1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 514 spin_lock_init(&spi->statistics.lock); 515 516 device_initialize(&spi->dev); 517 return spi; 518 } 519 EXPORT_SYMBOL_GPL(spi_alloc_device); 520 521 static void spi_dev_set_name(struct spi_device *spi) 522 { 523 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 524 525 if (adev) { 526 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 527 return; 528 } 529 530 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 531 spi->chip_select); 532 } 533 534 static int spi_dev_check(struct device *dev, void *data) 535 { 536 struct spi_device *spi = to_spi_device(dev); 537 struct spi_device *new_spi = data; 538 539 if (spi->controller == new_spi->controller && 540 spi->chip_select == new_spi->chip_select) 541 return -EBUSY; 542 return 0; 543 } 544 545 /** 546 * spi_add_device - Add spi_device allocated with spi_alloc_device 547 * @spi: spi_device to register 548 * 549 * Companion function to spi_alloc_device. Devices allocated with 550 * spi_alloc_device can be added onto the spi bus with this function. 551 * 552 * Return: 0 on success; negative errno on failure 553 */ 554 int spi_add_device(struct spi_device *spi) 555 { 556 static DEFINE_MUTEX(spi_add_lock); 557 struct spi_controller *ctlr = spi->controller; 558 struct device *dev = ctlr->dev.parent; 559 int status; 560 561 /* Chipselects are numbered 0..max; validate. */ 562 if (spi->chip_select >= ctlr->num_chipselect) { 563 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 564 ctlr->num_chipselect); 565 return -EINVAL; 566 } 567 568 /* Set the bus ID string */ 569 spi_dev_set_name(spi); 570 571 /* We need to make sure there's no other device with this 572 * chipselect **BEFORE** we call setup(), else we'll trash 573 * its configuration. Lock against concurrent add() calls. 574 */ 575 mutex_lock(&spi_add_lock); 576 577 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 578 if (status) { 579 dev_err(dev, "chipselect %d already in use\n", 580 spi->chip_select); 581 goto done; 582 } 583 584 /* Descriptors take precedence */ 585 if (ctlr->cs_gpiods) 586 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 587 else if (ctlr->cs_gpios) 588 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 589 590 /* Drivers may modify this initial i/o setup, but will 591 * normally rely on the device being setup. Devices 592 * using SPI_CS_HIGH can't coexist well otherwise... 593 */ 594 status = spi_setup(spi); 595 if (status < 0) { 596 dev_err(dev, "can't setup %s, status %d\n", 597 dev_name(&spi->dev), status); 598 goto done; 599 } 600 601 /* Device may be bound to an active driver when this returns */ 602 status = device_add(&spi->dev); 603 if (status < 0) 604 dev_err(dev, "can't add %s, status %d\n", 605 dev_name(&spi->dev), status); 606 else 607 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 608 609 done: 610 mutex_unlock(&spi_add_lock); 611 return status; 612 } 613 EXPORT_SYMBOL_GPL(spi_add_device); 614 615 /** 616 * spi_new_device - instantiate one new SPI device 617 * @ctlr: Controller to which device is connected 618 * @chip: Describes the SPI device 619 * Context: can sleep 620 * 621 * On typical mainboards, this is purely internal; and it's not needed 622 * after board init creates the hard-wired devices. Some development 623 * platforms may not be able to use spi_register_board_info though, and 624 * this is exported so that for example a USB or parport based adapter 625 * driver could add devices (which it would learn about out-of-band). 626 * 627 * Return: the new device, or NULL. 628 */ 629 struct spi_device *spi_new_device(struct spi_controller *ctlr, 630 struct spi_board_info *chip) 631 { 632 struct spi_device *proxy; 633 int status; 634 635 /* NOTE: caller did any chip->bus_num checks necessary. 636 * 637 * Also, unless we change the return value convention to use 638 * error-or-pointer (not NULL-or-pointer), troubleshootability 639 * suggests syslogged diagnostics are best here (ugh). 640 */ 641 642 proxy = spi_alloc_device(ctlr); 643 if (!proxy) 644 return NULL; 645 646 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 647 648 proxy->chip_select = chip->chip_select; 649 proxy->max_speed_hz = chip->max_speed_hz; 650 proxy->mode = chip->mode; 651 proxy->irq = chip->irq; 652 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 653 proxy->dev.platform_data = (void *) chip->platform_data; 654 proxy->controller_data = chip->controller_data; 655 proxy->controller_state = NULL; 656 657 if (chip->properties) { 658 status = device_add_properties(&proxy->dev, chip->properties); 659 if (status) { 660 dev_err(&ctlr->dev, 661 "failed to add properties to '%s': %d\n", 662 chip->modalias, status); 663 goto err_dev_put; 664 } 665 } 666 667 status = spi_add_device(proxy); 668 if (status < 0) 669 goto err_remove_props; 670 671 return proxy; 672 673 err_remove_props: 674 if (chip->properties) 675 device_remove_properties(&proxy->dev); 676 err_dev_put: 677 spi_dev_put(proxy); 678 return NULL; 679 } 680 EXPORT_SYMBOL_GPL(spi_new_device); 681 682 /** 683 * spi_unregister_device - unregister a single SPI device 684 * @spi: spi_device to unregister 685 * 686 * Start making the passed SPI device vanish. Normally this would be handled 687 * by spi_unregister_controller(). 688 */ 689 void spi_unregister_device(struct spi_device *spi) 690 { 691 if (!spi) 692 return; 693 694 if (spi->dev.of_node) { 695 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 696 of_node_put(spi->dev.of_node); 697 } 698 if (ACPI_COMPANION(&spi->dev)) 699 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 700 device_unregister(&spi->dev); 701 } 702 EXPORT_SYMBOL_GPL(spi_unregister_device); 703 704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 705 struct spi_board_info *bi) 706 { 707 struct spi_device *dev; 708 709 if (ctlr->bus_num != bi->bus_num) 710 return; 711 712 dev = spi_new_device(ctlr, bi); 713 if (!dev) 714 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 715 bi->modalias); 716 } 717 718 /** 719 * spi_register_board_info - register SPI devices for a given board 720 * @info: array of chip descriptors 721 * @n: how many descriptors are provided 722 * Context: can sleep 723 * 724 * Board-specific early init code calls this (probably during arch_initcall) 725 * with segments of the SPI device table. Any device nodes are created later, 726 * after the relevant parent SPI controller (bus_num) is defined. We keep 727 * this table of devices forever, so that reloading a controller driver will 728 * not make Linux forget about these hard-wired devices. 729 * 730 * Other code can also call this, e.g. a particular add-on board might provide 731 * SPI devices through its expansion connector, so code initializing that board 732 * would naturally declare its SPI devices. 733 * 734 * The board info passed can safely be __initdata ... but be careful of 735 * any embedded pointers (platform_data, etc), they're copied as-is. 736 * Device properties are deep-copied though. 737 * 738 * Return: zero on success, else a negative error code. 739 */ 740 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 741 { 742 struct boardinfo *bi; 743 int i; 744 745 if (!n) 746 return 0; 747 748 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 749 if (!bi) 750 return -ENOMEM; 751 752 for (i = 0; i < n; i++, bi++, info++) { 753 struct spi_controller *ctlr; 754 755 memcpy(&bi->board_info, info, sizeof(*info)); 756 if (info->properties) { 757 bi->board_info.properties = 758 property_entries_dup(info->properties); 759 if (IS_ERR(bi->board_info.properties)) 760 return PTR_ERR(bi->board_info.properties); 761 } 762 763 mutex_lock(&board_lock); 764 list_add_tail(&bi->list, &board_list); 765 list_for_each_entry(ctlr, &spi_controller_list, list) 766 spi_match_controller_to_boardinfo(ctlr, 767 &bi->board_info); 768 mutex_unlock(&board_lock); 769 } 770 771 return 0; 772 } 773 774 /*-------------------------------------------------------------------------*/ 775 776 static void spi_set_cs(struct spi_device *spi, bool enable) 777 { 778 bool enable1 = enable; 779 780 if (!spi->controller->set_cs_timing) { 781 if (enable1) 782 spi_delay_exec(&spi->controller->cs_setup, NULL); 783 else 784 spi_delay_exec(&spi->controller->cs_hold, NULL); 785 } 786 787 if (spi->mode & SPI_CS_HIGH) 788 enable = !enable; 789 790 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 791 /* 792 * Honour the SPI_NO_CS flag and invert the enable line, as 793 * active low is default for SPI. Execution paths that handle 794 * polarity inversion in gpiolib (such as device tree) will 795 * enforce active high using the SPI_CS_HIGH resulting in a 796 * double inversion through the code above. 797 */ 798 if (!(spi->mode & SPI_NO_CS)) { 799 if (spi->cs_gpiod) 800 gpiod_set_value_cansleep(spi->cs_gpiod, 801 !enable); 802 else 803 gpio_set_value_cansleep(spi->cs_gpio, !enable); 804 } 805 /* Some SPI masters need both GPIO CS & slave_select */ 806 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 807 spi->controller->set_cs) 808 spi->controller->set_cs(spi, !enable); 809 } else if (spi->controller->set_cs) { 810 spi->controller->set_cs(spi, !enable); 811 } 812 813 if (!spi->controller->set_cs_timing) { 814 if (!enable1) 815 spi_delay_exec(&spi->controller->cs_inactive, NULL); 816 } 817 } 818 819 #ifdef CONFIG_HAS_DMA 820 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 821 struct sg_table *sgt, void *buf, size_t len, 822 enum dma_data_direction dir) 823 { 824 const bool vmalloced_buf = is_vmalloc_addr(buf); 825 unsigned int max_seg_size = dma_get_max_seg_size(dev); 826 #ifdef CONFIG_HIGHMEM 827 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 828 (unsigned long)buf < (PKMAP_BASE + 829 (LAST_PKMAP * PAGE_SIZE))); 830 #else 831 const bool kmap_buf = false; 832 #endif 833 int desc_len; 834 int sgs; 835 struct page *vm_page; 836 struct scatterlist *sg; 837 void *sg_buf; 838 size_t min; 839 int i, ret; 840 841 if (vmalloced_buf || kmap_buf) { 842 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 843 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 844 } else if (virt_addr_valid(buf)) { 845 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 846 sgs = DIV_ROUND_UP(len, desc_len); 847 } else { 848 return -EINVAL; 849 } 850 851 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 852 if (ret != 0) 853 return ret; 854 855 sg = &sgt->sgl[0]; 856 for (i = 0; i < sgs; i++) { 857 858 if (vmalloced_buf || kmap_buf) { 859 /* 860 * Next scatterlist entry size is the minimum between 861 * the desc_len and the remaining buffer length that 862 * fits in a page. 863 */ 864 min = min_t(size_t, desc_len, 865 min_t(size_t, len, 866 PAGE_SIZE - offset_in_page(buf))); 867 if (vmalloced_buf) 868 vm_page = vmalloc_to_page(buf); 869 else 870 vm_page = kmap_to_page(buf); 871 if (!vm_page) { 872 sg_free_table(sgt); 873 return -ENOMEM; 874 } 875 sg_set_page(sg, vm_page, 876 min, offset_in_page(buf)); 877 } else { 878 min = min_t(size_t, len, desc_len); 879 sg_buf = buf; 880 sg_set_buf(sg, sg_buf, min); 881 } 882 883 buf += min; 884 len -= min; 885 sg = sg_next(sg); 886 } 887 888 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 889 if (!ret) 890 ret = -ENOMEM; 891 if (ret < 0) { 892 sg_free_table(sgt); 893 return ret; 894 } 895 896 sgt->nents = ret; 897 898 return 0; 899 } 900 901 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 902 struct sg_table *sgt, enum dma_data_direction dir) 903 { 904 if (sgt->orig_nents) { 905 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 906 sg_free_table(sgt); 907 } 908 } 909 910 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 911 { 912 struct device *tx_dev, *rx_dev; 913 struct spi_transfer *xfer; 914 int ret; 915 916 if (!ctlr->can_dma) 917 return 0; 918 919 if (ctlr->dma_tx) 920 tx_dev = ctlr->dma_tx->device->dev; 921 else 922 tx_dev = ctlr->dev.parent; 923 924 if (ctlr->dma_rx) 925 rx_dev = ctlr->dma_rx->device->dev; 926 else 927 rx_dev = ctlr->dev.parent; 928 929 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 930 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 931 continue; 932 933 if (xfer->tx_buf != NULL) { 934 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 935 (void *)xfer->tx_buf, xfer->len, 936 DMA_TO_DEVICE); 937 if (ret != 0) 938 return ret; 939 } 940 941 if (xfer->rx_buf != NULL) { 942 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 943 xfer->rx_buf, xfer->len, 944 DMA_FROM_DEVICE); 945 if (ret != 0) { 946 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 947 DMA_TO_DEVICE); 948 return ret; 949 } 950 } 951 } 952 953 ctlr->cur_msg_mapped = true; 954 955 return 0; 956 } 957 958 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 959 { 960 struct spi_transfer *xfer; 961 struct device *tx_dev, *rx_dev; 962 963 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 964 return 0; 965 966 if (ctlr->dma_tx) 967 tx_dev = ctlr->dma_tx->device->dev; 968 else 969 tx_dev = ctlr->dev.parent; 970 971 if (ctlr->dma_rx) 972 rx_dev = ctlr->dma_rx->device->dev; 973 else 974 rx_dev = ctlr->dev.parent; 975 976 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 977 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 978 continue; 979 980 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 981 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 982 } 983 984 return 0; 985 } 986 #else /* !CONFIG_HAS_DMA */ 987 static inline int __spi_map_msg(struct