1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/cache.h> 25 #include <linux/mutex.h> 26 #include <linux/slab.h> 27 #include <linux/mod_devicetable.h> 28 #include <linux/spi/spi.h> 29 30 31 /* SPI bustype and spi_master class are registered after board init code 32 * provides the SPI device tables, ensuring that both are present by the 33 * time controller driver registration causes spi_devices to "enumerate". 34 */ 35 static void spidev_release(struct device *dev) 36 { 37 struct spi_device *spi = to_spi_device(dev); 38 39 /* spi masters may cleanup for released devices */ 40 if (spi->master->cleanup) 41 spi->master->cleanup(spi); 42 43 spi_master_put(spi->master); 44 kfree(dev); 45 } 46 47 static ssize_t 48 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 49 { 50 const struct spi_device *spi = to_spi_device(dev); 51 52 return sprintf(buf, "%s\n", spi->modalias); 53 } 54 55 static struct device_attribute spi_dev_attrs[] = { 56 __ATTR_RO(modalias), 57 __ATTR_NULL, 58 }; 59 60 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 61 * and the sysfs version makes coldplug work too. 62 */ 63 64 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 65 const struct spi_device *sdev) 66 { 67 while (id->name[0]) { 68 if (!strcmp(sdev->modalias, id->name)) 69 return id; 70 id++; 71 } 72 return NULL; 73 } 74 75 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 76 { 77 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 78 79 return spi_match_id(sdrv->id_table, sdev); 80 } 81 EXPORT_SYMBOL_GPL(spi_get_device_id); 82 83 static int spi_match_device(struct device *dev, struct device_driver *drv) 84 { 85 const struct spi_device *spi = to_spi_device(dev); 86 const struct spi_driver *sdrv = to_spi_driver(drv); 87 88 if (sdrv->id_table) 89 return !!spi_match_id(sdrv->id_table, spi); 90 91 return strcmp(spi->modalias, drv->name) == 0; 92 } 93 94 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 95 { 96 const struct spi_device *spi = to_spi_device(dev); 97 98 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 99 return 0; 100 } 101 102 #ifdef CONFIG_PM 103 104 static int spi_suspend(struct device *dev, pm_message_t message) 105 { 106 int value = 0; 107 struct spi_driver *drv = to_spi_driver(dev->driver); 108 109 /* suspend will stop irqs and dma; no more i/o */ 110 if (drv) { 111 if (drv->suspend) 112 value = drv->suspend(to_spi_device(dev), message); 113 else 114 dev_dbg(dev, "... can't suspend\n"); 115 } 116 return value; 117 } 118 119 static int spi_resume(struct device *dev) 120 { 121 int value = 0; 122 struct spi_driver *drv = to_spi_driver(dev->driver); 123 124 /* resume may restart the i/o queue */ 125 if (drv) { 126 if (drv->resume) 127 value = drv->resume(to_spi_device(dev)); 128 else 129 dev_dbg(dev, "... can't resume\n"); 130 } 131 return value; 132 } 133 134 #else 135 #define spi_suspend NULL 136 #define spi_resume NULL 137 #endif 138 139 struct bus_type spi_bus_type = { 140 .name = "spi", 141 .dev_attrs = spi_dev_attrs, 142 .match = spi_match_device, 143 .uevent = spi_uevent, 144 .suspend = spi_suspend, 145 .resume = spi_resume, 146 }; 147 EXPORT_SYMBOL_GPL(spi_bus_type); 148 149 150 static int spi_drv_probe(struct device *dev) 151 { 152 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 153 154 return sdrv->probe(to_spi_device(dev)); 155 } 156 157 static int spi_drv_remove(struct device *dev) 158 { 159 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 160 161 return sdrv->remove(to_spi_device(dev)); 162 } 163 164 static void spi_drv_shutdown(struct device *dev) 165 { 166 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 167 168 sdrv->shutdown(to_spi_device(dev)); 169 } 170 171 /** 172 * spi_register_driver - register a SPI driver 173 * @sdrv: the driver to register 174 * Context: can sleep 175 */ 176 int spi_register_driver(struct spi_driver *sdrv) 177 { 178 sdrv->driver.bus = &spi_bus_type; 179 if (sdrv->probe) 180 sdrv->driver.probe = spi_drv_probe; 181 if (sdrv->remove) 182 sdrv->driver.remove = spi_drv_remove; 183 if (sdrv->shutdown) 184 sdrv->driver.shutdown = spi_drv_shutdown; 185 return driver_register(&sdrv->driver); 186 } 187 EXPORT_SYMBOL_GPL(spi_register_driver); 188 189 /*-------------------------------------------------------------------------*/ 190 191 /* SPI devices should normally not be created by SPI device drivers; that 192 * would make them board-specific. Similarly with SPI master drivers. 