1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_message *msg) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if (spi_valid_txbuf(msg, xfer)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if (spi_valid_rxbuf(msg, xfer)) 334 u64_stats_add(&stats->bytes_rx, xfer->len); 335 336 u64_stats_update_end(&stats->syncp); 337 put_cpu(); 338 } 339 340 /* 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 342 * and the sysfs version makes coldplug work too. 343 */ 344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 345 { 346 while (id->name[0]) { 347 if (!strcmp(name, id->name)) 348 return id; 349 id++; 350 } 351 return NULL; 352 } 353 354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 355 { 356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 357 358 return spi_match_id(sdrv->id_table, sdev->modalias); 359 } 360 EXPORT_SYMBOL_GPL(spi_get_device_id); 361 362 const void *spi_get_device_match_data(const struct spi_device *sdev) 363 { 364 const void *match; 365 366 match = device_get_match_data(&sdev->dev); 367 if (match) 368 return match; 369 370 return (const void *)spi_get_device_id(sdev)->driver_data; 371 } 372 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 373 374 static int spi_match_device(struct device *dev, struct device_driver *drv) 375 { 376 const struct spi_device *spi = to_spi_device(dev); 377 const struct spi_driver *sdrv = to_spi_driver(drv); 378 379 /* Check override first, and if set, only use the named driver */ 380 if (spi->driver_override) 381 return strcmp(spi->driver_override, drv->name) == 0; 382 383 /* Attempt an OF style match */ 384 if (of_driver_match_device(dev, drv)) 385 return 1; 386 387 /* Then try ACPI */ 388 if (acpi_driver_match_device(dev, drv)) 389 return 1; 390 391 if (sdrv->id_table) 392 return !!spi_match_id(sdrv->id_table, spi->modalias); 393 394 return strcmp(spi->modalias, drv->name) == 0; 395 } 396 397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 398 { 399 const struct spi_device *spi = to_spi_device(dev); 400 int rc; 401 402 rc = acpi_device_uevent_modalias(dev, env); 403 if (rc != -ENODEV) 404 return rc; 405 406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 407 } 408 409 static int spi_probe(struct device *dev) 410 { 411 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 412 struct spi_device *spi = to_spi_device(dev); 413 int ret; 414 415 ret = of_clk_set_defaults(dev->of_node, false); 416 if (ret) 417 return ret; 418 419 if (dev->of_node) { 420 spi->irq = of_irq_get(dev->of_node, 0); 421 if (spi->irq == -EPROBE_DEFER) 422 return -EPROBE_DEFER; 423 if (spi->irq < 0) 424 spi->irq = 0; 425 } 426 427 ret = dev_pm_domain_attach(dev, true); 428 if (ret) 429 return ret; 430 431 if (sdrv->probe) { 432 ret = sdrv->probe(spi); 433 if (ret) 434 dev_pm_domain_detach(dev, true); 435 } 436 437 return ret; 438 } 439 440 static void spi_remove(struct device *dev) 441 { 442 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 443 444 if (sdrv->remove) 445 sdrv->remove(to_spi_device(dev)); 446 447 dev_pm_domain_detach(dev, true); 448 } 449 450 static void spi_shutdown(struct device *dev) 451 { 452 if (dev->driver) { 453 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 454 455 if (sdrv->shutdown) 456 sdrv->shutdown(to_spi_device(dev)); 457 } 458 } 459 460 const struct bus_type spi_bus_type = { 461 .name = "spi", 462 .dev_groups = spi_dev_groups, 463 .match = spi_match_device, 464 .uevent = spi_uevent, 465 .probe = spi_probe, 466 .remove = spi_remove, 467 .shutdown = spi_shutdown, 468 }; 469 EXPORT_SYMBOL_GPL(spi_bus_type); 470 471 /** 472 * __spi_register_driver - register a SPI driver 473 * @owner: owner module of the driver to register 474 * @sdrv: the driver to register 475 * Context: can sleep 476 * 477 * Return: zero on success, else a negative error code. 478 */ 479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 480 { 481 sdrv->driver.owner = owner; 482 sdrv->driver.bus = &spi_bus_type; 483 484 /* 485 * For Really Good Reasons we use spi: modaliases not of: 486 * modaliases for DT so module autoloading won't work if we 487 * don't have a spi_device_id as well as a compatible string. 488 */ 489 if (sdrv->driver.of_match_table) { 490 const struct of_device_id *of_id; 491 492 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 493 of_id++) { 494 const char *of_name; 495 496 /* Strip off any vendor prefix */ 497 of_name = strnchr(of_id->compatible, 498 sizeof(of_id->compatible), ','); 499 if (of_name) 500 of_name++; 501 else 502 of_name = of_id->compatible; 503 504 if (sdrv->id_table) { 505 const struct spi_device_id *spi_id; 506 507 spi_id = spi_match_id(sdrv->id_table, of_name); 508 if (spi_id) 509 continue; 510 } else { 511 if (strcmp(sdrv->driver.name, of_name) == 0) 512 continue; 513 } 514 515 pr_warn("SPI driver %s has no spi_device_id for %s\n", 516 sdrv->driver.name, of_id->compatible); 517 } 518 } 519 520 return driver_register(&sdrv->driver); 521 } 522 EXPORT_SYMBOL_GPL(__spi_register_driver); 523 524 /*-------------------------------------------------------------------------*/ 525 526 /* 527 * SPI devices should normally not be created by SPI device drivers; that 528 * would make them board-specific. Similarly with SPI controller drivers. 529 * Device registration normally goes into like arch/.../mach.../board-YYY.c 530 * with other readonly (flashable) information about mainboard devices. 531 */ 532 533 struct boardinfo { 534 struct list_head list; 535 struct spi_board_info board_info; 536 }; 537 538 static LIST_HEAD(board_list); 539 static LIST_HEAD(spi_controller_list); 540 541 /* 542 * Used to protect add/del operation for board_info list and 543 * spi_controller list, and their matching process also used 544 * to protect object of type struct idr. 545 */ 546 static DEFINE_MUTEX(board_lock); 547 548 /** 549 * spi_alloc_device - Allocate a new SPI device 550 * @ctlr: Controller to which device is connected 551 * Context: can sleep 552 * 553 * Allows a driver to allocate and initialize a spi_device without 554 * registering it immediately. This allows a driver to directly 555 * fill the spi_device with device parameters before calling 556 * spi_add_device() on it. 557 * 558 * Caller is responsible to call spi_add_device() on the returned 559 * spi_device structure to add it to the SPI controller. If the caller 560 * needs to discard the spi_device without adding it, then it should 561 * call spi_dev_put() on it. 562 * 563 * Return: a pointer to the new device, or NULL. 564 */ 565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 566 { 567 struct spi_device *spi; 568 569 if (!spi_controller_get(ctlr)) 570 return NULL; 571 572 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 573 if (!spi) { 574 spi_controller_put(ctlr); 575 return NULL; 576 } 577 578 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 579 if (!spi->pcpu_statistics) { 580 kfree(spi); 581 spi_controller_put(ctlr); 582 return NULL; 583 } 584 585 spi->controller = ctlr; 586 spi->dev.parent = &ctlr->dev; 587 spi->dev.bus = &spi_bus_type; 588 spi->dev.release = spidev_release; 589 spi->mode = ctlr->buswidth_override_bits; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline bool is_valid_cs(s8 chip_select) 627 { 628 return chip_select != SPI_INVALID_CS; 629 } 630 631 static inline int spi_dev_check_cs(struct device *dev, 632 struct spi_device *spi, u8 idx, 633 struct spi_device *new_spi, u8 new_idx) 634 { 635 u8 cs, cs_new; 636 u8 idx_new; 637 638 cs = spi_get_chipselect(spi, idx); 639 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 640 cs_new = spi_get_chipselect(new_spi, idx_new); 641 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 642 dev_err(dev, "chipselect %u already in use\n", cs_new); 643 return -EBUSY; 644 } 645 } 646 return 0; 647 } 648 649 static int spi_dev_check(struct device *dev, void *data) 650 { 651 struct spi_device *spi = to_spi_device(dev); 652 struct spi_device *new_spi = data; 653 int status, idx; 654 655 if (spi->controller == new_spi->controller) { 656 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 657 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 658 if (status) 659 return status; 660 } 661 } 662 return 0; 663 } 664 665 static void spi_cleanup(struct spi_device *spi) 666 { 667 if (spi->controller->cleanup) 668 spi->controller->cleanup(spi); 669 } 670 671 static int __spi_add_device(struct spi_device *spi) 672 { 673 struct spi_controller *ctlr = spi->controller; 674 struct device *dev = ctlr->dev.parent; 675 int status, idx; 676 u8 cs; 677 678 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 679 /* Chipselects are numbered 0..max; validate. */ 680 cs = spi_get_chipselect(spi, idx); 681 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 682 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 683 ctlr->num_chipselect); 684 return -EINVAL; 685 } 686 } 687 688 /* 689 * Make sure that multiple logical CS doesn't map to the same physical CS. 690 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 691 */ 692 if (!spi_controller_is_target(ctlr)) { 693 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 694 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 695 if (status) 696 return status; 697 } 698 } 699 700 /* Set the bus ID string */ 701 spi_dev_set_name(spi); 702 703 /* 704 * We need to make sure there's no other device with this 705 * chipselect **BEFORE** we call setup(), else we'll trash 706 * its configuration. 707 */ 708 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 709 if (status) 710 return status; 711 712 /* Controller may unregister concurrently */ 713 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 714 !device_is_registered(&ctlr->dev)) { 715 return -ENODEV; 716 } 717 718 if (ctlr->cs_gpiods) { 719 u8 cs; 720 721 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 722 cs = spi_get_chipselect(spi, idx); 723 if (is_valid_cs(cs)) 724 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 725 } 726 } 727 728 /* 729 * Drivers may modify this initial i/o setup, but will 730 * normally rely on the device being setup. Devices 731 * using SPI_CS_HIGH can't coexist well otherwise... 732 */ 733 status = spi_setup(spi); 734 if (status < 0) { 735 dev_err(dev, "can't setup %s, status %d\n", 736 dev_name(&spi->dev), status); 737 return status; 738 } 739 740 /* Device may be bound to an active driver when this returns */ 741 status = device_add(&spi->dev); 742 if (status < 0) { 743 dev_err(dev, "can't add %s, status %d\n", 744 dev_name(&spi->dev), status); 745 spi_cleanup(spi); 746 } else { 747 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 748 } 749 750 return status; 751 } 752 753 /** 754 * spi_add_device - Add spi_device allocated with spi_alloc_device 755 * @spi: spi_device to register 756 * 757 * Companion function to spi_alloc_device. Devices allocated with 758 * spi_alloc_device can be added onto the SPI bus with this function. 759 * 760 * Return: 0 on success; negative errno on failure 761 */ 762 int spi_add_device(struct spi_device *spi) 763 { 764 struct spi_controller *ctlr = spi->controller; 765 int status; 766 767 /* Set the bus ID string */ 768 spi_dev_set_name(spi); 769 770 mutex_lock(&ctlr->add_lock); 771 status = __spi_add_device(spi); 772 mutex_unlock(&ctlr->add_lock); 773 return status; 774 } 775 EXPORT_SYMBOL_GPL(spi_add_device); 776 777 static void spi_set_all_cs_unused(struct spi_device *spi) 778 { 779 u8 idx; 780 781 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 782 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 783 } 784 785 /** 786 * spi_new_device - instantiate one new SPI device 787 * @ctlr: Controller to which device is connected 788 * @chip: Describes the SPI device 789 * Context: can sleep 790 * 791 * On typical mainboards, this is purely internal; and it's not needed 792 * after board init creates the hard-wired devices. Some development 793 * platforms may not be able to use spi_register_board_info though, and 794 * this is exported so that for example a USB or parport based adapter 795 * driver could add devices (which it would learn about out-of-band). 796 * 797 * Return: the new device, or NULL. 798 */ 799 struct spi_device *spi_new_device(struct spi_controller *ctlr, 800 struct spi_board_info *chip) 801 { 802 struct spi_device *proxy; 803 int status; 804 805 /* 806 * NOTE: caller did any chip->bus_num checks necessary. 807 * 808 * Also, unless we change the return value convention to use 809 * error-or-pointer (not NULL-or-pointer), troubleshootability 810 * suggests syslogged diagnostics are best here (ugh). 811 */ 812 813 proxy = spi_alloc_device(ctlr); 814 if (!proxy) 815 return NULL; 816 817 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 818 819 /* Use provided chip-select for proxy device */ 820 spi_set_all_cs_unused(proxy); 821 spi_set_chipselect(proxy, 0, chip->chip_select); 822 823 proxy->max_speed_hz = chip->max_speed_hz; 824 proxy->mode = chip->mode; 825 proxy->irq = chip->irq; 826 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 827 proxy->dev.platform_data = (void *) chip->platform_data; 828 proxy->controller_data = chip->controller_data; 829 proxy->controller_state = NULL; 830 /* 831 * By default spi->chip_select[0] will hold the physical CS number, 832 * so set bit 0 in spi->cs_index_mask. 833 */ 834 proxy->cs_index_mask = BIT(0); 835 836 if (chip->swnode) { 837 status = device_add_software_node(&proxy->dev, chip->swnode); 838 if (status) { 839 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 840 chip->modalias, status); 841 goto err_dev_put; 842 } 843 } 844 845 status = spi_add_device(proxy); 846 if (status < 0) 847 goto err_dev_put; 848 849 return proxy; 850 851 err_dev_put: 852 device_remove_software_node(&proxy->dev); 853 spi_dev_put(proxy); 854 return NULL; 855 } 856 EXPORT_SYMBOL_GPL(spi_new_device); 857 858 /** 859 * spi_unregister_device - unregister a single SPI device 860 * @spi: spi_device to unregister 861 * 862 * Start making the passed SPI device vanish. Normally this would be handled 863 * by spi_unregister_controller(). 864 */ 865 void spi_unregister_device(struct spi_device *spi) 866 { 867 if (!spi) 868 return; 869 870 if (spi->dev.of_node) { 871 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 872 of_node_put(spi->dev.of_node); 873 } 874 if (ACPI_COMPANION(&spi->dev)) 875 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 876 device_remove_software_node(&spi->dev); 877 device_del(&spi->dev); 878 spi_cleanup(spi); 879 put_device(&spi->dev); 880 } 881 EXPORT_SYMBOL_GPL(spi_unregister_device); 882 883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 884 struct spi_board_info *bi) 885 { 886 struct spi_device *dev; 887 888 if (ctlr->bus_num != bi->bus_num) 889 return; 890 891 dev = spi_new_device(ctlr, bi); 892 if (!dev) 893 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 894 bi->modalias); 895 } 896 897 /** 898 * spi_register_board_info - register SPI devices for a given board 899 * @info: array of chip descriptors 900 * @n: how many descriptors are provided 901 * Context: can sleep 902 * 903 * Board-specific early init code calls this (probably during arch_initcall) 904 * with segments of the SPI device table. Any device nodes are created later, 905 * after the relevant parent SPI controller (bus_num) is defined. We keep 906 * this table of devices forever, so that reloading a controller driver will 907 * not make Linux forget about these hard-wired devices. 908 * 909 * Other code can also call this, e.g. a particular add-on board might provide 910 * SPI devices through its expansion connector, so code initializing that board 911 * would naturally declare its SPI devices. 912 * 913 * The board info passed can safely be __initdata ... but be careful of 914 * any embedded pointers (platform_data, etc), they're copied as-is. 915 * 916 * Return: zero on success, else a negative error code. 917 */ 918 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 919 { 920 struct boardinfo *bi; 921 int i; 922 923 if (!n) 924 return 0; 925 926 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 927 if (!bi) 928 return -ENOMEM; 929 930 for (i = 0; i < n; i++, bi++, info++) { 931 struct spi_controller *ctlr; 932 933 memcpy(&bi->board_info, info, sizeof(*info)); 934 935 mutex_lock(&board_lock); 936 list_add_tail(&bi->list, &board_list); 937 list_for_each_entry(ctlr, &spi_controller_list, list) 938 spi_match_controller_to_boardinfo(ctlr, 939 &bi->board_info); 940 mutex_unlock(&board_lock); 941 } 942 943 return 0; 944 } 945 946 /*-------------------------------------------------------------------------*/ 947 948 /* Core methods for SPI resource management */ 949 950 /** 951 * spi_res_alloc - allocate a spi resource that is life-cycle managed 952 * during the processing of a spi_message while using 953 * spi_transfer_one 954 * @spi: the SPI device for which we allocate memory 955 * @release: the release code to execute for this resource 956 * @size: size to alloc and return 957 * @gfp: GFP allocation flags 958 * 959 * Return: the pointer to the allocated data 960 * 961 * This may get enhanced in the future to allocate from a memory pool 962 * of the @spi_device or @spi_controller to avoid repeated allocations. 