xref: /linux/drivers/spi/spi.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Empty string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del operation for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 	spi->mode = ctlr->buswidth_override_bits;
514 
515 	spin_lock_init(&spi->statistics.lock);
516 
517 	device_initialize(&spi->dev);
518 	return spi;
519 }
520 EXPORT_SYMBOL_GPL(spi_alloc_device);
521 
522 static void spi_dev_set_name(struct spi_device *spi)
523 {
524 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
525 
526 	if (adev) {
527 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
528 		return;
529 	}
530 
531 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
532 		     spi->chip_select);
533 }
534 
535 static int spi_dev_check(struct device *dev, void *data)
536 {
537 	struct spi_device *spi = to_spi_device(dev);
538 	struct spi_device *new_spi = data;
539 
540 	if (spi->controller == new_spi->controller &&
541 	    spi->chip_select == new_spi->chip_select)
542 		return -EBUSY;
543 	return 0;
544 }
545 
546 /**
547  * spi_add_device - Add spi_device allocated with spi_alloc_device
548  * @spi: spi_device to register
549  *
550  * Companion function to spi_alloc_device.  Devices allocated with
551  * spi_alloc_device can be added onto the spi bus with this function.
552  *
553  * Return: 0 on success; negative errno on failure
554  */
555 int spi_add_device(struct spi_device *spi)
556 {
557 	static DEFINE_MUTEX(spi_add_lock);
558 	struct spi_controller *ctlr = spi->controller;
559 	struct device *dev = ctlr->dev.parent;
560 	int status;
561 
562 	/* Chipselects are numbered 0..max; validate. */
563 	if (spi->chip_select >= ctlr->num_chipselect) {
564 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
565 			ctlr->num_chipselect);
566 		return -EINVAL;
567 	}
568 
569 	/* Set the bus ID string */
570 	spi_dev_set_name(spi);
571 
572 	/* We need to make sure there's no other device with this
573 	 * chipselect **BEFORE** we call setup(), else we'll trash
574 	 * its configuration.  Lock against concurrent add() calls.
575 	 */
576 	mutex_lock(&spi_add_lock);
577 
578 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
579 	if (status) {
580 		dev_err(dev, "chipselect %d already in use\n",
581 				spi->chip_select);
582 		goto done;
583 	}
584 
585 	/* Descriptors take precedence */
586 	if (ctlr->cs_gpiods)
587 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
588 	else if (ctlr->cs_gpios)
589 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
590 
591 	/* Drivers may modify this initial i/o setup, but will
592 	 * normally rely on the device being setup.  Devices
593 	 * using SPI_CS_HIGH can't coexist well otherwise...
594 	 */
595 	status = spi_setup(spi);
596 	if (status < 0) {
597 		dev_err(dev, "can't setup %s, status %d\n",
598 				dev_name(&spi->dev), status);
599 		goto done;
600 	}
601 
602 	/* Device may be bound to an active driver when this returns */
603 	status = device_add(&spi->dev);
604 	if (status < 0)
605 		dev_err(dev, "can't add %s, status %d\n",
606 				dev_name(&spi->dev), status);
607 	else
608 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
609 
610 done:
611 	mutex_unlock(&spi_add_lock);
612 	return status;
613 }
614 EXPORT_SYMBOL_GPL(spi_add_device);
615 
616 /**
617  * spi_new_device - instantiate one new SPI device
618  * @ctlr: Controller to which device is connected
619  * @chip: Describes the SPI device
620  * Context: can sleep
621  *
622  * On typical mainboards, this is purely internal; and it's not needed
623  * after board init creates the hard-wired devices.  Some development
624  * platforms may not be able to use spi_register_board_info though, and
625  * this is exported so that for example a USB or parport based adapter
626  * driver could add devices (which it would learn about out-of-band).
627  *
628  * Return: the new device, or NULL.
629  */
630 struct spi_device *spi_new_device(struct spi_controller *ctlr,
631 				  struct spi_board_info *chip)
632 {
633 	struct spi_device	*proxy;
634 	int			status;
635 
636 	/* NOTE:  caller did any chip->bus_num checks necessary.
637 	 *
638 	 * Also, unless we change the return value convention to use
639 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
640 	 * suggests syslogged diagnostics are best here (ugh).
641 	 */
642 
643 	proxy = spi_alloc_device(ctlr);
644 	if (!proxy)
645 		return NULL;
646 
647 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
648 
649 	proxy->chip_select = chip->chip_select;
650 	proxy->max_speed_hz = chip->max_speed_hz;
651 	proxy->mode = chip->mode;
652 	proxy->irq = chip->irq;
653 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
654 	proxy->dev.platform_data = (void *) chip->platform_data;
655 	proxy->controller_data = chip->controller_data;
656 	proxy->controller_state = NULL;
657 
658 	if (chip->properties) {
659 		status = device_add_properties(&proxy->dev, chip->properties);
660 		if (status) {
661 			dev_err(&ctlr->dev,
662 				"failed to add properties to '%s': %d\n",
663 				chip->modalias, status);
664 			goto err_dev_put;
665 		}
666 	}
667 
668 	status = spi_add_device(proxy);
669 	if (status < 0)
670 		goto err_remove_props;
671 
672 	return proxy;
673 
674 err_remove_props:
675 	if (chip->properties)
676 		device_remove_properties(&proxy->dev);
677 err_dev_put:
678 	spi_dev_put(proxy);
679 	return NULL;
680 }
681 EXPORT_SYMBOL_GPL(spi_new_device);
682 
683 /**
684  * spi_unregister_device - unregister a single SPI device
685  * @spi: spi_device to unregister
686  *
687  * Start making the passed SPI device vanish. Normally this would be handled
688  * by spi_unregister_controller().
689  */
690 void spi_unregister_device(struct spi_device *spi)
691 {
692 	if (!spi)
693 		return;
694 
695 	if (spi->dev.of_node) {
696 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
697 		of_node_put(spi->dev.of_node);
698 	}
699 	if (ACPI_COMPANION(&spi->dev))
700 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
701 	device_unregister(&spi->dev);
702 }
703 EXPORT_SYMBOL_GPL(spi_unregister_device);
704 
705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
706 					      struct spi_board_info *bi)
707 {
708 	struct spi_device *dev;
709 
710 	if (ctlr->bus_num != bi->bus_num)
711 		return;
712 
713 	dev = spi_new_device(ctlr, bi);
714 	if (!dev)
715 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
716 			bi->modalias);
717 }
718 
719 /**
720  * spi_register_board_info - register SPI devices for a given board
721  * @info: array of chip descriptors
722  * @n: how many descriptors are provided
723  * Context: can sleep
724  *
725  * Board-specific early init code calls this (probably during arch_initcall)
726  * with segments of the SPI device table.  Any device nodes are created later,
727  * after the relevant parent SPI controller (bus_num) is defined.  We keep
728  * this table of devices forever, so that reloading a controller driver will
729  * not make Linux forget about these hard-wired devices.
730  *
731  * Other code can also call this, e.g. a particular add-on board might provide
732  * SPI devices through its expansion connector, so code initializing that board
733  * would naturally declare its SPI devices.
734  *
735  * The board info passed can safely be __initdata ... but be careful of
736  * any embedded pointers (platform_data, etc), they're copied as-is.
737  * Device properties are deep-copied though.
738  *
739  * Return: zero on success, else a negative error code.
740  */
741 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
742 {
743 	struct boardinfo *bi;
744 	int i;
745 
746 	if (!n)
747 		return 0;
748 
749 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
750 	if (!bi)
751 		return -ENOMEM;
752 
753 	for (i = 0; i < n; i++, bi++, info++) {
754 		struct spi_controller *ctlr;
755 
756 		memcpy(&bi->board_info, info, sizeof(*info));
757 		if (info->properties) {
758 			bi->board_info.properties =
759 					property_entries_dup(info->properties);
760 			if (IS_ERR(bi->board_info.properties))
761 				return PTR_ERR(bi->board_info.properties);
762 		}
763 
764 		mutex_lock(&board_lock);
765 		list_add_tail(&bi->list, &board_list);
766 		list_for_each_entry(ctlr, &spi_controller_list, list)
767 			spi_match_controller_to_boardinfo(ctlr,
768 							  &bi->board_info);
769 		mutex_unlock(&board_lock);
770 	}
771 
772 	return 0;
773 }
774 
775 /*-------------------------------------------------------------------------*/
776 
777 static void spi_set_cs(struct spi_device *spi, bool enable)
778 {
779 	bool enable1 = enable;
780 
781 	if (!spi->controller->set_cs_timing) {
782 		if (enable1)
783 			spi_delay_exec(&spi->controller->cs_setup, NULL);
784 		else
785 			spi_delay_exec(&spi->controller->cs_hold, NULL);
786 	}
787 
788 	if (spi->mode & SPI_CS_HIGH)
789 		enable = !enable;
790 
791 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
792 		/*
793 		 * Honour the SPI_NO_CS flag and invert the enable line, as
794 		 * active low is default for SPI. Execution paths that handle
795 		 * polarity inversion in gpiolib (such as device tree) will
796 		 * enforce active high using the SPI_CS_HIGH resulting in a
797 		 * double inversion through the code above.
798 		 */
799 		if (!(spi->mode & SPI_NO_CS)) {
800 			if (spi->cs_gpiod)
801 				gpiod_set_value_cansleep(spi->cs_gpiod,
802 							 !enable);
803 			else
804 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
805 		}
806 		/* Some SPI masters need both GPIO CS & slave_select */
807 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
808 		    spi->controller->set_cs)
809 			spi->controller->set_cs(spi, !enable);
810 	} else if (spi->controller->set_cs) {
811 		spi->controller->set_cs(spi, !enable);
812 	}
813 
814 	if (!spi->controller->set_cs_timing) {
815 		if (!enable1)
816 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
817 	}
818 }
819 
820 #ifdef CONFIG_HAS_DMA
821 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
822 		struct sg_table *sgt, void *buf, size_t len,
823 		enum dma_data_direction dir)
824 {
825 	const bool vmalloced_buf = is_vmalloc_addr(buf);
826 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
827 #ifdef CONFIG_HIGHMEM
828 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
829 				(unsigned long)buf < (PKMAP_BASE +
830 					(LAST_PKMAP * PAGE_SIZE)));
831 #else
832 	const bool kmap_buf = false;
833 #endif
834 	int desc_len;
835 	int sgs;
836 	struct page *vm_page;
837 	struct scatterlist *sg;
838 	void *sg_buf;
839 	size_t min;
840 	int i, ret;
841 
842 	if (vmalloced_buf || kmap_buf) {
843 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
844 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
845 	} else if (virt_addr_valid(buf)) {
846 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
847 		sgs = DIV_ROUND_UP(len, desc_len);
848 	} else {
849 		return -EINVAL;
850 	}
851 
852 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
853 	if (ret != 0)
854 		return ret;
855 
856 	sg = &sgt->sgl[0];
857 	for (i = 0; i < sgs; i++) {
858 
859 		if (vmalloced_buf || kmap_buf) {
860 			/*
861 			 * Next scatterlist entry size is the minimum between
862 			 * the desc_len and the remaining buffer length that
863 			 * fits in a page.
