 				       transfers_split_maxsize);
3733 
3734 	return 0;
3735 }
3736 
3737 /**
3738  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3739  *                               when an individual transfer exceeds a
3740  *                               certain size
3741  * @ctlr:    the @spi_controller for this transfer
3742  * @msg:   the @spi_message to transform
3743  * @maxsize:  the maximum when to apply this
3744  *
3745  * This function allocates resources that are automatically freed during the
3746  * spi message unoptimize phase so this function should only be called from
3747  * optimize_message callbacks.
3748  *
3749  * Return: status of transformation
3750  */
3751 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3752 				struct spi_message *msg,
3753 				size_t maxsize)
3754 {
3755 	struct spi_transfer *xfer;
3756 	int ret;
3757 
3758 	/*
3759 	 * Iterate over the transfer_list,
3760 	 * but note that xfer is advanced to the last transfer inserted
3761 	 * to avoid checking sizes again unnecessarily (also xfer does
3762 	 * potentially belong to a different list by the time the
3763 	 * replacement has happened).
3764 	 */
3765 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3766 		if (xfer->len > maxsize) {
3767 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3768 							   maxsize);
3769 			if (ret)
3770 				return ret;
3771 		}
3772 	}
3773 
3774 	return 0;
3775 }
3776 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3777 
3778 
3779 /**
3780  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3781  *                                when an individual transfer exceeds a
3782  *                                certain number of SPI words
3783  * @ctlr:     the @spi_controller for this transfer
3784  * @msg:      the @spi_message to transform
3785  * @maxwords: the number of words to limit each transfer to
3786  *
3787  * This function allocates resources that are automatically freed during the
3788  * spi message unoptimize phase so this function should only be called from
3789  * optimize_message callbacks.
3790  *
3791  * Return: status of transformation
3792  */
3793 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3794 				 struct spi_message *msg,
3795 				 size_t maxwords)
3796 {
3797 	struct spi_transfer *xfer;
3798 
3799 	/*
3800 	 * Iterate over the transfer_list,
3801 	 * but note that xfer is advanced to the last transfer inserted
3802 	 * to avoid checking sizes again unnecessarily (also xfer does
3803 	 * potentially belong to a different list by the time the
3804 	 * replacement has happened).
3805 	 */
3806 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3807 		size_t maxsize;
3808 		int ret;
3809 
3810 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3811 		if (xfer->len > maxsize) {
3812 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3813 							   maxsize);
3814 			if (ret)
3815 				return ret;
3816 		}
3817 	}
3818 
3819 	return 0;
3820 }
3821 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3822 
3823 /*-------------------------------------------------------------------------*/
3824 
3825 /*
3826  * Core methods for SPI controller protocol drivers. Some of the
3827  * other core methods are currently defined as inline functions.
3828  */
3829 
3830 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3831 					u8 bits_per_word)
3832 {
3833 	if (ctlr->bits_per_word_mask) {
3834 		/* Only 32 bits fit in the mask */
3835 		if (bits_per_word > 32)
3836 			return -EINVAL;
3837 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3838 			return -EINVAL;
3839 	}
3840 
3841 	return 0;
3842 }
3843 
3844 /**
3845  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3846  * @spi: the device that requires specific CS timing configuration
3847  *
3848  * Return: zero on success, else a negative error code.
3849  */
3850 static int spi_set_cs_timing(struct spi_device *spi)
3851 {
3852 	struct device *parent = spi->controller->dev.parent;
3853 	int status = 0;
3854 
3855 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3856 		if (spi->controller->auto_runtime_pm) {
3857 			status = pm_runtime_get_sync(parent);
3858 			if (status < 0) {
3859 				pm_runtime_put_noidle(parent);
3860 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3861 					status);
3862 				return status;
3863 			}
3864 
3865 			status = spi->controller->set_cs_timing(spi);
3866 			pm_runtime_mark_last_busy(parent);
3867 			pm_runtime_put_autosuspend(parent);
3868 		} else {
3869 			status = spi->controller->set_cs_timing(spi);
3870 		}
3871 	}
3872 	return status;
3873 }
3874 
3875 /**
3876  * spi_setup - setup SPI mode and clock rate
3877  * @spi: the device whose settings are being modified
3878  * Context: can sleep, and no requests are queued to the device
3879  *
3880  * SPI protocol drivers may need to update the transfer mode if the
3881  * device doesn't work with its default.  They may likewise need
3882  * to update clock rates or word sizes from initial values.  This function
3883  * changes those settings, and must be called from a context that can sleep.
3884  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3885  * effect the next time the device is selected and data is transferred to
3886  * or from it.  When this function returns, the SPI device is deselected.
3887  *
3888  * Note that this call will fail if the protocol driver specifies an option
3889  * that the underlying controller or its driver does not support.  For
3890  * example, not all hardware supports wire transfers using nine bit words,
3891  * LSB-first wire encoding, or active-high chipselects.
