1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/offload/types.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi-mem.h> 37 #include <uapi/linux/sched/types.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/spi.h> 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 43 44 #include "internals.h" 45 46 static DEFINE_IDR(spi_controller_idr); 47 48 static void spidev_release(struct device *dev) 49 { 50 struct spi_device *spi = to_spi_device(dev); 51 52 spi_controller_put(spi->controller); 53 kfree(spi->driver_override); 54 free_percpu(spi->pcpu_statistics); 55 kfree(spi); 56 } 57 58 static ssize_t 59 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 60 { 61 const struct spi_device *spi = to_spi_device(dev); 62 int len; 63 64 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 65 if (len != -ENODEV) 66 return len; 67 68 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 69 } 70 static DEVICE_ATTR_RO(modalias); 71 72 static ssize_t driver_override_store(struct device *dev, 73 struct device_attribute *a, 74 const char *buf, size_t count) 75 { 76 struct spi_device *spi = to_spi_device(dev); 77 int ret; 78 79 ret = driver_set_override(dev, &spi->driver_override, buf, count); 80 if (ret) 81 return ret; 82 83 return count; 84 } 85 86 static ssize_t driver_override_show(struct device *dev, 87 struct device_attribute *a, char *buf) 88 { 89 const struct spi_device *spi = to_spi_device(dev); 90 ssize_t len; 91 92 device_lock(dev); 93 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 94 device_unlock(dev); 95 return len; 96 } 97 static DEVICE_ATTR_RW(driver_override); 98 99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 100 { 101 struct spi_statistics __percpu *pcpu_stats; 102 103 if (dev) 104 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 105 else 106 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 107 108 if (pcpu_stats) { 109 int cpu; 110 111 for_each_possible_cpu(cpu) { 112 struct spi_statistics *stat; 113 114 stat = per_cpu_ptr(pcpu_stats, cpu); 115 u64_stats_init(&stat->syncp); 116 } 117 } 118 return pcpu_stats; 119 } 120 121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 122 char *buf, size_t offset) 123 { 124 u64 val = 0; 125 int i; 126 127 for_each_possible_cpu(i) { 128 const struct spi_statistics *pcpu_stats; 129 u64_stats_t *field; 130 unsigned int start; 131 u64 inc; 132 133 pcpu_stats = per_cpu_ptr(stat, i); 134 field = (void *)pcpu_stats + offset; 135 do { 136 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 137 inc = u64_stats_read(field); 138 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 139 val += inc; 140 } 141 return sysfs_emit(buf, "%llu\n", val); 142 } 143 144 #define SPI_STATISTICS_ATTRS(field, file) \ 145 static ssize_t spi_controller_##field##_show(struct device *dev, \ 146 struct device_attribute *attr, \ 147 char *buf) \ 148 { \ 149 struct spi_controller *ctlr = container_of(dev, \ 150 struct spi_controller, dev); \ 151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 152 } \ 153 static struct device_attribute dev_attr_spi_controller_##field = { \ 154 .attr = { .name = file, .mode = 0444 }, \ 155 .show = spi_controller_##field##_show, \ 156 }; \ 157 static ssize_t spi_device_##field##_show(struct device *dev, \ 158 struct device_attribute *attr, \ 159 char *buf) \ 160 { \ 161 struct spi_device *spi = to_spi_device(dev); \ 162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 163 } \ 164 static struct device_attribute dev_attr_spi_device_##field = { \ 165 .attr = { .name = file, .mode = 0444 }, \ 166 .show = spi_device_##field##_show, \ 167 } 168 169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 171 char *buf) \ 172 { \ 173 return spi_emit_pcpu_stats(stat, buf, \ 174 offsetof(struct spi_statistics, field)); \ 175 } \ 176 SPI_STATISTICS_ATTRS(name, file) 177 178 #define SPI_STATISTICS_SHOW(field) \ 179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 180 field) 181 182 SPI_STATISTICS_SHOW(messages); 183 SPI_STATISTICS_SHOW(transfers); 184 SPI_STATISTICS_SHOW(errors); 185 SPI_STATISTICS_SHOW(timedout); 186 187 SPI_STATISTICS_SHOW(spi_sync); 188 SPI_STATISTICS_SHOW(spi_sync_immediate); 189 SPI_STATISTICS_SHOW(spi_async); 190 191 SPI_STATISTICS_SHOW(bytes); 192 SPI_STATISTICS_SHOW(bytes_rx); 193 SPI_STATISTICS_SHOW(bytes_tx); 194 195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 197 "transfer_bytes_histo_" number, \ 198 transfer_bytes_histo[index]) 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 216 217 SPI_STATISTICS_SHOW(transfers_split_maxsize); 218 219 static struct attribute *spi_dev_attrs[] = { 220 &dev_attr_modalias.attr, 221 &dev_attr_driver_override.attr, 222 NULL, 223 }; 224 225 static const struct attribute_group spi_dev_group = { 226 .attrs = spi_dev_attrs, 227 }; 228 229 static struct attribute *spi_device_statistics_attrs[] = { 230 &dev_attr_spi_device_messages.attr, 231 &dev_attr_spi_device_transfers.attr, 232 &dev_attr_spi_device_errors.attr, 233 &dev_attr_spi_device_timedout.attr, 234 &dev_attr_spi_device_spi_sync.attr, 235 &dev_attr_spi_device_spi_sync_immediate.attr, 236 &dev_attr_spi_device_spi_async.attr, 237 &dev_attr_spi_device_bytes.attr, 238 &dev_attr_spi_device_bytes_rx.attr, 239 &dev_attr_spi_device_bytes_tx.attr, 240 &dev_attr_spi_device_transfer_bytes_histo0.attr, 241 &dev_attr_spi_device_transfer_bytes_histo1.attr, 242 &dev_attr_spi_device_transfer_bytes_histo2.attr, 243 &dev_attr_spi_device_transfer_bytes_histo3.attr, 244 &dev_attr_spi_device_transfer_bytes_histo4.attr, 245 &dev_attr_spi_device_transfer_bytes_histo5.attr, 246 &dev_attr_spi_device_transfer_bytes_histo6.attr, 247 &dev_attr_spi_device_transfer_bytes_histo7.attr, 248 &dev_attr_spi_device_transfer_bytes_histo8.attr, 249 &dev_attr_spi_device_transfer_bytes_histo9.attr, 250 &dev_attr_spi_device_transfer_bytes_histo10.attr, 251 &dev_attr_spi_device_transfer_bytes_histo11.attr, 252 &dev_attr_spi_device_transfer_bytes_histo12.attr, 253 &dev_attr_spi_device_transfer_bytes_histo13.attr, 254 &dev_attr_spi_device_transfer_bytes_histo14.attr, 255 &dev_attr_spi_device_transfer_bytes_histo15.attr, 256 &dev_attr_spi_device_transfer_bytes_histo16.attr, 257 &dev_attr_spi_device_transfers_split_maxsize.attr, 258 NULL, 259 }; 260 261 static const struct attribute_group spi_device_statistics_group = { 262 .name = "statistics", 263 .attrs = spi_device_statistics_attrs, 264 }; 265 266 static const struct attribute_group *spi_dev_groups[] = { 267 &spi_dev_group, 268 &spi_device_statistics_group, 269 NULL, 270 }; 271 272 static struct attribute *spi_controller_statistics_attrs[] = { 273 &dev_attr_spi_controller_messages.attr, 274 &dev_attr_spi_controller_transfers.attr, 275 &dev_attr_spi_controller_errors.attr, 276 &dev_attr_spi_controller_timedout.attr, 277 &dev_attr_spi_controller_spi_sync.attr, 278 &dev_attr_spi_controller_spi_sync_immediate.attr, 279 &dev_attr_spi_controller_spi_async.attr, 280 &dev_attr_spi_controller_bytes.attr, 281 &dev_attr_spi_controller_bytes_rx.attr, 282 &dev_attr_spi_controller_bytes_tx.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 299 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 300 &dev_attr_spi_controller_transfers_split_maxsize.attr, 301 NULL, 302 }; 303 304 static const struct attribute_group spi_controller_statistics_group = { 305 .name = "statistics", 306 .attrs = spi_controller_statistics_attrs, 307 }; 308 309 static const struct attribute_group *spi_controller_groups[] = { 310 &spi_controller_statistics_group, 311 NULL, 312 }; 313 314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 315 struct spi_transfer *xfer, 316 struct spi_message *msg) 317 { 318 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 319 struct spi_statistics *stats; 320 321 if (l2len < 0) 322 l2len = 0; 323 324 get_cpu(); 325 stats = this_cpu_ptr(pcpu_stats); 326 u64_stats_update_begin(&stats->syncp); 327 328 u64_stats_inc(&stats->transfers); 329 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 330 331 u64_stats_add(&stats->bytes, xfer->len); 332 if (spi_valid_txbuf(msg, xfer)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if (spi_valid_rxbuf(msg, xfer)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, const struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 struct fwnode_handle *fwnode = dev_fwnode(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (is_of_node(fwnode)) 422 spi->irq = of_irq_get(dev->of_node, 0); 423 else if (is_acpi_device_node(fwnode) && spi->irq < 0) 424 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0); 425 if (spi->irq == -EPROBE_DEFER) 426 return dev_err_probe(dev, spi->irq, "Failed to get irq\n"); 427 if (spi->irq < 0) 428 spi->irq = 0; 429 430 ret = dev_pm_domain_attach(dev, PD_FLAG_ATTACH_POWER_ON | 431 PD_FLAG_DETACH_POWER_OFF); 432 if (ret) 433 return ret; 434 435 if (sdrv->probe) 436 ret = sdrv->probe(spi); 437 438 return ret; 439 } 440 441 static void spi_remove(struct device *dev) 442 { 443 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 444 445 if (sdrv->remove) 446 sdrv->remove(to_spi_device(dev)); 447 } 448 449 static void spi_shutdown(struct device *dev) 450 { 451 if (dev->driver) { 452 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 453 454 if (sdrv->shutdown) 455 sdrv->shutdown(to_spi_device(dev)); 456 } 457 } 458 459 const struct bus_type spi_bus_type = { 460 .name = "spi", 461 .dev_groups = spi_dev_groups, 462 .match = spi_match_device, 463 .uevent = spi_uevent, 464 .probe = spi_probe, 465 .remove = spi_remove, 466 .shutdown = spi_shutdown, 467 }; 468 EXPORT_SYMBOL_GPL(spi_bus_type); 469 470 /** 471 * __spi_register_driver - register a SPI driver 472 * @owner: owner module of the driver to register 473 * @sdrv: the driver to register 474 * Context: can sleep 475 * 476 * Return: zero on success, else a negative error code. 477 */ 478 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 479 { 480 sdrv->driver.owner = owner; 481 sdrv->driver.bus = &spi_bus_type; 482 483 /* 484 * For Really Good Reasons we use spi: modaliases not of: 485 * modaliases for DT so module autoloading won't work if we 486 * don't have a spi_device_id as well as a compatible string. 487 */ 488 if (sdrv->driver.of_match_table) { 489 const struct of_device_id *of_id; 490 491 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 492 of_id++) { 493 const char *of_name; 494 495 /* Strip off any vendor prefix */ 496 of_name = strnchr(of_id->compatible, 497 sizeof(of_id->compatible), ','); 498 if (of_name) 499 of_name++; 500 else 501 of_name = of_id->compatible; 502 503 if (sdrv->id_table) { 504 const struct spi_device_id *spi_id; 505 506 spi_id = spi_match_id(sdrv->id_table, of_name); 507 if (spi_id) 508 continue; 509 } else { 510 if (strcmp(sdrv->driver.name, of_name) == 0) 511 continue; 512 } 513 514 pr_warn("SPI driver %s has no spi_device_id for %s\n", 515 sdrv->driver.name, of_id->compatible); 516 } 517 } 518 519 return driver_register(&sdrv->driver); 520 } 521 EXPORT_SYMBOL_GPL(__spi_register_driver); 522 523 /*-------------------------------------------------------------------------*/ 524 525 /* 526 * SPI devices should normally not be created by SPI device drivers; that 527 * would make them board-specific. Similarly with SPI controller drivers. 528 * Device registration normally goes into like arch/.../mach.../board-YYY.c 529 * with other readonly (flashable) information about mainboard devices. 530 */ 531 532 struct boardinfo { 533 struct list_head list; 534 struct spi_board_info board_info; 535 }; 536 537 static LIST_HEAD(board_list); 538 static LIST_HEAD(spi_controller_list); 539 540 /* 541 * Used to protect add/del operation for board_info list and 542 * spi_controller list, and their matching process also used 543 * to protect object of type struct idr. 544 */ 545 static DEFINE_MUTEX(board_lock); 546 547 /** 548 * spi_alloc_device - Allocate a new SPI device 549 * @ctlr: Controller to which device is connected 550 * Context: can sleep 551 * 552 * Allows a driver to allocate and initialize a spi_device without 553 * registering it immediately. This allows a driver to directly 554 * fill the spi_device with device parameters before calling 555 * spi_add_device() on it. 556 * 557 * Caller is responsible to call spi_add_device() on the returned 558 * spi_device structure to add it to the SPI controller. If the caller 559 * needs to discard the spi_device without adding it, then it should 560 * call spi_dev_put() on it. 561 * 562 * Return: a pointer to the new device, or NULL. 563 */ 564 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 565 { 566 struct spi_device *spi; 567 568 if (!spi_controller_get(ctlr)) 569 return NULL; 570 571 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 572 if (!spi) { 573 spi_controller_put(ctlr); 574 return NULL; 575 } 576 577 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 578 if (!spi->pcpu_statistics) { 579 kfree(spi); 580 spi_controller_put(ctlr); 581 return NULL; 582 } 583 584 spi->controller = ctlr; 585 spi->dev.parent = &ctlr->dev; 586 spi->dev.bus = &spi_bus_type; 587 spi->dev.release = spidev_release; 588 spi->mode = ctlr->buswidth_override_bits; 589 spi->num_chipselect = 1; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline int spi_dev_check_cs(struct device *dev, 627 struct spi_device *spi, u8 idx, 628 struct spi_device *new_spi, u8 new_idx) 629 { 630 u8 cs, cs_new; 631 u8 idx_new; 632 633 cs = spi_get_chipselect(spi, idx); 634 for (idx_new = new_idx; idx_new < new_spi->num_chipselect; idx_new++) { 635 cs_new = spi_get_chipselect(new_spi, idx_new); 636 if (cs == cs_new) { 637 dev_err(dev, "chipselect %u already in use\n", cs_new); 638 return -EBUSY; 639 } 640 } 641 return 0; 642 } 643 644 static int spi_dev_check(struct device *dev, void *data) 645 { 646 struct spi_device *spi = to_spi_device(dev); 647 struct spi_device *new_spi = data; 648 int status, idx; 649 650 if (spi->controller == new_spi->controller) { 651 for (idx = 0; idx < spi->num_chipselect; idx++) { 652 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 653 if (status) 654 return status; 655 } 656 } 657 return 0; 658 } 659 660 static void spi_cleanup(struct spi_device *spi) 661 { 662 if (spi->controller->cleanup) 663 spi->controller->cleanup(spi); 664 } 665 666 static int __spi_add_device(struct spi_device *spi) 667 { 668 struct spi_controller *ctlr = spi->controller; 669 struct device *dev = ctlr->dev.parent; 670 int status, idx; 671 u8 cs; 672 673 if (spi->num_chipselect > SPI_DEVICE_CS_CNT_MAX) { 674 dev_err(dev, "num_cs %d > max %d\n", spi->num_chipselect, 675 SPI_DEVICE_CS_CNT_MAX); 676 return -EOVERFLOW; 677 } 678 679 for (idx = 0; idx < spi->num_chipselect; idx++) { 680 /* Chipselects are numbered 0..max; validate. */ 681 cs = spi_get_chipselect(spi, idx); 682 if (cs >= ctlr->num_chipselect) { 683 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 684 ctlr->num_chipselect); 685 return -EINVAL; 686 } 687 } 688 689 /* 690 * Make sure that multiple logical CS doesn't map to the same physical CS. 691 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 692 */ 693 if (!spi_controller_is_target(ctlr)) { 694 for (idx = 0; idx < spi->num_chipselect; idx++) { 695 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 696 if (status) 697 return status; 698 } 699 } 700 701 /* Initialize unused logical CS as invalid */ 702 for (idx = spi->num_chipselect; idx < SPI_DEVICE_CS_CNT_MAX; idx++) 703 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 704 705 /* Set the bus ID string */ 706 spi_dev_set_name(spi); 707 708 /* 709 * We need to make sure there's no other device with this 710 * chipselect **BEFORE** we call setup(), else we'll trash 711 * its configuration. 712 */ 713 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 714 if (status) 715 return status; 716 717 /* Controller may unregister concurrently */ 718 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 719 !device_is_registered(&ctlr->dev)) { 720 return -ENODEV; 721 } 722 723 if (ctlr->cs_gpiods) { 724 u8 cs; 725 726 for (idx = 0; idx < spi->num_chipselect; idx++) { 727 cs = spi_get_chipselect(spi, idx); 728 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 729 } 730 } 731 732 /* 733 * Drivers may modify this initial i/o setup, but will 734 * normally rely on the device being setup. Devices 735 * using SPI_CS_HIGH can't coexist well otherwise... 736 */ 737 status = spi_setup(spi); 738 if (status < 0) { 739 dev_err(dev, "can't setup %s, status %d\n", 740 dev_name(&spi->dev), status); 741 return status; 742 } 743 744 /* Device may be bound to an active driver when this returns */ 745 status = device_add(&spi->dev); 746 if (status < 0) { 747 dev_err(dev, "can't add %s, status %d\n", 748 dev_name(&spi->dev), status); 749 spi_cleanup(spi); 750 } else { 751 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 752 } 753 754 return status; 755 } 756 757 /** 758 * spi_add_device - Add spi_device allocated with spi_alloc_device 759 * @spi: spi_device to register 760 * 761 * Companion function to spi_alloc_device. Devices allocated with 762 * spi_alloc_device can be added onto the SPI bus with this function. 763 * 764 * Return: 0 on success; negative errno on failure 765 */ 766 int spi_add_device(struct spi_device *spi) 767 { 768 struct spi_controller *ctlr = spi->controller; 769 int status; 770 771 /* Set the bus ID string */ 772 spi_dev_set_name(spi); 773 774 mutex_lock(&ctlr->add_lock); 775 status = __spi_add_device(spi); 776 mutex_unlock(&ctlr->add_lock); 777 return status; 778 } 779 EXPORT_SYMBOL_GPL(spi_add_device); 780 781 /** 782 * spi_new_device - instantiate one new SPI device 783 * @ctlr: Controller to which device is connected 784 * @chip: Describes the SPI device 785 * Context: can sleep 786 * 787 * On typical mainboards, this is purely internal; and it's not needed 788 * after board init creates the hard-wired devices. Some development 789 * platforms may not be able to use spi_register_board_info though, and 790 * this is exported so that for example a USB or parport based adapter 791 * driver could add devices (which it would learn about out-of-band). 