193 * Device registration normally goes into like arch/.../mach.../board-YYY.c 194 * with other readonly (flashable) information about mainboard devices. 195 */ 196 197 struct boardinfo { 198 struct list_head list; 199 unsigned n_board_info; 200 struct spi_board_info board_info[0]; 201 }; 202 203 static LIST_HEAD(board_list); 204 static DEFINE_MUTEX(board_lock); 205 206 /** 207 * spi_alloc_device - Allocate a new SPI device 208 * @master: Controller to which device is connected 209 * Context: can sleep 210 * 211 * Allows a driver to allocate and initialize a spi_device without 212 * registering it immediately. This allows a driver to directly 213 * fill the spi_device with device parameters before calling 214 * spi_add_device() on it. 215 * 216 * Caller is responsible to call spi_add_device() on the returned 217 * spi_device structure to add it to the SPI master. If the caller 218 * needs to discard the spi_device without adding it, then it should 219 * call spi_dev_put() on it. 220 * 221 * Returns a pointer to the new device, or NULL. 222 */ 223 struct spi_device *spi_alloc_device(struct spi_master *master) 224 { 225 struct spi_device *spi; 226 struct device *dev = master->dev.parent; 227 228 if (!spi_master_get(master)) 229 return NULL; 230 231 spi = kzalloc(sizeof *spi, GFP_KERNEL); 232 if (!spi) { 233 dev_err(dev, "cannot alloc spi_device\n"); 234 spi_master_put(master); 235 return NULL; 236 } 237 238 spi->master = master; 239 spi->dev.parent = dev; 240 spi->dev.bus = &spi_bus_type; 241 spi->dev.release = spidev_release; 242 device_initialize(&spi->dev); 243 return spi; 244 } 245 EXPORT_SYMBOL_GPL(spi_alloc_device); 246 247 /** 248 * spi_add_device - Add spi_device allocated with spi_alloc_device 249 * @spi: spi_device to register 250 * 251 * Companion function to spi_alloc_device. Devices allocated with 252 * spi_alloc_device can be added onto the spi bus with this function. 253 * 254 * Returns 0 on success; negative errno on failure 255 */ 256 int spi_add_device(struct spi_device *spi) 257 { 258 static DEFINE_MUTEX(spi_add_lock); 259 struct device *dev = spi->master->dev.parent; 260 int status; 261 262 /* Chipselects are numbered 0..max; validate. */ 263 if (spi->chip_select >= spi->master->num_chipselect) { 264 dev_err(dev, "cs%d >= max %d\n", 265 spi->chip_select, 266 spi->master->num_chipselect); 267 return -EINVAL; 268 } 269 270 /* Set the bus ID string */ 271 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 272 spi->chip_select); 273 274 275 /* We need to make sure there's no other device with this 276 * chipselect **BEFORE** we call setup(), else we'll trash 277 * its configuration. Lock against concurrent add() calls. 278 */ 279 mutex_lock(&spi_add_lock); 280 281 if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)) 282 != NULL) { 283 dev_err(dev, "chipselect %d already in use\n", 284 spi->chip_select); 285 status = -EBUSY; 286 goto done; 287 } 288 289 /* Drivers may modify this initial i/o setup, but will 290 * normally rely on the device being setup. Devices 291 * using SPI_CS_HIGH can't coexist well otherwise... 