spi_controller *ctlr, 988 struct spi_message *msg) 989 { 990 return 0; 991 } 992 993 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 994 struct spi_message *msg) 995 { 996 return 0; 997 } 998 #endif /* !CONFIG_HAS_DMA */ 999 1000 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1001 struct spi_message *msg) 1002 { 1003 struct spi_transfer *xfer; 1004 1005 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1006 /* 1007 * Restore the original value of tx_buf or rx_buf if they are 1008 * NULL. 1009 */ 1010 if (xfer->tx_buf == ctlr->dummy_tx) 1011 xfer->tx_buf = NULL; 1012 if (xfer->rx_buf == ctlr->dummy_rx) 1013 xfer->rx_buf = NULL; 1014 } 1015 1016 return __spi_unmap_msg(ctlr, msg); 1017 } 1018 1019 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1020 { 1021 struct spi_transfer *xfer; 1022 void *tmp; 1023 unsigned int max_tx, max_rx; 1024 1025 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1026 max_tx = 0; 1027 max_rx = 0; 1028 1029 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1030 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1031 !xfer->tx_buf) 1032 max_tx = max(xfer->len, max_tx); 1033 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1034 !xfer->rx_buf) 1035 max_rx = max(xfer->len, max_rx); 1036 } 1037 1038 if (max_tx) { 1039 tmp = krealloc(ctlr->dummy_tx, max_tx, 1040 GFP_KERNEL | GFP_DMA); 1041 if (!tmp) 1042 return -ENOMEM; 1043 ctlr->dummy_tx = tmp; 1044 memset(tmp, 0, max_tx); 1045 } 1046 1047 if (max_rx) { 1048 tmp = krealloc(ctlr->dummy_rx, max_rx, 1049 GFP_KERNEL | GFP_DMA); 1050 if (!tmp) 1051 return -ENOMEM; 1052 ctlr->dummy_rx = tmp; 1053 } 1054 1055 if (max_tx || max_rx) { 1056 list_for_each_entry(xfer, &msg->transfers, 1057 transfer_list) { 1058 if (!xfer->len) 1059 continue; 1060 if (!xfer->tx_buf) 1061 xfer->tx_buf = ctlr->dummy_tx; 1062 if (!xfer->rx_buf) 1063 xfer->rx_buf = ctlr->dummy_rx; 1064 } 1065 } 1066 } 1067 1068 return __spi_map_msg(ctlr, msg); 1069 } 1070 1071 static int spi_transfer_wait(struct spi_controller *ctlr, 1072 struct spi_message *msg, 1073 struct spi_transfer *xfer) 1074 { 1075 struct spi_statistics *statm = &ctlr->statistics; 1076 struct spi_statistics *stats = &msg->spi->statistics; 1077 unsigned long long ms = 1; 1078 1079 if (spi_controller_is_slave(ctlr)) { 1080 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1081 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1082 return -EINTR; 1083 } 1084 } else { 1085 ms = 8LL * 1000LL * xfer->len; 1086 do_div(ms, xfer->speed_hz); 1087 ms += ms + 200; /* some tolerance */ 1088 1089 if (ms > UINT_MAX) 1090 ms = UINT_MAX; 1091 1092 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1093 msecs_to_jiffies(ms)); 1094 1095 if (ms == 0) { 1096 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1097 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1098 dev_err(&msg->spi->dev, 1099 "SPI transfer timed out\n"); 1100 return -ETIMEDOUT; 1101 } 1102 } 1103 1104 return 0; 1105 } 1106 1107 static void _spi_transfer_delay_ns(u32 ns) 1108 { 1109 if (!ns) 1110 return; 1111 if (ns <= 1000) { 1112 ndelay(ns); 1113 } else { 1114 u32 us = DIV_ROUND_UP(ns, 1000); 1115 1116 if (us <= 10) 1117 udelay(us); 1118 else 1119 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1120 } 1121 } 1122 1123 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1124 { 1125 u32 delay = _delay->value; 1126 u32 unit = _delay->unit; 1127 u32 hz; 1128 1129 if (!delay) 1130 return 0; 1131 1132 switch (unit) { 1133 case SPI_DELAY_UNIT_USECS: 1134 delay *= 1000; 1135 break; 1136 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1137 break; 1138 case SPI_DELAY_UNIT_SCK: 1139 /* clock cycles need to be obtained from spi_transfer */ 1140 if (!xfer) 1141 return -EINVAL; 1142 /* if there is no effective speed know, then approximate 1143 * by underestimating with half the requested hz 1144 */ 1145 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1146 if (!hz) 1147 return -EINVAL; 1148 delay *= DIV_ROUND_UP(1000000000, hz); 1149 break; 1150 default: 1151 return -EINVAL; 1152 } 1153 1154 return delay; 1155 } 1156 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1157 1158 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1159 { 1160 int delay; 1161 1162 if (!_delay) 1163 return -EINVAL; 1164 1165 delay = spi_delay_to_ns(_delay, xfer); 1166 if (delay < 0) 1167 return delay; 1168 1169 _spi_transfer_delay_ns(delay); 1170 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(spi_delay_exec); 1174 1175 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1176 struct spi_transfer *xfer) 1177 { 1178 u32 delay = xfer->cs_change_delay.value; 1179 u32 unit = xfer->cs_change_delay.unit; 1180 int ret; 1181 1182 /* return early on "fast" mode - for everything but USECS */ 1183 if (!delay) { 1184 if (unit == SPI_DELAY_UNIT_USECS) 1185 _spi_transfer_delay_ns(10000); 1186 return; 1187 } 1188 1189 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1190 if (ret) { 1191 dev_err_once(&msg->spi->dev, 1192 "Use of unsupported delay unit %i, using default of 10us\n", 1193 unit); 1194 _spi_transfer_delay_ns(10000); 1195 } 1196 } 1197 1198 /* 1199 * spi_transfer_one_message - Default implementation of transfer_one_message() 1200 * 1201 * This is a standard implementation of transfer_one_message() for 1202 * drivers which implement a transfer_one() operation. It provides 1203 * standard handling of delays and chip select management. 1204 */ 1205 static int spi_transfer_one_message(struct spi_controller *ctlr, 1206 struct spi_message *msg) 1207 { 1208 struct spi_transfer *xfer; 1209 bool keep_cs = false; 1210 int ret = 0; 1211 struct spi_statistics *statm = &ctlr->statistics; 1212 struct spi_statistics *stats = &msg->spi->statistics; 1213 1214 spi_set_cs(msg->spi, true); 1215 1216 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1217 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1218 1219 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1220 trace_spi_transfer_start(msg, xfer); 1221 1222 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1223 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1224 1225 if (!ctlr->ptp_sts_supported) { 1226 xfer->ptp_sts_word_pre = 0; 1227 ptp_read_system_prets(xfer->ptp_sts); 1228 } 1229 1230 if (xfer->tx_buf || xfer->rx_buf) { 1231 reinit_completion(&ctlr->xfer_completion); 1232 1233 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1234 if (ret < 0) { 1235 SPI_STATISTICS_INCREMENT_FIELD(statm, 1236 errors); 1237 SPI_STATISTICS_INCREMENT_FIELD(stats, 1238 errors); 1239 dev_err(&msg->spi->dev, 1240 "SPI transfer failed: %d\n", ret); 1241 goto out; 1242 } 1243 1244 if (ret > 0) { 1245 ret = spi_transfer_wait(ctlr, msg, xfer); 1246 if (ret < 0) 1247 msg->status = ret; 1248 } 1249 } else { 1250 if (xfer->len) 1251 dev_err(&msg->spi->dev, 1252 "Bufferless transfer has length %u\n", 1253 xfer->len); 1254 } 1255 1256 if (!ctlr->ptp_sts_supported) { 1257 ptp_read_system_postts(xfer->ptp_sts); 1258 xfer->ptp_sts_word_post = xfer->len; 1259 } 1260 1261 trace_spi_transfer_stop(msg, xfer); 1262 1263 if (msg->status != -EINPROGRESS) 1264 goto out; 1265 1266 spi_transfer_delay_exec(xfer); 1267 1268 if (xfer->cs_change) { 1269 if (list_is_last(&xfer->transfer_list, 1270 &msg->transfers)) { 1271 keep_cs = true; 1272 } else { 1273 spi_set_cs(msg->spi, false); 1274 _spi_transfer_cs_change_delay(msg, xfer); 1275 spi_set_cs(msg->spi, true); 1276 } 1277 } 1278 1279 msg->actual_length += xfer->len; 1280 } 1281 1282 out: 1283 if (ret != 0 || !keep_cs) 1284 spi_set_cs(msg->spi, false); 1285 1286 if (msg->status == -EINPROGRESS) 1287 msg->status = ret; 1288 1289 if (msg->status && ctlr->handle_err) 1290 ctlr->handle_err(ctlr, msg); 1291 1292 spi_res_release(ctlr, msg); 1293 1294 spi_finalize_current_message(ctlr); 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * spi_finalize_current_transfer - report completion of a transfer 1301 * @ctlr: the controller reporting completion 1302 * 1303 * Called by SPI drivers using the core transfer_one_message() 1304 * implementation to notify it that the current interrupt driven 1305 * transfer has finished and the next one may be scheduled. 1306 */ 1307 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1308 { 1309 complete(&ctlr->xfer_completion); 1310 } 1311 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1312 1313 /** 1314 * __spi_pump_messages - function which processes spi message queue 1315 * @ctlr: controller to process queue for 1316 * @in_kthread: true if we are in the context of the message pump thread 1317 * 1318 * This function checks if there is any spi message in the queue that 1319 * needs processing and if so call out to the driver to initialize hardware 1320 * and transfer each message. 1321 * 1322 * Note that it is called both from the kthread itself and also from 1323 * inside spi_sync(); the queue extraction handling at the top of the 1324 * function should deal with this safely. 1325 */ 1326 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1327 { 1328 struct spi_transfer *xfer; 1329 struct spi_message *msg; 1330 bool was_busy = false; 1331 unsigned long flags; 1332 int ret; 1333 1334 /* Lock queue */ 1335 spin_lock_irqsave(&ctlr->queue_lock, flags); 1336 1337 /* Make sure we are not already running a message */ 1338 if (ctlr->cur_msg) { 1339 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1340 return; 1341 } 1342 1343 /* If another context is idling the device then defer */ 1344 if (ctlr->idling) { 1345 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1346 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1347 return; 1348 } 1349 1350 /* Check if the queue is idle */ 1351 if (list_empty(&ctlr->queue) || !ctlr->running) { 1352 if (!ctlr->busy) { 1353 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1354 return; 1355 } 1356 1357 /* Only do teardown in the thread */ 1358 if (!in_kthread) { 1359 kthread_queue_work(&ctlr->kworker, 1360 &ctlr->pump_messages); 1361 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1362 return; 1363 } 1364 1365 ctlr->busy = false; 1366 ctlr->idling = true; 1367 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1368 1369 kfree(ctlr->dummy_rx); 1370 ctlr->dummy_rx = NULL; 1371 kfree(ctlr->dummy_tx); 1372 ctlr->dummy_tx = NULL; 1373 if (ctlr->unprepare_transfer_hardware && 1374 ctlr->unprepare_transfer_hardware(ctlr)) 1375 dev_err(&ctlr->dev, 1376 "failed to unprepare transfer hardware\n"); 1377 if (ctlr->auto_runtime_pm) { 1378 pm_runtime_mark_last_busy(ctlr->dev.parent); 1379 pm_runtime_put_autosuspend(ctlr->dev.parent); 1380 } 1381 trace_spi_controller_idle(ctlr); 1382 1383 spin_lock_irqsave(&ctlr->queue_lock, flags); 1384 ctlr->idling = false; 1385 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1386 return; 1387 } 1388 1389 /* Extract head of queue */ 1390 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1391 ctlr->cur_msg = msg; 1392 1393 list_del_init(&msg->queue); 1394 if (ctlr->busy) 1395 was_busy = true; 1396 else 1397 ctlr->busy = true; 1398 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1399 1400 mutex_lock(&ctlr->io_mutex); 1401 1402 if (!was_busy && ctlr->auto_runtime_pm) { 1403 ret = pm_runtime_get_sync(ctlr->dev.parent); 1404 if (ret < 0) { 1405 pm_runtime_put_noidle(ctlr->dev.parent); 1406 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1407 ret); 1408 mutex_unlock(&ctlr->io_mutex); 1409 return; 1410 } 1411 } 1412 1413 if (!was_busy) 1414 trace_spi_controller_busy(ctlr); 1415 1416 if (!was_busy && ctlr->prepare_transfer_hardware) { 1417 ret = ctlr->prepare_transfer_hardware(ctlr); 1418 if (ret) { 1419 dev_err(&ctlr->dev, 1420 "failed to prepare transfer hardware: %d\n", 1421 ret); 1422 1423 if (ctlr->auto_runtime_pm) 1424 pm_runtime_put(ctlr->dev.parent); 1425 1426 msg->status = ret; 1427 spi_finalize_current_message(ctlr); 1428 1429 mutex_unlock(&ctlr->io_mutex); 1430 return; 1431 } 1432 } 1433 1434 trace_spi_message_start(msg); 1435 1436 if (ctlr->prepare_message) { 1437 ret = ctlr->prepare_message(ctlr, msg); 1438 if (ret) { 1439 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1440 ret); 1441 msg->status = ret; 1442 spi_finalize_current_message(ctlr); 1443 goto out; 1444 } 1445 ctlr->cur_msg_prepared = true; 1446 } 1447 1448 ret = spi_map_msg(ctlr, msg); 1449 if (ret) { 1450 msg->status = ret; 1451 spi_finalize_current_message(ctlr); 1452 goto out; 1453 } 1454 1455 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1456 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1457 xfer->ptp_sts_word_pre = 0; 1458 ptp_read_system_prets(xfer->ptp_sts); 1459 } 1460 } 1461 1462 ret = ctlr->transfer_one_message(ctlr, msg); 1463 if (ret) { 1464 dev_err(&ctlr->dev, 1465 "failed to transfer one message from queue\n"); 1466 goto out; 1467 } 1468 1469 out: 1470 mutex_unlock(&ctlr->io_mutex); 1471 1472 /* Prod the scheduler in case transfer_one() was busy waiting */ 1473 if (!ret) 1474 cond_resched(); 1475 } 1476 1477 /** 1478 * spi_pump_messages - kthread work function which processes spi message queue 1479 * @work: pointer to kthread work struct contained in the controller struct 1480 */ 1481 static void spi_pump_messages(struct kthread_work *work) 1482 { 1483 struct spi_controller *ctlr = 1484 container_of(work, struct spi_controller, pump_messages); 1485 1486 __spi_pump_messages(ctlr, true); 1487 } 1488 1489 /** 1490 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1491 * TX timestamp for the requested byte from the SPI 1492 * transfer. The frequency with which this function 1493 * must be called (once per word, once for the whole 1494 * transfer, once per batch of words etc) is arbitrary 1495 * as long as the @tx buffer offset is greater than or 1496 * equal to the requested byte at the time of the 1497 * call. The timestamp is only taken once, at the 1498 * first such call. It is assumed that the driver 1499 * advances its @tx buffer pointer monotonically. 