3892  *
3893  * Return: zero on success, else a negative error code.
3894  */
3895 int spi_setup(struct spi_device *spi)
3896 {
3897 	unsigned	bad_bits, ugly_bits;
3898 	int		status;
3899 
3900 	/*
3901 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3902 	 * are set at the same time.
3903 	 */
3904 	if ((hweight_long(spi->mode &
3905 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3906 	    (hweight_long(spi->mode &
3907 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3908 		dev_err(&spi->dev,
3909 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3910 		return -EINVAL;
3911 	}
3912 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3913 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3914 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3915 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3916 		return -EINVAL;
3917 	/* Check against conflicting MOSI idle configuration */
3918 	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3919 		dev_err(&spi->dev,
3920 			"setup: MOSI configured to idle low and high at the same time.\n");
3921 		return -EINVAL;
3922 	}
3923 	/*
3924 	 * Help drivers fail *cleanly* when they need options
3925 	 * that aren't supported with their current controller.
3926 	 * SPI_CS_WORD has a fallback software implementation,
3927 	 * so it is ignored here.
3928 	 */
3929 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3930 				 SPI_NO_TX | SPI_NO_RX);
3931 	ugly_bits = bad_bits &
3932 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3933 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3934 	if (ugly_bits) {
3935 		dev_warn(&spi->dev,
3936 			 "setup: ignoring unsupported mode bits %x\n",
3937 			 ugly_bits);
3938 		spi->mode &= ~ugly_bits;
3939 		bad_bits &= ~ugly_bits;
3940 	}
3941 	if (bad_bits) {
3942 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3943 			bad_bits);
3944 		return -EINVAL;
3945 	}
3946 
3947 	if (!spi->bits_per_word) {
3948 		spi->bits_per_word = 8;
3949 	} else {
3950 		/*
3951 		 * Some controllers may not support the default 8 bits-per-word
3952 		 * so only perform the check when this is explicitly provided.
3953 		 */
3954 		status = __spi_validate_bits_per_word(spi->controller,
3955 						      spi->bits_per_word);
3956 		if (status)
3957 			return status;
3958 	}
3959 
3960 	if (spi->controller->max_speed_hz &&
3961 	    (!spi->max_speed_hz ||
3962 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3963 		spi->max_speed_hz = spi->controller->max_speed_hz;
3964 
3965 	mutex_lock(&spi->controller->io_mutex);
3966 
3967 	if (spi->controller->setup) {
3968 		status = spi->controller->setup(spi);
3969 		if (status) {
3970 			mutex_unlock(&spi->controller->io_mutex);
3971 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3972 				status);
3973 			return status;
3974 		}
3975 	}
3976 
3977 	status = spi_set_cs_timing(spi);
3978 	if (status) {
3979 		mutex_unlock(&spi->controller->io_mutex);
3980 		return status;
3981 	}
3982 
3983 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3984 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3985 		if (status < 0) {
3986 			mutex_unlock(&spi->controller->io_mutex);
3987 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3988 				status);
3989 			return status;
3990 		}
3991 
3992 		/*
3993 		 * We do not want to return positive value from pm_runtime_get,
3994 		 * there are many instances of devices calling spi_setup() and
3995 		 * checking for a non-zero return value instead of a negative
3996 		 * return value.
3997 		 */
3998 		status = 0;
3999 
4000 		spi_set_cs(spi, false, true);
4001 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4002 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4003 	} else {
4004 		spi_set_cs(spi, false, true);
4005 	}
4006 
4007 	mutex_unlock(&spi->controller->io_mutex);
4008 
4009 	if (spi->rt && !spi->controller->rt) {
4010 		spi->controller->rt = true;
4011 		spi_set_thread_rt(spi->controller);
4012 	}
4013 
4014 	trace_spi_setup(spi, status);
4015 
4016 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4017 			spi->mode & SPI_MODE_X_MASK,
4018 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4019 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4020 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4021 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4022 			spi->bits_per_word, spi->max_speed_hz,
4023 			status);
4024 
4025 	return status;
4026 }
4027 EXPORT_SYMBOL_GPL(spi_setup);
4028 
4029 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4030 				       struct spi_device *spi)
4031 {
4032 	int delay1, delay2;
4033 
4034 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4035 	if (delay1 < 0)
4036 		return delay1;
4037 
4038 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4039 	if (delay2 < 0)
4040 		return delay2;
4041 
4042 	if (delay1 < delay2)
4043 		memcpy(&xfer->word_delay, &spi->word_delay,
4044 		       sizeof(xfer->word_delay));
4045 
4046 	return 0;
4047 }
4048 
4049 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4050 {
4051 	struct spi_controller *ctlr = spi->controller;
4052 	struct spi_transfer *xfer;
4053 	int w_size;
4054 
4055 	if (list_empty(&message->transfers))
4056 		return -EINVAL;
4057 
4058 	message->spi = spi;
4059 
4060 	/*
4061 	 * Half-duplex links include original MicroWire, and ones with
4062 	 * only one data pin like SPI_3WIRE (switches direction) or where
4063 	 * either MOSI or MISO is missing.  They can also be caused by
4064 	 * software limitations.