963 */ 964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 965 size_t size, gfp_t gfp) 966 { 967 struct spi_res *sres; 968 969 sres = kzalloc(sizeof(*sres) + size, gfp); 970 if (!sres) 971 return NULL; 972 973 INIT_LIST_HEAD(&sres->entry); 974 sres->release = release; 975 976 return sres->data; 977 } 978 979 /** 980 * spi_res_free - free an SPI resource 981 * @res: pointer to the custom data of a resource 982 */ 983 static void spi_res_free(void *res) 984 { 985 struct spi_res *sres = container_of(res, struct spi_res, data); 986 987 if (!res) 988 return; 989 990 WARN_ON(!list_empty(&sres->entry)); 991 kfree(sres); 992 } 993 994 /** 995 * spi_res_add - add a spi_res to the spi_message 996 * @message: the SPI message 997 * @res: the spi_resource 998 */ 999 static void spi_res_add(struct spi_message *message, void *res) 1000 { 1001 struct spi_res *sres = container_of(res, struct spi_res, data); 1002 1003 WARN_ON(!list_empty(&sres->entry)); 1004 list_add_tail(&sres->entry, &message->resources); 1005 } 1006 1007 /** 1008 * spi_res_release - release all SPI resources for this message 1009 * @ctlr: the @spi_controller 1010 * @message: the @spi_message 1011 */ 1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1013 { 1014 struct spi_res *res, *tmp; 1015 1016 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1017 if (res->release) 1018 res->release(ctlr, message, res->data); 1019 1020 list_del(&res->entry); 1021 1022 kfree(res); 1023 } 1024 } 1025 1026 /*-------------------------------------------------------------------------*/ 1027 #define spi_for_each_valid_cs(spi, idx) \ 1028 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1029 if (!(spi->cs_index_mask & BIT(idx))) {} else 1030 1031 static inline bool spi_is_last_cs(struct spi_device *spi) 1032 { 1033 u8 idx; 1034 bool last = false; 1035 1036 spi_for_each_valid_cs(spi, idx) { 1037 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1038 last = true; 1039 } 1040 return last; 1041 } 1042 1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1044 { 1045 /* 1046 * Historically ACPI has no means of the GPIO polarity and 1047 * thus the SPISerialBus() resource defines it on the per-chip 1048 * basis. In order to avoid a chain of negations, the GPIO 1049 * polarity is considered being Active High. Even for the cases 1050 * when _DSD() is involved (in the updated versions of ACPI) 1051 * the GPIO CS polarity must be defined Active High to avoid 1052 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1053 * into account. 1054 */ 1055 if (has_acpi_companion(&spi->dev)) 1056 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1057 else 1058 /* Polarity handled by GPIO library */ 1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1060 1061 if (activate) 1062 spi_delay_exec(&spi->cs_setup, NULL); 1063 else 1064 spi_delay_exec(&spi->cs_inactive, NULL); 1065 } 1066 1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1068 { 1069 bool activate = enable; 1070 u8 idx; 1071 1072 /* 1073 * Avoid calling into the driver (or doing delays) if the chip select 1074 * isn't actually changing from the last time this was called. 1075 */ 1076 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1077 spi_is_last_cs(spi)) || 1078 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1079 !spi_is_last_cs(spi))) && 1080 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1081 return; 1082 1083 trace_spi_set_cs(spi, activate); 1084 1085 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1086 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1087 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1088 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1089 1090 if (spi->mode & SPI_CS_HIGH) 1091 enable = !enable; 1092 1093 /* 1094 * Handle chip select delays for GPIO based CS or controllers without 1095 * programmable chip select timing. 1096 */ 1097 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1098 spi_delay_exec(&spi->cs_hold, NULL); 1099 1100 if (spi_is_csgpiod(spi)) { 1101 if (!(spi->mode & SPI_NO_CS)) { 1102 spi_for_each_valid_cs(spi, idx) { 1103 if (spi_get_csgpiod(spi, idx)) 1104 spi_toggle_csgpiod(spi, idx, enable, activate); 1105 } 1106 } 1107 /* Some SPI masters need both GPIO CS & slave_select */ 1108 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1109 spi->controller->set_cs) 1110 spi->controller->set_cs(spi, !enable); 1111 } else if (spi->controller->set_cs) { 1112 spi->controller->set_cs(spi, !enable); 1113 } 1114 1115 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1116 if (activate) 1117 spi_delay_exec(&spi->cs_setup, NULL); 1118 else 1119 spi_delay_exec(&spi->cs_inactive, NULL); 1120 } 1121 } 1122 1123 #ifdef CONFIG_HAS_DMA 1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1125 struct sg_table *sgt, void *buf, size_t len, 1126 enum dma_data_direction dir, unsigned long attrs) 1127 { 1128 const bool vmalloced_buf = is_vmalloc_addr(buf); 1129 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1130 #ifdef CONFIG_HIGHMEM 1131 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1132 (unsigned long)buf < (PKMAP_BASE + 1133 (LAST_PKMAP * PAGE_SIZE))); 1134 #else 1135 const bool kmap_buf = false; 1136 #endif 1137 int desc_len; 1138 int sgs; 1139 struct page *vm_page; 1140 struct scatterlist *sg; 1141 void *sg_buf; 1142 size_t min; 1143 int i, ret; 1144 1145 if (vmalloced_buf || kmap_buf) { 1146 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1147 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1148 } else if (virt_addr_valid(buf)) { 1149 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1150 sgs = DIV_ROUND_UP(len, desc_len); 1151 } else { 1152 return -EINVAL; 1153 } 1154 1155 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1156 if (ret != 0) 1157 return ret; 1158 1159 sg = &sgt->sgl[0]; 1160 for (i = 0; i < sgs; i++) { 1161 1162 if (vmalloced_buf || kmap_buf) { 1163 /* 1164 * Next scatterlist entry size is the minimum between 1165 * the desc_len and the remaining buffer length that 1166 * fits in a page. 1167 */ 1168 min = min_t(size_t, desc_len, 1169 min_t(size_t, len, 1170 PAGE_SIZE - offset_in_page(buf))); 1171 if (vmalloced_buf) 1172 vm_page = vmalloc_to_page(buf); 1173 else 1174 vm_page = kmap_to_page(buf); 1175 if (!vm_page) { 1176 sg_free_table(sgt); 1177 return -ENOMEM; 1178 } 1179 sg_set_page(sg, vm_page, 1180 min, offset_in_page(buf)); 1181 } else { 1182 min = min_t(size_t, len, desc_len); 1183 sg_buf = buf; 1184 sg_set_buf(sg, sg_buf, min); 1185 } 1186 1187 buf += min; 1188 len -= min; 1189 sg = sg_next(sg); 1190 } 1191 1192 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1193 if (ret < 0) { 1194 sg_free_table(sgt); 1195 return ret; 1196 } 1197 1198 return 0; 1199 } 1200 1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1202 struct sg_table *sgt, void *buf, size_t len, 1203 enum dma_data_direction dir) 1204 { 1205 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1206 } 1207 1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1209 struct device *dev, struct sg_table *sgt, 1210 enum dma_data_direction dir, 1211 unsigned long attrs) 1212 { 1213 dma_unmap_sgtable(dev, sgt, dir, attrs); 1214 sg_free_table(sgt); 1215 sgt->orig_nents = 0; 1216 sgt->nents = 0; 1217 } 1218 1219 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1220 struct sg_table *sgt, enum dma_data_direction dir) 1221 { 1222 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1223 } 1224 1225 /* Dummy SG for unidirect transfers */ 1226 static struct scatterlist dummy_sg = { 1227 .page_link = SG_END, 1228 }; 1229 1230 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1231 { 1232 struct device *tx_dev, *rx_dev; 1233 struct spi_transfer *xfer; 1234 int ret; 1235 1236 if (!ctlr->can_dma) 1237 return 0; 1238 1239 if (ctlr->dma_tx) 1240 tx_dev = ctlr->dma_tx->device->dev; 1241 else if (ctlr->dma_map_dev) 1242 tx_dev = ctlr->dma_map_dev; 1243 else 1244 tx_dev = ctlr->dev.parent; 1245 1246 if (ctlr->dma_rx) 1247 rx_dev = ctlr->dma_rx->device->dev; 1248 else if (ctlr->dma_map_dev) 1249 rx_dev = ctlr->dma_map_dev; 1250 else 1251 rx_dev = ctlr->dev.parent; 1252 1253 ret = -ENOMSG; 1254 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1255 /* The sync is done before each transfer. */ 1256 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1257 1258 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1259 continue; 1260 1261 if (xfer->tx_buf != NULL) { 1262 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1263 (void *)xfer->tx_buf, 1264 xfer->len, DMA_TO_DEVICE, 1265 attrs); 1266 if (ret != 0) 1267 return ret; 1268 } else { 1269 xfer->tx_sg.sgl = &dummy_sg; 1270 } 1271 1272 if (xfer->rx_buf != NULL) { 1273 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1274 xfer->rx_buf, xfer->len, 1275 DMA_FROM_DEVICE, attrs); 1276 if (ret != 0) { 1277 spi_unmap_buf_attrs(ctlr, tx_dev, 1278 &xfer->tx_sg, DMA_TO_DEVICE, 1279 attrs); 1280 1281 return ret; 1282 } 1283 } else { 1284 xfer->rx_sg.sgl = &dummy_sg; 1285 } 1286 } 1287 /* No transfer has been mapped, bail out with success */ 1288 if (ret) 1289 return 0; 1290 1291 ctlr->cur_rx_dma_dev = rx_dev; 1292 ctlr->cur_tx_dma_dev = tx_dev; 1293 ctlr->cur_msg_mapped = true; 1294 1295 return 0; 1296 } 1297 1298 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1299 { 1300 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1301 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1302 struct spi_transfer *xfer; 1303 1304 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1305 return 0; 1306 1307 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1308 /* The sync has already been done after each transfer. */ 1309 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1310 1311 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1312 continue; 1313 1314 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1315 DMA_FROM_DEVICE, attrs); 1316 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1317 DMA_TO_DEVICE, attrs); 1318 } 1319 1320 ctlr->cur_msg_mapped = false; 1321 1322 return 0; 1323 } 1324 1325 static void spi_dma_sync_for_device(struct spi_controller *ctlr, struct spi_message *msg, 1326 struct spi_transfer *xfer) 1327 { 1328 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1329 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1330 1331 if (!ctlr->cur_msg_mapped) 1332 return; 1333 1334 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1335 return; 1336 1337 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1338 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1339 } 1340 1341 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, struct spi_message *msg, 1342 struct spi_transfer *xfer) 1343 { 1344 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1345 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1346 1347 if (!ctlr->cur_msg_mapped) 1348 return; 1349 1350 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1351 return; 1352 1353 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1354 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1355 } 1356 #else /* !CONFIG_HAS_DMA */ 1357 static inline int __spi_map_msg(struct spi_controller *ctlr, 1358 struct spi_message *msg) 1359 { 1360 return 0; 1361 } 1362 1363 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1364 struct spi_message *msg) 1365 { 1366 return 0; 1367 } 1368 1369 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1370 struct spi_message *msg, 1371 struct spi_transfer *xfer) 1372 { 1373 } 1374 1375 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1376 struct spi_message *msg, 1377 struct spi_transfer *xfer) 1378 { 1379 } 1380 #endif /* !CONFIG_HAS_DMA */ 1381 1382 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1383 struct spi_message *msg) 1384 { 1385 struct spi_transfer *xfer; 1386 1387 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1388 /* 1389 * Restore the original value of tx_buf or rx_buf if they are 1390 * NULL. 1391 */ 1392 if (xfer->tx_buf == ctlr->dummy_tx) 1393 xfer->tx_buf = NULL; 1394 if (xfer->rx_buf == ctlr->dummy_rx) 1395 xfer->rx_buf = NULL; 1396 } 1397 1398 return __spi_unmap_msg(ctlr, msg); 1399 } 1400 1401 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1402 { 1403 struct spi_transfer *xfer; 1404 void *tmp; 1405 unsigned int max_tx, max_rx; 1406 1407 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1408 && !(msg->spi->mode & SPI_3WIRE)) { 1409 max_tx = 0; 1410 max_rx = 0; 1411 1412 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1413 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1414 !xfer->tx_buf) 1415 max_tx = max(xfer->len, max_tx); 1416 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1417 !xfer->rx_buf) 1418 max_rx = max(xfer->len, max_rx); 1419 } 1420 1421 if (max_tx) { 1422 tmp = krealloc(ctlr->dummy_tx, max_tx, 1423 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1424 if (!tmp) 1425 return -ENOMEM; 1426 ctlr->dummy_tx = tmp; 1427 } 1428 1429 if (max_rx) { 1430 tmp = krealloc(ctlr->dummy_rx, max_rx, 1431 GFP_KERNEL | GFP_DMA); 1432 if (!tmp) 1433 return -ENOMEM; 1434 ctlr->dummy_rx = tmp; 1435 } 1436 1437 if (max_tx || max_rx) { 1438 list_for_each_entry(xfer, &msg->transfers, 1439 transfer_list) { 1440 if (!xfer->len) 1441 continue; 1442 if (!xfer->tx_buf) 1443 xfer->tx_buf = ctlr->dummy_tx; 1444 if (!xfer->rx_buf) 1445 xfer->rx_buf = ctlr->dummy_rx; 1446 } 1447 } 1448 } 1449 1450 return __spi_map_msg(ctlr, msg); 1451 } 1452 1453 static int spi_transfer_wait(struct spi_controller *ctlr, 1454 struct spi_message *msg, 1455 struct spi_transfer *xfer) 1456 { 1457 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1458 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1459 u32 speed_hz = xfer->speed_hz; 1460 unsigned long long ms; 1461 1462 if (spi_controller_is_slave(ctlr)) { 1463 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1464 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1465 return -EINTR; 1466 } 1467 } else { 1468 if (!speed_hz) 1469 speed_hz = 100000; 1470 1471 /* 1472 * For each byte we wait for 8 cycles of the SPI clock. 1473 * Since speed is defined in Hz and we want milliseconds, 1474 * use respective multiplier, but before the division, 1475 * otherwise we may get 0 for short transfers. 1476 */ 1477 ms = 8LL * MSEC_PER_SEC * xfer->len; 1478 do_div(ms, speed_hz); 1479 1480 /* 1481 * Increase it twice and add 200 ms tolerance, use 1482 * predefined maximum in case of overflow. 1483 */ 1484 ms += ms + 200; 1485 if (ms > UINT_MAX) 1486 ms = UINT_MAX; 1487 1488 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1489 msecs_to_jiffies(ms)); 1490 1491 if (ms == 0) { 1492 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1493 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1494 dev_err(&msg->spi->dev, 1495 "SPI transfer timed out\n"); 1496 return -ETIMEDOUT; 1497 } 1498 1499 if (xfer->error & SPI_TRANS_FAIL_IO) 1500 return -EIO; 1501 } 1502 1503 return 0; 1504 } 1505 1506 static void _spi_transfer_delay_ns(u32 ns) 1507 { 1508 if (!ns) 1509 return; 1510 if (ns <= NSEC_PER_USEC) { 1511 ndelay(ns); 1512 } else { 1513 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1514 1515 if (us <= 10) 1516 udelay(us); 1517 else 1518 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1519 } 1520 } 1521 1522 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1523 { 1524 u32 delay = _delay->value; 1525 u32 unit = _delay->unit; 1526 u32 hz; 1527 1528 if (!delay) 1529 return 0; 1530 1531 switch (unit) { 1532 case SPI_DELAY_UNIT_USECS: 1533 delay *= NSEC_PER_USEC; 1534 break; 1535 case SPI_DELAY_UNIT_NSECS: 1536 /* Nothing to do here */ 1537 break; 1538 case SPI_DELAY_UNIT_SCK: 1539 /* Clock cycles need to be obtained from spi_transfer */ 1540 if (!xfer) 1541 return -EINVAL; 1542 /* 1543 * If there is unknown effective speed, approximate it 1544 * by underestimating with half of the requested Hz. 1545 */ 1546 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1547 if (!hz) 1548 return -EINVAL; 1549 1550 /* Convert delay to nanoseconds */ 1551 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1552 break; 1553 default: 1554 return -EINVAL; 1555 } 1556 1557 return delay; 1558 } 1559 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1560 1561 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1562 { 1563 int delay; 1564 1565 might_sleep(); 1566 1567 if (!