1500 * @ctlr: Pointer to the spi_controller structure of the driver 1501 * @xfer: Pointer to the transfer being timestamped 1502 * @progress: How many words (not bytes) have been transferred so far 1503 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1504 * transfer, for less jitter in time measurement. Only compatible 1505 * with PIO drivers. If true, must follow up with 1506 * spi_take_timestamp_post or otherwise system will crash. 1507 * WARNING: for fully predictable results, the CPU frequency must 1508 * also be under control (governor). 1509 */ 1510 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1511 struct spi_transfer *xfer, 1512 size_t progress, bool irqs_off) 1513 { 1514 if (!xfer->ptp_sts) 1515 return; 1516 1517 if (xfer->timestamped_pre) 1518 return; 1519 1520 if (progress < xfer->ptp_sts_word_pre) 1521 return; 1522 1523 /* Capture the resolution of the timestamp */ 1524 xfer->ptp_sts_word_pre = progress; 1525 1526 xfer->timestamped_pre = true; 1527 1528 if (irqs_off) { 1529 local_irq_save(ctlr->irq_flags); 1530 preempt_disable(); 1531 } 1532 1533 ptp_read_system_prets(xfer->ptp_sts); 1534 } 1535 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1536 1537 /** 1538 * spi_take_timestamp_post - helper for drivers to collect the end of the 1539 * TX timestamp for the requested byte from the SPI 1540 * transfer. Can be called with an arbitrary 1541 * frequency: only the first call where @tx exceeds 1542 * or is equal to the requested word will be 1543 * timestamped. 1544 * @ctlr: Pointer to the spi_controller structure of the driver 1545 * @xfer: Pointer to the transfer being timestamped 1546 * @progress: How many words (not bytes) have been transferred so far 1547 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1548 */ 1549 void spi_take_timestamp_post(struct spi_controller *ctlr, 1550 struct spi_transfer *xfer, 1551 size_t progress, bool irqs_off) 1552 { 1553 if (!xfer->ptp_sts) 1554 return; 1555 1556 if (xfer->timestamped_post) 1557 return; 1558 1559 if (progress < xfer->ptp_sts_word_post) 1560 return; 1561 1562 ptp_read_system_postts(xfer->ptp_sts); 1563 1564 if (irqs_off) { 1565 local_irq_restore(ctlr->irq_flags); 1566 preempt_enable(); 1567 } 1568 1569 /* Capture the resolution of the timestamp */ 1570 xfer->ptp_sts_word_post = progress; 1571 1572 xfer->timestamped_post = true; 1573 } 1574 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1575 1576 /** 1577 * spi_set_thread_rt - set the controller to pump at realtime priority 1578 * @ctlr: controller to boost priority of 1579 * 1580 * This can be called because the controller requested realtime priority 1581 * (by setting the ->rt value before calling spi_register_controller()) or 1582 * because a device on the bus said that its transfers needed realtime 1583 * priority. 1584 * 1585 * NOTE: at the moment if any device on a bus says it needs realtime then 1586 * the thread will be at realtime priority for all transfers on that 1587 * controller. If this eventually becomes a problem we may see if we can 1588 * find a way to boost the priority only temporarily during relevant 1589 * transfers. 1590 */ 1591 static void spi_set_thread_rt(struct spi_controller *ctlr) 1592 { 1593 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; 1594 1595 dev_info(&ctlr->dev, 1596 "will run message pump with realtime priority\n"); 1597 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1598 } 1599 1600 static int spi_init_queue(struct spi_controller *ctlr) 1601 { 1602 ctlr->running = false; 1603 ctlr->busy = false; 1604 1605 kthread_init_worker(&ctlr->kworker); 1606 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1607 "%s", dev_name(&ctlr->dev)); 1608 if (IS_ERR(ctlr->kworker_task)) { 1609 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1610 return PTR_ERR(ctlr->kworker_task); 1611 } 1612 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1613 1614 /* 1615 * Controller config will indicate if this controller should run the 1616 * message pump with high (realtime) priority to reduce the transfer 1617 * latency on the bus by minimising the delay between a transfer 1618 * request and the scheduling of the message pump thread. Without this 1619 * setting the message pump thread will remain at default priority. 1620 */ 1621 if (ctlr->rt) 1622 spi_set_thread_rt(ctlr); 1623 1624 return 0; 1625 } 1626 1627 /** 1628 * spi_get_next_queued_message() - called by driver to check for queued 1629 * messages 1630 * @ctlr: the controller to check for queued messages 1631 * 1632 * If there are more messages in the queue, the next message is returned from 1633 * this call. 1634 * 1635 * Return: the next message in the queue, else NULL if the queue is empty. 1636 */ 1637 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1638 { 1639 struct spi_message *next; 1640 unsigned long flags; 1641 1642 /* get a pointer to the next message, if any */ 1643 spin_lock_irqsave(&ctlr->queue_lock, flags); 1644 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1645 queue); 1646 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1647 1648 return next; 1649 } 1650 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1651 1652 /** 1653 * spi_finalize_current_message() - the current message is complete 1654 * @ctlr: the controller to return the message to 1655 * 1656 * Called by the driver to notify the core that the message in the front of the 1657 * queue is complete and can be removed from the queue. 1658 */ 1659 void spi_finalize_current_message(struct spi_controller *ctlr) 1660 { 1661 struct spi_transfer *xfer; 1662 struct spi_message *mesg; 1663 unsigned long flags; 1664 int ret; 1665 1666 spin_lock_irqsave(&ctlr->queue_lock, flags); 1667 mesg = ctlr->cur_msg; 1668 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1669 1670 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1671 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1672 ptp_read_system_postts(xfer->ptp_sts); 1673 xfer->ptp_sts_word_post = xfer->len; 1674 } 1675 } 1676 1677 spi_unmap_msg(ctlr, mesg); 1678 1679 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1680 ret = ctlr->unprepare_message(ctlr, mesg); 1681 if (ret) { 1682 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1683 ret); 1684 } 1685 } 1686 1687 spin_lock_irqsave(&ctlr->queue_lock, flags); 1688 ctlr->cur_msg = NULL; 1689 ctlr->cur_msg_prepared = false; 1690 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1691 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1692 1693 trace_spi_message_done(mesg); 1694 1695 mesg->state = NULL; 1696 if (mesg->complete) 1697 mesg->complete(mesg->context); 1698 } 1699 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1700 1701 static int spi_start_queue(struct spi_controller *ctlr) 1702 { 1703 unsigned long flags; 1704 1705 spin_lock_irqsave(&ctlr->queue_lock, flags); 1706 1707 if (ctlr->running || ctlr->busy) { 1708 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1709 return -EBUSY; 1710 } 1711 1712 ctlr->running = true; 1713 ctlr->cur_msg = NULL; 1714 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1715 1716 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1717 1718 return 0; 1719 } 1720 1721 static int spi_stop_queue(struct spi_controller *ctlr) 1722 { 1723 unsigned long flags; 1724 unsigned limit = 500; 1725 int ret = 0; 1726 1727 spin_lock_irqsave(&ctlr->queue_lock, flags); 1728 1729 /* 1730 * This is a bit lame, but is optimized for the common execution path. 1731 * A wait_queue on the ctlr->busy could be used, but then the common 1732 * execution path (pump_messages) would be required to call wake_up or 1733 * friends on every SPI message. Do this instead. 1734 */ 1735 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1736 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1737 usleep_range(10000, 11000); 1738 spin_lock_irqsave(&ctlr->queue_lock, flags); 1739 } 1740 1741 if (!list_empty(&ctlr->queue) || ctlr->busy) 1742 ret = -EBUSY; 1743 else 1744 ctlr->running = false; 1745 1746 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1747 1748 if (ret) { 1749 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1750 return ret; 1751 } 1752 return ret; 1753 } 1754 1755 static int spi_destroy_queue(struct spi_controller *ctlr) 1756 { 1757 int ret; 1758 1759 ret = spi_stop_queue(ctlr); 1760 1761 /* 1762 * kthread_flush_worker will block until all work is done. 1763 * If the reason that stop_queue timed out is that the work will never 1764 * finish, then it does no good to call flush/stop thread, so 1765 * return anyway. 1766 */ 1767 if (ret) { 1768 dev_err(&ctlr->dev, "problem destroying queue\n"); 1769 return ret; 1770 } 1771 1772 kthread_flush_worker(&ctlr->kworker); 1773 kthread_stop(ctlr->kworker_task); 1774 1775 return 0; 1776 } 1777 1778 static int __spi_queued_transfer(struct spi_device *spi, 1779 struct spi_message *msg, 1780 bool need_pump) 1781 { 1782 struct spi_controller *ctlr = spi->controller; 1783 unsigned long flags; 1784 1785 spin_lock_irqsave(&ctlr->queue_lock, flags); 1786 1787 if (!ctlr->running) { 1788 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1789 return -ESHUTDOWN; 1790 } 1791 msg->actual_length = 0; 1792 msg->status = -EINPROGRESS; 1793 1794 list_add_tail(&msg->queue, &ctlr->queue); 1795 if (!ctlr->busy && need_pump) 1796 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1797 1798 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1799 return 0; 1800 } 1801 1802 /** 1803 * spi_queued_transfer - transfer function for queued transfers 1804 * @spi: spi device which is requesting transfer 1805 * @msg: spi message which is to handled is queued to driver queue 1806 * 1807 * Return: zero on success, else a negative error code. 1808 */ 1809 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1810 { 1811 return __spi_queued_transfer(spi, msg, true); 1812 } 1813 1814 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1815 { 1816 int ret; 1817 1818 ctlr->transfer = spi_queued_transfer; 1819 if (!ctlr->transfer_one_message) 1820 ctlr->transfer_one_message = spi_transfer_one_message; 1821 1822 /* Initialize and start queue */ 1823 ret = spi_init_queue(ctlr); 1824 if (ret) { 1825 dev_err(&ctlr->dev, "problem initializing queue\n"); 1826 goto err_init_queue; 1827 } 1828 ctlr->queued = true; 1829 ret = spi_start_queue(ctlr); 1830 if (ret) { 1831 dev_err(&ctlr->dev, "problem starting queue\n"); 1832 goto err_start_queue; 1833 } 1834 1835 return 0; 1836 1837 err_start_queue: 1838 spi_destroy_queue(ctlr); 1839 err_init_queue: 1840 return ret; 1841 } 1842 1843 /** 1844 * spi_flush_queue - Send all pending messages in the queue from the callers' 1845 * context 1846 * @ctlr: controller to process queue for 1847 * 1848 * This should be used when one wants to ensure all pending messages have been 1849 * sent before doing something. Is used by the spi-mem code to make sure SPI 1850 * memory operations do not preempt regular SPI transfers that have been queued 1851 * before the spi-mem operation. 