4065 	 */
4066 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4067 	    (spi->mode & SPI_3WIRE)) {
4068 		unsigned flags = ctlr->flags;
4069 
4070 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4071 			if (xfer->rx_buf && xfer->tx_buf)
4072 				return -EINVAL;
4073 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4074 				return -EINVAL;
4075 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4076 				return -EINVAL;
4077 		}
4078 	}
4079 
4080 	/*
4081 	 * Set transfer bits_per_word and max speed as spi device default if
4082 	 * it is not set for this transfer.
4083 	 * Set transfer tx_nbits and rx_nbits as single transfer default
4084 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4085 	 * Ensure transfer word_delay is at least as long as that required by
4086 	 * device itself.
4087 	 */
4088 	message->frame_length = 0;
4089 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4090 		xfer->effective_speed_hz = 0;
4091 		message->frame_length += xfer->len;
4092 		if (!xfer->bits_per_word)
4093 			xfer->bits_per_word = spi->bits_per_word;
4094 
4095 		if (!xfer->speed_hz)
4096 			xfer->speed_hz = spi->max_speed_hz;
4097 
4098 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4099 			xfer->speed_hz = ctlr->max_speed_hz;
4100 
4101 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4102 			return -EINVAL;
4103 
4104 		/*
4105 		 * SPI transfer length should be multiple of SPI word size
4106 		 * where SPI word size should be power-of-two multiple.
4107 		 */
4108 		if (xfer->bits_per_word <= 8)
4109 			w_size = 1;
4110 		else if (xfer->bits_per_word <= 16)
4111 			w_size = 2;
4112 		else
4113 			w_size = 4;
4114 
4115 		/* No partial transfers accepted */
4116 		if (xfer->len % w_size)
4117 			return -EINVAL;
4118 
4119 		if (xfer->speed_hz && ctlr->min_speed_hz &&
4120 		    xfer->speed_hz < ctlr->min_speed_hz)
4121 			return -EINVAL;
4122 
4123 		if (xfer->tx_buf && !xfer->tx_nbits)
4124 			xfer->tx_nbits = SPI_NBITS_SINGLE;
4125 		if (xfer->rx_buf && !xfer->rx_nbits)
4126 			xfer->rx_nbits = SPI_NBITS_SINGLE;
4127 		/*
4128 		 * Check transfer tx/rx_nbits:
4129 		 * 1. check the value matches one of single, dual and quad
4130 		 * 2. check tx/rx_nbits match the mode in spi_device
4131 		 */
4132 		if (xfer->tx_buf) {
4133 			if (spi->mode & SPI_NO_TX)
4134 				return -EINVAL;
4135 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4136 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4137 				xfer->tx_nbits != SPI_NBITS_QUAD &&
4138 				xfer->tx_nbits != SPI_NBITS_OCTAL)
4139 				return -EINVAL;
4140 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4141 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4142 				return -EINVAL;
4143 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4144 				!(spi->mode & SPI_TX_QUAD))
4145 				return -EINVAL;
4146 		}
4147 		/* Check transfer rx_nbits */
4148 		if (xfer->rx_buf) {
4149 			if (spi->mode & SPI_NO_RX)
4150 				return -EINVAL;
4151 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4152 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4153 				xfer->rx_nbits != SPI_NBITS_QUAD &&
4154 				xfer->rx_nbits != SPI_NBITS_OCTAL)
4155 				return -EINVAL;
4156 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4157 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4158 				return -EINVAL;
4159 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4160 				!(spi->mode & SPI_RX_QUAD))
4161 				return -EINVAL;
4162 		}
4163 
4164 		if (_spi_xfer_word_delay_update(xfer, spi))
4165 			return -EINVAL;
4166 	}
4167 
4168 	message->status = -EINPROGRESS;
4169 
4170 	return 0;
4171 }
4172 
4173 /*
4174  * spi_split_transfers - generic handling of transfer splitting
4175  * @msg: the message to split
4176  *
4177  * Under certain conditions, a SPI controller may not support arbitrary
4178  * transfer sizes or other features required by a peripheral. This function
4179  * will split the transfers in the message into smaller transfers that are
4180  * supported by the controller.
4181  *
4182  * Controllers with special requirements not covered here can also split
4183  * transfers in the optimize_message() callback.
4184  *
4185  * Context: can sleep
4186  * Return: zero on success, else a negative error code
4187  */
4188 static int spi_split_transfers(struct spi_message *msg)
4189 {
4190 	struct spi_controller *ctlr = msg->spi->controller;
4191 	struct spi_transfer *xfer;
4192 	int ret;
4193 
4194 	/*
4195 	 * If an SPI controller does not support toggling the CS line on each
4196 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4197 	 * for the CS line, we can emulate the CS-per-word hardware function by
4198 	 * splitting transfers into one-word transfers and ensuring that
4199 	 * cs_change is set for each transfer.
