xref: /linux/drivers/spi/spi.c (revision 6015fb905d89063231ed33bc15be19ef0fc339b8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 #include <linux/ptp_clock_kernel.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 static ssize_t driver_override_store(struct device *dev,
71 				     struct device_attribute *a,
72 				     const char *buf, size_t count)
73 {
74 	struct spi_device *spi = to_spi_device(dev);
75 	const char *end = memchr(buf, '\n', count);
76 	const size_t len = end ? end - buf : count;
77 	const char *driver_override, *old;
78 
79 	/* We need to keep extra room for a newline when displaying value */
80 	if (len >= (PAGE_SIZE - 1))
81 		return -EINVAL;
82 
83 	driver_override = kstrndup(buf, len, GFP_KERNEL);
84 	if (!driver_override)
85 		return -ENOMEM;
86 
87 	device_lock(dev);
88 	old = spi->driver_override;
89 	if (len) {
90 		spi->driver_override = driver_override;
91 	} else {
92 		/* Empty string, disable driver override */
93 		spi->driver_override = NULL;
94 		kfree(driver_override);
95 	}
96 	device_unlock(dev);
97 	kfree(old);
98 
99 	return count;
100 }
101 
102 static ssize_t driver_override_show(struct device *dev,
103 				    struct device_attribute *a, char *buf)
104 {
105 	const struct spi_device *spi = to_spi_device(dev);
106 	ssize_t len;
107 
108 	device_lock(dev);
109 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
110 	device_unlock(dev);
111 	return len;
112 }
113 static DEVICE_ATTR_RW(driver_override);
114 
115 #define SPI_STATISTICS_ATTRS(field, file)				\
116 static ssize_t spi_controller_##field##_show(struct device *dev,	\
117 					     struct device_attribute *attr, \
118 					     char *buf)			\
119 {									\
120 	struct spi_controller *ctlr = container_of(dev,			\
121 					 struct spi_controller, dev);	\
122 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
123 }									\
124 static struct device_attribute dev_attr_spi_controller_##field = {	\
125 	.attr = { .name = file, .mode = 0444 },				\
126 	.show = spi_controller_##field##_show,				\
127 };									\
128 static ssize_t spi_device_##field##_show(struct device *dev,		\
129 					 struct device_attribute *attr,	\
130 					char *buf)			\
131 {									\
132 	struct spi_device *spi = to_spi_device(dev);			\
133 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
134 }									\
135 static struct device_attribute dev_attr_spi_device_##field = {		\
136 	.attr = { .name = file, .mode = 0444 },				\
137 	.show = spi_device_##field##_show,				\
138 }
139 
140 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
141 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
142 					    char *buf)			\
143 {									\
144 	unsigned long flags;						\
145 	ssize_t len;							\
146 	spin_lock_irqsave(&stat->lock, flags);				\
147 	len = sprintf(buf, format_string, stat->field);			\
148 	spin_unlock_irqrestore(&stat->lock, flags);			\
149 	return len;							\
150 }									\
151 SPI_STATISTICS_ATTRS(name, file)
152 
153 #define SPI_STATISTICS_SHOW(field, format_string)			\
154 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
155 				 field, format_string)
156 
157 SPI_STATISTICS_SHOW(messages, "%lu");
158 SPI_STATISTICS_SHOW(transfers, "%lu");
159 SPI_STATISTICS_SHOW(errors, "%lu");
160 SPI_STATISTICS_SHOW(timedout, "%lu");
161 
162 SPI_STATISTICS_SHOW(spi_sync, "%lu");
163 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
164 SPI_STATISTICS_SHOW(spi_async, "%lu");
165 
166 SPI_STATISTICS_SHOW(bytes, "%llu");
167 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
168 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
169 
170 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
171 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
172 				 "transfer_bytes_histo_" number,	\
173 				 transfer_bytes_histo[index],  "%lu")
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
191 
192 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
193 
194 static struct attribute *spi_dev_attrs[] = {
195 	&dev_attr_modalias.attr,
196 	&dev_attr_driver_override.attr,
197 	NULL,
198 };
199 
200 static const struct attribute_group spi_dev_group = {
201 	.attrs  = spi_dev_attrs,
202 };
203 
204 static struct attribute *spi_device_statistics_attrs[] = {
205 	&dev_attr_spi_device_messages.attr,
206 	&dev_attr_spi_device_transfers.attr,
207 	&dev_attr_spi_device_errors.attr,
208 	&dev_attr_spi_device_timedout.attr,
209 	&dev_attr_spi_device_spi_sync.attr,
210 	&dev_attr_spi_device_spi_sync_immediate.attr,
211 	&dev_attr_spi_device_spi_async.attr,
212 	&dev_attr_spi_device_bytes.attr,
213 	&dev_attr_spi_device_bytes_rx.attr,
214 	&dev_attr_spi_device_bytes_tx.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
232 	&dev_attr_spi_device_transfers_split_maxsize.attr,
233 	NULL,
234 };
235 
236 static const struct attribute_group spi_device_statistics_group = {
237 	.name  = "statistics",
238 	.attrs  = spi_device_statistics_attrs,
239 };
240 
241 static const struct attribute_group *spi_dev_groups[] = {
242 	&spi_dev_group,
243 	&spi_device_statistics_group,
244 	NULL,
245 };
246 
247 static struct attribute *spi_controller_statistics_attrs[] = {
248 	&dev_attr_spi_controller_messages.attr,
249 	&dev_attr_spi_controller_transfers.attr,
250 	&dev_attr_spi_controller_errors.attr,
251 	&dev_attr_spi_controller_timedout.attr,
252 	&dev_attr_spi_controller_spi_sync.attr,
253 	&dev_attr_spi_controller_spi_sync_immediate.attr,
254 	&dev_attr_spi_controller_spi_async.attr,
255 	&dev_attr_spi_controller_bytes.attr,
256 	&dev_attr_spi_controller_bytes_rx.attr,
257 	&dev_attr_spi_controller_bytes_tx.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
275 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
276 	NULL,
277 };
278 
279 static const struct attribute_group spi_controller_statistics_group = {
280 	.name  = "statistics",
281 	.attrs  = spi_controller_statistics_attrs,
282 };
283 
284 static const struct attribute_group *spi_master_groups[] = {
285 	&spi_controller_statistics_group,
286 	NULL,
287 };
288 
289 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
290 					      struct spi_transfer *xfer,
291 					      struct spi_controller *ctlr)
292 {
293 	unsigned long flags;
294 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
295 
296 	if (l2len < 0)
297 		l2len = 0;
298 
299 	spin_lock_irqsave(&stats->lock, flags);
300 
301 	stats->transfers++;
302 	stats->transfer_bytes_histo[l2len]++;
303 
304 	stats->bytes += xfer->len;
305 	if ((xfer->tx_buf) &&
306 	    (xfer->tx_buf != ctlr->dummy_tx))
307 		stats->bytes_tx += xfer->len;
308 	if ((xfer->rx_buf) &&
309 	    (xfer->rx_buf != ctlr->dummy_rx))
310 		stats->bytes_rx += xfer->len;
311 
312 	spin_unlock_irqrestore(&stats->lock, flags);
313 }
314 
315 /*
316  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
317  * and the sysfs version makes coldplug work too.
318  */
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
320 {
321 	while (id->name[0]) {
322 		if (!strcmp(name, id->name))
323 			return id;
324 		id++;
325 	}
326 	return NULL;
327 }
328 
329 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
330 {
331 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
332 
333 	return spi_match_id(sdrv->id_table, sdev->modalias);
334 }
335 EXPORT_SYMBOL_GPL(spi_get_device_id);
336 
337 static int spi_match_device(struct device *dev, struct device_driver *drv)
338 {
339 	const struct spi_device	*spi = to_spi_device(dev);
340 	const struct spi_driver	*sdrv = to_spi_driver(drv);
341 
342 	/* Check override first, and if set, only use the named driver */
343 	if (spi->driver_override)
344 		return strcmp(spi->driver_override, drv->name) == 0;
345 
346 	/* Attempt an OF style match */
347 	if (of_driver_match_device(dev, drv))
348 		return 1;
349 
350 	/* Then try ACPI */
351 	if (acpi_driver_match_device(dev, drv))
352 		return 1;
353 
354 	if (sdrv->id_table)
355 		return !!spi_match_id(sdrv->id_table, spi->modalias);
356 
357 	return strcmp(spi->modalias, drv->name) == 0;
358 }
359 
360 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
361 {
362 	const struct spi_device		*spi = to_spi_device(dev);
363 	int rc;
364 
365 	rc = acpi_device_uevent_modalias(dev, env);
366 	if (rc != -ENODEV)
367 		return rc;
368 
369 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
370 }
371 
372 static int spi_probe(struct device *dev)
373 {
374 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
375 	struct spi_device		*spi = to_spi_device(dev);
376 	int ret;
377 
378 	ret = of_clk_set_defaults(dev->of_node, false);
379 	if (ret)
380 		return ret;
381 
382 	if (dev->of_node) {
383 		spi->irq = of_irq_get(dev->of_node, 0);
384 		if (spi->irq == -EPROBE_DEFER)
385 			return -EPROBE_DEFER;
386 		if (spi->irq < 0)
387 			spi->irq = 0;
388 	}
389 
390 	ret = dev_pm_domain_attach(dev, true);
391 	if (ret)
392 		return ret;
393 
394 	if (sdrv->probe) {
395 		ret = sdrv->probe(spi);
396 		if (ret)
397 			dev_pm_domain_detach(dev, true);
398 	}
399 
400 	return ret;
401 }
402 
403 static void spi_remove(struct device *dev)
404 {
405 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
406 
407 	if (sdrv->remove)
408 		sdrv->remove(to_spi_device(dev));
409 
410 	dev_pm_domain_detach(dev, true);
411 }
412 
413 static void spi_shutdown(struct device *dev)
414 {
415 	if (dev->driver) {
416 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
417 
418 		if (sdrv->shutdown)
419 			sdrv->shutdown(to_spi_device(dev));
420 	}
421 }
422 
423 struct bus_type spi_bus_type = {
424 	.name		= "spi",
425 	.dev_groups	= spi_dev_groups,
426 	.match		= spi_match_device,
427 	.uevent		= spi_uevent,
428 	.probe		= spi_probe,
429 	.remove		= spi_remove,
430 	.shutdown	= spi_shutdown,
431 };
432 EXPORT_SYMBOL_GPL(spi_bus_type);
433 
434 /**
435  * __spi_register_driver - register a SPI driver
436  * @owner: owner module of the driver to register
437  * @sdrv: the driver to register
438  * Context: can sleep
439  *
440  * Return: zero on success, else a negative error code.
441  */
442 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
443 {
444 	sdrv->driver.owner = owner;
445 	sdrv->driver.bus = &spi_bus_type;
446 
447 	/*
448 	 * For Really Good Reasons we use spi: modaliases not of:
449 	 * modaliases for DT so module autoloading won't work if we
450 	 * don't have a spi_device_id as well as a compatible string.
451 	 */
452 	if (sdrv->driver.of_match_table) {
453 		const struct of_device_id *of_id;
454 
455 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
456 		     of_id++) {
457 			const char *of_name;
458 
459 			/* Strip off any vendor prefix */
460 			of_name = strnchr(of_id->compatible,
461 					  sizeof(of_id->compatible), ',');
462 			if (of_name)
463 				of_name++;
464 			else
465 				of_name = of_id->compatible;
466 
467 			if (sdrv->id_table) {
468 				const struct spi_device_id *spi_id;
469 
470 				spi_id = spi_match_id(sdrv->id_table, of_name);
471 				if (spi_id)
472 					continue;
473 			} else {
474 				if (strcmp(sdrv->driver.name, of_name) == 0)
475 					continue;
476 			}
477 
478 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
479 				sdrv->driver.name, of_id->compatible);
480 		}
481 	}
482 
483 	return driver_register(&sdrv->driver);
484 }
485 EXPORT_SYMBOL_GPL(__spi_register_driver);
486 
487 /*-------------------------------------------------------------------------*/
488 
489 /*
490  * SPI devices should normally not be created by SPI device drivers; that
491  * would make them board-specific.  Similarly with SPI controller drivers.
492  * Device registration normally goes into like arch/.../mach.../board-YYY.c
493  * with other readonly (flashable) information about mainboard devices.
494  */
495 
496 struct boardinfo {
497 	struct list_head	list;
498 	struct spi_board_info	board_info;
499 };
500 
501 static LIST_HEAD(board_list);
502 static LIST_HEAD(spi_controller_list);
503 
504 /*
505  * Used to protect add/del operation for board_info list and
506  * spi_controller list, and their matching process also used
507  * to protect object of type struct idr.
508  */
509 static DEFINE_MUTEX(board_lock);
510 
511 /**
512  * spi_alloc_device - Allocate a new SPI device
513  * @ctlr: Controller to which device is connected
514  * Context: can sleep
515  *
516  * Allows a driver to allocate and initialize a spi_device without
517  * registering it immediately.  This allows a driver to directly
518  * fill the spi_device with device parameters before calling
519  * spi_add_device() on it.
520  *
521  * Caller is responsible to call spi_add_device() on the returned
522  * spi_device structure to add it to the SPI controller.  If the caller
523  * needs to discard the spi_device without adding it, then it should
524  * call spi_dev_put() on it.
525  *
526  * Return: a pointer to the new device, or NULL.
527  */
528 static struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
529 {
530 	struct spi_device	*spi;
531 
532 	if (!spi_controller_get(ctlr))
533 		return NULL;
534 
535 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
536 	if (!spi) {
537 		spi_controller_put(ctlr);
538 		return NULL;
539 	}
540 
541 	spi->master = spi->controller = ctlr;
542 	spi->dev.parent = &ctlr->dev;
543 	spi->dev.bus = &spi_bus_type;
544 	spi->dev.release = spidev_release;
545 	spi->cs_gpio = -ENOENT;
546 	spi->mode = ctlr->buswidth_override_bits;
547 
548 	spin_lock_init(&spi->statistics.lock);
549 
550 	device_initialize(&spi->dev);
551 	return spi;
552 }
553 
554 static void spi_dev_set_name(struct spi_device *spi)
555 {
556 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
557 
558 	if (adev) {
559 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
560 		return;
561 	}
562 
563 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
564 		     spi->chip_select);
565 }
566 
567 static int spi_dev_check(struct device *dev, void *data)
568 {
569 	struct spi_device *spi = to_spi_device(dev);
570 	struct spi_device *new_spi = data;
571 
572 	if (spi->controller == new_spi->controller &&
573 	    spi->chip_select == new_spi->chip_select)
574 		return -EBUSY;
575 	return 0;
576 }
577 
578 static void spi_cleanup(struct spi_device *spi)
579 {
580 	if (spi->controller->cleanup)
581 		spi->controller->cleanup(spi);
582 }
583 
584 static int __spi_add_device(struct spi_device *spi)
585 {
586 	struct spi_controller *ctlr = spi->controller;
587 	struct device *dev = ctlr->dev.parent;
588 	int status;
589 
590 	/*
591 	 * We need to make sure there's no other device with this
592 	 * chipselect **BEFORE** we call setup(), else we'll trash
593 	 * its configuration.
594 	 */
595 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
596 	if (status) {
597 		dev_err(dev, "chipselect %d already in use\n",
598 				spi->chip_select);
599 		return status;
600 	}
601 
602 	/* Controller may unregister concurrently */
603 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
604 	    !device_is_registered(&ctlr->dev)) {
605 		return -ENODEV;
606 	}
607 
608 	/* Descriptors take precedence */
609 	if (ctlr->cs_gpiods)
610 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
611 	else if (ctlr->cs_gpios)
612 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
613 
614 	/*
615 	 * Drivers may modify this initial i/o setup, but will
616 	 * normally rely on the device being setup.  Devices
617 	 * using SPI_CS_HIGH can't coexist well otherwise...