292 */ 293 status = spi_setup(spi); 294 if (status < 0) { 295 dev_err(dev, "can't %s %s, status %d\n", 296 "setup", dev_name(&spi->dev), status); 297 goto done; 298 } 299 300 /* Device may be bound to an active driver when this returns */ 301 status = device_add(&spi->dev); 302 if (status < 0) 303 dev_err(dev, "can't %s %s, status %d\n", 304 "add", dev_name(&spi->dev), status); 305 else 306 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 307 308 done: 309 mutex_unlock(&spi_add_lock); 310 return status; 311 } 312 EXPORT_SYMBOL_GPL(spi_add_device); 313 314 /** 315 * spi_new_device - instantiate one new SPI device 316 * @master: Controller to which device is connected 317 * @chip: Describes the SPI device 318 * Context: can sleep 319 * 320 * On typical mainboards, this is purely internal; and it's not needed 321 * after board init creates the hard-wired devices. Some development 322 * platforms may not be able to use spi_register_board_info though, and 323 * this is exported so that for example a USB or parport based adapter 324 * driver could add devices (which it would learn about out-of-band). 325 * 326 * Returns the new device, or NULL. 327 */ 328 struct spi_device *spi_new_device(struct spi_master *master, 329 struct spi_board_info *chip) 330 { 331 struct spi_device *proxy; 332 int status; 333 334 /* NOTE: caller did any chip->bus_num checks necessary. 335 * 336 * Also, unless we change the return value convention to use 337 * error-or-pointer (not NULL-or-pointer), troubleshootability 338 * suggests syslogged diagnostics are best here (ugh). 339 */ 340 341 proxy = spi_alloc_device(master); 342 if (!proxy) 343 return NULL; 344 345 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 346 347 proxy->chip_select = chip->chip_select; 348 proxy->max_speed_hz = chip->max_speed_hz; 349 proxy->mode = chip->mode; 350 proxy->irq = chip->irq; 351 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 352 proxy->dev.platform_data = (void *) chip->platform_data; 353 proxy->controller_data = chip->controller_data; 354 proxy->controller_state = NULL; 355 356 status = spi_add_device(proxy); 357 if (status < 0) { 358 spi_dev_put(proxy); 359 return NULL; 360 } 361 362 return proxy; 363 } 364 EXPORT_SYMBOL_GPL(spi_new_device); 365 366 /** 367 * spi_register_board_info - register SPI devices for a given board 368 * @info: array of chip descriptors 369 * @n: how many descriptors are provided 370 * Context: can sleep 371 * 372 * Board-specific early init code calls this (probably during arch_initcall) 373 * with segments of the SPI device table. Any device nodes are created later, 374 * after the relevant parent SPI controller (bus_num) is defined. We keep 375 * this table of devices forever, so that reloading a controller driver will 376 * not make Linux forget about these hard-wired devices. 377 * 378 * Other code can also call this, e.g. a particular add-on board might provide 379 * SPI devices through its expansion connector, so code initializing that board 380 * would naturally declare its SPI devices. 381 * 382 * The board info passed can safely be __initdata ... but be careful of 383 * any embedded pointers (platform_data, etc), they're copied as-is. 384 */ 385 int __init 386 spi_register_board_info(struct spi_board_info const *info, unsigned n) 387 { 388 struct boardinfo *bi; 389 390 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 391 if (!bi) 392 return -ENOMEM; 393 bi->n_board_info = n; 394 memcpy(bi->board_info, info, n * sizeof *info); 395 396 mutex_lock(&board_lock); 397 list_add_tail(&bi->list, &board_list); 398 mutex_unlock(&board_lock); 399 return 0; 400 } 401 402 /* FIXME someone should add support for a __setup("spi", ...) that 403 * creates board info from kernel command lines 404 */ 405 406 static void scan_boardinfo(struct spi_master *master) 407 { 408 struct boardinfo *bi; 409 410 mutex_lock(&board_lock); 411 list_for_each_entry(bi, &board_list, list) { 412 struct spi_board_info *chip = bi->board_info; 413 unsigned n; 414 415 for (n = bi->n_board_info; n > 0; n--, chip++) { 416 if (chip->bus_num != master->bus_num) 417 continue; 418 /* NOTE: this relies on spi_new_device to 419 * issue diagnostics when given bogus inputs 420 */ 421 (void) spi_new_device(master, chip); 422 } 423 } 424 mutex_unlock(&board_lock); 425 } 426 