864 			 */
865 			min = min_t(size_t, desc_len,
866 				    min_t(size_t, len,
867 					  PAGE_SIZE - offset_in_page(buf)));
868 			if (vmalloced_buf)
869 				vm_page = vmalloc_to_page(buf);
870 			else
871 				vm_page = kmap_to_page(buf);
872 			if (!vm_page) {
873 				sg_free_table(sgt);
874 				return -ENOMEM;
875 			}
876 			sg_set_page(sg, vm_page,
877 				    min, offset_in_page(buf));
878 		} else {
879 			min = min_t(size_t, len, desc_len);
880 			sg_buf = buf;
881 			sg_set_buf(sg, sg_buf, min);
882 		}
883 
884 		buf += min;
885 		len -= min;
886 		sg = sg_next(sg);
887 	}
888 
889 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
890 	if (!ret)
891 		ret = -ENOMEM;
892 	if (ret < 0) {
893 		sg_free_table(sgt);
894 		return ret;
895 	}
896 
897 	sgt->nents = ret;
898 
899 	return 0;
900 }
901 
902 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
903 		   struct sg_table *sgt, enum dma_data_direction dir)
904 {
905 	if (sgt->orig_nents) {
906 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
907 		sg_free_table(sgt);
908 	}
909 }
910 
911 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
912 {
913 	struct device *tx_dev, *rx_dev;
914 	struct spi_transfer *xfer;
915 	int ret;
916 
917 	if (!ctlr->can_dma)
918 		return 0;
919 
920 	if (ctlr->dma_tx)
921 		tx_dev = ctlr->dma_tx->device->dev;
922 	else
923 		tx_dev = ctlr->dev.parent;
924 
925 	if (ctlr->dma_rx)
926 		rx_dev = ctlr->dma_rx->device->dev;
927 	else
928 		rx_dev = ctlr->dev.parent;
929 
930 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
932 			continue;
933 
934 		if (xfer->tx_buf != NULL) {
935 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
936 					  (void *)xfer->tx_buf, xfer->len,
937 					  DMA_TO_DEVICE);
938 			if (ret != 0)
939 				return ret;
940 		}
941 
942 		if (xfer->rx_buf != NULL) {
943 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
944 					  xfer->rx_buf, xfer->len,
945 					  DMA_FROM_DEVICE);
946 			if (ret != 0) {
947 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
948 					      DMA_TO_DEVICE);
949 				return ret;
950 			}
951 		}
952 	}
953 
954 	ctlr->cur_msg_mapped = true;
955 
956 	return 0;
957 }
958 
959 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
960 {
961 	struct spi_transfer *xfer;
962 	struct device *tx_dev, *rx_dev;
963 
964 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
965 		return 0;
966 
967 	if (ctlr->dma_tx)
968 		tx_dev = ctlr->dma_tx->device->dev;
969 	else
970 		tx_dev = ctlr->dev.parent;
971 
972 	if (ctlr->dma_rx)
973 		rx_dev = ctlr->dma_rx->device->dev;
974 	else
975 		rx_dev = ctlr->dev.parent;
976 
977 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
978 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
979 			continue;
980 
981 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
982 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
983 	}
984 
985 	return 0;
986 }
987 #else /* !CONFIG_HAS_DMA */
988 static inline int __spi_map_msg(struct spi_controller *ctlr,
989 				struct spi_message *msg)
990 {
991 	return 0;
992 }
993 
994 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
995 				  struct spi_message *msg)
996 {
997 	return 0;
998 }
999 #endif /* !CONFIG_HAS_DMA */
1000 
1001 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1002 				struct spi_message *msg)
1003 {
1004 	struct spi_transfer *xfer;
1005 
1006 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1007 		/*
1008 		 * Restore the original value of tx_buf or rx_buf if they are
1009 		 * NULL.
1010 		 */
1011 		if (xfer->tx_buf == ctlr->dummy_tx)
1012 			xfer->tx_buf = NULL;
1013 		if (xfer->rx_buf == ctlr->dummy_rx)
1014 			xfer->rx_buf = NULL;
1015 	}
1016 
1017 	return __spi_unmap_msg(ctlr, msg);
1018 }
1019 
1020 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1021 {
1022 	struct spi_transfer *xfer;
1023 	void *tmp;
1024 	unsigned int max_tx, max_rx;
1025 
1026 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1027 		max_tx = 0;
1028 		max_rx = 0;
1029 
1030 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1031 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1032 			    !xfer->tx_buf)
1033 				max_tx = max(xfer->len, max_tx);
1034 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1035 			    !xfer->rx_buf)
1036 				max_rx = max(xfer->len, max_rx);
1037 		}
1038 
1039 		if (max_tx) {
1040 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1041 				       GFP_KERNEL | GFP_DMA);
1042 			if (!tmp)
1043 				return -ENOMEM;
1044 			ctlr->dummy_tx = tmp;
1045 			memset(tmp, 0, max_tx);
1046 		}
1047 
1048 		if (max_rx) {
1049 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1050 				       GFP_KERNEL | GFP_DMA);
1051 			if (!tmp)
1052 				return -ENOMEM;
1053 			ctlr->dummy_rx = tmp;
1054 		}
1055 
1056 		if (max_tx || max_rx) {
1057 			list_for_each_entry(xfer, &msg->transfers,
1058 					    transfer_list) {
1059 				if (!xfer->len)
1060 					continue;
1061 				if (!xfer->tx_buf)
1062 					xfer->tx_buf = ctlr->dummy_tx;
1063 				if (!xfer->rx_buf)
1064 					xfer->rx_buf = ctlr->dummy_rx;
1065 			}
1066 		}
1067 	}
1068 
1069 	return __spi_map_msg(ctlr, msg);
1070 }
1071 
1072 static int spi_transfer_wait(struct spi_controller *ctlr,
1073 			     struct spi_message *msg,
1074 			     struct spi_transfer *xfer)
1075 {
1076 	struct spi_statistics *statm = &ctlr->statistics;
1077 	struct spi_statistics *stats = &msg->spi->statistics;
1078 	unsigned long long ms = 1;
1079 
1080 	if (spi_controller_is_slave(ctlr)) {
1081 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1082 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1083 			return -EINTR;
1084 		}
1085 	} else {
1086 		ms = 8LL * 1000LL * xfer->len;
1087 		do_div(ms, xfer->speed_hz);
1088 		ms += ms + 200; /* some tolerance */
1089 
1090 		if (ms > UINT_MAX)
1091 			ms = UINT_MAX;
1092 
1093 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1094 						 msecs_to_jiffies(ms));
1095 
1096 		if (ms == 0) {
1097 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1098 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1099 			dev_err(&msg->spi->dev,
1100 				"SPI transfer timed out\n");
1101 			return -ETIMEDOUT;
1102 		}
1103 	}
1104 
1105 	return 0;
1106 }
1107 
1108 static void _spi_transfer_delay_ns(u32 ns)
1109 {
1110 	if (!ns)
1111 		return;
1112 	if (ns <= 1000) {
1113 		ndelay(ns);
1114 	} else {
1115 		u32 us = DIV_ROUND_UP(ns, 1000);
1116 
1117 		if (us <= 10)
1118 			udelay(us);
1119 		else
1120 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1121 	}
1122 }
1123 
1124 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1125 {
1126 	u32 delay = _delay->value;
1127 	u32 unit = _delay->unit;
1128 	u32 hz;
1129 
1130 	if (!delay)
1131 		return 0;
1132 
1133 	switch (unit) {
1134 	case SPI_DELAY_UNIT_USECS:
1135 		delay *= 1000;
1136 		break;
1137 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1138 		break;
1139 	case SPI_DELAY_UNIT_SCK:
1140 		/* clock cycles need to be obtained from spi_transfer */
1141 		if (!xfer)
1142 			return -EINVAL;
1143 		/* if there is no effective speed know, then approximate
1144 		 * by underestimating with half the requested hz
1145 		 */
1146 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1147 		if (!hz)
1148 			return -EINVAL;
1149 		delay *= DIV_ROUND_UP(1000000000, hz);
1150 		break;
1151 	default:
1152 		return -EINVAL;
1153 	}
1154 
1155 	return delay;
1156 }
1157 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1158 
1159 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1160 {
1161 	int delay;
1162 
1163 	if (!_delay)
1164 		return -EINVAL;
1165 
1166 	delay = spi_delay_to_ns(_delay, xfer);
1167 	if (delay < 0)
1168 		return delay;
1169 
1170 	_spi_transfer_delay_ns(delay);
1171 
1172 	return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(spi_delay_exec);
1175 
1176 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1177 					  struct spi_transfer *xfer)
1178 {
1179 	u32 delay = xfer->cs_change_delay.value;
1180 	u32 unit = xfer->cs_change_delay.unit;
1181 	int ret;
1182 
1183 	/* return early on "fast" mode - for everything but USECS */
1184 	if (!delay) {
1185 		if (unit == SPI_DELAY_UNIT_USECS)
1186 			_spi_transfer_delay_ns(10000);
1187 		return;
1188 	}
1189 
1190 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1191 	if (ret) {
1192 		dev_err_once(&msg->spi->dev,
1193 			     "Use of unsupported delay unit %i, using default of 10us\n",
1194 			     unit);
1195 		_spi_transfer_delay_ns(10000);
1196 	}
1197 }
1198 
1199 /*
1200  * spi_transfer_one_message - Default implementation of transfer_one_message()
1201  *
1202  * This is a standard implementation of transfer_one_message() for
1203  * drivers which implement a transfer_one() operation.  It provides
1204  * standard handling of delays and chip select management.