618 	 */
619 	status = spi_setup(spi);
620 	if (status < 0) {
621 		dev_err(dev, "can't setup %s, status %d\n",
622 				dev_name(&spi->dev), status);
623 		return status;
624 	}
625 
626 	/* Device may be bound to an active driver when this returns */
627 	status = device_add(&spi->dev);
628 	if (status < 0) {
629 		dev_err(dev, "can't add %s, status %d\n",
630 				dev_name(&spi->dev), status);
631 		spi_cleanup(spi);
632 	} else {
633 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
634 	}
635 
636 	return status;
637 }
638 
639 /**
640  * spi_add_device - Add spi_device allocated with spi_alloc_device
641  * @spi: spi_device to register
642  *
643  * Companion function to spi_alloc_device.  Devices allocated with
644  * spi_alloc_device can be added onto the spi bus with this function.
645  *
646  * Return: 0 on success; negative errno on failure
647  */
648 static int spi_add_device(struct spi_device *spi)
649 {
650 	struct spi_controller *ctlr = spi->controller;
651 	struct device *dev = ctlr->dev.parent;
652 	int status;
653 
654 	/* Chipselects are numbered 0..max; validate. */
655 	if (spi->chip_select >= ctlr->num_chipselect) {
656 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
657 			ctlr->num_chipselect);
658 		return -EINVAL;
659 	}
660 
661 	/* Set the bus ID string */
662 	spi_dev_set_name(spi);
663 
664 	mutex_lock(&ctlr->add_lock);
665 	status = __spi_add_device(spi);
666 	mutex_unlock(&ctlr->add_lock);
667 	return status;
668 }
669 
670 static int spi_add_device_locked(struct spi_device *spi)
671 {
672 	struct spi_controller *ctlr = spi->controller;
673 	struct device *dev = ctlr->dev.parent;
674 
675 	/* Chipselects are numbered 0..max; validate. */
676 	if (spi->chip_select >= ctlr->num_chipselect) {
677 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
678 			ctlr->num_chipselect);
679 		return -EINVAL;
680 	}
681 
682 	/* Set the bus ID string */
683 	spi_dev_set_name(spi);
684 
685 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
686 	return __spi_add_device(spi);
687 }
688 
689 /**
690  * spi_new_device - instantiate one new SPI device
691  * @ctlr: Controller to which device is connected
692  * @chip: Describes the SPI device
693  * Context: can sleep
694  *
695  * On typical mainboards, this is purely internal; and it's not needed
696  * after board init creates the hard-wired devices.  Some development
697  * platforms may not be able to use spi_register_board_info though, and
698  * this is exported so that for example a USB or parport based adapter
699  * driver could add devices (which it would learn about out-of-band).
700  *
701  * Return: the new device, or NULL.
702  */
703 struct spi_device *spi_new_device(struct spi_controller *ctlr,
704 				  struct spi_board_info *chip)
705 {
706 	struct spi_device	*proxy;
707 	int			status;
708 
709 	/*
710 	 * NOTE:  caller did any chip->bus_num checks necessary.
711 	 *
712 	 * Also, unless we change the return value convention to use
713 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
714 	 * suggests syslogged diagnostics are best here (ugh).
715 	 */
716 
717 	proxy = spi_alloc_device(ctlr);
718 	if (!proxy)
719 		return NULL;
720 
721 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
722 
723 	proxy->chip_select = chip->chip_select;
724 	proxy->max_speed_hz = chip->max_speed_hz;
725 	proxy->mode = chip->mode;
726 	proxy->irq = chip->irq;
727 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
728 	proxy->dev.platform_data = (void *) chip->platform_data;
729 	proxy->controller_data = chip->controller_data;
730 	proxy->controller_state = NULL;
731 
732 	if (chip->swnode) {
733 		status = device_add_software_node(&proxy->dev, chip->swnode);
734 		if (status) {
735 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
736 				chip->modalias, status);
737 			goto err_dev_put;
738 		}
739 	}
740 
741 	status = spi_add_device(proxy);
742 	if (status < 0)
743 		goto err_dev_put;
744 
745 	return proxy;
746 
747 err_dev_put:
748 	device_remove_software_node(&proxy->dev);
749 	spi_dev_put(proxy);
750 	return NULL;
751 }
752 EXPORT_SYMBOL_GPL(spi_new_device);
753 
754 /**
755  * spi_unregister_device - unregister a single SPI device
756  * @spi: spi_device to unregister
757  *
758  * Start making the passed SPI device vanish. Normally this would be handled
759  * by spi_unregister_controller().
760  */
761 void spi_unregister_device(struct spi_device *spi)
762 {
763 	if (!spi)
764 		return;
765 
766 	if (spi->dev.of_node) {
767 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
768 		of_node_put(spi->dev.of_node);
769 	}
770 	if (ACPI_COMPANION(&spi->dev))
771 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
772 	device_remove_software_node(&spi->dev);
773 	device_del(&spi->dev);
774 	spi_cleanup(spi);
775 	put_device(&spi->dev);
776 }
777 EXPORT_SYMBOL_GPL(spi_unregister_device);
778 
779 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
780 					      struct spi_board_info *bi)
781 {
782 	struct spi_device *dev;
783 
784 	if (ctlr->bus_num != bi->bus_num)
785 		return;
786 
787 	dev = spi_new_device(ctlr, bi);
788 	if (!dev)
789 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
790 			bi->modalias);
791 }
792 
793 /**
794  * spi_register_board_info - register SPI devices for a given board
795  * @info: array of chip descriptors
796  * @n: how many descriptors are provided
797  * Context: can sleep
798  *
799  * Board-specific early init code calls this (probably during arch_initcall)
800  * with segments of the SPI device table.  Any device nodes are created later,
801  * after the relevant parent SPI controller (bus_num) is defined.  We keep
802  * this table of devices forever, so that reloading a controller driver will
803  * not make Linux forget about these hard-wired devices.
804  *
805  * Other code can also call this, e.g. a particular add-on board might provide
806  * SPI devices through its expansion connector, so code initializing that board
807  * would naturally declare its SPI devices.
808  *
809  * The board info passed can safely be __initdata ... but be careful of
810  * any embedded pointers (platform_data, etc), they're copied as-is.
811  *
812  * Return: zero on success, else a negative error code.
813  */
814 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
815 {
816 	struct boardinfo *bi;
817 	int i;
818 
819 	if (!n)
820 		return 0;
821 
822 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
823 	if (!bi)
824 		return -ENOMEM;
825 
826 	for (i = 0; i < n; i++, bi++, info++) {
827 		struct spi_controller *ctlr;
828 
829 		memcpy(&bi->board_info, info, sizeof(*info));
830 
831 		mutex_lock(&board_lock);
832 		list_add_tail(&bi->list, &board_list);
833 		list_for_each_entry(ctlr, &spi_controller_list, list)
834 			spi_match_controller_to_boardinfo(ctlr,
835 							  &bi->board_info);
836 		mutex_unlock(&board_lock);
837 	}
838 
839 	return 0;
840 }
841 
842 /*-------------------------------------------------------------------------*/
843 
844 /* Core methods for SPI resource management */
845 
846 /**
847  * spi_res_alloc - allocate a spi resource that is life-cycle managed
848  *                 during the processing of a spi_message while using
849  *                 spi_transfer_one
850  * @spi:     the spi device for which we allocate memory
851  * @release: the release code to execute for this resource
852  * @size:    size to alloc and return
853  * @gfp:     GFP allocation flags
854  *
855  * Return: the pointer to the allocated data
856  *
857  * This may get enhanced in the future to allocate from a memory pool
858  * of the @spi_device or @spi_controller to avoid repeated allocations.
859  */
860 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
861 			   size_t size, gfp_t gfp)
862 {
863 	struct spi_res *sres;
864 
865 	sres = kzalloc(sizeof(*sres) + size, gfp);
866 	if (!sres)
867 		return NULL;
868 
869 	INIT_LIST_HEAD(&sres->entry);
870 	sres->release = release;
871 
872 	return sres->data;
873 }
874 
875 /**
876  * spi_res_free - free an spi resource
877  * @res: pointer to the custom data of a resource
878  */
879 static void spi_res_free(void *res)
880 {
881 	struct spi_res *sres = container_of(res, struct spi_res, data);
882 
883 	if (!res)
884 		return;
885 
886 	WARN_ON(!list_empty(&sres->entry));
887 	kfree(sres);
888 }
889 
890 /**
891  * spi_res_add - add a spi_res to the spi_message
892  * @message: the spi message
893  * @res:     the spi_resource
894  */
895 static void spi_res_add(struct spi_message *message, void *res)
896 {
897 	struct spi_res *sres = container_of(res, struct spi_res, data);
898 
899 	WARN_ON(!list_empty(&sres->entry));
900 	list_add_tail(&sres->entry, &message->resources);
901 }
902 
903 /**
904  * spi_res_release - release all spi resources for this message
905  * @ctlr:  the @spi_controller
906  * @message: the @spi_message
907  */
908 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
909 {
910 	struct spi_res *res, *tmp;
911 
912 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
913 		if (res->release)
914 			res->release(ctlr, message, res->data);
915 
916 		list_del(&res->entry);
917 
918 		kfree(res);
919 	}
920 }
921 
922 /*-------------------------------------------------------------------------*/
923 
924 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
925 {
926 	bool activate = enable;
927 
928 	/*
929 	 * Avoid calling into the driver (or doing delays) if the chip select
930 	 * isn't actually changing from the last time this was called.
931 	 */
932 	if (!force && (spi->controller->last_cs_enable == enable) &&
933 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
934 		return;
935 
936 	trace_spi_set_cs(spi, activate);
937 
938 	spi->controller->last_cs_enable = enable;
939 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
940 
941 	if ((spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
942 	    !spi->controller->set_cs_timing) && !activate) {
943 		spi_delay_exec(&spi->cs_hold, NULL);
944 	}
945 
946 	if (spi->mode & SPI_CS_HIGH)
947 		enable = !enable;
948 
949 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
950 		if (!(spi->mode & SPI_NO_CS)) {
951 			if (spi->cs_gpiod) {
952 				/*
953 				 * Historically ACPI has no means of the GPIO polarity and
954 				 * thus the SPISerialBus() resource defines it on the per-chip
955 				 * basis. In order to avoid a chain of negations, the GPIO
956 				 * polarity is considered being Active High. Even for the cases
957 				 * when _DSD() is involved (in the updated versions of ACPI)
958 				 * the GPIO CS polarity must be defined Active High to avoid
959 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
960 				 * into account.
961 				 */
962 				if (has_acpi_companion(&spi->dev))
963 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
964 				else
965 					/* Polarity handled by GPIO library */
966 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
967 			} else {
968 				/*
969 				 * Invert the enable line, as active low is
970 				 * default for SPI.
971 				 */
972 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
973 			}
974 		}
975 		/* Some SPI masters need both GPIO CS & slave_select */
976 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
977 		    spi->controller->set_cs)
978 			spi->controller->set_cs(spi, !enable);
979 	} else if (spi->controller->set_cs) {
980 		spi->controller->set_cs(spi, !enable);
981 	}
982 
983 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
984 	    !spi->controller->set_cs_timing) {
985 		if (activate)
986 			spi_delay_exec(&spi->cs_setup, NULL);
987 		else
988 			spi_delay_exec(&spi->cs_inactive, NULL);
989 	}
990 }
991 
992 #ifdef CONFIG_HAS_DMA
993 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
994 		struct sg_table *sgt, void *buf, size_t len,
995 		enum dma_data_direction dir)
996 {
997 	const bool vmalloced_buf = is_vmalloc_addr(buf);
998 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
999 #ifdef CONFIG_HIGHMEM
1000 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1001 				(unsigned long)buf < (PKMAP_BASE +
1002 					(LAST_PKMAP * PAGE_SIZE)));
1003 #else
1004 	const bool kmap_buf = false;
1005 #endif
1006 	int desc_len;
1007 	int sgs;
1008 	struct page *vm_page;
1009 	struct scatterlist *sg;
1010 	void *sg_buf;
1011 	size_t min;
1012 	int i, ret;
1013 
1014 	if (vmalloced_buf || kmap_buf) {
1015 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
1016 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1017 	} else if (virt_addr_valid(buf)) {
1018 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
1019 		sgs = DIV_ROUND_UP(len, desc_len);
1020 	} else {
1021 		return -EINVAL;
1022 	}
1023 
1024 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1025 	if (ret != 0)
1026 		return ret;
1027 
1028 	sg = &sgt->sgl[0];
1029 	for (i = 0; i < sgs; i++) {
1030 
1031 		if (vmalloced_buf || kmap_buf) {
1032 			/*
1033 			 * Next scatterlist entry size is the minimum between
1034 			 * the desc_len and the remaining buffer length that
1035 			 * fits in a page.
1036 			 */
1037 			min = min_t(size_t, desc_len,
1038 				    min_t(size_t, len,
1039 					  PAGE_SIZE - offset_in_page(buf)));
1040 			if (vmalloced_buf)
1041 				vm_page = vmalloc_to_page(buf);
1042 			else
1043 				vm_page = kmap_to_page(buf);
1044 			if (!vm_page) {
1045 				sg_free_table(sgt);
1046 				return -ENOMEM;
1047 			}
1048 			sg_set_page(sg, vm_page,
1049 				    min, offset_in_page(buf));
1050 		} else {
1051 			min = min_t(size_t, len, desc_len);
1052 			sg_buf = buf;
1053 			sg_set_buf(sg, sg_buf, min);
1054 		}
1055 
1056 		buf += min;
1057 		len -= min;
1058 		sg = sg_next(sg);
1059 	}
1060 
1061 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1062 	if (!ret)
1063 		ret = -ENOMEM;
1064 	if (ret < 0) {
1065 		sg_free_table(sgt);
1066 		return ret;
1067 	}
1068 
1069 	sgt->nents = ret;
1070 
1071 	return 0;
1072 }
1073 
1074 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1075 		   struct sg_table *sgt, enum dma_data_direction dir)
1076 {
1077 	if (sgt->orig_nents) {
1078 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1079 		sg_free_table(sgt);
1080 	}
1081 }
1082 
1083 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1084 {
1085 	struct device *tx_dev, *rx_dev;
1086 	struct spi_transfer *xfer;
1087 	int ret;
1088 
1089 	if (!ctlr->can_dma)
1090 		return 0;
1091 
1092 	if (ctlr->dma_tx)
1093 		tx_dev = ctlr->dma_tx->device->dev;
1094 	else if (ctlr->dma_map_dev)
1095 		tx_dev = ctlr->dma_map_dev;
1096 	else
1097 		tx_dev = ctlr->dev.parent;
1098 
1099 	if (ctlr->dma_rx)
1100 		rx_dev = ctlr->dma_rx->device->dev;
1101 	else if (ctlr->dma_map_dev)
1102 		rx_dev = ctlr->dma_map_dev;
1103 	else
1104 		rx_dev = ctlr->dev.parent;
1105 
1106 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1107 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1108 			continue;
1109 
1110 		if (xfer->tx_buf != NULL) {
1111 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1112 					  (void *)xfer->tx_buf, xfer->len,
1113 					  DMA_TO_DEVICE);
1114 			if (ret != 0)
1115 				return ret;
1116 		}
1117 
1118 		if (xfer->rx_buf != NULL) {
1119 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1120 					  xfer->rx_buf, xfer->len,
1121 					  DMA_FROM_DEVICE);
1122 			if (ret != 0) {
1123 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1124 					      DMA_TO_DEVICE);
1125 				return ret;
1126 			}
1127 		}
1128 	}
1129 
1130 	ctlr->cur_msg_mapped = true;
1131 
1132 	return 0;
1133 }
1134 
1135 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1136 {
1137 	struct spi_transfer *xfer;
1138 	struct device *tx_dev, *rx_dev;
1139 
1140 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1141 		return 0;
1142 
1143 	if (ctlr->dma_tx)
1144 		tx_dev = ctlr->dma_tx->device->dev;
1145 	else
1146 		tx_dev = ctlr->dev.parent;
1147 
1148 	if (ctlr->dma_rx)
1149 		rx_dev = ctlr->dma_rx->device->dev;
1150 	else
1151 		rx_dev = ctlr->dev.parent;
1152 
1153 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1154 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1155 			continue;
1156 
1157 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1158 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1159 	}
1160 
1161 	ctlr->cur_msg_mapped = false;
1162 
1163 	return 0;
1164 }
1165 #else /* !CONFIG_HAS_DMA */
1166 static inline int __spi_map_msg(struct spi_controller *ctlr,
1167 				struct spi_message *msg)
1168 {
1169 	return 0;
1170 }
1171 
1172 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1173 				  struct spi_message *msg)
1174 {
1175 	return 0;
1176 }
1177 #endif /* !CONFIG_HAS_DMA */
1178 
1179 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1180 				struct spi_message *msg)
1181 {
1182 	struct spi_transfer *xfer;
1183 
1184 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1185 		/*
1186 		 * Restore the original value of tx_buf or rx_buf if they are
1187 		 * NULL.