4200 	 */
4201 	if ((msg->spi->mode & SPI_CS_WORD) &&
4202 	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4203 		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4204 		if (ret)
4205 			return ret;
4206 
4207 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4208 			/* Don't change cs_change on the last entry in the list */
4209 			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4210 				break;
4211 
4212 			xfer->cs_change = 1;
4213 		}
4214 	} else {
4215 		ret = spi_split_transfers_maxsize(ctlr, msg,
4216 						  spi_max_transfer_size(msg->spi));
4217 		if (ret)
4218 			return ret;
4219 	}
4220 
4221 	return 0;
4222 }
4223 
4224 /*
4225  * __spi_optimize_message - shared implementation for spi_optimize_message()
4226  *                          and spi_maybe_optimize_message()
4227  * @spi: the device that will be used for the message
4228  * @msg: the message to optimize
4229  *
4230  * Peripheral drivers will call spi_optimize_message() and the spi core will
4231  * call spi_maybe_optimize_message() instead of calling this directly.
4232  *
4233  * It is not valid to call this on a message that has already been optimized.
4234  *
4235  * Return: zero on success, else a negative error code
4236  */
4237 static int __spi_optimize_message(struct spi_device *spi,
4238 				  struct spi_message *msg)
4239 {
4240 	struct spi_controller *ctlr = spi->controller;
4241 	int ret;
4242 
4243 	ret = __spi_validate(spi, msg);
4244 	if (ret)
4245 		return ret;
4246 
4247 	ret = spi_split_transfers(msg);
4248 	if (ret)
4249 		return ret;
4250 
4251 	if (ctlr->optimize_message) {
4252 		ret = ctlr->optimize_message(msg);
4253 		if (ret) {
4254 			spi_res_release(ctlr, msg);
4255 			return ret;
4256 		}
4257 	}
4258 
4259 	msg->optimized = true;
4260 
4261 	return 0;
4262 }
4263 
4264 /*
4265  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4266  * @spi: the device that will be used for the message
4267  * @msg: the message to optimize
4268  * Return: zero on success, else a negative error code
4269  */
4270 static int spi_maybe_optimize_message(struct spi_device *spi,
4271 				      struct spi_message *msg)
4272 {
4273 	if (spi->controller->defer_optimize_message) {
4274 		msg->spi = spi;
4275 		return 0;
4276 	}
4277 
4278 	if (msg->pre_optimized)
4279 		return 0;
4280 
4281 	return __spi_optimize_message(spi, msg);
4282 }
4283 
4284 /**
4285  * spi_optimize_message - do any one-time validation and setup for a SPI message
4286  * @spi: the device that will be used for the message
4287  * @msg: the message to optimize
4288  *
4289  * Peripheral drivers that reuse the same message repeatedly may call this to
4290  * perform as much message prep as possible once, rather than repeating it each
4291  * time a message transfer is performed to improve throughput and reduce CPU
4292  * usage.
4293  *
4294  * Once a message has been optimized, it cannot be modified with the exception
4295  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296  * only the data in the memory it points to).
4297  *
4298  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299  * to avoid leaking resources.
4300  *
4301  * Context: can sleep
4302  * Return: zero on success, else a negative error code
4303  */
4304 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305 {
4306 	int ret;
4307 
4308 	/*
4309 	 * Pre-optimization is not supported and optimization is deferred e.g.
4310 	 * when using spi-mux.
4311 	 */
4312 	if (spi->controller->defer_optimize_message)
4313 		return 0;
4314 
4315 	ret = __spi_optimize_message(spi, msg);
4316 	if (ret)
4317 		return ret;
4318 
4319 	/*
4320 	 * This flag indicates that the peripheral driver called spi_optimize_message()
4321 	 * and therefore we shouldn't unoptimize message automatically when finalizing
4322 	 * the message but rather wait until spi_unoptimize_message() is called
4323 	 * by the peripheral driver.
4324 	 */
4325 	msg->pre_optimized = true;
4326 
4327 	return 0;
4328 }
4329 EXPORT_SYMBOL_GPL(spi_optimize_message);
4330 
4331 /**
4332  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4333  * @msg: the message to unoptimize
4334  *
4335  * Calls to this function must be balanced with calls to spi_optimize_message().
4336  *
4337  * Context: can sleep
4338  */
4339 void spi_unoptimize_message(struct spi_message *msg)
4340 {
4341 	if (msg->spi->controller->defer_optimize_message)
4342 		return;
4343 
4344 	__spi_unoptimize_message(msg);
4345 	msg->pre_optimized = false;
4346 }
4347 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4348 
4349 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4350 {
4351 	struct spi_controller *ctlr = spi->controller;
4352 	struct spi_transfer *xfer;
4353 
4354 	/*
4355 	 * Some controllers do not support doing regular SPI transfers. Return
4356 	 * ENOTSUPP when this is the case.