1205  */
1206 static int spi_transfer_one_message(struct spi_controller *ctlr,
1207 				    struct spi_message *msg)
1208 {
1209 	struct spi_transfer *xfer;
1210 	bool keep_cs = false;
1211 	int ret = 0;
1212 	struct spi_statistics *statm = &ctlr->statistics;
1213 	struct spi_statistics *stats = &msg->spi->statistics;
1214 
1215 	spi_set_cs(msg->spi, true);
1216 
1217 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1218 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1219 
1220 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1221 		trace_spi_transfer_start(msg, xfer);
1222 
1223 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1224 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1225 
1226 		if (!ctlr->ptp_sts_supported) {
1227 			xfer->ptp_sts_word_pre = 0;
1228 			ptp_read_system_prets(xfer->ptp_sts);
1229 		}
1230 
1231 		if (xfer->tx_buf || xfer->rx_buf) {
1232 			reinit_completion(&ctlr->xfer_completion);
1233 
1234 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1235 			if (ret < 0) {
1236 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1237 							       errors);
1238 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1239 							       errors);
1240 				dev_err(&msg->spi->dev,
1241 					"SPI transfer failed: %d\n", ret);
1242 				goto out;
1243 			}
1244 
1245 			if (ret > 0) {
1246 				ret = spi_transfer_wait(ctlr, msg, xfer);
1247 				if (ret < 0)
1248 					msg->status = ret;
1249 			}
1250 		} else {
1251 			if (xfer->len)
1252 				dev_err(&msg->spi->dev,
1253 					"Bufferless transfer has length %u\n",
1254 					xfer->len);
1255 		}
1256 
1257 		if (!ctlr->ptp_sts_supported) {
1258 			ptp_read_system_postts(xfer->ptp_sts);
1259 			xfer->ptp_sts_word_post = xfer->len;
1260 		}
1261 
1262 		trace_spi_transfer_stop(msg, xfer);
1263 
1264 		if (msg->status != -EINPROGRESS)
1265 			goto out;
1266 
1267 		spi_transfer_delay_exec(xfer);
1268 
1269 		if (xfer->cs_change) {
1270 			if (list_is_last(&xfer->transfer_list,
1271 					 &msg->transfers)) {
1272 				keep_cs = true;
1273 			} else {
1274 				spi_set_cs(msg->spi, false);
1275 				_spi_transfer_cs_change_delay(msg, xfer);
1276 				spi_set_cs(msg->spi, true);
1277 			}
1278 		}
1279 
1280 		msg->actual_length += xfer->len;
1281 	}
1282 
1283 out:
1284 	if (ret != 0 || !keep_cs)
1285 		spi_set_cs(msg->spi, false);
1286 
1287 	if (msg->status == -EINPROGRESS)
1288 		msg->status = ret;
1289 
1290 	if (msg->status && ctlr->handle_err)
1291 		ctlr->handle_err(ctlr, msg);
1292 
1293 	spi_res_release(ctlr, msg);
1294 
1295 	spi_finalize_current_message(ctlr);
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  * spi_finalize_current_transfer - report completion of a transfer
1302  * @ctlr: the controller reporting completion
1303  *
1304  * Called by SPI drivers using the core transfer_one_message()
1305  * implementation to notify it that the current interrupt driven
1306  * transfer has finished and the next one may be scheduled.
1307  */
1308 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1309 {
1310 	complete(&ctlr->xfer_completion);
1311 }
1312 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1313 
1314 /**
1315  * __spi_pump_messages - function which processes spi message queue
1316  * @ctlr: controller to process queue for
1317  * @in_kthread: true if we are in the context of the message pump thread
1318  *
1319  * This function checks if there is any spi message in the queue that
1320  * needs processing and if so call out to the driver to initialize hardware
1321  * and transfer each message.
1322  *
1323  * Note that it is called both from the kthread itself and also from
1324  * inside spi_sync(); the queue extraction handling at the top of the
1325  * function should deal with this safely.
1326  */
1327 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1328 {
1329 	struct spi_transfer *xfer;
1330 	struct spi_message *msg;
1331 	bool was_busy = false;
1332 	unsigned long flags;
1333 	int ret;
1334 
1335 	/* Lock queue */
1336 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1337 
1338 	/* Make sure we are not already running a message */
1339 	if (ctlr->cur_msg) {
1340 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1341 		return;
1342 	}
1343 
1344 	/* If another context is idling the device then defer */
1345 	if (ctlr->idling) {
1346 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1347 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1348 		return;
1349 	}
1350 
1351 	/* Check if the queue is idle */
1352 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1353 		if (!ctlr->busy) {
1354 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1355 			return;
1356 		}
1357 
1358 		/* Only do teardown in the thread */
1359 		if (!in_kthread) {
1360 			kthread_queue_work(&ctlr->kworker,
1361 					   &ctlr->pump_messages);
1362 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1363 			return;
1364 		}
1365 
1366 		ctlr->busy = false;
1367 		ctlr->idling = true;
1368 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1369 
1370 		kfree(ctlr->dummy_rx);
1371 		ctlr->dummy_rx = NULL;
1372 		kfree(ctlr->dummy_tx);
1373 		ctlr->dummy_tx = NULL;
1374 		if (ctlr->unprepare_transfer_hardware &&
1375 		    ctlr->unprepare_transfer_hardware(ctlr))
1376 			dev_err(&ctlr->dev,
1377 				"failed to unprepare transfer hardware\n");
1378 		if (ctlr->auto_runtime_pm) {
1379 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1380 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1381 		}
1382 		trace_spi_controller_idle(ctlr);
1383 
1384 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1385 		ctlr->idling = false;
1386 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1387 		return;
1388 	}
1389 
1390 	/* Extract head of queue */
1391 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1392 	ctlr->cur_msg = msg;
1393 
1394 	list_del_init(&msg->queue);
1395 	if (ctlr->busy)
1396 		was_busy = true;
1397 	else
1398 		ctlr->busy = true;
1399 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1400 
1401 	mutex_lock(&ctlr->io_mutex);
1402 
1403 	if (!was_busy && ctlr->auto_runtime_pm) {
1404 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1405 		if (ret < 0) {
1406 			pm_runtime_put_noidle(ctlr->dev.parent);
1407 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1408 				ret);
1409 			mutex_unlock(&ctlr->io_mutex);
1410 			return;
1411 		}
1412 	}
1413 
1414 	if (!was_busy)
1415 		trace_spi_controller_busy(ctlr);
1416 
1417 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1418 		ret = ctlr->prepare_transfer_hardware(ctlr);
1419 		if (ret) {
1420 			dev_err(&ctlr->dev,
1421 				"failed to prepare transfer hardware: %d\n",
1422 				ret);
1423 
1424 			if (ctlr->auto_runtime_pm)
1425 				pm_runtime_put(ctlr->dev.parent);
1426 
1427 			msg->status = ret;
1428 			spi_finalize_current_message(ctlr);
1429 
1430 			mutex_unlock(&ctlr->io_mutex);
1431 			return;
1432 		}
1433 	}
1434 
1435 	trace_spi_message_start(msg);
1436 
1437 	if (ctlr->prepare_message) {
1438 		ret = ctlr->prepare_message(ctlr, msg);
1439 		if (ret) {
1440 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1441 				ret);
1442 			msg->status = ret;
1443 			spi_finalize_current_message(ctlr);
1444 			goto out;
1445 		}
1446 		ctlr->cur_msg_prepared = true;
1447 	}
1448 
1449 	ret = spi_map_msg(ctlr, msg);
1450 	if (ret) {
1451 		msg->status = ret;
1452 		spi_finalize_current_message(ctlr);
1453 		goto out;
1454 	}
1455 
1456 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1457 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1458 			xfer->ptp_sts_word_pre = 0;
1459 			ptp_read_system_prets(xfer->ptp_sts);
1460 		}
1461 	}
1462 
1463 	ret = ctlr->transfer_one_message(ctlr, msg);
1464 	if (ret) {
1465 		dev_err(&ctlr->dev,
1466 			"failed to transfer one message from queue\n");
1467 		goto out;
1468 	}
1469 
1470 out:
1471 	mutex_unlock(&ctlr->io_mutex);
1472 
1473 	/* Prod the scheduler in case transfer_one() was busy waiting */
1474 	if (!ret)
1475 		cond_resched();
1476 }
1477 
1478 /**
1479  * spi_pump_messages - kthread work function which processes spi message queue
1480  * @work: pointer to kthread work struct contained in the controller struct
1481  */
1482 static void spi_pump_messages(struct kthread_work *work)
1483 {
1484 	struct spi_controller *ctlr =
1485 		container_of(work, struct spi_controller, pump_messages);
1486 
1487 	__spi_pump_messages(ctlr, true);
1488 }
1489 
1490 /**
1491  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1492  *			    TX timestamp for the requested byte from the SPI
1493  *			    transfer. The frequency with which this function
1494  *			    must be called (once per word, once for the whole
1495  *			    transfer, once per batch of words etc) is arbitrary
1496  *			    as long as the @tx buffer offset is greater than or
1497  *			    equal to the requested byte at the time of the
1498  *			    call. The timestamp is only taken once, at the
1499  *			    first such call. It is assumed that the driver
1500  *			    advances its @tx buffer pointer monotonically.
1501  * @ctlr: Pointer to the spi_controller structure of the driver
1502  * @xfer: Pointer to the transfer being timestamped
1503  * @progress: How many words (not bytes) have been transferred so far
1504  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1505  *	      transfer, for less jitter in time measurement. Only compatible
1506  *	      with PIO drivers. If true, must follow up with
1507  *	      spi_take_timestamp_post or otherwise system will crash.
1508  *	      WARNING: for fully predictable results, the CPU frequency must
1509  *	      also be under control (governor).
1510  */
1511 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1512 			    struct spi_transfer *xfer,
1513 			    size_t progress, bool irqs_off)
1514 {
1515 	if (!xfer->ptp_sts)
1516 		return;
1517 
1518 	if (xfer->timestamped)
1519 		return;
1520 
1521 	if (progress > xfer->ptp_sts_word_pre)
1522 		return;
1523 
1524 	/* Capture the resolution of the timestamp */
1525 	xfer->ptp_sts_word_pre = progress;
1526 
1527 	if (irqs_off) {
1528 		local_irq_save(ctlr->irq_flags);
1529 		preempt_disable();
1530 	}
1531 
1532 	ptp_read_system_prets(xfer->ptp_sts);
1533 }
1534 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1535 
1536 /**
1537  * spi_take_timestamp_post - helper for drivers to collect the end of the
1538  *			     TX timestamp for the requested byte from the SPI
1539  *			     transfer. Can be called with an arbitrary
1540  *			     frequency: only the first call where @tx exceeds
1541  *			     or is equal to the requested word will be
1542  *			     timestamped.
1543  * @ctlr: Pointer to the spi_controller structure of the driver
1544  * @xfer: Pointer to the transfer being timestamped
1545  * @progress: How many words (not bytes) have been transferred so far
1546  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1547  */
1548 void spi_take_timestamp_post(struct spi_controller *ctlr,
1549 			     struct spi_transfer *xfer,
1550 			     size_t progress, bool irqs_off)
1551 {
1552 	if (!xfer->ptp_sts)
1553 		return;
1554 
1555 	if (xfer->timestamped)
1556 		return;
1557 
1558 	if (progress < xfer->ptp_sts_word_post)
1559 		return;
1560 
1561 	ptp_read_system_postts(xfer->ptp_sts);
1562 
1563 	if (irqs_off) {
1564 		local_irq_restore(ctlr->irq_flags);
1565 		preempt_enable();
1566 	}
1567 
1568 	/* Capture the resolution of the timestamp */
1569 	xfer->ptp_sts_word_post = progress;
1570 
1571 	xfer->timestamped = true;
1572 }
1573 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1574 
1575 /**
1576  * spi_set_thread_rt - set the controller to pump at realtime priority
1577  * @ctlr: controller to boost priority of
1578  *
1579  * This can be called because the controller requested realtime priority
1580  * (by setting the ->rt value before calling spi_register_controller()) or
1581  * because a device on the bus said that its transfers needed realtime
1582  * priority.