1852 */ 1853 void spi_flush_queue(struct spi_controller *ctlr) 1854 { 1855 if (ctlr->transfer == spi_queued_transfer) 1856 __spi_pump_messages(ctlr, false); 1857 } 1858 1859 /*-------------------------------------------------------------------------*/ 1860 1861 #if defined(CONFIG_OF) 1862 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1863 struct device_node *nc) 1864 { 1865 u32 value; 1866 int rc; 1867 1868 /* Mode (clock phase/polarity/etc.) */ 1869 if (of_property_read_bool(nc, "spi-cpha")) 1870 spi->mode |= SPI_CPHA; 1871 if (of_property_read_bool(nc, "spi-cpol")) 1872 spi->mode |= SPI_CPOL; 1873 if (of_property_read_bool(nc, "spi-3wire")) 1874 spi->mode |= SPI_3WIRE; 1875 if (of_property_read_bool(nc, "spi-lsb-first")) 1876 spi->mode |= SPI_LSB_FIRST; 1877 if (of_property_read_bool(nc, "spi-cs-high")) 1878 spi->mode |= SPI_CS_HIGH; 1879 1880 /* Device DUAL/QUAD mode */ 1881 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1882 switch (value) { 1883 case 1: 1884 break; 1885 case 2: 1886 spi->mode |= SPI_TX_DUAL; 1887 break; 1888 case 4: 1889 spi->mode |= SPI_TX_QUAD; 1890 break; 1891 case 8: 1892 spi->mode |= SPI_TX_OCTAL; 1893 break; 1894 default: 1895 dev_warn(&ctlr->dev, 1896 "spi-tx-bus-width %d not supported\n", 1897 value); 1898 break; 1899 } 1900 } 1901 1902 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1903 switch (value) { 1904 case 1: 1905 break; 1906 case 2: 1907 spi->mode |= SPI_RX_DUAL; 1908 break; 1909 case 4: 1910 spi->mode |= SPI_RX_QUAD; 1911 break; 1912 case 8: 1913 spi->mode |= SPI_RX_OCTAL; 1914 break; 1915 default: 1916 dev_warn(&ctlr->dev, 1917 "spi-rx-bus-width %d not supported\n", 1918 value); 1919 break; 1920 } 1921 } 1922 1923 if (spi_controller_is_slave(ctlr)) { 1924 if (!of_node_name_eq(nc, "slave")) { 1925 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1926 nc); 1927 return -EINVAL; 1928 } 1929 return 0; 1930 } 1931 1932 /* Device address */ 1933 rc = of_property_read_u32(nc, "reg", &value); 1934 if (rc) { 1935 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1936 nc, rc); 1937 return rc; 1938 } 1939 spi->chip_select = value; 1940 1941 /* 1942 * For descriptors associated with the device, polarity inversion is 1943 * handled in the gpiolib, so all gpio chip selects are "active high" 1944 * in the logical sense, the gpiolib will invert the line if need be. 1945 */ 1946 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && 1947 ctlr->cs_gpiods[spi->chip_select]) 1948 spi->mode |= SPI_CS_HIGH; 1949 1950 /* Device speed */ 1951 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1952 if (rc) { 1953 dev_err(&ctlr->dev, 1954 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc); 1955 return rc; 1956 } 1957 spi->max_speed_hz = value; 1958 1959 return 0; 1960 } 1961 1962 static struct spi_device * 1963 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1964 { 1965 struct spi_device *spi; 1966 int rc; 1967 1968 /* Alloc an spi_device */ 1969 spi = spi_alloc_device(ctlr); 1970 if (!spi) { 1971 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1972 rc = -ENOMEM; 1973 goto err_out; 1974 } 1975 1976 /* Select device driver */ 1977 rc = of_modalias_node(nc, spi->modalias, 1978 sizeof(spi->modalias)); 1979 if (rc < 0) { 1980 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1981 goto err_out; 1982 } 1983 1984 rc = of_spi_parse_dt(ctlr, spi, nc); 1985 if (rc) 1986 goto err_out; 1987 1988 /* Store a pointer to the node in the device structure */ 1989 of_node_get(nc); 1990 spi->dev.of_node = nc; 1991 1992 /* Register the new device */ 1993 rc = spi_add_device(spi); 1994 if (rc) { 1995 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1996 goto err_of_node_put; 1997 } 1998 1999 return spi; 2000 2001 err_of_node_put: 2002 of_node_put(nc); 2003 err_out: 2004 spi_dev_put(spi); 2005 return ERR_PTR(rc); 2006 } 2007 2008 /** 2009 * of_register_spi_devices() - Register child devices onto the SPI bus 2010 * @ctlr: Pointer to spi_controller device 2011 * 2012 * Registers an spi_device for each child node of controller node which 2013 * represents a valid SPI slave. 2014 */ 2015 static void of_register_spi_devices(struct spi_controller *ctlr) 2016 { 2017 struct spi_device *spi; 2018 struct device_node *nc; 2019 2020 if (!ctlr->dev.of_node) 2021 return; 2022 2023 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2024 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2025 continue; 2026 spi = of_register_spi_device(ctlr, nc); 2027 if (IS_ERR(spi)) { 2028 dev_warn(&ctlr->dev, 2029 "Failed to create SPI device for %pOF\n", nc); 2030 of_node_clear_flag(nc, OF_POPULATED); 2031 } 2032 } 2033 } 2034 #else 2035 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2036 #endif 2037 2038 #ifdef CONFIG_ACPI 2039 struct acpi_spi_lookup { 2040 struct spi_controller *ctlr; 2041 u32 max_speed_hz; 2042 u32 mode; 2043 int irq; 2044 u8 bits_per_word; 2045 u8 chip_select; 2046 }; 2047 2048 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2049 struct acpi_spi_lookup *lookup) 2050 { 2051 const union acpi_object *obj; 2052 2053 if (!x86_apple_machine) 2054 return; 2055 2056 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2057 && obj->buffer.length >= 4) 2058 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2059 2060 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2061 && obj->buffer.length == 8) 2062 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2063 2064 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2065 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2066 lookup->mode |= SPI_LSB_FIRST; 2067 2068 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2069 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2070 lookup->mode |= SPI_CPOL; 2071 2072 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2073 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2074 lookup->mode |= SPI_CPHA; 2075 } 2076 2077 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2078 { 2079 struct acpi_spi_lookup *lookup = data; 2080 struct spi_controller *ctlr = lookup->ctlr; 2081 2082 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2083 struct acpi_resource_spi_serialbus *sb; 2084 acpi_handle parent_handle; 2085 acpi_status status; 2086 2087 sb = &ares->data.spi_serial_bus; 2088 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2089 2090 status = acpi_get_handle(NULL, 2091 sb->resource_source.string_ptr, 2092 &parent_handle); 2093 2094 if (ACPI_FAILURE(status) || 2095 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2096 return -ENODEV; 2097 2098 /* 2099 * ACPI DeviceSelection numbering is handled by the 2100 * host controller driver in Windows and can vary 2101 * from driver to driver. In Linux we always expect 2102 * 0 .. max - 1 so we need to ask the driver to 2103 * translate between the two schemes. 2104 */ 2105 if (ctlr->fw_translate_cs) { 2106 int cs = ctlr->fw_translate_cs(ctlr, 2107 sb->device_selection); 2108 if (cs < 0) 2109 return cs; 2110 lookup->chip_select = cs; 2111 } else { 2112 lookup->chip_select = sb->device_selection; 2113 } 2114 2115 lookup->max_speed_hz = sb->connection_speed; 2116 2117 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2118 lookup->mode |= SPI_CPHA; 2119 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2120 lookup->mode |= SPI_CPOL; 2121 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2122 lookup->mode |= SPI_CS_HIGH; 2123 } 2124 } else if (lookup->irq < 0) { 2125 struct resource r; 2126 2127 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2128 lookup->irq = r.start; 2129 } 2130 2131 /* Always tell the ACPI core to skip this resource */ 2132 return 1; 2133 } 2134 2135 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2136 struct acpi_device *adev) 2137 { 2138 acpi_handle parent_handle = NULL; 2139 struct list_head resource_list; 2140 struct acpi_spi_lookup lookup = {}; 2141 struct spi_device *spi; 2142 int ret; 2143 2144 if (acpi_bus_get_status(adev) || !adev->status.present || 2145 acpi_device_enumerated(adev)) 2146 return AE_OK; 2147 2148 lookup.ctlr = ctlr; 2149 lookup.irq = -1; 2150 2151 INIT_LIST_HEAD(&resource_list); 2152 ret = acpi_dev_get_resources(adev, &resource_list, 2153 acpi_spi_add_resource, &lookup); 2154 acpi_dev_free_resource_list(&resource_list); 2155 2156 if (ret < 0) 2157 /* found SPI in _CRS but it points to another controller */ 2158 return AE_OK; 2159 2160 if (!lookup.max_speed_hz && 2161 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2162 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2163 /* Apple does not use _CRS but nested devices for SPI slaves */ 2164 acpi_spi_parse_apple_properties(adev, &lookup); 2165 } 2166 2167 if (!lookup.max_speed_hz) 2168 return AE_OK; 2169 2170 spi = spi_alloc_device(ctlr); 2171 if (!spi) { 2172 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2173 dev_name(&adev->dev)); 2174 return AE_NO_MEMORY; 2175 } 2176 2177 ACPI_COMPANION_SET(&spi->dev, adev); 2178 spi->max_speed_hz = lookup.max_speed_hz; 2179 spi->mode = lookup.mode; 2180 spi->irq = lookup.irq; 2181 spi->bits_per_word = lookup.bits_per_word; 2182 spi->chip_select = lookup.chip_select; 2183 2184 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2185 sizeof(spi->modalias)); 2186 2187 if (spi->irq < 0) 2188 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2189 2190 acpi_device_set_enumerated(adev); 2191 2192 adev->power.flags.ignore_parent = true; 2193 if (spi_add_device(spi)) { 2194 adev->power.flags.ignore_parent = false; 2195 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2196 dev_name(&adev->dev)); 2197 spi_dev_put(spi); 2198 } 2199 2200 return AE_OK; 2201 } 2202 2203 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2204 void *data, void **return_value) 2205 { 2206 struct spi_controller *ctlr = data; 2207 struct acpi_device *adev; 2208 2209 if (acpi_bus_get_device(handle, &adev)) 2210 return AE_OK; 2211 2212 return acpi_register_spi_device(ctlr, adev); 2213 } 2214 2215 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2216 2217 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2218 { 2219 acpi_status status; 2220 acpi_handle handle; 2221 2222 handle = ACPI_HANDLE(ctlr->dev.parent); 2223 if (!handle) 2224 return; 2225 2226 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2227 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2228 acpi_spi_add_device, NULL, ctlr, NULL); 2229 if (ACPI_FAILURE(status)) 2230 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2231 } 2232 #else 2233 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2234 #endif /* CONFIG_ACPI */ 2235 2236 static void spi_controller_release(struct device *dev) 2237 { 2238 struct spi_controller *ctlr; 2239 2240 ctlr = container_of(dev, struct spi_controller, dev); 2241 kfree(ctlr); 2242 } 2243 2244 static struct class spi_master_class = { 2245 .name = "spi_master", 2246 .owner = THIS_MODULE, 2247 .dev_release = spi_controller_release, 2248 .dev_groups = spi_master_groups, 2249 }; 2250 2251 #ifdef CONFIG_SPI_SLAVE 2252 /** 2253 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2254 * controller 2255 * @spi: device used for the current transfer 2256 */ 2257 int spi_slave_abort(struct spi_device *spi) 2258 { 2259 struct spi_controller *ctlr = spi->controller; 2260 2261 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2262 return ctlr->slave_abort(ctlr); 2263 2264 return -ENOTSUPP; 2265 } 2266 EXPORT_SYMBOL_GPL(spi_slave_abort); 2267 2268 static int match_true(struct device *dev, void *data) 2269 { 2270 return 1; 2271 } 2272 2273 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2274 char *buf) 2275 { 2276 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2277 dev); 2278 struct device *child; 2279 2280 child = device_find_child(&ctlr->dev, NULL, match_true); 2281 return sprintf(buf, "%s\n", 2282 child ? to_spi_device(child)->modalias : NULL); 2283 } 2284 2285 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2286 const char *buf, size_t count) 2287 { 2288 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2289 dev); 2290 struct spi_device *spi; 2291 struct device *child; 2292 char name[32]; 2293 int rc; 2294 2295 rc = sscanf(buf, "%31s", name); 2296 if (rc != 1 || !name[0]) 2297 return -EINVAL; 2298 2299 child = device_find_child(&ctlr->dev, NULL, match_true); 2300 if (child) { 2301 /* Remove registered slave */ 2302 device_unregister(child); 2303 put_device(child); 2304 } 2305 2306 if (strcmp(name, "(null)")) { 2307 /* Register new slave */ 2308 spi = spi_alloc_device(ctlr); 2309 if (!spi) 2310 return -ENOMEM; 2311 2312 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2313 2314 rc = spi_add_device(spi); 2315 if (rc) { 2316 spi_dev_put(spi); 2317 return rc; 2318 } 2319 } 2320 2321 return count; 2322 } 2323 2324 static DEVICE_ATTR_RW(slave); 2325 2326 static struct attribute *spi_slave_attrs[] = { 2327 &dev_attr_slave.attr, 2328 NULL, 2329 }; 2330 2331 static const struct attribute_group spi_slave_group = { 2332 .attrs = spi_slave_attrs, 2333 }; 2334 2335 static const struct attribute_group *spi_slave_groups[] = { 2336 &spi_controller_statistics_group, 2337 &spi_slave_group, 2338 NULL, 2339 }; 2340 2341 static struct class spi_slave_class = { 2342 .name = "spi_slave", 2343 .owner = THIS_MODULE, 2344 .dev_release = spi_controller_release, 2345 .dev_groups = spi_slave_groups, 2346 }; 2347 #else 2348 extern struct class spi_slave_class; /* dummy */ 2349 #endif 2350 2351 /** 2352 * __spi_alloc_controller - allocate an SPI master or slave controller 2353 * @dev: the controller, possibly using the platform_bus 2354 * @size: how much zeroed driver-private data to allocate; the pointer to this 2355 * memory is in the driver_data field of the returned device, accessible 2356 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2357 * drivers granting DMA access to portions of their private data need to 2358 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2359 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2360 * slave (true) controller 2361 * Context: can sleep 2362 * 2363 * This call is used only by SPI controller drivers, which are the 2364 * only ones directly touching chip registers. It's how they allocate 2365 * an spi_controller structure, prior to calling spi_register_controller(). 2366 * 2367 * This must be called from context that can sleep. 