1188 		 */
1189 		if (xfer->tx_buf == ctlr->dummy_tx)
1190 			xfer->tx_buf = NULL;
1191 		if (xfer->rx_buf == ctlr->dummy_rx)
1192 			xfer->rx_buf = NULL;
1193 	}
1194 
1195 	return __spi_unmap_msg(ctlr, msg);
1196 }
1197 
1198 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1199 {
1200 	struct spi_transfer *xfer;
1201 	void *tmp;
1202 	unsigned int max_tx, max_rx;
1203 
1204 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1205 		&& !(msg->spi->mode & SPI_3WIRE)) {
1206 		max_tx = 0;
1207 		max_rx = 0;
1208 
1209 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1210 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1211 			    !xfer->tx_buf)
1212 				max_tx = max(xfer->len, max_tx);
1213 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1214 			    !xfer->rx_buf)
1215 				max_rx = max(xfer->len, max_rx);
1216 		}
1217 
1218 		if (max_tx) {
1219 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1220 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1221 			if (!tmp)
1222 				return -ENOMEM;
1223 			ctlr->dummy_tx = tmp;
1224 		}
1225 
1226 		if (max_rx) {
1227 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1228 				       GFP_KERNEL | GFP_DMA);
1229 			if (!tmp)
1230 				return -ENOMEM;
1231 			ctlr->dummy_rx = tmp;
1232 		}
1233 
1234 		if (max_tx || max_rx) {
1235 			list_for_each_entry(xfer, &msg->transfers,
1236 					    transfer_list) {
1237 				if (!xfer->len)
1238 					continue;
1239 				if (!xfer->tx_buf)
1240 					xfer->tx_buf = ctlr->dummy_tx;
1241 				if (!xfer->rx_buf)
1242 					xfer->rx_buf = ctlr->dummy_rx;
1243 			}
1244 		}
1245 	}
1246 
1247 	return __spi_map_msg(ctlr, msg);
1248 }
1249 
1250 static int spi_transfer_wait(struct spi_controller *ctlr,
1251 			     struct spi_message *msg,
1252 			     struct spi_transfer *xfer)
1253 {
1254 	struct spi_statistics *statm = &ctlr->statistics;
1255 	struct spi_statistics *stats = &msg->spi->statistics;
1256 	u32 speed_hz = xfer->speed_hz;
1257 	unsigned long long ms;
1258 
1259 	if (spi_controller_is_slave(ctlr)) {
1260 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1261 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1262 			return -EINTR;
1263 		}
1264 	} else {
1265 		if (!speed_hz)
1266 			speed_hz = 100000;
1267 
1268 		/*
1269 		 * For each byte we wait for 8 cycles of the SPI clock.
1270 		 * Since speed is defined in Hz and we want milliseconds,
1271 		 * use respective multiplier, but before the division,
1272 		 * otherwise we may get 0 for short transfers.
1273 		 */
1274 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1275 		do_div(ms, speed_hz);
1276 
1277 		/*
1278 		 * Increase it twice and add 200 ms tolerance, use
1279 		 * predefined maximum in case of overflow.
1280 		 */
1281 		ms += ms + 200;
1282 		if (ms > UINT_MAX)
1283 			ms = UINT_MAX;
1284 
1285 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1286 						 msecs_to_jiffies(ms));
1287 
1288 		if (ms == 0) {
1289 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1290 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1291 			dev_err(&msg->spi->dev,
1292 				"SPI transfer timed out\n");
1293 			return -ETIMEDOUT;
1294 		}
1295 	}
1296 
1297 	return 0;
1298 }
1299 
1300 static void _spi_transfer_delay_ns(u32 ns)
1301 {
1302 	if (!ns)
1303 		return;
1304 	if (ns <= NSEC_PER_USEC) {
1305 		ndelay(ns);
1306 	} else {
1307 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1308 
1309 		if (us <= 10)
1310 			udelay(us);
1311 		else
1312 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1313 	}
1314 }
1315 
1316 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1317 {
1318 	u32 delay = _delay->value;
1319 	u32 unit = _delay->unit;
1320 	u32 hz;
1321 
1322 	if (!delay)
1323 		return 0;
1324 
1325 	switch (unit) {
1326 	case SPI_DELAY_UNIT_USECS:
1327 		delay *= NSEC_PER_USEC;
1328 		break;
1329 	case SPI_DELAY_UNIT_NSECS:
1330 		/* Nothing to do here */
1331 		break;
1332 	case SPI_DELAY_UNIT_SCK:
1333 		/* clock cycles need to be obtained from spi_transfer */
1334 		if (!xfer)
1335 			return -EINVAL;
1336 		/*
1337 		 * If there is unknown effective speed, approximate it
1338 		 * by underestimating with half of the requested hz.
1339 		 */
1340 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1341 		if (!hz)
1342 			return -EINVAL;
1343 
1344 		/* Convert delay to nanoseconds */
1345 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1346 		break;
1347 	default:
1348 		return -EINVAL;
1349 	}
1350 
1351 	return delay;
1352 }
1353 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1354 
1355 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1356 {
1357 	int delay;
1358 
1359 	might_sleep();
1360 
1361 	if (!_delay)
1362 		return -EINVAL;
1363 
1364 	delay = spi_delay_to_ns(_delay, xfer);
1365 	if (delay < 0)
1366 		return delay;
1367 
1368 	_spi_transfer_delay_ns(delay);
1369 
1370 	return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(spi_delay_exec);
1373 
1374 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1375 					  struct spi_transfer *xfer)
1376 {
1377 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1378 	u32 delay = xfer->cs_change_delay.value;
1379 	u32 unit = xfer->cs_change_delay.unit;
1380 	int ret;
1381 
1382 	/* return early on "fast" mode - for everything but USECS */
1383 	if (!delay) {
1384 		if (unit == SPI_DELAY_UNIT_USECS)
1385 			_spi_transfer_delay_ns(default_delay_ns);
1386 		return;
1387 	}
1388 
1389 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1390 	if (ret) {
1391 		dev_err_once(&msg->spi->dev,
1392 			     "Use of unsupported delay unit %i, using default of %luus\n",
1393 			     unit, default_delay_ns / NSEC_PER_USEC);
1394 		_spi_transfer_delay_ns(default_delay_ns);
1395 	}
1396 }
1397 
1398 /*
1399  * spi_transfer_one_message - Default implementation of transfer_one_message()
1400  *
1401  * This is a standard implementation of transfer_one_message() for
1402  * drivers which implement a transfer_one() operation.  It provides
1403  * standard handling of delays and chip select management.
1404  */
1405 static int spi_transfer_one_message(struct spi_controller *ctlr,
1406 				    struct spi_message *msg)
1407 {
1408 	struct spi_transfer *xfer;
1409 	bool keep_cs = false;
1410 	int ret = 0;
1411 	struct spi_statistics *statm = &ctlr->statistics;
1412 	struct spi_statistics *stats = &msg->spi->statistics;
1413 
1414 	spi_set_cs(msg->spi, true, false);
1415 
1416 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1417 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1418 
1419 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1420 		trace_spi_transfer_start(msg, xfer);
1421 
1422 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1423 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1424 
1425 		if (!ctlr->ptp_sts_supported) {
1426 			xfer->ptp_sts_word_pre = 0;
1427 			ptp_read_system_prets(xfer->ptp_sts);
1428 		}
1429 
1430 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1431 			reinit_completion(&ctlr->xfer_completion);
1432 
1433 fallback_pio:
1434 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1435 			if (ret < 0) {
1436 				if (ctlr->cur_msg_mapped &&
1437 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1438 					__spi_unmap_msg(ctlr, msg);
1439 					ctlr->fallback = true;
1440 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1441 					goto fallback_pio;
1442 				}
1443 
1444 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1445 							       errors);
1446 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1447 							       errors);
1448 				dev_err(&msg->spi->dev,
1449 					"SPI transfer failed: %d\n", ret);
1450 				goto out;
1451 			}
1452 
1453 			if (ret > 0) {
1454 				ret = spi_transfer_wait(ctlr, msg, xfer);
1455 				if (ret < 0)
1456 					msg->status = ret;
1457 			}
1458 		} else {
1459 			if (xfer->len)
1460 				dev_err(&msg->spi->dev,
1461 					"Bufferless transfer has length %u\n",
1462 					xfer->len);
1463 		}
1464 
1465 		if (!ctlr->ptp_sts_supported) {
1466 			ptp_read_system_postts(xfer->ptp_sts);
1467 			xfer->ptp_sts_word_post = xfer->len;
1468 		}
1469 
1470 		trace_spi_transfer_stop(msg, xfer);
1471 
1472 		if (msg->status != -EINPROGRESS)
1473 			goto out;
1474 
1475 		spi_transfer_delay_exec(xfer);
1476 
1477 		if (xfer->cs_change) {
1478 			if (list_is_last(&xfer->transfer_list,
1479 					 &msg->transfers)) {
1480 				keep_cs = true;
1481 			} else {
1482 				spi_set_cs(msg->spi, false, false);
1483 				_spi_transfer_cs_change_delay(msg, xfer);
1484 				spi_set_cs(msg->spi, true, false);
1485 			}
1486 		}
1487 
1488 		msg->actual_length += xfer->len;
1489 	}
1490 
1491 out:
1492 	if (ret != 0 || !keep_cs)
1493 		spi_set_cs(msg->spi, false, false);
1494 
1495 	if (msg->status == -EINPROGRESS)
1496 		msg->status = ret;
1497 
1498 	if (msg->status && ctlr->handle_err)
1499 		ctlr->handle_err(ctlr, msg);
1500 
1501 	spi_finalize_current_message(ctlr);
1502 
1503 	return ret;
1504 }
1505 
1506 /**
1507  * spi_finalize_current_transfer - report completion of a transfer
1508  * @ctlr: the controller reporting completion
1509  *
1510  * Called by SPI drivers using the core transfer_one_message()
1511  * implementation to notify it that the current interrupt driven
1512  * transfer has finished and the next one may be scheduled.
1513  */
1514 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1515 {
1516 	complete(&ctlr->xfer_completion);
1517 }
1518 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1519 
1520 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1521 {
1522 	if (ctlr->auto_runtime_pm) {
1523 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1524 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1525 	}
1526 }
1527 
1528 /**
1529  * __spi_pump_messages - function which processes spi message queue
1530  * @ctlr: controller to process queue for
1531  * @in_kthread: true if we are in the context of the message pump thread
1532  *
1533  * This function checks if there is any spi message in the queue that
1534  * needs processing and if so call out to the driver to initialize hardware
1535  * and transfer each message.
1536  *
1537  * Note that it is called both from the kthread itself and also from
1538  * inside spi_sync(); the queue extraction handling at the top of the
1539  * function should deal with this safely.
1540  */
1541 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1542 {
1543 	struct spi_transfer *xfer;
1544 	struct spi_message *msg;
1545 	bool was_busy = false;
1546 	unsigned long flags;
1547 	int ret;
1548 
1549 	/* Lock queue */
1550 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1551 
1552 	/* Make sure we are not already running a message */
1553 	if (ctlr->cur_msg) {
1554 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1555 		return;
1556 	}
1557 
1558 	/* If another context is idling the device then defer */
1559 	if (ctlr->idling) {
1560 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1561 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1562 		return;
1563 	}
1564 
1565 	/* Check if the queue is idle */
1566 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1567 		if (!ctlr->busy) {
1568 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1569 			return;
1570 		}
1571 
1572 		/* Defer any non-atomic teardown to the thread */
1573 		if (!in_kthread) {
1574 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1575 			    !ctlr->unprepare_transfer_hardware) {
1576 				spi_idle_runtime_pm(ctlr);
1577 				ctlr->busy = false;
1578 				trace_spi_controller_idle(ctlr);
1579 			} else {
1580 				kthread_queue_work(ctlr->kworker,
1581 						   &ctlr->pump_messages);
1582 			}
1583 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584 			return;
1585 		}
1586 
1587 		ctlr->busy = false;
1588 		ctlr->idling = true;
1589 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1590 
1591 		kfree(ctlr->dummy_rx);
1592 		ctlr->dummy_rx = NULL;
1593 		kfree(ctlr->dummy_tx);
1594 		ctlr->dummy_tx = NULL;
1595 		if (ctlr->unprepare_transfer_hardware &&
1596 		    ctlr->unprepare_transfer_hardware(ctlr))
1597 			dev_err(&ctlr->dev,
1598 				"failed to unprepare transfer hardware\n");
1599 		spi_idle_runtime_pm(ctlr);
1600 		trace_spi_controller_idle(ctlr);
1601 
1602 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1603 		ctlr->idling = false;
1604 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1605 		return;
1606 	}
1607 
1608 	/* Extract head of queue */
1609 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1610 	ctlr->cur_msg = msg;
1611 
1612 	list_del_init(&msg->queue);
1613 	if (ctlr->busy)
1614 		was_busy = true;
1615 	else
1616 		ctlr->busy = true;
1617 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1618 
1619 	mutex_lock(&ctlr->io_mutex);
1620 
1621 	if (!was_busy && ctlr->auto_runtime_pm) {
1622 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1623 		if (ret < 0) {
1624 			pm_runtime_put_noidle(ctlr->dev.parent);
1625 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1626 				ret);
1627 			mutex_unlock(&ctlr->io_mutex);
1628 			return;
1629 		}
1630 	}
1631 
1632 	if (!was_busy)
1633 		trace_spi_controller_busy(ctlr);
1634 
1635 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1636 		ret = ctlr->prepare_transfer_hardware(ctlr);
1637 		if (ret) {
1638 			dev_err(&ctlr->dev,
1639 				"failed to prepare transfer hardware: %d\n",
1640 				ret);
1641 
1642 			if (ctlr->auto_runtime_pm)
1643 				pm_runtime_put(ctlr->dev.parent);
1644 
1645 			msg->status = ret;
1646 			spi_finalize_current_message(ctlr);
1647 
1648 			mutex_unlock(&ctlr->io_mutex);
1649 			return;
1650 		}
1651 	}
1652 
1653 	trace_spi_message_start(msg);
1654 
1655 	if (ctlr->prepare_message) {
1656 		ret = ctlr->prepare_message(ctlr, msg);
1657 		if (ret) {
1658 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1659 				ret);
1660 			msg->status = ret;
1661 			spi_finalize_current_message(ctlr);
1662 			goto out;
1663 		}
1664 		ctlr->cur_msg_prepared = true;
1665 	}
1666 
1667 	ret = spi_map_msg(ctlr, msg);
1668 	if (ret) {
1669 		msg->status = ret;
1670 		spi_finalize_current_message(ctlr);
1671 		goto out;
1672 	}
1673 
1674 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1675 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1676 			xfer->ptp_sts_word_pre = 0;
1677 			ptp_read_system_prets(xfer->ptp_sts);
1678 		}
1679 	}
1680 
1681 	ret = ctlr->transfer_one_message(ctlr, msg);
1682 	if (ret) {
1683 		dev_err(&ctlr->dev,
1684 			"failed to transfer one message from queue\n");
1685 		goto out;
1686 	}
1687 
1688 out:
1689 	mutex_unlock(&ctlr->io_mutex);
1690 
1691 	/* Prod the scheduler in case transfer_one() was busy waiting */
1692 	if (!ret)
1693 		cond_resched();
1694 }
1695 
1696 /**
1697  * spi_pump_messages - kthread work function which processes spi message queue
1698  * @work: pointer to kthread work struct contained in the controller struct
1699  */
1700 static void spi_pump_messages(struct kthread_work *work)
1701 {
1702 	struct spi_controller *ctlr =
1703 		container_of(work, struct spi_controller, pump_messages);
1704 
1705 	__spi_pump_messages(ctlr, true);
1706 }
1707 
1708 /**
1709  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1710  * @ctlr: Pointer to the spi_controller structure of the driver
1711  * @xfer: Pointer to the transfer being timestamped
1712  * @progress: How many words (not bytes) have been transferred so far
1713  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1714  *	      transfer, for less jitter in time measurement. Only compatible
1715  *	      with PIO drivers. If true, must follow up with
1716  *	      spi_take_timestamp_post or otherwise system will crash.