1583  *
1584  * NOTE: at the moment if any device on a bus says it needs realtime then
1585  * the thread will be at realtime priority for all transfers on that
1586  * controller.  If this eventually becomes a problem we may see if we can
1587  * find a way to boost the priority only temporarily during relevant
1588  * transfers.
1589  */
1590 static void spi_set_thread_rt(struct spi_controller *ctlr)
1591 {
1592 	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1593 
1594 	dev_info(&ctlr->dev,
1595 		"will run message pump with realtime priority\n");
1596 	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1597 }
1598 
1599 static int spi_init_queue(struct spi_controller *ctlr)
1600 {
1601 	ctlr->running = false;
1602 	ctlr->busy = false;
1603 
1604 	kthread_init_worker(&ctlr->kworker);
1605 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1606 					 "%s", dev_name(&ctlr->dev));
1607 	if (IS_ERR(ctlr->kworker_task)) {
1608 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1609 		return PTR_ERR(ctlr->kworker_task);
1610 	}
1611 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1612 
1613 	/*
1614 	 * Controller config will indicate if this controller should run the
1615 	 * message pump with high (realtime) priority to reduce the transfer
1616 	 * latency on the bus by minimising the delay between a transfer
1617 	 * request and the scheduling of the message pump thread. Without this
1618 	 * setting the message pump thread will remain at default priority.
1619 	 */
1620 	if (ctlr->rt)
1621 		spi_set_thread_rt(ctlr);
1622 
1623 	return 0;
1624 }
1625 
1626 /**
1627  * spi_get_next_queued_message() - called by driver to check for queued
1628  * messages
1629  * @ctlr: the controller to check for queued messages
1630  *
1631  * If there are more messages in the queue, the next message is returned from
1632  * this call.
1633  *
1634  * Return: the next message in the queue, else NULL if the queue is empty.
1635  */
1636 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1637 {
1638 	struct spi_message *next;
1639 	unsigned long flags;
1640 
1641 	/* get a pointer to the next message, if any */
1642 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1643 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1644 					queue);
1645 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1646 
1647 	return next;
1648 }
1649 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1650 
1651 /**
1652  * spi_finalize_current_message() - the current message is complete
1653  * @ctlr: the controller to return the message to
1654  *
1655  * Called by the driver to notify the core that the message in the front of the
1656  * queue is complete and can be removed from the queue.
1657  */
1658 void spi_finalize_current_message(struct spi_controller *ctlr)
1659 {
1660 	struct spi_transfer *xfer;
1661 	struct spi_message *mesg;
1662 	unsigned long flags;
1663 	int ret;
1664 
1665 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1666 	mesg = ctlr->cur_msg;
1667 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1668 
1669 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1670 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1671 			ptp_read_system_postts(xfer->ptp_sts);
1672 			xfer->ptp_sts_word_post = xfer->len;
1673 		}
1674 	}
1675 
1676 	if (unlikely(ctlr->ptp_sts_supported))
1677 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1678 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1679 
1680 	spi_unmap_msg(ctlr, mesg);
1681 
1682 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1683 		ret = ctlr->unprepare_message(ctlr, mesg);
1684 		if (ret) {
1685 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1686 				ret);
1687 		}
1688 	}
1689 
1690 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1691 	ctlr->cur_msg = NULL;
1692 	ctlr->cur_msg_prepared = false;
1693 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1694 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1695 
1696 	trace_spi_message_done(mesg);
1697 
1698 	mesg->state = NULL;
1699 	if (mesg->complete)
1700 		mesg->complete(mesg->context);
1701 }
1702 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1703 
1704 static int spi_start_queue(struct spi_controller *ctlr)
1705 {
1706 	unsigned long flags;
1707 
1708 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1709 
1710 	if (ctlr->running || ctlr->busy) {
1711 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1712 		return -EBUSY;
1713 	}
1714 
1715 	ctlr->running = true;
1716 	ctlr->cur_msg = NULL;
1717 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1718 
1719 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1720 
1721 	return 0;
1722 }
1723 
1724 static int spi_stop_queue(struct spi_controller *ctlr)
1725 {
1726 	unsigned long flags;
1727 	unsigned limit = 500;
1728 	int ret = 0;
1729 
1730 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1731 
1732 	/*
1733 	 * This is a bit lame, but is optimized for the common execution path.
1734 	 * A wait_queue on the ctlr->busy could be used, but then the common
1735 	 * execution path (pump_messages) would be required to call wake_up or
1736 	 * friends on every SPI message. Do this instead.
1737 	 */
1738 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1739 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1740 		usleep_range(10000, 11000);
1741 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1742 	}
1743 
1744 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1745 		ret = -EBUSY;
1746 	else
1747 		ctlr->running = false;
1748 
1749 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1750 
1751 	if (ret) {
1752 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1753 		return ret;
1754 	}
1755 	return ret;
1756 }
1757 
1758 static int spi_destroy_queue(struct spi_controller *ctlr)
1759 {
1760 	int ret;
1761 
1762 	ret = spi_stop_queue(ctlr);
1763 
1764 	/*
1765 	 * kthread_flush_worker will block until all work is done.
1766 	 * If the reason that stop_queue timed out is that the work will never
1767 	 * finish, then it does no good to call flush/stop thread, so
1768 	 * return anyway.
1769 	 */
1770 	if (ret) {
1771 		dev_err(&ctlr->dev, "problem destroying queue\n");
1772 		return ret;
1773 	}
1774 
1775 	kthread_flush_worker(&ctlr->kworker);
1776 	kthread_stop(ctlr->kworker_task);
1777 
1778 	return 0;
1779 }
1780 
1781 static int __spi_queued_transfer(struct spi_device *spi,
1782 				 struct spi_message *msg,
1783 				 bool need_pump)
1784 {
1785 	struct spi_controller *ctlr = spi->controller;
1786 	unsigned long flags;
1787 
1788 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1789 
1790 	if (!ctlr->running) {
1791 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792 		return -ESHUTDOWN;
1793 	}
1794 	msg->actual_length = 0;
1795 	msg->status = -EINPROGRESS;
1796 
1797 	list_add_tail(&msg->queue, &ctlr->queue);
1798 	if (!ctlr->busy && need_pump)
1799 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1800 
1801 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1802 	return 0;
1803 }
1804 
1805 /**
1806  * spi_queued_transfer - transfer function for queued transfers
1807  * @spi: spi device which is requesting transfer
1808  * @msg: spi message which is to handled is queued to driver queue
1809  *
1810  * Return: zero on success, else a negative error code.
1811  */
1812 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1813 {
1814 	return __spi_queued_transfer(spi, msg, true);
1815 }
1816 
1817 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1818 {
1819 	int ret;
1820 
1821 	ctlr->transfer = spi_queued_transfer;
1822 	if (!ctlr->transfer_one_message)
1823 		ctlr->transfer_one_message = spi_transfer_one_message;
1824 
1825 	/* Initialize and start queue */
1826 	ret = spi_init_queue(ctlr);
1827 	if (ret) {
1828 		dev_err(&ctlr->dev, "problem initializing queue\n");
1829 		goto err_init_queue;
1830 	}
1831 	ctlr->queued = true;
1832 	ret = spi_start_queue(ctlr);
1833 	if (ret) {
1834 		dev_err(&ctlr->dev, "problem starting queue\n");
1835 		goto err_start_queue;
1836 	}
1837 
1838 	return 0;
1839 
1840 err_start_queue:
1841 	spi_destroy_queue(ctlr);
1842 err_init_queue:
1843 	return ret;
1844 }
1845 
1846 /**
1847  * spi_flush_queue - Send all pending messages in the queue from the callers'
1848  *		     context
1849  * @ctlr: controller to process queue for
1850  *
1851  * This should be used when one wants to ensure all pending messages have been
1852  * sent before doing something. Is used by the spi-mem code to make sure SPI
1853  * memory operations do not preempt regular SPI transfers that have been queued
1854  * before the spi-mem operation.
1855  */
1856 void spi_flush_queue(struct spi_controller *ctlr)
1857 {
1858 	if (ctlr->transfer == spi_queued_transfer)
1859 		__spi_pump_messages(ctlr, false);
1860 }
1861 
1862 /*-------------------------------------------------------------------------*/
1863 
1864 #if defined(CONFIG_OF)
1865 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1866 			   struct device_node *nc)
1867 {
1868 	u32 value;
1869 	int rc;
1870 
1871 	/* Mode (clock phase/polarity/etc.) */
1872 	if (of_property_read_bool(nc, "spi-cpha"))
1873 		spi->mode |= SPI_CPHA;
1874 	if (of_property_read_bool(nc, "spi-cpol"))
1875 		spi->mode |= SPI_CPOL;
1876 	if (of_property_read_bool(nc, "spi-3wire"))
1877 		spi->mode |= SPI_3WIRE;
1878 	if (of_property_read_bool(nc, "spi-lsb-first"))
1879 		spi->mode |= SPI_LSB_FIRST;
1880 	if (of_property_read_bool(nc, "spi-cs-high"))
1881 		spi->mode |= SPI_CS_HIGH;
1882 
1883 	/* Device DUAL/QUAD mode */
1884 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1885 		switch (value) {
1886 		case 1:
1887 			break;
1888 		case 2:
1889 			spi->mode |= SPI_TX_DUAL;
1890 			break;
1891 		case 4:
1892 			spi->mode |= SPI_TX_QUAD;
1893 			break;
1894 		case 8:
1895 			spi->mode |= SPI_TX_OCTAL;
1896 			break;
1897 		default:
1898 			dev_warn(&ctlr->dev,
1899 				"spi-tx-bus-width %d not supported\n",
1900 				value);
1901 			break;
1902 		}
1903 	}
1904 
1905 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1906 		switch (value) {
1907 		case 1:
1908 			break;
1909 		case 2:
1910 			spi->mode |= SPI_RX_DUAL;
1911 			break;
1912 		case 4:
1913 			spi->mode |= SPI_RX_QUAD;
1914 			break;
1915 		case 8:
1916 			spi->mode |= SPI_RX_OCTAL;
1917 			break;
1918 		default:
1919 			dev_warn(&ctlr->dev,
1920 				"spi-rx-bus-width %d not supported\n",
1921 				value);
1922 			break;
1923 		}
1924 	}
1925 
1926 	if (spi_controller_is_slave(ctlr)) {
1927 		if (!of_node_name_eq(nc, "slave")) {
1928 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1929 				nc);
1930 			return -EINVAL;
1931 		}
1932 		return 0;
1933 	}
1934 
1935 	/* Device address */
1936 	rc = of_property_read_u32(nc, "reg", &value);
1937 	if (rc) {
1938 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1939 			nc, rc);
1940 		return rc;
1941 	}
1942 	spi->chip_select = value;
1943 
1944 	/*
1945 	 * For descriptors associated with the device, polarity inversion is
1946 	 * handled in the gpiolib, so all gpio chip selects are "active high"
1947 	 * in the logical sense, the gpiolib will invert the line if need be.