4357 	 */
4358 	if (!ctlr->transfer)
4359 		return -ENOTSUPP;
4360 
4361 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4362 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4363 
4364 	trace_spi_message_submit(message);
4365 
4366 	if (!ctlr->ptp_sts_supported) {
4367 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4368 			xfer->ptp_sts_word_pre = 0;
4369 			ptp_read_system_prets(xfer->ptp_sts);
4370 		}
4371 	}
4372 
4373 	return ctlr->transfer(spi, message);
4374 }
4375 
4376 static void devm_spi_unoptimize_message(void *msg)
4377 {
4378 	spi_unoptimize_message(msg);
4379 }
4380 
4381 /**
4382  * devm_spi_optimize_message - managed version of spi_optimize_message()
4383  * @dev: the device that manages @msg (usually @spi->dev)
4384  * @spi: the device that will be used for the message
4385  * @msg: the message to optimize
4386  * Return: zero on success, else a negative error code
4387  *
4388  * spi_unoptimize_message() will automatically be called when the device is
4389  * removed.
4390  */
4391 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4392 			      struct spi_message *msg)
4393 {
4394 	int ret;
4395 
4396 	ret = spi_optimize_message(spi, msg);
4397 	if (ret)
4398 		return ret;
4399 
4400 	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4401 }
4402 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4403 
4404 /**
4405  * spi_async - asynchronous SPI transfer
4406  * @spi: device with which data will be exchanged
4407  * @message: describes the data transfers, including completion callback
4408  * Context: any (IRQs may be blocked, etc)
4409  *
4410  * This call may be used in_irq and other contexts which can't sleep,
4411  * as well as from task contexts which can sleep.
4412  *
4413  * The completion callback is invoked in a context which can't sleep.
4414  * Before that invocation, the value of message->status is undefined.
4415  * When the callback is issued, message->status holds either zero (to
4416  * indicate complete success) or a negative error code.  After that
4417  * callback returns, the driver which issued the transfer request may
4418  * deallocate the associated memory; it's no longer in use by any SPI
4419  * core or controller driver code.
4420  *
4421  * Note that although all messages to a spi_device are handled in
4422  * FIFO order, messages may go to different devices in other orders.
4423  * Some device might be higher priority, or have various "hard" access
4424  * time requirements, for example.
4425  *
4426  * On detection of any fault during the transfer, processing of
4427  * the entire message is aborted, and the device is deselected.
4428  * Until returning from the associated message completion callback,
4429  * no other spi_message queued to that device will be processed.
4430  * (This rule applies equally to all the synchronous transfer calls,
4431  * which are wrappers around this core asynchronous primitive.)
4432  *
4433  * Return: zero on success, else a negative error code.
4434  */
4435 int spi_async(struct spi_device *spi, struct spi_message *message)
4436 {
4437 	struct spi_controller *ctlr = spi->controller;
4438 	int ret;
4439 	unsigned long flags;
4440 
4441 	ret = spi_maybe_optimize_message(spi, message);
4442 	if (ret)
4443 		return ret;
4444 
4445 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4446 
4447 	if (ctlr->bus_lock_flag)
4448 		ret = -EBUSY;
4449 	else
4450 		ret = __spi_async(spi, message);
4451 
4452 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4453 
4454 	return ret;
4455 }
4456 EXPORT_SYMBOL_GPL(spi_async);
4457 
4458 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4459 {
4460 	bool was_busy;
4461 	int ret;
4462 
4463 	mutex_lock(&ctlr->io_mutex);
4464 
4465 	was_busy = ctlr->busy;
4466 
4467 	ctlr->cur_msg = msg;
4468 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4469 	if (ret)
4470 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4471 	ctlr->cur_msg = NULL;
4472 	ctlr->fallback = false;
4473 
4474 	if (!was_busy) {
4475 		kfree(ctlr->dummy_rx);
4476 		ctlr->dummy_rx = NULL;
4477 		kfree(ctlr->dummy_tx);
4478 		ctlr->dummy_tx = NULL;
4479 		if (ctlr->unprepare_transfer_hardware &&
4480 		    ctlr->unprepare_transfer_hardware(ctlr))
4481 			dev_err(&ctlr->dev,
4482 				"failed to unprepare transfer hardware\n");
4483 		spi_idle_runtime_pm(ctlr);
4484 	}
4485 
4486 	mutex_unlock(&ctlr->io_mutex);
4487 }
4488 
4489 /*-------------------------------------------------------------------------*/
4490 
4491 /*
4492  * Utility methods for SPI protocol drivers, layered on
4493  * top of the core.  Some other utility methods are defined as
4494  * inline functions.