1717  *	      WARNING: for fully predictable results, the CPU frequency must
1718  *	      also be under control (governor).
1719  *
1720  * This is a helper for drivers to collect the beginning of the TX timestamp
1721  * for the requested byte from the SPI transfer. The frequency with which this
1722  * function must be called (once per word, once for the whole transfer, once
1723  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1724  * greater than or equal to the requested byte at the time of the call. The
1725  * timestamp is only taken once, at the first such call. It is assumed that
1726  * the driver advances its @tx buffer pointer monotonically.
1727  */
1728 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1729 			    struct spi_transfer *xfer,
1730 			    size_t progress, bool irqs_off)
1731 {
1732 	if (!xfer->ptp_sts)
1733 		return;
1734 
1735 	if (xfer->timestamped)
1736 		return;
1737 
1738 	if (progress > xfer->ptp_sts_word_pre)
1739 		return;
1740 
1741 	/* Capture the resolution of the timestamp */
1742 	xfer->ptp_sts_word_pre = progress;
1743 
1744 	if (irqs_off) {
1745 		local_irq_save(ctlr->irq_flags);
1746 		preempt_disable();
1747 	}
1748 
1749 	ptp_read_system_prets(xfer->ptp_sts);
1750 }
1751 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1752 
1753 /**
1754  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1755  * @ctlr: Pointer to the spi_controller structure of the driver
1756  * @xfer: Pointer to the transfer being timestamped
1757  * @progress: How many words (not bytes) have been transferred so far
1758  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1759  *
1760  * This is a helper for drivers to collect the end of the TX timestamp for
1761  * the requested byte from the SPI transfer. Can be called with an arbitrary
1762  * frequency: only the first call where @tx exceeds or is equal to the
1763  * requested word will be timestamped.
1764  */
1765 void spi_take_timestamp_post(struct spi_controller *ctlr,
1766 			     struct spi_transfer *xfer,
1767 			     size_t progress, bool irqs_off)
1768 {
1769 	if (!xfer->ptp_sts)
1770 		return;
1771 
1772 	if (xfer->timestamped)
1773 		return;
1774 
1775 	if (progress < xfer->ptp_sts_word_post)
1776 		return;
1777 
1778 	ptp_read_system_postts(xfer->ptp_sts);
1779 
1780 	if (irqs_off) {
1781 		local_irq_restore(ctlr->irq_flags);
1782 		preempt_enable();
1783 	}
1784 
1785 	/* Capture the resolution of the timestamp */
1786 	xfer->ptp_sts_word_post = progress;
1787 
1788 	xfer->timestamped = true;
1789 }
1790 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1791 
1792 /**
1793  * spi_set_thread_rt - set the controller to pump at realtime priority
1794  * @ctlr: controller to boost priority of
1795  *
1796  * This can be called because the controller requested realtime priority
1797  * (by setting the ->rt value before calling spi_register_controller()) or
1798  * because a device on the bus said that its transfers needed realtime
1799  * priority.
1800  *
1801  * NOTE: at the moment if any device on a bus says it needs realtime then
1802  * the thread will be at realtime priority for all transfers on that
1803  * controller.  If this eventually becomes a problem we may see if we can
1804  * find a way to boost the priority only temporarily during relevant
1805  * transfers.
1806  */
1807 static void spi_set_thread_rt(struct spi_controller *ctlr)
1808 {
1809 	dev_info(&ctlr->dev,
1810 		"will run message pump with realtime priority\n");
1811 	sched_set_fifo(ctlr->kworker->task);
1812 }
1813 
1814 static int spi_init_queue(struct spi_controller *ctlr)
1815 {
1816 	ctlr->running = false;
1817 	ctlr->busy = false;
1818 
1819 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1820 	if (IS_ERR(ctlr->kworker)) {
1821 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1822 		return PTR_ERR(ctlr->kworker);
1823 	}
1824 
1825 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1826 
1827 	/*
1828 	 * Controller config will indicate if this controller should run the
1829 	 * message pump with high (realtime) priority to reduce the transfer
1830 	 * latency on the bus by minimising the delay between a transfer
1831 	 * request and the scheduling of the message pump thread. Without this
1832 	 * setting the message pump thread will remain at default priority.
1833 	 */
1834 	if (ctlr->rt)
1835 		spi_set_thread_rt(ctlr);
1836 
1837 	return 0;
1838 }
1839 
1840 /**
1841  * spi_get_next_queued_message() - called by driver to check for queued
1842  * messages
1843  * @ctlr: the controller to check for queued messages
1844  *
1845  * If there are more messages in the queue, the next message is returned from
1846  * this call.
1847  *
1848  * Return: the next message in the queue, else NULL if the queue is empty.
1849  */
1850 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1851 {
1852 	struct spi_message *next;
1853 	unsigned long flags;
1854 
1855 	/* get a pointer to the next message, if any */
1856 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1857 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1858 					queue);
1859 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1860 
1861 	return next;
1862 }
1863 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1864 
1865 /**
1866  * spi_finalize_current_message() - the current message is complete
1867  * @ctlr: the controller to return the message to
1868  *
1869  * Called by the driver to notify the core that the message in the front of the
1870  * queue is complete and can be removed from the queue.
1871  */
1872 void spi_finalize_current_message(struct spi_controller *ctlr)
1873 {
1874 	struct spi_transfer *xfer;
1875 	struct spi_message *mesg;
1876 	unsigned long flags;
1877 	int ret;
1878 
1879 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1880 	mesg = ctlr->cur_msg;
1881 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1882 
1883 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1884 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1885 			ptp_read_system_postts(xfer->ptp_sts);
1886 			xfer->ptp_sts_word_post = xfer->len;
1887 		}
1888 	}
1889 
1890 	if (unlikely(ctlr->ptp_sts_supported))
1891 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1892 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1893 
1894 	spi_unmap_msg(ctlr, mesg);
1895 
1896 	/*
1897 	 * In the prepare_messages callback the SPI bus has the opportunity
1898 	 * to split a transfer to smaller chunks.
1899 	 *
1900 	 * Release the split transfers here since spi_map_msg() is done on
1901 	 * the split transfers.
1902 	 */
1903 	spi_res_release(ctlr, mesg);
1904 
1905 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1906 		ret = ctlr->unprepare_message(ctlr, mesg);
1907 		if (ret) {
1908 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1909 				ret);
1910 		}
1911 	}
1912 
1913 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1914 	ctlr->cur_msg = NULL;
1915 	ctlr->cur_msg_prepared = false;
1916 	ctlr->fallback = false;
1917 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1918 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1919 
1920 	trace_spi_message_done(mesg);
1921 
1922 	mesg->state = NULL;
1923 	if (mesg->complete)
1924 		mesg->complete(mesg->context);
1925 }
1926 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1927 
1928 static int spi_start_queue(struct spi_controller *ctlr)
1929 {
1930 	unsigned long flags;
1931 
1932 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1933 
1934 	if (ctlr->running || ctlr->busy) {
1935 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1936 		return -EBUSY;
1937 	}
1938 
1939 	ctlr->running = true;
1940 	ctlr->cur_msg = NULL;
1941 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1942 
1943 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1944 
1945 	return 0;
1946 }
1947 
1948 static int spi_stop_queue(struct spi_controller *ctlr)
1949 {
1950 	unsigned long flags;
1951 	unsigned limit = 500;
1952 	int ret = 0;
1953 
1954 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1955 
1956 	/*
1957 	 * This is a bit lame, but is optimized for the common execution path.
1958 	 * A wait_queue on the ctlr->busy could be used, but then the common
1959 	 * execution path (pump_messages) would be required to call wake_up or
1960 	 * friends on every SPI message. Do this instead.
1961 	 */
1962 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1963 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1964 		usleep_range(10000, 11000);
1965 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1966 	}
1967 
1968 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1969 		ret = -EBUSY;
1970 	else
1971 		ctlr->running = false;
1972 
1973 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1974 
1975 	if (ret) {
1976 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1977 		return ret;
1978 	}
1979 	return ret;
1980 }
1981 
1982 static int spi_destroy_queue(struct spi_controller *ctlr)
1983 {
1984 	int ret;
1985 
1986 	ret = spi_stop_queue(ctlr);
1987 
1988 	/*
1989 	 * kthread_flush_worker will block until all work is done.
1990 	 * If the reason that stop_queue timed out is that the work will never
1991 	 * finish, then it does no good to call flush/stop thread, so
1992 	 * return anyway.
1993 	 */
1994 	if (ret) {
1995 		dev_err(&ctlr->dev, "problem destroying queue\n");
1996 		return ret;
1997 	}
1998 
1999 	kthread_destroy_worker(ctlr->kworker);
2000 
2001 	return 0;
2002 }
2003 
2004 static int __spi_queued_transfer(struct spi_device *spi,
2005 				 struct spi_message *msg,
2006 				 bool need_pump)
2007 {
2008 	struct spi_controller *ctlr = spi->controller;
2009 	unsigned long flags;
2010 
2011 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2012 
2013 	if (!ctlr->running) {
2014 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2015 		return -ESHUTDOWN;
2016 	}
2017 	msg->actual_length = 0;
2018 	msg->status = -EINPROGRESS;
2019 
2020 	list_add_tail(&msg->queue, &ctlr->queue);
2021 	if (!ctlr->busy && need_pump)
2022 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2023 
2024 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2025 	return 0;
2026 }
2027 
2028 /**
2029  * spi_queued_transfer - transfer function for queued transfers
2030  * @spi: spi device which is requesting transfer
2031  * @msg: spi message which is to handled is queued to driver queue
2032  *
2033  * Return: zero on success, else a negative error code.
2034  */
2035 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2036 {
2037 	return __spi_queued_transfer(spi, msg, true);
2038 }
2039 
2040 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2041 {
2042 	int ret;
2043 
2044 	ctlr->transfer = spi_queued_transfer;
2045 	if (!ctlr->transfer_one_message)
2046 		ctlr->transfer_one_message = spi_transfer_one_message;
2047 
2048 	/* Initialize and start queue */
2049 	ret = spi_init_queue(ctlr);
2050 	if (ret) {
2051 		dev_err(&ctlr->dev, "problem initializing queue\n");
2052 		goto err_init_queue;
2053 	}
2054 	ctlr->queued = true;
2055 	ret = spi_start_queue(ctlr);
2056 	if (ret) {
2057 		dev_err(&ctlr->dev, "problem starting queue\n");
2058 		goto err_start_queue;
2059 	}
2060 
2061 	return 0;
2062 
2063 err_start_queue:
2064 	spi_destroy_queue(ctlr);
2065 err_init_queue:
2066 	return ret;
2067 }
2068 
2069 /**
2070  * spi_flush_queue - Send all pending messages in the queue from the callers'
2071  *		     context
2072  * @ctlr: controller to process queue for
2073  *
2074  * This should be used when one wants to ensure all pending messages have been
2075  * sent before doing something. Is used by the spi-mem code to make sure SPI
2076  * memory operations do not preempt regular SPI transfers that have been queued
2077  * before the spi-mem operation.
2078  */
2079 void spi_flush_queue(struct spi_controller *ctlr)
2080 {
2081 	if (ctlr->transfer == spi_queued_transfer)
2082 		__spi_pump_messages(ctlr, false);
2083 }
2084 
2085 /*-------------------------------------------------------------------------*/
2086 
2087 #if defined(CONFIG_OF)
2088 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2089 			   struct device_node *nc)
2090 {
2091 	u32 value;
2092 	int rc;
2093 
2094 	/* Mode (clock phase/polarity/etc.) */
2095 	if (of_property_read_bool(nc, "spi-cpha"))
2096 		spi->mode |= SPI_CPHA;
2097 	if (of_property_read_bool(nc, "spi-cpol"))
2098 		spi->mode |= SPI_CPOL;
2099 	if (of_property_read_bool(nc, "spi-3wire"))
2100 		spi->mode |= SPI_3WIRE;
2101 	if (of_property_read_bool(nc, "spi-lsb-first"))
2102 		spi->mode |= SPI_LSB_FIRST;
2103 	if (of_property_read_bool(nc, "spi-cs-high"))
2104 		spi->mode |= SPI_CS_HIGH;
2105 
2106 	/* Device DUAL/QUAD mode */
2107 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2108 		switch (value) {
2109 		case 0:
2110 			spi->mode |= SPI_NO_TX;
2111 			break;
2112 		case 1:
2113 			break;
2114 		case 2:
2115 			spi->mode |= SPI_TX_DUAL;
2116 			break;
2117 		case 4:
2118 			spi->mode |= SPI_TX_QUAD;
2119 			break;
2120 		case 8:
2121 			spi->mode |= SPI_TX_OCTAL;
2122 			break;
2123 		default:
2124 			dev_warn(&ctlr->dev,
2125 				"spi-tx-bus-width %d not supported\n",
2126 				value);
2127 			break;
2128 		}
2129 	}
2130 
2131 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2132 		switch (value) {
2133 		case 0:
2134 			spi->mode |= SPI_NO_RX;
2135 			break;
2136 		case 1:
2137 			break;
2138 		case 2:
2139 			spi->mode |= SPI_RX_DUAL;
2140 			break;
2141 		case 4:
2142 			spi->mode |= SPI_RX_QUAD;
2143 			break;
2144 		case 8:
2145 			spi->mode |= SPI_RX_OCTAL;
2146 			break;
2147 		default:
2148 			dev_warn(&ctlr->dev,
2149 				"spi-rx-bus-width %d not supported\n",
2150 				value);
2151 			break;
2152 		}
2153 	}
2154 
2155 	if (spi_controller_is_slave(ctlr)) {
2156 		if (!of_node_name_eq(nc, "slave")) {
2157 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2158 				nc);
2159 			return -EINVAL;
2160 		}
2161 		return 0;
2162 	}
2163 
2164 	/* Device address */
2165 	rc = of_property_read_u32(nc, "reg", &value);
2166 	if (rc) {
2167 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2168 			nc, rc);
2169 		return rc;
2170 	}
2171 	spi->chip_select = value;
2172 
2173 	/* Device speed */
2174 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2175 		spi->max_speed_hz = value;
2176 
2177 	return 0;
2178 }
2179 
2180 static struct spi_device *
2181 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2182 {
2183 	struct spi_device *spi;
2184 	int rc;
2185 
2186 	/* Alloc an spi_device */
2187 	spi = spi_alloc_device(ctlr);
2188 	if (!spi) {
2189 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2190 		rc = -ENOMEM;
2191 		goto err_out;
2192 	}
2193 
2194 	/* Select device driver */
2195 	rc = of_modalias_node(nc, spi->modalias,
2196 				sizeof(spi->modalias));
2197 	if (rc < 0) {
2198 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2199 		goto err_out;
2200 	}
2201 
2202 	rc = of_spi_parse_dt(ctlr, spi, nc);
2203 	if (rc)
2204 		goto err_out;
2205 
2206 	/* Store a pointer to the node in the device structure */
2207 	of_node_get(nc);
2208 	spi->dev.of_node = nc;
2209 	spi->dev.fwnode = of_fwnode_handle(nc);
2210 
2211 	/* Register the new device */
2212 	rc = spi_add_device(spi);
2213 	if (rc) {
2214 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2215 		goto err_of_node_put;
2216 	}
2217 
2218 	return spi;
2219 
2220 err_of_node_put:
2221 	of_node_put(nc);
2222 err_out:
2223 	spi_dev_put(spi);
2224 	return ERR_PTR(rc);
2225 }
2226 
2227 /**
2228  * of_register_spi_devices() - Register child devices onto the SPI bus
2229  * @ctlr:	Pointer to spi_controller device
2230  *
2231  * Registers an spi_device for each child node of controller node which
2232  * represents a valid SPI slave.