1948 	 */
1949 	if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
1950 	    ctlr->cs_gpiods[spi->chip_select])
1951 		spi->mode |= SPI_CS_HIGH;
1952 
1953 	/* Device speed */
1954 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
1955 		spi->max_speed_hz = value;
1956 
1957 	return 0;
1958 }
1959 
1960 static struct spi_device *
1961 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1962 {
1963 	struct spi_device *spi;
1964 	int rc;
1965 
1966 	/* Alloc an spi_device */
1967 	spi = spi_alloc_device(ctlr);
1968 	if (!spi) {
1969 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1970 		rc = -ENOMEM;
1971 		goto err_out;
1972 	}
1973 
1974 	/* Select device driver */
1975 	rc = of_modalias_node(nc, spi->modalias,
1976 				sizeof(spi->modalias));
1977 	if (rc < 0) {
1978 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1979 		goto err_out;
1980 	}
1981 
1982 	rc = of_spi_parse_dt(ctlr, spi, nc);
1983 	if (rc)
1984 		goto err_out;
1985 
1986 	/* Store a pointer to the node in the device structure */
1987 	of_node_get(nc);
1988 	spi->dev.of_node = nc;
1989 
1990 	/* Register the new device */
1991 	rc = spi_add_device(spi);
1992 	if (rc) {
1993 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1994 		goto err_of_node_put;
1995 	}
1996 
1997 	return spi;
1998 
1999 err_of_node_put:
2000 	of_node_put(nc);
2001 err_out:
2002 	spi_dev_put(spi);
2003 	return ERR_PTR(rc);
2004 }
2005 
2006 /**
2007  * of_register_spi_devices() - Register child devices onto the SPI bus
2008  * @ctlr:	Pointer to spi_controller device
2009  *
2010  * Registers an spi_device for each child node of controller node which
2011  * represents a valid SPI slave.
2012  */
2013 static void of_register_spi_devices(struct spi_controller *ctlr)
2014 {
2015 	struct spi_device *spi;
2016 	struct device_node *nc;
2017 
2018 	if (!ctlr->dev.of_node)
2019 		return;
2020 
2021 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2022 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2023 			continue;
2024 		spi = of_register_spi_device(ctlr, nc);
2025 		if (IS_ERR(spi)) {
2026 			dev_warn(&ctlr->dev,
2027 				 "Failed to create SPI device for %pOF\n", nc);
2028 			of_node_clear_flag(nc, OF_POPULATED);
2029 		}
2030 	}
2031 }
2032 #else
2033 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2034 #endif
2035 
2036 #ifdef CONFIG_ACPI
2037 struct acpi_spi_lookup {
2038 	struct spi_controller 	*ctlr;
2039 	u32			max_speed_hz;
2040 	u32			mode;
2041 	int			irq;
2042 	u8			bits_per_word;
2043 	u8			chip_select;
2044 };
2045 
2046 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2047 					    struct acpi_spi_lookup *lookup)
2048 {
2049 	const union acpi_object *obj;
2050 
2051 	if (!x86_apple_machine)
2052 		return;
2053 
2054 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2055 	    && obj->buffer.length >= 4)
2056 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2057 
2058 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2059 	    && obj->buffer.length == 8)
2060 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2061 
2062 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2063 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2064 		lookup->mode |= SPI_LSB_FIRST;
2065 
2066 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2067 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2068 		lookup->mode |= SPI_CPOL;
2069 
2070 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2071 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2072 		lookup->mode |= SPI_CPHA;
2073 }
2074 
2075 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2076 {
2077 	struct acpi_spi_lookup *lookup = data;
2078 	struct spi_controller *ctlr = lookup->ctlr;
2079 
2080 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2081 		struct acpi_resource_spi_serialbus *sb;
2082 		acpi_handle parent_handle;
2083 		acpi_status status;
2084 
2085 		sb = &ares->data.spi_serial_bus;
2086 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2087 
2088 			status = acpi_get_handle(NULL,
2089 						 sb->resource_source.string_ptr,
2090 						 &parent_handle);
2091 
2092 			if (ACPI_FAILURE(status) ||
2093 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2094 				return -ENODEV;
2095 
2096 			/*
2097 			 * ACPI DeviceSelection numbering is handled by the
2098 			 * host controller driver in Windows and can vary
2099 			 * from driver to driver. In Linux we always expect
2100 			 * 0 .. max - 1 so we need to ask the driver to
2101 			 * translate between the two schemes.
2102 			 */
2103 			if (ctlr->fw_translate_cs) {
2104 				int cs = ctlr->fw_translate_cs(ctlr,
2105 						sb->device_selection);
2106 				if (cs < 0)
2107 					return cs;
2108 				lookup->chip_select = cs;
2109 			} else {
2110 				lookup->chip_select = sb->device_selection;
2111 			}
2112 
2113 			lookup->max_speed_hz = sb->connection_speed;
2114 
2115 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2116 				lookup->mode |= SPI_CPHA;
2117 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2118 				lookup->mode |= SPI_CPOL;
2119 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2120 				lookup->mode |= SPI_CS_HIGH;
2121 		}
2122 	} else if (lookup->irq < 0) {
2123 		struct resource r;
2124 
2125 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2126 			lookup->irq = r.start;
2127 	}
2128 
2129 	/* Always tell the ACPI core to skip this resource */
2130 	return 1;
2131 }
2132 
2133 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2134 					    struct acpi_device *adev)
2135 {
2136 	acpi_handle parent_handle = NULL;
2137 	struct list_head resource_list;
2138 	struct acpi_spi_lookup lookup = {};
2139 	struct spi_device *spi;
2140 	int ret;
2141 
2142 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2143 	    acpi_device_enumerated(adev))
2144 		return AE_OK;
2145 
2146 	lookup.ctlr		= ctlr;
2147 	lookup.irq		= -1;
2148 
2149 	INIT_LIST_HEAD(&resource_list);
2150 	ret = acpi_dev_get_resources(adev, &resource_list,
2151 				     acpi_spi_add_resource, &lookup);
2152 	acpi_dev_free_resource_list(&resource_list);
2153 
2154 	if (ret < 0)
2155 		/* found SPI in _CRS but it points to another controller */
2156 		return AE_OK;
2157 
2158 	if (!lookup.max_speed_hz &&
2159 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2160 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2161 		/* Apple does not use _CRS but nested devices for SPI slaves */
2162 		acpi_spi_parse_apple_properties(adev, &lookup);
2163 	}
2164 
2165 	if (!lookup.max_speed_hz)
2166 		return AE_OK;
2167 
2168 	spi = spi_alloc_device(ctlr);
2169 	if (!spi) {
2170 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2171 			dev_name(&adev->dev));
2172 		return AE_NO_MEMORY;
2173 	}
2174 
2175 
2176 	ACPI_COMPANION_SET(&spi->dev, adev);
2177 	spi->max_speed_hz	= lookup.max_speed_hz;
2178 	spi->mode		|= lookup.mode;
2179 	spi->irq		= lookup.irq;
2180 	spi->bits_per_word	= lookup.bits_per_word;
2181 	spi->chip_select	= lookup.chip_select;
2182 
2183 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2184 			  sizeof(spi->modalias));
2185 
2186 	if (spi->irq < 0)
2187 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2188 
2189 	acpi_device_set_enumerated(adev);
2190 
2191 	adev->power.flags.ignore_parent = true;
2192 	if (spi_add_device(spi)) {
2193 		adev->power.flags.ignore_parent = false;
2194 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2195 			dev_name(&adev->dev));
2196 		spi_dev_put(spi);
2197 	}
2198 
2199 	return AE_OK;
2200 }
2201 
2202 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2203 				       void *data, void **return_value)
2204 {
2205 	struct spi_controller *ctlr = data;
2206 	struct acpi_device *adev;
2207 
2208 	if (acpi_bus_get_device(handle, &adev))
2209 		return AE_OK;
2210 
2211 	return acpi_register_spi_device(ctlr, adev);
2212 }
2213 
2214 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2215 
2216 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2217 {
2218 	acpi_status status;
2219 	acpi_handle handle;
2220 
2221 	handle = ACPI_HANDLE(ctlr->dev.parent);
2222 	if (!handle)
2223 		return;
2224 
2225 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2226 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2227 				     acpi_spi_add_device, NULL, ctlr, NULL);
2228 	if (ACPI_FAILURE(status))
2229 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2230 }
2231 #else
2232 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2233 #endif /* CONFIG_ACPI */
2234 
2235 static void spi_controller_release(struct device *dev)
2236 {
2237 	struct spi_controller *ctlr;
2238 
2239 	ctlr = container_of(dev, struct spi_controller, dev);
2240 	kfree(ctlr);
2241 }
2242 
2243 static struct class spi_master_class = {
2244 	.name		= "spi_master",
2245 	.owner		= THIS_MODULE,
2246 	.dev_release	= spi_controller_release,
2247 	.dev_groups	= spi_master_groups,
2248 };
2249 
2250 #ifdef CONFIG_SPI_SLAVE
2251 /**
2252  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2253  *		     controller
2254  * @spi: device used for the current transfer
2255  */
2256 int spi_slave_abort(struct spi_device *spi)
2257 {
2258 	struct spi_controller *ctlr = spi->controller;
2259 
2260 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2261 		return ctlr->slave_abort(ctlr);
2262 
2263 	return -ENOTSUPP;
2264 }
2265 EXPORT_SYMBOL_GPL(spi_slave_abort);
2266 
2267 static int match_true(struct device *dev, void *data)
2268 {
2269 	return 1;
2270 }
2271 
2272 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2273 			  char *buf)
2274 {
2275 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2276 						   dev);
2277 	struct device *child;
2278 
2279 	child = device_find_child(&ctlr->dev, NULL, match_true);
2280 	return sprintf(buf, "%s\n",
2281 		       child ? to_spi_device(child)->modalias : NULL);
2282 }
2283 
2284 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2285 			   const char *buf, size_t count)
2286 {
2287 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2288 						   dev);
2289 	struct spi_device *spi;
2290 	struct device *child;
2291 	char name[32];
2292 	int rc;
2293 
2294 	rc = sscanf(buf, "%31s", name);
2295 	if (rc != 1 || !name[0])
2296 		return -EINVAL;
2297 
2298 	child = device_find_child(&ctlr->dev, NULL, match_true);
2299 	if (child) {
2300 		/* Remove registered slave */
2301 		device_unregister(child);
2302 		put_device(child);
2303 	}
2304 
2305 	if (strcmp(name, "(null)")) {
2306 		/* Register new slave */
2307 		spi = spi_alloc_device(ctlr);
2308 		if (!spi)
2309 			return -ENOMEM;
2310 
2311 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2312 
2313 		rc = spi_add_device(spi);
2314 		if (rc) {
2315 			spi_dev_put(spi);
2316 			return rc;
2317 		}
2318 	}
2319 
2320 	return count;
2321 }
2322 
2323 static DEVICE_ATTR_RW(slave);
2324 
2325 static struct attribute *spi_slave_attrs[] = {
2326 	&dev_attr_slave.attr,
2327 	NULL,
2328 };
2329 
2330 static const struct attribute_group spi_slave_group = {
2331 	.attrs = spi_slave_attrs,
2332 };
2333 
2334 static const struct attribute_group *spi_slave_groups[] = {
2335 	&spi_controller_statistics_group,
2336 	&spi_slave_group,
2337 	NULL,
2338 };
2339 
2340 static struct class spi_slave_class = {
2341 	.name		= "spi_slave",
2342 	.owner		= THIS_MODULE,
2343 	.dev_release	= spi_controller_release,
2344 	.dev_groups	= spi_slave_groups,
2345 };
2346 #else
2347 extern struct class spi_slave_class;	/* dummy */
2348 #endif
2349 
2350 /**
2351  * __spi_alloc_controller - allocate an SPI master or slave controller
2352  * @dev: the controller, possibly using the platform_bus
2353  * @size: how much zeroed driver-private data to allocate; the pointer to this
2354  *	memory is in the driver_data field of the returned device, accessible
2355  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2356  *	drivers granting DMA access to portions of their private data need to
2357  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2358  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2359  *	slave (true) controller
2360  * Context: can sleep
2361  *
2362  * This call is used only by SPI controller drivers, which are the
2363  * only ones directly touching chip registers.  It's how they allocate
2364  * an spi_controller structure, prior to calling spi_register_controller().