4495  */
4496 
4497 static void spi_complete(void *arg)
4498 {
4499 	complete(arg);
4500 }
4501 
4502 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4503 {
4504 	DECLARE_COMPLETION_ONSTACK(done);
4505 	unsigned long flags;
4506 	int status;
4507 	struct spi_controller *ctlr = spi->controller;
4508 
4509 	if (__spi_check_suspended(ctlr)) {
4510 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4511 		return -ESHUTDOWN;
4512 	}
4513 
4514 	status = spi_maybe_optimize_message(spi, message);
4515 	if (status)
4516 		return status;
4517 
4518 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4519 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4520 
4521 	/*
4522 	 * Checking queue_empty here only guarantees async/sync message
4523 	 * ordering when coming from the same context. It does not need to
4524 	 * guard against reentrancy from a different context. The io_mutex
4525 	 * will catch those cases.
4526 	 */
4527 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4528 		message->actual_length = 0;
4529 		message->status = -EINPROGRESS;
4530 
4531 		trace_spi_message_submit(message);
4532 
4533 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4534 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4535 
4536 		__spi_transfer_message_noqueue(ctlr, message);
4537 
4538 		return message->status;
4539 	}
4540 
4541 	/*
4542 	 * There are messages in the async queue that could have originated
4543 	 * from the same context, so we need to preserve ordering.
4544 	 * Therefor we send the message to the async queue and wait until they
4545 	 * are completed.
4546 	 */
4547 	message->complete = spi_complete;
4548 	message->context = &done;
4549 
4550 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4551 	status = __spi_async(spi, message);
4552 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4553 
4554 	if (status == 0) {
4555 		wait_for_completion(&done);
4556 		status = message->status;
4557 	}
4558 	message->complete = NULL;
4559 	message->context = NULL;
4560 
4561 	return status;
4562 }
4563 
4564 /**
4565  * spi_sync - blocking/synchronous SPI data transfers
4566  * @spi: device with which data will be exchanged
4567  * @message: describes the data transfers
4568  * Context: can sleep
4569  *
4570  * This call may only be used from a context that may sleep.  The sleep
4571  * is non-interruptible, and has no timeout.  Low-overhead controller
4572  * drivers may DMA directly into and out of the message buffers.
4573  *
4574  * Note that the SPI device's chip select is active during the message,
4575  * and then is normally disabled between messages.  Drivers for some
4576  * frequently-used devices may want to minimize costs of selecting a chip,
4577  * by leaving it selected in anticipation that the next message will go
4578  * to the same chip.  (That may increase power usage.)
4579  *
4580  * Also, the caller is guaranteeing that the memory associated with the
4581  * message will not be freed before this call returns.
4582  *
4583  * Return: zero on success, else a negative error code.
4584  */
4585 int spi_sync(struct spi_device *spi, struct spi_message *message)
4586 {
4587 	int ret;
4588 
4589 	mutex_lock(&spi->controller->bus_lock_mutex);
4590 	ret = __spi_sync(spi, message);
4591 	mutex_unlock(&spi->controller->bus_lock_mutex);
4592 
4593 	return ret;
4594 }
4595 EXPORT_SYMBOL_GPL(spi_sync);
4596 
4597 /**
4598  * spi_sync_locked - version of spi_sync with exclusive bus usage
4599  * @spi: device with which data will be exchanged
4600  * @message: describes the data transfers
4601  * Context: can sleep
4602  *
4603  * This call may only be used from a context that may sleep.  The sleep
4604  * is non-interruptible, and has no timeout.  Low-overhead controller
4605  * drivers may DMA directly into and out of the message buffers.
4606  *
4607  * This call should be used by drivers that require exclusive access to the
4608  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4609  * be released by a spi_bus_unlock call when the exclusive access is over.
4610  *
4611  * Return: zero on success, else a negative error code.
4612  */
4613 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4614 {
4615 	return __spi_sync(spi, message);
4616 }
4617 EXPORT_SYMBOL_GPL(spi_sync_locked);
4618 
4619 /**
4620  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4621  * @ctlr: SPI bus master that should be locked for exclusive bus access
4622  * Context: can sleep
4623  *
4624  * This call may only be used from a context that may sleep.  The sleep
4625  * is non-interruptible, and has no timeout.
4626  *
4627  * This call should be used by drivers that require exclusive access to the
4628  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4629  * exclusive access is over. Data transfer must be done by spi_sync_locked
4630  * and spi_async_locked calls when the SPI bus lock is held.
4631  *
4632  * Return: always zero.