427 /*-------------------------------------------------------------------------*/ 428 429 static void spi_master_release(struct device *dev) 430 { 431 struct spi_master *master; 432 433 master = container_of(dev, struct spi_master, dev); 434 kfree(master); 435 } 436 437 static struct class spi_master_class = { 438 .name = "spi_master", 439 .owner = THIS_MODULE, 440 .dev_release = spi_master_release, 441 }; 442 443 444 /** 445 * spi_alloc_master - allocate SPI master controller 446 * @dev: the controller, possibly using the platform_bus 447 * @size: how much zeroed driver-private data to allocate; the pointer to this 448 * memory is in the driver_data field of the returned device, 449 * accessible with spi_master_get_devdata(). 450 * Context: can sleep 451 * 452 * This call is used only by SPI master controller drivers, which are the 453 * only ones directly touching chip registers. It's how they allocate 454 * an spi_master structure, prior to calling spi_register_master(). 455 * 456 * This must be called from context that can sleep. It returns the SPI 457 * master structure on success, else NULL. 458 * 459 * The caller is responsible for assigning the bus number and initializing 460 * the master's methods before calling spi_register_master(); and (after errors 461 * adding the device) calling spi_master_put() to prevent a memory leak. 462 */ 463 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 464 { 465 struct spi_master *master; 466 467 if (!dev) 468 return NULL; 469 470 master = kzalloc(size + sizeof *master, GFP_KERNEL); 471 if (!master) 472 return NULL; 473 474 device_initialize(&master->dev); 475 master->dev.class = &spi_master_class; 476 master->dev.parent = get_device(dev); 477 spi_master_set_devdata(master, &master[1]); 478 479 return master; 480 } 481 EXPORT_SYMBOL_GPL(spi_alloc_master); 482 483 /** 484 * spi_register_master - register SPI master controller 485 * @master: initialized master, originally from spi_alloc_master() 486 * Context: can sleep 487 * 488 * SPI master controllers connect to their drivers using some non-SPI bus, 489 * such as the platform bus. The final stage of probe() in that code 490 * includes calling spi_register_master() to hook up to this SPI bus glue. 491 * 492 * SPI controllers use board specific (often SOC specific) bus numbers, 493 * and board-specific addressing for SPI devices combines those numbers 494 * with chip select numbers. Since SPI does not directly support dynamic 495 * device identification, boards need configuration tables telling which 496 * chip is at which address. 497 * 498 * This must be called from context that can sleep. It returns zero on 499 * success, else a negative error code (dropping the master's refcount). 500 * After a successful return, the caller is responsible for calling 501 * spi_unregister_master(). 502 */ 503 int spi_register_master(struct spi_master *master) 504 { 505 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 506 struct device *dev = master->dev.parent; 507 int status = -ENODEV; 508 int dynamic = 0; 509 510 if (!dev) 511 return -ENODEV; 512 513 /* even if it's just one always-selected device, there must 514 * be at least one chipselect 515 */ 516 if (master->num_chipselect == 0) 517 return -EINVAL; 518 519 /* convention: dynamically assigned bus IDs count down from the max */ 520 if (master->bus_num < 0) { 521 /* FIXME switch to an IDR based scheme, something like 522 * I2C now uses, so we can't run out of "dynamic" IDs 523 */ 524 master->bus_num = atomic_dec_return(&dyn_bus_id); 525 dynamic = 1; 526 } 527 528 /* register the device, then userspace will see it. 529 * registration fails if the bus ID is in use. 530 */ 531 dev_set_name(&master->dev, "spi%u", master->bus_num); 532 status = device_add(&master->dev); 533 if (status < 0) 534 goto done; 535 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 536 dynamic ? " (dynamic)" : ""); 537 538 /* populate children from any