_delay) 1568 return -EINVAL; 1569 1570 delay = spi_delay_to_ns(_delay, xfer); 1571 if (delay < 0) 1572 return delay; 1573 1574 _spi_transfer_delay_ns(delay); 1575 1576 return 0; 1577 } 1578 EXPORT_SYMBOL_GPL(spi_delay_exec); 1579 1580 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1581 struct spi_transfer *xfer) 1582 { 1583 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1584 u32 delay = xfer->cs_change_delay.value; 1585 u32 unit = xfer->cs_change_delay.unit; 1586 int ret; 1587 1588 /* Return early on "fast" mode - for everything but USECS */ 1589 if (!delay) { 1590 if (unit == SPI_DELAY_UNIT_USECS) 1591 _spi_transfer_delay_ns(default_delay_ns); 1592 return; 1593 } 1594 1595 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1596 if (ret) { 1597 dev_err_once(&msg->spi->dev, 1598 "Use of unsupported delay unit %i, using default of %luus\n", 1599 unit, default_delay_ns / NSEC_PER_USEC); 1600 _spi_transfer_delay_ns(default_delay_ns); 1601 } 1602 } 1603 1604 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1605 struct spi_transfer *xfer) 1606 { 1607 _spi_transfer_cs_change_delay(msg, xfer); 1608 } 1609 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1610 1611 /* 1612 * spi_transfer_one_message - Default implementation of transfer_one_message() 1613 * 1614 * This is a standard implementation of transfer_one_message() for 1615 * drivers which implement a transfer_one() operation. It provides 1616 * standard handling of delays and chip select management. 1617 */ 1618 static int spi_transfer_one_message(struct spi_controller *ctlr, 1619 struct spi_message *msg) 1620 { 1621 struct spi_transfer *xfer; 1622 bool keep_cs = false; 1623 int ret = 0; 1624 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1625 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1626 1627 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1628 spi_set_cs(msg->spi, !xfer->cs_off, false); 1629 1630 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1631 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1632 1633 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1634 trace_spi_transfer_start(msg, xfer); 1635 1636 spi_statistics_add_transfer_stats(statm, xfer, msg); 1637 spi_statistics_add_transfer_stats(stats, xfer, msg); 1638 1639 if (!ctlr->ptp_sts_supported) { 1640 xfer->ptp_sts_word_pre = 0; 1641 ptp_read_system_prets(xfer->ptp_sts); 1642 } 1643 1644 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1645 reinit_completion(&ctlr->xfer_completion); 1646 1647 fallback_pio: 1648 spi_dma_sync_for_device(ctlr, msg, xfer); 1649 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1650 if (ret < 0) { 1651 spi_dma_sync_for_cpu(ctlr, msg, xfer); 1652 1653 if (ctlr->cur_msg_mapped && 1654 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1655 __spi_unmap_msg(ctlr, msg); 1656 ctlr->fallback = true; 1657 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1658 goto fallback_pio; 1659 } 1660 1661 SPI_STATISTICS_INCREMENT_FIELD(statm, 1662 errors); 1663 SPI_STATISTICS_INCREMENT_FIELD(stats, 1664 errors); 1665 dev_err(&msg->spi->dev, 1666 "SPI transfer failed: %d\n", ret); 1667 goto out; 1668 } 1669 1670 if (ret > 0) { 1671 ret = spi_transfer_wait(ctlr, msg, xfer); 1672 if (ret < 0) 1673 msg->status = ret; 1674 } 1675 1676 spi_dma_sync_for_cpu(ctlr, msg, xfer); 1677 } else { 1678 if (xfer->len) 1679 dev_err(&msg->spi->dev, 1680 "Bufferless transfer has length %u\n", 1681 xfer->len); 1682 } 1683 1684 if (!ctlr->ptp_sts_supported) { 1685 ptp_read_system_postts(xfer->ptp_sts); 1686 xfer->ptp_sts_word_post = xfer->len; 1687 } 1688 1689 trace_spi_transfer_stop(msg, xfer); 1690 1691 if (msg->status != -EINPROGRESS) 1692 goto out; 1693 1694 spi_transfer_delay_exec(xfer); 1695 1696 if (xfer->cs_change) { 1697 if (list_is_last(&xfer->transfer_list, 1698 &msg->transfers)) { 1699 keep_cs = true; 1700 } else { 1701 if (!xfer->cs_off) 1702 spi_set_cs(msg->spi, false, false); 1703 _spi_transfer_cs_change_delay(msg, xfer); 1704 if (!list_next_entry(xfer, transfer_list)->cs_off) 1705 spi_set_cs(msg->spi, true, false); 1706 } 1707 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1708 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1709 spi_set_cs(msg->spi, xfer->cs_off, false); 1710 } 1711 1712 msg->actual_length += xfer->len; 1713 } 1714 1715 out: 1716 if (ret != 0 || !keep_cs) 1717 spi_set_cs(msg->spi, false, false); 1718 1719 if (msg->status == -EINPROGRESS) 1720 msg->status = ret; 1721 1722 if (msg->status && ctlr->handle_err) 1723 ctlr->handle_err(ctlr, msg); 1724 1725 spi_finalize_current_message(ctlr); 1726 1727 return ret; 1728 } 1729 1730 /** 1731 * spi_finalize_current_transfer - report completion of a transfer 1732 * @ctlr: the controller reporting completion 1733 * 1734 * Called by SPI drivers using the core transfer_one_message() 1735 * implementation to notify it that the current interrupt driven 1736 * transfer has finished and the next one may be scheduled. 1737 */ 1738 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1739 { 1740 complete(&ctlr->xfer_completion); 1741 } 1742 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1743 1744 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1745 { 1746 if (ctlr->auto_runtime_pm) { 1747 pm_runtime_mark_last_busy(ctlr->dev.parent); 1748 pm_runtime_put_autosuspend(ctlr->dev.parent); 1749 } 1750 } 1751 1752 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1753 struct spi_message *msg, bool was_busy) 1754 { 1755 struct spi_transfer *xfer; 1756 int ret; 1757 1758 if (!was_busy && ctlr->auto_runtime_pm) { 1759 ret = pm_runtime_get_sync(ctlr->dev.parent); 1760 if (ret < 0) { 1761 pm_runtime_put_noidle(ctlr->dev.parent); 1762 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1763 ret); 1764 1765 msg->status = ret; 1766 spi_finalize_current_message(ctlr); 1767 1768 return ret; 1769 } 1770 } 1771 1772 if (!was_busy) 1773 trace_spi_controller_busy(ctlr); 1774 1775 if (!was_busy && ctlr->prepare_transfer_hardware) { 1776 ret = ctlr->prepare_transfer_hardware(ctlr); 1777 if (ret) { 1778 dev_err(&ctlr->dev, 1779 "failed to prepare transfer hardware: %d\n", 1780 ret); 1781 1782 if (ctlr->auto_runtime_pm) 1783 pm_runtime_put(ctlr->dev.parent); 1784 1785 msg->status = ret; 1786 spi_finalize_current_message(ctlr); 1787 1788 return ret; 1789 } 1790 } 1791 1792 trace_spi_message_start(msg); 1793 1794 if (ctlr->prepare_message) { 1795 ret = ctlr->prepare_message(ctlr, msg); 1796 if (ret) { 1797 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1798 ret); 1799 msg->status = ret; 1800 spi_finalize_current_message(ctlr); 1801 return ret; 1802 } 1803 msg->prepared = true; 1804 } 1805 1806 ret = spi_map_msg(ctlr, msg); 1807 if (ret) { 1808 msg->status = ret; 1809 spi_finalize_current_message(ctlr); 1810 return ret; 1811 } 1812 1813 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1814 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1815 xfer->ptp_sts_word_pre = 0; 1816 ptp_read_system_prets(xfer->ptp_sts); 1817 } 1818 } 1819 1820 /* 1821 * Drivers implementation of transfer_one_message() must arrange for 1822 * spi_finalize_current_message() to get called. Most drivers will do 1823 * this in the calling context, but some don't. For those cases, a 1824 * completion is used to guarantee that this function does not return 1825 * until spi_finalize_current_message() is done accessing 1826 * ctlr->cur_msg. 1827 * Use of the following two flags enable to opportunistically skip the 1828 * use of the completion since its use involves expensive spin locks. 1829 * In case of a race with the context that calls 1830 * spi_finalize_current_message() the completion will always be used, 1831 * due to strict ordering of these flags using barriers. 1832 */ 1833 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1834 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1835 reinit_completion(&ctlr->cur_msg_completion); 1836 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1837 1838 ret = ctlr->transfer_one_message(ctlr, msg); 1839 if (ret) { 1840 dev_err(&ctlr->dev, 1841 "failed to transfer one message from queue\n"); 1842 return ret; 1843 } 1844 1845 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1846 smp_mb(); /* See spi_finalize_current_message()... */ 1847 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1848 wait_for_completion(&ctlr->cur_msg_completion); 1849 1850 return 0; 1851 } 1852 1853 /** 1854 * __spi_pump_messages - function which processes SPI message queue 1855 * @ctlr: controller to process queue for 1856 * @in_kthread: true if we are in the context of the message pump thread 1857 * 1858 * This function checks if there is any SPI message in the queue that 1859 * needs processing and if so call out to the driver to initialize hardware 1860 * and transfer each message. 1861 * 1862 * Note that it is called both from the kthread itself and also from 1863 * inside spi_sync(); the queue extraction handling at the top of the 1864 * function should deal with this safely. 1865 */ 1866 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1867 { 1868 struct spi_message *msg; 1869 bool was_busy = false; 1870 unsigned long flags; 1871 int ret; 1872 1873 /* Take the I/O mutex */ 1874 mutex_lock(&ctlr->io_mutex); 1875 1876 /* Lock queue */ 1877 spin_lock_irqsave(&ctlr->queue_lock, flags); 1878 1879 /* Make sure we are not already running a message */ 1880 if (ctlr->cur_msg) 1881 goto out_unlock; 1882 1883 /* Check if the queue is idle */ 1884 if (list_empty(&ctlr->queue) || !ctlr->running) { 1885 if (!ctlr->busy) 1886 goto out_unlock; 1887 1888 /* Defer any non-atomic teardown to the thread */ 1889 if (!in_kthread) { 1890 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1891 !ctlr->unprepare_transfer_hardware) { 1892 spi_idle_runtime_pm(ctlr); 1893 ctlr->busy = false; 1894 ctlr->queue_empty = true; 1895 trace_spi_controller_idle(ctlr); 1896 } else { 1897 kthread_queue_work(ctlr->kworker, 1898 &ctlr->pump_messages); 1899 } 1900 goto out_unlock; 1901 } 1902 1903 ctlr->busy = false; 1904 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1905 1906 kfree(ctlr->dummy_rx); 1907 ctlr->dummy_rx = NULL; 1908 kfree(ctlr->dummy_tx); 1909 ctlr->dummy_tx = NULL; 1910 if (ctlr->unprepare_transfer_hardware && 1911 ctlr->unprepare_transfer_hardware(ctlr)) 1912 dev_err(&ctlr->dev, 1913 "failed to unprepare transfer hardware\n"); 1914 spi_idle_runtime_pm(ctlr); 1915 trace_spi_controller_idle(ctlr); 1916 1917 spin_lock_irqsave(&ctlr->queue_lock, flags); 1918 ctlr->queue_empty = true; 1919 goto out_unlock; 1920 } 1921 1922 /* Extract head of queue */ 1923 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1924 ctlr->cur_msg = msg; 1925 1926 list_del_init(&msg->queue); 1927 if (ctlr->busy) 1928 was_busy = true; 1929 else 1930 ctlr->busy = true; 1931 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1932 1933 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1934 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1935 1936 ctlr->cur_msg = NULL; 1937 ctlr->fallback = false; 1938 1939 mutex_unlock(&ctlr->io_mutex); 1940 1941 /* Prod the scheduler in case transfer_one() was busy waiting */ 1942 if (!ret) 1943 cond_resched(); 1944 return; 1945 1946 out_unlock: 1947 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1948 mutex_unlock(&ctlr->io_mutex); 1949 } 1950 1951 /** 1952 * spi_pump_messages - kthread work function which processes spi message queue 1953 * @work: pointer to kthread work struct contained in the controller struct 1954 */ 1955 static void spi_pump_messages(struct kthread_work *work) 1956 { 1957 struct spi_controller *ctlr = 1958 container_of(work, struct spi_controller, pump_messages); 1959 1960 __spi_pump_messages(ctlr, true); 1961 } 1962 1963 /** 1964 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1965 * @ctlr: Pointer to the spi_controller structure of the driver 1966 * @xfer: Pointer to the transfer being timestamped 1967 * @progress: How many words (not bytes) have been transferred so far 1968 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1969 * transfer, for less jitter in time measurement. Only compatible 1970 * with PIO drivers. If true, must follow up with 1971 * spi_take_timestamp_post or otherwise system will crash. 1972 * WARNING: for fully predictable results, the CPU frequency must 1973 * also be under control (governor). 1974 * 1975 * This is a helper for drivers to collect the beginning of the TX timestamp 1976 * for the requested byte from the SPI transfer. The frequency with which this 1977 * function must be called (once per word, once for the whole transfer, once 1978 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1979 * greater than or equal to the requested byte at the time of the call. The 1980 * timestamp is only taken once, at the first such call. It is assumed that 1981 * the driver advances its @tx buffer pointer monotonically. 1982 */ 1983 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1984 struct spi_transfer *xfer, 1985 size_t progress, bool irqs_off) 1986 { 1987 if (!xfer->ptp_sts) 1988 return; 1989 1990 if (xfer->timestamped) 1991 return; 1992 1993 if (progress > xfer->ptp_sts_word_pre) 1994 return; 1995 1996 /* Capture the resolution of the timestamp */ 1997 xfer->ptp_sts_word_pre = progress; 1998 1999 if (irqs_off) { 2000 local_irq_save(ctlr->irq_flags); 2001 preempt_disable(); 2002 } 2003 2004 ptp_read_system_prets(xfer->ptp_sts); 2005 } 2006 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 2007 2008 /** 2009 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 2010 * @ctlr: Pointer to the spi_controller structure of the driver 2011 * @xfer: Pointer to the transfer being timestamped 2012 * @progress: How many words (not bytes) have been transferred so far 2013 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 2014 * 2015 * This is a helper for drivers to collect the end of the TX timestamp for 2016 * the requested byte from the SPI transfer. Can be called with an arbitrary 2017 * frequency: only the first call where @tx exceeds or is equal to the 2018 * requested word will be timestamped. 2019 */ 2020 void spi_take_timestamp_post(struct spi_controller *ctlr, 2021 struct spi_transfer *xfer, 2022 size_t progress, bool irqs_off) 2023 { 2024 if (!xfer->ptp_sts) 2025 return; 2026 2027 if (xfer->timestamped) 2028 return; 2029 2030 if (progress < xfer->ptp_sts_word_post) 2031 return; 2032 2033 ptp_read_system_postts(xfer->ptp_sts); 2034 2035 if (irqs_off) { 2036 local_irq_restore(ctlr->irq_flags); 2037 preempt_enable(); 2038 } 2039 2040 /* Capture the resolution of the timestamp */ 2041 xfer->ptp_sts_word_post = progress; 2042 2043 xfer->timestamped = 1; 2044 } 2045 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2046 2047 /** 2048 * spi_set_thread_rt - set the controller to pump at realtime priority 2049 * @ctlr: controller to boost priority of 2050 * 2051 * This can be called because the controller requested realtime priority 2052 * (by setting the ->rt value before calling spi_register_controller()) or 2053 * because a device on the bus said that its transfers needed realtime 2054 * priority. 2055 * 2056 * NOTE: at the moment if any device on a bus says it needs realtime then 2057 * the thread will be at realtime priority for all transfers on that 2058 * controller. If this eventually becomes a problem we may see if we can 2059 * find a way to boost the priority only temporarily during relevant 2060 * transfers. 2061 */ 2062 static void spi_set_thread_rt(struct spi_controller *ctlr) 2063 { 2064 dev_info(&ctlr->dev, 2065 "will run message pump with realtime priority\n"); 2066 sched_set_fifo(ctlr->kworker->task); 2067 } 2068 2069 static int spi_init_queue(struct spi_controller *ctlr) 2070 { 2071 ctlr->running = false; 2072 ctlr->busy = false; 2073 ctlr->queue_empty = true; 2074 2075 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2076 if (IS_ERR(ctlr->kworker)) { 2077 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2078 return PTR_ERR(ctlr->kworker); 2079 } 2080 2081 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2082 2083 /* 2084 * Controller config will indicate if this controller should run the 2085 * message pump with high (realtime) priority to reduce the transfer 2086 * latency on the bus by minimising the delay between a transfer 2087 * request and the scheduling of the message pump thread. Without this 2088 * setting the message pump thread will remain at default priority. 2089 */ 2090 if (ctlr->rt) 2091 spi_set_thread_rt(ctlr); 2092 2093 return 0; 2094 } 2095 2096 /** 2097 * spi_get_next_queued_message() - called by driver to check for queued 2098 * messages 2099 * @ctlr: the controller to check for queued messages 2100 * 2101 * If there are more messages in the queue, the next message is returned from 2102 * this call. 2103 * 2104 * Return: the next message in the queue, else NULL if the queue is empty. 2105 */ 2106 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2107 { 2108 struct spi_message *next; 2109 unsigned long flags; 2110 2111 /* Get a pointer to the next message, if any */ 2112 spin_lock_irqsave(&ctlr->queue_lock, flags); 2113 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2114 queue); 2115 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2116 2117 return next; 2118 } 2119 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2120 2121 /* 2122 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2123 * and spi_maybe_unoptimize_message() 2124 * @msg: the message to unoptimize 2125 * 2126 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2127 * core should use spi_maybe_unoptimize_message() rather than calling this 2128 * function directly. 