2233  */
2234 static void of_register_spi_devices(struct spi_controller *ctlr)
2235 {
2236 	struct spi_device *spi;
2237 	struct device_node *nc;
2238 
2239 	if (!ctlr->dev.of_node)
2240 		return;
2241 
2242 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2243 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2244 			continue;
2245 		spi = of_register_spi_device(ctlr, nc);
2246 		if (IS_ERR(spi)) {
2247 			dev_warn(&ctlr->dev,
2248 				 "Failed to create SPI device for %pOF\n", nc);
2249 			of_node_clear_flag(nc, OF_POPULATED);
2250 		}
2251 	}
2252 }
2253 #else
2254 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2255 #endif
2256 
2257 /**
2258  * spi_new_ancillary_device() - Register ancillary SPI device
2259  * @spi:         Pointer to the main SPI device registering the ancillary device
2260  * @chip_select: Chip Select of the ancillary device
2261  *
2262  * Register an ancillary SPI device; for example some chips have a chip-select
2263  * for normal device usage and another one for setup/firmware upload.
2264  *
2265  * This may only be called from main SPI device's probe routine.
2266  *
2267  * Return: 0 on success; negative errno on failure
2268  */
2269 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2270 					     u8 chip_select)
2271 {
2272 	struct spi_device *ancillary;
2273 	int rc = 0;
2274 
2275 	/* Alloc an spi_device */
2276 	ancillary = spi_alloc_device(spi->controller);
2277 	if (!ancillary) {
2278 		rc = -ENOMEM;
2279 		goto err_out;
2280 	}
2281 
2282 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2283 
2284 	/* Use provided chip-select for ancillary device */
2285 	ancillary->chip_select = chip_select;
2286 
2287 	/* Take over SPI mode/speed from SPI main device */
2288 	ancillary->max_speed_hz = spi->max_speed_hz;
2289 	ancillary->mode = spi->mode;
2290 
2291 	/* Register the new device */
2292 	rc = spi_add_device_locked(ancillary);
2293 	if (rc) {
2294 		dev_err(&spi->dev, "failed to register ancillary device\n");
2295 		goto err_out;
2296 	}
2297 
2298 	return ancillary;
2299 
2300 err_out:
2301 	spi_dev_put(ancillary);
2302 	return ERR_PTR(rc);
2303 }
2304 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2305 
2306 #ifdef CONFIG_ACPI
2307 struct acpi_spi_lookup {
2308 	struct spi_controller 	*ctlr;
2309 	u32			max_speed_hz;
2310 	u32			mode;
2311 	int			irq;
2312 	u8			bits_per_word;
2313 	u8			chip_select;
2314 };
2315 
2316 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2317 					    struct acpi_spi_lookup *lookup)
2318 {
2319 	const union acpi_object *obj;
2320 
2321 	if (!x86_apple_machine)
2322 		return;
2323 
2324 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2325 	    && obj->buffer.length >= 4)
2326 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2327 
2328 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2329 	    && obj->buffer.length == 8)
2330 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2331 
2332 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2333 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2334 		lookup->mode |= SPI_LSB_FIRST;
2335 
2336 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2337 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2338 		lookup->mode |= SPI_CPOL;
2339 
2340 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2341 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2342 		lookup->mode |= SPI_CPHA;
2343 }
2344 
2345 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2346 {
2347 	struct acpi_spi_lookup *lookup = data;
2348 	struct spi_controller *ctlr = lookup->ctlr;
2349 
2350 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2351 		struct acpi_resource_spi_serialbus *sb;
2352 		acpi_handle parent_handle;
2353 		acpi_status status;
2354 
2355 		sb = &ares->data.spi_serial_bus;
2356 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2357 
2358 			status = acpi_get_handle(NULL,
2359 						 sb->resource_source.string_ptr,
2360 						 &parent_handle);
2361 
2362 			if (ACPI_FAILURE(status) ||
2363 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2364 				return -ENODEV;
2365 
2366 			/*
2367 			 * ACPI DeviceSelection numbering is handled by the
2368 			 * host controller driver in Windows and can vary
2369 			 * from driver to driver. In Linux we always expect
2370 			 * 0 .. max - 1 so we need to ask the driver to
2371 			 * translate between the two schemes.
2372 			 */
2373 			if (ctlr->fw_translate_cs) {
2374 				int cs = ctlr->fw_translate_cs(ctlr,
2375 						sb->device_selection);
2376 				if (cs < 0)
2377 					return cs;
2378 				lookup->chip_select = cs;
2379 			} else {
2380 				lookup->chip_select = sb->device_selection;
2381 			}
2382 
2383 			lookup->max_speed_hz = sb->connection_speed;
2384 			lookup->bits_per_word = sb->data_bit_length;
2385 
2386 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2387 				lookup->mode |= SPI_CPHA;
2388 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2389 				lookup->mode |= SPI_CPOL;
2390 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2391 				lookup->mode |= SPI_CS_HIGH;
2392 		}
2393 	} else if (lookup->irq < 0) {
2394 		struct resource r;
2395 
2396 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2397 			lookup->irq = r.start;
2398 	}
2399 
2400 	/* Always tell the ACPI core to skip this resource */
2401 	return 1;
2402 }
2403 
2404 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2405 					    struct acpi_device *adev)
2406 {
2407 	acpi_handle parent_handle = NULL;
2408 	struct list_head resource_list;
2409 	struct acpi_spi_lookup lookup = {};
2410 	struct spi_device *spi;
2411 	int ret;
2412 
2413 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2414 	    acpi_device_enumerated(adev))
2415 		return AE_OK;
2416 
2417 	lookup.ctlr		= ctlr;
2418 	lookup.irq		= -1;
2419 
2420 	INIT_LIST_HEAD(&resource_list);
2421 	ret = acpi_dev_get_resources(adev, &resource_list,
2422 				     acpi_spi_add_resource, &lookup);
2423 	acpi_dev_free_resource_list(&resource_list);
2424 
2425 	if (ret < 0)
2426 		/* found SPI in _CRS but it points to another controller */
2427 		return AE_OK;
2428 
2429 	if (!lookup.max_speed_hz &&
2430 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2431 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2432 		/* Apple does not use _CRS but nested devices for SPI slaves */
2433 		acpi_spi_parse_apple_properties(adev, &lookup);
2434 	}
2435 
2436 	if (!lookup.max_speed_hz)
2437 		return AE_OK;
2438 
2439 	spi = spi_alloc_device(ctlr);
2440 	if (!spi) {
2441 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2442 			dev_name(&adev->dev));
2443 		return AE_NO_MEMORY;
2444 	}
2445 
2446 
2447 	ACPI_COMPANION_SET(&spi->dev, adev);
2448 	spi->max_speed_hz	= lookup.max_speed_hz;
2449 	spi->mode		|= lookup.mode;
2450 	spi->irq		= lookup.irq;
2451 	spi->bits_per_word	= lookup.bits_per_word;
2452 	spi->chip_select	= lookup.chip_select;
2453 
2454 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2455 			  sizeof(spi->modalias));
2456 
2457 	if (spi->irq < 0)
2458 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2459 
2460 	acpi_device_set_enumerated(adev);
2461 
2462 	adev->power.flags.ignore_parent = true;
2463 	if (spi_add_device(spi)) {
2464 		adev->power.flags.ignore_parent = false;
2465 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2466 			dev_name(&adev->dev));
2467 		spi_dev_put(spi);
2468 	}
2469 
2470 	return AE_OK;
2471 }
2472 
2473 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2474 				       void *data, void **return_value)
2475 {
2476 	struct spi_controller *ctlr = data;
2477 	struct acpi_device *adev;
2478 
2479 	if (acpi_bus_get_device(handle, &adev))
2480 		return AE_OK;
2481 
2482 	return acpi_register_spi_device(ctlr, adev);
2483 }
2484 
2485 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2486 
2487 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2488 {
2489 	acpi_status status;
2490 	acpi_handle handle;
2491 
2492 	handle = ACPI_HANDLE(ctlr->dev.parent);
2493 	if (!handle)
2494 		return;
2495 
2496 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2497 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2498 				     acpi_spi_add_device, NULL, ctlr, NULL);
2499 	if (ACPI_FAILURE(status))
2500 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2501 }
2502 #else
2503 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2504 #endif /* CONFIG_ACPI */
2505 
2506 static void spi_controller_release(struct device *dev)
2507 {
2508 	struct spi_controller *ctlr;
2509 
2510 	ctlr = container_of(dev, struct spi_controller, dev);
2511 	kfree(ctlr);
2512 }
2513 
2514 static struct class spi_master_class = {
2515 	.name		= "spi_master",
2516 	.owner		= THIS_MODULE,
2517 	.dev_release	= spi_controller_release,
2518 	.dev_groups	= spi_master_groups,
2519 };
2520 
2521 #ifdef CONFIG_SPI_SLAVE
2522 /**
2523  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2524  *		     controller
2525  * @spi: device used for the current transfer
2526  */
2527 int spi_slave_abort(struct spi_device *spi)
2528 {
2529 	struct spi_controller *ctlr = spi->controller;
2530 
2531 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2532 		return ctlr->slave_abort(ctlr);
2533 
2534 	return -ENOTSUPP;
2535 }
2536 EXPORT_SYMBOL_GPL(spi_slave_abort);
2537 
2538 static int match_true(struct device *dev, void *data)
2539 {
2540 	return 1;
2541 }
2542 
2543 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2544 			  char *buf)
2545 {
2546 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2547 						   dev);
2548 	struct device *child;
2549 
2550 	child = device_find_child(&ctlr->dev, NULL, match_true);
2551 	return sprintf(buf, "%s\n",
2552 		       child ? to_spi_device(child)->modalias : NULL);
2553 }
2554 
2555 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2556 			   const char *buf, size_t count)
2557 {
2558 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2559 						   dev);
2560 	struct spi_device *spi;
2561 	struct device *child;
2562 	char name[32];
2563 	int rc;
2564 
2565 	rc = sscanf(buf, "%31s", name);
2566 	if (rc != 1 || !name[0])
2567 		return -EINVAL;
2568 
2569 	child = device_find_child(&ctlr->dev, NULL, match_true);
2570 	if (child) {
2571 		/* Remove registered slave */
2572 		device_unregister(child);
2573 		put_device(child);
2574 	}
2575 
2576 	if (strcmp(name, "(null)")) {
2577 		/* Register new slave */
2578 		spi = spi_alloc_device(ctlr);
2579 		if (!spi)
2580 			return -ENOMEM;
2581 
2582 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2583 
2584 		rc = spi_add_device(spi);
2585 		if (rc) {
2586 			spi_dev_put(spi);
2587 			return rc;
2588 		}
2589 	}
2590 
2591 	return count;
2592 }
2593 
2594 static DEVICE_ATTR_RW(slave);
2595 
2596 static struct attribute *spi_slave_attrs[] = {
2597 	&dev_attr_slave.attr,
2598 	NULL,
2599 };
2600 
2601 static const struct attribute_group spi_slave_group = {
2602 	.attrs = spi_slave_attrs,
2603 };
2604 
2605 static const struct attribute_group *spi_slave_groups[] = {
2606 	&spi_controller_statistics_group,
2607 	&spi_slave_group,
2608 	NULL,
2609 };
2610 
2611 static struct class spi_slave_class = {
2612 	.name		= "spi_slave",
2613 	.owner		= THIS_MODULE,
2614 	.dev_release	= spi_controller_release,
2615 	.dev_groups	= spi_slave_groups,
2616 };
2617 #else
2618 extern struct class spi_slave_class;	/* dummy */
2619 #endif
2620 
2621 /**
2622  * __spi_alloc_controller - allocate an SPI master or slave controller
2623  * @dev: the controller, possibly using the platform_bus
2624  * @size: how much zeroed driver-private data to allocate; the pointer to this
2625  *	memory is in the driver_data field of the returned device, accessible
2626  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2627  *	drivers granting DMA access to portions of their private data need to
2628  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2629  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2630  *	slave (true) controller
2631  * Context: can sleep
2632  *
2633  * This call is used only by SPI controller drivers, which are the
2634  * only ones directly touching chip registers.  It's how they allocate
2635  * an spi_controller structure, prior to calling spi_register_controller().
2636  *
2637  * This must be called from context that can sleep.
2638  *
2639  * The caller is responsible for assigning the bus number and initializing the
2640  * controller's methods before calling spi_register_controller(); and (after
2641  * errors adding the device) calling spi_controller_put() to prevent a memory
2642  * leak.
2643  *
2644  * Return: the SPI controller structure on success, else NULL.
2645  */
2646 struct spi_controller *__spi_alloc_controller(struct device *dev,
2647 					      unsigned int size, bool slave)
2648 {
2649 	struct spi_controller	*ctlr;
2650 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2651 
2652 	if (!dev)
2653 		return NULL;
2654 
2655 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2656 	if (!ctlr)
2657 		return NULL;
2658 
2659 	device_initialize(&ctlr->dev);
2660 	INIT_LIST_HEAD(&ctlr->queue);
2661 	spin_lock_init(&ctlr->queue_lock);
2662 	spin_lock_init(&ctlr->bus_lock_spinlock);
2663 	mutex_init(&ctlr->bus_lock_mutex);
2664 	mutex_init(&ctlr->io_mutex);
2665 	mutex_init(&ctlr->add_lock);
2666 	ctlr->bus_num = -1;
2667 	ctlr->num_chipselect = 1;
2668 	ctlr->slave = slave;
2669 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2670 		ctlr->dev.class = &spi_slave_class;
2671 	else
2672 		ctlr->dev.class = &spi_master_class;
2673 	ctlr->dev.parent = dev;
2674 	pm_suspend_ignore_children(&ctlr->dev, true);
2675 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2676 
2677 	return ctlr;
2678 }
2679 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2680 
2681 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2682 {
2683 	spi_controller_put(*(struct spi_controller **)ctlr);
2684 }
2685 
2686 /**
2687  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2688  * @dev: physical device of SPI controller
2689  * @size: how much zeroed driver-private data to allocate
2690  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2691  * Context: can sleep
2692  *
2693  * Allocate an SPI controller and automatically release a reference on it
2694  * when @dev is unbound from its driver.  Drivers are thus relieved from
2695  * having to call spi_controller_put().
2696  *
2697  * The arguments to this function are identical to __spi_alloc_controller().
2698  *
2699  * Return: the SPI controller structure on success, else NULL.
2700  */
2701 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2702 						   unsigned int size,
2703 						   bool slave)
2704 {
2705 	struct spi_controller **ptr, *ctlr;
2706 
2707 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2708 			   GFP_KERNEL);
2709 	if (!ptr)
2710 		return NULL;
2711 
2712 	ctlr = __spi_alloc_controller(dev, size, slave);
2713 	if (ctlr) {
2714 		ctlr->devm_allocated = true;
2715 		*ptr = ctlr;
2716 		devres_add(dev, ptr);
2717 	} else {
2718 		devres_free(ptr);
2719 	}
2720 
2721 	return ctlr;
2722 }
2723 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2724 
2725 #ifdef CONFIG_OF
2726 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2727 {
2728 	int nb, i, *cs;
2729 	struct device_node *np = ctlr->dev.of_node;
2730 
2731 	if (!np)
2732 		return 0;
2733 
2734 	nb = of_gpio_named_count(np, "cs-gpios");
2735 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2736 
2737 	/* Return error only for an incorrectly formed cs-gpios property */
2738 	if (nb == 0 || nb == -ENOENT)
2739 		return 0;
2740 	else if (nb < 0)
2741 		return nb;
2742 
2743 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2744 			  GFP_KERNEL);
2745 	ctlr->cs_gpios = cs;
2746 
2747 	if (!ctlr->cs_gpios)
2748 		return -ENOMEM;
2749 
2750 	for (i = 0; i < ctlr->num_chipselect; i++)
2751 		cs[i] = -ENOENT;
2752 
2753 	for (i = 0; i < nb; i++)
2754 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2755 
2756 	return 0;
2757 }
2758 #else
2759 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2760 {
2761 	return 0;
2762 }
2763 #endif
2764 
2765 /**
2766  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2767  * @ctlr: The SPI master to grab GPIO descriptors for
2768  */
2769 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2770 {
2771 	int nb, i;
2772 	struct gpio_desc **cs;
2773 	struct device *dev = &ctlr->dev;
2774 	unsigned long native_cs_mask = 0;
2775 	unsigned int num_cs_gpios = 0;
2776 
2777 	nb = gpiod_count(dev, "cs");
2778 	if (nb < 0) {
2779 		/* No GPIOs at all is fine, else return the error */
2780 		if (nb == -ENOENT)
2781 			return 0;
2782 		return nb;
2783 	}
2784 
2785 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2786 
2787 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2788 			  GFP_KERNEL);
2789 	if (!cs)
2790 		return -ENOMEM;
2791 	ctlr->cs_gpiods = cs;
2792 
2793 	for (i = 0; i < nb; i++) {
2794 		/*
2795 		 * Most chipselects are active low, the inverted
2796 		 * semantics are handled by special quirks in gpiolib,
2797 		 * so initializing them GPIOD_OUT_LOW here means
2798 		 * "unasserted", in most cases this will drive the physical
2799 		 * line high.