spi device tables */ 539 scan_boardinfo(master); 540 status = 0; 541 done: 542 return status; 543 } 544 EXPORT_SYMBOL_GPL(spi_register_master); 545 546 547 static int __unregister(struct device *dev, void *master_dev) 548 { 549 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 550 if (dev != master_dev) 551 spi_unregister_device(to_spi_device(dev)); 552 return 0; 553 } 554 555 /** 556 * spi_unregister_master - unregister SPI master controller 557 * @master: the master being unregistered 558 * Context: can sleep 559 * 560 * This call is used only by SPI master controller drivers, which are the 561 * only ones directly touching chip registers. 562 * 563 * This must be called from context that can sleep. 564 */ 565 void spi_unregister_master(struct spi_master *master) 566 { 567 int dummy; 568 569 dummy = device_for_each_child(master->dev.parent, &master->dev, 570 __unregister); 571 device_unregister(&master->dev); 572 } 573 EXPORT_SYMBOL_GPL(spi_unregister_master); 574 575 static int __spi_master_match(struct device *dev, void *data) 576 { 577 struct spi_master *m; 578 u16 *bus_num = data; 579 580 m = container_of(dev, struct spi_master, dev); 581 return m->bus_num == *bus_num; 582 } 583 584 /** 585 * spi_busnum_to_master - look up master associated with bus_num 586 * @bus_num: the master's bus number 587 * Context: can sleep 588 * 589 * This call may be used with devices that are registered after 590 * arch init time. It returns a refcounted pointer to the relevant 591 * spi_master (which the caller must release), or NULL if there is 592 * no such master registered. 593 */ 594 struct spi_master *spi_busnum_to_master(u16 bus_num) 595 { 596 struct device *dev; 597 struct spi_master *master = NULL; 598 599 dev = class_find_device(&spi_master_class, NULL, &bus_num, 600 __spi_master_match); 601 if (dev) 602 master = container_of(dev, struct spi_master, dev); 603 /* reference got in class_find_device */ 604 return master; 605 } 606 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 607 608 609 /*-------------------------------------------------------------------------*/ 610 611 /* Core methods for SPI master protocol drivers. Some of the 612 * other core methods are currently defined as inline functions. 613 */ 614 615 /** 616 * spi_setup - setup SPI mode and clock rate 617 * @spi: the device whose settings are being modified 618 * Context: can sleep, and no requests are queued to the device 619 * 620 * SPI protocol drivers may need to update the transfer mode if the 621 * device doesn't work with its default. They may likewise need 622 * to update clock rates or word sizes from initial values. This function 623 * changes those settings, and must be called from a context that can sleep. 624 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 625 * effect the next time the device is selected and data is transferred to 626 * or from it. When this function returns, the spi device is deselected. 627 * 628 * Note that this call will fail if the protocol driver specifies an option 629 * that the underlying controller or its driver does not support. For 630 * example, not all hardware supports wire transfers using nine bit words, 631 * LSB-first wire encoding, or active-high chipselects. 632 */ 633 int spi_setup(struct spi_device *spi) 634 { 635 unsigned bad_bits; 636 int status; 637 638 /* help drivers fail *cleanly* when they need options 639 * that aren't supported with their current master 640 */ 641 bad_bits = spi->mode & ~spi->master->mode_bits; 642 if (bad_bits) { 643 dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n", 644 bad_bits); 645 return -EINVAL; 646 } 647 648 if (!spi->bits_per_word) 649 spi->bits_per_word = 8; 650 651 status = spi->master->setup(spi); 652 653 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s" 654 "%u bits/w, %u Hz max --> %d\n", 655 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 656 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 