792 * 793 * Return: the new device, or NULL. 794 */ 795 struct spi_device *spi_new_device(struct spi_controller *ctlr, 796 struct spi_board_info *chip) 797 { 798 struct spi_device *proxy; 799 int status; 800 801 /* 802 * NOTE: caller did any chip->bus_num checks necessary. 803 * 804 * Also, unless we change the return value convention to use 805 * error-or-pointer (not NULL-or-pointer), troubleshootability 806 * suggests syslogged diagnostics are best here (ugh). 807 */ 808 809 proxy = spi_alloc_device(ctlr); 810 if (!proxy) 811 return NULL; 812 813 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 814 815 /* Use provided chip-select for proxy device */ 816 spi_set_chipselect(proxy, 0, chip->chip_select); 817 818 proxy->max_speed_hz = chip->max_speed_hz; 819 proxy->mode = chip->mode; 820 proxy->irq = chip->irq; 821 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 822 proxy->dev.platform_data = (void *) chip->platform_data; 823 proxy->controller_data = chip->controller_data; 824 proxy->controller_state = NULL; 825 /* 826 * By default spi->chip_select[0] will hold the physical CS number, 827 * so set bit 0 in spi->cs_index_mask. 828 */ 829 proxy->cs_index_mask = BIT(0); 830 831 if (chip->swnode) { 832 status = device_add_software_node(&proxy->dev, chip->swnode); 833 if (status) { 834 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 835 chip->modalias, status); 836 goto err_dev_put; 837 } 838 } 839 840 status = spi_add_device(proxy); 841 if (status < 0) 842 goto err_dev_put; 843 844 return proxy; 845 846 err_dev_put: 847 device_remove_software_node(&proxy->dev); 848 spi_dev_put(proxy); 849 return NULL; 850 } 851 EXPORT_SYMBOL_GPL(spi_new_device); 852 853 /** 854 * spi_unregister_device - unregister a single SPI device 855 * @spi: spi_device to unregister 856 * 857 * Start making the passed SPI device vanish. Normally this would be handled 858 * by spi_unregister_controller(). 859 */ 860 void spi_unregister_device(struct spi_device *spi) 861 { 862 struct fwnode_handle *fwnode; 863 864 if (!spi) 865 return; 866 867 fwnode = dev_fwnode(&spi->dev); 868 if (is_of_node(fwnode)) { 869 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED); 870 of_node_put(to_of_node(fwnode)); 871 } else if (is_acpi_device_node(fwnode)) { 872 acpi_device_clear_enumerated(to_acpi_device_node(fwnode)); 873 } 874 device_remove_software_node(&spi->dev); 875 device_del(&spi->dev); 876 spi_cleanup(spi); 877 put_device(&spi->dev); 878 } 879 EXPORT_SYMBOL_GPL(spi_unregister_device); 880 881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 882 struct spi_board_info *bi) 883 { 884 struct spi_device *dev; 885 886 if (ctlr->bus_num != bi->bus_num) 887 return; 888 889 dev = spi_new_device(ctlr, bi); 890 if (!dev) 891 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 892 bi->modalias); 893 } 894 895 /** 896 * spi_register_board_info - register SPI devices for a given board 897 * @info: array of chip descriptors 898 * @n: how many descriptors are provided 899 * Context: can sleep 900 * 901 * Board-specific early init code calls this (probably during arch_initcall) 902 * with segments of the SPI device table. Any device nodes are created later, 903 * after the relevant parent SPI controller (bus_num) is defined. We keep 904 * this table of devices forever, so that reloading a controller driver will 905 * not make Linux forget about these hard-wired devices. 906 * 907 * Other code can also call this, e.g. a particular add-on board might provide 908 * SPI devices through its expansion connector, so code initializing that board 909 * would naturally declare its SPI devices. 910 * 911 * The board info passed can safely be __initdata ... but be careful of 912 * any embedded pointers (platform_data, etc), they're copied as-is. 913 * 914 * Return: zero on success, else a negative error code. 915 */ 916 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 917 { 918 struct boardinfo *bi; 919 int i; 920 921 if (!n) 922 return 0; 923 924 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 925 if (!bi) 926 return -ENOMEM; 927 928 for (i = 0; i < n; i++, bi++, info++) { 929 struct spi_controller *ctlr; 930 931 memcpy(&bi->board_info, info, sizeof(*info)); 932 933 mutex_lock(&board_lock); 934 list_add_tail(&bi->list, &board_list); 935 list_for_each_entry(ctlr, &spi_controller_list, list) 936 spi_match_controller_to_boardinfo(ctlr, 937 &bi->board_info); 938 mutex_unlock(&board_lock); 939 } 940 941 return 0; 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 /* Core methods for SPI resource management */ 947 948 /** 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed 950 * during the processing of a spi_message while using 951 * spi_transfer_one 952 * @spi: the SPI device for which we allocate memory 953 * @release: the release code to execute for this resource 954 * @size: size to alloc and return 955 * @gfp: GFP allocation flags 956 * 957 * Return: the pointer to the allocated data 958 * 959 * This may get enhanced in the future to allocate from a memory pool 960 * of the @spi_device or @spi_controller to avoid repeated allocations. 961 */ 962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 963 size_t size, gfp_t gfp) 964 { 965 struct spi_res *sres; 966 967 sres = kzalloc(sizeof(*sres) + size, gfp); 968 if (!sres) 969 return NULL; 970 971 INIT_LIST_HEAD(&sres->entry); 972 sres->release = release; 973 974 return sres->data; 975 } 976 977 /** 978 * spi_res_free - free an SPI resource 979 * @res: pointer to the custom data of a resource 980 */ 981 static void spi_res_free(void *res) 982 { 983 struct spi_res *sres = container_of(res, struct spi_res, data); 984 985 WARN_ON(!list_empty(&sres->entry)); 986 kfree(sres); 987 } 988 989 /** 990 * spi_res_add - add a spi_res to the spi_message 991 * @message: the SPI message 992 * @res: the spi_resource 993 */ 994 static void spi_res_add(struct spi_message *message, void *res) 995 { 996 struct spi_res *sres = container_of(res, struct spi_res, data); 997 998 WARN_ON(!list_empty(&sres->entry)); 999 list_add_tail(&sres->entry, &message->resources); 1000 } 1001 1002 /** 1003 * spi_res_release - release all SPI resources for this message 1004 * @ctlr: the @spi_controller 1005 * @message: the @spi_message 1006 */ 1007 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1008 { 1009 struct spi_res *res, *tmp; 1010 1011 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1012 if (res->release) 1013 res->release(ctlr, message, res->data); 1014 1015 list_del(&res->entry); 1016 1017 kfree(res); 1018 } 1019 } 1020 1021 /*-------------------------------------------------------------------------*/ 1022 #define spi_for_each_valid_cs(spi, idx) \ 1023 for (idx = 0; idx < spi->num_chipselect; idx++) \ 1024 if (!(spi->cs_index_mask & BIT(idx))) {} else 1025 1026 static inline bool spi_is_last_cs(struct spi_device *spi) 1027 { 1028 u8 idx; 1029 bool last = false; 1030 1031 spi_for_each_valid_cs(spi, idx) { 1032 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1033 last = true; 1034 } 1035 return last; 1036 } 1037 1038 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1039 { 1040 /* 1041 * Historically ACPI has no means of the GPIO polarity and 1042 * thus the SPISerialBus() resource defines it on the per-chip 1043 * basis. In order to avoid a chain of negations, the GPIO 1044 * polarity is considered being Active High. Even for the cases 1045 * when _DSD() is involved (in the updated versions of ACPI) 1046 * the GPIO CS polarity must be defined Active High to avoid 1047 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1048 * into account. 1049 */ 1050 if (is_acpi_device_node(dev_fwnode(&spi->dev))) 1051 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1052 else 1053 /* Polarity handled by GPIO library */ 1054 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1055 1056 if (activate) 1057 spi_delay_exec(&spi->cs_setup, NULL); 1058 else 1059 spi_delay_exec(&spi->cs_inactive, NULL); 1060 } 1061 1062 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1063 { 1064 bool activate = enable; 1065 u8 idx; 1066 1067 /* 1068 * Avoid calling into the driver (or doing delays) if the chip select 1069 * isn't actually changing from the last time this was called. 1070 */ 1071 if (!force && (enable == spi_is_last_cs(spi)) && 1072 (spi->controller->last_cs_index_mask == spi->cs_index_mask) && 1073 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1074 return; 1075 1076 trace_spi_set_cs(spi, activate); 1077 1078 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1079 for (idx = 0; idx < SPI_DEVICE_CS_CNT_MAX; idx++) { 1080 if (enable && idx < spi->num_chipselect) 1081 spi->controller->last_cs[idx] = spi_get_chipselect(spi, 0); 1082 else 1083 spi->controller->last_cs[idx] = SPI_INVALID_CS; 1084 } 1085 1086 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1087 if (spi->controller->last_cs_mode_high) 1088 enable = !enable; 1089 1090 /* 1091 * Handle chip select delays for GPIO based CS or controllers without 1092 * programmable chip select timing. 1093 */ 1094 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1095 spi_delay_exec(&spi->cs_hold, NULL); 1096 1097 if (spi_is_csgpiod(spi)) { 1098 if (!(spi->mode & SPI_NO_CS)) { 1099 spi_for_each_valid_cs(spi, idx) { 1100 if (spi_get_csgpiod(spi, idx)) 1101 spi_toggle_csgpiod(spi, idx, enable, activate); 1102 } 1103 } 1104 /* Some SPI controllers need both GPIO CS & ->set_cs() */ 1105 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1106 spi->controller->set_cs) 1107 spi->controller->set_cs(spi, !enable); 1108 } else if (spi->controller->set_cs) { 1109 spi->controller->set_cs(spi, !enable); 1110 } 1111 1112 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1113 if (activate) 1114 spi_delay_exec(&spi->cs_setup, NULL); 1115 else 1116 spi_delay_exec(&spi->cs_inactive, NULL); 1117 } 1118 } 1119 1120 #ifdef CONFIG_HAS_DMA 1121 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1122 struct sg_table *sgt, void *buf, size_t len, 1123 enum dma_data_direction dir, unsigned long attrs) 1124 { 1125 const bool vmalloced_buf = is_vmalloc_addr(buf); 1126 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1127 #ifdef CONFIG_HIGHMEM 1128 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1129 (unsigned long)buf < (PKMAP_BASE + 1130 (LAST_PKMAP * PAGE_SIZE))); 1131 #else 1132 const bool kmap_buf = false; 1133 #endif 1134 int desc_len; 1135 int sgs; 1136 struct page *vm_page; 1137 struct scatterlist *sg; 1138 void *sg_buf; 1139 size_t min; 1140 int i, ret; 1141 1142 if (vmalloced_buf || kmap_buf) { 1143 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1144 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1145 } else if (virt_addr_valid(buf)) { 1146 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1147 sgs = DIV_ROUND_UP(len, desc_len); 1148 } else { 1149 return -EINVAL; 1150 } 1151 1152 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1153 if (ret != 0) 1154 return ret; 1155 1156 sg = &sgt->sgl[0]; 1157 for (i = 0; i < sgs; i++) { 1158 1159 if (vmalloced_buf || kmap_buf) { 1160 /* 1161 * Next scatterlist entry size is the minimum between 1162 * the desc_len and the remaining buffer length that 1163 * fits in a page. 1164 */ 1165 min = min_t(size_t, desc_len, 1166 min_t(size_t, len, 1167 PAGE_SIZE - offset_in_page(buf))); 1168 if (vmalloced_buf) 1169 vm_page = vmalloc_to_page(buf); 1170 else 1171 vm_page = kmap_to_page(buf); 1172 if (!vm_page) { 1173 sg_free_table(sgt); 1174 return -ENOMEM; 1175 } 1176 sg_set_page(sg, vm_page, 1177 min, offset_in_page(buf)); 1178 } else { 1179 min = min_t(size_t, len, desc_len); 1180 sg_buf = buf; 1181 sg_set_buf(sg, sg_buf, min); 1182 } 1183 1184 buf += min; 1185 len -= min; 1186 sg = sg_next(sg); 1187 } 1188 1189 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1190 if (ret < 0) { 1191 sg_free_table(sgt); 1192 return ret; 1193 } 1194 1195 return 0; 1196 } 1197 1198 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1199 struct sg_table *sgt, void *buf, size_t len, 1200 enum dma_data_direction dir) 1201 { 1202 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1203 } 1204 1205 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1206 struct device *dev, struct sg_table *sgt, 1207 enum dma_data_direction dir, 1208 unsigned long attrs) 1209 { 1210 dma_unmap_sgtable(dev, sgt, dir, attrs); 1211 sg_free_table(sgt); 1212 sgt->orig_nents = 0; 1213 sgt->nents = 0; 1214 } 1215 1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1217 struct sg_table *sgt, enum dma_data_direction dir) 1218 { 1219 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1220 } 1221 1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1223 { 1224 struct device *tx_dev, *rx_dev; 1225 struct spi_transfer *xfer; 1226 int ret; 1227 1228 if (!ctlr->can_dma) 1229 return 0; 1230 1231 if (ctlr->dma_tx) 1232 tx_dev = ctlr->dma_tx->device->dev; 1233 else if (ctlr->dma_map_dev) 1234 tx_dev = ctlr->dma_map_dev; 1235 else 1236 tx_dev = ctlr->dev.parent; 1237 1238 if (ctlr->dma_rx) 1239 rx_dev = ctlr->dma_rx->device->dev; 1240 else if (ctlr->dma_map_dev) 1241 rx_dev = ctlr->dma_map_dev; 1242 else 1243 rx_dev = ctlr->dev.parent; 1244 1245 ret = -ENOMSG; 1246 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1247 /* The sync is done before each transfer. */ 1248 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1249 1250 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1251 continue; 1252 1253 if (xfer->tx_buf != NULL) { 1254 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1255 (void *)xfer->tx_buf, 1256 xfer->len, DMA_TO_DEVICE, 1257 attrs); 1258 if (ret != 0) 1259 return ret; 1260 1261 xfer->tx_sg_mapped = true; 1262 } 1263 1264 if (xfer->rx_buf != NULL) { 1265 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1266 xfer->rx_buf, xfer->len, 1267 DMA_FROM_DEVICE, attrs); 1268 if (ret != 0) { 1269 spi_unmap_buf_attrs(ctlr, tx_dev, 1270 &xfer->tx_sg, DMA_TO_DEVICE, 1271 attrs); 1272 1273 return ret; 1274 } 1275 1276 xfer->rx_sg_mapped = true; 1277 } 1278 } 1279 /* No transfer has been mapped, bail out with success */ 1280 if (ret) 1281 return 0; 1282 1283 ctlr->cur_rx_dma_dev = rx_dev; 1284 ctlr->cur_tx_dma_dev = tx_dev; 1285 1286 return 0; 1287 } 1288 1289 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1290 { 1291 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1292 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1293 struct spi_transfer *xfer; 1294 1295 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1296 /* The sync has already been done after each transfer. */ 1297 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1298 1299 if (xfer->rx_sg_mapped) 1300 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1301 DMA_FROM_DEVICE, attrs); 1302 xfer->rx_sg_mapped = false; 1303 1304 if (xfer->tx_sg_mapped) 1305 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1306 DMA_TO_DEVICE, attrs); 1307 xfer->tx_sg_mapped = false; 1308 } 1309 1310 return 0; 1311 } 1312 1313 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1314 struct spi_transfer *xfer) 1315 { 1316 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1317 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1318 1319 if (xfer->tx_sg_mapped) 1320 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1321 if (xfer->rx_sg_mapped) 1322 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1323 } 1324 1325 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1326 struct spi_transfer *xfer) 1327 { 1328 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1329 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1330 1331 if (xfer->rx_sg_mapped) 1332 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1333 if (xfer->tx_sg_mapped) 1334 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1335 } 1336 #else /* !CONFIG_HAS_DMA */ 1337 static inline int __spi_map_msg(struct spi_controller *ctlr, 1338 struct spi_message *msg) 1339 { 1340 return 0; 1341 } 1342 1343 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1344 struct spi_message *msg) 1345 { 1346 return 0; 1347 } 1348 1349 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1350 struct spi_transfer *xfer) 1351 { 1352 } 1353 1354 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1355 struct spi_transfer *xfer) 1356 { 1357 } 1358 #endif /* !CONFIG_HAS_DMA */ 1359 1360 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1361 struct spi_message *msg) 1362 { 1363 struct spi_transfer *xfer; 1364 1365 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1366 /* 1367 * Restore the original value of tx_buf or rx_buf if they are 1368 * NULL. 1369 */ 1370 if (xfer->tx_buf == ctlr->dummy_tx) 1371 xfer->tx_buf = NULL; 1372 if (xfer->rx_buf == ctlr->dummy_rx) 1373 xfer->rx_buf = NULL; 1374 } 1375 1376 return __spi_unmap_msg(ctlr, msg); 1377 } 1378 1379 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1380 { 1381 struct spi_transfer *xfer; 1382 void *tmp; 1383 unsigned int max_tx, max_rx; 1384 1385 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1386 && !