4633  */
4634 int spi_bus_lock(struct spi_controller *ctlr)
4635 {
4636 	unsigned long flags;
4637 
4638 	mutex_lock(&ctlr->bus_lock_mutex);
4639 
4640 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4641 	ctlr->bus_lock_flag = 1;
4642 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4643 
4644 	/* Mutex remains locked until spi_bus_unlock() is called */
4645 
4646 	return 0;
4647 }
4648 EXPORT_SYMBOL_GPL(spi_bus_lock);
4649 
4650 /**
4651  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4652  * @ctlr: SPI bus master that was locked for exclusive bus access
4653  * Context: can sleep
4654  *
4655  * This call may only be used from a context that may sleep.  The sleep
4656  * is non-interruptible, and has no timeout.
4657  *
4658  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4659  * call.
4660  *
4661  * Return: always zero.
4662  */
4663 int spi_bus_unlock(struct spi_controller *ctlr)
4664 {
4665 	ctlr->bus_lock_flag = 0;
4666 
4667 	mutex_unlock(&ctlr->bus_lock_mutex);
4668 
4669 	return 0;
4670 }
4671 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4672 
4673 /* Portable code must never pass more than 32 bytes */
4674 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4675 
4676 static u8	*buf;
4677 
4678 /**
4679  * spi_write_then_read - SPI synchronous write followed by read
4680  * @spi: device with which data will be exchanged
4681  * @txbuf: data to be written (need not be DMA-safe)
4682  * @n_tx: size of txbuf, in bytes
4683  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4684  * @n_rx: size of rxbuf, in bytes
4685  * Context: can sleep
4686  *
4687  * This performs a half duplex MicroWire style transaction with the
4688  * device, sending txbuf and then reading rxbuf.  The return value
4689  * is zero for success, else a negative errno status code.
4690  * This call may only be used from a context that may sleep.
4691  *
4692  * Parameters to this routine are always copied using a small buffer.
4693  * Performance-sensitive or bulk transfer code should instead use
4694  * spi_{async,sync}() calls with DMA-safe buffers.
4695  *
4696  * Return: zero on success, else a negative error code.
4697  */
4698 int spi_write_then_read(struct spi_device *spi,
4699 		const void *txbuf, unsigned n_tx,
4700 		void *rxbuf, unsigned n_rx)
4701 {
4702 	static DEFINE_MUTEX(lock);
4703 
4704 	int			status;
4705 	struct spi_message	message;
4706 	struct spi_transfer	x[2];
4707 	u8			*local_buf;
4708 
4709 	/*
4710 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4711 	 * copying here, (as a pure convenience thing), but we can
4712 	 * keep heap costs out of the hot path unless someone else is
4713 	 * using the pre-allocated buffer or the transfer is too large.
4714 	 */
4715 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4716 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4717 				    GFP_KERNEL | GFP_DMA);
4718 		if (!local_buf)
4719 			return -ENOMEM;
4720 	} else {
4721 		local_buf = buf;
4722 	}
4723 
4724 	spi_message_init(&message);
4725 	memset(x, 0, sizeof(x));
4726 	if (n_tx) {
4727 		x[0].len = n_tx;
4728 		spi_message_add_tail(&x[0], &message);
4729 	}
4730 	if (n_rx) {
4731 		x[1].len = n_rx;
4732 		spi_message_add_tail(&x[1], &message);
4733 	}
4734 
4735 	memcpy(local_buf, txbuf, n_tx);
4736 	x[0].tx_buf = local_buf;
4737 	x[1].rx_buf = local_buf + n_tx;
4738 
4739 	/* Do the I/O */
4740 	status = spi_sync(spi, &message);
4741 	if (status == 0)
4742 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4743 
4744 	if (x[0].tx_buf == buf)
4745 		mutex_unlock(&lock);
4746 	else
4747 		kfree(local_buf);
4748 
4749 	return status;
4750 }
4751 EXPORT_SYMBOL_GPL(spi_write_then_read);
4752 
4753 /*-------------------------------------------------------------------------*/
4754 
4755 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4756 /* Must call put_device() when done with returned spi_device device */
4757 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4758 {
4759 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4760 
4761 	return dev ? to_spi_device(dev) : NULL;
4762 }
4763 
4764 /* The spi controllers are not using spi_bus, so we find it with another way */
4765 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4766 {
4767 	struct device *dev;
4768 
4769 	dev = class_find_device_by_of_node(&spi_master_class, node);
4770 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4771 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4772 	if (!dev)
4773 		return NULL;
4774 
4775 	/* Reference got in class_find_device */
4776 	return container_of(dev, struct spi_controller, dev);
4777 }
4778 
4779 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4780 			 void *arg)
4781 {
4782 	struct of_reconfig_data *rd = arg;
4783 	struct spi_controller *ctlr;
4784 	struct spi_device *spi;
4785 
4786 	switch (of_reconfig_get_state_change(action, arg)) {
4787 	case OF_RECONFIG_CHANGE_ADD:
4788 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4789 		if (ctlr == NULL)
4790 			return NOTIFY_OK;	/* Not for us */
4791 
4792 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4793 			put_device(&ctlr->dev);
4794 			return NOTIFY_OK;
4795 		}
4796 
4797 		/*
4798 		 * Clear the flag before adding the device so that fw_devlink
4799 		 * doesn't skip adding consumers to this device.