2368 * 2369 * The caller is responsible for assigning the bus number and initializing the 2370 * controller's methods before calling spi_register_controller(); and (after 2371 * errors adding the device) calling spi_controller_put() to prevent a memory 2372 * leak. 2373 * 2374 * Return: the SPI controller structure on success, else NULL. 2375 */ 2376 struct spi_controller *__spi_alloc_controller(struct device *dev, 2377 unsigned int size, bool slave) 2378 { 2379 struct spi_controller *ctlr; 2380 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2381 2382 if (!dev) 2383 return NULL; 2384 2385 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2386 if (!ctlr) 2387 return NULL; 2388 2389 device_initialize(&ctlr->dev); 2390 ctlr->bus_num = -1; 2391 ctlr->num_chipselect = 1; 2392 ctlr->slave = slave; 2393 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2394 ctlr->dev.class = &spi_slave_class; 2395 else 2396 ctlr->dev.class = &spi_master_class; 2397 ctlr->dev.parent = dev; 2398 pm_suspend_ignore_children(&ctlr->dev, true); 2399 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2400 2401 return ctlr; 2402 } 2403 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2404 2405 #ifdef CONFIG_OF 2406 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2407 { 2408 int nb, i, *cs; 2409 struct device_node *np = ctlr->dev.of_node; 2410 2411 if (!np) 2412 return 0; 2413 2414 nb = of_gpio_named_count(np, "cs-gpios"); 2415 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2416 2417 /* Return error only for an incorrectly formed cs-gpios property */ 2418 if (nb == 0 || nb == -ENOENT) 2419 return 0; 2420 else if (nb < 0) 2421 return nb; 2422 2423 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2424 GFP_KERNEL); 2425 ctlr->cs_gpios = cs; 2426 2427 if (!ctlr->cs_gpios) 2428 return -ENOMEM; 2429 2430 for (i = 0; i < ctlr->num_chipselect; i++) 2431 cs[i] = -ENOENT; 2432 2433 for (i = 0; i < nb; i++) 2434 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2435 2436 return 0; 2437 } 2438 #else 2439 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2440 { 2441 return 0; 2442 } 2443 #endif 2444 2445 /** 2446 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2447 * @ctlr: The SPI master to grab GPIO descriptors for 2448 */ 2449 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2450 { 2451 int nb, i; 2452 struct gpio_desc **cs; 2453 struct device *dev = &ctlr->dev; 2454 2455 nb = gpiod_count(dev, "cs"); 2456 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2457 2458 /* No GPIOs at all is fine, else return the error */ 2459 if (nb == 0 || nb == -ENOENT) 2460 return 0; 2461 else if (nb < 0) 2462 return nb; 2463 2464 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2465 GFP_KERNEL); 2466 if (!cs) 2467 return -ENOMEM; 2468 ctlr->cs_gpiods = cs; 2469 2470 for (i = 0; i < nb; i++) { 2471 /* 2472 * Most chipselects are active low, the inverted 2473 * semantics are handled by special quirks in gpiolib, 2474 * so initializing them GPIOD_OUT_LOW here means 2475 * "unasserted", in most cases this will drive the physical 2476 * line high. 2477 */ 2478 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2479 GPIOD_OUT_LOW); 2480 if (IS_ERR(cs[i])) 2481 return PTR_ERR(cs[i]); 2482 2483 if (cs[i]) { 2484 /* 2485 * If we find a CS GPIO, name it after the device and 2486 * chip select line. 2487 */ 2488 char *gpioname; 2489 2490 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2491 dev_name(dev), i); 2492 if (!gpioname) 2493 return -ENOMEM; 2494 gpiod_set_consumer_name(cs[i], gpioname); 2495 } 2496 } 2497 2498 return 0; 2499 } 2500 2501 static int spi_controller_check_ops(struct spi_controller *ctlr) 2502 { 2503 /* 2504 * The controller may implement only the high-level SPI-memory like 2505 * operations if it does not support regular SPI transfers, and this is 2506 * valid use case. 2507 * If ->mem_ops is NULL, we request that at least one of the 2508 * ->transfer_xxx() method be implemented. 2509 */ 2510 if (ctlr->mem_ops) { 2511 if (!ctlr->mem_ops->exec_op) 2512 return -EINVAL; 2513 } else if (!ctlr->transfer && !ctlr->transfer_one && 2514 !ctlr->transfer_one_message) { 2515 return -EINVAL; 2516 } 2517 2518 return 0; 2519 } 2520 2521 /** 2522 * spi_register_controller - register SPI master or slave controller 2523 * @ctlr: initialized master, originally from spi_alloc_master() or 2524 * spi_alloc_slave() 2525 * Context: can sleep 2526 * 2527 * SPI controllers connect to their drivers using some non-SPI bus, 2528 * such as the platform bus. The final stage of probe() in that code 2529 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2530 * 2531 * SPI controllers use board specific (often SOC specific) bus numbers, 2532 * and board-specific addressing for SPI devices combines those numbers 2533 * with chip select numbers. Since SPI does not directly support dynamic 2534 * device identification, boards need configuration tables telling which 2535 * chip is at which address. 2536 * 2537 * This must be called from context that can sleep. It returns zero on 2538 * success, else a negative error code (dropping the controller's refcount). 2539 * After a successful return, the caller is responsible for calling 2540 * spi_unregister_controller(). 2541 * 2542 * Return: zero on success, else a negative error code. 2543 */ 2544 int spi_register_controller(struct spi_controller *ctlr) 2545 { 2546 struct device *dev = ctlr->dev.parent; 2547 struct boardinfo *bi; 2548 int status; 2549 int id, first_dynamic; 2550 2551 if (!dev) 2552 return -ENODEV; 2553 2554 /* 2555 * Make sure all necessary hooks are implemented before registering 2556 * the SPI controller. 2557 */ 2558 status = spi_controller_check_ops(ctlr); 2559 if (status) 2560 return status; 2561 2562 if (ctlr->bus_num >= 0) { 2563 /* devices with a fixed bus num must check-in with the num */ 2564 mutex_lock(&board_lock); 2565 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2566 ctlr->bus_num + 1, GFP_KERNEL); 2567 mutex_unlock(&board_lock); 2568 if (WARN(id < 0, "couldn't get idr")) 2569 return id == -ENOSPC ? -EBUSY : id; 2570 ctlr->bus_num = id; 2571 } else if (ctlr->dev.of_node) { 2572 /* allocate dynamic bus number using Linux idr */ 2573 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2574 if (id >= 0) { 2575 ctlr->bus_num = id; 2576 mutex_lock(&board_lock); 2577 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2578 ctlr->bus_num + 1, GFP_KERNEL); 2579 mutex_unlock(&board_lock); 2580 if (WARN(id < 0, "couldn't get idr")) 2581 return id == -ENOSPC ? -EBUSY : id; 2582 } 2583 } 2584 if (ctlr->bus_num < 0) { 2585 first_dynamic = of_alias_get_highest_id("spi"); 2586 if (first_dynamic < 0) 2587 first_dynamic = 0; 2588 else 2589 first_dynamic++; 2590 2591 mutex_lock(&board_lock); 2592 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2593 0, GFP_KERNEL); 2594 mutex_unlock(&board_lock); 2595 if (WARN(id < 0, "couldn't get idr")) 2596 return id; 2597 ctlr->bus_num = id; 2598 } 2599 INIT_LIST_HEAD(&ctlr->queue); 2600 spin_lock_init(&ctlr->queue_lock); 2601 spin_lock_init(&ctlr->bus_lock_spinlock); 2602 mutex_init(&ctlr->bus_lock_mutex); 2603 mutex_init(&ctlr->io_mutex); 2604 ctlr->bus_lock_flag = 0; 2605 init_completion(&ctlr->xfer_completion); 2606 if (!ctlr->max_dma_len) 2607 ctlr->max_dma_len = INT_MAX; 2608 2609 /* register the device, then userspace will see it. 2610 * registration fails if the bus ID is in use. 2611 */ 2612 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2613 2614 if (!spi_controller_is_slave(ctlr)) { 2615 if (ctlr->use_gpio_descriptors) { 2616 status = spi_get_gpio_descs(ctlr); 2617 if (status) 2618 return status; 2619 /* 2620 * A controller using GPIO descriptors always 2621 * supports SPI_CS_HIGH if need be. 2622 */ 2623 ctlr->mode_bits |= SPI_CS_HIGH; 2624 } else { 2625 /* Legacy code path for GPIOs from DT */ 2626 status = of_spi_get_gpio_numbers(ctlr); 2627 if (status) 2628 return status; 2629 } 2630 } 2631 2632 /* 2633 * Even if it's just one always-selected device, there must 2634 * be at least one chipselect. 2635 */ 2636 if (!ctlr->num_chipselect) 2637 return -EINVAL; 2638 2639 status = device_add(&ctlr->dev); 2640 if (status < 0) { 2641 /* free bus id */ 2642 mutex_lock(&board_lock); 2643 idr_remove(&spi_master_idr, ctlr->bus_num); 2644 mutex_unlock(&board_lock); 2645 goto done; 2646 } 2647 dev_dbg(dev, "registered %s %s\n", 2648 spi_controller_is_slave(ctlr) ? "slave" : "master", 2649 dev_name(&ctlr->dev)); 2650 2651 /* 2652 * If we're using a queued driver, start the queue. Note that we don't 2653 * need the queueing logic if the driver is only supporting high-level 2654 * memory operations. 2655 */ 2656 if (ctlr->transfer) { 2657 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2658 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2659 status = spi_controller_initialize_queue(ctlr); 2660 if (status) { 2661 device_del(&ctlr->dev); 2662 /* free bus id */ 2663 mutex_lock(&board_lock); 2664 idr_remove(&spi_master_idr, ctlr->bus_num); 2665 mutex_unlock(&board_lock); 2666 goto done; 2667 } 2668 } 2669 /* add statistics */ 2670 spin_lock_init(&ctlr->statistics.lock); 2671 2672 mutex_lock(&board_lock); 2673 list_add_tail(&ctlr->list, &spi_controller_list); 2674 list_for_each_entry(bi, &board_list, list) 2675 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2676 mutex_unlock(&board_lock); 2677 2678 /* Register devices from the device tree and ACPI */ 2679 of_register_spi_devices(ctlr); 2680 acpi_register_spi_devices(ctlr); 2681 done: 2682 return status; 2683 } 2684 EXPORT_SYMBOL_GPL(spi_register_controller); 2685 2686 static void devm_spi_unregister(struct device *dev, void *res) 2687 { 2688 spi_unregister_controller(*(struct spi_controller **)res); 2689 } 2690 2691 /** 2692 * devm_spi_register_controller - register managed SPI master or slave 2693 * controller 2694 * @dev: device managing SPI controller 2695 * @ctlr: initialized controller, originally from spi_alloc_master() or 2696 * spi_alloc_slave() 2697 * Context: can sleep 2698 * 2699 * Register a SPI device as with spi_register_controller() which will 2700 * automatically be unregistered and freed. 2701 * 2702 * Return: zero on success, else a negative error code. 2703 */ 2704 int devm_spi_register_controller(struct device *dev, 2705 struct spi_controller *ctlr) 2706 { 2707 struct spi_controller **ptr; 2708 int ret; 2709 2710 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2711 if (!ptr) 2712 return -ENOMEM; 2713 2714 ret = spi_register_controller(ctlr); 2715 if (!ret) { 2716 *ptr = ctlr; 2717 devres_add(dev, ptr); 2718 } else { 2719 devres_free(ptr); 2720 } 2721 2722 return ret; 2723 } 2724 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2725 2726 static int __unregister(struct device *dev, void *null) 2727 { 2728 spi_unregister_device(to_spi_device(dev)); 2729 return 0; 2730 } 2731 2732 /** 2733 * spi_unregister_controller - unregister SPI master or slave controller 2734 * @ctlr: the controller being unregistered 2735 * Context: can sleep 2736 * 2737 * This call is used only by SPI controller drivers, which are the 2738 * only ones directly touching chip registers. 2739 * 2740 * This must be called from context that can sleep. 2741 * 2742 * Note that this function also drops a reference to the controller. 2743 */ 2744 void spi_unregister_controller(struct spi_controller *ctlr) 2745 { 2746 struct spi_controller *found; 2747 int id = ctlr->bus_num; 2748 2749 /* First make sure that this controller was ever added */ 2750 mutex_lock(&board_lock); 2751 found = idr_find(&spi_master_idr, id); 2752 mutex_unlock(&board_lock); 2753 if (ctlr->queued) { 2754 if (spi_destroy_queue(ctlr)) 2755 dev_err(&ctlr->dev, "queue remove failed\n"); 2756 } 2757 mutex_lock(&board_lock); 2758 list_del(&ctlr->list); 2759 mutex_unlock(&board_lock); 2760 2761 device_for_each_child(&ctlr->dev, NULL, __unregister); 2762 device_unregister(&ctlr->dev); 2763 /* free bus id */ 2764 mutex_lock(&board_lock); 2765 if (found == ctlr) 2766 idr_remove(&spi_master_idr, id); 2767 mutex_unlock(&board_lock); 2768 } 2769 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2770 2771 int spi_controller_suspend(struct spi_controller *ctlr) 2772 { 2773 int ret; 2774 2775 /* Basically no-ops for non-queued controllers */ 2776 if (!ctlr->queued) 2777 return 0; 2778 2779 ret = spi_stop_queue(ctlr); 2780 if (ret) 2781 dev_err(&ctlr->dev, "queue stop failed\n"); 2782 2783 return ret; 2784 } 2785 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2786 2787 int spi_controller_resume(struct spi_controller *ctlr) 2788 { 2789 int ret; 2790 2791 if (!ctlr->queued) 2792 return 0; 2793 2794 ret = spi_start_queue(ctlr); 2795 if (ret) 2796 dev_err(&ctlr->dev, "queue restart failed\n"); 2797 2798 return ret; 2799 } 2800 EXPORT_SYMBOL_GPL(spi_controller_resume); 2801 2802 static int __spi_controller_match(struct device *dev, const void *data) 2803 { 2804 struct spi_controller *ctlr; 2805 const u16 *bus_num = data; 2806 2807 ctlr = container_of(dev, struct spi_controller, dev); 2808 return ctlr->bus_num == *bus_num; 2809 } 2810 2811 /** 2812 * spi_busnum_to_master - look up master associated with bus_num 2813 * @bus_num: the master's bus number 2814 * Context: can sleep 2815 * 2816 * This call may be used with devices that are registered after 2817 * arch init time. It returns a refcounted pointer to the relevant 2818 * spi_controller (which the caller must release), or NULL if there is 2819 * no such master registered. 2820 * 2821 * Return: the SPI master structure on success, else NULL. 2822 */ 2823 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2824 { 2825 struct device *dev; 2826 struct spi_controller *ctlr = NULL; 2827 2828 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2829 __spi_controller_match); 2830 if (dev) 2831 ctlr = container_of(dev, struct spi_controller, dev); 2832 /* reference got in class_find_device */ 2833 return ctlr; 2834 } 2835 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2836 2837 /*-------------------------------------------------------------------------*/ 2838 2839 /* Core methods for SPI resource management */ 2840 2841 /** 2842 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2843 * during the processing of a spi_message while using 2844 * spi_transfer_one 2845 * @spi: the spi device for which we allocate memory 2846 * @release: the release code to execute for this resource 2847 * @size: size to alloc and return 2848 * @gfp: GFP allocation flags 2849 * 2850 * Return: the pointer to the allocated data 2851 * 2852 * This may get enhanced in the future to allocate from a memory pool 2853 * of the @spi_device or @spi_controller to avoid repeated allocations. 