(msg->spi->mode & SPI_3WIRE)) { 1387 max_tx = 0; 1388 max_rx = 0; 1389 1390 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1391 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1392 !xfer->tx_buf) 1393 max_tx = max(xfer->len, max_tx); 1394 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1395 !xfer->rx_buf) 1396 max_rx = max(xfer->len, max_rx); 1397 } 1398 1399 if (max_tx) { 1400 tmp = krealloc(ctlr->dummy_tx, max_tx, 1401 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1402 if (!tmp) 1403 return -ENOMEM; 1404 ctlr->dummy_tx = tmp; 1405 } 1406 1407 if (max_rx) { 1408 tmp = krealloc(ctlr->dummy_rx, max_rx, 1409 GFP_KERNEL | GFP_DMA); 1410 if (!tmp) 1411 return -ENOMEM; 1412 ctlr->dummy_rx = tmp; 1413 } 1414 1415 if (max_tx || max_rx) { 1416 list_for_each_entry(xfer, &msg->transfers, 1417 transfer_list) { 1418 if (!xfer->len) 1419 continue; 1420 if (!xfer->tx_buf) 1421 xfer->tx_buf = ctlr->dummy_tx; 1422 if (!xfer->rx_buf) 1423 xfer->rx_buf = ctlr->dummy_rx; 1424 } 1425 } 1426 } 1427 1428 return __spi_map_msg(ctlr, msg); 1429 } 1430 1431 static int spi_transfer_wait(struct spi_controller *ctlr, 1432 struct spi_message *msg, 1433 struct spi_transfer *xfer) 1434 { 1435 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1436 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1437 u32 speed_hz = xfer->speed_hz; 1438 unsigned long long ms; 1439 1440 if (spi_controller_is_target(ctlr)) { 1441 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1442 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1443 return -EINTR; 1444 } 1445 } else { 1446 if (!speed_hz) 1447 speed_hz = 100000; 1448 1449 /* 1450 * For each byte we wait for 8 cycles of the SPI clock. 1451 * Since speed is defined in Hz and we want milliseconds, 1452 * use respective multiplier, but before the division, 1453 * otherwise we may get 0 for short transfers. 1454 */ 1455 ms = 8LL * MSEC_PER_SEC * xfer->len; 1456 do_div(ms, speed_hz); 1457 1458 /* 1459 * Increase it twice and add 200 ms tolerance, use 1460 * predefined maximum in case of overflow. 1461 */ 1462 ms += ms + 200; 1463 if (ms > UINT_MAX) 1464 ms = UINT_MAX; 1465 1466 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1467 msecs_to_jiffies(ms)); 1468 1469 if (ms == 0) { 1470 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1471 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1472 dev_err(&msg->spi->dev, 1473 "SPI transfer timed out\n"); 1474 return -ETIMEDOUT; 1475 } 1476 1477 if (xfer->error & SPI_TRANS_FAIL_IO) 1478 return -EIO; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static void _spi_transfer_delay_ns(u32 ns) 1485 { 1486 if (!ns) 1487 return; 1488 if (ns <= NSEC_PER_USEC) { 1489 ndelay(ns); 1490 } else { 1491 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1492 1493 fsleep(us); 1494 } 1495 } 1496 1497 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1498 { 1499 u32 delay = _delay->value; 1500 u32 unit = _delay->unit; 1501 u32 hz; 1502 1503 if (!delay) 1504 return 0; 1505 1506 switch (unit) { 1507 case SPI_DELAY_UNIT_USECS: 1508 delay *= NSEC_PER_USEC; 1509 break; 1510 case SPI_DELAY_UNIT_NSECS: 1511 /* Nothing to do here */ 1512 break; 1513 case SPI_DELAY_UNIT_SCK: 1514 /* Clock cycles need to be obtained from spi_transfer */ 1515 if (!xfer) 1516 return -EINVAL; 1517 /* 1518 * If there is unknown effective speed, approximate it 1519 * by underestimating with half of the requested Hz. 1520 */ 1521 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1522 if (!hz) 1523 return -EINVAL; 1524 1525 /* Convert delay to nanoseconds */ 1526 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1527 break; 1528 default: 1529 return -EINVAL; 1530 } 1531 1532 return delay; 1533 } 1534 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1535 1536 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1537 { 1538 int delay; 1539 1540 might_sleep(); 1541 1542 if (!_delay) 1543 return -EINVAL; 1544 1545 delay = spi_delay_to_ns(_delay, xfer); 1546 if (delay < 0) 1547 return delay; 1548 1549 _spi_transfer_delay_ns(delay); 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(spi_delay_exec); 1554 1555 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1556 struct spi_transfer *xfer) 1557 { 1558 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1559 u32 delay = xfer->cs_change_delay.value; 1560 u32 unit = xfer->cs_change_delay.unit; 1561 int ret; 1562 1563 /* Return early on "fast" mode - for everything but USECS */ 1564 if (!delay) { 1565 if (unit == SPI_DELAY_UNIT_USECS) 1566 _spi_transfer_delay_ns(default_delay_ns); 1567 return; 1568 } 1569 1570 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1571 if (ret) { 1572 dev_err_once(&msg->spi->dev, 1573 "Use of unsupported delay unit %i, using default of %luus\n", 1574 unit, default_delay_ns / NSEC_PER_USEC); 1575 _spi_transfer_delay_ns(default_delay_ns); 1576 } 1577 } 1578 1579 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1580 struct spi_transfer *xfer) 1581 { 1582 _spi_transfer_cs_change_delay(msg, xfer); 1583 } 1584 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1585 1586 /* 1587 * spi_transfer_one_message - Default implementation of transfer_one_message() 1588 * 1589 * This is a standard implementation of transfer_one_message() for 1590 * drivers which implement a transfer_one() operation. It provides 1591 * standard handling of delays and chip select management. 1592 */ 1593 static int spi_transfer_one_message(struct spi_controller *ctlr, 1594 struct spi_message *msg) 1595 { 1596 struct spi_transfer *xfer; 1597 bool keep_cs = false; 1598 int ret = 0; 1599 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1600 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1601 1602 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1603 spi_set_cs(msg->spi, !xfer->cs_off, false); 1604 1605 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1606 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1607 1608 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1609 trace_spi_transfer_start(msg, xfer); 1610 1611 spi_statistics_add_transfer_stats(statm, xfer, msg); 1612 spi_statistics_add_transfer_stats(stats, xfer, msg); 1613 1614 if (!ctlr->ptp_sts_supported) { 1615 xfer->ptp_sts_word_pre = 0; 1616 ptp_read_system_prets(xfer->ptp_sts); 1617 } 1618 1619 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1620 reinit_completion(&ctlr->xfer_completion); 1621 1622 fallback_pio: 1623 spi_dma_sync_for_device(ctlr, xfer); 1624 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1625 if (ret < 0) { 1626 spi_dma_sync_for_cpu(ctlr, xfer); 1627 1628 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1629 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1630 __spi_unmap_msg(ctlr, msg); 1631 ctlr->fallback = true; 1632 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1633 goto fallback_pio; 1634 } 1635 1636 SPI_STATISTICS_INCREMENT_FIELD(statm, 1637 errors); 1638 SPI_STATISTICS_INCREMENT_FIELD(stats, 1639 errors); 1640 dev_err(&msg->spi->dev, 1641 "SPI transfer failed: %d\n", ret); 1642 goto out; 1643 } 1644 1645 if (ret > 0) { 1646 ret = spi_transfer_wait(ctlr, msg, xfer); 1647 if (ret < 0) 1648 msg->status = ret; 1649 } 1650 1651 spi_dma_sync_for_cpu(ctlr, xfer); 1652 } else { 1653 if (xfer->len) 1654 dev_err(&msg->spi->dev, 1655 "Bufferless transfer has length %u\n", 1656 xfer->len); 1657 } 1658 1659 if (!ctlr->ptp_sts_supported) { 1660 ptp_read_system_postts(xfer->ptp_sts); 1661 xfer->ptp_sts_word_post = xfer->len; 1662 } 1663 1664 trace_spi_transfer_stop(msg, xfer); 1665 1666 if (msg->status != -EINPROGRESS) 1667 goto out; 1668 1669 spi_transfer_delay_exec(xfer); 1670 1671 if (xfer->cs_change) { 1672 if (list_is_last(&xfer->transfer_list, 1673 &msg->transfers)) { 1674 keep_cs = true; 1675 } else { 1676 if (!xfer->cs_off) 1677 spi_set_cs(msg->spi, false, false); 1678 _spi_transfer_cs_change_delay(msg, xfer); 1679 if (!list_next_entry(xfer, transfer_list)->cs_off) 1680 spi_set_cs(msg->spi, true, false); 1681 } 1682 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1683 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1684 spi_set_cs(msg->spi, xfer->cs_off, false); 1685 } 1686 1687 msg->actual_length += xfer->len; 1688 } 1689 1690 out: 1691 if (ret != 0 || !keep_cs) 1692 spi_set_cs(msg->spi, false, false); 1693 1694 if (msg->status == -EINPROGRESS) 1695 msg->status = ret; 1696 1697 if (msg->status && ctlr->handle_err) 1698 ctlr->handle_err(ctlr, msg); 1699 1700 spi_finalize_current_message(ctlr); 1701 1702 return ret; 1703 } 1704 1705 /** 1706 * spi_finalize_current_transfer - report completion of a transfer 1707 * @ctlr: the controller reporting completion 1708 * 1709 * Called by SPI drivers using the core transfer_one_message() 1710 * implementation to notify it that the current interrupt driven 1711 * transfer has finished and the next one may be scheduled. 1712 */ 1713 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1714 { 1715 complete(&ctlr->xfer_completion); 1716 } 1717 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1718 1719 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1720 { 1721 if (ctlr->auto_runtime_pm) { 1722 pm_runtime_put_autosuspend(ctlr->dev.parent); 1723 } 1724 } 1725 1726 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1727 struct spi_message *msg, bool was_busy) 1728 { 1729 struct spi_transfer *xfer; 1730 int ret; 1731 1732 if (!was_busy && ctlr->auto_runtime_pm) { 1733 ret = pm_runtime_get_sync(ctlr->dev.parent); 1734 if (ret < 0) { 1735 pm_runtime_put_noidle(ctlr->dev.parent); 1736 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1737 ret); 1738 1739 msg->status = ret; 1740 spi_finalize_current_message(ctlr); 1741 1742 return ret; 1743 } 1744 } 1745 1746 if (!was_busy) 1747 trace_spi_controller_busy(ctlr); 1748 1749 if (!was_busy && ctlr->prepare_transfer_hardware) { 1750 ret = ctlr->prepare_transfer_hardware(ctlr); 1751 if (ret) { 1752 dev_err(&ctlr->dev, 1753 "failed to prepare transfer hardware: %d\n", 1754 ret); 1755 1756 if (ctlr->auto_runtime_pm) 1757 pm_runtime_put(ctlr->dev.parent); 1758 1759 msg->status = ret; 1760 spi_finalize_current_message(ctlr); 1761 1762 return ret; 1763 } 1764 } 1765 1766 trace_spi_message_start(msg); 1767 1768 if (ctlr->prepare_message) { 1769 ret = ctlr->prepare_message(ctlr, msg); 1770 if (ret) { 1771 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1772 ret); 1773 msg->status = ret; 1774 spi_finalize_current_message(ctlr); 1775 return ret; 1776 } 1777 msg->prepared = true; 1778 } 1779 1780 ret = spi_map_msg(ctlr, msg); 1781 if (ret) { 1782 msg->status = ret; 1783 spi_finalize_current_message(ctlr); 1784 return ret; 1785 } 1786 1787 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1788 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1789 xfer->ptp_sts_word_pre = 0; 1790 ptp_read_system_prets(xfer->ptp_sts); 1791 } 1792 } 1793 1794 /* 1795 * Drivers implementation of transfer_one_message() must arrange for 1796 * spi_finalize_current_message() to get called. Most drivers will do 1797 * this in the calling context, but some don't. For those cases, a 1798 * completion is used to guarantee that this function does not return 1799 * until spi_finalize_current_message() is done accessing 1800 * ctlr->cur_msg. 1801 * Use of the following two flags enable to opportunistically skip the 1802 * use of the completion since its use involves expensive spin locks. 1803 * In case of a race with the context that calls 1804 * spi_finalize_current_message() the completion will always be used, 1805 * due to strict ordering of these flags using barriers. 1806 */ 1807 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1808 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1809 reinit_completion(&ctlr->cur_msg_completion); 1810 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1811 1812 ret = ctlr->transfer_one_message(ctlr, msg); 1813 if (ret) { 1814 dev_err(&ctlr->dev, 1815 "failed to transfer one message from queue\n"); 1816 return ret; 1817 } 1818 1819 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1820 smp_mb(); /* See spi_finalize_current_message()... */ 1821 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1822 wait_for_completion(&ctlr->cur_msg_completion); 1823 1824 return 0; 1825 } 1826 1827 /** 1828 * __spi_pump_messages - function which processes SPI message queue 1829 * @ctlr: controller to process queue for 1830 * @in_kthread: true if we are in the context of the message pump thread 1831 * 1832 * This function checks if there is any SPI message in the queue that 1833 * needs processing and if so call out to the driver to initialize hardware 1834 * and transfer each message. 1835 * 1836 * Note that it is called both from the kthread itself and also from 1837 * inside spi_sync(); the queue extraction handling at the top of the 1838 * function should deal with this safely. 1839 */ 1840 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1841 { 1842 struct spi_message *msg; 1843 bool was_busy = false; 1844 unsigned long flags; 1845 int ret; 1846 1847 /* Take the I/O mutex */ 1848 mutex_lock(&ctlr->io_mutex); 1849 1850 /* Lock queue */ 1851 spin_lock_irqsave(&ctlr->queue_lock, flags); 1852 1853 /* Make sure we are not already running a message */ 1854 if (ctlr->cur_msg) 1855 goto out_unlock; 1856 1857 /* Check if the queue is idle */ 1858 if (list_empty(&ctlr->queue) || !ctlr->running) { 1859 if (!ctlr->busy) 1860 goto out_unlock; 1861 1862 /* Defer any non-atomic teardown to the thread */ 1863 if (!in_kthread) { 1864 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1865 !ctlr->unprepare_transfer_hardware) { 1866 spi_idle_runtime_pm(ctlr); 1867 ctlr->busy = false; 1868 ctlr->queue_empty = true; 1869 trace_spi_controller_idle(ctlr); 1870 } else { 1871 kthread_queue_work(ctlr->kworker, 1872 &ctlr->pump_messages); 1873 } 1874 goto out_unlock; 1875 } 1876 1877 ctlr->busy = false; 1878 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1879 1880 kfree(ctlr->dummy_rx); 1881 ctlr->dummy_rx = NULL; 1882 kfree(ctlr->dummy_tx); 1883 ctlr->dummy_tx = NULL; 1884 if (ctlr->unprepare_transfer_hardware && 1885 ctlr->unprepare_transfer_hardware(ctlr)) 1886 dev_err(&ctlr->dev, 1887 "failed to unprepare transfer hardware\n"); 1888 spi_idle_runtime_pm(ctlr); 1889 trace_spi_controller_idle(ctlr); 1890 1891 spin_lock_irqsave(&ctlr->queue_lock, flags); 1892 ctlr->queue_empty = true; 1893 goto out_unlock; 1894 } 1895 1896 /* Extract head of queue */ 1897 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1898 ctlr->cur_msg = msg; 1899 1900 list_del_init(&msg->queue); 1901 if (ctlr->busy) 1902 was_busy = true; 1903 else 1904 ctlr->busy = true; 1905 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1906 1907 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1908 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1909 1910 ctlr->cur_msg = NULL; 1911 ctlr->fallback = false; 1912 1913 mutex_unlock(&ctlr->io_mutex); 1914 1915 /* Prod the scheduler in case transfer_one() was busy waiting */ 1916 if (!ret) 1917 cond_resched(); 1918 return; 1919 1920 out_unlock: 1921 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1922 mutex_unlock(&ctlr->io_mutex); 1923 } 1924 1925 /** 1926 * spi_pump_messages - kthread work function which processes spi message queue 1927 * @work: pointer to kthread work struct contained in the controller struct 1928 */ 1929 static void spi_pump_messages(struct kthread_work *work) 1930 { 1931 struct spi_controller *ctlr = 1932 container_of(work, struct spi_controller, pump_messages); 1933 1934 __spi_pump_messages(ctlr, true); 1935 } 1936 1937 /** 1938 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1939 * @ctlr: Pointer to the spi_controller structure of the driver 1940 * @xfer: Pointer to the transfer being timestamped 1941 * @progress: How many words (not bytes) have been transferred so far 1942 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1943 * transfer, for less jitter in time measurement. Only compatible 1944 * with PIO drivers. If true, must follow up with 1945 * spi_take_timestamp_post or otherwise system will crash. 1946 * WARNING: for fully predictable results, the CPU frequency must 1947 * also be under control (governor). 1948 * 1949 * This is a helper for drivers to collect the beginning of the TX timestamp 1950 * for the requested byte from the SPI transfer. The frequency with which this 1951 * function must be called (once per word, once for the whole transfer, once 1952 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1953 * greater than or equal to the requested byte at the time of the call. The 1954 * timestamp is only taken once, at the first such call. It is assumed that 1955 * the driver advances its @tx buffer pointer monotonically. 1956 */ 1957 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1958 struct spi_transfer *xfer, 1959 size_t progress, bool irqs_off) 1960 { 1961 if (!xfer->ptp_sts) 1962 return; 1963 1964 if (xfer->timestamped) 1965 return; 1966 1967 if (progress > xfer->ptp_sts_word_pre) 1968 return; 1969 1970 /* Capture the resolution of the timestamp */ 1971 xfer->ptp_sts_word_pre = progress; 1972 1973 if (irqs_off) { 1974 local_irq_save(ctlr->irq_flags); 1975 preempt_disable(); 1976 } 1977 1978 ptp_read_system_prets(xfer->ptp_sts); 1979 } 1980 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1981 1982 /** 1983 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1984 * @ctlr: Pointer to the spi_controller structure of the driver 1985 * @xfer: Pointer to the transfer being timestamped 1986 * @progress: How many words (not bytes) have been transferred so far 1987 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1988 * 1989 * This is a helper for drivers to collect the end of the TX timestamp for 1990 * the requested byte from the SPI transfer. Can be called with an arbitrary 1991 * frequency: only the first call where @tx exceeds or is equal to the 1992 * requested word will be timestamped. 1993 */ 1994 void spi_take_timestamp_post(struct spi_controller *ctlr, 1995 struct spi_transfer *xfer, 1996 size_t progress, bool irqs_off) 1997 { 1998 if (!xfer->ptp_sts) 1999 return; 2000 2001 if (xfer->timestamped) 2002 return; 2003 2004 if (progress < xfer->ptp_sts_word_post) 2005 return; 2006 2007 ptp_read_system_postts(xfer->ptp_sts); 2008 2009 if (irqs_off) { 2010 local_irq_restore(ctlr->irq_flags); 2011 preempt_enable(); 2012 } 2013 2014 /* Capture the resolution of the timestamp */ 2015 xfer->ptp_sts_word_post = progress; 2016 2017 xfer->timestamped = 1; 2018 } 2019 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2020 2021 /** 2022 * spi_set_thread_rt - set the controller to pump at realtime priority 2023 * @ctlr: controller to boost priority of 2024 * 2025 * This can be called because the controller requested realtime priority 2026 * (by setting the ->rt value before calling spi_register_controller()) or 2027 * because a device on the bus said that its transfers needed realtime 2028 * priority. 