4800 		 */
4801 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4802 		spi = of_register_spi_device(ctlr, rd->dn);
4803 		put_device(&ctlr->dev);
4804 
4805 		if (IS_ERR(spi)) {
4806 			pr_err("%s: failed to create for '%pOF'\n",
4807 					__func__, rd->dn);
4808 			of_node_clear_flag(rd->dn, OF_POPULATED);
4809 			return notifier_from_errno(PTR_ERR(spi));
4810 		}
4811 		break;
4812 
4813 	case OF_RECONFIG_CHANGE_REMOVE:
4814 		/* Already depopulated? */
4815 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4816 			return NOTIFY_OK;
4817 
4818 		/* Find our device by node */
4819 		spi = of_find_spi_device_by_node(rd->dn);
4820 		if (spi == NULL)
4821 			return NOTIFY_OK;	/* No? not meant for us */
4822 
4823 		/* Unregister takes one ref away */
4824 		spi_unregister_device(spi);
4825 
4826 		/* And put the reference of the find */
4827 		put_device(&spi->dev);
4828 		break;
4829 	}
4830 
4831 	return NOTIFY_OK;
4832 }
4833 
4834 static struct notifier_block spi_of_notifier = {
4835 	.notifier_call = of_spi_notify,
4836 };
4837 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4838 extern struct notifier_block spi_of_notifier;
4839 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4840 
4841 #if IS_ENABLED(CONFIG_ACPI)
4842 static int spi_acpi_controller_match(struct device *dev, const void *data)
4843 {
4844 	return ACPI_COMPANION(dev->parent) == data;
4845 }
4846 
4847 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4848 {
4849 	struct device *dev;
4850 
4851 	dev = class_find_device(&spi_master_class, NULL, adev,
4852 				spi_acpi_controller_match);
4853 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4854 		dev = class_find_device(&spi_slave_class, NULL, adev,
4855 					spi_acpi_controller_match);
4856 	if (!dev)
4857 		return NULL;
4858 
4859 	return container_of(dev, struct spi_controller, dev);
4860 }
4861 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4862 
4863 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4864 {
4865 	struct device *dev;
4866 
4867 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4868 	return to_spi_device(dev);
4869 }
4870 
4871 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4872 			   void *arg)
4873 {
4874 	struct acpi_device *adev = arg;
4875 	struct spi_controller *ctlr;
4876 	struct spi_device *spi;
4877 
4878 	switch (value) {
4879 	case ACPI_RECONFIG_DEVICE_ADD:
4880 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4881 		if (!ctlr)
4882 			break;
4883 
4884 		acpi_register_spi_device(ctlr, adev);
4885 		put_device(&ctlr->dev);
4886 		break;
4887 	case ACPI_RECONFIG_DEVICE_REMOVE:
4888 		if (!acpi_device_enumerated(adev))
4889 			break;
4890 
4891 		spi = acpi_spi_find_device_by_adev(adev);
4892 		if (!spi)
4893 			break;
4894 
4895 		spi_unregister_device(spi);
4896 		put_device(&spi->dev);
4897 		break;
4898 	}
4899 
4900 	return NOTIFY_OK;
4901 }
4902 
4903 static struct notifier_block spi_acpi_notifier = {
4904 	.notifier_call = acpi_spi_notify,
4905 };
4906 #else
4907 extern struct notifier_block spi_acpi_notifier;
4908 #endif
4909 
4910 static int __init spi_init(void)
4911 {
4912 	int	status;
4913 
4914 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4915 	if (!buf) {
4916 		status = -ENOMEM;
4917 		goto err0;
4918 	}
4919 
4920 	status = bus_register(&spi_bus_type);
4921 	if (status < 0)
4922 		goto err1;
4923 
4924 	status = class_register(&spi_master_class);
4925 	if (status < 0)
4926 		goto err2;
4927 
4928 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4929 		status = class_register(&spi_slave_class);
4930 		if (status < 0)
4931 			goto err3;
4932 	}
4933 
4934 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4935 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4936 	if (IS_ENABLED(CONFIG_ACPI))
4937 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4938 
4939 	return 0;
4940 
4941 err3:
4942 	class_unregister(&spi_master_class);
4943 err2:
4944 	bus_unregister(&spi_bus_type);
4945 err1:
4946 	kfree(buf);
4947 	buf = NULL;
4948 err0:
4949 	return status;
4950 }
4951 
4952 /*
4953  * A board_info is normally registered in arch_initcall(),
4954  * but even essential drivers wait till later.
4955  *
4956  * REVISIT only boardinfo really needs static linking. The rest (device and
4957  * driver registration) _could_ be dynamically linked (modular) ... Costs
4958  * include needing to have boardinfo data structures be much more public.
4959  */
4960 postcore_initcall(spi_init);
4961