657 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 658 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 659 (spi->mode & SPI_LOOP) ? "loopback, " : "", 660 spi->bits_per_word, spi->max_speed_hz, 661 status); 662 663 return status; 664 } 665 EXPORT_SYMBOL_GPL(spi_setup); 666 667 /** 668 * spi_async - asynchronous SPI transfer 669 * @spi: device with which data will be exchanged 670 * @message: describes the data transfers, including completion callback 671 * Context: any (irqs may be blocked, etc) 672 * 673 * This call may be used in_irq and other contexts which can't sleep, 674 * as well as from task contexts which can sleep. 675 * 676 * The completion callback is invoked in a context which can't sleep. 677 * Before that invocation, the value of message->status is undefined. 678 * When the callback is issued, message->status holds either zero (to 679 * indicate complete success) or a negative error code. After that 680 * callback returns, the driver which issued the transfer request may 681 * deallocate the associated memory; it's no longer in use by any SPI 682 * core or controller driver code. 683 * 684 * Note that although all messages to a spi_device are handled in 685 * FIFO order, messages may go to different devices in other orders. 686 * Some device might be higher priority, or have various "hard" access 687 * time requirements, for example. 688 * 689 * On detection of any fault during the transfer, processing of 690 * the entire message is aborted, and the device is deselected. 691 * Until returning from the associated message completion callback, 692 * no other spi_message queued to that device will be processed. 693 * (This rule applies equally to all the synchronous transfer calls, 694 * which are wrappers around this core asynchronous primitive.) 695 */ 696 int spi_async(struct spi_device *spi, struct spi_message *message) 697 { 698 struct spi_master *master = spi->master; 699 700 /* Half-duplex links include original MicroWire, and ones with 701 * only one data pin like SPI_3WIRE (switches direction) or where 702 * either MOSI or MISO is missing. They can also be caused by 703 * software limitations. 704 */ 705 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 706 || (spi->mode & SPI_3WIRE)) { 707 struct spi_transfer *xfer; 708 unsigned flags = master->flags; 709 710 list_for_each_entry(xfer, &message->transfers, transfer_list) { 711 if (xfer->rx_buf && xfer->tx_buf) 712 return -EINVAL; 713 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 714 return -EINVAL; 715 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 716 return -EINVAL; 717 } 718 } 719 720 message->spi = spi; 721 message->status = -EINPROGRESS; 722 return master->transfer(spi, message); 723 } 724 EXPORT_SYMBOL_GPL(spi_async); 725 726 727 /*-------------------------------------------------------------------------*/ 728 729 /* Utility methods for SPI master protocol drivers, layered on 730 * top of the core. Some other utility methods are defined as 731 * inline functions. 732 */ 733 734 static void spi_complete(void *arg) 735 { 736 complete(arg); 737 } 738 739 /** 740 * spi_sync - blocking/synchronous SPI data transfers 741 * @spi: device with which data will be exchanged 742 * @message: describes the data transfers 743 * Context: can sleep 744 * 745 * This call may only be used from a context that may sleep. The sleep 746 * is non-interruptible, and has no timeout. Low-overhead controller 747 * drivers may DMA directly into and out of the message buffers. 748 * 749 * Note that the SPI device's chip select is active during the message, 750 * and then is normally disabled between messages. Drivers for some 751 * frequently-used devices may want to minimize costs of selecting a chip, 752 * by leaving it selected in anticipation that the next message will go 753 * to the same chip. (That may increase power usage.) 