2129 * 2130 * It is not valid to call this on a message that is not currently optimized. 2131 */ 2132 static void __spi_unoptimize_message(struct spi_message *msg) 2133 { 2134 struct spi_controller *ctlr = msg->spi->controller; 2135 2136 if (ctlr->unoptimize_message) 2137 ctlr->unoptimize_message(msg); 2138 2139 spi_res_release(ctlr, msg); 2140 2141 msg->optimized = false; 2142 msg->opt_state = NULL; 2143 } 2144 2145 /* 2146 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2147 * @msg: the message to unoptimize 2148 * 2149 * This function is used to unoptimize a message if and only if it was 2150 * optimized by the core (via spi_maybe_optimize_message()). 2151 */ 2152 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2153 { 2154 if (!msg->pre_optimized && msg->optimized && 2155 !msg->spi->controller->defer_optimize_message) 2156 __spi_unoptimize_message(msg); 2157 } 2158 2159 /** 2160 * spi_finalize_current_message() - the current message is complete 2161 * @ctlr: the controller to return the message to 2162 * 2163 * Called by the driver to notify the core that the message in the front of the 2164 * queue is complete and can be removed from the queue. 2165 */ 2166 void spi_finalize_current_message(struct spi_controller *ctlr) 2167 { 2168 struct spi_transfer *xfer; 2169 struct spi_message *mesg; 2170 int ret; 2171 2172 mesg = ctlr->cur_msg; 2173 2174 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2175 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2176 ptp_read_system_postts(xfer->ptp_sts); 2177 xfer->ptp_sts_word_post = xfer->len; 2178 } 2179 } 2180 2181 if (unlikely(ctlr->ptp_sts_supported)) 2182 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2183 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2184 2185 spi_unmap_msg(ctlr, mesg); 2186 2187 if (mesg->prepared && ctlr->unprepare_message) { 2188 ret = ctlr->unprepare_message(ctlr, mesg); 2189 if (ret) { 2190 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2191 ret); 2192 } 2193 } 2194 2195 mesg->prepared = false; 2196 2197 spi_maybe_unoptimize_message(mesg); 2198 2199 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2200 smp_mb(); /* See __spi_pump_transfer_message()... */ 2201 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2202 complete(&ctlr->cur_msg_completion); 2203 2204 trace_spi_message_done(mesg); 2205 2206 mesg->state = NULL; 2207 if (mesg->complete) 2208 mesg->complete(mesg->context); 2209 } 2210 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2211 2212 static int spi_start_queue(struct spi_controller *ctlr) 2213 { 2214 unsigned long flags; 2215 2216 spin_lock_irqsave(&ctlr->queue_lock, flags); 2217 2218 if (ctlr->running || ctlr->busy) { 2219 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2220 return -EBUSY; 2221 } 2222 2223 ctlr->running = true; 2224 ctlr->cur_msg = NULL; 2225 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2226 2227 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2228 2229 return 0; 2230 } 2231 2232 static int spi_stop_queue(struct spi_controller *ctlr) 2233 { 2234 unsigned long flags; 2235 unsigned limit = 500; 2236 int ret = 0; 2237 2238 spin_lock_irqsave(&ctlr->queue_lock, flags); 2239 2240 /* 2241 * This is a bit lame, but is optimized for the common execution path. 2242 * A wait_queue on the ctlr->busy could be used, but then the common 2243 * execution path (pump_messages) would be required to call wake_up or 2244 * friends on every SPI message. Do this instead. 2245 */ 2246 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2247 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2248 usleep_range(10000, 11000); 2249 spin_lock_irqsave(&ctlr->queue_lock, flags); 2250 } 2251 2252 if (!list_empty(&ctlr->queue) || ctlr->busy) 2253 ret = -EBUSY; 2254 else 2255 ctlr->running = false; 2256 2257 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2258 2259 return ret; 2260 } 2261 2262 static int spi_destroy_queue(struct spi_controller *ctlr) 2263 { 2264 int ret; 2265 2266 ret = spi_stop_queue(ctlr); 2267 2268 /* 2269 * kthread_flush_worker will block until all work is done. 2270 * If the reason that stop_queue timed out is that the work will never 2271 * finish, then it does no good to call flush/stop thread, so 2272 * return anyway. 2273 */ 2274 if (ret) { 2275 dev_err(&ctlr->dev, "problem destroying queue\n"); 2276 return ret; 2277 } 2278 2279 kthread_destroy_worker(ctlr->kworker); 2280 2281 return 0; 2282 } 2283 2284 static int __spi_queued_transfer(struct spi_device *spi, 2285 struct spi_message *msg, 2286 bool need_pump) 2287 { 2288 struct spi_controller *ctlr = spi->controller; 2289 unsigned long flags; 2290 2291 spin_lock_irqsave(&ctlr->queue_lock, flags); 2292 2293 if (!ctlr->running) { 2294 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2295 return -ESHUTDOWN; 2296 } 2297 msg->actual_length = 0; 2298 msg->status = -EINPROGRESS; 2299 2300 list_add_tail(&msg->queue, &ctlr->queue); 2301 ctlr->queue_empty = false; 2302 if (!ctlr->busy && need_pump) 2303 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2304 2305 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2306 return 0; 2307 } 2308 2309 /** 2310 * spi_queued_transfer - transfer function for queued transfers 2311 * @spi: SPI device which is requesting transfer 2312 * @msg: SPI message which is to handled is queued to driver queue 2313 * 2314 * Return: zero on success, else a negative error code. 2315 */ 2316 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2317 { 2318 return __spi_queued_transfer(spi, msg, true); 2319 } 2320 2321 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2322 { 2323 int ret; 2324 2325 ctlr->transfer = spi_queued_transfer; 2326 if (!ctlr->transfer_one_message) 2327 ctlr->transfer_one_message = spi_transfer_one_message; 2328 2329 /* Initialize and start queue */ 2330 ret = spi_init_queue(ctlr); 2331 if (ret) { 2332 dev_err(&ctlr->dev, "problem initializing queue\n"); 2333 goto err_init_queue; 2334 } 2335 ctlr->queued = true; 2336 ret = spi_start_queue(ctlr); 2337 if (ret) { 2338 dev_err(&ctlr->dev, "problem starting queue\n"); 2339 goto err_start_queue; 2340 } 2341 2342 return 0; 2343 2344 err_start_queue: 2345 spi_destroy_queue(ctlr); 2346 err_init_queue: 2347 return ret; 2348 } 2349 2350 /** 2351 * spi_flush_queue - Send all pending messages in the queue from the callers' 2352 * context 2353 * @ctlr: controller to process queue for 2354 * 2355 * This should be used when one wants to ensure all pending messages have been 2356 * sent before doing something. Is used by the spi-mem code to make sure SPI 2357 * memory operations do not preempt regular SPI transfers that have been queued 2358 * before the spi-mem operation. 2359 */ 2360 void spi_flush_queue(struct spi_controller *ctlr) 2361 { 2362 if (ctlr->transfer == spi_queued_transfer) 2363 __spi_pump_messages(ctlr, false); 2364 } 2365 2366 /*-------------------------------------------------------------------------*/ 2367 2368 #if defined(CONFIG_OF) 2369 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2370 struct spi_delay *delay, const char *prop) 2371 { 2372 u32 value; 2373 2374 if (!of_property_read_u32(nc, prop, &value)) { 2375 if (value > U16_MAX) { 2376 delay->value = DIV_ROUND_UP(value, 1000); 2377 delay->unit = SPI_DELAY_UNIT_USECS; 2378 } else { 2379 delay->value = value; 2380 delay->unit = SPI_DELAY_UNIT_NSECS; 2381 } 2382 } 2383 } 2384 2385 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2386 struct device_node *nc) 2387 { 2388 u32 value, cs[SPI_CS_CNT_MAX]; 2389 int rc, idx; 2390 2391 /* Mode (clock phase/polarity/etc.) */ 2392 if (of_property_read_bool(nc, "spi-cpha")) 2393 spi->mode |= SPI_CPHA; 2394 if (of_property_read_bool(nc, "spi-cpol")) 2395 spi->mode |= SPI_CPOL; 2396 if (of_property_read_bool(nc, "spi-3wire")) 2397 spi->mode |= SPI_3WIRE; 2398 if (of_property_read_bool(nc, "spi-lsb-first")) 2399 spi->mode |= SPI_LSB_FIRST; 2400 if (of_property_read_bool(nc, "spi-cs-high")) 2401 spi->mode |= SPI_CS_HIGH; 2402 2403 /* Device DUAL/QUAD mode */ 2404 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2405 switch (value) { 2406 case 0: 2407 spi->mode |= SPI_NO_TX; 2408 break; 2409 case 1: 2410 break; 2411 case 2: 2412 spi->mode |= SPI_TX_DUAL; 2413 break; 2414 case 4: 2415 spi->mode |= SPI_TX_QUAD; 2416 break; 2417 case 8: 2418 spi->mode |= SPI_TX_OCTAL; 2419 break; 2420 default: 2421 dev_warn(&ctlr->dev, 2422 "spi-tx-bus-width %d not supported\n", 2423 value); 2424 break; 2425 } 2426 } 2427 2428 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2429 switch (value) { 2430 case 0: 2431 spi->mode |= SPI_NO_RX; 2432 break; 2433 case 1: 2434 break; 2435 case 2: 2436 spi->mode |= SPI_RX_DUAL; 2437 break; 2438 case 4: 2439 spi->mode |= SPI_RX_QUAD; 2440 break; 2441 case 8: 2442 spi->mode |= SPI_RX_OCTAL; 2443 break; 2444 default: 2445 dev_warn(&ctlr->dev, 2446 "spi-rx-bus-width %d not supported\n", 2447 value); 2448 break; 2449 } 2450 } 2451 2452 if (spi_controller_is_slave(ctlr)) { 2453 if (!of_node_name_eq(nc, "slave")) { 2454 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2455 nc); 2456 return -EINVAL; 2457 } 2458 return 0; 2459 } 2460 2461 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2462 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2463 return -EINVAL; 2464 } 2465 2466 spi_set_all_cs_unused(spi); 2467 2468 /* Device address */ 2469 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2470 SPI_CS_CNT_MAX); 2471 if (rc < 0) { 2472 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2473 nc, rc); 2474 return rc; 2475 } 2476 if (rc > ctlr->num_chipselect) { 2477 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2478 nc, rc); 2479 return rc; 2480 } 2481 if ((of_property_read_bool(nc, "parallel-memories")) && 2482 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2483 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2484 return -EINVAL; 2485 } 2486 for (idx = 0; idx < rc; idx++) 2487 spi_set_chipselect(spi, idx, cs[idx]); 2488 2489 /* 2490 * By default spi->chip_select[0] will hold the physical CS number, 2491 * so set bit 0 in spi->cs_index_mask. 2492 */ 2493 spi->cs_index_mask = BIT(0); 2494 2495 /* Device speed */ 2496 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2497 spi->max_speed_hz = value; 2498 2499 /* Device CS delays */ 2500 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2501 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2502 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2503 2504 return 0; 2505 } 2506 2507 static struct spi_device * 2508 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2509 { 2510 struct spi_device *spi; 2511 int rc; 2512 2513 /* Alloc an spi_device */ 2514 spi = spi_alloc_device(ctlr); 2515 if (!spi) { 2516 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2517 rc = -ENOMEM; 2518 goto err_out; 2519 } 2520 2521 /* Select device driver */ 2522 rc = of_alias_from_compatible(nc, spi->modalias, 2523 sizeof(spi->modalias)); 2524 if (rc < 0) { 2525 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2526 goto err_out; 2527 } 2528 2529 rc = of_spi_parse_dt(ctlr, spi, nc); 2530 if (rc) 2531 goto err_out; 2532 2533 /* Store a pointer to the node in the device structure */ 2534 of_node_get(nc); 2535 2536 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2537 2538 /* Register the new device */ 2539 rc = spi_add_device(spi); 2540 if (rc) { 2541 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2542 goto err_of_node_put; 2543 } 2544 2545 return spi; 2546 2547 err_of_node_put: 2548 of_node_put(nc); 2549 err_out: 2550 spi_dev_put(spi); 2551 return ERR_PTR(rc); 2552 } 2553 2554 /** 2555 * of_register_spi_devices() - Register child devices onto the SPI bus 2556 * @ctlr: Pointer to spi_controller device 2557 * 2558 * Registers an spi_device for each child node of controller node which 2559 * represents a valid SPI slave. 2560 */ 2561 static void of_register_spi_devices(struct spi_controller *ctlr) 2562 { 2563 struct spi_device *spi; 2564 struct device_node *nc; 2565 2566 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2567 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2568 continue; 2569 spi = of_register_spi_device(ctlr, nc); 2570 if (IS_ERR(spi)) { 2571 dev_warn(&ctlr->dev, 2572 "Failed to create SPI device for %pOF\n", nc); 2573 of_node_clear_flag(nc, OF_POPULATED); 2574 } 2575 } 2576 } 2577 #else 2578 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2579 #endif 2580 2581 /** 2582 * spi_new_ancillary_device() - Register ancillary SPI device 2583 * @spi: Pointer to the main SPI device registering the ancillary device 2584 * @chip_select: Chip Select of the ancillary device 2585 * 2586 * Register an ancillary SPI device; for example some chips have a chip-select 2587 * for normal device usage and another one for setup/firmware upload. 2588 * 2589 * This may only be called from main SPI device's probe routine. 2590 * 2591 * Return: 0 on success; negative errno on failure 2592 */ 2593 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2594 u8 chip_select) 2595 { 2596 struct spi_controller *ctlr = spi->controller; 2597 struct spi_device *ancillary; 2598 int rc = 0; 2599 2600 /* Alloc an spi_device */ 2601 ancillary = spi_alloc_device(ctlr); 2602 if (!ancillary) { 2603 rc = -ENOMEM; 2604 goto err_out; 2605 } 2606 2607 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2608 2609 /* Use provided chip-select for ancillary device */ 2610 spi_set_all_cs_unused(ancillary); 2611 spi_set_chipselect(ancillary, 0, chip_select); 2612 2613 /* Take over SPI mode/speed from SPI main device */ 2614 ancillary->max_speed_hz = spi->max_speed_hz; 2615 ancillary->mode = spi->mode; 2616 /* 2617 * By default spi->chip_select[0] will hold the physical CS number, 2618 * so set bit 0 in spi->cs_index_mask. 2619 */ 2620 ancillary->cs_index_mask = BIT(0); 2621 2622 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2623 2624 /* Register the new device */ 2625 rc = __spi_add_device(ancillary); 2626 if (rc) { 2627 dev_err(&spi->dev, "failed to register ancillary device\n"); 2628 goto err_out; 2629 } 2630 2631 return ancillary; 2632 2633 err_out: 2634 spi_dev_put(ancillary); 2635 return ERR_PTR(rc); 2636 } 2637 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2638 2639 #ifdef CONFIG_ACPI 2640 struct acpi_spi_lookup { 2641 struct spi_controller *ctlr; 2642 u32 max_speed_hz; 2643 u32 mode; 2644 int irq; 2645 u8 bits_per_word; 2646 u8 chip_select; 2647 int n; 2648 int index; 2649 }; 2650 2651 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2652 { 2653 struct acpi_resource_spi_serialbus *sb; 2654 int *count = data; 2655 2656 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2657 return 1; 2658 2659 sb = &ares->data.spi_serial_bus; 2660 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2661 return 1; 2662 2663 *count = *count + 1; 2664 2665 return 1; 2666 } 2667 2668 /** 2669 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2670 * @adev: ACPI device 2671 * 2672 * Return: the number of SpiSerialBus resources in the ACPI-device's 2673 * resource-list; or a negative error code. 2674 */ 2675 int acpi_spi_count_resources(struct acpi_device *adev) 2676 { 2677 LIST_HEAD(r); 2678 int count = 0; 2679 int ret; 2680 2681 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2682 if (ret < 0) 2683 return ret; 2684 2685 acpi_dev_free_resource_list(&r); 2686 2687 return count; 2688 } 2689 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2690 2691 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2692 struct acpi_spi_lookup *lookup) 2693 { 2694 const union acpi_object *obj; 2695 2696 if (!x86_apple_machine) 2697 return; 2698 2699 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2700 && obj->buffer.length >= 4) 2701 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2702 2703 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2704 && obj->buffer.length == 8) 2705 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2706 2707 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2708 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2709 lookup->mode |= SPI_LSB_FIRST; 2710 2711 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2712 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2713 lookup->mode |= SPI_CPOL; 2714 2715 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2716 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2717 lookup->mode |= SPI_CPHA; 2718 } 2719 2720 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2721 { 2722 struct acpi_spi_lookup *lookup = data; 2723 struct spi_controller *ctlr = lookup->ctlr; 2724 2725 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2726 struct acpi_resource_spi_serialbus *sb; 2727 acpi_handle parent_handle; 2728 acpi_status status; 2729 2730 sb = &ares->data.spi_serial_bus; 2731 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2732 2733 if (lookup->index != -1 && lookup->n++ != lookup->index) 2734 return 1; 2735 2736 status = acpi_get_handle(NULL, 2737 sb->resource_source.string_ptr, 2738 &parent_handle); 2739 2740 if (ACPI_FAILURE(status)) 2741 return -ENODEV; 2742 2743 if (ctlr) { 2744 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2745 return -ENODEV; 2746 } else { 2747 struct acpi_device *adev; 2748 2749 adev = acpi_fetch_acpi_dev(parent_handle); 2750 if (!adev) 2751 return -ENODEV; 2752 2753 ctlr = acpi_spi_find_controller_by_adev(adev); 2754 if (!ctlr) 2755 return -EPROBE_DEFER; 2756 2757 lookup->ctlr = ctlr; 2758 } 2759 2760 /* 2761 * ACPI DeviceSelection numbering is handled by the 2762 * host controller driver in Windows and can vary 2763 * from driver to driver. In Linux we always expect 2764 * 0 .. max - 1 so we need to ask the driver to 2765 * translate between the two schemes. 