2800 		 */
2801 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2802 						      GPIOD_OUT_LOW);
2803 		if (IS_ERR(cs[i]))
2804 			return PTR_ERR(cs[i]);
2805 
2806 		if (cs[i]) {
2807 			/*
2808 			 * If we find a CS GPIO, name it after the device and
2809 			 * chip select line.
2810 			 */
2811 			char *gpioname;
2812 
2813 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2814 						  dev_name(dev), i);
2815 			if (!gpioname)
2816 				return -ENOMEM;
2817 			gpiod_set_consumer_name(cs[i], gpioname);
2818 			num_cs_gpios++;
2819 			continue;
2820 		}
2821 
2822 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2823 			dev_err(dev, "Invalid native chip select %d\n", i);
2824 			return -EINVAL;
2825 		}
2826 		native_cs_mask |= BIT(i);
2827 	}
2828 
2829 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2830 
2831 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2832 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2833 		dev_err(dev, "No unused native chip select available\n");
2834 		return -EINVAL;
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 static int spi_controller_check_ops(struct spi_controller *ctlr)
2841 {
2842 	/*
2843 	 * The controller may implement only the high-level SPI-memory like
2844 	 * operations if it does not support regular SPI transfers, and this is
2845 	 * valid use case.
2846 	 * If ->mem_ops is NULL, we request that at least one of the
2847 	 * ->transfer_xxx() method be implemented.
2848 	 */
2849 	if (ctlr->mem_ops) {
2850 		if (!ctlr->mem_ops->exec_op)
2851 			return -EINVAL;
2852 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2853 		   !ctlr->transfer_one_message) {
2854 		return -EINVAL;
2855 	}
2856 
2857 	return 0;
2858 }
2859 
2860 /**
2861  * spi_register_controller - register SPI master or slave controller
2862  * @ctlr: initialized master, originally from spi_alloc_master() or
2863  *	spi_alloc_slave()
2864  * Context: can sleep
2865  *
2866  * SPI controllers connect to their drivers using some non-SPI bus,
2867  * such as the platform bus.  The final stage of probe() in that code
2868  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2869  *
2870  * SPI controllers use board specific (often SOC specific) bus numbers,
2871  * and board-specific addressing for SPI devices combines those numbers
2872  * with chip select numbers.  Since SPI does not directly support dynamic
2873  * device identification, boards need configuration tables telling which
2874  * chip is at which address.
2875  *
2876  * This must be called from context that can sleep.  It returns zero on
2877  * success, else a negative error code (dropping the controller's refcount).
2878  * After a successful return, the caller is responsible for calling
2879  * spi_unregister_controller().
2880  *
2881  * Return: zero on success, else a negative error code.
2882  */
2883 int spi_register_controller(struct spi_controller *ctlr)
2884 {
2885 	struct device		*dev = ctlr->dev.parent;
2886 	struct boardinfo	*bi;
2887 	int			status;
2888 	int			id, first_dynamic;
2889 
2890 	if (!dev)
2891 		return -ENODEV;
2892 
2893 	/*
2894 	 * Make sure all necessary hooks are implemented before registering
2895 	 * the SPI controller.
2896 	 */
2897 	status = spi_controller_check_ops(ctlr);
2898 	if (status)
2899 		return status;
2900 
2901 	if (ctlr->bus_num >= 0) {
2902 		/* devices with a fixed bus num must check-in with the num */
2903 		mutex_lock(&board_lock);
2904 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2905 			ctlr->bus_num + 1, GFP_KERNEL);
2906 		mutex_unlock(&board_lock);
2907 		if (WARN(id < 0, "couldn't get idr"))
2908 			return id == -ENOSPC ? -EBUSY : id;
2909 		ctlr->bus_num = id;
2910 	} else if (ctlr->dev.of_node) {
2911 		/* allocate dynamic bus number using Linux idr */
2912 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2913 		if (id >= 0) {
2914 			ctlr->bus_num = id;
2915 			mutex_lock(&board_lock);
2916 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2917 				       ctlr->bus_num + 1, GFP_KERNEL);
2918 			mutex_unlock(&board_lock);
2919 			if (WARN(id < 0, "couldn't get idr"))
2920 				return id == -ENOSPC ? -EBUSY : id;
2921 		}
2922 	}
2923 	if (ctlr->bus_num < 0) {
2924 		first_dynamic = of_alias_get_highest_id("spi");
2925 		if (first_dynamic < 0)
2926 			first_dynamic = 0;
2927 		else
2928 			first_dynamic++;
2929 
2930 		mutex_lock(&board_lock);
2931 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2932 			       0, GFP_KERNEL);
2933 		mutex_unlock(&board_lock);
2934 		if (WARN(id < 0, "couldn't get idr"))
2935 			return id;
2936 		ctlr->bus_num = id;
2937 	}
2938 	ctlr->bus_lock_flag = 0;
2939 	init_completion(&ctlr->xfer_completion);
2940 	if (!ctlr->max_dma_len)
2941 		ctlr->max_dma_len = INT_MAX;
2942 
2943 	/*
2944 	 * Register the device, then userspace will see it.
2945 	 * Registration fails if the bus ID is in use.
2946 	 */
2947 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2948 
2949 	if (!spi_controller_is_slave(ctlr)) {
2950 		if (ctlr->use_gpio_descriptors) {
2951 			status = spi_get_gpio_descs(ctlr);
2952 			if (status)
2953 				goto free_bus_id;
2954 			/*
2955 			 * A controller using GPIO descriptors always
2956 			 * supports SPI_CS_HIGH if need be.
2957 			 */
2958 			ctlr->mode_bits |= SPI_CS_HIGH;
2959 		} else {
2960 			/* Legacy code path for GPIOs from DT */
2961 			status = of_spi_get_gpio_numbers(ctlr);
2962 			if (status)
2963 				goto free_bus_id;
2964 		}
2965 	}
2966 
2967 	/*
2968 	 * Even if it's just one always-selected device, there must
2969 	 * be at least one chipselect.
2970 	 */
2971 	if (!ctlr->num_chipselect) {
2972 		status = -EINVAL;
2973 		goto free_bus_id;
2974 	}
2975 
2976 	status = device_add(&ctlr->dev);
2977 	if (status < 0)
2978 		goto free_bus_id;
2979 	dev_dbg(dev, "registered %s %s\n",
2980 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2981 			dev_name(&ctlr->dev));
2982 
2983 	/*
2984 	 * If we're using a queued driver, start the queue. Note that we don't
2985 	 * need the queueing logic if the driver is only supporting high-level
2986 	 * memory operations.
2987 	 */
2988 	if (ctlr->transfer) {
2989 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2990 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2991 		status = spi_controller_initialize_queue(ctlr);
2992 		if (status) {
2993 			device_del(&ctlr->dev);
2994 			goto free_bus_id;
2995 		}
2996 	}
2997 	/* add statistics */
2998 	spin_lock_init(&ctlr->statistics.lock);
2999 
3000 	mutex_lock(&board_lock);
3001 	list_add_tail(&ctlr->list, &spi_controller_list);
3002 	list_for_each_entry(bi, &board_list, list)
3003 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3004 	mutex_unlock(&board_lock);
3005 
3006 	/* Register devices from the device tree and ACPI */
3007 	of_register_spi_devices(ctlr);
3008 	acpi_register_spi_devices(ctlr);
3009 	return status;
3010 
3011 free_bus_id:
3012 	mutex_lock(&board_lock);
3013 	idr_remove(&spi_master_idr, ctlr->bus_num);
3014 	mutex_unlock(&board_lock);
3015 	return status;
3016 }
3017 EXPORT_SYMBOL_GPL(spi_register_controller);
3018 
3019 static void devm_spi_unregister(void *ctlr)
3020 {
3021 	spi_unregister_controller(ctlr);
3022 }
3023 
3024 /**
3025  * devm_spi_register_controller - register managed SPI master or slave
3026  *	controller
3027  * @dev:    device managing SPI controller
3028  * @ctlr: initialized controller, originally from spi_alloc_master() or
3029  *	spi_alloc_slave()
3030  * Context: can sleep
3031  *
3032  * Register a SPI device as with spi_register_controller() which will
3033  * automatically be unregistered and freed.
3034  *
3035  * Return: zero on success, else a negative error code.
3036  */
3037 int devm_spi_register_controller(struct device *dev,
3038 				 struct spi_controller *ctlr)
3039 {
3040 	int ret;
3041 
3042 	ret = spi_register_controller(ctlr);
3043 	if (ret)
3044 		return ret;
3045 
3046 	return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
3047 }
3048 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3049 
3050 static int __unregister(struct device *dev, void *null)
3051 {
3052 	spi_unregister_device(to_spi_device(dev));
3053 	return 0;
3054 }
3055 
3056 /**
3057  * spi_unregister_controller - unregister SPI master or slave controller
3058  * @ctlr: the controller being unregistered
3059  * Context: can sleep
3060  *
3061  * This call is used only by SPI controller drivers, which are the
3062  * only ones directly touching chip registers.
3063  *
3064  * This must be called from context that can sleep.
3065  *
3066  * Note that this function also drops a reference to the controller.
3067  */
3068 void spi_unregister_controller(struct spi_controller *ctlr)
3069 {
3070 	struct spi_controller *found;
3071 	int id = ctlr->bus_num;
3072 
3073 	/* Prevent addition of new devices, unregister existing ones */
3074 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3075 		mutex_lock(&ctlr->add_lock);
3076 
3077 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3078 
3079 	/* First make sure that this controller was ever added */
3080 	mutex_lock(&board_lock);
3081 	found = idr_find(&spi_master_idr, id);
3082 	mutex_unlock(&board_lock);
3083 	if (ctlr->queued) {
3084 		if (spi_destroy_queue(ctlr))
3085 			dev_err(&ctlr->dev, "queue remove failed\n");
3086 	}
3087 	mutex_lock(&board_lock);
3088 	list_del(&ctlr->list);
3089 	mutex_unlock(&board_lock);
3090 
3091 	device_del(&ctlr->dev);
3092 
3093 	/* free bus id */
3094 	mutex_lock(&board_lock);
3095 	if (found == ctlr)
3096 		idr_remove(&spi_master_idr, id);
3097 	mutex_unlock(&board_lock);
3098 
3099 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3100 		mutex_unlock(&ctlr->add_lock);
3101 
3102 	/* Release the last reference on the controller if its driver
3103 	 * has not yet been converted to devm_spi_alloc_master/slave().
3104 	 */
3105 	if (!ctlr->devm_allocated)
3106 		put_device(&ctlr->dev);
3107 }
3108 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3109 
3110 int spi_controller_suspend(struct spi_controller *ctlr)
3111 {
3112 	int ret;
3113 
3114 	/* Basically no-ops for non-queued controllers */
3115 	if (!ctlr->queued)
3116 		return 0;
3117 
3118 	ret = spi_stop_queue(ctlr);
3119 	if (ret)
3120 		dev_err(&ctlr->dev, "queue stop failed\n");
3121 
3122 	return ret;
3123 }
3124 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3125 
3126 int spi_controller_resume(struct spi_controller *ctlr)
3127 {
3128 	int ret;
3129 
3130 	if (!ctlr->queued)
3131 		return 0;
3132 
3133 	ret = spi_start_queue(ctlr);
3134 	if (ret)
3135 		dev_err(&ctlr->dev, "queue restart failed\n");
3136 
3137 	return ret;
3138 }
3139 EXPORT_SYMBOL_GPL(spi_controller_resume);
3140 
3141 /*-------------------------------------------------------------------------*/
3142 
3143 /* Core methods for spi_message alterations */
3144 
3145 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3146 					    struct spi_message *msg,
3147 					    void *res)
3148 {
3149 	struct spi_replaced_transfers *rxfer = res;
3150 	size_t i;
3151 
3152 	/* call extra callback if requested */
3153 	if (rxfer->release)
3154 		rxfer->release(ctlr, msg, res);
3155 
3156 	/* insert replaced transfers back into the message */
3157 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3158 
3159 	/* remove the formerly inserted entries */
3160 	for (i = 0; i < rxfer->inserted; i++)
3161 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3162 }
3163 
3164 /**
3165  * spi_replace_transfers - replace transfers with several transfers
3166  *                         and register change with spi_message.resources
3167  * @msg:           the spi_message we work upon
3168  * @xfer_first:    the first spi_transfer we want to replace
3169  * @remove:        number of transfers to remove
3170  * @insert:        the number of transfers we want to insert instead
3171  * @release:       extra release code necessary in some circumstances
3172  * @extradatasize: extra data to allocate (with alignment guarantees
3173  *                 of struct @spi_transfer)
3174  * @gfp:           gfp flags
3175  *
3176  * Returns: pointer to @spi_replaced_transfers,
3177  *          PTR_ERR(...) in case of errors.
3178  */
3179 static struct spi_replaced_transfers *spi_replace_transfers(
3180 	struct spi_message *msg,
3181 	struct spi_transfer *xfer_first,
3182 	size_t remove,
3183 	size_t insert,
3184 	spi_replaced_release_t release,
3185 	size_t extradatasize,
3186 	gfp_t gfp)
3187 {
3188 	struct spi_replaced_transfers *rxfer;
3189 	struct spi_transfer *xfer;
3190 	size_t i;
3191 
3192 	/* allocate the structure using spi_res */
3193 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3194 			      struct_size(rxfer, inserted_transfers, insert)
3195 			      + extradatasize,
3196 			      gfp);
3197 	if (!rxfer)
3198 		return ERR_PTR(-ENOMEM);
3199 
3200 	/* the release code to invoke before running the generic release */
3201 	rxfer->release = release;
3202 
3203 	/* assign extradata */
3204 	if (extradatasize)
3205 		rxfer->extradata =
3206 			&rxfer->inserted_transfers[insert];
3207 
3208 	/* init the replaced_transfers list */
3209 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3210 
3211 	/*
3212 	 * Assign the list_entry after which we should reinsert
3213 	 * the @replaced_transfers - it may be spi_message.messages!
3214 	 */
3215 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3216 
3217 	/* remove the requested number of transfers */
3218 	for (i = 0; i < remove; i++) {
3219 		/*
3220 		 * If the entry after replaced_after it is msg->transfers
3221 		 * then we have been requested to remove more transfers
3222 		 * than are in the list.
3223 		 */
3224 		if (rxfer->replaced_after->next == &msg->transfers) {
3225 			dev_err(&msg->spi->dev,
3226 				"requested to remove more spi_transfers than are available\n");
3227 			/* insert replaced transfers back into the message */
3228 			list_splice(&rxfer->replaced_transfers,
3229 				    rxfer->replaced_after);
3230 
3231 			/* free the spi_replace_transfer structure */
3232 			spi_res_free(rxfer);
3233 
3234 			/* and return with an error */
3235 			return ERR_PTR(-EINVAL);
3236 		}
3237 
3238 		/*
3239 		 * Remove the entry after replaced_after from list of
3240 		 * transfers and add it to list of replaced_transfers.
3241 		 */
3242 		list_move_tail(rxfer->replaced_after->next,
3243 			       &rxfer->replaced_transfers);
3244 	}
3245 
3246 	/*
3247 	 * Create copy of the given xfer with identical settings
3248 	 * based on the first transfer to get removed.