754 * 755 * Also, the caller is guaranteeing that the memory associated with the 756 * message will not be freed before this call returns. 757 * 758 * It returns zero on success, else a negative error code. 759 */ 760 int spi_sync(struct spi_device *spi, struct spi_message *message) 761 { 762 DECLARE_COMPLETION_ONSTACK(done); 763 int status; 764 765 message->complete = spi_complete; 766 message->context = &done; 767 status = spi_async(spi, message); 768 if (status == 0) { 769 wait_for_completion(&done); 770 status = message->status; 771 } 772 message->context = NULL; 773 return status; 774 } 775 EXPORT_SYMBOL_GPL(spi_sync); 776 777 /* portable code must never pass more than 32 bytes */ 778 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 779 780 static u8 *buf; 781 782 /** 783 * spi_write_then_read - SPI synchronous write followed by read 784 * @spi: device with which data will be exchanged 785 * @txbuf: data to be written (need not be dma-safe) 786 * @n_tx: size of txbuf, in bytes 787 * @rxbuf: buffer into which data will be read (need not be dma-safe) 788 * @n_rx: size of rxbuf, in bytes 789 * Context: can sleep 790 * 791 * This performs a half duplex MicroWire style transaction with the 792 * device, sending txbuf and then reading rxbuf. The return value 793 * is zero for success, else a negative errno status code. 794 * This call may only be used from a context that may sleep. 795 * 796 * Parameters to this routine are always copied using a small buffer; 797 * portable code should never use this for more than 32 bytes. 798 * Performance-sensitive or bulk transfer code should instead use 799 * spi_{async,sync}() calls with dma-safe buffers. 800 */ 801 int spi_write_then_read(struct spi_device *spi, 802 const u8 *txbuf, unsigned n_tx, 803 u8 *rxbuf, unsigned n_rx) 804 { 805 static DEFINE_MUTEX(lock); 806 807 int status; 808 struct spi_message message; 809 struct spi_transfer x[2]; 810 u8 *local_buf; 811 812 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 813 * (as a pure convenience thing), but we can keep heap costs 814 * out of the hot path ... 815 */ 816 if ((n_tx + n_rx) > SPI_BUFSIZ) 817 return -EINVAL; 818 819 spi_message_init(&message); 820 memset(x, 0, sizeof x); 821 if (n_tx) { 822 x[0].len = n_tx; 823 spi_message_add_tail(&x[0], &message); 824 } 825 if (n_rx) { 826 x[1].len = n_rx; 827 spi_message_add_tail(&x[1], &message); 828 } 829 830 /* ... unless someone else is using the pre-allocated buffer */ 831 if (!mutex_trylock(&lock)) { 832 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 833 if (!local_buf) 834 return -ENOMEM; 835 } else 836 local_buf = buf; 837 838 memcpy(local_buf, txbuf, n_tx); 839 x[0].tx_buf = local_buf; 840 x[1].rx_buf = local_buf + n_tx; 841 842 /* do the i/o */ 843 status = spi_sync(spi, &message); 844 if (status == 0) 845 memcpy(rxbuf, x[1].rx_buf, n_rx); 846 847 if (x[0].tx_buf == buf) 848 mutex_unlock(&lock); 849 else 850 kfree(local_buf); 851 852 return status; 853 } 854 EXPORT_SYMBOL_GPL(spi_write_then_read); 855 856 /*-------------------------------------------------------------------------*/ 857 858 static int __init spi_init(void) 859 { 860 int status; 861 862 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 863 if (!buf) { 864 status = -ENOMEM; 865 goto err0; 866 } 867 868 status = bus_register(&spi_bus_type); 869 if (status < 0) 870 goto err1; 871 872 status = class_register(&spi_master_class); 873 if (status < 0) 874 goto err2; 875 return 0; 876 877 err2: 878 bus_unregister(&spi_bus_type); 879 err1: 880 kfree(buf); 881 buf = NULL; 882 err0: 883 return status; 884 } 885 886 /* board_info is normally registered in arch_initcall(), 887 * but even essential drivers wait till later 888 * 889 * REVISIT only boardinfo really needs static linking. the rest (device and 890 * driver registration) _could_ be dynamically linked (modular) ... costs 891 * include needing to have boardinfo data structures be much more public. 892 */ 893 postcore_initcall(spi_init); 894 895