2766 */ 2767 if (ctlr->fw_translate_cs) { 2768 int cs = ctlr->fw_translate_cs(ctlr, 2769 sb->device_selection); 2770 if (cs < 0) 2771 return cs; 2772 lookup->chip_select = cs; 2773 } else { 2774 lookup->chip_select = sb->device_selection; 2775 } 2776 2777 lookup->max_speed_hz = sb->connection_speed; 2778 lookup->bits_per_word = sb->data_bit_length; 2779 2780 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2781 lookup->mode |= SPI_CPHA; 2782 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2783 lookup->mode |= SPI_CPOL; 2784 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2785 lookup->mode |= SPI_CS_HIGH; 2786 } 2787 } else if (lookup->irq < 0) { 2788 struct resource r; 2789 2790 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2791 lookup->irq = r.start; 2792 } 2793 2794 /* Always tell the ACPI core to skip this resource */ 2795 return 1; 2796 } 2797 2798 /** 2799 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2800 * @ctlr: controller to which the spi device belongs 2801 * @adev: ACPI Device for the spi device 2802 * @index: Index of the spi resource inside the ACPI Node 2803 * 2804 * This should be used to allocate a new SPI device from and ACPI Device node. 2805 * The caller is responsible for calling spi_add_device to register the SPI device. 2806 * 2807 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2808 * using the resource. 2809 * If index is set to -1, index is not used. 2810 * Note: If index is -1, ctlr must be set. 2811 * 2812 * Return: a pointer to the new device, or ERR_PTR on error. 2813 */ 2814 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2815 struct acpi_device *adev, 2816 int index) 2817 { 2818 acpi_handle parent_handle = NULL; 2819 struct list_head resource_list; 2820 struct acpi_spi_lookup lookup = {}; 2821 struct spi_device *spi; 2822 int ret; 2823 2824 if (!ctlr && index == -1) 2825 return ERR_PTR(-EINVAL); 2826 2827 lookup.ctlr = ctlr; 2828 lookup.irq = -1; 2829 lookup.index = index; 2830 lookup.n = 0; 2831 2832 INIT_LIST_HEAD(&resource_list); 2833 ret = acpi_dev_get_resources(adev, &resource_list, 2834 acpi_spi_add_resource, &lookup); 2835 acpi_dev_free_resource_list(&resource_list); 2836 2837 if (ret < 0) 2838 /* Found SPI in _CRS but it points to another controller */ 2839 return ERR_PTR(ret); 2840 2841 if (!lookup.max_speed_hz && 2842 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2843 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2844 /* Apple does not use _CRS but nested devices for SPI slaves */ 2845 acpi_spi_parse_apple_properties(adev, &lookup); 2846 } 2847 2848 if (!lookup.max_speed_hz) 2849 return ERR_PTR(-ENODEV); 2850 2851 spi = spi_alloc_device(lookup.ctlr); 2852 if (!spi) { 2853 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2854 dev_name(&adev->dev)); 2855 return ERR_PTR(-ENOMEM); 2856 } 2857 2858 spi_set_all_cs_unused(spi); 2859 spi_set_chipselect(spi, 0, lookup.chip_select); 2860 2861 ACPI_COMPANION_SET(&spi->dev, adev); 2862 spi->max_speed_hz = lookup.max_speed_hz; 2863 spi->mode |= lookup.mode; 2864 spi->irq = lookup.irq; 2865 spi->bits_per_word = lookup.bits_per_word; 2866 /* 2867 * By default spi->chip_select[0] will hold the physical CS number, 2868 * so set bit 0 in spi->cs_index_mask. 2869 */ 2870 spi->cs_index_mask = BIT(0); 2871 2872 return spi; 2873 } 2874 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2875 2876 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2877 struct acpi_device *adev) 2878 { 2879 struct spi_device *spi; 2880 2881 if (acpi_bus_get_status(adev) || !adev->status.present || 2882 acpi_device_enumerated(adev)) 2883 return AE_OK; 2884 2885 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2886 if (IS_ERR(spi)) { 2887 if (PTR_ERR(spi) == -ENOMEM) 2888 return AE_NO_MEMORY; 2889 else 2890 return AE_OK; 2891 } 2892 2893 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2894 sizeof(spi->modalias)); 2895 2896 if (spi->irq < 0) 2897 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2898 2899 acpi_device_set_enumerated(adev); 2900 2901 adev->power.flags.ignore_parent = true; 2902 if (spi_add_device(spi)) { 2903 adev->power.flags.ignore_parent = false; 2904 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2905 dev_name(&adev->dev)); 2906 spi_dev_put(spi); 2907 } 2908 2909 return AE_OK; 2910 } 2911 2912 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2913 void *data, void **return_value) 2914 { 2915 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2916 struct spi_controller *ctlr = data; 2917 2918 if (!adev) 2919 return AE_OK; 2920 2921 return acpi_register_spi_device(ctlr, adev); 2922 } 2923 2924 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2925 2926 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2927 { 2928 acpi_status status; 2929 acpi_handle handle; 2930 2931 handle = ACPI_HANDLE(ctlr->dev.parent); 2932 if (!handle) 2933 return; 2934 2935 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2936 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2937 acpi_spi_add_device, NULL, ctlr, NULL); 2938 if (ACPI_FAILURE(status)) 2939 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2940 } 2941 #else 2942 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2943 #endif /* CONFIG_ACPI */ 2944 2945 static void spi_controller_release(struct device *dev) 2946 { 2947 struct spi_controller *ctlr; 2948 2949 ctlr = container_of(dev, struct spi_controller, dev); 2950 kfree(ctlr); 2951 } 2952 2953 static struct class spi_master_class = { 2954 .name = "spi_master", 2955 .dev_release = spi_controller_release, 2956 .dev_groups = spi_master_groups, 2957 }; 2958 2959 #ifdef CONFIG_SPI_SLAVE 2960 /** 2961 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2962 * controller 2963 * @spi: device used for the current transfer 2964 */ 2965 int spi_slave_abort(struct spi_device *spi) 2966 { 2967 struct spi_controller *ctlr = spi->controller; 2968 2969 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2970 return ctlr->slave_abort(ctlr); 2971 2972 return -ENOTSUPP; 2973 } 2974 EXPORT_SYMBOL_GPL(spi_slave_abort); 2975 2976 int spi_target_abort(struct spi_device *spi) 2977 { 2978 struct spi_controller *ctlr = spi->controller; 2979 2980 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2981 return ctlr->target_abort(ctlr); 2982 2983 return -ENOTSUPP; 2984 } 2985 EXPORT_SYMBOL_GPL(spi_target_abort); 2986 2987 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2988 char *buf) 2989 { 2990 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2991 dev); 2992 struct device *child; 2993 2994 child = device_find_any_child(&ctlr->dev); 2995 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2996 } 2997 2998 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2999 const char *buf, size_t count) 3000 { 3001 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 3002 dev); 3003 struct spi_device *spi; 3004 struct device *child; 3005 char name[32]; 3006 int rc; 3007 3008 rc = sscanf(buf, "%31s", name); 3009 if (rc != 1 || !name[0]) 3010 return -EINVAL; 3011 3012 child = device_find_any_child(&ctlr->dev); 3013 if (child) { 3014 /* Remove registered slave */ 3015 device_unregister(child); 3016 put_device(child); 3017 } 3018 3019 if (strcmp(name, "(null)")) { 3020 /* Register new slave */ 3021 spi = spi_alloc_device(ctlr); 3022 if (!spi) 3023 return -ENOMEM; 3024 3025 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3026 3027 rc = spi_add_device(spi); 3028 if (rc) { 3029 spi_dev_put(spi); 3030 return rc; 3031 } 3032 } 3033 3034 return count; 3035 } 3036 3037 static DEVICE_ATTR_RW(slave); 3038 3039 static struct attribute *spi_slave_attrs[] = { 3040 &dev_attr_slave.attr, 3041 NULL, 3042 }; 3043 3044 static const struct attribute_group spi_slave_group = { 3045 .attrs = spi_slave_attrs, 3046 }; 3047 3048 static const struct attribute_group *spi_slave_groups[] = { 3049 &spi_controller_statistics_group, 3050 &spi_slave_group, 3051 NULL, 3052 }; 3053 3054 static struct class spi_slave_class = { 3055 .name = "spi_slave", 3056 .dev_release = spi_controller_release, 3057 .dev_groups = spi_slave_groups, 3058 }; 3059 #else 3060 extern struct class spi_slave_class; /* dummy */ 3061 #endif 3062 3063 /** 3064 * __spi_alloc_controller - allocate an SPI master or slave controller 3065 * @dev: the controller, possibly using the platform_bus 3066 * @size: how much zeroed driver-private data to allocate; the pointer to this 3067 * memory is in the driver_data field of the returned device, accessible 3068 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3069 * drivers granting DMA access to portions of their private data need to 3070 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3071 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3072 * slave (true) controller 3073 * Context: can sleep 3074 * 3075 * This call is used only by SPI controller drivers, which are the 3076 * only ones directly touching chip registers. It's how they allocate 3077 * an spi_controller structure, prior to calling spi_register_controller(). 3078 * 3079 * This must be called from context that can sleep. 3080 * 3081 * The caller is responsible for assigning the bus number and initializing the 3082 * controller's methods before calling spi_register_controller(); and (after 3083 * errors adding the device) calling spi_controller_put() to prevent a memory 3084 * leak. 3085 * 3086 * Return: the SPI controller structure on success, else NULL. 3087 */ 3088 struct spi_controller *__spi_alloc_controller(struct device *dev, 3089 unsigned int size, bool slave) 3090 { 3091 struct spi_controller *ctlr; 3092 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3093 3094 if (!dev) 3095 return NULL; 3096 3097 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3098 if (!ctlr) 3099 return NULL; 3100 3101 device_initialize(&ctlr->dev); 3102 INIT_LIST_HEAD(&ctlr->queue); 3103 spin_lock_init(&ctlr->queue_lock); 3104 spin_lock_init(&ctlr->bus_lock_spinlock); 3105 mutex_init(&ctlr->bus_lock_mutex); 3106 mutex_init(&ctlr->io_mutex); 3107 mutex_init(&ctlr->add_lock); 3108 ctlr->bus_num = -1; 3109 ctlr->num_chipselect = 1; 3110 ctlr->slave = slave; 3111 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3112 ctlr->dev.class = &spi_slave_class; 3113 else 3114 ctlr->dev.class = &spi_master_class; 3115 ctlr->dev.parent = dev; 3116 pm_suspend_ignore_children(&ctlr->dev, true); 3117 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3118 3119 return ctlr; 3120 } 3121 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3122 3123 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3124 { 3125 spi_controller_put(*(struct spi_controller **)ctlr); 3126 } 3127 3128 /** 3129 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3130 * @dev: physical device of SPI controller 3131 * @size: how much zeroed driver-private data to allocate 3132 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3133 * Context: can sleep 3134 * 3135 * Allocate an SPI controller and automatically release a reference on it 3136 * when @dev is unbound from its driver. Drivers are thus relieved from 3137 * having to call spi_controller_put(). 3138 * 3139 * The arguments to this function are identical to __spi_alloc_controller(). 3140 * 3141 * Return: the SPI controller structure on success, else NULL. 3142 */ 3143 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3144 unsigned int size, 3145 bool slave) 3146 { 3147 struct spi_controller **ptr, *ctlr; 3148 3149 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3150 GFP_KERNEL); 3151 if (!ptr) 3152 return NULL; 3153 3154 ctlr = __spi_alloc_controller(dev, size, slave); 3155 if (ctlr) { 3156 ctlr->devm_allocated = true; 3157 *ptr = ctlr; 3158 devres_add(dev, ptr); 3159 } else { 3160 devres_free(ptr); 3161 } 3162 3163 return ctlr; 3164 } 3165 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3166 3167 /** 3168 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3169 * @ctlr: The SPI master to grab GPIO descriptors for 3170 */ 3171 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3172 { 3173 int nb, i; 3174 struct gpio_desc **cs; 3175 struct device *dev = &ctlr->dev; 3176 unsigned long native_cs_mask = 0; 3177 unsigned int num_cs_gpios = 0; 3178 3179 nb = gpiod_count(dev, "cs"); 3180 if (nb < 0) { 3181 /* No GPIOs at all is fine, else return the error */ 3182 if (nb == -ENOENT) 3183 return 0; 3184 return nb; 3185 } 3186 3187 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3188 3189 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3190 GFP_KERNEL); 3191 if (!cs) 3192 return -ENOMEM; 3193 ctlr->cs_gpiods = cs; 3194 3195 for (i = 0; i < nb; i++) { 3196 /* 3197 * Most chipselects are active low, the inverted 3198 * semantics are handled by special quirks in gpiolib, 3199 * so initializing them GPIOD_OUT_LOW here means 3200 * "unasserted", in most cases this will drive the physical 3201 * line high. 3202 */ 3203 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3204 GPIOD_OUT_LOW); 3205 if (IS_ERR(cs[i])) 3206 return PTR_ERR(cs[i]); 3207 3208 if (cs[i]) { 3209 /* 3210 * If we find a CS GPIO, name it after the device and 3211 * chip select line. 3212 */ 3213 char *gpioname; 3214 3215 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3216 dev_name(dev), i); 3217 if (!gpioname) 3218 return -ENOMEM; 3219 gpiod_set_consumer_name(cs[i], gpioname); 3220 num_cs_gpios++; 3221 continue; 3222 } 3223 3224 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3225 dev_err(dev, "Invalid native chip select %d\n", i); 3226 return -EINVAL; 3227 } 3228 native_cs_mask |= BIT(i); 3229 } 3230 3231 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3232 3233 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3234 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3235 dev_err(dev, "No unused native chip select available\n"); 3236 return -EINVAL; 3237 } 3238 3239 return 0; 3240 } 3241 3242 static int spi_controller_check_ops(struct spi_controller *ctlr) 3243 { 3244 /* 3245 * The controller may implement only the high-level SPI-memory like 3246 * operations if it does not support regular SPI transfers, and this is 3247 * valid use case. 3248 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3249 * one of the ->transfer_xxx() method be implemented. 3250 */ 3251 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3252 if (!ctlr->transfer && !ctlr->transfer_one && 3253 !ctlr->transfer_one_message) { 3254 return -EINVAL; 3255 } 3256 } 3257 3258 return 0; 3259 } 3260 3261 /* Allocate dynamic bus number using Linux idr */ 3262 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3263 { 3264 int id; 3265 3266 mutex_lock(&board_lock); 3267 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3268 mutex_unlock(&board_lock); 3269 if (WARN(id < 0, "couldn't get idr")) 3270 return id == -ENOSPC ? -EBUSY : id; 3271 ctlr->bus_num = id; 3272 return 0; 3273 } 3274 3275 /** 3276 * spi_register_controller - register SPI master or slave controller 3277 * @ctlr: initialized master, originally from spi_alloc_master() or 3278 * spi_alloc_slave() 3279 * Context: can sleep 3280 * 3281 * SPI controllers connect to their drivers using some non-SPI bus, 3282 * such as the platform bus. The final stage of probe() in that code 3283 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3284 * 3285 * SPI controllers use board specific (often SOC specific) bus numbers, 3286 * and board-specific addressing for SPI devices combines those numbers 3287 * with chip select numbers. Since SPI does not directly support dynamic 3288 * device identification, boards need configuration tables telling which 3289 * chip is at which address. 3290 * 3291 * This must be called from context that can sleep. It returns zero on 3292 * success, else a negative error code (dropping the controller's refcount). 3293 * After a successful return, the caller is responsible for calling 3294 * spi_unregister_controller(). 3295 * 3296 * Return: zero on success, else a negative error code. 3297 */ 3298 int spi_register_controller(struct spi_controller *ctlr) 3299 { 3300 struct device *dev = ctlr->dev.parent; 3301 struct boardinfo *bi; 3302 int first_dynamic; 3303 int status; 3304 int idx; 3305 3306 if (!dev) 3307 return -ENODEV; 3308 3309 /* 3310 * Make sure all necessary hooks are implemented before registering 3311 * the SPI controller. 