2029 * 2030 * NOTE: at the moment if any device on a bus says it needs realtime then 2031 * the thread will be at realtime priority for all transfers on that 2032 * controller. If this eventually becomes a problem we may see if we can 2033 * find a way to boost the priority only temporarily during relevant 2034 * transfers. 2035 */ 2036 static void spi_set_thread_rt(struct spi_controller *ctlr) 2037 { 2038 dev_info(&ctlr->dev, 2039 "will run message pump with realtime priority\n"); 2040 sched_set_fifo(ctlr->kworker->task); 2041 } 2042 2043 static int spi_init_queue(struct spi_controller *ctlr) 2044 { 2045 ctlr->running = false; 2046 ctlr->busy = false; 2047 ctlr->queue_empty = true; 2048 2049 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev)); 2050 if (IS_ERR(ctlr->kworker)) { 2051 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2052 return PTR_ERR(ctlr->kworker); 2053 } 2054 2055 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2056 2057 /* 2058 * Controller config will indicate if this controller should run the 2059 * message pump with high (realtime) priority to reduce the transfer 2060 * latency on the bus by minimising the delay between a transfer 2061 * request and the scheduling of the message pump thread. Without this 2062 * setting the message pump thread will remain at default priority. 2063 */ 2064 if (ctlr->rt) 2065 spi_set_thread_rt(ctlr); 2066 2067 return 0; 2068 } 2069 2070 /** 2071 * spi_get_next_queued_message() - called by driver to check for queued 2072 * messages 2073 * @ctlr: the controller to check for queued messages 2074 * 2075 * If there are more messages in the queue, the next message is returned from 2076 * this call. 2077 * 2078 * Return: the next message in the queue, else NULL if the queue is empty. 2079 */ 2080 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2081 { 2082 struct spi_message *next; 2083 unsigned long flags; 2084 2085 /* Get a pointer to the next message, if any */ 2086 spin_lock_irqsave(&ctlr->queue_lock, flags); 2087 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2088 queue); 2089 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2090 2091 return next; 2092 } 2093 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2094 2095 /* 2096 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2097 * and spi_maybe_unoptimize_message() 2098 * @msg: the message to unoptimize 2099 * 2100 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2101 * core should use spi_maybe_unoptimize_message() rather than calling this 2102 * function directly. 2103 * 2104 * It is not valid to call this on a message that is not currently optimized. 2105 */ 2106 static void __spi_unoptimize_message(struct spi_message *msg) 2107 { 2108 struct spi_controller *ctlr = msg->spi->controller; 2109 2110 if (ctlr->unoptimize_message) 2111 ctlr->unoptimize_message(msg); 2112 2113 spi_res_release(ctlr, msg); 2114 2115 msg->optimized = false; 2116 msg->opt_state = NULL; 2117 } 2118 2119 /* 2120 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2121 * @msg: the message to unoptimize 2122 * 2123 * This function is used to unoptimize a message if and only if it was 2124 * optimized by the core (via spi_maybe_optimize_message()). 2125 */ 2126 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2127 { 2128 if (!msg->pre_optimized && msg->optimized && 2129 !msg->spi->controller->defer_optimize_message) 2130 __spi_unoptimize_message(msg); 2131 } 2132 2133 /** 2134 * spi_finalize_current_message() - the current message is complete 2135 * @ctlr: the controller to return the message to 2136 * 2137 * Called by the driver to notify the core that the message in the front of the 2138 * queue is complete and can be removed from the queue. 2139 */ 2140 void spi_finalize_current_message(struct spi_controller *ctlr) 2141 { 2142 struct spi_transfer *xfer; 2143 struct spi_message *mesg; 2144 int ret; 2145 2146 mesg = ctlr->cur_msg; 2147 2148 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2149 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2150 ptp_read_system_postts(xfer->ptp_sts); 2151 xfer->ptp_sts_word_post = xfer->len; 2152 } 2153 } 2154 2155 if (unlikely(ctlr->ptp_sts_supported)) 2156 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2157 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2158 2159 spi_unmap_msg(ctlr, mesg); 2160 2161 if (mesg->prepared && ctlr->unprepare_message) { 2162 ret = ctlr->unprepare_message(ctlr, mesg); 2163 if (ret) { 2164 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2165 ret); 2166 } 2167 } 2168 2169 mesg->prepared = false; 2170 2171 spi_maybe_unoptimize_message(mesg); 2172 2173 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2174 smp_mb(); /* See __spi_pump_transfer_message()... */ 2175 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2176 complete(&ctlr->cur_msg_completion); 2177 2178 trace_spi_message_done(mesg); 2179 2180 mesg->state = NULL; 2181 if (mesg->complete) 2182 mesg->complete(mesg->context); 2183 } 2184 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2185 2186 static int spi_start_queue(struct spi_controller *ctlr) 2187 { 2188 unsigned long flags; 2189 2190 spin_lock_irqsave(&ctlr->queue_lock, flags); 2191 2192 if (ctlr->running || ctlr->busy) { 2193 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2194 return -EBUSY; 2195 } 2196 2197 ctlr->running = true; 2198 ctlr->cur_msg = NULL; 2199 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2200 2201 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2202 2203 return 0; 2204 } 2205 2206 static int spi_stop_queue(struct spi_controller *ctlr) 2207 { 2208 unsigned int limit = 500; 2209 unsigned long flags; 2210 2211 /* 2212 * This is a bit lame, but is optimized for the common execution path. 2213 * A wait_queue on the ctlr->busy could be used, but then the common 2214 * execution path (pump_messages) would be required to call wake_up or 2215 * friends on every SPI message. Do this instead. 2216 */ 2217 do { 2218 spin_lock_irqsave(&ctlr->queue_lock, flags); 2219 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2220 ctlr->running = false; 2221 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2222 return 0; 2223 } 2224 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2225 usleep_range(10000, 11000); 2226 } while (--limit); 2227 2228 return -EBUSY; 2229 } 2230 2231 static int spi_destroy_queue(struct spi_controller *ctlr) 2232 { 2233 int ret; 2234 2235 ret = spi_stop_queue(ctlr); 2236 2237 /* 2238 * kthread_flush_worker will block until all work is done. 2239 * If the reason that stop_queue timed out is that the work will never 2240 * finish, then it does no good to call flush/stop thread, so 2241 * return anyway. 2242 */ 2243 if (ret) { 2244 dev_err(&ctlr->dev, "problem destroying queue\n"); 2245 return ret; 2246 } 2247 2248 kthread_destroy_worker(ctlr->kworker); 2249 2250 return 0; 2251 } 2252 2253 static int __spi_queued_transfer(struct spi_device *spi, 2254 struct spi_message *msg, 2255 bool need_pump) 2256 { 2257 struct spi_controller *ctlr = spi->controller; 2258 unsigned long flags; 2259 2260 spin_lock_irqsave(&ctlr->queue_lock, flags); 2261 2262 if (!ctlr->running) { 2263 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2264 return -ESHUTDOWN; 2265 } 2266 msg->actual_length = 0; 2267 msg->status = -EINPROGRESS; 2268 2269 list_add_tail(&msg->queue, &ctlr->queue); 2270 ctlr->queue_empty = false; 2271 if (!ctlr->busy && need_pump) 2272 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2273 2274 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2275 return 0; 2276 } 2277 2278 /** 2279 * spi_queued_transfer - transfer function for queued transfers 2280 * @spi: SPI device which is requesting transfer 2281 * @msg: SPI message which is to handled is queued to driver queue 2282 * 2283 * Return: zero on success, else a negative error code. 2284 */ 2285 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2286 { 2287 return __spi_queued_transfer(spi, msg, true); 2288 } 2289 2290 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2291 { 2292 int ret; 2293 2294 ctlr->transfer = spi_queued_transfer; 2295 if (!ctlr->transfer_one_message) 2296 ctlr->transfer_one_message = spi_transfer_one_message; 2297 2298 /* Initialize and start queue */ 2299 ret = spi_init_queue(ctlr); 2300 if (ret) { 2301 dev_err(&ctlr->dev, "problem initializing queue\n"); 2302 goto err_init_queue; 2303 } 2304 ctlr->queued = true; 2305 ret = spi_start_queue(ctlr); 2306 if (ret) { 2307 dev_err(&ctlr->dev, "problem starting queue\n"); 2308 goto err_start_queue; 2309 } 2310 2311 return 0; 2312 2313 err_start_queue: 2314 spi_destroy_queue(ctlr); 2315 err_init_queue: 2316 return ret; 2317 } 2318 2319 /** 2320 * spi_flush_queue - Send all pending messages in the queue from the callers' 2321 * context 2322 * @ctlr: controller to process queue for 2323 * 2324 * This should be used when one wants to ensure all pending messages have been 2325 * sent before doing something. Is used by the spi-mem code to make sure SPI 2326 * memory operations do not preempt regular SPI transfers that have been queued 2327 * before the spi-mem operation. 2328 */ 2329 void spi_flush_queue(struct spi_controller *ctlr) 2330 { 2331 if (ctlr->transfer == spi_queued_transfer) 2332 __spi_pump_messages(ctlr, false); 2333 } 2334 2335 /*-------------------------------------------------------------------------*/ 2336 2337 #if defined(CONFIG_OF) 2338 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2339 struct spi_delay *delay, const char *prop) 2340 { 2341 u32 value; 2342 2343 if (!of_property_read_u32(nc, prop, &value)) { 2344 if (value > U16_MAX) { 2345 delay->value = DIV_ROUND_UP(value, 1000); 2346 delay->unit = SPI_DELAY_UNIT_USECS; 2347 } else { 2348 delay->value = value; 2349 delay->unit = SPI_DELAY_UNIT_NSECS; 2350 } 2351 } 2352 } 2353 2354 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2355 struct device_node *nc) 2356 { 2357 u32 value, cs[SPI_DEVICE_CS_CNT_MAX]; 2358 int rc, idx; 2359 2360 /* Mode (clock phase/polarity/etc.) */ 2361 if (of_property_read_bool(nc, "spi-cpha")) 2362 spi->mode |= SPI_CPHA; 2363 if (of_property_read_bool(nc, "spi-cpol")) 2364 spi->mode |= SPI_CPOL; 2365 if (of_property_read_bool(nc, "spi-3wire")) 2366 spi->mode |= SPI_3WIRE; 2367 if (of_property_read_bool(nc, "spi-lsb-first")) 2368 spi->mode |= SPI_LSB_FIRST; 2369 if (of_property_read_bool(nc, "spi-cs-high")) 2370 spi->mode |= SPI_CS_HIGH; 2371 2372 /* Device DUAL/QUAD mode */ 2373 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2374 switch (value) { 2375 case 0: 2376 spi->mode |= SPI_NO_TX; 2377 break; 2378 case 1: 2379 break; 2380 case 2: 2381 spi->mode |= SPI_TX_DUAL; 2382 break; 2383 case 4: 2384 spi->mode |= SPI_TX_QUAD; 2385 break; 2386 case 8: 2387 spi->mode |= SPI_TX_OCTAL; 2388 break; 2389 default: 2390 dev_warn(&ctlr->dev, 2391 "spi-tx-bus-width %d not supported\n", 2392 value); 2393 break; 2394 } 2395 } 2396 2397 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2398 switch (value) { 2399 case 0: 2400 spi->mode |= SPI_NO_RX; 2401 break; 2402 case 1: 2403 break; 2404 case 2: 2405 spi->mode |= SPI_RX_DUAL; 2406 break; 2407 case 4: 2408 spi->mode |= SPI_RX_QUAD; 2409 break; 2410 case 8: 2411 spi->mode |= SPI_RX_OCTAL; 2412 break; 2413 default: 2414 dev_warn(&ctlr->dev, 2415 "spi-rx-bus-width %d not supported\n", 2416 value); 2417 break; 2418 } 2419 } 2420 2421 if (spi_controller_is_target(ctlr)) { 2422 if (!of_node_name_eq(nc, "slave")) { 2423 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2424 nc); 2425 return -EINVAL; 2426 } 2427 return 0; 2428 } 2429 2430 /* Device address */ 2431 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2432 SPI_DEVICE_CS_CNT_MAX); 2433 if (rc < 0) { 2434 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2435 nc, rc); 2436 return rc; 2437 } 2438 2439 if ((of_property_present(nc, "parallel-memories")) && 2440 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2441 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2442 return -EINVAL; 2443 } 2444 2445 spi->num_chipselect = rc; 2446 for (idx = 0; idx < rc; idx++) 2447 spi_set_chipselect(spi, idx, cs[idx]); 2448 2449 /* 2450 * By default spi->chip_select[0] will hold the physical CS number, 2451 * so set bit 0 in spi->cs_index_mask. 2452 */ 2453 spi->cs_index_mask = BIT(0); 2454 2455 /* Device speed */ 2456 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2457 spi->max_speed_hz = value; 2458 2459 /* Device CS delays */ 2460 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2461 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2462 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2463 2464 return 0; 2465 } 2466 2467 static struct spi_device * 2468 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2469 { 2470 struct spi_device *spi; 2471 int rc; 2472 2473 /* Alloc an spi_device */ 2474 spi = spi_alloc_device(ctlr); 2475 if (!spi) { 2476 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2477 rc = -ENOMEM; 2478 goto err_out; 2479 } 2480 2481 /* Select device driver */ 2482 rc = of_alias_from_compatible(nc, spi->modalias, 2483 sizeof(spi->modalias)); 2484 if (rc < 0) { 2485 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2486 goto err_out; 2487 } 2488 2489 rc = of_spi_parse_dt(ctlr, spi, nc); 2490 if (rc) 2491 goto err_out; 2492 2493 /* Store a pointer to the node in the device structure */ 2494 of_node_get(nc); 2495 2496 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2497 2498 /* Register the new device */ 2499 rc = spi_add_device(spi); 2500 if (rc) { 2501 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2502 goto err_of_node_put; 2503 } 2504 2505 return spi; 2506 2507 err_of_node_put: 2508 of_node_put(nc); 2509 err_out: 2510 spi_dev_put(spi); 2511 return ERR_PTR(rc); 2512 } 2513 2514 /** 2515 * of_register_spi_devices() - Register child devices onto the SPI bus 2516 * @ctlr: Pointer to spi_controller device 2517 * 2518 * Registers an spi_device for each child node of controller node which 2519 * represents a valid SPI target device. 2520 */ 2521 static void of_register_spi_devices(struct spi_controller *ctlr) 2522 { 2523 struct spi_device *spi; 2524 struct device_node *nc; 2525 2526 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2527 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2528 continue; 2529 spi = of_register_spi_device(ctlr, nc); 2530 if (IS_ERR(spi)) { 2531 dev_warn(&ctlr->dev, 2532 "Failed to create SPI device for %pOF\n", nc); 2533 of_node_clear_flag(nc, OF_POPULATED); 2534 } 2535 } 2536 } 2537 #else 2538 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2539 #endif 2540 2541 /** 2542 * spi_new_ancillary_device() - Register ancillary SPI device 2543 * @spi: Pointer to the main SPI device registering the ancillary device 2544 * @chip_select: Chip Select of the ancillary device 2545 * 2546 * Register an ancillary SPI device; for example some chips have a chip-select 2547 * for normal device usage and another one for setup/firmware upload. 2548 * 2549 * This may only be called from main SPI device's probe routine. 2550 * 2551 * Return: 0 on success; negative errno on failure 2552 */ 2553 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2554 u8 chip_select) 2555 { 2556 struct spi_controller *ctlr = spi->controller; 2557 struct spi_device *ancillary; 2558 int rc; 2559 2560 /* Alloc an spi_device */ 2561 ancillary = spi_alloc_device(ctlr); 2562 if (!ancillary) { 2563 rc = -ENOMEM; 2564 goto err_out; 2565 } 2566 2567 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2568 2569 /* Use provided chip-select for ancillary device */ 2570 spi_set_chipselect(ancillary, 0, chip_select); 2571 2572 /* Take over SPI mode/speed from SPI main device */ 2573 ancillary->max_speed_hz = spi->max_speed_hz; 2574 ancillary->mode = spi->mode; 2575 /* 2576 * By default spi->chip_select[0] will hold the physical CS number, 2577 * so set bit 0 in spi->cs_index_mask. 2578 */ 2579 ancillary->cs_index_mask = BIT(0); 2580 2581 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2582 2583 /* Register the new device */ 2584 rc = __spi_add_device(ancillary); 2585 if (rc) { 2586 dev_err(&spi->dev, "failed to register ancillary device\n"); 2587 goto err_out; 2588 } 2589 2590 return ancillary; 2591 2592 err_out: 2593 spi_dev_put(ancillary); 2594 return ERR_PTR(rc); 2595 } 2596 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2597 2598 #ifdef CONFIG_ACPI 2599 struct acpi_spi_lookup { 2600 struct spi_controller *ctlr; 2601 u32 max_speed_hz; 2602 u32 mode; 2603 int irq; 2604 u8 bits_per_word; 2605 u8 chip_select; 2606 int n; 2607 int index; 2608 }; 2609 2610 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2611 { 2612 struct acpi_resource_spi_serialbus *sb; 2613 int *count = data; 2614 2615 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2616 return 1; 2617 2618 sb = &ares->data.spi_serial_bus; 2619 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2620 return 1; 2621 2622 *count = *count + 1; 2623 2624 return 1; 2625 } 2626 2627 /** 2628 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2629 * @adev: ACPI device 2630 * 2631 * Return: the number of SpiSerialBus resources in the ACPI-device's 2632 * resource-list; or a negative error code. 2633 */ 2634 int acpi_spi_count_resources(struct acpi_device *adev) 2635 { 2636 LIST_HEAD(r); 2637 int count = 0; 2638 int ret; 2639 2640 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2641 if (ret < 0) 2642 return ret; 2643 2644 acpi_dev_free_resource_list(&r); 2645 2646 return count; 2647 } 2648 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2649 2650 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2651 struct acpi_spi_lookup *lookup) 2652 { 2653 const union acpi_object *obj; 2654 2655 if (!x86_apple_machine) 2656 return; 2657 2658 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2659 && obj->buffer.length >= 4) 2660 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2661 2662 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2663 && obj->buffer.length == 8) 2664 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2665 2666 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2667 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2668 lookup->mode |= SPI_LSB_FIRST; 2669 2670 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2671 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2672 lookup->mode |= SPI_CPOL; 2673 2674 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2675 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2676 lookup->mode |= SPI_CPHA; 2677 } 2678 2679 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2680 { 2681 struct acpi_spi_lookup *lookup = data; 2682 struct spi_controller *ctlr = lookup->ctlr; 2683 2684 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2685 struct acpi_resource_spi_serialbus *sb; 2686 acpi_handle parent_handle; 2687 acpi_status status; 2688 2689 sb = &ares->data.spi_serial_bus; 2690 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2691 2692 if (lookup->index != -1 && lookup->n++ != lookup->index) 2693 return 1; 2694 2695 status = acpi_get_handle(NULL, 2696 sb->resource_source.string_ptr, 2697 &parent_handle); 2698 2699 if (ACPI_FAILURE(status)) 2700 return -ENODEV; 2701 2702 if (ctlr) { 2703 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2704 return -ENODEV; 2705 } else { 2706 struct acpi_device *adev; 2707 2708 adev = acpi_fetch_acpi_dev(parent_handle); 2709 if (!adev) 2710 return -ENODEV; 2711 2712 ctlr = acpi_spi_find_controller_by_adev(adev); 2713 if (!ctlr) 2714 return -EPROBE_DEFER; 2715 2716 lookup->ctlr = ctlr; 2717 } 2718 2719 /* 2720 * ACPI DeviceSelection numbering is handled by the 2721 * host controller driver in Windows and can vary 2722 * from driver to driver. In Linux we always expect 2723 * 0 .. max - 1 so we need to ask the driver to 2724 * translate between the two schemes. 