3249 	 */
3250 	for (i = 0; i < insert; i++) {
3251 		/* we need to run in reverse order */
3252 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3253 
3254 		/* copy all spi_transfer data */
3255 		memcpy(xfer, xfer_first, sizeof(*xfer));
3256 
3257 		/* add to list */
3258 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3259 
3260 		/* clear cs_change and delay for all but the last */
3261 		if (i) {
3262 			xfer->cs_change = false;
3263 			xfer->delay.value = 0;
3264 		}
3265 	}
3266 
3267 	/* set up inserted */
3268 	rxfer->inserted = insert;
3269 
3270 	/* and register it with spi_res/spi_message */
3271 	spi_res_add(msg, rxfer);
3272 
3273 	return rxfer;
3274 }
3275 
3276 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3277 					struct spi_message *msg,
3278 					struct spi_transfer **xferp,
3279 					size_t maxsize,
3280 					gfp_t gfp)
3281 {
3282 	struct spi_transfer *xfer = *xferp, *xfers;
3283 	struct spi_replaced_transfers *srt;
3284 	size_t offset;
3285 	size_t count, i;
3286 
3287 	/* calculate how many we have to replace */
3288 	count = DIV_ROUND_UP(xfer->len, maxsize);
3289 
3290 	/* create replacement */
3291 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3292 	if (IS_ERR(srt))
3293 		return PTR_ERR(srt);
3294 	xfers = srt->inserted_transfers;
3295 
3296 	/*
3297 	 * Now handle each of those newly inserted spi_transfers.
3298 	 * Note that the replacements spi_transfers all are preset
3299 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3300 	 * are all identical (as well as most others)
3301 	 * so we just have to fix up len and the pointers.
3302 	 *
3303 	 * This also includes support for the depreciated
3304 	 * spi_message.is_dma_mapped interface.
3305 	 */
3306 
3307 	/*
3308 	 * The first transfer just needs the length modified, so we
3309 	 * run it outside the loop.
3310 	 */
3311 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3312 
3313 	/* all the others need rx_buf/tx_buf also set */
3314 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3315 		/* update rx_buf, tx_buf and dma */
3316 		if (xfers[i].rx_buf)
3317 			xfers[i].rx_buf += offset;
3318 		if (xfers[i].rx_dma)
3319 			xfers[i].rx_dma += offset;
3320 		if (xfers[i].tx_buf)
3321 			xfers[i].tx_buf += offset;
3322 		if (xfers[i].tx_dma)
3323 			xfers[i].tx_dma += offset;
3324 
3325 		/* update length */
3326 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3327 	}
3328 
3329 	/*
3330 	 * We set up xferp to the last entry we have inserted,
3331 	 * so that we skip those already split transfers.
3332 	 */
3333 	*xferp = &xfers[count - 1];
3334 
3335 	/* increment statistics counters */
3336 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3337 				       transfers_split_maxsize);
3338 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3339 				       transfers_split_maxsize);
3340 
3341 	return 0;
3342 }
3343 
3344 /**
3345  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3346  *                               when an individual transfer exceeds a
3347  *                               certain size
3348  * @ctlr:    the @spi_controller for this transfer
3349  * @msg:   the @spi_message to transform
3350  * @maxsize:  the maximum when to apply this
3351  * @gfp: GFP allocation flags
3352  *
3353  * Return: status of transformation
3354  */
3355 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3356 				struct spi_message *msg,
3357 				size_t maxsize,
3358 				gfp_t gfp)
3359 {
3360 	struct spi_transfer *xfer;
3361 	int ret;
3362 
3363 	/*
3364 	 * Iterate over the transfer_list,
3365 	 * but note that xfer is advanced to the last transfer inserted
3366 	 * to avoid checking sizes again unnecessarily (also xfer does
3367 	 * potentially belong to a different list by the time the
3368 	 * replacement has happened).
3369 	 */
3370 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3371 		if (xfer->len > maxsize) {
3372 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3373 							   maxsize, gfp);
3374 			if (ret)
3375 				return ret;
3376 		}
3377 	}
3378 
3379 	return 0;
3380 }
3381 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3382 
3383 /*-------------------------------------------------------------------------*/
3384 
3385 /* Core methods for SPI controller protocol drivers.  Some of the
3386  * other core methods are currently defined as inline functions.
3387  */
3388 
3389 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3390 					u8 bits_per_word)
3391 {
3392 	if (ctlr->bits_per_word_mask) {
3393 		/* Only 32 bits fit in the mask */
3394 		if (bits_per_word > 32)
3395 			return -EINVAL;
3396 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3397 			return -EINVAL;
3398 	}
3399 
3400 	return 0;
3401 }
3402 
3403 /**
3404  * spi_setup - setup SPI mode and clock rate
3405  * @spi: the device whose settings are being modified
3406  * Context: can sleep, and no requests are queued to the device
3407  *
3408  * SPI protocol drivers may need to update the transfer mode if the
3409  * device doesn't work with its default.  They may likewise need
3410  * to update clock rates or word sizes from initial values.  This function
3411  * changes those settings, and must be called from a context that can sleep.
3412  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3413  * effect the next time the device is selected and data is transferred to
3414  * or from it.  When this function returns, the spi device is deselected.
3415  *
3416  * Note that this call will fail if the protocol driver specifies an option
3417  * that the underlying controller or its driver does not support.  For
3418  * example, not all hardware supports wire transfers using nine bit words,
3419  * LSB-first wire encoding, or active-high chipselects.
3420  *
3421  * Return: zero on success, else a negative error code.
3422  */
3423 int spi_setup(struct spi_device *spi)
3424 {
3425 	unsigned	bad_bits, ugly_bits;
3426 	int		status;
3427 
3428 	/*
3429 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3430 	 * are set at the same time.
3431 	 */
3432 	if ((hweight_long(spi->mode &
3433 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3434 	    (hweight_long(spi->mode &
3435 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3436 		dev_err(&spi->dev,
3437 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3438 		return -EINVAL;
3439 	}
3440 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3441 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3442 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3443 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3444 		return -EINVAL;
3445 	/*
3446 	 * Help drivers fail *cleanly* when they need options
3447 	 * that aren't supported with their current controller.
3448 	 * SPI_CS_WORD has a fallback software implementation,
3449 	 * so it is ignored here.
3450 	 */
3451 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3452 				 SPI_NO_TX | SPI_NO_RX);
3453 	/*
3454 	 * Nothing prevents from working with active-high CS in case if it
3455 	 * is driven by GPIO.
3456 	 */
3457 	if (gpio_is_valid(spi->cs_gpio))
3458 		bad_bits &= ~SPI_CS_HIGH;
3459 	ugly_bits = bad_bits &
3460 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3461 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3462 	if (ugly_bits) {
3463 		dev_warn(&spi->dev,
3464 			 "setup: ignoring unsupported mode bits %x\n",
3465 			 ugly_bits);
3466 		spi->mode &= ~ugly_bits;
3467 		bad_bits &= ~ugly_bits;
3468 	}
3469 	if (bad_bits) {
3470 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3471 			bad_bits);
3472 		return -EINVAL;
3473 	}
3474 
3475 	if (!spi->bits_per_word)
3476 		spi->bits_per_word = 8;
3477 
3478 	status = __spi_validate_bits_per_word(spi->controller,
3479 					      spi->bits_per_word);
3480 	if (status)
3481 		return status;
3482 
3483 	if (spi->controller->max_speed_hz &&
3484 	    (!spi->max_speed_hz ||
3485 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3486 		spi->max_speed_hz = spi->controller->max_speed_hz;
3487 
3488 	mutex_lock(&spi->controller->io_mutex);
3489 
3490 	if (spi->controller->setup) {
3491 		status = spi->controller->setup(spi);
3492 		if (status) {
3493 			mutex_unlock(&spi->controller->io_mutex);
3494 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3495 				status);
3496 			return status;
3497 		}
3498 	}
3499 
3500 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3501 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3502 		if (status < 0) {
3503 			mutex_unlock(&spi->controller->io_mutex);
3504 			pm_runtime_put_noidle(spi->controller->dev.parent);
3505 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3506 				status);
3507 			return status;
3508 		}
3509 
3510 		/*
3511 		 * We do not want to return positive value from pm_runtime_get,
3512 		 * there are many instances of devices calling spi_setup() and
3513 		 * checking for a non-zero return value instead of a negative
3514 		 * return value.
3515 		 */
3516 		status = 0;
3517 
3518 		spi_set_cs(spi, false, true);
3519 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3520 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3521 	} else {
3522 		spi_set_cs(spi, false, true);
3523 	}
3524 
3525 	mutex_unlock(&spi->controller->io_mutex);
3526 
3527 	if (spi->rt && !spi->controller->rt) {
3528 		spi->controller->rt = true;
3529 		spi_set_thread_rt(spi->controller);
3530 	}
3531 
3532 	trace_spi_setup(spi, status);
3533 
3534 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3535 			spi->mode & SPI_MODE_X_MASK,
3536 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3537 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3538 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3539 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3540 			spi->bits_per_word, spi->max_speed_hz,
3541 			status);
3542 
3543 	return status;
3544 }
3545 EXPORT_SYMBOL_GPL(spi_setup);
3546 
3547 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3548 				       struct spi_device *spi)
3549 {
3550 	int delay1, delay2;
3551 
3552 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3553 	if (delay1 < 0)
3554 		return delay1;
3555 
3556 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3557 	if (delay2 < 0)
3558 		return delay2;
3559 
3560 	if (delay1 < delay2)
3561 		memcpy(&xfer->word_delay, &spi->word_delay,
3562 		       sizeof(xfer->word_delay));
3563 
3564 	return 0;
3565 }
3566 
3567 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3568 {
3569 	struct spi_controller *ctlr = spi->controller;
3570 	struct spi_transfer *xfer;
3571 	int w_size;
3572 
3573 	if (list_empty(&message->transfers))
3574 		return -EINVAL;
3575 
3576 	/*
3577 	 * If an SPI controller does not support toggling the CS line on each
3578 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3579 	 * for the CS line, we can emulate the CS-per-word hardware function by
3580 	 * splitting transfers into one-word transfers and ensuring that
3581 	 * cs_change is set for each transfer.
3582 	 */
3583 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3584 					  spi->cs_gpiod ||
3585 					  gpio_is_valid(spi->cs_gpio))) {
3586 		size_t maxsize;
3587 		int ret;
3588 
3589 		maxsize = (spi->bits_per_word + 7) / 8;
3590 
3591 		/* spi_split_transfers_maxsize() requires message->spi */
3592 		message->spi = spi;
3593 
3594 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3595 						  GFP_KERNEL);
3596 		if (ret)
3597 			return ret;
3598 
3599 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3600 			/* don't change cs_change on the last entry in the list */
3601 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3602 				break;
3603 			xfer->cs_change = 1;
3604 		}
3605 	}
3606 
3607 	/*
3608 	 * Half-duplex links include original MicroWire, and ones with
3609 	 * only one data pin like SPI_3WIRE (switches direction) or where
3610 	 * either MOSI or MISO is missing.  They can also be caused by
3611 	 * software limitations.
3612 	 */
3613 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3614 	    (spi->mode & SPI_3WIRE)) {
3615 		unsigned flags = ctlr->flags;
3616 
3617 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3618 			if (xfer->rx_buf && xfer->tx_buf)
3619 				return -EINVAL;
3620 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3621 				return -EINVAL;
3622 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3623 				return -EINVAL;
3624 		}
3625 	}
3626 
3627 	/*
3628 	 * Set transfer bits_per_word and max speed as spi device default if
3629 	 * it is not set for this transfer.
3630 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3631 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3632 	 * Ensure transfer word_delay is at least as long as that required by
3633 	 * device itself.
3634 	 */
3635 	message->frame_length = 0;
3636 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3637 		xfer->effective_speed_hz = 0;
3638 		message->frame_length += xfer->len;
3639 		if (!xfer->bits_per_word)
3640 			xfer->bits_per_word = spi->bits_per_word;
3641 
3642 		if (!xfer->speed_hz)
3643 			xfer->speed_hz = spi->max_speed_hz;
3644 
3645 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3646 			xfer->speed_hz = ctlr->max_speed_hz;
3647 
3648 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3649 			return -EINVAL;
3650 
3651 		/*
3652 		 * SPI transfer length should be multiple of SPI word size
3653 		 * where SPI word size should be power-of-two multiple.
3654 		 */
3655 		if (xfer->bits_per_word <= 8)
3656 			w_size = 1;
3657 		else if (xfer->bits_per_word <= 16)
3658 			w_size = 2;
3659 		else
3660 			w_size = 4;
3661 
3662 		/* No partial transfers accepted */
3663 		if (xfer->len % w_size)
3664 			return -EINVAL;
3665 
3666 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3667 		    xfer->speed_hz < ctlr->min_speed_hz)
3668 			return -EINVAL;
3669 
3670 		if (xfer->tx_buf && !xfer->tx_nbits)
3671 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3672 		if (xfer->rx_buf && !xfer->rx_nbits)
3673 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3674 		/*
3675 		 * Check transfer tx/rx_nbits:
3676 		 * 1. check the value matches one of single, dual and quad
3677 		 * 2. check tx/rx_nbits match the mode in spi_device
3678 		 */
3679 		if (xfer->tx_buf) {
3680 			if (spi->mode & SPI_NO_TX)
3681 				return -EINVAL;
3682 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3683 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3684 				xfer->tx_nbits != SPI_NBITS_QUAD)
3685 				return -EINVAL;
3686 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3687 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3688 				return -EINVAL;
3689 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3690 				!(spi->mode & SPI_TX_QUAD))
3691 				return -EINVAL;
3692 		}
3693 		/* check transfer rx_nbits */
3694 		if (xfer->rx_buf) {
3695 			if (spi->mode & SPI_NO_RX)
3696 				return -EINVAL;
3697 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3698 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3699 				xfer->rx_nbits != SPI_NBITS_QUAD)
3700 				return -EINVAL;
3701 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3702 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3703 				return -EINVAL;
3704 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3705 				!(spi->mode & SPI_RX_QUAD))
3706 				return -EINVAL;
3707 		}
3708 
3709 		if (_spi_xfer_word_delay_update(xfer, spi))
3710 			return -EINVAL;
3711 	}
3712 
3713 	message->status = -EINPROGRESS;
3714 
3715 	return 0;
3716 }
3717 
3718 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3719 {
3720 	struct spi_controller *ctlr = spi->controller;
3721 	struct spi_transfer *xfer;
3722 
3723 	/*
3724 	 * Some controllers do not support doing regular SPI transfers. Return
3725 	 * ENOTSUPP when this is the case.
3726 	 */
3727 	if (!ctlr->transfer)
3728 		return -ENOTSUPP;
3729 
3730 	message->spi = spi;
3731 
3732 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3733 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3734 
3735 	trace_spi_message_submit(message);
3736 
3737 	if (!ctlr->ptp_sts_supported) {
3738 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3739 			xfer->ptp_sts_word_pre = 0;
3740 			ptp_read_system_prets(xfer->ptp_sts);
3741 		}
3742 	}
3743 
3744 	return ctlr->transfer(spi, message);
3745 }
3746 
3747 /**
3748  * spi_async - asynchronous SPI transfer
3749  * @spi: device with which data will be exchanged
3750  * @message: describes the data transfers, including completion callback
3751  * Context: any (irqs may be blocked, etc)
3752  *
3753  * This call may be used in_irq and other contexts which can't sleep,
3754  * as well as from task contexts which can sleep.
3755  *
3756  * The completion callback is invoked in a context which can't sleep.
3757  * Before that invocation, the value of message->status is undefined.
3758  * When the callback is issued, message->status holds either zero (to
3759  * indicate complete success) or a negative error code.  After that
3760  * callback returns, the driver which issued the transfer request may
3761  * deallocate the associated memory; it's no longer in use by any SPI
3762  * core or controller driver code.
3763  *
3764  * Note that although all messages to a spi_device are handled in
3765  * FIFO order, messages may go to different devices in other orders.
3766  * Some device might be higher priority, or have various "hard" access
3767  * time requirements, for example.
3768  *
3769  * On detection of any fault during the transfer, processing of
3770  * the entire message is aborted, and the device is deselected.
3771  * Until returning from the associated message completion callback,
3772  * no other spi_message queued to that device will be processed.
3773  * (This rule applies equally to all the synchronous transfer calls,
3774  * which are wrappers around this core asynchronous primitive.)
3775  *
3776  * Return: zero on success, else a negative error code.