3312 */ 3313 status = spi_controller_check_ops(ctlr); 3314 if (status) 3315 return status; 3316 3317 if (ctlr->bus_num < 0) 3318 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3319 if (ctlr->bus_num >= 0) { 3320 /* Devices with a fixed bus num must check-in with the num */ 3321 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3322 if (status) 3323 return status; 3324 } 3325 if (ctlr->bus_num < 0) { 3326 first_dynamic = of_alias_get_highest_id("spi"); 3327 if (first_dynamic < 0) 3328 first_dynamic = 0; 3329 else 3330 first_dynamic++; 3331 3332 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3333 if (status) 3334 return status; 3335 } 3336 ctlr->bus_lock_flag = 0; 3337 init_completion(&ctlr->xfer_completion); 3338 init_completion(&ctlr->cur_msg_completion); 3339 if (!ctlr->max_dma_len) 3340 ctlr->max_dma_len = INT_MAX; 3341 3342 /* 3343 * Register the device, then userspace will see it. 3344 * Registration fails if the bus ID is in use. 3345 */ 3346 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3347 3348 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3349 status = spi_get_gpio_descs(ctlr); 3350 if (status) 3351 goto free_bus_id; 3352 /* 3353 * A controller using GPIO descriptors always 3354 * supports SPI_CS_HIGH if need be. 3355 */ 3356 ctlr->mode_bits |= SPI_CS_HIGH; 3357 } 3358 3359 /* 3360 * Even if it's just one always-selected device, there must 3361 * be at least one chipselect. 3362 */ 3363 if (!ctlr->num_chipselect) { 3364 status = -EINVAL; 3365 goto free_bus_id; 3366 } 3367 3368 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3369 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3370 ctlr->last_cs[idx] = SPI_INVALID_CS; 3371 3372 status = device_add(&ctlr->dev); 3373 if (status < 0) 3374 goto free_bus_id; 3375 dev_dbg(dev, "registered %s %s\n", 3376 spi_controller_is_slave(ctlr) ? "slave" : "master", 3377 dev_name(&ctlr->dev)); 3378 3379 /* 3380 * If we're using a queued driver, start the queue. Note that we don't 3381 * need the queueing logic if the driver is only supporting high-level 3382 * memory operations. 3383 */ 3384 if (ctlr->transfer) { 3385 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3386 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3387 status = spi_controller_initialize_queue(ctlr); 3388 if (status) { 3389 device_del(&ctlr->dev); 3390 goto free_bus_id; 3391 } 3392 } 3393 /* Add statistics */ 3394 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3395 if (!ctlr->pcpu_statistics) { 3396 dev_err(dev, "Error allocating per-cpu statistics\n"); 3397 status = -ENOMEM; 3398 goto destroy_queue; 3399 } 3400 3401 mutex_lock(&board_lock); 3402 list_add_tail(&ctlr->list, &spi_controller_list); 3403 list_for_each_entry(bi, &board_list, list) 3404 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3405 mutex_unlock(&board_lock); 3406 3407 /* Register devices from the device tree and ACPI */ 3408 of_register_spi_devices(ctlr); 3409 acpi_register_spi_devices(ctlr); 3410 return status; 3411 3412 destroy_queue: 3413 spi_destroy_queue(ctlr); 3414 free_bus_id: 3415 mutex_lock(&board_lock); 3416 idr_remove(&spi_master_idr, ctlr->bus_num); 3417 mutex_unlock(&board_lock); 3418 return status; 3419 } 3420 EXPORT_SYMBOL_GPL(spi_register_controller); 3421 3422 static void devm_spi_unregister(struct device *dev, void *res) 3423 { 3424 spi_unregister_controller(*(struct spi_controller **)res); 3425 } 3426 3427 /** 3428 * devm_spi_register_controller - register managed SPI master or slave 3429 * controller 3430 * @dev: device managing SPI controller 3431 * @ctlr: initialized controller, originally from spi_alloc_master() or 3432 * spi_alloc_slave() 3433 * Context: can sleep 3434 * 3435 * Register a SPI device as with spi_register_controller() which will 3436 * automatically be unregistered and freed. 3437 * 3438 * Return: zero on success, else a negative error code. 3439 */ 3440 int devm_spi_register_controller(struct device *dev, 3441 struct spi_controller *ctlr) 3442 { 3443 struct spi_controller **ptr; 3444 int ret; 3445 3446 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3447 if (!ptr) 3448 return -ENOMEM; 3449 3450 ret = spi_register_controller(ctlr); 3451 if (!ret) { 3452 *ptr = ctlr; 3453 devres_add(dev, ptr); 3454 } else { 3455 devres_free(ptr); 3456 } 3457 3458 return ret; 3459 } 3460 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3461 3462 static int __unregister(struct device *dev, void *null) 3463 { 3464 spi_unregister_device(to_spi_device(dev)); 3465 return 0; 3466 } 3467 3468 /** 3469 * spi_unregister_controller - unregister SPI master or slave controller 3470 * @ctlr: the controller being unregistered 3471 * Context: can sleep 3472 * 3473 * This call is used only by SPI controller drivers, which are the 3474 * only ones directly touching chip registers. 3475 * 3476 * This must be called from context that can sleep. 3477 * 3478 * Note that this function also drops a reference to the controller. 3479 */ 3480 void spi_unregister_controller(struct spi_controller *ctlr) 3481 { 3482 struct spi_controller *found; 3483 int id = ctlr->bus_num; 3484 3485 /* Prevent addition of new devices, unregister existing ones */ 3486 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3487 mutex_lock(&ctlr->add_lock); 3488 3489 device_for_each_child(&ctlr->dev, NULL, __unregister); 3490 3491 /* First make sure that this controller was ever added */ 3492 mutex_lock(&board_lock); 3493 found = idr_find(&spi_master_idr, id); 3494 mutex_unlock(&board_lock); 3495 if (ctlr->queued) { 3496 if (spi_destroy_queue(ctlr)) 3497 dev_err(&ctlr->dev, "queue remove failed\n"); 3498 } 3499 mutex_lock(&board_lock); 3500 list_del(&ctlr->list); 3501 mutex_unlock(&board_lock); 3502 3503 device_del(&ctlr->dev); 3504 3505 /* Free bus id */ 3506 mutex_lock(&board_lock); 3507 if (found == ctlr) 3508 idr_remove(&spi_master_idr, id); 3509 mutex_unlock(&board_lock); 3510 3511 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3512 mutex_unlock(&ctlr->add_lock); 3513 3514 /* 3515 * Release the last reference on the controller if its driver 3516 * has not yet been converted to devm_spi_alloc_master/slave(). 3517 */ 3518 if (!ctlr->devm_allocated) 3519 put_device(&ctlr->dev); 3520 } 3521 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3522 3523 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3524 { 3525 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3526 } 3527 3528 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3529 { 3530 mutex_lock(&ctlr->bus_lock_mutex); 3531 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3532 mutex_unlock(&ctlr->bus_lock_mutex); 3533 } 3534 3535 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3536 { 3537 mutex_lock(&ctlr->bus_lock_mutex); 3538 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3539 mutex_unlock(&ctlr->bus_lock_mutex); 3540 } 3541 3542 int spi_controller_suspend(struct spi_controller *ctlr) 3543 { 3544 int ret = 0; 3545 3546 /* Basically no-ops for non-queued controllers */ 3547 if (ctlr->queued) { 3548 ret = spi_stop_queue(ctlr); 3549 if (ret) 3550 dev_err(&ctlr->dev, "queue stop failed\n"); 3551 } 3552 3553 __spi_mark_suspended(ctlr); 3554 return ret; 3555 } 3556 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3557 3558 int spi_controller_resume(struct spi_controller *ctlr) 3559 { 3560 int ret = 0; 3561 3562 __spi_mark_resumed(ctlr); 3563 3564 if (ctlr->queued) { 3565 ret = spi_start_queue(ctlr); 3566 if (ret) 3567 dev_err(&ctlr->dev, "queue restart failed\n"); 3568 } 3569 return ret; 3570 } 3571 EXPORT_SYMBOL_GPL(spi_controller_resume); 3572 3573 /*-------------------------------------------------------------------------*/ 3574 3575 /* Core methods for spi_message alterations */ 3576 3577 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3578 struct spi_message *msg, 3579 void *res) 3580 { 3581 struct spi_replaced_transfers *rxfer = res; 3582 size_t i; 3583 3584 /* Call extra callback if requested */ 3585 if (rxfer->release) 3586 rxfer->release(ctlr, msg, res); 3587 3588 /* Insert replaced transfers back into the message */ 3589 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3590 3591 /* Remove the formerly inserted entries */ 3592 for (i = 0; i < rxfer->inserted; i++) 3593 list_del(&rxfer->inserted_transfers[i].transfer_list); 3594 } 3595 3596 /** 3597 * spi_replace_transfers - replace transfers with several transfers 3598 * and register change with spi_message.resources 3599 * @msg: the spi_message we work upon 3600 * @xfer_first: the first spi_transfer we want to replace 3601 * @remove: number of transfers to remove 3602 * @insert: the number of transfers we want to insert instead 3603 * @release: extra release code necessary in some circumstances 3604 * @extradatasize: extra data to allocate (with alignment guarantees 3605 * of struct @spi_transfer) 3606 * @gfp: gfp flags 3607 * 3608 * Returns: pointer to @spi_replaced_transfers, 3609 * PTR_ERR(...) in case of errors. 3610 */ 3611 static struct spi_replaced_transfers *spi_replace_transfers( 3612 struct spi_message *msg, 3613 struct spi_transfer *xfer_first, 3614 size_t remove, 3615 size_t insert, 3616 spi_replaced_release_t release, 3617 size_t extradatasize, 3618 gfp_t gfp) 3619 { 3620 struct spi_replaced_transfers *rxfer; 3621 struct spi_transfer *xfer; 3622 size_t i; 3623 3624 /* Allocate the structure using spi_res */ 3625 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3626 struct_size(rxfer, inserted_transfers, insert) 3627 + extradatasize, 3628 gfp); 3629 if (!rxfer) 3630 return ERR_PTR(-ENOMEM); 3631 3632 /* The release code to invoke before running the generic release */ 3633 rxfer->release = release; 3634 3635 /* Assign extradata */ 3636 if (extradatasize) 3637 rxfer->extradata = 3638 &rxfer->inserted_transfers[insert]; 3639 3640 /* Init the replaced_transfers list */ 3641 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3642 3643 /* 3644 * Assign the list_entry after which we should reinsert 3645 * the @replaced_transfers - it may be spi_message.messages! 3646 */ 3647 rxfer->replaced_after = xfer_first->transfer_list.prev; 3648 3649 /* Remove the requested number of transfers */ 3650 for (i = 0; i < remove; i++) { 3651 /* 3652 * If the entry after replaced_after it is msg->transfers 3653 * then we have been requested to remove more transfers 3654 * than are in the list. 3655 */ 3656 if (rxfer->replaced_after->next == &msg->transfers) { 3657 dev_err(&msg->spi->dev, 3658 "requested to remove more spi_transfers than are available\n"); 3659 /* Insert replaced transfers back into the message */ 3660 list_splice(&rxfer->replaced_transfers, 3661 rxfer->replaced_after); 3662 3663 /* Free the spi_replace_transfer structure... */ 3664 spi_res_free(rxfer); 3665 3666 /* ...and return with an error */ 3667 return ERR_PTR(-EINVAL); 3668 } 3669 3670 /* 3671 * Remove the entry after replaced_after from list of 3672 * transfers and add it to list of replaced_transfers. 3673 */ 3674 list_move_tail(rxfer->replaced_after->next, 3675 &rxfer->replaced_transfers); 3676 } 3677 3678 /* 3679 * Create copy of the given xfer with identical settings 3680 * based on the first transfer to get removed. 3681 */ 3682 for (i = 0; i < insert; i++) { 3683 /* We need to run in reverse order */ 3684 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3685 3686 /* Copy all spi_transfer data */ 3687 memcpy(xfer, xfer_first, sizeof(*xfer)); 3688 3689 /* Add to list */ 3690 list_add(&xfer->transfer_list, rxfer->replaced_after); 3691 3692 /* Clear cs_change and delay for all but the last */ 3693 if (i) { 3694 xfer->cs_change = false; 3695 xfer->delay.value = 0; 3696 } 3697 } 3698 3699 /* Set up inserted... */ 3700 rxfer->inserted = insert; 3701 3702 /* ...and register it with spi_res/spi_message */ 3703 spi_res_add(msg, rxfer); 3704 3705 return rxfer; 3706 } 3707 3708 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3709 struct spi_message *msg, 3710 struct spi_transfer **xferp, 3711 size_t maxsize) 3712 { 3713 struct spi_transfer *xfer = *xferp, *xfers; 3714 struct spi_replaced_transfers *srt; 3715 size_t offset; 3716 size_t count, i; 3717 3718 /* Calculate how many we have to replace */ 3719 count = DIV_ROUND_UP(xfer->len, maxsize); 3720 3721 /* Create replacement */ 3722 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3723 if (IS_ERR(srt)) 3724 return PTR_ERR(srt); 3725 xfers = srt->inserted_transfers; 3726 3727 /* 3728 * Now handle each of those newly inserted spi_transfers. 3729 * Note that the replacements spi_transfers all are preset 3730 * to the same values as *xferp, so tx_buf, rx_buf and len 3731 * are all identical (as well as most others) 3732 * so we just have to fix up len and the pointers. 3733 */ 3734 3735 /* 3736 * The first transfer just needs the length modified, so we 3737 * run it outside the loop. 3738 */ 3739 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3740 3741 /* All the others need rx_buf/tx_buf also set */ 3742 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3743 /* Update rx_buf, tx_buf and DMA */ 3744 if (xfers[i].rx_buf) 3745 xfers[i].rx_buf += offset; 3746 if (xfers[i].tx_buf) 3747 xfers[i].tx_buf += offset; 3748 3749 /* Update length */ 3750 xfers[i].len = min(maxsize, xfers[i].len - offset); 3751 } 3752 3753 /* 3754 * We set up xferp to the last entry we have inserted, 3755 * so that we skip those already split transfers. 3756 */ 3757 *xferp = &xfers[count - 1]; 3758 3759 /* Increment statistics counters */ 3760 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3761 transfers_split_maxsize); 3762 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3763 transfers_split_maxsize); 3764 3765 return 0; 3766 } 3767 3768 /** 3769 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3770 * when an individual transfer exceeds a 3771 * certain size 3772 * @ctlr: the @spi_controller for this transfer 3773 * @msg: the @spi_message to transform 3774 * @maxsize: the maximum when to apply this 3775 * 3776 * This function allocates resources that are automatically freed during the 3777 * spi message unoptimize phase so this function should only be called from 3778 * optimize_message callbacks. 3779 * 3780 * Return: status of transformation 3781 */ 3782 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3783 struct spi_message *msg, 3784 size_t maxsize) 3785 { 3786 struct spi_transfer *xfer; 3787 int ret; 3788 3789 /* 3790 * Iterate over the transfer_list, 3791 * but note that xfer is advanced to the last transfer inserted 3792 * to avoid checking sizes again unnecessarily (also xfer does 3793 * potentially belong to a different list by the time the 3794 * replacement has happened). 3795 */ 3796 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3797 if (xfer->len > maxsize) { 3798 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3799 maxsize); 3800 if (ret) 3801 return ret; 3802 } 3803 } 3804 3805 return 0; 3806 } 3807 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3808 3809 3810 /** 3811 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3812 * when an individual transfer exceeds a 3813 * certain number of SPI words 3814 * @ctlr: the @spi_controller for this transfer 3815 * @msg: the @spi_message to transform 3816 * @maxwords: the number of words to limit each transfer to 3817 * 3818 * This function allocates resources that are automatically freed during the 3819 * spi message unoptimize phase so this function should only be called from 3820 * optimize_message callbacks. 3821 * 3822 * Return: status of transformation 3823 */ 3824 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3825 struct spi_message *msg, 3826 size_t maxwords) 3827 { 3828 struct spi_transfer *xfer; 3829 3830 /* 3831 * Iterate over the transfer_list, 3832 * but note that xfer is advanced to the last transfer inserted 3833 * to avoid checking sizes again unnecessarily (also xfer does 3834 * potentially belong to a different list by the time the 3835 * replacement has happened). 3836 */ 3837 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3838 size_t maxsize; 3839 int ret; 3840 3841 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3842 if (xfer->len > maxsize) { 3843 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3844 maxsize); 3845 if (ret) 3846 return ret; 3847 } 3848 } 3849 3850 return 0; 3851 } 3852 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3853 3854 /*-------------------------------------------------------------------------*/ 3855 3856 /* 3857 * Core methods for SPI controller protocol drivers. Some of the 3858 * other core methods are currently defined as inline functions. 