2725 */ 2726 if (ctlr->fw_translate_cs) { 2727 int cs = ctlr->fw_translate_cs(ctlr, 2728 sb->device_selection); 2729 if (cs < 0) 2730 return cs; 2731 lookup->chip_select = cs; 2732 } else { 2733 lookup->chip_select = sb->device_selection; 2734 } 2735 2736 lookup->max_speed_hz = sb->connection_speed; 2737 lookup->bits_per_word = sb->data_bit_length; 2738 2739 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2740 lookup->mode |= SPI_CPHA; 2741 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2742 lookup->mode |= SPI_CPOL; 2743 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2744 lookup->mode |= SPI_CS_HIGH; 2745 } 2746 } else if (lookup->irq < 0) { 2747 struct resource r; 2748 2749 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2750 lookup->irq = r.start; 2751 } 2752 2753 /* Always tell the ACPI core to skip this resource */ 2754 return 1; 2755 } 2756 2757 /** 2758 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2759 * @ctlr: controller to which the spi device belongs 2760 * @adev: ACPI Device for the spi device 2761 * @index: Index of the spi resource inside the ACPI Node 2762 * 2763 * This should be used to allocate a new SPI device from and ACPI Device node. 2764 * The caller is responsible for calling spi_add_device to register the SPI device. 2765 * 2766 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2767 * using the resource. 2768 * If index is set to -1, index is not used. 2769 * Note: If index is -1, ctlr must be set. 2770 * 2771 * Return: a pointer to the new device, or ERR_PTR on error. 2772 */ 2773 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2774 struct acpi_device *adev, 2775 int index) 2776 { 2777 acpi_handle parent_handle = NULL; 2778 struct list_head resource_list; 2779 struct acpi_spi_lookup lookup = {}; 2780 struct spi_device *spi; 2781 int ret; 2782 2783 if (!ctlr && index == -1) 2784 return ERR_PTR(-EINVAL); 2785 2786 lookup.ctlr = ctlr; 2787 lookup.irq = -1; 2788 lookup.index = index; 2789 lookup.n = 0; 2790 2791 INIT_LIST_HEAD(&resource_list); 2792 ret = acpi_dev_get_resources(adev, &resource_list, 2793 acpi_spi_add_resource, &lookup); 2794 acpi_dev_free_resource_list(&resource_list); 2795 2796 if (ret < 0) 2797 /* Found SPI in _CRS but it points to another controller */ 2798 return ERR_PTR(ret); 2799 2800 if (!lookup.max_speed_hz && 2801 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2802 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2803 /* Apple does not use _CRS but nested devices for SPI target devices */ 2804 acpi_spi_parse_apple_properties(adev, &lookup); 2805 } 2806 2807 if (!lookup.max_speed_hz) 2808 return ERR_PTR(-ENODEV); 2809 2810 spi = spi_alloc_device(lookup.ctlr); 2811 if (!spi) { 2812 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2813 dev_name(&adev->dev)); 2814 return ERR_PTR(-ENOMEM); 2815 } 2816 2817 spi_set_chipselect(spi, 0, lookup.chip_select); 2818 2819 ACPI_COMPANION_SET(&spi->dev, adev); 2820 spi->max_speed_hz = lookup.max_speed_hz; 2821 spi->mode |= lookup.mode; 2822 spi->irq = lookup.irq; 2823 spi->bits_per_word = lookup.bits_per_word; 2824 /* 2825 * By default spi->chip_select[0] will hold the physical CS number, 2826 * so set bit 0 in spi->cs_index_mask. 2827 */ 2828 spi->cs_index_mask = BIT(0); 2829 2830 return spi; 2831 } 2832 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2833 2834 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2835 struct acpi_device *adev) 2836 { 2837 struct spi_device *spi; 2838 2839 if (acpi_bus_get_status(adev) || !adev->status.present || 2840 acpi_device_enumerated(adev)) 2841 return AE_OK; 2842 2843 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2844 if (IS_ERR(spi)) { 2845 if (PTR_ERR(spi) == -ENOMEM) 2846 return AE_NO_MEMORY; 2847 else 2848 return AE_OK; 2849 } 2850 2851 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2852 sizeof(spi->modalias)); 2853 2854 /* 2855 * This gets re-tried in spi_probe() for -EPROBE_DEFER handling in case 2856 * the GPIO controller does not have a driver yet. This needs to be done 2857 * here too, because this call sets the GPIO direction and/or bias. 2858 * Setting these needs to be done even if there is no driver, in which 2859 * case spi_probe() will never get called. 2860 * TODO: ideally the setup of the GPIO should be handled in a generic 2861 * manner in the ACPI/gpiolib core code. 2862 */ 2863 if (spi->irq < 0) 2864 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2865 2866 acpi_device_set_enumerated(adev); 2867 2868 adev->power.flags.ignore_parent = true; 2869 if (spi_add_device(spi)) { 2870 adev->power.flags.ignore_parent = false; 2871 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2872 dev_name(&adev->dev)); 2873 spi_dev_put(spi); 2874 } 2875 2876 return AE_OK; 2877 } 2878 2879 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2880 void *data, void **return_value) 2881 { 2882 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2883 struct spi_controller *ctlr = data; 2884 2885 if (!adev) 2886 return AE_OK; 2887 2888 return acpi_register_spi_device(ctlr, adev); 2889 } 2890 2891 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2892 2893 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2894 { 2895 acpi_status status; 2896 acpi_handle handle; 2897 2898 handle = ACPI_HANDLE(ctlr->dev.parent); 2899 if (!handle) 2900 return; 2901 2902 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2903 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2904 acpi_spi_add_device, NULL, ctlr, NULL); 2905 if (ACPI_FAILURE(status)) 2906 dev_warn(&ctlr->dev, "failed to enumerate SPI target devices\n"); 2907 } 2908 #else 2909 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2910 #endif /* CONFIG_ACPI */ 2911 2912 static void spi_controller_release(struct device *dev) 2913 { 2914 struct spi_controller *ctlr; 2915 2916 ctlr = container_of(dev, struct spi_controller, dev); 2917 kfree(ctlr); 2918 } 2919 2920 static const struct class spi_controller_class = { 2921 .name = "spi_master", 2922 .dev_release = spi_controller_release, 2923 .dev_groups = spi_controller_groups, 2924 }; 2925 2926 #ifdef CONFIG_SPI_SLAVE 2927 /** 2928 * spi_target_abort - abort the ongoing transfer request on an SPI target controller 2929 * @spi: device used for the current transfer 2930 */ 2931 int spi_target_abort(struct spi_device *spi) 2932 { 2933 struct spi_controller *ctlr = spi->controller; 2934 2935 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2936 return ctlr->target_abort(ctlr); 2937 2938 return -ENOTSUPP; 2939 } 2940 EXPORT_SYMBOL_GPL(spi_target_abort); 2941 2942 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2943 char *buf) 2944 { 2945 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2946 dev); 2947 struct device *child; 2948 int ret; 2949 2950 child = device_find_any_child(&ctlr->dev); 2951 ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2952 put_device(child); 2953 2954 return ret; 2955 } 2956 2957 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2958 const char *buf, size_t count) 2959 { 2960 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2961 dev); 2962 struct spi_device *spi; 2963 struct device *child; 2964 char name[32]; 2965 int rc; 2966 2967 rc = sscanf(buf, "%31s", name); 2968 if (rc != 1 || !name[0]) 2969 return -EINVAL; 2970 2971 child = device_find_any_child(&ctlr->dev); 2972 if (child) { 2973 /* Remove registered target device */ 2974 device_unregister(child); 2975 put_device(child); 2976 } 2977 2978 if (strcmp(name, "(null)")) { 2979 /* Register new target device */ 2980 spi = spi_alloc_device(ctlr); 2981 if (!spi) 2982 return -ENOMEM; 2983 2984 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2985 2986 rc = spi_add_device(spi); 2987 if (rc) { 2988 spi_dev_put(spi); 2989 return rc; 2990 } 2991 } 2992 2993 return count; 2994 } 2995 2996 static DEVICE_ATTR_RW(slave); 2997 2998 static struct attribute *spi_target_attrs[] = { 2999 &dev_attr_slave.attr, 3000 NULL, 3001 }; 3002 3003 static const struct attribute_group spi_target_group = { 3004 .attrs = spi_target_attrs, 3005 }; 3006 3007 static const struct attribute_group *spi_target_groups[] = { 3008 &spi_controller_statistics_group, 3009 &spi_target_group, 3010 NULL, 3011 }; 3012 3013 static const struct class spi_target_class = { 3014 .name = "spi_slave", 3015 .dev_release = spi_controller_release, 3016 .dev_groups = spi_target_groups, 3017 }; 3018 #else 3019 extern struct class spi_target_class; /* dummy */ 3020 #endif 3021 3022 /** 3023 * __spi_alloc_controller - allocate an SPI host or target controller 3024 * @dev: the controller, possibly using the platform_bus 3025 * @size: how much zeroed driver-private data to allocate; the pointer to this 3026 * memory is in the driver_data field of the returned device, accessible 3027 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3028 * drivers granting DMA access to portions of their private data need to 3029 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3030 * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true) 3031 * controller 3032 * Context: can sleep 3033 * 3034 * This call is used only by SPI controller drivers, which are the 3035 * only ones directly touching chip registers. It's how they allocate 3036 * an spi_controller structure, prior to calling spi_register_controller(). 3037 * 3038 * This must be called from context that can sleep. 3039 * 3040 * The caller is responsible for assigning the bus number and initializing the 3041 * controller's methods before calling spi_register_controller(); and (after 3042 * errors adding the device) calling spi_controller_put() to prevent a memory 3043 * leak. 3044 * 3045 * Return: the SPI controller structure on success, else NULL. 3046 */ 3047 struct spi_controller *__spi_alloc_controller(struct device *dev, 3048 unsigned int size, bool target) 3049 { 3050 struct spi_controller *ctlr; 3051 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3052 3053 if (!dev) 3054 return NULL; 3055 3056 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3057 if (!ctlr) 3058 return NULL; 3059 3060 device_initialize(&ctlr->dev); 3061 INIT_LIST_HEAD(&ctlr->queue); 3062 spin_lock_init(&ctlr->queue_lock); 3063 spin_lock_init(&ctlr->bus_lock_spinlock); 3064 mutex_init(&ctlr->bus_lock_mutex); 3065 mutex_init(&ctlr->io_mutex); 3066 mutex_init(&ctlr->add_lock); 3067 ctlr->bus_num = -1; 3068 ctlr->num_chipselect = 1; 3069 ctlr->target = target; 3070 if (IS_ENABLED(CONFIG_SPI_SLAVE) && target) 3071 ctlr->dev.class = &spi_target_class; 3072 else 3073 ctlr->dev.class = &spi_controller_class; 3074 ctlr->dev.parent = dev; 3075 pm_suspend_ignore_children(&ctlr->dev, true); 3076 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3077 3078 return ctlr; 3079 } 3080 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3081 3082 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3083 { 3084 spi_controller_put(*(struct spi_controller **)ctlr); 3085 } 3086 3087 /** 3088 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3089 * @dev: physical device of SPI controller 3090 * @size: how much zeroed driver-private data to allocate 3091 * @target: whether to allocate an SPI host (false) or SPI target (true) controller 3092 * Context: can sleep 3093 * 3094 * Allocate an SPI controller and automatically release a reference on it 3095 * when @dev is unbound from its driver. Drivers are thus relieved from 3096 * having to call spi_controller_put(). 3097 * 3098 * The arguments to this function are identical to __spi_alloc_controller(). 3099 * 3100 * Return: the SPI controller structure on success, else NULL. 3101 */ 3102 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3103 unsigned int size, 3104 bool target) 3105 { 3106 struct spi_controller **ptr, *ctlr; 3107 3108 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3109 GFP_KERNEL); 3110 if (!ptr) 3111 return NULL; 3112 3113 ctlr = __spi_alloc_controller(dev, size, target); 3114 if (ctlr) { 3115 ctlr->devm_allocated = true; 3116 *ptr = ctlr; 3117 devres_add(dev, ptr); 3118 } else { 3119 devres_free(ptr); 3120 } 3121 3122 return ctlr; 3123 } 3124 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3125 3126 /** 3127 * spi_get_gpio_descs() - grab chip select GPIOs for the controller 3128 * @ctlr: The SPI controller to grab GPIO descriptors for 3129 */ 3130 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3131 { 3132 int nb, i; 3133 struct gpio_desc **cs; 3134 struct device *dev = &ctlr->dev; 3135 unsigned long native_cs_mask = 0; 3136 unsigned int num_cs_gpios = 0; 3137 3138 nb = gpiod_count(dev, "cs"); 3139 if (nb < 0) { 3140 /* No GPIOs at all is fine, else return the error */ 3141 if (nb == -ENOENT) 3142 return 0; 3143 return nb; 3144 } 3145 3146 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3147 3148 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3149 GFP_KERNEL); 3150 if (!cs) 3151 return -ENOMEM; 3152 ctlr->cs_gpiods = cs; 3153 3154 for (i = 0; i < nb; i++) { 3155 /* 3156 * Most chipselects are active low, the inverted 3157 * semantics are handled by special quirks in gpiolib, 3158 * so initializing them GPIOD_OUT_LOW here means 3159 * "unasserted", in most cases this will drive the physical 3160 * line high. 3161 */ 3162 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3163 GPIOD_OUT_LOW); 3164 if (IS_ERR(cs[i])) 3165 return PTR_ERR(cs[i]); 3166 3167 if (cs[i]) { 3168 /* 3169 * If we find a CS GPIO, name it after the device and 3170 * chip select line. 3171 */ 3172 char *gpioname; 3173 3174 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3175 dev_name(dev), i); 3176 if (!gpioname) 3177 return -ENOMEM; 3178 gpiod_set_consumer_name(cs[i], gpioname); 3179 num_cs_gpios++; 3180 continue; 3181 } 3182 3183 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3184 dev_err(dev, "Invalid native chip select %d\n", i); 3185 return -EINVAL; 3186 } 3187 native_cs_mask |= BIT(i); 3188 } 3189 3190 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3191 3192 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3193 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3194 dev_err(dev, "No unused native chip select available\n"); 3195 return -EINVAL; 3196 } 3197 3198 return 0; 3199 } 3200 3201 static int spi_controller_check_ops(struct spi_controller *ctlr) 3202 { 3203 /* 3204 * The controller may implement only the high-level SPI-memory like 3205 * operations if it does not support regular SPI transfers, and this is 3206 * valid use case. 3207 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3208 * one of the ->transfer_xxx() method be implemented. 3209 */ 3210 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3211 if (!ctlr->transfer && !ctlr->transfer_one && 3212 !ctlr->transfer_one_message) { 3213 return -EINVAL; 3214 } 3215 } 3216 3217 return 0; 3218 } 3219 3220 /* Allocate dynamic bus number using Linux idr */ 3221 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3222 { 3223 int id; 3224 3225 mutex_lock(&board_lock); 3226 id = idr_alloc(&spi_controller_idr, ctlr, start, end, GFP_KERNEL); 3227 mutex_unlock(&board_lock); 3228 if (WARN(id < 0, "couldn't get idr")) 3229 return id == -ENOSPC ? -EBUSY : id; 3230 ctlr->bus_num = id; 3231 return 0; 3232 } 3233 3234 /** 3235 * spi_register_controller - register SPI host or target controller 3236 * @ctlr: initialized controller, originally from spi_alloc_host() or 3237 * spi_alloc_target() 3238 * Context: can sleep 3239 * 3240 * SPI controllers connect to their drivers using some non-SPI bus, 3241 * such as the platform bus. The final stage of probe() in that code 3242 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3243 * 3244 * SPI controllers use board specific (often SOC specific) bus numbers, 3245 * and board-specific addressing for SPI devices combines those numbers 3246 * with chip select numbers. Since SPI does not directly support dynamic 3247 * device identification, boards need configuration tables telling which 3248 * chip is at which address. 