2854 */ 2855 void *spi_res_alloc(struct spi_device *spi, 2856 spi_res_release_t release, 2857 size_t size, gfp_t gfp) 2858 { 2859 struct spi_res *sres; 2860 2861 sres = kzalloc(sizeof(*sres) + size, gfp); 2862 if (!sres) 2863 return NULL; 2864 2865 INIT_LIST_HEAD(&sres->entry); 2866 sres->release = release; 2867 2868 return sres->data; 2869 } 2870 EXPORT_SYMBOL_GPL(spi_res_alloc); 2871 2872 /** 2873 * spi_res_free - free an spi resource 2874 * @res: pointer to the custom data of a resource 2875 * 2876 */ 2877 void spi_res_free(void *res) 2878 { 2879 struct spi_res *sres = container_of(res, struct spi_res, data); 2880 2881 if (!res) 2882 return; 2883 2884 WARN_ON(!list_empty(&sres->entry)); 2885 kfree(sres); 2886 } 2887 EXPORT_SYMBOL_GPL(spi_res_free); 2888 2889 /** 2890 * spi_res_add - add a spi_res to the spi_message 2891 * @message: the spi message 2892 * @res: the spi_resource 2893 */ 2894 void spi_res_add(struct spi_message *message, void *res) 2895 { 2896 struct spi_res *sres = container_of(res, struct spi_res, data); 2897 2898 WARN_ON(!list_empty(&sres->entry)); 2899 list_add_tail(&sres->entry, &message->resources); 2900 } 2901 EXPORT_SYMBOL_GPL(spi_res_add); 2902 2903 /** 2904 * spi_res_release - release all spi resources for this message 2905 * @ctlr: the @spi_controller 2906 * @message: the @spi_message 2907 */ 2908 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2909 { 2910 struct spi_res *res, *tmp; 2911 2912 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2913 if (res->release) 2914 res->release(ctlr, message, res->data); 2915 2916 list_del(&res->entry); 2917 2918 kfree(res); 2919 } 2920 } 2921 EXPORT_SYMBOL_GPL(spi_res_release); 2922 2923 /*-------------------------------------------------------------------------*/ 2924 2925 /* Core methods for spi_message alterations */ 2926 2927 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2928 struct spi_message *msg, 2929 void *res) 2930 { 2931 struct spi_replaced_transfers *rxfer = res; 2932 size_t i; 2933 2934 /* call extra callback if requested */ 2935 if (rxfer->release) 2936 rxfer->release(ctlr, msg, res); 2937 2938 /* insert replaced transfers back into the message */ 2939 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2940 2941 /* remove the formerly inserted entries */ 2942 for (i = 0; i < rxfer->inserted; i++) 2943 list_del(&rxfer->inserted_transfers[i].transfer_list); 2944 } 2945 2946 /** 2947 * spi_replace_transfers - replace transfers with several transfers 2948 * and register change with spi_message.resources 2949 * @msg: the spi_message we work upon 2950 * @xfer_first: the first spi_transfer we want to replace 2951 * @remove: number of transfers to remove 2952 * @insert: the number of transfers we want to insert instead 2953 * @release: extra release code necessary in some circumstances 2954 * @extradatasize: extra data to allocate (with alignment guarantees 2955 * of struct @spi_transfer) 2956 * @gfp: gfp flags 2957 * 2958 * Returns: pointer to @spi_replaced_transfers, 2959 * PTR_ERR(...) in case of errors. 2960 */ 2961 struct spi_replaced_transfers *spi_replace_transfers( 2962 struct spi_message *msg, 2963 struct spi_transfer *xfer_first, 2964 size_t remove, 2965 size_t insert, 2966 spi_replaced_release_t release, 2967 size_t extradatasize, 2968 gfp_t gfp) 2969 { 2970 struct spi_replaced_transfers *rxfer; 2971 struct spi_transfer *xfer; 2972 size_t i; 2973 2974 /* allocate the structure using spi_res */ 2975 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2976 struct_size(rxfer, inserted_transfers, insert) 2977 + extradatasize, 2978 gfp); 2979 if (!rxfer) 2980 return ERR_PTR(-ENOMEM); 2981 2982 /* the release code to invoke before running the generic release */ 2983 rxfer->release = release; 2984 2985 /* assign extradata */ 2986 if (extradatasize) 2987 rxfer->extradata = 2988 &rxfer->inserted_transfers[insert]; 2989 2990 /* init the replaced_transfers list */ 2991 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2992 2993 /* assign the list_entry after which we should reinsert 2994 * the @replaced_transfers - it may be spi_message.messages! 2995 */ 2996 rxfer->replaced_after = xfer_first->transfer_list.prev; 2997 2998 /* remove the requested number of transfers */ 2999 for (i = 0; i < remove; i++) { 3000 /* if the entry after replaced_after it is msg->transfers 3001 * then we have been requested to remove more transfers 3002 * than are in the list 3003 */ 3004 if (rxfer->replaced_after->next == &msg->transfers) { 3005 dev_err(&msg->spi->dev, 3006 "requested to remove more spi_transfers than are available\n"); 3007 /* insert replaced transfers back into the message */ 3008 list_splice(&rxfer->replaced_transfers, 3009 rxfer->replaced_after); 3010 3011 /* free the spi_replace_transfer structure */ 3012 spi_res_free(rxfer); 3013 3014 /* and return with an error */ 3015 return ERR_PTR(-EINVAL); 3016 } 3017 3018 /* remove the entry after replaced_after from list of 3019 * transfers and add it to list of replaced_transfers 3020 */ 3021 list_move_tail(rxfer->replaced_after->next, 3022 &rxfer->replaced_transfers); 3023 } 3024 3025 /* create copy of the given xfer with identical settings 3026 * based on the first transfer to get removed 3027 */ 3028 for (i = 0; i < insert; i++) { 3029 /* we need to run in reverse order */ 3030 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3031 3032 /* copy all spi_transfer data */ 3033 memcpy(xfer, xfer_first, sizeof(*xfer)); 3034 3035 /* add to list */ 3036 list_add(&xfer->transfer_list, rxfer->replaced_after); 3037 3038 /* clear cs_change and delay for all but the last */ 3039 if (i) { 3040 xfer->cs_change = false; 3041 xfer->delay_usecs = 0; 3042 xfer->delay.value = 0; 3043 } 3044 } 3045 3046 /* set up inserted */ 3047 rxfer->inserted = insert; 3048 3049 /* and register it with spi_res/spi_message */ 3050 spi_res_add(msg, rxfer); 3051 3052 return rxfer; 3053 } 3054 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3055 3056 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3057 struct spi_message *msg, 3058 struct spi_transfer **xferp, 3059 size_t maxsize, 3060 gfp_t gfp) 3061 { 3062 struct spi_transfer *xfer = *xferp, *xfers; 3063 struct spi_replaced_transfers *srt; 3064 size_t offset; 3065 size_t count, i; 3066 3067 /* calculate how many we have to replace */ 3068 count = DIV_ROUND_UP(xfer->len, maxsize); 3069 3070 /* create replacement */ 3071 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3072 if (IS_ERR(srt)) 3073 return PTR_ERR(srt); 3074 xfers = srt->inserted_transfers; 3075 3076 /* now handle each of those newly inserted spi_transfers 3077 * note that the replacements spi_transfers all are preset 3078 * to the same values as *xferp, so tx_buf, rx_buf and len 3079 * are all identical (as well as most others) 3080 * so we just have to fix up len and the pointers. 3081 * 3082 * this also includes support for the depreciated 3083 * spi_message.is_dma_mapped interface 3084 */ 3085 3086 /* the first transfer just needs the length modified, so we 3087 * run it outside the loop 3088 */ 3089 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3090 3091 /* all the others need rx_buf/tx_buf also set */ 3092 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3093 /* update rx_buf, tx_buf and dma */ 3094 if (xfers[i].rx_buf) 3095 xfers[i].rx_buf += offset; 3096 if (xfers[i].rx_dma) 3097 xfers[i].rx_dma += offset; 3098 if (xfers[i].tx_buf) 3099 xfers[i].tx_buf += offset; 3100 if (xfers[i].tx_dma) 3101 xfers[i].tx_dma += offset; 3102 3103 /* update length */ 3104 xfers[i].len = min(maxsize, xfers[i].len - offset); 3105 } 3106 3107 /* we set up xferp to the last entry we have inserted, 3108 * so that we skip those already split transfers 3109 */ 3110 *xferp = &xfers[count - 1]; 3111 3112 /* increment statistics counters */ 3113 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3114 transfers_split_maxsize); 3115 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3116 transfers_split_maxsize); 3117 3118 return 0; 3119 } 3120 3121 /** 3122 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3123 * when an individual transfer exceeds a 3124 * certain size 3125 * @ctlr: the @spi_controller for this transfer 3126 * @msg: the @spi_message to transform 3127 * @maxsize: the maximum when to apply this 3128 * @gfp: GFP allocation flags 3129 * 3130 * Return: status of transformation 3131 */ 3132 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3133 struct spi_message *msg, 3134 size_t maxsize, 3135 gfp_t gfp) 3136 { 3137 struct spi_transfer *xfer; 3138 int ret; 3139 3140 /* iterate over the transfer_list, 3141 * but note that xfer is advanced to the last transfer inserted 3142 * to avoid checking sizes again unnecessarily (also xfer does 3143 * potentiall belong to a different list by the time the 3144 * replacement has happened 3145 */ 3146 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3147 if (xfer->len > maxsize) { 3148 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3149 maxsize, gfp); 3150 if (ret) 3151 return ret; 3152 } 3153 } 3154 3155 return 0; 3156 } 3157 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3158 3159 /*-------------------------------------------------------------------------*/ 3160 3161 /* Core methods for SPI controller protocol drivers. Some of the 3162 * other core methods are currently defined as inline functions. 3163 */ 3164 3165 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3166 u8 bits_per_word) 3167 { 3168 if (ctlr->bits_per_word_mask) { 3169 /* Only 32 bits fit in the mask */ 3170 if (bits_per_word > 32) 3171 return -EINVAL; 3172 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3173 return -EINVAL; 3174 } 3175 3176 return 0; 3177 } 3178 3179 /** 3180 * spi_setup - setup SPI mode and clock rate 3181 * @spi: the device whose settings are being modified 3182 * Context: can sleep, and no requests are queued to the device 3183 * 3184 * SPI protocol drivers may need to update the transfer mode if the 3185 * device doesn't work with its default. They may likewise need 3186 * to update clock rates or word sizes from initial values. This function 3187 * changes those settings, and must be called from a context that can sleep. 3188 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3189 * effect the next time the device is selected and data is transferred to 3190 * or from it. When this function returns, the spi device is deselected. 3191 * 3192 * Note that this call will fail if the protocol driver specifies an option 3193 * that the underlying controller or its driver does not support. For 3194 * example, not all hardware supports wire transfers using nine bit words, 3195 * LSB-first wire encoding, or active-high chipselects. 3196 * 3197 * Return: zero on success, else a negative error code. 3198 */ 3199 int spi_setup(struct spi_device *spi) 3200 { 3201 unsigned bad_bits, ugly_bits; 3202 int status; 3203 3204 /* check mode to prevent that DUAL and QUAD set at the same time 3205 */ 3206 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3207 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3208 dev_err(&spi->dev, 3209 "setup: can not select dual and quad at the same time\n"); 3210 return -EINVAL; 3211 } 3212 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3213 */ 3214 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3215 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3216 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3217 return -EINVAL; 3218 /* help drivers fail *cleanly* when they need options 3219 * that aren't supported with their current controller 3220 * SPI_CS_WORD has a fallback software implementation, 3221 * so it is ignored here. 3222 */ 3223 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3224 /* nothing prevents from working with active-high CS in case if it 3225 * is driven by GPIO. 3226 */ 3227 if (gpio_is_valid(spi->cs_gpio)) 3228 bad_bits &= ~SPI_CS_HIGH; 3229 ugly_bits = bad_bits & 3230 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3231 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3232 if (ugly_bits) { 3233 dev_warn(&spi->dev, 3234 "setup: ignoring unsupported mode bits %x\n", 3235 ugly_bits); 3236 spi->mode &= ~ugly_bits; 3237 bad_bits &= ~ugly_bits; 3238 } 3239 if (bad_bits) { 3240 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3241 bad_bits); 3242 return -EINVAL; 3243 } 3244 3245 if (!spi->bits_per_word) 3246 spi->bits_per_word = 8; 3247 3248 status = __spi_validate_bits_per_word(spi->controller, 3249 spi->bits_per_word); 3250 if (status) 3251 return status; 3252 3253 if (!spi->max_speed_hz) 3254 spi->max_speed_hz = spi->controller->max_speed_hz; 3255 3256 if (spi->controller->setup) 3257 status = spi->controller->setup(spi); 3258 3259 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3260 status = pm_runtime_get_sync(spi->controller->dev.parent); 3261 if (status < 0) { 3262 pm_runtime_put_noidle(spi->controller->dev.parent); 3263 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3264 status); 3265 return status; 3266 } 3267 3268 /* 3269 * We do not want to return positive value from pm_runtime_get, 3270 * there are many instances of devices calling spi_setup() and 3271 * checking for a non-zero return value instead of a negative 3272 * return value. 