3859 */ 3860 3861 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3862 u8 bits_per_word) 3863 { 3864 if (ctlr->bits_per_word_mask) { 3865 /* Only 32 bits fit in the mask */ 3866 if (bits_per_word > 32) 3867 return -EINVAL; 3868 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3869 return -EINVAL; 3870 } 3871 3872 return 0; 3873 } 3874 3875 /** 3876 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3877 * @spi: the device that requires specific CS timing configuration 3878 * 3879 * Return: zero on success, else a negative error code. 3880 */ 3881 static int spi_set_cs_timing(struct spi_device *spi) 3882 { 3883 struct device *parent = spi->controller->dev.parent; 3884 int status = 0; 3885 3886 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3887 if (spi->controller->auto_runtime_pm) { 3888 status = pm_runtime_get_sync(parent); 3889 if (status < 0) { 3890 pm_runtime_put_noidle(parent); 3891 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3892 status); 3893 return status; 3894 } 3895 3896 status = spi->controller->set_cs_timing(spi); 3897 pm_runtime_mark_last_busy(parent); 3898 pm_runtime_put_autosuspend(parent); 3899 } else { 3900 status = spi->controller->set_cs_timing(spi); 3901 } 3902 } 3903 return status; 3904 } 3905 3906 /** 3907 * spi_setup - setup SPI mode and clock rate 3908 * @spi: the device whose settings are being modified 3909 * Context: can sleep, and no requests are queued to the device 3910 * 3911 * SPI protocol drivers may need to update the transfer mode if the 3912 * device doesn't work with its default. They may likewise need 3913 * to update clock rates or word sizes from initial values. This function 3914 * changes those settings, and must be called from a context that can sleep. 3915 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3916 * effect the next time the device is selected and data is transferred to 3917 * or from it. When this function returns, the SPI device is deselected. 3918 * 3919 * Note that this call will fail if the protocol driver specifies an option 3920 * that the underlying controller or its driver does not support. For 3921 * example, not all hardware supports wire transfers using nine bit words, 3922 * LSB-first wire encoding, or active-high chipselects. 3923 * 3924 * Return: zero on success, else a negative error code. 3925 */ 3926 int spi_setup(struct spi_device *spi) 3927 { 3928 unsigned bad_bits, ugly_bits; 3929 int status = 0; 3930 3931 /* 3932 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3933 * are set at the same time. 3934 */ 3935 if ((hweight_long(spi->mode & 3936 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3937 (hweight_long(spi->mode & 3938 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3939 dev_err(&spi->dev, 3940 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3941 return -EINVAL; 3942 } 3943 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3944 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3945 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3946 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3947 return -EINVAL; 3948 /* 3949 * Help drivers fail *cleanly* when they need options 3950 * that aren't supported with their current controller. 3951 * SPI_CS_WORD has a fallback software implementation, 3952 * so it is ignored here. 3953 */ 3954 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3955 SPI_NO_TX | SPI_NO_RX); 3956 ugly_bits = bad_bits & 3957 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3958 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3959 if (ugly_bits) { 3960 dev_warn(&spi->dev, 3961 "setup: ignoring unsupported mode bits %x\n", 3962 ugly_bits); 3963 spi->mode &= ~ugly_bits; 3964 bad_bits &= ~ugly_bits; 3965 } 3966 if (bad_bits) { 3967 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3968 bad_bits); 3969 return -EINVAL; 3970 } 3971 3972 if (!spi->bits_per_word) { 3973 spi->bits_per_word = 8; 3974 } else { 3975 /* 3976 * Some controllers may not support the default 8 bits-per-word 3977 * so only perform the check when this is explicitly provided. 3978 */ 3979 status = __spi_validate_bits_per_word(spi->controller, 3980 spi->bits_per_word); 3981 if (status) 3982 return status; 3983 } 3984 3985 if (spi->controller->max_speed_hz && 3986 (!spi->max_speed_hz || 3987 spi->max_speed_hz > spi->controller->max_speed_hz)) 3988 spi->max_speed_hz = spi->controller->max_speed_hz; 3989 3990 mutex_lock(&spi->controller->io_mutex); 3991 3992 if (spi->controller->setup) { 3993 status = spi->controller->setup(spi); 3994 if (status) { 3995 mutex_unlock(&spi->controller->io_mutex); 3996 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3997 status); 3998 return status; 3999 } 4000 } 4001 4002 status = spi_set_cs_timing(spi); 4003 if (status) { 4004 mutex_unlock(&spi->controller->io_mutex); 4005 return status; 4006 } 4007 4008 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 4009 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 4010 if (status < 0) { 4011 mutex_unlock(&spi->controller->io_mutex); 4012 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 4013 status); 4014 return status; 4015 } 4016 4017 /* 4018 * We do not want to return positive value from pm_runtime_get, 4019 * there are many instances of devices calling spi_setup() and 4020 * checking for a non-zero return value instead of a negative 4021 * return value. 4022 */ 4023 status = 0; 4024 4025 spi_set_cs(spi, false, true); 4026 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4027 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4028 } else { 4029 spi_set_cs(spi, false, true); 4030 } 4031 4032 mutex_unlock(&spi->controller->io_mutex); 4033 4034 if (spi->rt && !spi->controller->rt) { 4035 spi->controller->rt = true; 4036 spi_set_thread_rt(spi->controller); 4037 } 4038 4039 trace_spi_setup(spi, status); 4040 4041 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4042 spi->mode & SPI_MODE_X_MASK, 4043 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4044 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4045 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4046 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4047 spi->bits_per_word, spi->max_speed_hz, 4048 status); 4049 4050 return status; 4051 } 4052 EXPORT_SYMBOL_GPL(spi_setup); 4053 4054 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4055 struct spi_device *spi) 4056 { 4057 int delay1, delay2; 4058 4059 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4060 if (delay1 < 0) 4061 return delay1; 4062 4063 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4064 if (delay2 < 0) 4065 return delay2; 4066 4067 if (delay1 < delay2) 4068 memcpy(&xfer->word_delay, &spi->word_delay, 4069 sizeof(xfer->word_delay)); 4070 4071 return 0; 4072 } 4073 4074 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4075 { 4076 struct spi_controller *ctlr = spi->controller; 4077 struct spi_transfer *xfer; 4078 int w_size; 4079 4080 if (list_empty(&message->transfers)) 4081 return -EINVAL; 4082 4083 message->spi = spi; 4084 4085 /* 4086 * Half-duplex links include original MicroWire, and ones with 4087 * only one data pin like SPI_3WIRE (switches direction) or where 4088 * either MOSI or MISO is missing. They can also be caused by 4089 * software limitations. 4090 */ 4091 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4092 (spi->mode & SPI_3WIRE)) { 4093 unsigned flags = ctlr->flags; 4094 4095 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4096 if (xfer->rx_buf && xfer->tx_buf) 4097 return -EINVAL; 4098 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4099 return -EINVAL; 4100 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4101 return -EINVAL; 4102 } 4103 } 4104 4105 /* 4106 * Set transfer bits_per_word and max speed as spi device default if 4107 * it is not set for this transfer. 4108 * Set transfer tx_nbits and rx_nbits as single transfer default 4109 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4110 * Ensure transfer word_delay is at least as long as that required by 4111 * device itself. 4112 */ 4113 message->frame_length = 0; 4114 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4115 xfer->effective_speed_hz = 0; 4116 message->frame_length += xfer->len; 4117 if (!xfer->bits_per_word) 4118 xfer->bits_per_word = spi->bits_per_word; 4119 4120 if (!xfer->speed_hz) 4121 xfer->speed_hz = spi->max_speed_hz; 4122 4123 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4124 xfer->speed_hz = ctlr->max_speed_hz; 4125 4126 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4127 return -EINVAL; 4128 4129 /* 4130 * SPI transfer length should be multiple of SPI word size 4131 * where SPI word size should be power-of-two multiple. 4132 */ 4133 if (xfer->bits_per_word <= 8) 4134 w_size = 1; 4135 else if (xfer->bits_per_word <= 16) 4136 w_size = 2; 4137 else 4138 w_size = 4; 4139 4140 /* No partial transfers accepted */ 4141 if (xfer->len % w_size) 4142 return -EINVAL; 4143 4144 if (xfer->speed_hz && ctlr->min_speed_hz && 4145 xfer->speed_hz < ctlr->min_speed_hz) 4146 return -EINVAL; 4147 4148 if (xfer->tx_buf && !xfer->tx_nbits) 4149 xfer->tx_nbits = SPI_NBITS_SINGLE; 4150 if (xfer->rx_buf && !xfer->rx_nbits) 4151 xfer->rx_nbits = SPI_NBITS_SINGLE; 4152 /* 4153 * Check transfer tx/rx_nbits: 4154 * 1. check the value matches one of single, dual and quad 4155 * 2. check tx/rx_nbits match the mode in spi_device 4156 */ 4157 if (xfer->tx_buf) { 4158 if (spi->mode & SPI_NO_TX) 4159 return -EINVAL; 4160 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4161 xfer->tx_nbits != SPI_NBITS_DUAL && 4162 xfer->tx_nbits != SPI_NBITS_QUAD && 4163 xfer->tx_nbits != SPI_NBITS_OCTAL) 4164 return -EINVAL; 4165 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4166 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4167 return -EINVAL; 4168 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4169 !(spi->mode & SPI_TX_QUAD)) 4170 return -EINVAL; 4171 } 4172 /* Check transfer rx_nbits */ 4173 if (xfer->rx_buf) { 4174 if (spi->mode & SPI_NO_RX) 4175 return -EINVAL; 4176 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4177 xfer->rx_nbits != SPI_NBITS_DUAL && 4178 xfer->rx_nbits != SPI_NBITS_QUAD && 4179 xfer->rx_nbits != SPI_NBITS_OCTAL) 4180 return -EINVAL; 4181 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4182 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4183 return -EINVAL; 4184 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4185 !(spi->mode & SPI_RX_QUAD)) 4186 return -EINVAL; 4187 } 4188 4189 if (_spi_xfer_word_delay_update(xfer, spi)) 4190 return -EINVAL; 4191 } 4192 4193 message->status = -EINPROGRESS; 4194 4195 return 0; 4196 } 4197 4198 /* 4199 * spi_split_transfers - generic handling of transfer splitting 4200 * @msg: the message to split 4201 * 4202 * Under certain conditions, a SPI controller may not support arbitrary 4203 * transfer sizes or other features required by a peripheral. This function 4204 * will split the transfers in the message into smaller transfers that are 4205 * supported by the controller. 4206 * 4207 * Controllers with special requirements not covered here can also split 4208 * transfers in the optimize_message() callback. 4209 * 4210 * Context: can sleep 4211 * Return: zero on success, else a negative error code 4212 */ 4213 static int spi_split_transfers(struct spi_message *msg) 4214 { 4215 struct spi_controller *ctlr = msg->spi->controller; 4216 struct spi_transfer *xfer; 4217 int ret; 4218 4219 /* 4220 * If an SPI controller does not support toggling the CS line on each 4221 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4222 * for the CS line, we can emulate the CS-per-word hardware function by 4223 * splitting transfers into one-word transfers and ensuring that 4224 * cs_change is set for each transfer. 4225 */ 4226 if ((msg->spi->mode & SPI_CS_WORD) && 4227 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4228 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4229 if (ret) 4230 return ret; 4231 4232 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4233 /* Don't change cs_change on the last entry in the list */ 4234 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4235 break; 4236 4237 xfer->cs_change = 1; 4238 } 4239 } else { 4240 ret = spi_split_transfers_maxsize(ctlr, msg, 4241 spi_max_transfer_size(msg->spi)); 4242 if (ret) 4243 return ret; 4244 } 4245 4246 return 0; 4247 } 4248 4249 /* 4250 * __spi_optimize_message - shared implementation for spi_optimize_message() 4251 * and spi_maybe_optimize_message() 4252 * @spi: the device that will be used for the message 4253 * @msg: the message to optimize 4254 * 4255 * Peripheral drivers will call spi_optimize_message() and the spi core will 4256 * call spi_maybe_optimize_message() instead of calling this directly. 4257 * 4258 * It is not valid to call this on a message that has already been optimized. 4259 * 4260 * Return: zero on success, else a negative error code 4261 */ 4262 static int __spi_optimize_message(struct spi_device *spi, 4263 struct spi_message *msg) 4264 { 4265 struct spi_controller *ctlr = spi->controller; 4266 int ret; 4267 4268 ret = __spi_validate(spi, msg); 4269 if (ret) 4270 return ret; 4271 4272 ret = spi_split_transfers(msg); 4273 if (ret) 4274 return ret; 4275 4276 if (ctlr->optimize_message) { 4277 ret = ctlr->optimize_message(msg); 4278 if (ret) { 4279 spi_res_release(ctlr, msg); 4280 return ret; 4281 } 4282 } 4283 4284 msg->optimized = true; 4285 4286 return 0; 4287 } 4288 4289 /* 4290 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4291 * @spi: the device that will be used for the message 4292 * @msg: the message to optimize 4293 * Return: zero on success, else a negative error code 4294 */ 4295 static int spi_maybe_optimize_message(struct spi_device *spi, 4296 struct spi_message *msg) 4297 { 4298 if (spi->controller->defer_optimize_message) { 4299 msg->spi = spi; 4300 return 0; 4301 } 4302 4303 if (msg->pre_optimized) 4304 return 0; 4305 4306 return __spi_optimize_message(spi, msg); 4307 } 4308 4309 /** 4310 * spi_optimize_message - do any one-time validation and setup for a SPI message 4311 * @spi: the device that will be used for the message 4312 * @msg: the message to optimize 4313 * 4314 * Peripheral drivers that reuse the same message repeatedly may call this to 4315 * perform as much message prep as possible once, rather than repeating it each 4316 * time a message transfer is performed to improve throughput and reduce CPU 4317 * usage. 4318 * 4319 * Once a message has been optimized, it cannot be modified with the exception 4320 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4321 * only the data in the memory it points to). 4322 * 4323 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4324 * to avoid leaking resources. 4325 * 4326 * Context: can sleep 4327 * Return: zero on success, else a negative error code 4328 */ 4329 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4330 { 4331 int ret; 4332 4333 /* 4334 * Pre-optimization is not supported and optimization is deferred e.g. 4335 * when using spi-mux. 4336 */ 4337 if (spi->controller->defer_optimize_message) 4338 return 0; 4339 4340 ret = __spi_optimize_message(spi, msg); 4341 if (ret) 4342 return ret; 4343 4344 /* 4345 * This flag indicates that the peripheral driver called spi_optimize_message() 4346 * and therefore we shouldn't unoptimize message automatically when finalizing 4347 * the message but rather wait until spi_unoptimize_message() is called 4348 * by the peripheral driver. 4349 */ 4350 msg->pre_optimized = true; 4351 4352 return 0; 4353 } 4354 EXPORT_SYMBOL_GPL(spi_optimize_message); 4355 4356 /** 4357 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4358 * @msg: the message to unoptimize 4359 * 4360 * Calls to this function must be balanced with calls to spi_optimize_message(). 4361 * 4362 * Context: can sleep 4363 */ 4364 void spi_unoptimize_message(struct spi_message *msg) 4365 { 4366 if (msg->spi->controller->defer_optimize_message) 4367 return; 4368 4369 __spi_unoptimize_message(msg); 4370 msg->pre_optimized = false; 4371 } 4372 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4373 4374 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4375 { 4376 struct spi_controller *ctlr = spi->controller; 4377 struct spi_transfer *xfer; 4378 4379 /* 4380 * Some controllers do not support doing regular SPI transfers. Return 4381 * ENOTSUPP when this is the case. 4382 */ 4383 if (!ctlr->transfer) 4384 return -ENOTSUPP; 4385 4386 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4387 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4388 4389 trace_spi_message_submit(message); 4390 4391 if (!ctlr->ptp_sts_supported) { 4392 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4393 xfer->ptp_sts_word_pre = 0; 4394 ptp_read_system_prets(xfer->ptp_sts); 4395 } 4396 } 4397 4398 return ctlr->transfer(spi, message); 4399 } 4400 4401 /** 4402 * spi_async - asynchronous SPI transfer 4403 * @spi: device with which data will be exchanged 4404 * @message: describes the data transfers, including completion callback 4405 * Context: any (IRQs may be blocked, etc) 4406 * 4407 * This call may be used in_irq and other contexts which can't sleep, 4408 * as well as from task contexts which can sleep. 4409 * 4410 * The completion callback is invoked in a context which can't sleep. 