3249 * 3250 * This must be called from context that can sleep. It returns zero on 3251 * success, else a negative error code (dropping the controller's refcount). 3252 * After a successful return, the caller is responsible for calling 3253 * spi_unregister_controller(). 3254 * 3255 * Return: zero on success, else a negative error code. 3256 */ 3257 int spi_register_controller(struct spi_controller *ctlr) 3258 { 3259 struct device *dev = ctlr->dev.parent; 3260 struct boardinfo *bi; 3261 int first_dynamic; 3262 int status; 3263 int idx; 3264 3265 if (!dev) 3266 return -ENODEV; 3267 3268 /* 3269 * Make sure all necessary hooks are implemented before registering 3270 * the SPI controller. 3271 */ 3272 status = spi_controller_check_ops(ctlr); 3273 if (status) 3274 return status; 3275 3276 if (ctlr->bus_num < 0) 3277 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3278 if (ctlr->bus_num >= 0) { 3279 /* Devices with a fixed bus num must check-in with the num */ 3280 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3281 if (status) 3282 return status; 3283 } 3284 if (ctlr->bus_num < 0) { 3285 first_dynamic = of_alias_get_highest_id("spi"); 3286 if (first_dynamic < 0) 3287 first_dynamic = 0; 3288 else 3289 first_dynamic++; 3290 3291 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3292 if (status) 3293 return status; 3294 } 3295 ctlr->bus_lock_flag = 0; 3296 init_completion(&ctlr->xfer_completion); 3297 init_completion(&ctlr->cur_msg_completion); 3298 if (!ctlr->max_dma_len) 3299 ctlr->max_dma_len = INT_MAX; 3300 3301 /* 3302 * Register the device, then userspace will see it. 3303 * Registration fails if the bus ID is in use. 3304 */ 3305 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3306 3307 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3308 status = spi_get_gpio_descs(ctlr); 3309 if (status) 3310 goto free_bus_id; 3311 /* 3312 * A controller using GPIO descriptors always 3313 * supports SPI_CS_HIGH if need be. 3314 */ 3315 ctlr->mode_bits |= SPI_CS_HIGH; 3316 } 3317 3318 /* 3319 * Even if it's just one always-selected device, there must 3320 * be at least one chipselect. 3321 */ 3322 if (!ctlr->num_chipselect) { 3323 status = -EINVAL; 3324 goto free_bus_id; 3325 } 3326 3327 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3328 for (idx = 0; idx < SPI_DEVICE_CS_CNT_MAX; idx++) 3329 ctlr->last_cs[idx] = SPI_INVALID_CS; 3330 3331 status = device_add(&ctlr->dev); 3332 if (status < 0) 3333 goto free_bus_id; 3334 dev_dbg(dev, "registered %s %s\n", 3335 spi_controller_is_target(ctlr) ? "target" : "host", 3336 dev_name(&ctlr->dev)); 3337 3338 /* 3339 * If we're using a queued driver, start the queue. Note that we don't 3340 * need the queueing logic if the driver is only supporting high-level 3341 * memory operations. 3342 */ 3343 if (ctlr->transfer) { 3344 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3345 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3346 status = spi_controller_initialize_queue(ctlr); 3347 if (status) { 3348 device_del(&ctlr->dev); 3349 goto free_bus_id; 3350 } 3351 } 3352 /* Add statistics */ 3353 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3354 if (!ctlr->pcpu_statistics) { 3355 dev_err(dev, "Error allocating per-cpu statistics\n"); 3356 status = -ENOMEM; 3357 goto destroy_queue; 3358 } 3359 3360 mutex_lock(&board_lock); 3361 list_add_tail(&ctlr->list, &spi_controller_list); 3362 list_for_each_entry(bi, &board_list, list) 3363 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3364 mutex_unlock(&board_lock); 3365 3366 /* Register devices from the device tree and ACPI */ 3367 of_register_spi_devices(ctlr); 3368 acpi_register_spi_devices(ctlr); 3369 return status; 3370 3371 destroy_queue: 3372 spi_destroy_queue(ctlr); 3373 free_bus_id: 3374 mutex_lock(&board_lock); 3375 idr_remove(&spi_controller_idr, ctlr->bus_num); 3376 mutex_unlock(&board_lock); 3377 return status; 3378 } 3379 EXPORT_SYMBOL_GPL(spi_register_controller); 3380 3381 static void devm_spi_unregister(struct device *dev, void *res) 3382 { 3383 spi_unregister_controller(*(struct spi_controller **)res); 3384 } 3385 3386 /** 3387 * devm_spi_register_controller - register managed SPI host or target controller 3388 * @dev: device managing SPI controller 3389 * @ctlr: initialized controller, originally from spi_alloc_host() or 3390 * spi_alloc_target() 3391 * Context: can sleep 3392 * 3393 * Register a SPI device as with spi_register_controller() which will 3394 * automatically be unregistered and freed. 3395 * 3396 * Return: zero on success, else a negative error code. 3397 */ 3398 int devm_spi_register_controller(struct device *dev, 3399 struct spi_controller *ctlr) 3400 { 3401 struct spi_controller **ptr; 3402 int ret; 3403 3404 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3405 if (!ptr) 3406 return -ENOMEM; 3407 3408 ret = spi_register_controller(ctlr); 3409 if (!ret) { 3410 *ptr = ctlr; 3411 devres_add(dev, ptr); 3412 } else { 3413 devres_free(ptr); 3414 } 3415 3416 return ret; 3417 } 3418 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3419 3420 static int __unregister(struct device *dev, void *null) 3421 { 3422 spi_unregister_device(to_spi_device(dev)); 3423 return 0; 3424 } 3425 3426 /** 3427 * spi_unregister_controller - unregister SPI host or target controller 3428 * @ctlr: the controller being unregistered 3429 * Context: can sleep 3430 * 3431 * This call is used only by SPI controller drivers, which are the 3432 * only ones directly touching chip registers. 3433 * 3434 * This must be called from context that can sleep. 3435 * 3436 * Note that this function also drops a reference to the controller. 3437 */ 3438 void spi_unregister_controller(struct spi_controller *ctlr) 3439 { 3440 struct spi_controller *found; 3441 int id = ctlr->bus_num; 3442 3443 /* Prevent addition of new devices, unregister existing ones */ 3444 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3445 mutex_lock(&ctlr->add_lock); 3446 3447 device_for_each_child(&ctlr->dev, NULL, __unregister); 3448 3449 /* First make sure that this controller was ever added */ 3450 mutex_lock(&board_lock); 3451 found = idr_find(&spi_controller_idr, id); 3452 mutex_unlock(&board_lock); 3453 if (ctlr->queued) { 3454 if (spi_destroy_queue(ctlr)) 3455 dev_err(&ctlr->dev, "queue remove failed\n"); 3456 } 3457 mutex_lock(&board_lock); 3458 list_del(&ctlr->list); 3459 mutex_unlock(&board_lock); 3460 3461 device_del(&ctlr->dev); 3462 3463 /* Free bus id */ 3464 mutex_lock(&board_lock); 3465 if (found == ctlr) 3466 idr_remove(&spi_controller_idr, id); 3467 mutex_unlock(&board_lock); 3468 3469 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3470 mutex_unlock(&ctlr->add_lock); 3471 3472 /* 3473 * Release the last reference on the controller if its driver 3474 * has not yet been converted to devm_spi_alloc_host/target(). 3475 */ 3476 if (!ctlr->devm_allocated) 3477 put_device(&ctlr->dev); 3478 } 3479 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3480 3481 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3482 { 3483 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3484 } 3485 3486 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3487 { 3488 mutex_lock(&ctlr->bus_lock_mutex); 3489 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3490 mutex_unlock(&ctlr->bus_lock_mutex); 3491 } 3492 3493 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3494 { 3495 mutex_lock(&ctlr->bus_lock_mutex); 3496 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3497 mutex_unlock(&ctlr->bus_lock_mutex); 3498 } 3499 3500 int spi_controller_suspend(struct spi_controller *ctlr) 3501 { 3502 int ret = 0; 3503 3504 /* Basically no-ops for non-queued controllers */ 3505 if (ctlr->queued) { 3506 ret = spi_stop_queue(ctlr); 3507 if (ret) 3508 dev_err(&ctlr->dev, "queue stop failed\n"); 3509 } 3510 3511 __spi_mark_suspended(ctlr); 3512 return ret; 3513 } 3514 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3515 3516 int spi_controller_resume(struct spi_controller *ctlr) 3517 { 3518 int ret = 0; 3519 3520 __spi_mark_resumed(ctlr); 3521 3522 if (ctlr->queued) { 3523 ret = spi_start_queue(ctlr); 3524 if (ret) 3525 dev_err(&ctlr->dev, "queue restart failed\n"); 3526 } 3527 return ret; 3528 } 3529 EXPORT_SYMBOL_GPL(spi_controller_resume); 3530 3531 /*-------------------------------------------------------------------------*/ 3532 3533 /* Core methods for spi_message alterations */ 3534 3535 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3536 struct spi_message *msg, 3537 void *res) 3538 { 3539 struct spi_replaced_transfers *rxfer = res; 3540 size_t i; 3541 3542 /* Call extra callback if requested */ 3543 if (rxfer->release) 3544 rxfer->release(ctlr, msg, res); 3545 3546 /* Insert replaced transfers back into the message */ 3547 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3548 3549 /* Remove the formerly inserted entries */ 3550 for (i = 0; i < rxfer->inserted; i++) 3551 list_del(&rxfer->inserted_transfers[i].transfer_list); 3552 } 3553 3554 /** 3555 * spi_replace_transfers - replace transfers with several transfers 3556 * and register change with spi_message.resources 3557 * @msg: the spi_message we work upon 3558 * @xfer_first: the first spi_transfer we want to replace 3559 * @remove: number of transfers to remove 3560 * @insert: the number of transfers we want to insert instead 3561 * @release: extra release code necessary in some circumstances 3562 * @extradatasize: extra data to allocate (with alignment guarantees 3563 * of struct @spi_transfer) 3564 * @gfp: gfp flags 3565 * 3566 * Returns: pointer to @spi_replaced_transfers, 3567 * PTR_ERR(...) in case of errors. 3568 */ 3569 static struct spi_replaced_transfers *spi_replace_transfers( 3570 struct spi_message *msg, 3571 struct spi_transfer *xfer_first, 3572 size_t remove, 3573 size_t insert, 3574 spi_replaced_release_t release, 3575 size_t extradatasize, 3576 gfp_t gfp) 3577 { 3578 struct spi_replaced_transfers *rxfer; 3579 struct spi_transfer *xfer; 3580 size_t i; 3581 3582 /* Allocate the structure using spi_res */ 3583 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3584 struct_size(rxfer, inserted_transfers, insert) 3585 + extradatasize, 3586 gfp); 3587 if (!rxfer) 3588 return ERR_PTR(-ENOMEM); 3589 3590 /* The release code to invoke before running the generic release */ 3591 rxfer->release = release; 3592 3593 /* Assign extradata */ 3594 if (extradatasize) 3595 rxfer->extradata = 3596 &rxfer->inserted_transfers[insert]; 3597 3598 /* Init the replaced_transfers list */ 3599 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3600 3601 /* 3602 * Assign the list_entry after which we should reinsert 3603 * the @replaced_transfers - it may be spi_message.messages! 3604 */ 3605 rxfer->replaced_after = xfer_first->transfer_list.prev; 3606 3607 /* Remove the requested number of transfers */ 3608 for (i = 0; i < remove; i++) { 3609 /* 3610 * If the entry after replaced_after it is msg->transfers 3611 * then we have been requested to remove more transfers 3612 * than are in the list. 3613 */ 3614 if (rxfer->replaced_after->next == &msg->transfers) { 3615 dev_err(&msg->spi->dev, 3616 "requested to remove more spi_transfers than are available\n"); 3617 /* Insert replaced transfers back into the message */ 3618 list_splice(&rxfer->replaced_transfers, 3619 rxfer->replaced_after); 3620 3621 /* Free the spi_replace_transfer structure... */ 3622 spi_res_free(rxfer); 3623 3624 /* ...and return with an error */ 3625 return ERR_PTR(-EINVAL); 3626 } 3627 3628 /* 3629 * Remove the entry after replaced_after from list of 3630 * transfers and add it to list of replaced_transfers. 3631 */ 3632 list_move_tail(rxfer->replaced_after->next, 3633 &rxfer->replaced_transfers); 3634 } 3635 3636 /* 3637 * Create copy of the given xfer with identical settings 3638 * based on the first transfer to get removed. 3639 */ 3640 for (i = 0; i < insert; i++) { 3641 /* We need to run in reverse order */ 3642 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3643 3644 /* Copy all spi_transfer data */ 3645 memcpy(xfer, xfer_first, sizeof(*xfer)); 3646 3647 /* Add to list */ 3648 list_add(&xfer->transfer_list, rxfer->replaced_after); 3649 3650 /* Clear cs_change and delay for all but the last */ 3651 if (i) { 3652 xfer->cs_change = false; 3653 xfer->delay.value = 0; 3654 } 3655 } 3656 3657 /* Set up inserted... */ 3658 rxfer->inserted = insert; 3659 3660 /* ...and register it with spi_res/spi_message */ 3661 spi_res_add(msg, rxfer); 3662 3663 return rxfer; 3664 } 3665 3666 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3667 struct spi_message *msg, 3668 struct spi_transfer **xferp, 3669 size_t maxsize) 3670 { 3671 struct spi_transfer *xfer = *xferp, *xfers; 3672 struct spi_replaced_transfers *srt; 3673 size_t offset; 3674 size_t count, i; 3675 3676 /* Calculate how many we have to replace */ 3677 count = DIV_ROUND_UP(xfer->len, maxsize); 3678 3679 /* Create replacement */ 3680 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3681 if (IS_ERR(srt)) 3682 return PTR_ERR(srt); 3683 xfers = srt->inserted_transfers; 3684 3685 /* 3686 * Now handle each of those newly inserted spi_transfers. 3687 * Note that the replacements spi_transfers all are preset 3688 * to the same values as *xferp, so tx_buf, rx_buf and len 3689 * are all identical (as well as most others) 3690 * so we just have to fix up len and the pointers. 3691 */ 3692 3693 /* 3694 * The first transfer just needs the length modified, so we 3695 * run it outside the loop. 3696 */ 3697 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3698 3699 /* All the others need rx_buf/tx_buf also set */ 3700 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3701 /* Update rx_buf, tx_buf and DMA */ 3702 if (xfers[i].rx_buf) 3703 xfers[i].rx_buf += offset; 3704 if (xfers[i].tx_buf) 3705 xfers[i].tx_buf += offset; 3706 3707 /* Update length */ 3708 xfers[i].len = min(maxsize, xfers[i].len - offset); 3709 } 3710 3711 /* 3712 * We set up xferp to the last entry we have inserted, 3713 * so that we skip those already split transfers. 3714 */ 3715 *xferp = &xfers[count - 1]; 3716 3717 /* Increment statistics counters */ 3718 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3719 transfers_split_maxsize); 3720 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3721 transfers_split_maxsize); 3722 3723 return 0; 3724 } 3725 3726 /** 3727 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3728 * when an individual transfer exceeds a 3729 * certain size 3730 * @ctlr: the @spi_controller for this transfer 3731 * @msg: the @spi_message to transform 3732 * @maxsize: the maximum when to apply this 3733 * 3734 * This function allocates resources that are automatically freed during the 3735 * spi message unoptimize phase so this function should only be called from 3736 * optimize_message callbacks. 3737 * 3738 * Return: status of transformation 3739 */ 3740 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3741 struct spi_message *msg, 3742 size_t maxsize) 3743 { 3744 struct spi_transfer *xfer; 3745 int ret; 3746 3747 /* 3748 * Iterate over the transfer_list, 3749 * but note that xfer is advanced to the last transfer inserted 3750 * to avoid checking sizes again unnecessarily (also xfer does 3751 * potentially belong to a different list by the time the 3752 * replacement has happened). 3753 */ 3754 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3755 if (xfer->len > maxsize) { 3756 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3757 maxsize); 3758 if (ret) 3759 return ret; 3760 } 3761 } 3762 3763 return 0; 3764 } 3765 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3766 3767 3768 /** 3769 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3770 * when an individual transfer exceeds a 3771 * certain number of SPI words 3772 * @ctlr: the @spi_controller for this transfer 3773 * @msg: the @spi_message to transform 3774 * @maxwords: the number of words to limit each transfer to 3775 * 3776 * This function allocates resources that are automatically freed during the 3777 * spi message unoptimize phase so this function should only be called from 3778 * optimize_message callbacks. 3779 * 3780 * Return: status of transformation 3781 */ 3782 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3783 struct spi_message *msg, 3784 size_t maxwords) 3785 { 3786 struct spi_transfer *xfer; 3787 3788 /* 3789 * Iterate over the transfer_list, 3790 * but note that xfer is advanced to the last transfer inserted 3791 * to avoid checking sizes again unnecessarily (also xfer does 3792 * potentially belong to a different list by the time the 3793 * replacement has happened). 3794 */ 3795 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3796 size_t maxsize; 3797 int ret; 3798 3799 maxsize = maxwords * spi_bpw_to_bytes(xfer->bits_per_word); 3800 if (xfer->len > maxsize) { 3801 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3802 maxsize); 3803 if (ret) 3804 return ret; 3805 } 3806 } 3807 3808 return 0; 3809 } 3810 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3811 3812 /*-------------------------------------------------------------------------*/ 3813 3814 /* 3815 * Core methods for SPI controller protocol drivers. Some of the 3816 * other core methods are currently defined as inline functions. 