3273 */ 3274 status = 0; 3275 3276 spi_set_cs(spi, false); 3277 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3278 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3279 } else { 3280 spi_set_cs(spi, false); 3281 } 3282 3283 if (spi->rt && !spi->controller->rt) { 3284 spi->controller->rt = true; 3285 spi_set_thread_rt(spi->controller); 3286 } 3287 3288 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3289 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3290 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3291 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3292 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3293 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3294 spi->bits_per_word, spi->max_speed_hz, 3295 status); 3296 3297 return status; 3298 } 3299 EXPORT_SYMBOL_GPL(spi_setup); 3300 3301 /** 3302 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3303 * @spi: the device that requires specific CS timing configuration 3304 * @setup: CS setup time specified via @spi_delay 3305 * @hold: CS hold time specified via @spi_delay 3306 * @inactive: CS inactive delay between transfers specified via @spi_delay 3307 * 3308 * Return: zero on success, else a negative error code. 3309 */ 3310 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3311 struct spi_delay *hold, struct spi_delay *inactive) 3312 { 3313 size_t len; 3314 3315 if (spi->controller->set_cs_timing) 3316 return spi->controller->set_cs_timing(spi, setup, hold, 3317 inactive); 3318 3319 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3320 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3321 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3322 dev_err(&spi->dev, 3323 "Clock-cycle delays for CS not supported in SW mode\n"); 3324 return -ENOTSUPP; 3325 } 3326 3327 len = sizeof(struct spi_delay); 3328 3329 /* copy delays to controller */ 3330 if (setup) 3331 memcpy(&spi->controller->cs_setup, setup, len); 3332 else 3333 memset(&spi->controller->cs_setup, 0, len); 3334 3335 if (hold) 3336 memcpy(&spi->controller->cs_hold, hold, len); 3337 else 3338 memset(&spi->controller->cs_hold, 0, len); 3339 3340 if (inactive) 3341 memcpy(&spi->controller->cs_inactive, inactive, len); 3342 else 3343 memset(&spi->controller->cs_inactive, 0, len); 3344 3345 return 0; 3346 } 3347 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3348 3349 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3350 struct spi_device *spi) 3351 { 3352 int delay1, delay2; 3353 3354 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3355 if (delay1 < 0) 3356 return delay1; 3357 3358 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3359 if (delay2 < 0) 3360 return delay2; 3361 3362 if (delay1 < delay2) 3363 memcpy(&xfer->word_delay, &spi->word_delay, 3364 sizeof(xfer->word_delay)); 3365 3366 return 0; 3367 } 3368 3369 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3370 { 3371 struct spi_controller *ctlr = spi->controller; 3372 struct spi_transfer *xfer; 3373 int w_size; 3374 3375 if (list_empty(&message->transfers)) 3376 return -EINVAL; 3377 3378 /* If an SPI controller does not support toggling the CS line on each 3379 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3380 * for the CS line, we can emulate the CS-per-word hardware function by 3381 * splitting transfers into one-word transfers and ensuring that 3382 * cs_change is set for each transfer. 3383 */ 3384 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3385 spi->cs_gpiod || 3386 gpio_is_valid(spi->cs_gpio))) { 3387 size_t maxsize; 3388 int ret; 3389 3390 maxsize = (spi->bits_per_word + 7) / 8; 3391 3392 /* spi_split_transfers_maxsize() requires message->spi */ 3393 message->spi = spi; 3394 3395 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3396 GFP_KERNEL); 3397 if (ret) 3398 return ret; 3399 3400 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3401 /* don't change cs_change on the last entry in the list */ 3402 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3403 break; 3404 xfer->cs_change = 1; 3405 } 3406 } 3407 3408 /* Half-duplex links include original MicroWire, and ones with 3409 * only one data pin like SPI_3WIRE (switches direction) or where 3410 * either MOSI or MISO is missing. They can also be caused by 3411 * software limitations. 3412 */ 3413 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3414 (spi->mode & SPI_3WIRE)) { 3415 unsigned flags = ctlr->flags; 3416 3417 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3418 if (xfer->rx_buf && xfer->tx_buf) 3419 return -EINVAL; 3420 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3421 return -EINVAL; 3422 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3423 return -EINVAL; 3424 } 3425 } 3426 3427 /** 3428 * Set transfer bits_per_word and max speed as spi device default if 3429 * it is not set for this transfer. 3430 * Set transfer tx_nbits and rx_nbits as single transfer default 3431 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3432 * Ensure transfer word_delay is at least as long as that required by 3433 * device itself. 3434 */ 3435 message->frame_length = 0; 3436 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3437 xfer->effective_speed_hz = 0; 3438 message->frame_length += xfer->len; 3439 if (!xfer->bits_per_word) 3440 xfer->bits_per_word = spi->bits_per_word; 3441 3442 if (!xfer->speed_hz) 3443 xfer->speed_hz = spi->max_speed_hz; 3444 3445 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3446 xfer->speed_hz = ctlr->max_speed_hz; 3447 3448 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3449 return -EINVAL; 3450 3451 /* 3452 * SPI transfer length should be multiple of SPI word size 3453 * where SPI word size should be power-of-two multiple 3454 */ 3455 if (xfer->bits_per_word <= 8) 3456 w_size = 1; 3457 else if (xfer->bits_per_word <= 16) 3458 w_size = 2; 3459 else 3460 w_size = 4; 3461 3462 /* No partial transfers accepted */ 3463 if (xfer->len % w_size) 3464 return -EINVAL; 3465 3466 if (xfer->speed_hz && ctlr->min_speed_hz && 3467 xfer->speed_hz < ctlr->min_speed_hz) 3468 return -EINVAL; 3469 3470 if (xfer->tx_buf && !xfer->tx_nbits) 3471 xfer->tx_nbits = SPI_NBITS_SINGLE; 3472 if (xfer->rx_buf && !xfer->rx_nbits) 3473 xfer->rx_nbits = SPI_NBITS_SINGLE; 3474 /* check transfer tx/rx_nbits: 3475 * 1. check the value matches one of single, dual and quad 3476 * 2. check tx/rx_nbits match the mode in spi_device 3477 */ 3478 if (xfer->tx_buf) { 3479 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3480 xfer->tx_nbits != SPI_NBITS_DUAL && 3481 xfer->tx_nbits != SPI_NBITS_QUAD) 3482 return -EINVAL; 3483 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3484 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3485 return -EINVAL; 3486 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3487 !(spi->mode & SPI_TX_QUAD)) 3488 return -EINVAL; 3489 } 3490 /* check transfer rx_nbits */ 3491 if (xfer->rx_buf) { 3492 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3493 xfer->rx_nbits != SPI_NBITS_DUAL && 3494 xfer->rx_nbits != SPI_NBITS_QUAD) 3495 return -EINVAL; 3496 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3497 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3498 return -EINVAL; 3499 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3500 !(spi->mode & SPI_RX_QUAD)) 3501 return -EINVAL; 3502 } 3503 3504 if (_spi_xfer_word_delay_update(xfer, spi)) 3505 return -EINVAL; 3506 } 3507 3508 message->status = -EINPROGRESS; 3509 3510 return 0; 3511 } 3512 3513 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3514 { 3515 struct spi_controller *ctlr = spi->controller; 3516 struct spi_transfer *xfer; 3517 3518 /* 3519 * Some controllers do not support doing regular SPI transfers. Return 3520 * ENOTSUPP when this is the case. 3521 */ 3522 if (!ctlr->transfer) 3523 return -ENOTSUPP; 3524 3525 message->spi = spi; 3526 3527 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3528 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3529 3530 trace_spi_message_submit(message); 3531 3532 if (!ctlr->ptp_sts_supported) { 3533 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3534 xfer->ptp_sts_word_pre = 0; 3535 ptp_read_system_prets(xfer->ptp_sts); 3536 } 3537 } 3538 3539 return ctlr->transfer(spi, message); 3540 } 3541 3542 /** 3543 * spi_async - asynchronous SPI transfer 3544 * @spi: device with which data will be exchanged 3545 * @message: describes the data transfers, including completion callback 3546 * Context: any (irqs may be blocked, etc) 3547 * 3548 * This call may be used in_irq and other contexts which can't sleep, 3549 * as well as from task contexts which can sleep. 3550 * 3551 * The completion callback is invoked in a context which can't sleep. 3552 * Before that invocation, the value of message->status is undefined. 3553 * When the callback is issued, message->status holds either zero (to 3554 * indicate complete success) or a negative error code. After that 3555 * callback returns, the driver which issued the transfer request may 3556 * deallocate the associated memory; it's no longer in use by any SPI 3557 * core or controller driver code. 3558 * 3559 * Note that although all messages to a spi_device are handled in 3560 * FIFO order, messages may go to different devices in other orders. 3561 * Some device might be higher priority, or have various "hard" access 3562 * time requirements, for example. 3563 * 3564 * On detection of any fault during the transfer, processing of 3565 * the entire message is aborted, and the device is deselected. 3566 * Until returning from the associated message completion callback, 3567 * no other spi_message queued to that device will be processed. 3568 * (This rule applies equally to all the synchronous transfer calls, 3569 * which are wrappers around this core asynchronous primitive.) 3570 * 3571 * Return: zero on success, else a negative error code. 3572 */ 3573 int spi_async(struct spi_device *spi, struct spi_message *message) 3574 { 3575 struct spi_controller *ctlr = spi->controller; 3576 int ret; 3577 unsigned long flags; 3578 3579 ret = __spi_validate(spi, message); 3580 if (ret != 0) 3581 return ret; 3582 3583 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3584 3585 if (ctlr->bus_lock_flag) 3586 ret = -EBUSY; 3587 else 3588 ret = __spi_async(spi, message); 3589 3590 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3591 3592 return ret; 3593 } 3594 EXPORT_SYMBOL_GPL(spi_async); 3595 3596 /** 3597 * spi_async_locked - version of spi_async with exclusive bus usage 3598 * @spi: device with which data will be exchanged 3599 * @message: describes the data transfers, including completion callback 3600 * Context: any (irqs may be blocked, etc) 3601 * 3602 * This call may be used in_irq and other contexts which can't sleep, 3603 * as well as from task contexts which can sleep. 3604 * 3605 * The completion callback is invoked in a context which can't sleep. 3606 * Before that invocation, the value of message->status is undefined. 3607 * When the callback is issued, message->status holds either zero (to 3608 * indicate complete success) or a negative error code. After that 3609 * callback returns, the driver which issued the transfer request may 3610 * deallocate the associated memory; it's no longer in use by any SPI 3611 * core or controller driver code. 3612 * 3613 * Note that although all messages to a spi_device are handled in 3614 * FIFO order, messages may go to different devices in other orders. 3615 * Some device might be higher priority, or have various "hard" access 3616 * time requirements, for example. 3617 * 3618 * On detection of any fault during the transfer, processing of 3619 * the entire message is aborted, and the device is deselected. 3620 * Until returning from the associated message completion callback, 3621 * no other spi_message queued to that device will be processed. 3622 * (This rule applies equally to all the synchronous transfer calls, 3623 * which are wrappers around this core asynchronous primitive.) 3624 * 3625 * Return: zero on success, else a negative error code. 3626 */ 3627 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3628 { 3629 struct spi_controller *ctlr = spi->controller; 3630 int ret; 3631 unsigned long flags; 3632 3633 ret = __spi_validate(spi, message); 3634 if (ret != 0) 3635 return ret; 3636 3637 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3638 3639 ret = __spi_async(spi, message); 3640 3641 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3642 3643 return ret; 3644 3645 } 3646 EXPORT_SYMBOL_GPL(spi_async_locked); 3647 3648 /*-------------------------------------------------------------------------*/ 3649 3650 /* Utility methods for SPI protocol drivers, layered on 3651 * top of the core. Some other utility methods are defined as 3652 * inline functions. 3653 */ 3654 3655 static void spi_complete(void *arg) 3656 { 3657 complete(arg); 3658 } 3659 3660 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3661 { 3662 DECLARE_COMPLETION_ONSTACK(done); 3663 int status; 3664 struct spi_controller *ctlr = spi->controller; 3665 unsigned long flags; 3666 3667 status = __spi_validate(spi, message); 3668 if (status != 0) 3669 return status; 3670 3671 message->complete = spi_complete; 3672 message->context = &done; 3673 message->spi = spi; 3674 3675 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3676 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3677 3678 /* If we're not using the legacy transfer method then we will 3679 * try to transfer in the calling context so special case. 3680 * This code would be less tricky if we could remove the 3681 * support for driver implemented message queues. 