3777  */
3778 int spi_async(struct spi_device *spi, struct spi_message *message)
3779 {
3780 	struct spi_controller *ctlr = spi->controller;
3781 	int ret;
3782 	unsigned long flags;
3783 
3784 	ret = __spi_validate(spi, message);
3785 	if (ret != 0)
3786 		return ret;
3787 
3788 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3789 
3790 	if (ctlr->bus_lock_flag)
3791 		ret = -EBUSY;
3792 	else
3793 		ret = __spi_async(spi, message);
3794 
3795 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3796 
3797 	return ret;
3798 }
3799 EXPORT_SYMBOL_GPL(spi_async);
3800 
3801 /**
3802  * spi_async_locked - version of spi_async with exclusive bus usage
3803  * @spi: device with which data will be exchanged
3804  * @message: describes the data transfers, including completion callback
3805  * Context: any (irqs may be blocked, etc)
3806  *
3807  * This call may be used in_irq and other contexts which can't sleep,
3808  * as well as from task contexts which can sleep.
3809  *
3810  * The completion callback is invoked in a context which can't sleep.
3811  * Before that invocation, the value of message->status is undefined.
3812  * When the callback is issued, message->status holds either zero (to
3813  * indicate complete success) or a negative error code.  After that
3814  * callback returns, the driver which issued the transfer request may
3815  * deallocate the associated memory; it's no longer in use by any SPI
3816  * core or controller driver code.
3817  *
3818  * Note that although all messages to a spi_device are handled in
3819  * FIFO order, messages may go to different devices in other orders.
3820  * Some device might be higher priority, or have various "hard" access
3821  * time requirements, for example.
3822  *
3823  * On detection of any fault during the transfer, processing of
3824  * the entire message is aborted, and the device is deselected.
3825  * Until returning from the associated message completion callback,
3826  * no other spi_message queued to that device will be processed.
3827  * (This rule applies equally to all the synchronous transfer calls,
3828  * which are wrappers around this core asynchronous primitive.)
3829  *
3830  * Return: zero on success, else a negative error code.
3831  */
3832 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3833 {
3834 	struct spi_controller *ctlr = spi->controller;
3835 	int ret;
3836 	unsigned long flags;
3837 
3838 	ret = __spi_validate(spi, message);
3839 	if (ret != 0)
3840 		return ret;
3841 
3842 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3843 
3844 	ret = __spi_async(spi, message);
3845 
3846 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3847 
3848 	return ret;
3849 
3850 }
3851 
3852 /*-------------------------------------------------------------------------*/
3853 
3854 /*
3855  * Utility methods for SPI protocol drivers, layered on
3856  * top of the core.  Some other utility methods are defined as
3857  * inline functions.
3858  */
3859 
3860 static void spi_complete(void *arg)
3861 {
3862 	complete(arg);
3863 }
3864 
3865 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3866 {
3867 	DECLARE_COMPLETION_ONSTACK(done);
3868 	int status;
3869 	struct spi_controller *ctlr = spi->controller;
3870 	unsigned long flags;
3871 
3872 	status = __spi_validate(spi, message);
3873 	if (status != 0)
3874 		return status;
3875 
3876 	message->complete = spi_complete;
3877 	message->context = &done;
3878 	message->spi = spi;
3879 
3880 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3881 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3882 
3883 	/*
3884 	 * If we're not using the legacy transfer method then we will
3885 	 * try to transfer in the calling context so special case.
3886 	 * This code would be less tricky if we could remove the
3887 	 * support for driver implemented message queues.
3888 	 */
3889 	if (ctlr->transfer == spi_queued_transfer) {
3890 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3891 
3892 		trace_spi_message_submit(message);
3893 
3894 		status = __spi_queued_transfer(spi, message, false);
3895 
3896 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3897 	} else {
3898 		status = spi_async_locked(spi, message);
3899 	}
3900 
3901 	if (status == 0) {
3902 		/* Push out the messages in the calling context if we can */
3903 		if (ctlr->transfer == spi_queued_transfer) {
3904 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3905 						       spi_sync_immediate);
3906 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3907 						       spi_sync_immediate);
3908 			__spi_pump_messages(ctlr, false);
3909 		}
3910 
3911 		wait_for_completion(&done);
3912 		status = message->status;
3913 	}
3914 	message->context = NULL;
3915 	return status;
3916 }
3917 
3918 /**
3919  * spi_sync - blocking/synchronous SPI data transfers
3920  * @spi: device with which data will be exchanged
3921  * @message: describes the data transfers
3922  * Context: can sleep
3923  *
3924  * This call may only be used from a context that may sleep.  The sleep
3925  * is non-interruptible, and has no timeout.  Low-overhead controller
3926  * drivers may DMA directly into and out of the message buffers.
3927  *
3928  * Note that the SPI device's chip select is active during the message,
3929  * and then is normally disabled between messages.  Drivers for some
3930  * frequently-used devices may want to minimize costs of selecting a chip,
3931  * by leaving it selected in anticipation that the next message will go
3932  * to the same chip.  (That may increase power usage.)
3933  *
3934  * Also, the caller is guaranteeing that the memory associated with the
3935  * message will not be freed before this call returns.
3936  *
3937  * Return: zero on success, else a negative error code.
3938  */
3939 int spi_sync(struct spi_device *spi, struct spi_message *message)
3940 {
3941 	int ret;
3942 
3943 	mutex_lock(&spi->controller->bus_lock_mutex);
3944 	ret = __spi_sync(spi, message);
3945 	mutex_unlock(&spi->controller->bus_lock_mutex);
3946 
3947 	return ret;
3948 }
3949 EXPORT_SYMBOL_GPL(spi_sync);
3950 
3951 /**
3952  * spi_sync_locked - version of spi_sync with exclusive bus usage
3953  * @spi: device with which data will be exchanged
3954  * @message: describes the data transfers
3955  * Context: can sleep
3956  *
3957  * This call may only be used from a context that may sleep.  The sleep
3958  * is non-interruptible, and has no timeout.  Low-overhead controller
3959  * drivers may DMA directly into and out of the message buffers.
3960  *
3961  * This call should be used by drivers that require exclusive access to the
3962  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3963  * be released by a spi_bus_unlock call when the exclusive access is over.
3964  *
3965  * Return: zero on success, else a negative error code.
3966  */
3967 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3968 {
3969 	return __spi_sync(spi, message);
3970 }
3971 EXPORT_SYMBOL_GPL(spi_sync_locked);
3972 
3973 /**
3974  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3975  * @ctlr: SPI bus master that should be locked for exclusive bus access
3976  * Context: can sleep
3977  *
3978  * This call may only be used from a context that may sleep.  The sleep
3979  * is non-interruptible, and has no timeout.
3980  *
3981  * This call should be used by drivers that require exclusive access to the
3982  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3983  * exclusive access is over. Data transfer must be done by spi_sync_locked
3984  * and spi_async_locked calls when the SPI bus lock is held.
3985  *
3986  * Return: always zero.
3987  */
3988 int spi_bus_lock(struct spi_controller *ctlr)
3989 {
3990 	unsigned long flags;
3991 
3992 	mutex_lock(&ctlr->bus_lock_mutex);
3993 
3994 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3995 	ctlr->bus_lock_flag = 1;
3996 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3997 
3998 	/* mutex remains locked until spi_bus_unlock is called */
3999 
4000 	return 0;
4001 }
4002 EXPORT_SYMBOL_GPL(spi_bus_lock);
4003 
4004 /**
4005  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4006  * @ctlr: SPI bus master that was locked for exclusive bus access
4007  * Context: can sleep
4008  *
4009  * This call may only be used from a context that may sleep.  The sleep
4010  * is non-interruptible, and has no timeout.
4011  *
4012  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4013  * call.
4014  *
4015  * Return: always zero.
4016  */
4017 int spi_bus_unlock(struct spi_controller *ctlr)
4018 {
4019 	ctlr->bus_lock_flag = 0;
4020 
4021 	mutex_unlock(&ctlr->bus_lock_mutex);
4022 
4023 	return 0;
4024 }
4025 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4026 
4027 /* portable code must never pass more than 32 bytes */
4028 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4029 
4030 static u8	*buf;
4031 
4032 /**
4033  * spi_write_then_read - SPI synchronous write followed by read
4034  * @spi: device with which data will be exchanged
4035  * @txbuf: data to be written (need not be dma-safe)
4036  * @n_tx: size of txbuf, in bytes
4037  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4038  * @n_rx: size of rxbuf, in bytes
4039  * Context: can sleep
4040  *
4041  * This performs a half duplex MicroWire style transaction with the
4042  * device, sending txbuf and then reading rxbuf.  The return value
4043  * is zero for success, else a negative errno status code.
4044  * This call may only be used from a context that may sleep.
4045  *
4046  * Parameters to this routine are always copied using a small buffer.
4047  * Performance-sensitive or bulk transfer code should instead use
4048  * spi_{async,sync}() calls with dma-safe buffers.
4049  *
4050  * Return: zero on success, else a negative error code.
4051  */
4052 int spi_write_then_read(struct spi_device *spi,
4053 		const void *txbuf, unsigned n_tx,
4054 		void *rxbuf, unsigned n_rx)
4055 {
4056 	static DEFINE_MUTEX(lock);
4057 
4058 	int			status;
4059 	struct spi_message	message;
4060 	struct spi_transfer	x[2];
4061 	u8			*local_buf;
4062 
4063 	/*
4064 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4065 	 * copying here, (as a pure convenience thing), but we can
4066 	 * keep heap costs out of the hot path unless someone else is
4067 	 * using the pre-allocated buffer or the transfer is too large.
4068 	 */
4069 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4070 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4071 				    GFP_KERNEL | GFP_DMA);
4072 		if (!local_buf)
4073 			return -ENOMEM;
4074 	} else {
4075 		local_buf = buf;
4076 	}
4077 
4078 	spi_message_init(&message);
4079 	memset(x, 0, sizeof(x));
4080 	if (n_tx) {
4081 		x[0].len = n_tx;
4082 		spi_message_add_tail(&x[0], &message);
4083 	}
4084 	if (n_rx) {
4085 		x[1].len = n_rx;
4086 		spi_message_add_tail(&x[1], &message);
4087 	}
4088 
4089 	memcpy(local_buf, txbuf, n_tx);
4090 	x[0].tx_buf = local_buf;
4091 	x[1].rx_buf = local_buf + n_tx;
4092 
4093 	/* do the i/o */
4094 	status = spi_sync(spi, &message);
4095 	if (status == 0)
4096 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4097 
4098 	if (x[0].tx_buf == buf)
4099 		mutex_unlock(&lock);
4100 	else
4101 		kfree(local_buf);
4102 
4103 	return status;
4104 }
4105 EXPORT_SYMBOL_GPL(spi_write_then_read);
4106 
4107 /*-------------------------------------------------------------------------*/
4108 
4109 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4110 /* must call put_device() when done with returned spi_device device */
4111 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4112 {
4113 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4114 
4115 	return dev ? to_spi_device(dev) : NULL;
4116 }
4117 
4118 /* the spi controllers are not using spi_bus, so we find it with another way */
4119 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4120 {
4121 	struct device *dev;
4122 
4123 	dev = class_find_device_by_of_node(&spi_master_class, node);
4124 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4125 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4126 	if (!dev)
4127 		return NULL;
4128 
4129 	/* reference got in class_find_device */
4130 	return container_of(dev, struct spi_controller, dev);
4131 }
4132 
4133 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4134 			 void *arg)
4135 {
4136 	struct of_reconfig_data *rd = arg;
4137 	struct spi_controller *ctlr;
4138 	struct spi_device *spi;
4139 
4140 	switch (of_reconfig_get_state_change(action, arg)) {
4141 	case OF_RECONFIG_CHANGE_ADD:
4142 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4143 		if (ctlr == NULL)
4144 			return NOTIFY_OK;	/* not for us */
4145 
4146 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4147 			put_device(&ctlr->dev);
4148 			return NOTIFY_OK;
4149 		}
4150 
4151 		spi = of_register_spi_device(ctlr, rd->dn);
4152 		put_device(&ctlr->dev);
4153 
4154 		if (IS_ERR(spi)) {
4155 			pr_err("%s: failed to create for '%pOF'\n",
4156 					__func__, rd->dn);
4157 			of_node_clear_flag(rd->dn, OF_POPULATED);
4158 			return notifier_from_errno(PTR_ERR(spi));
4159 		}
4160 		break;
4161 
4162 	case OF_RECONFIG_CHANGE_REMOVE:
4163 		/* already depopulated? */
4164 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4165 			return NOTIFY_OK;
4166 
4167 		/* find our device by node */
4168 		spi = of_find_spi_device_by_node(rd->dn);
4169 		if (spi == NULL)
4170 			return NOTIFY_OK;	/* no? not meant for us */
4171 
4172 		/* unregister takes one ref away */
4173 		spi_unregister_device(spi);
4174 
4175 		/* and put the reference of the find */
4176 		put_device(&spi->dev);
4177 		break;
4178 	}
4179 
4180 	return NOTIFY_OK;
4181 }
4182 
4183 static struct notifier_block spi_of_notifier = {
4184 	.notifier_call = of_spi_notify,
4185 };
4186 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4187 extern struct notifier_block spi_of_notifier;
4188 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4189 
4190 #if IS_ENABLED(CONFIG_ACPI)
4191 static int spi_acpi_controller_match(struct device *dev, const void *data)
4192 {
4193 	return ACPI_COMPANION(dev->parent) == data;
4194 }
4195 
4196 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4197 {
4198 	struct device *dev;
4199 
4200 	dev = class_find_device(&spi_master_class, NULL, adev,
4201 				spi_acpi_controller_match);
4202 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4203 		dev = class_find_device(&spi_slave_class, NULL, adev,
4204 					spi_acpi_controller_match);
4205 	if (!dev)
4206 		return NULL;
4207 
4208 	return container_of(dev, struct spi_controller, dev);
4209 }
4210 
4211 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4212 {
4213 	struct device *dev;
4214 
4215 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4216 	return to_spi_device(dev);
4217 }
4218 
4219 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4220 			   void *arg)
4221 {
4222 	struct acpi_device *adev = arg;
4223 	struct spi_controller *ctlr;
4224 	struct spi_device *spi;
4225 
4226 	switch (value) {
4227 	case ACPI_RECONFIG_DEVICE_ADD:
4228 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4229 		if (!ctlr)
4230 			break;
4231 
4232 		acpi_register_spi_device(ctlr, adev);
4233 		put_device(&ctlr->dev);
4234 		break;
4235 	case ACPI_RECONFIG_DEVICE_REMOVE:
4236 		if (!acpi_device_enumerated(adev))
4237 			break;
4238 
4239 		spi = acpi_spi_find_device_by_adev(adev);
4240 		if (!spi)
4241 			break;
4242 
4243 		spi_unregister_device(spi);
4244 		put_device(&spi->dev);
4245 		break;
4246 	}
4247 
4248 	return NOTIFY_OK;
4249 }
4250 
4251 static struct notifier_block spi_acpi_notifier = {
4252 	.notifier_call = acpi_spi_notify,
4253 };
4254 #else
4255 extern struct notifier_block spi_acpi_notifier;
4256 #endif
4257 
4258 static int __init spi_init(void)
4259 {
4260 	int	status;
4261 
4262 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4263 	if (!buf) {
4264 		status = -ENOMEM;
4265 		goto err0;
4266 	}
4267 
4268 	status = bus_register(&spi_bus_type);
4269 	if (status < 0)
4270 		goto err1;
4271 
4272 	status = class_register(&spi_master_class);
4273 	if (status < 0)
4274 		goto err2;
4275 
4276 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4277 		status = class_register(&spi_slave_class);
4278 		if (status < 0)
4279 			goto err3;
4280 	}
4281 
4282 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4283 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4284 	if (IS_ENABLED(CONFIG_ACPI))
4285 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4286 
4287 	return 0;
4288 
4289 err3:
4290 	class_unregister(&spi_master_class);
4291 err2:
4292 	bus_unregister(&spi_bus_type);
4293 err1:
4294 	kfree(buf);
4295 	buf = NULL;
4296 err0:
4297 	return status;
4298 }
4299 
4300 /*
4301  * A board_info is normally registered in arch_initcall(),
4302  * but even essential drivers wait till later.
4303  *
4304  * REVISIT only boardinfo really needs static linking. The rest (device and
4305  * driver registration) _could_ be dynamically linked (modular) ... Costs
4306  * include needing to have boardinfo data structures be much more public.
4307  */
4308 postcore_initcall(spi_init);
4309