3817 */ 3818 3819 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3820 u8 bits_per_word) 3821 { 3822 if (ctlr->bits_per_word_mask) { 3823 /* Only 32 bits fit in the mask */ 3824 if (bits_per_word > 32) 3825 return -EINVAL; 3826 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3827 return -EINVAL; 3828 } 3829 3830 return 0; 3831 } 3832 3833 /** 3834 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3835 * @spi: the device that requires specific CS timing configuration 3836 * 3837 * Return: zero on success, else a negative error code. 3838 */ 3839 static int spi_set_cs_timing(struct spi_device *spi) 3840 { 3841 struct device *parent = spi->controller->dev.parent; 3842 int status = 0; 3843 3844 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3845 if (spi->controller->auto_runtime_pm) { 3846 status = pm_runtime_get_sync(parent); 3847 if (status < 0) { 3848 pm_runtime_put_noidle(parent); 3849 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3850 status); 3851 return status; 3852 } 3853 3854 status = spi->controller->set_cs_timing(spi); 3855 pm_runtime_put_autosuspend(parent); 3856 } else { 3857 status = spi->controller->set_cs_timing(spi); 3858 } 3859 } 3860 return status; 3861 } 3862 3863 /** 3864 * spi_setup - setup SPI mode and clock rate 3865 * @spi: the device whose settings are being modified 3866 * Context: can sleep, and no requests are queued to the device 3867 * 3868 * SPI protocol drivers may need to update the transfer mode if the 3869 * device doesn't work with its default. They may likewise need 3870 * to update clock rates or word sizes from initial values. This function 3871 * changes those settings, and must be called from a context that can sleep. 3872 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3873 * effect the next time the device is selected and data is transferred to 3874 * or from it. When this function returns, the SPI device is deselected. 3875 * 3876 * Note that this call will fail if the protocol driver specifies an option 3877 * that the underlying controller or its driver does not support. For 3878 * example, not all hardware supports wire transfers using nine bit words, 3879 * LSB-first wire encoding, or active-high chipselects. 3880 * 3881 * Return: zero on success, else a negative error code. 3882 */ 3883 int spi_setup(struct spi_device *spi) 3884 { 3885 unsigned bad_bits, ugly_bits; 3886 int status; 3887 3888 /* 3889 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3890 * are set at the same time. 3891 */ 3892 if ((hweight_long(spi->mode & 3893 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3894 (hweight_long(spi->mode & 3895 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3896 dev_err(&spi->dev, 3897 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3898 return -EINVAL; 3899 } 3900 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3901 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3902 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3903 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3904 return -EINVAL; 3905 /* Check against conflicting MOSI idle configuration */ 3906 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 3907 dev_err(&spi->dev, 3908 "setup: MOSI configured to idle low and high at the same time.\n"); 3909 return -EINVAL; 3910 } 3911 /* 3912 * Help drivers fail *cleanly* when they need options 3913 * that aren't supported with their current controller. 3914 * SPI_CS_WORD has a fallback software implementation, 3915 * so it is ignored here. 3916 */ 3917 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3918 SPI_NO_TX | SPI_NO_RX); 3919 ugly_bits = bad_bits & 3920 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3921 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3922 if (ugly_bits) { 3923 dev_warn(&spi->dev, 3924 "setup: ignoring unsupported mode bits %x\n", 3925 ugly_bits); 3926 spi->mode &= ~ugly_bits; 3927 bad_bits &= ~ugly_bits; 3928 } 3929 if (bad_bits) { 3930 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3931 bad_bits); 3932 return -EINVAL; 3933 } 3934 3935 if (!spi->bits_per_word) { 3936 spi->bits_per_word = 8; 3937 } else { 3938 /* 3939 * Some controllers may not support the default 8 bits-per-word 3940 * so only perform the check when this is explicitly provided. 3941 */ 3942 status = __spi_validate_bits_per_word(spi->controller, 3943 spi->bits_per_word); 3944 if (status) 3945 return status; 3946 } 3947 3948 if (spi->controller->max_speed_hz && 3949 (!spi->max_speed_hz || 3950 spi->max_speed_hz > spi->controller->max_speed_hz)) 3951 spi->max_speed_hz = spi->controller->max_speed_hz; 3952 3953 mutex_lock(&spi->controller->io_mutex); 3954 3955 if (spi->controller->setup) { 3956 status = spi->controller->setup(spi); 3957 if (status) { 3958 mutex_unlock(&spi->controller->io_mutex); 3959 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3960 status); 3961 return status; 3962 } 3963 } 3964 3965 status = spi_set_cs_timing(spi); 3966 if (status) { 3967 mutex_unlock(&spi->controller->io_mutex); 3968 return status; 3969 } 3970 3971 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3972 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3973 if (status < 0) { 3974 mutex_unlock(&spi->controller->io_mutex); 3975 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3976 status); 3977 return status; 3978 } 3979 3980 /* 3981 * We do not want to return positive value from pm_runtime_get, 3982 * there are many instances of devices calling spi_setup() and 3983 * checking for a non-zero return value instead of a negative 3984 * return value. 3985 */ 3986 status = 0; 3987 3988 spi_set_cs(spi, false, true); 3989 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3990 } else { 3991 spi_set_cs(spi, false, true); 3992 } 3993 3994 mutex_unlock(&spi->controller->io_mutex); 3995 3996 if (spi->rt && !spi->controller->rt) { 3997 spi->controller->rt = true; 3998 spi_set_thread_rt(spi->controller); 3999 } 4000 4001 trace_spi_setup(spi, status); 4002 4003 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4004 spi->mode & SPI_MODE_X_MASK, 4005 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4006 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4007 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4008 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4009 spi->bits_per_word, spi->max_speed_hz, 4010 status); 4011 4012 return status; 4013 } 4014 EXPORT_SYMBOL_GPL(spi_setup); 4015 4016 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4017 struct spi_device *spi) 4018 { 4019 int delay1, delay2; 4020 4021 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4022 if (delay1 < 0) 4023 return delay1; 4024 4025 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4026 if (delay2 < 0) 4027 return delay2; 4028 4029 if (delay1 < delay2) 4030 memcpy(&xfer->word_delay, &spi->word_delay, 4031 sizeof(xfer->word_delay)); 4032 4033 return 0; 4034 } 4035 4036 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4037 { 4038 struct spi_controller *ctlr = spi->controller; 4039 struct spi_transfer *xfer; 4040 int w_size; 4041 4042 if (list_empty(&message->transfers)) 4043 return -EINVAL; 4044 4045 message->spi = spi; 4046 4047 /* 4048 * Half-duplex links include original MicroWire, and ones with 4049 * only one data pin like SPI_3WIRE (switches direction) or where 4050 * either MOSI or MISO is missing. They can also be caused by 4051 * software limitations. 4052 */ 4053 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4054 (spi->mode & SPI_3WIRE)) { 4055 unsigned flags = ctlr->flags; 4056 4057 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4058 if (xfer->rx_buf && xfer->tx_buf) 4059 return -EINVAL; 4060 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4061 return -EINVAL; 4062 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4063 return -EINVAL; 4064 } 4065 } 4066 4067 /* 4068 * Set transfer bits_per_word and max speed as spi device default if 4069 * it is not set for this transfer. 4070 * Set transfer tx_nbits and rx_nbits as single transfer default 4071 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4072 * Ensure transfer word_delay is at least as long as that required by 4073 * device itself. 4074 */ 4075 message->frame_length = 0; 4076 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4077 xfer->effective_speed_hz = 0; 4078 message->frame_length += xfer->len; 4079 if (!xfer->bits_per_word) 4080 xfer->bits_per_word = spi->bits_per_word; 4081 4082 if (!xfer->speed_hz) 4083 xfer->speed_hz = spi->max_speed_hz; 4084 4085 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4086 xfer->speed_hz = ctlr->max_speed_hz; 4087 4088 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4089 return -EINVAL; 4090 4091 /* DDR mode is supported only if controller has dtr_caps=true. 4092 * default considered as SDR mode for SPI and QSPI controller. 4093 * Note: This is applicable only to QSPI controller. 4094 */ 4095 if (xfer->dtr_mode && !ctlr->dtr_caps) 4096 return -EINVAL; 4097 4098 /* 4099 * SPI transfer length should be multiple of SPI word size 4100 * where SPI word size should be power-of-two multiple. 4101 */ 4102 if (xfer->bits_per_word <= 8) 4103 w_size = 1; 4104 else if (xfer->bits_per_word <= 16) 4105 w_size = 2; 4106 else 4107 w_size = 4; 4108 4109 /* No partial transfers accepted */ 4110 if (xfer->len % w_size) 4111 return -EINVAL; 4112 4113 if (xfer->speed_hz && ctlr->min_speed_hz && 4114 xfer->speed_hz < ctlr->min_speed_hz) 4115 return -EINVAL; 4116 4117 if (xfer->tx_buf && !xfer->tx_nbits) 4118 xfer->tx_nbits = SPI_NBITS_SINGLE; 4119 if (xfer->rx_buf && !xfer->rx_nbits) 4120 xfer->rx_nbits = SPI_NBITS_SINGLE; 4121 /* 4122 * Check transfer tx/rx_nbits: 4123 * 1. check the value matches one of single, dual and quad 4124 * 2. check tx/rx_nbits match the mode in spi_device 4125 */ 4126 if (xfer->tx_buf) { 4127 if (spi->mode & SPI_NO_TX) 4128 return -EINVAL; 4129 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4130 xfer->tx_nbits != SPI_NBITS_DUAL && 4131 xfer->tx_nbits != SPI_NBITS_QUAD && 4132 xfer->tx_nbits != SPI_NBITS_OCTAL) 4133 return -EINVAL; 4134 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4135 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) 4136 return -EINVAL; 4137 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4138 !(spi->mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) 4139 return -EINVAL; 4140 if ((xfer->tx_nbits == SPI_NBITS_OCTAL) && 4141 !(spi->mode & SPI_TX_OCTAL)) 4142 return -EINVAL; 4143 } 4144 /* Check transfer rx_nbits */ 4145 if (xfer->rx_buf) { 4146 if (spi->mode & SPI_NO_RX) 4147 return -EINVAL; 4148 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4149 xfer->rx_nbits != SPI_NBITS_DUAL && 4150 xfer->rx_nbits != SPI_NBITS_QUAD && 4151 xfer->rx_nbits != SPI_NBITS_OCTAL) 4152 return -EINVAL; 4153 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4154 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 4155 return -EINVAL; 4156 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4157 !(spi->mode & (SPI_RX_QUAD | SPI_RX_OCTAL))) 4158 return -EINVAL; 4159 if ((xfer->rx_nbits == SPI_NBITS_OCTAL) && 4160 !(spi->mode & SPI_RX_OCTAL)) 4161 return -EINVAL; 4162 } 4163 4164 if (_spi_xfer_word_delay_update(xfer, spi)) 4165 return -EINVAL; 4166 4167 /* Make sure controller supports required offload features. */ 4168 if (xfer->offload_flags) { 4169 if (!message->offload) 4170 return -EINVAL; 4171 4172 if (xfer->offload_flags & ~message->offload->xfer_flags) 4173 return -EINVAL; 4174 } 4175 } 4176 4177 message->status = -EINPROGRESS; 4178 4179 return 0; 4180 } 4181 4182 /* 4183 * spi_split_transfers - generic handling of transfer splitting 4184 * @msg: the message to split 4185 * 4186 * Under certain conditions, a SPI controller may not support arbitrary 4187 * transfer sizes or other features required by a peripheral. This function 4188 * will split the transfers in the message into smaller transfers that are 4189 * supported by the controller. 4190 * 4191 * Controllers with special requirements not covered here can also split 4192 * transfers in the optimize_message() callback. 4193 * 4194 * Context: can sleep 4195 * Return: zero on success, else a negative error code 4196 */ 4197 static int spi_split_transfers(struct spi_message *msg) 4198 { 4199 struct spi_controller *ctlr = msg->spi->controller; 4200 struct spi_transfer *xfer; 4201 int ret; 4202 4203 /* 4204 * If an SPI controller does not support toggling the CS line on each 4205 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4206 * for the CS line, we can emulate the CS-per-word hardware function by 4207 * splitting transfers into one-word transfers and ensuring that 4208 * cs_change is set for each transfer. 4209 */ 4210 if ((msg->spi->mode & SPI_CS_WORD) && 4211 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4212 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4213 if (ret) 4214 return ret; 4215 4216 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4217 /* Don't change cs_change on the last entry in the list */ 4218 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4219 break; 4220 4221 xfer->cs_change = 1; 4222 } 4223 } else { 4224 ret = spi_split_transfers_maxsize(ctlr, msg, 4225 spi_max_transfer_size(msg->spi)); 4226 if (ret) 4227 return ret; 4228 } 4229 4230 return 0; 4231 } 4232 4233 /* 4234 * __spi_optimize_message - shared implementation for spi_optimize_message() 4235 * and spi_maybe_optimize_message() 4236 * @spi: the device that will be used for the message 4237 * @msg: the message to optimize 4238 * 4239 * Peripheral drivers will call spi_optimize_message() and the spi core will 4240 * call spi_maybe_optimize_message() instead of calling this directly. 4241 * 4242 * It is not valid to call this on a message that has already been optimized. 4243 * 4244 * Return: zero on success, else a negative error code 4245 */ 4246 static int __spi_optimize_message(struct spi_device *spi, 4247 struct spi_message *msg) 4248 { 4249 struct spi_controller *ctlr = spi->controller; 4250 int ret; 4251 4252 ret = __spi_validate(spi, msg); 4253 if (ret) 4254 return ret; 4255 4256 ret = spi_split_transfers(msg); 4257 if (ret) 4258 return ret; 4259 4260 if (ctlr->optimize_message) { 4261 ret = ctlr->optimize_message(msg); 4262 if (ret) { 4263 spi_res_release(ctlr, msg); 4264 return ret; 4265 } 4266 } 4267 4268 msg->optimized = true; 4269 4270 return 0; 4271 } 4272 4273 /* 4274 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4275 * @spi: the device that will be used for the message 4276 * @msg: the message to optimize 4277 * Return: zero on success, else a negative error code 4278 */ 4279 static int spi_maybe_optimize_message(struct spi_device *spi, 4280 struct spi_message *msg) 4281 { 4282 if (spi->controller->defer_optimize_message) { 4283 msg->spi = spi; 4284 return 0; 4285 } 4286 4287 if (msg->pre_optimized) 4288 return 0; 4289 4290 return __spi_optimize_message(spi, msg); 4291 } 4292 4293 /** 4294 * spi_optimize_message - do any one-time validation and setup for a SPI message 4295 * @spi: the device that will be used for the message 4296 * @msg: the message to optimize 4297 * 4298 * Peripheral drivers that reuse the same message repeatedly may call this to 4299 * perform as much message prep as possible once, rather than repeating it each 4300 * time a message transfer is performed to improve throughput and reduce CPU 4301 * usage. 4302 * 4303 * Once a message has been optimized, it cannot be modified with the exception 4304 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4305 * only the data in the memory it points to). 4306 * 4307 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4308 * to avoid leaking resources. 4309 * 4310 * Context: can sleep 4311 * Return: zero on success, else a negative error code 4312 */ 4313 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4314 { 4315 int ret; 4316 4317 /* 4318 * Pre-optimization is not supported and optimization is deferred e.g. 4319 * when using spi-mux. 4320 */ 4321 if (spi->controller->defer_optimize_message) 4322 return 0; 4323 4324 ret = __spi_optimize_message(spi, msg); 4325 if (ret) 4326 return ret; 4327 4328 /* 4329 * This flag indicates that the peripheral driver called spi_optimize_message() 4330 * and therefore we shouldn't unoptimize message automatically when finalizing 4331 * the message but rather wait until spi_unoptimize_message() is called 4332 * by the peripheral driver. 4333 */ 4334 msg->pre_optimized = true; 4335 4336 return 0; 4337 } 4338 EXPORT_SYMBOL_GPL(spi_optimize_message); 4339 4340 /** 4341 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4342 * @msg: the message to unoptimize 4343 * 4344 * Calls to this function must be balanced with calls to spi_optimize_message(). 4345 * 4346 * Context: can sleep 4347 */ 4348 void spi_unoptimize_message(struct spi_message *msg) 4349 { 4350 if (msg->spi->controller->defer_optimize_message) 4351 return; 4352 4353 __spi_unoptimize_message(msg); 4354 msg->pre_optimized = false; 4355 } 4356 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4357 4358 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4359 { 4360 struct spi_controller *ctlr = spi->controller; 4361 struct spi_transfer *xfer; 4362 4363 /* 4364 * Some controllers do not support doing regular SPI transfers. Return 4365 * ENOTSUPP when this is the case. 4366 */ 4367 if (!ctlr->transfer) 4368 return -ENOTSUPP; 4369 4370 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4371 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4372 4373 trace_spi_message_submit(message); 4374 4375 if (!ctlr->ptp_sts_supported) { 4376 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4377 xfer->ptp_sts_word_pre = 0; 4378 ptp_read_system_prets(xfer->ptp_sts); 4379 } 4380 } 4381 4382 return ctlr->transfer(spi, message); 4383 } 4384 4385 static void devm_spi_unoptimize_message(void *msg) 4386 { 4387 spi_unoptimize_message(msg); 4388 } 4389 4390 /** 4391 * devm_spi_optimize_message - managed version of spi_optimize_message() 4392 * @dev: the device that manages @msg (usually @spi->dev) 4393 * @spi: the device that will be used for the message 4394 * @msg: the message to optimize 4395 * Return: zero on success, else a negative error code 4396 * 4397 * spi_unoptimize_message() will automatically be called when the device is 4398 * removed. 