4411 * Before that invocation, the value of message->status is undefined. 4412 * When the callback is issued, message->status holds either zero (to 4413 * indicate complete success) or a negative error code. After that 4414 * callback returns, the driver which issued the transfer request may 4415 * deallocate the associated memory; it's no longer in use by any SPI 4416 * core or controller driver code. 4417 * 4418 * Note that although all messages to a spi_device are handled in 4419 * FIFO order, messages may go to different devices in other orders. 4420 * Some device might be higher priority, or have various "hard" access 4421 * time requirements, for example. 4422 * 4423 * On detection of any fault during the transfer, processing of 4424 * the entire message is aborted, and the device is deselected. 4425 * Until returning from the associated message completion callback, 4426 * no other spi_message queued to that device will be processed. 4427 * (This rule applies equally to all the synchronous transfer calls, 4428 * which are wrappers around this core asynchronous primitive.) 4429 * 4430 * Return: zero on success, else a negative error code. 4431 */ 4432 int spi_async(struct spi_device *spi, struct spi_message *message) 4433 { 4434 struct spi_controller *ctlr = spi->controller; 4435 int ret; 4436 unsigned long flags; 4437 4438 ret = spi_maybe_optimize_message(spi, message); 4439 if (ret) 4440 return ret; 4441 4442 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4443 4444 if (ctlr->bus_lock_flag) 4445 ret = -EBUSY; 4446 else 4447 ret = __spi_async(spi, message); 4448 4449 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4450 4451 return ret; 4452 } 4453 EXPORT_SYMBOL_GPL(spi_async); 4454 4455 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4456 { 4457 bool was_busy; 4458 int ret; 4459 4460 mutex_lock(&ctlr->io_mutex); 4461 4462 was_busy = ctlr->busy; 4463 4464 ctlr->cur_msg = msg; 4465 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4466 if (ret) 4467 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4468 ctlr->cur_msg = NULL; 4469 ctlr->fallback = false; 4470 4471 if (!was_busy) { 4472 kfree(ctlr->dummy_rx); 4473 ctlr->dummy_rx = NULL; 4474 kfree(ctlr->dummy_tx); 4475 ctlr->dummy_tx = NULL; 4476 if (ctlr->unprepare_transfer_hardware && 4477 ctlr->unprepare_transfer_hardware(ctlr)) 4478 dev_err(&ctlr->dev, 4479 "failed to unprepare transfer hardware\n"); 4480 spi_idle_runtime_pm(ctlr); 4481 } 4482 4483 mutex_unlock(&ctlr->io_mutex); 4484 } 4485 4486 /*-------------------------------------------------------------------------*/ 4487 4488 /* 4489 * Utility methods for SPI protocol drivers, layered on 4490 * top of the core. Some other utility methods are defined as 4491 * inline functions. 4492 */ 4493 4494 static void spi_complete(void *arg) 4495 { 4496 complete(arg); 4497 } 4498 4499 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4500 { 4501 DECLARE_COMPLETION_ONSTACK(done); 4502 unsigned long flags; 4503 int status; 4504 struct spi_controller *ctlr = spi->controller; 4505 4506 if (__spi_check_suspended(ctlr)) { 4507 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4508 return -ESHUTDOWN; 4509 } 4510 4511 status = spi_maybe_optimize_message(spi, message); 4512 if (status) 4513 return status; 4514 4515 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4516 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4517 4518 /* 4519 * Checking queue_empty here only guarantees async/sync message 4520 * ordering when coming from the same context. It does not need to 4521 * guard against reentrancy from a different context. The io_mutex 4522 * will catch those cases. 4523 */ 4524 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4525 message->actual_length = 0; 4526 message->status = -EINPROGRESS; 4527 4528 trace_spi_message_submit(message); 4529 4530 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4531 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4532 4533 __spi_transfer_message_noqueue(ctlr, message); 4534 4535 return message->status; 4536 } 4537 4538 /* 4539 * There are messages in the async queue that could have originated 4540 * from the same context, so we need to preserve ordering. 4541 * Therefor we send the message to the async queue and wait until they 4542 * are completed. 4543 */ 4544 message->complete = spi_complete; 4545 message->context = &done; 4546 4547 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4548 status = __spi_async(spi, message); 4549 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4550 4551 if (status == 0) { 4552 wait_for_completion(&done); 4553 status = message->status; 4554 } 4555 message->complete = NULL; 4556 message->context = NULL; 4557 4558 return status; 4559 } 4560 4561 /** 4562 * spi_sync - blocking/synchronous SPI data transfers 4563 * @spi: device with which data will be exchanged 4564 * @message: describes the data transfers 4565 * Context: can sleep 4566 * 4567 * This call may only be used from a context that may sleep. The sleep 4568 * is non-interruptible, and has no timeout. Low-overhead controller 4569 * drivers may DMA directly into and out of the message buffers. 4570 * 4571 * Note that the SPI device's chip select is active during the message, 4572 * and then is normally disabled between messages. Drivers for some 4573 * frequently-used devices may want to minimize costs of selecting a chip, 4574 * by leaving it selected in anticipation that the next message will go 4575 * to the same chip. (That may increase power usage.) 4576 * 4577 * Also, the caller is guaranteeing that the memory associated with the 4578 * message will not be freed before this call returns. 4579 * 4580 * Return: zero on success, else a negative error code. 4581 */ 4582 int spi_sync(struct spi_device *spi, struct spi_message *message) 4583 { 4584 int ret; 4585 4586 mutex_lock(&spi->controller->bus_lock_mutex); 4587 ret = __spi_sync(spi, message); 4588 mutex_unlock(&spi->controller->bus_lock_mutex); 4589 4590 return ret; 4591 } 4592 EXPORT_SYMBOL_GPL(spi_sync); 4593 4594 /** 4595 * spi_sync_locked - version of spi_sync with exclusive bus usage 4596 * @spi: device with which data will be exchanged 4597 * @message: describes the data transfers 4598 * Context: can sleep 4599 * 4600 * This call may only be used from a context that may sleep. The sleep 4601 * is non-interruptible, and has no timeout. Low-overhead controller 4602 * drivers may DMA directly into and out of the message buffers. 4603 * 4604 * This call should be used by drivers that require exclusive access to the 4605 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4606 * be released by a spi_bus_unlock call when the exclusive access is over. 4607 * 4608 * Return: zero on success, else a negative error code. 4609 */ 4610 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4611 { 4612 return __spi_sync(spi, message); 4613 } 4614 EXPORT_SYMBOL_GPL(spi_sync_locked); 4615 4616 /** 4617 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4618 * @ctlr: SPI bus master that should be locked for exclusive bus access 4619 * Context: can sleep 4620 * 4621 * This call may only be used from a context that may sleep. The sleep 4622 * is non-interruptible, and has no timeout. 4623 * 4624 * This call should be used by drivers that require exclusive access to the 4625 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4626 * exclusive access is over. Data transfer must be done by spi_sync_locked 4627 * and spi_async_locked calls when the SPI bus lock is held. 4628 * 4629 * Return: always zero. 4630 */ 4631 int spi_bus_lock(struct spi_controller *ctlr) 4632 { 4633 unsigned long flags; 4634 4635 mutex_lock(&ctlr->bus_lock_mutex); 4636 4637 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4638 ctlr->bus_lock_flag = 1; 4639 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4640 4641 /* Mutex remains locked until spi_bus_unlock() is called */ 4642 4643 return 0; 4644 } 4645 EXPORT_SYMBOL_GPL(spi_bus_lock); 4646 4647 /** 4648 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4649 * @ctlr: SPI bus master that was locked for exclusive bus access 4650 * Context: can sleep 4651 * 4652 * This call may only be used from a context that may sleep. The sleep 4653 * is non-interruptible, and has no timeout. 4654 * 4655 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4656 * call. 4657 * 4658 * Return: always zero. 4659 */ 4660 int spi_bus_unlock(struct spi_controller *ctlr) 4661 { 4662 ctlr->bus_lock_flag = 0; 4663 4664 mutex_unlock(&ctlr->bus_lock_mutex); 4665 4666 return 0; 4667 } 4668 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4669 4670 /* Portable code must never pass more than 32 bytes */ 4671 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4672 4673 static u8 *buf; 4674 4675 /** 4676 * spi_write_then_read - SPI synchronous write followed by read 4677 * @spi: device with which data will be exchanged 4678 * @txbuf: data to be written (need not be DMA-safe) 4679 * @n_tx: size of txbuf, in bytes 4680 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4681 * @n_rx: size of rxbuf, in bytes 4682 * Context: can sleep 4683 * 4684 * This performs a half duplex MicroWire style transaction with the 4685 * device, sending txbuf and then reading rxbuf. The return value 4686 * is zero for success, else a negative errno status code. 4687 * This call may only be used from a context that may sleep. 4688 * 4689 * Parameters to this routine are always copied using a small buffer. 4690 * Performance-sensitive or bulk transfer code should instead use 4691 * spi_{async,sync}() calls with DMA-safe buffers. 4692 * 4693 * Return: zero on success, else a negative error code. 4694 */ 4695 int spi_write_then_read(struct spi_device *spi, 4696 const void *txbuf, unsigned n_tx, 4697 void *rxbuf, unsigned n_rx) 4698 { 4699 static DEFINE_MUTEX(lock); 4700 4701 int status; 4702 struct spi_message message; 4703 struct spi_transfer x[2]; 4704 u8 *local_buf; 4705 4706 /* 4707 * Use preallocated DMA-safe buffer if we can. We can't avoid 4708 * copying here, (as a pure convenience thing), but we can 4709 * keep heap costs out of the hot path unless someone else is 4710 * using the pre-allocated buffer or the transfer is too large. 4711 */ 4712 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4713 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4714 GFP_KERNEL | GFP_DMA); 4715 if (!local_buf) 4716 return -ENOMEM; 4717 } else { 4718 local_buf = buf; 4719 } 4720 4721 spi_message_init(&message); 4722 memset(x, 0, sizeof(x)); 4723 if (n_tx) { 4724 x[0].len = n_tx; 4725 spi_message_add_tail(&x[0], &message); 4726 } 4727 if (n_rx) { 4728 x[1].len = n_rx; 4729 spi_message_add_tail(&x[1], &message); 4730 } 4731 4732 memcpy(local_buf, txbuf, n_tx); 4733 x[0].tx_buf = local_buf; 4734 x[1].rx_buf = local_buf + n_tx; 4735 4736 /* Do the I/O */ 4737 status = spi_sync(spi, &message); 4738 if (status == 0) 4739 memcpy(rxbuf, x[1].rx_buf, n_rx); 4740 4741 if (x[0].tx_buf == buf) 4742 mutex_unlock(&lock); 4743 else 4744 kfree(local_buf); 4745 4746 return status; 4747 } 4748 EXPORT_SYMBOL_GPL(spi_write_then_read); 4749 4750 /*-------------------------------------------------------------------------*/ 4751 4752 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4753 /* Must call put_device() when done with returned spi_device device */ 4754 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4755 { 4756 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4757 4758 return dev ? to_spi_device(dev) : NULL; 4759 } 4760 4761 /* The spi controllers are not using spi_bus, so we find it with another way */ 4762 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4763 { 4764 struct device *dev; 4765 4766 dev = class_find_device_by_of_node(&spi_master_class, node); 4767 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4768 dev = class_find_device_by_of_node(&spi_slave_class, node); 4769 if (!dev) 4770 return NULL; 4771 4772 /* Reference got in class_find_device */ 4773 return container_of(dev, struct spi_controller, dev); 4774 } 4775 4776 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4777 void *arg) 4778 { 4779 struct of_reconfig_data *rd = arg; 4780 struct spi_controller *ctlr; 4781 struct spi_device *spi; 4782 4783 switch (of_reconfig_get_state_change(action, arg)) { 4784 case OF_RECONFIG_CHANGE_ADD: 4785 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4786 if (ctlr == NULL) 4787 return NOTIFY_OK; /* Not for us */ 4788 4789 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4790 put_device(&ctlr->dev); 4791 return NOTIFY_OK; 4792 } 4793 4794 /* 4795 * Clear the flag before adding the device so that fw_devlink 4796 * doesn't skip adding consumers to this device. 4797 */ 4798 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4799 spi = of_register_spi_device(ctlr, rd->dn); 4800 put_device(&ctlr->dev); 4801 4802 if (IS_ERR(spi)) { 4803 pr_err("%s: failed to create for '%pOF'\n", 4804 __func__, rd->dn); 4805 of_node_clear_flag(rd->dn, OF_POPULATED); 4806 return notifier_from_errno(PTR_ERR(spi)); 4807 } 4808 break; 4809 4810 case OF_RECONFIG_CHANGE_REMOVE: 4811 /* Already depopulated? */ 4812 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4813 return NOTIFY_OK; 4814 4815 /* Find our device by node */ 4816 spi = of_find_spi_device_by_node(rd->dn); 4817 if (spi == NULL) 4818 return NOTIFY_OK; /* No? not meant for us */ 4819 4820 /* Unregister takes one ref away */ 4821 spi_unregister_device(spi); 4822 4823 /* And put the reference of the find */ 4824 put_device(&spi->dev); 4825 break; 4826 } 4827 4828 return NOTIFY_OK; 4829 } 4830 4831 static struct notifier_block spi_of_notifier = { 4832 .notifier_call = of_spi_notify, 4833 }; 4834 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4835 extern struct notifier_block spi_of_notifier; 4836 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4837 4838 #if IS_ENABLED(CONFIG_ACPI) 4839 static int spi_acpi_controller_match(struct device *dev, const void *data) 4840 { 4841 return ACPI_COMPANION(dev->parent) == data; 4842 } 4843 4844 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4845 { 4846 struct device *dev; 4847 4848 dev = class_find_device(&spi_master_class, NULL, adev, 4849 spi_acpi_controller_match); 4850 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4851 dev = class_find_device(&spi_slave_class, NULL, adev, 4852 spi_acpi_controller_match); 4853 if (!dev) 4854 return NULL; 4855 4856 return container_of(dev, struct spi_controller, dev); 4857 } 4858 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4859 4860 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4861 { 4862 struct device *dev; 4863 4864 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4865 return to_spi_device(dev); 4866 } 4867 4868 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4869 void *arg) 4870 { 4871 struct acpi_device *adev = arg; 4872 struct spi_controller *ctlr; 4873 struct spi_device *spi; 4874 4875 switch (value) { 4876 case ACPI_RECONFIG_DEVICE_ADD: 4877 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4878 if (!ctlr) 4879 break; 4880 4881 acpi_register_spi_device(ctlr, adev); 4882 put_device(&ctlr->dev); 4883 break; 4884 case ACPI_RECONFIG_DEVICE_REMOVE: 4885 if (!acpi_device_enumerated(adev)) 4886 break; 4887 4888 spi = acpi_spi_find_device_by_adev(adev); 4889 if (!spi) 4890 break; 4891 4892 spi_unregister_device(spi); 4893 put_device(&spi->dev); 4894 break; 4895 } 4896 4897 return NOTIFY_OK; 4898 } 4899 4900 static struct notifier_block spi_acpi_notifier = { 4901 .notifier_call = acpi_spi_notify, 4902 }; 4903 #else 4904 extern struct notifier_block spi_acpi_notifier; 4905 #endif 4906 4907 static int __init spi_init(void) 4908 { 4909 int status; 4910 4911 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4912 if (!buf) { 4913 status = -ENOMEM; 4914 goto err0; 4915 } 4916 4917 status = bus_register(&spi_bus_type); 4918 if (status < 0) 4919 goto err1; 4920 4921 status = class_register(&spi_master_class); 4922 if (status < 0) 4923 goto err2; 4924 4925 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4926 status = class_register(&spi_slave_class); 4927 if (status < 0) 4928 goto err3; 4929 } 4930 4931 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4932 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4933 if (IS_ENABLED(CONFIG_ACPI)) 4934 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4935 4936 return 0; 4937 4938 err3: 4939 class_unregister(&spi_master_class); 4940 err2: 4941 bus_unregister(&spi_bus_type); 4942 err1: 4943 kfree(buf); 4944 buf = NULL; 4945 err0: 4946 return status; 4947 } 4948 4949 /* 4950 * A board_info is normally registered in arch_initcall(), 4951 * but even essential drivers wait till later. 4952 * 4953 * REVISIT only boardinfo really needs static linking. The rest (device and 4954 * driver registration) _could_ be dynamically linked (modular) ... Costs 4955 * include needing to have boardinfo data structures be much more public. 4956 */ 4957 postcore_initcall(spi_init); 4958