2365  *
2366  * This must be called from context that can sleep.
2367  *
2368  * The caller is responsible for assigning the bus number and initializing the
2369  * controller's methods before calling spi_register_controller(); and (after
2370  * errors adding the device) calling spi_controller_put() to prevent a memory
2371  * leak.
2372  *
2373  * Return: the SPI controller structure on success, else NULL.
2374  */
2375 struct spi_controller *__spi_alloc_controller(struct device *dev,
2376 					      unsigned int size, bool slave)
2377 {
2378 	struct spi_controller	*ctlr;
2379 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2380 
2381 	if (!dev)
2382 		return NULL;
2383 
2384 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2385 	if (!ctlr)
2386 		return NULL;
2387 
2388 	device_initialize(&ctlr->dev);
2389 	ctlr->bus_num = -1;
2390 	ctlr->num_chipselect = 1;
2391 	ctlr->slave = slave;
2392 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2393 		ctlr->dev.class = &spi_slave_class;
2394 	else
2395 		ctlr->dev.class = &spi_master_class;
2396 	ctlr->dev.parent = dev;
2397 	pm_suspend_ignore_children(&ctlr->dev, true);
2398 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2399 
2400 	return ctlr;
2401 }
2402 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2403 
2404 #ifdef CONFIG_OF
2405 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2406 {
2407 	int nb, i, *cs;
2408 	struct device_node *np = ctlr->dev.of_node;
2409 
2410 	if (!np)
2411 		return 0;
2412 
2413 	nb = of_gpio_named_count(np, "cs-gpios");
2414 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2415 
2416 	/* Return error only for an incorrectly formed cs-gpios property */
2417 	if (nb == 0 || nb == -ENOENT)
2418 		return 0;
2419 	else if (nb < 0)
2420 		return nb;
2421 
2422 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2423 			  GFP_KERNEL);
2424 	ctlr->cs_gpios = cs;
2425 
2426 	if (!ctlr->cs_gpios)
2427 		return -ENOMEM;
2428 
2429 	for (i = 0; i < ctlr->num_chipselect; i++)
2430 		cs[i] = -ENOENT;
2431 
2432 	for (i = 0; i < nb; i++)
2433 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2434 
2435 	return 0;
2436 }
2437 #else
2438 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2439 {
2440 	return 0;
2441 }
2442 #endif
2443 
2444 /**
2445  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2446  * @ctlr: The SPI master to grab GPIO descriptors for
2447  */
2448 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2449 {
2450 	int nb, i;
2451 	struct gpio_desc **cs;
2452 	struct device *dev = &ctlr->dev;
2453 	unsigned long native_cs_mask = 0;
2454 	unsigned int num_cs_gpios = 0;
2455 
2456 	nb = gpiod_count(dev, "cs");
2457 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2458 
2459 	/* No GPIOs at all is fine, else return the error */
2460 	if (nb == 0 || nb == -ENOENT)
2461 		return 0;
2462 	else if (nb < 0)
2463 		return nb;
2464 
2465 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2466 			  GFP_KERNEL);
2467 	if (!cs)
2468 		return -ENOMEM;
2469 	ctlr->cs_gpiods = cs;
2470 
2471 	for (i = 0; i < nb; i++) {
2472 		/*
2473 		 * Most chipselects are active low, the inverted
2474 		 * semantics are handled by special quirks in gpiolib,
2475 		 * so initializing them GPIOD_OUT_LOW here means
2476 		 * "unasserted", in most cases this will drive the physical
2477 		 * line high.
2478 		 */
2479 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2480 						      GPIOD_OUT_LOW);
2481 		if (IS_ERR(cs[i]))
2482 			return PTR_ERR(cs[i]);
2483 
2484 		if (cs[i]) {
2485 			/*
2486 			 * If we find a CS GPIO, name it after the device and
2487 			 * chip select line.
2488 			 */
2489 			char *gpioname;
2490 
2491 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2492 						  dev_name(dev), i);
2493 			if (!gpioname)
2494 				return -ENOMEM;
2495 			gpiod_set_consumer_name(cs[i], gpioname);
2496 			num_cs_gpios++;
2497 			continue;
2498 		}
2499 
2500 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2501 			dev_err(dev, "Invalid native chip select %d\n", i);
2502 			return -EINVAL;
2503 		}
2504 		native_cs_mask |= BIT(i);
2505 	}
2506 
2507 	ctlr->unused_native_cs = ffz(native_cs_mask);
2508 	if (num_cs_gpios && ctlr->max_native_cs &&
2509 	    ctlr->unused_native_cs >= ctlr->max_native_cs) {
2510 		dev_err(dev, "No unused native chip select available\n");
2511 		return -EINVAL;
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 static int spi_controller_check_ops(struct spi_controller *ctlr)
2518 {
2519 	/*
2520 	 * The controller may implement only the high-level SPI-memory like
2521 	 * operations if it does not support regular SPI transfers, and this is
2522 	 * valid use case.
2523 	 * If ->mem_ops is NULL, we request that at least one of the
2524 	 * ->transfer_xxx() method be implemented.
2525 	 */
2526 	if (ctlr->mem_ops) {
2527 		if (!ctlr->mem_ops->exec_op)
2528 			return -EINVAL;
2529 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2530 		   !ctlr->transfer_one_message) {
2531 		return -EINVAL;
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 /**
2538  * spi_register_controller - register SPI master or slave controller
2539  * @ctlr: initialized master, originally from spi_alloc_master() or
2540  *	spi_alloc_slave()
2541  * Context: can sleep
2542  *
2543  * SPI controllers connect to their drivers using some non-SPI bus,
2544  * such as the platform bus.  The final stage of probe() in that code
2545  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2546  *
2547  * SPI controllers use board specific (often SOC specific) bus numbers,
2548  * and board-specific addressing for SPI devices combines those numbers
2549  * with chip select numbers.  Since SPI does not directly support dynamic
2550  * device identification, boards need configuration tables telling which
2551  * chip is at which address.
2552  *
2553  * This must be called from context that can sleep.  It returns zero on
2554  * success, else a negative error code (dropping the controller's refcount).
2555  * After a successful return, the caller is responsible for calling
2556  * spi_unregister_controller().
2557  *
2558  * Return: zero on success, else a negative error code.
2559  */
2560 int spi_register_controller(struct spi_controller *ctlr)
2561 {
2562 	struct device		*dev = ctlr->dev.parent;
2563 	struct boardinfo	*bi;
2564 	int			status;
2565 	int			id, first_dynamic;
2566 
2567 	if (!dev)
2568 		return -ENODEV;
2569 
2570 	/*
2571 	 * Make sure all necessary hooks are implemented before registering
2572 	 * the SPI controller.
2573 	 */
2574 	status = spi_controller_check_ops(ctlr);
2575 	if (status)
2576 		return status;
2577 
2578 	if (ctlr->bus_num >= 0) {
2579 		/* devices with a fixed bus num must check-in with the num */
2580 		mutex_lock(&board_lock);
2581 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2582 			ctlr->bus_num + 1, GFP_KERNEL);
2583 		mutex_unlock(&board_lock);
2584 		if (WARN(id < 0, "couldn't get idr"))
2585 			return id == -ENOSPC ? -EBUSY : id;
2586 		ctlr->bus_num = id;
2587 	} else if (ctlr->dev.of_node) {
2588 		/* allocate dynamic bus number using Linux idr */
2589 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2590 		if (id >= 0) {
2591 			ctlr->bus_num = id;
2592 			mutex_lock(&board_lock);
2593 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2594 				       ctlr->bus_num + 1, GFP_KERNEL);
2595 			mutex_unlock(&board_lock);
2596 			if (WARN(id < 0, "couldn't get idr"))
2597 				return id == -ENOSPC ? -EBUSY : id;
2598 		}
2599 	}
2600 	if (ctlr->bus_num < 0) {
2601 		first_dynamic = of_alias_get_highest_id("spi");
2602 		if (first_dynamic < 0)
2603 			first_dynamic = 0;
2604 		else
2605 			first_dynamic++;
2606 
2607 		mutex_lock(&board_lock);
2608 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2609 			       0, GFP_KERNEL);
2610 		mutex_unlock(&board_lock);
2611 		if (WARN(id < 0, "couldn't get idr"))
2612 			return id;
2613 		ctlr->bus_num = id;
2614 	}
2615 	INIT_LIST_HEAD(&ctlr->queue);
2616 	spin_lock_init(&ctlr->queue_lock);
2617 	spin_lock_init(&ctlr->bus_lock_spinlock);
2618 	mutex_init(&ctlr->bus_lock_mutex);
2619 	mutex_init(&ctlr->io_mutex);
2620 	ctlr->bus_lock_flag = 0;
2621 	init_completion(&ctlr->xfer_completion);
2622 	if (!ctlr->max_dma_len)
2623 		ctlr->max_dma_len = INT_MAX;
2624 
2625 	/* register the device, then userspace will see it.
2626 	 * registration fails if the bus ID is in use.
2627 	 */
2628 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2629 
2630 	if (!spi_controller_is_slave(ctlr)) {
2631 		if (ctlr->use_gpio_descriptors) {
2632 			status = spi_get_gpio_descs(ctlr);
2633 			if (status)
2634 				goto free_bus_id;
2635 			/*
2636 			 * A controller using GPIO descriptors always
2637 			 * supports SPI_CS_HIGH if need be.