4399 */ 4400 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4401 struct spi_message *msg) 4402 { 4403 int ret; 4404 4405 ret = spi_optimize_message(spi, msg); 4406 if (ret) 4407 return ret; 4408 4409 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4410 } 4411 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4412 4413 /** 4414 * spi_async - asynchronous SPI transfer 4415 * @spi: device with which data will be exchanged 4416 * @message: describes the data transfers, including completion callback 4417 * Context: any (IRQs may be blocked, etc) 4418 * 4419 * This call may be used in_irq and other contexts which can't sleep, 4420 * as well as from task contexts which can sleep. 4421 * 4422 * The completion callback is invoked in a context which can't sleep. 4423 * Before that invocation, the value of message->status is undefined. 4424 * When the callback is issued, message->status holds either zero (to 4425 * indicate complete success) or a negative error code. After that 4426 * callback returns, the driver which issued the transfer request may 4427 * deallocate the associated memory; it's no longer in use by any SPI 4428 * core or controller driver code. 4429 * 4430 * Note that although all messages to a spi_device are handled in 4431 * FIFO order, messages may go to different devices in other orders. 4432 * Some device might be higher priority, or have various "hard" access 4433 * time requirements, for example. 4434 * 4435 * On detection of any fault during the transfer, processing of 4436 * the entire message is aborted, and the device is deselected. 4437 * Until returning from the associated message completion callback, 4438 * no other spi_message queued to that device will be processed. 4439 * (This rule applies equally to all the synchronous transfer calls, 4440 * which are wrappers around this core asynchronous primitive.) 4441 * 4442 * Return: zero on success, else a negative error code. 4443 */ 4444 int spi_async(struct spi_device *spi, struct spi_message *message) 4445 { 4446 struct spi_controller *ctlr = spi->controller; 4447 int ret; 4448 unsigned long flags; 4449 4450 ret = spi_maybe_optimize_message(spi, message); 4451 if (ret) 4452 return ret; 4453 4454 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4455 4456 if (ctlr->bus_lock_flag) 4457 ret = -EBUSY; 4458 else 4459 ret = __spi_async(spi, message); 4460 4461 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4462 4463 return ret; 4464 } 4465 EXPORT_SYMBOL_GPL(spi_async); 4466 4467 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4468 { 4469 bool was_busy; 4470 int ret; 4471 4472 mutex_lock(&ctlr->io_mutex); 4473 4474 was_busy = ctlr->busy; 4475 4476 ctlr->cur_msg = msg; 4477 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4478 if (ret) 4479 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4480 ctlr->cur_msg = NULL; 4481 ctlr->fallback = false; 4482 4483 if (!was_busy) { 4484 kfree(ctlr->dummy_rx); 4485 ctlr->dummy_rx = NULL; 4486 kfree(ctlr->dummy_tx); 4487 ctlr->dummy_tx = NULL; 4488 if (ctlr->unprepare_transfer_hardware && 4489 ctlr->unprepare_transfer_hardware(ctlr)) 4490 dev_err(&ctlr->dev, 4491 "failed to unprepare transfer hardware\n"); 4492 spi_idle_runtime_pm(ctlr); 4493 } 4494 4495 mutex_unlock(&ctlr->io_mutex); 4496 } 4497 4498 /*-------------------------------------------------------------------------*/ 4499 4500 /* 4501 * Utility methods for SPI protocol drivers, layered on 4502 * top of the core. Some other utility methods are defined as 4503 * inline functions. 4504 */ 4505 4506 static void spi_complete(void *arg) 4507 { 4508 complete(arg); 4509 } 4510 4511 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4512 { 4513 DECLARE_COMPLETION_ONSTACK(done); 4514 unsigned long flags; 4515 int status; 4516 struct spi_controller *ctlr = spi->controller; 4517 4518 if (__spi_check_suspended(ctlr)) { 4519 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4520 return -ESHUTDOWN; 4521 } 4522 4523 status = spi_maybe_optimize_message(spi, message); 4524 if (status) 4525 return status; 4526 4527 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4528 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4529 4530 /* 4531 * Checking queue_empty here only guarantees async/sync message 4532 * ordering when coming from the same context. It does not need to 4533 * guard against reentrancy from a different context. The io_mutex 4534 * will catch those cases. 4535 */ 4536 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4537 message->actual_length = 0; 4538 message->status = -EINPROGRESS; 4539 4540 trace_spi_message_submit(message); 4541 4542 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4543 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4544 4545 __spi_transfer_message_noqueue(ctlr, message); 4546 4547 return message->status; 4548 } 4549 4550 /* 4551 * There are messages in the async queue that could have originated 4552 * from the same context, so we need to preserve ordering. 4553 * Therefor we send the message to the async queue and wait until they 4554 * are completed. 4555 */ 4556 message->complete = spi_complete; 4557 message->context = &done; 4558 4559 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4560 status = __spi_async(spi, message); 4561 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4562 4563 if (status == 0) { 4564 wait_for_completion(&done); 4565 status = message->status; 4566 } 4567 message->complete = NULL; 4568 message->context = NULL; 4569 4570 return status; 4571 } 4572 4573 /** 4574 * spi_sync - blocking/synchronous SPI data transfers 4575 * @spi: device with which data will be exchanged 4576 * @message: describes the data transfers 4577 * Context: can sleep 4578 * 4579 * This call may only be used from a context that may sleep. The sleep 4580 * is non-interruptible, and has no timeout. Low-overhead controller 4581 * drivers may DMA directly into and out of the message buffers. 4582 * 4583 * Note that the SPI device's chip select is active during the message, 4584 * and then is normally disabled between messages. Drivers for some 4585 * frequently-used devices may want to minimize costs of selecting a chip, 4586 * by leaving it selected in anticipation that the next message will go 4587 * to the same chip. (That may increase power usage.) 4588 * 4589 * Also, the caller is guaranteeing that the memory associated with the 4590 * message will not be freed before this call returns. 4591 * 4592 * Return: zero on success, else a negative error code. 4593 */ 4594 int spi_sync(struct spi_device *spi, struct spi_message *message) 4595 { 4596 int ret; 4597 4598 mutex_lock(&spi->controller->bus_lock_mutex); 4599 ret = __spi_sync(spi, message); 4600 mutex_unlock(&spi->controller->bus_lock_mutex); 4601 4602 return ret; 4603 } 4604 EXPORT_SYMBOL_GPL(spi_sync); 4605 4606 /** 4607 * spi_sync_locked - version of spi_sync with exclusive bus usage 4608 * @spi: device with which data will be exchanged 4609 * @message: describes the data transfers 4610 * Context: can sleep 4611 * 4612 * This call may only be used from a context that may sleep. The sleep 4613 * is non-interruptible, and has no timeout. Low-overhead controller 4614 * drivers may DMA directly into and out of the message buffers. 4615 * 4616 * This call should be used by drivers that require exclusive access to the 4617 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4618 * be released by a spi_bus_unlock call when the exclusive access is over. 4619 * 4620 * Return: zero on success, else a negative error code. 4621 */ 4622 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4623 { 4624 return __spi_sync(spi, message); 4625 } 4626 EXPORT_SYMBOL_GPL(spi_sync_locked); 4627 4628 /** 4629 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4630 * @ctlr: SPI bus controller that should be locked for exclusive bus access 4631 * Context: can sleep 4632 * 4633 * This call may only be used from a context that may sleep. The sleep 4634 * is non-interruptible, and has no timeout. 4635 * 4636 * This call should be used by drivers that require exclusive access to the 4637 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4638 * exclusive access is over. Data transfer must be done by spi_sync_locked 4639 * and spi_async_locked calls when the SPI bus lock is held. 4640 * 4641 * Return: always zero. 4642 */ 4643 int spi_bus_lock(struct spi_controller *ctlr) 4644 { 4645 unsigned long flags; 4646 4647 mutex_lock(&ctlr->bus_lock_mutex); 4648 4649 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4650 ctlr->bus_lock_flag = 1; 4651 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4652 4653 /* Mutex remains locked until spi_bus_unlock() is called */ 4654 4655 return 0; 4656 } 4657 EXPORT_SYMBOL_GPL(spi_bus_lock); 4658 4659 /** 4660 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4661 * @ctlr: SPI bus controller that was locked for exclusive bus access 4662 * Context: can sleep 4663 * 4664 * This call may only be used from a context that may sleep. The sleep 4665 * is non-interruptible, and has no timeout. 4666 * 4667 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4668 * call. 4669 * 4670 * Return: always zero. 4671 */ 4672 int spi_bus_unlock(struct spi_controller *ctlr) 4673 { 4674 ctlr->bus_lock_flag = 0; 4675 4676 mutex_unlock(&ctlr->bus_lock_mutex); 4677 4678 return 0; 4679 } 4680 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4681 4682 /* Portable code must never pass more than 32 bytes */ 4683 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4684 4685 static u8 *buf; 4686 4687 /** 4688 * spi_write_then_read - SPI synchronous write followed by read 4689 * @spi: device with which data will be exchanged 4690 * @txbuf: data to be written (need not be DMA-safe) 4691 * @n_tx: size of txbuf, in bytes 4692 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4693 * @n_rx: size of rxbuf, in bytes 4694 * Context: can sleep 4695 * 4696 * This performs a half duplex MicroWire style transaction with the 4697 * device, sending txbuf and then reading rxbuf. The return value 4698 * is zero for success, else a negative errno status code. 4699 * This call may only be used from a context that may sleep. 4700 * 4701 * Parameters to this routine are always copied using a small buffer. 4702 * Performance-sensitive or bulk transfer code should instead use 4703 * spi_{async,sync}() calls with DMA-safe buffers. 4704 * 4705 * Return: zero on success, else a negative error code. 4706 */ 4707 int spi_write_then_read(struct spi_device *spi, 4708 const void *txbuf, unsigned n_tx, 4709 void *rxbuf, unsigned n_rx) 4710 { 4711 static DEFINE_MUTEX(lock); 4712 4713 int status; 4714 struct spi_message message; 4715 struct spi_transfer x[2]; 4716 u8 *local_buf; 4717 4718 /* 4719 * Use preallocated DMA-safe buffer if we can. We can't avoid 4720 * copying here, (as a pure convenience thing), but we can 4721 * keep heap costs out of the hot path unless someone else is 4722 * using the pre-allocated buffer or the transfer is too large. 4723 */ 4724 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4725 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4726 GFP_KERNEL | GFP_DMA); 4727 if (!local_buf) 4728 return -ENOMEM; 4729 } else { 4730 local_buf = buf; 4731 } 4732 4733 spi_message_init(&message); 4734 memset(x, 0, sizeof(x)); 4735 if (n_tx) { 4736 x[0].len = n_tx; 4737 spi_message_add_tail(&x[0], &message); 4738 } 4739 if (n_rx) { 4740 x[1].len = n_rx; 4741 spi_message_add_tail(&x[1], &message); 4742 } 4743 4744 memcpy(local_buf, txbuf, n_tx); 4745 x[0].tx_buf = local_buf; 4746 x[1].rx_buf = local_buf + n_tx; 4747 4748 /* Do the I/O */ 4749 status = spi_sync(spi, &message); 4750 if (status == 0) 4751 memcpy(rxbuf, x[1].rx_buf, n_rx); 4752 4753 if (x[0].tx_buf == buf) 4754 mutex_unlock(&lock); 4755 else 4756 kfree(local_buf); 4757 4758 return status; 4759 } 4760 EXPORT_SYMBOL_GPL(spi_write_then_read); 4761 4762 /*-------------------------------------------------------------------------*/ 4763 4764 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4765 /* Must call put_device() when done with returned spi_device device */ 4766 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4767 { 4768 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4769 4770 return dev ? to_spi_device(dev) : NULL; 4771 } 4772 4773 /* The spi controllers are not using spi_bus, so we find it with another way */ 4774 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4775 { 4776 struct device *dev; 4777 4778 dev = class_find_device_by_of_node(&spi_controller_class, node); 4779 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4780 dev = class_find_device_by_of_node(&spi_target_class, node); 4781 if (!dev) 4782 return NULL; 4783 4784 /* Reference got in class_find_device */ 4785 return container_of(dev, struct spi_controller, dev); 4786 } 4787 4788 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4789 void *arg) 4790 { 4791 struct of_reconfig_data *rd = arg; 4792 struct spi_controller *ctlr; 4793 struct spi_device *spi; 4794 4795 switch (of_reconfig_get_state_change(action, arg)) { 4796 case OF_RECONFIG_CHANGE_ADD: 4797 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4798 if (ctlr == NULL) 4799 return NOTIFY_OK; /* Not for us */ 4800 4801 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4802 put_device(&ctlr->dev); 4803 return NOTIFY_OK; 4804 } 4805 4806 /* 4807 * Clear the flag before adding the device so that fw_devlink 4808 * doesn't skip adding consumers to this device. 4809 */ 4810 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4811 spi = of_register_spi_device(ctlr, rd->dn); 4812 put_device(&ctlr->dev); 4813 4814 if (IS_ERR(spi)) { 4815 pr_err("%s: failed to create for '%pOF'\n", 4816 __func__, rd->dn); 4817 of_node_clear_flag(rd->dn, OF_POPULATED); 4818 return notifier_from_errno(PTR_ERR(spi)); 4819 } 4820 break; 4821 4822 case OF_RECONFIG_CHANGE_REMOVE: 4823 /* Already depopulated? */ 4824 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4825 return NOTIFY_OK; 4826 4827 /* Find our device by node */ 4828 spi = of_find_spi_device_by_node(rd->dn); 4829 if (spi == NULL) 4830 return NOTIFY_OK; /* No? not meant for us */ 4831 4832 /* Unregister takes one ref away */ 4833 spi_unregister_device(spi); 4834 4835 /* And put the reference of the find */ 4836 put_device(&spi->dev); 4837 break; 4838 } 4839 4840 return NOTIFY_OK; 4841 } 4842 4843 static struct notifier_block spi_of_notifier = { 4844 .notifier_call = of_spi_notify, 4845 }; 4846 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4847 extern struct notifier_block spi_of_notifier; 4848 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4849 4850 #if IS_ENABLED(CONFIG_ACPI) 4851 static int spi_acpi_controller_match(struct device *dev, const void *data) 4852 { 4853 return device_match_acpi_dev(dev->parent, data); 4854 } 4855 4856 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4857 { 4858 struct device *dev; 4859 4860 dev = class_find_device(&spi_controller_class, NULL, adev, 4861 spi_acpi_controller_match); 4862 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4863 dev = class_find_device(&spi_target_class, NULL, adev, 4864 spi_acpi_controller_match); 4865 if (!dev) 4866 return NULL; 4867 4868 return container_of(dev, struct spi_controller, dev); 4869 } 4870 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4871 4872 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4873 { 4874 struct device *dev; 4875 4876 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4877 return to_spi_device(dev); 4878 } 4879 4880 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4881 void *arg) 4882 { 4883 struct acpi_device *adev = arg; 4884 struct spi_controller *ctlr; 4885 struct spi_device *spi; 4886 4887 switch (value) { 4888 case ACPI_RECONFIG_DEVICE_ADD: 4889 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4890 if (!ctlr) 4891 break; 4892 4893 acpi_register_spi_device(ctlr, adev); 4894 put_device(&ctlr->dev); 4895 break; 4896 case ACPI_RECONFIG_DEVICE_REMOVE: 4897 if (!acpi_device_enumerated(adev)) 4898 break; 4899 4900 spi = acpi_spi_find_device_by_adev(adev); 4901 if (!spi) 4902 break; 4903 4904 spi_unregister_device(spi); 4905 put_device(&spi->dev); 4906 break; 4907 } 4908 4909 return NOTIFY_OK; 4910 } 4911 4912 static struct notifier_block spi_acpi_notifier = { 4913 .notifier_call = acpi_spi_notify, 4914 }; 4915 #else 4916 extern struct notifier_block spi_acpi_notifier; 4917 #endif 4918 4919 static int __init spi_init(void) 4920 { 4921 int status; 4922 4923 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4924 if (!buf) { 4925 status = -ENOMEM; 4926 goto err0; 4927 } 4928 4929 status = bus_register(&spi_bus_type); 4930 if (status < 0) 4931 goto err1; 4932 4933 status = class_register(&spi_controller_class); 4934 if (status < 0) 4935 goto err2; 4936 4937 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4938 status = class_register(&spi_target_class); 4939 if (status < 0) 4940 goto err3; 4941 } 4942 4943 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4944 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4945 if (IS_ENABLED(CONFIG_ACPI)) 4946 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4947 4948 return 0; 4949 4950 err3: 4951 class_unregister(&spi_controller_class); 4952 err2: 4953 bus_unregister(&spi_bus_type); 4954 err1: 4955 kfree(buf); 4956 buf = NULL; 4957 err0: 4958 return status; 4959 } 4960 4961 /* 4962 * A board_info is normally registered in arch_initcall(), 4963 * but even essential drivers wait till later. 4964 * 4965 * REVISIT only boardinfo really needs static linking. The rest (device and 4966 * driver registration) _could_ be dynamically linked (modular) ... Costs 4967 * include needing to have boardinfo data structures be much more public. 4968 */ 4969 postcore_initcall(spi_init); 4970