3682 */ 3683 if (ctlr->transfer == spi_queued_transfer) { 3684 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3685 3686 trace_spi_message_submit(message); 3687 3688 status = __spi_queued_transfer(spi, message, false); 3689 3690 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3691 } else { 3692 status = spi_async_locked(spi, message); 3693 } 3694 3695 if (status == 0) { 3696 /* Push out the messages in the calling context if we 3697 * can. 3698 */ 3699 if (ctlr->transfer == spi_queued_transfer) { 3700 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3701 spi_sync_immediate); 3702 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3703 spi_sync_immediate); 3704 __spi_pump_messages(ctlr, false); 3705 } 3706 3707 wait_for_completion(&done); 3708 status = message->status; 3709 } 3710 message->context = NULL; 3711 return status; 3712 } 3713 3714 /** 3715 * spi_sync - blocking/synchronous SPI data transfers 3716 * @spi: device with which data will be exchanged 3717 * @message: describes the data transfers 3718 * Context: can sleep 3719 * 3720 * This call may only be used from a context that may sleep. The sleep 3721 * is non-interruptible, and has no timeout. Low-overhead controller 3722 * drivers may DMA directly into and out of the message buffers. 3723 * 3724 * Note that the SPI device's chip select is active during the message, 3725 * and then is normally disabled between messages. Drivers for some 3726 * frequently-used devices may want to minimize costs of selecting a chip, 3727 * by leaving it selected in anticipation that the next message will go 3728 * to the same chip. (That may increase power usage.) 3729 * 3730 * Also, the caller is guaranteeing that the memory associated with the 3731 * message will not be freed before this call returns. 3732 * 3733 * Return: zero on success, else a negative error code. 3734 */ 3735 int spi_sync(struct spi_device *spi, struct spi_message *message) 3736 { 3737 int ret; 3738 3739 mutex_lock(&spi->controller->bus_lock_mutex); 3740 ret = __spi_sync(spi, message); 3741 mutex_unlock(&spi->controller->bus_lock_mutex); 3742 3743 return ret; 3744 } 3745 EXPORT_SYMBOL_GPL(spi_sync); 3746 3747 /** 3748 * spi_sync_locked - version of spi_sync with exclusive bus usage 3749 * @spi: device with which data will be exchanged 3750 * @message: describes the data transfers 3751 * Context: can sleep 3752 * 3753 * This call may only be used from a context that may sleep. The sleep 3754 * is non-interruptible, and has no timeout. Low-overhead controller 3755 * drivers may DMA directly into and out of the message buffers. 3756 * 3757 * This call should be used by drivers that require exclusive access to the 3758 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3759 * be released by a spi_bus_unlock call when the exclusive access is over. 3760 * 3761 * Return: zero on success, else a negative error code. 3762 */ 3763 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3764 { 3765 return __spi_sync(spi, message); 3766 } 3767 EXPORT_SYMBOL_GPL(spi_sync_locked); 3768 3769 /** 3770 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3771 * @ctlr: SPI bus master that should be locked for exclusive bus access 3772 * Context: can sleep 3773 * 3774 * This call may only be used from a context that may sleep. The sleep 3775 * is non-interruptible, and has no timeout. 3776 * 3777 * This call should be used by drivers that require exclusive access to the 3778 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3779 * exclusive access is over. Data transfer must be done by spi_sync_locked 3780 * and spi_async_locked calls when the SPI bus lock is held. 3781 * 3782 * Return: always zero. 3783 */ 3784 int spi_bus_lock(struct spi_controller *ctlr) 3785 { 3786 unsigned long flags; 3787 3788 mutex_lock(&ctlr->bus_lock_mutex); 3789 3790 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3791 ctlr->bus_lock_flag = 1; 3792 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3793 3794 /* mutex remains locked until spi_bus_unlock is called */ 3795 3796 return 0; 3797 } 3798 EXPORT_SYMBOL_GPL(spi_bus_lock); 3799 3800 /** 3801 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3802 * @ctlr: SPI bus master that was locked for exclusive bus access 3803 * Context: can sleep 3804 * 3805 * This call may only be used from a context that may sleep. The sleep 3806 * is non-interruptible, and has no timeout. 3807 * 3808 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3809 * call. 3810 * 3811 * Return: always zero. 3812 */ 3813 int spi_bus_unlock(struct spi_controller *ctlr) 3814 { 3815 ctlr->bus_lock_flag = 0; 3816 3817 mutex_unlock(&ctlr->bus_lock_mutex); 3818 3819 return 0; 3820 } 3821 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3822 3823 /* portable code must never pass more than 32 bytes */ 3824 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3825 3826 static u8 *buf; 3827 3828 /** 3829 * spi_write_then_read - SPI synchronous write followed by read 3830 * @spi: device with which data will be exchanged 3831 * @txbuf: data to be written (need not be dma-safe) 3832 * @n_tx: size of txbuf, in bytes 3833 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3834 * @n_rx: size of rxbuf, in bytes 3835 * Context: can sleep 3836 * 3837 * This performs a half duplex MicroWire style transaction with the 3838 * device, sending txbuf and then reading rxbuf. The return value 3839 * is zero for success, else a negative errno status code. 3840 * This call may only be used from a context that may sleep. 3841 * 3842 * Parameters to this routine are always copied using a small buffer; 3843 * portable code should never use this for more than 32 bytes. 3844 * Performance-sensitive or bulk transfer code should instead use 3845 * spi_{async,sync}() calls with dma-safe buffers. 3846 * 3847 * Return: zero on success, else a negative error code. 3848 */ 3849 int spi_write_then_read(struct spi_device *spi, 3850 const void *txbuf, unsigned n_tx, 3851 void *rxbuf, unsigned n_rx) 3852 { 3853 static DEFINE_MUTEX(lock); 3854 3855 int status; 3856 struct spi_message message; 3857 struct spi_transfer x[2]; 3858 u8 *local_buf; 3859 3860 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3861 * copying here, (as a pure convenience thing), but we can 3862 * keep heap costs out of the hot path unless someone else is 3863 * using the pre-allocated buffer or the transfer is too large. 3864 */ 3865 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3866 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3867 GFP_KERNEL | GFP_DMA); 3868 if (!local_buf) 3869 return -ENOMEM; 3870 } else { 3871 local_buf = buf; 3872 } 3873 3874 spi_message_init(&message); 3875 memset(x, 0, sizeof(x)); 3876 if (n_tx) { 3877 x[0].len = n_tx; 3878 spi_message_add_tail(&x[0], &message); 3879 } 3880 if (n_rx) { 3881 x[1].len = n_rx; 3882 spi_message_add_tail(&x[1], &message); 3883 } 3884 3885 memcpy(local_buf, txbuf, n_tx); 3886 x[0].tx_buf = local_buf; 3887 x[1].rx_buf = local_buf + n_tx; 3888 3889 /* do the i/o */ 3890 status = spi_sync(spi, &message); 3891 if (status == 0) 3892 memcpy(rxbuf, x[1].rx_buf, n_rx); 3893 3894 if (x[0].tx_buf == buf) 3895 mutex_unlock(&lock); 3896 else 3897 kfree(local_buf); 3898 3899 return status; 3900 } 3901 EXPORT_SYMBOL_GPL(spi_write_then_read); 3902 3903 /*-------------------------------------------------------------------------*/ 3904 3905 #if IS_ENABLED(CONFIG_OF) 3906 /* must call put_device() when done with returned spi_device device */ 3907 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3908 { 3909 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3910 3911 return dev ? to_spi_device(dev) : NULL; 3912 } 3913 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3914 #endif /* IS_ENABLED(CONFIG_OF) */ 3915 3916 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3917 /* the spi controllers are not using spi_bus, so we find it with another way */ 3918 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3919 { 3920 struct device *dev; 3921 3922 dev = class_find_device_by_of_node(&spi_master_class, node); 3923 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3924 dev = class_find_device_by_of_node(&spi_slave_class, node); 3925 if (!dev) 3926 return NULL; 3927 3928 /* reference got in class_find_device */ 3929 return container_of(dev, struct spi_controller, dev); 3930 } 3931 3932 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3933 void *arg) 3934 { 3935 struct of_reconfig_data *rd = arg; 3936 struct spi_controller *ctlr; 3937 struct spi_device *spi; 3938 3939 switch (of_reconfig_get_state_change(action, arg)) { 3940 case OF_RECONFIG_CHANGE_ADD: 3941 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3942 if (ctlr == NULL) 3943 return NOTIFY_OK; /* not for us */ 3944 3945 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3946 put_device(&ctlr->dev); 3947 return NOTIFY_OK; 3948 } 3949 3950 spi = of_register_spi_device(ctlr, rd->dn); 3951 put_device(&ctlr->dev); 3952 3953 if (IS_ERR(spi)) { 3954 pr_err("%s: failed to create for '%pOF'\n", 3955 __func__, rd->dn); 3956 of_node_clear_flag(rd->dn, OF_POPULATED); 3957 return notifier_from_errno(PTR_ERR(spi)); 3958 } 3959 break; 3960 3961 case OF_RECONFIG_CHANGE_REMOVE: 3962 /* already depopulated? */ 3963 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3964 return NOTIFY_OK; 3965 3966 /* find our device by node */ 3967 spi = of_find_spi_device_by_node(rd->dn); 3968 if (spi == NULL) 3969 return NOTIFY_OK; /* no? not meant for us */ 3970 3971 /* unregister takes one ref away */ 3972 spi_unregister_device(spi); 3973 3974 /* and put the reference of the find */ 3975 put_device(&spi->dev); 3976 break; 3977 } 3978 3979 return NOTIFY_OK; 3980 } 3981 3982 static struct notifier_block spi_of_notifier = { 3983 .notifier_call = of_spi_notify, 3984 }; 3985 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3986 extern struct notifier_block spi_of_notifier; 3987 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3988 3989 #if IS_ENABLED(CONFIG_ACPI) 3990 static int spi_acpi_controller_match(struct device *dev, const void *data) 3991 { 3992 return ACPI_COMPANION(dev->parent) == data; 3993 } 3994 3995 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 3996 { 3997 struct device *dev; 3998 3999 dev = class_find_device(&spi_master_class, NULL, adev, 4000 spi_acpi_controller_match); 4001 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4002 dev = class_find_device(&spi_slave_class, NULL, adev, 4003 spi_acpi_controller_match); 4004 if (!dev) 4005 return NULL; 4006 4007 return container_of(dev, struct spi_controller, dev); 4008 } 4009 4010 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4011 { 4012 struct device *dev; 4013 4014 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4015 return dev ? to_spi_device(dev) : NULL; 4016 } 4017 4018 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4019 void *arg) 4020 { 4021 struct acpi_device *adev = arg; 4022 struct spi_controller *ctlr; 4023 struct spi_device *spi; 4024 4025 switch (value) { 4026 case ACPI_RECONFIG_DEVICE_ADD: 4027 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4028 if (!ctlr) 4029 break; 4030 4031 acpi_register_spi_device(ctlr, adev); 4032 put_device(&ctlr->dev); 4033 break; 4034 case ACPI_RECONFIG_DEVICE_REMOVE: 4035 if (!acpi_device_enumerated(adev)) 4036 break; 4037 4038 spi = acpi_spi_find_device_by_adev(adev); 4039 if (!spi) 4040 break; 4041 4042 spi_unregister_device(spi); 4043 put_device(&spi->dev); 4044 break; 4045 } 4046 4047 return NOTIFY_OK; 4048 } 4049 4050 static struct notifier_block spi_acpi_notifier = { 4051 .notifier_call = acpi_spi_notify, 4052 }; 4053 #else 4054 extern struct notifier_block spi_acpi_notifier; 4055 #endif 4056 4057 static int __init spi_init(void) 4058 { 4059 int status; 4060 4061 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4062 if (!buf) { 4063 status = -ENOMEM; 4064 goto err0; 4065 } 4066 4067 status = bus_register(&spi_bus_type); 4068 if (status < 0) 4069 goto err1; 4070 4071 status = class_register(&spi_master_class); 4072 if (status < 0) 4073 goto err2; 4074 4075 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4076 status = class_register(&spi_slave_class); 4077 if (status < 0) 4078 goto err3; 4079 } 4080 4081 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4082 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4083 if (IS_ENABLED(CONFIG_ACPI)) 4084 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4085 4086 return 0; 4087 4088 err3: 4089 class_unregister(&spi_master_class); 4090 err2: 4091 bus_unregister(&spi_bus_type); 4092 err1: 4093 kfree(buf); 4094 buf = NULL; 4095 err0: 4096 return status; 4097 } 4098 4099 /* board_info is normally registered in arch_initcall(), 4100 * but even essential drivers wait till later 4101 * 4102 * REVISIT only boardinfo really needs static linking. the rest (device and 4103 * driver registration) _could_ be dynamically linked (modular) ... costs 4104 * include needing to have boardinfo data structures be much more public. 4105 */ 4106 postcore_initcall(spi_init); 4107