2638 			 */
2639 			ctlr->mode_bits |= SPI_CS_HIGH;
2640 		} else {
2641 			/* Legacy code path for GPIOs from DT */
2642 			status = of_spi_get_gpio_numbers(ctlr);
2643 			if (status)
2644 				goto free_bus_id;
2645 		}
2646 	}
2647 
2648 	/*
2649 	 * Even if it's just one always-selected device, there must
2650 	 * be at least one chipselect.
2651 	 */
2652 	if (!ctlr->num_chipselect) {
2653 		status = -EINVAL;
2654 		goto free_bus_id;
2655 	}
2656 
2657 	status = device_add(&ctlr->dev);
2658 	if (status < 0)
2659 		goto free_bus_id;
2660 	dev_dbg(dev, "registered %s %s\n",
2661 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2662 			dev_name(&ctlr->dev));
2663 
2664 	/*
2665 	 * If we're using a queued driver, start the queue. Note that we don't
2666 	 * need the queueing logic if the driver is only supporting high-level
2667 	 * memory operations.
2668 	 */
2669 	if (ctlr->transfer) {
2670 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2671 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2672 		status = spi_controller_initialize_queue(ctlr);
2673 		if (status) {
2674 			device_del(&ctlr->dev);
2675 			goto free_bus_id;
2676 		}
2677 	}
2678 	/* add statistics */
2679 	spin_lock_init(&ctlr->statistics.lock);
2680 
2681 	mutex_lock(&board_lock);
2682 	list_add_tail(&ctlr->list, &spi_controller_list);
2683 	list_for_each_entry(bi, &board_list, list)
2684 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2685 	mutex_unlock(&board_lock);
2686 
2687 	/* Register devices from the device tree and ACPI */
2688 	of_register_spi_devices(ctlr);
2689 	acpi_register_spi_devices(ctlr);
2690 	return status;
2691 
2692 free_bus_id:
2693 	mutex_lock(&board_lock);
2694 	idr_remove(&spi_master_idr, ctlr->bus_num);
2695 	mutex_unlock(&board_lock);
2696 	return status;
2697 }
2698 EXPORT_SYMBOL_GPL(spi_register_controller);
2699 
2700 static void devm_spi_unregister(struct device *dev, void *res)
2701 {
2702 	spi_unregister_controller(*(struct spi_controller **)res);
2703 }
2704 
2705 /**
2706  * devm_spi_register_controller - register managed SPI master or slave
2707  *	controller
2708  * @dev:    device managing SPI controller
2709  * @ctlr: initialized controller, originally from spi_alloc_master() or
2710  *	spi_alloc_slave()
2711  * Context: can sleep
2712  *
2713  * Register a SPI device as with spi_register_controller() which will
2714  * automatically be unregistered and freed.
2715  *
2716  * Return: zero on success, else a negative error code.
2717  */
2718 int devm_spi_register_controller(struct device *dev,
2719 				 struct spi_controller *ctlr)
2720 {
2721 	struct spi_controller **ptr;
2722 	int ret;
2723 
2724 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2725 	if (!ptr)
2726 		return -ENOMEM;
2727 
2728 	ret = spi_register_controller(ctlr);
2729 	if (!ret) {
2730 		*ptr = ctlr;
2731 		devres_add(dev, ptr);
2732 	} else {
2733 		devres_free(ptr);
2734 	}
2735 
2736 	return ret;
2737 }
2738 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2739 
2740 static int __unregister(struct device *dev, void *null)
2741 {
2742 	spi_unregister_device(to_spi_device(dev));
2743 	return 0;
2744 }
2745 
2746 /**
2747  * spi_unregister_controller - unregister SPI master or slave controller
2748  * @ctlr: the controller being unregistered
2749  * Context: can sleep
2750  *
2751  * This call is used only by SPI controller drivers, which are the
2752  * only ones directly touching chip registers.
2753  *
2754  * This must be called from context that can sleep.
2755  *
2756  * Note that this function also drops a reference to the controller.
2757  */
2758 void spi_unregister_controller(struct spi_controller *ctlr)
2759 {
2760 	struct spi_controller *found;
2761 	int id = ctlr->bus_num;
2762 
2763 	/* First make sure that this controller was ever added */
2764 	mutex_lock(&board_lock);
2765 	found = idr_find(&spi_master_idr, id);
2766 	mutex_unlock(&board_lock);
2767 	if (ctlr->queued) {
2768 		if (spi_destroy_queue(ctlr))
2769 			dev_err(&ctlr->dev, "queue remove failed\n");
2770 	}
2771 	mutex_lock(&board_lock);
2772 	list_del(&ctlr->list);
2773 	mutex_unlock(&board_lock);
2774 
2775 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2776 	device_unregister(&ctlr->dev);
2777 	/* free bus id */
2778 	mutex_lock(&board_lock);
2779 	if (found == ctlr)
2780 		idr_remove(&spi_master_idr, id);
2781 	mutex_unlock(&board_lock);
2782 }
2783 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2784 
2785 int spi_controller_suspend(struct spi_controller *ctlr)
2786 {
2787 	int ret;
2788 
2789 	/* Basically no-ops for non-queued controllers */
2790 	if (!ctlr->queued)
2791 		return 0;
2792 
2793 	ret = spi_stop_queue(ctlr);
2794 	if (ret)
2795 		dev_err(&ctlr->dev, "queue stop failed\n");
2796 
2797 	return ret;
2798 }
2799 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2800 
2801 int spi_controller_resume(struct spi_controller *ctlr)
2802 {
2803 	int ret;
2804 
2805 	if (!ctlr->queued)
2806 		return 0;
2807 
2808 	ret = spi_start_queue(ctlr);
2809 	if (ret)
2810 		dev_err(&ctlr->dev, "queue restart failed\n");
2811 
2812 	return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(spi_controller_resume);
2815 
2816 static int __spi_controller_match(struct device *dev, const void *data)
2817 {
2818 	struct spi_controller *ctlr;
2819 	const u16 *bus_num = data;
2820 
2821 	ctlr = container_of(dev, struct spi_controller, dev);
2822 	return ctlr->bus_num == *bus_num;
2823 }
2824 
2825 /**
2826  * spi_busnum_to_master - look up master associated with bus_num
2827  * @bus_num: the master's bus number
2828  * Context: can sleep
2829  *
2830  * This call may be used with devices that are registered after
2831  * arch init time.  It returns a refcounted pointer to the relevant
2832  * spi_controller (which the caller must release), or NULL if there is
2833  * no such master registered.
2834  *
2835  * Return: the SPI master structure on success, else NULL.
2836  */
2837 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2838 {
2839 	struct device		*dev;
2840 	struct spi_controller	*ctlr = NULL;
2841 
2842 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2843 				__spi_controller_match);
2844 	if (dev)
2845 		ctlr = container_of(dev, struct spi_controller, dev);
2846 	/* reference got in class_find_device */
2847 	return ctlr;
2848 }
2849 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2850 
2851 /*-------------------------------------------------------------------------*/
2852 
2853 /* Core methods for SPI resource management */
2854 
2855 /**
2856  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2857  *                 during the processing of a spi_message while using
2858  *                 spi_transfer_one
2859  * @spi:     the spi device for which we allocate memory
2860  * @release: the release code to execute for this resource
2861  * @size:    size to alloc and return
2862  * @gfp:     GFP allocation flags
2863  *
2864  * Return: the pointer to the allocated data
2865  *
2866  * This may get enhanced in the future to allocate from a memory pool
2867  * of the @spi_device or @spi_controller to avoid repeated allocations.
2868  */
2869 void *spi_res_alloc(struct spi_device *spi,
2870 		    spi_res_release_t release,
2871 		    size_t size, gfp_t gfp)
2872 {
2873 	struct spi_res *sres;
2874 
2875 	sres = kzalloc(sizeof(*sres) + size, gfp);
2876 	if (!sres)
2877 		return NULL;
2878 
2879 	INIT_LIST_HEAD(&sres->entry);
2880 	sres->release = release;
2881 
2882 	return sres->data;
2883 }
2884 EXPORT_SYMBOL_GPL(spi_res_alloc);
2885 
2886 /**
2887  * spi_res_free - free an spi resource
2888  * @res: pointer to the custom data of a resource
2889  *
2890  */
2891 void spi_res_free(void *res)
2892 {
2893 	struct spi_res *sres = container_of(res, struct spi_res, data);
2894 
2895 	if (!res)
2896 		return;
2897 
2898 	WARN_ON(!list_empty(&sres->entry));
2899 	kfree(sres);
2900 }
2901 EXPORT_SYMBOL_GPL(spi_res_free);
2902 
2903 /**
2904  * spi_res_add - add a spi_res to the spi_message
2905  * @message: the spi message
2906  * @res:     the spi_resource
2907  */
2908 void spi_res_add(struct spi_message *message, void *res)
2909 {
2910 	struct spi_res *sres = container_of(res, struct spi_res, data);
2911 
2912 	WARN_ON(!list_empty(&sres->entry));
2913 	list_add_tail(&sres->entry, &message->resources);
2914 }
2915 EXPORT_SYMBOL_GPL(spi_res_add);
2916 
2917 /**
2918  * spi_res_release - release all spi resources for this message
2919  * @ctlr:  the @spi_controller
2920  * @message: the @spi_message
2921  */
2922 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2923 {
2924 	struct spi_res *res, *tmp;
2925 
2926 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2927 		if (res->release)
2928 			res->release(ctlr, message, res->data);
2929 
2930 		list_del(&res->entry);
2931 
2932 		kfree(res);
2933 	}
2934 }
2935 EXPORT_SYMBOL_GPL(spi_res_release);
2936 
2937 /*-------------------------------------------------------------------------*/
2938 
2939 /* Core methods for spi_message alterations */
2940 
2941 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2942 					    struct spi_message *msg,
2943 					    void *res)
2944 {
2945 	struct spi_replaced_transfers *rxfer = res;
2946 	size_t i;
2947 
2948 	/* call extra callback if requested */
2949 	if (rxfer->release)
2950 		rxfer->release(ctlr, msg, res);
2951 
2952 	/* insert replaced transfers back into the message */
2953 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2954 
2955 	/* remove the formerly inserted entries */
2956 	for (i = 0; i < rxfer->inserted; i++)
2957 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2958 }
2959 
2960 /**
2961  * spi_replace_transfers - replace transfers with several transfers
2962  *                         and register change with spi_message.resources
2963  * @msg:           the spi_message we work upon
2964  * @xfer_first:    the first spi_transfer we want to replace
2965  * @remove:        number of transfers to remove
2966  * @insert:        the number of transfers we want to insert instead
2967  * @release:       extra release code necessary in some circumstances
2968  * @extradatasize: extra data to allocate (with alignment guarantees
2969  *                 of struct @spi_transfer)
2970  * @gfp:           gfp flags
2971  *
2972  * Returns: pointer to @spi_replaced_transfers,
2973  *          PTR_ERR(...) in case of errors.
2974  */
2975 struct spi_replaced_transfers *spi_replace_transfers(
2976 	struct spi_message *msg,
2977 	struct spi_transfer *xfer_first,
2978 	size_t remove,
2979 	size_t insert,
2980 	spi_replaced_release_t release,
2981 	size_t extradatasize,
2982 	gfp_t gfp)
2983 {
2984 	struct spi_replaced_transfers *rxfer;
2985 	struct spi_transfer *xfer;
2986 	size_t i;
2987 
2988 	/* allocate the structure using spi_res */
2989 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2990 			      struct_size(rxfer, inserted_transfers, insert)
2991 			      + extradatasize,
2992 			      gfp);
2993 	if (!rxfer)
2994 		return ERR_PTR(-ENOMEM);
2995 
2996 	/* the release code to invoke before running the generic release */
2997 	rxfer->release = release;
2998 
2999 	/* assign extradata */
3000 	if (extradatasize)
3001 		rxfer->extradata =
3002 			&rxfer->inserted_transfers[insert];
3003 
3004 	/* init the replaced_transfers list */
3005 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3006 
3007 	/* assign the list_entry after which we should reinsert
3008 	 * the @replaced_transfers - it may be spi_message.messages!
3009 	 */
3010 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3011 
3012 	/* remove the requested number of transfers */
3013 	for (i = 0; i < remove; i++) {
3014 		/* if the entry after replaced_after it is msg->transfers
3015 		 * then we have been requested to remove more transfers
3016 		 * than are in the list
3017 		 */
3018 		if (rxfer->replaced_after->next == &msg->transfers) {
3019 			dev_err(&msg->spi->dev,
3020 				"requested to remove more spi_transfers than are available\n");
3021 			/* insert replaced transfers back into the message */
3022 			list_splice(&rxfer->replaced_transfers,
3023 				    rxfer->replaced_after);
3024 
3025 			/* free the spi_replace_transfer structure */
3026 			spi_res_free(rxfer);
3027 
3028 			/* and return with an error */
3029 			return ERR_PTR(-EINVAL);
3030 		}
3031 
3032 		/* remove the entry after replaced_after from list of
3033 		 * transfers and add it to list of replaced_transfers
3034 		 */
3035 		list_move_tail(rxfer->replaced_after->next,
3036 			       &rxfer->replaced_transfers);
3037 	}
3038 
3039 	/* create copy of the given xfer with identical settings
3040 	 * based on the first transfer to get removed
3041 	 */
3042 	for (i = 0; i < insert; i++) {
3043 		/* we need to run in reverse order */
3044 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3045 
3046 		/* copy all spi_transfer data */
3047 		memcpy(xfer, xfer_first, sizeof(*xfer));
3048 
3049 		/* add to list */
3050 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3051 
3052 		/* clear cs_change and delay for all but the last */
3053 		if (i) {
3054 			xfer->cs_change = false;
3055 			xfer->delay_usecs = 0;
3056 			xfer->delay.value = 0;
3057 		}
3058 	}
3059 
3060 	/* set up inserted */
3061 	rxfer->inserted = insert;
3062 
3063 	/* and register it with spi_res/spi_message */
3064 	spi_res_add(msg, rxfer);
3065 
3066 	return rxfer;
3067 }
3068 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3069 
3070 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3071 					struct spi_message *msg,
3072 					struct spi_transfer **xferp,
3073 					size_t maxsize,
3074 					gfp_t gfp)
3075 {
3076 	struct spi_transfer *xfer = *xferp, *xfers;
3077 	struct spi_replaced_transfers *srt;
3078 	size_t offset;
3079 	size_t count, i;
3080 
3081 	/* calculate how many we have to replace */
3082 	count = DIV_ROUND_UP(xfer->len, maxsize);
3083 
3084 	/* create replacement */
3085 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3086 	if (IS_ERR(srt))
3087 		return PTR_ERR(srt);
3088 	xfers = srt->inserted_transfers;
3089 
3090 	/* now handle each of those newly inserted spi_transfers
3091 	 * note that the replacements spi_transfers all are preset
3092 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3093 	 * are all identical (as well as most others)
3094 	 * so we just have to fix up len and the pointers.
3095 	 *
3096 	 * this also includes support for the depreciated
3097 	 * spi_message.is_dma_mapped interface
3098 	 */
3099 
3100 	/* the first transfer just needs the length modified, so we
3101 	 * run it outside the loop
3102 	 */
3103 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3104 
3105 	/* all the others need rx_buf/tx_buf also set */
3106 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3107 		/* update rx_buf, tx_buf and dma */
3108 		if (xfers[i].rx_buf)
3109 			xfers[i].rx_buf += offset;
3110 		if (xfers[i].rx_dma)
3111 			xfers[i].rx_dma += offset;
3112 		if (xfers[i].tx_buf)
3113 			xfers[i].tx_buf += offset;
3114 		if (xfers[i].tx_dma)
3115 			xfers[i].tx_dma += offset;
3116 
3117 		/* update length */
3118 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3119 	}
3120 
3121 	/* we set up xferp to the last entry we have inserted,
3122 	 * so that we skip those already split transfers
3123 	 */
3124 	*xferp = &xfers[count - 1];
3125 
3126 	/* increment statistics counters */
3127 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3128 				       transfers_split_maxsize);
3129 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3130 				       transfers_split_maxsize);
3131 
3132 	return 0;
3133 }
3134 
3135 /**
3136  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3137  *                              when an individual transfer exceeds a
3138  *                              certain size
3139  * @ctlr:    the @spi_controller for this transfer
3140  * @msg:   the @spi_message to transform
3141  * @maxsize:  the maximum when to apply this
3142  * @gfp: GFP allocation flags
3143  *
3144  * Return: status of transformation
3145  */
3146 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3147 				struct spi_message *msg,
3148 				size_t maxsize,
3149 				gfp_t gfp)
3150 {
3151 	struct spi_transfer *xfer;
3152 	int ret;
3153 
3154 	/* iterate over the transfer_list,
3155 	 * but note that xfer is advanced to the last transfer inserted
3156 	 * to avoid checking sizes again unnecessarily (also xfer does
3157 	 * potentiall belong to a different list by the time the
3158 	 * replacement has happened
3159 	 */
3160 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3161 		if (xfer->len > maxsize) {
3162 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3163 							   maxsize, gfp);
3164 			if (ret)
3165 				return ret;
3166 		}
3167 	}
3168 
3169 	return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3172 
3173 /*-------------------------------------------------------------------------*/
3174 
3175 /* Core methods for SPI controller protocol drivers.  Some of the
3176  * other core methods are currently defined as inline functions.
3177  */
3178 
3179 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3180 					u8 bits_per_word)
3181 {
3182 	if (ctlr->bits_per_word_mask) {
3183 		/* Only 32 bits fit in the mask */
3184 		if (bits_per_word > 32)
3185 			return -EINVAL;
3186 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3187 			return -EINVAL;
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 /**
3194  * spi_setup - setup SPI mode and clock rate
3195  * @spi: the device whose settings are being modified
3196  * Context: can sleep, and no requests are queued to the device
3197  *
3198  * SPI protocol drivers may need to update the transfer mode if the
3199  * device doesn't work with its default.  They may likewise need
3200  * to update clock rates or word sizes from initial values.  This function
3201  * changes those settings, and must be called from a context that can sleep.
3202  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3203  * effect the next time the device is selected and data is transferred to
3204  * or from it.  When this function returns, the spi device is deselected.
3205  *
3206  * Note that this call will fail if the protocol driver specifies an option
3207  * that the underlying controller or its driver does not support.  For
3208  * example, not all hardware supports wire transfers using nine bit words,
3209  * LSB-first wire encoding, or active-high chipselects.
3210  *
3211  * Return: zero on success, else a negative error code.
3212  */
3213 int spi_setup(struct spi_device *spi)
3214 {
3215 	unsigned	bad_bits, ugly_bits;
3216 	int		status;
3217 
3218 	/* check mode to prevent that DUAL and QUAD set at the same time
3219 	 */
3220 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3221 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3222 		dev_err(&spi->dev,
3223 		"setup: can not select dual and quad at the same time\n");
3224 		return -EINVAL;
3225 	}
3226 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3227 	 */
3228 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3229 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3230 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3231 		return -EINVAL;
3232 	/* help drivers fail *cleanly* when they need options
3233 	 * that aren't supported with their current controller
3234 	 * SPI_CS_WORD has a fallback software implementation,
3235 	 * so it is ignored here.
3236 	 */
3237 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3238 	/* nothing prevents from working with active-high CS in case if it
3239 	 * is driven by GPIO.
3240 	 */
3241 	if (gpio_is_valid(spi->cs_gpio))
3242 		bad_bits &= ~SPI_CS_HIGH;
3243 	ugly_bits = bad_bits &
3244 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3245 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3246 	if (ugly_bits) {
3247 		dev_warn(&spi->dev,
3248 			 "setup: ignoring unsupported mode bits %x\n",
3249 			 ugly_bits);
3250 		spi->mode &= ~ugly_bits;
3251 		bad_bits &= ~ugly_bits;
3252 	}
3253 	if (bad_bits) {
3254 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3255 			bad_bits);
3256 		return -EINVAL;
3257 	}
3258 
3259 	if (!spi->bits_per_word)
3260 		spi->bits_per_word = 8;
3261 
3262 	status = __spi_validate_bits_per_word(spi->controller,
3263 					      spi->bits_per_word);
3264 	if (status)
3265 		return status;
3266 
3267 	if (!spi->max_speed_hz)
3268 		spi->max_speed_hz = spi->controller->max_speed_hz;
3269 
3270 	if (spi->controller->setup)
3271 		status = spi->controller->setup(spi);
3272 
3273 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3274 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3275 		if (status < 0) {
3276 			pm_runtime_put_noidle(spi->controller->dev.parent);
3277 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3278 				status);
3279 			return status;
3280 		}
3281 
3282 		/*
3283 		 * We do not want to return positive value from pm_runtime_get,
3284 		 * there are many instances of devices calling spi_setup() and
3285 		 * checking for a non-zero return value instead of a negative
3286 		 * return value.
3287 		 */
3288 		status = 0;
3289 
3290 		spi_set_cs(spi, false);
3291 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3292 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3293 	} else {
3294 		spi_set_cs(spi, false);
3295 	}
3296 
3297 	if (spi->rt && !spi->controller->rt) {
3298 		spi->controller->rt = true;
3299 		spi_set_thread_rt(spi->controller);
3300 	}
3301 
3302 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3303 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3304 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3305 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3306 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3307 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3308 			spi->bits_per_word, spi->max_speed_hz,
3309 			status);
3310 
3311 	return status;
3312 }
3313 EXPORT_SYMBOL_GPL(spi_setup);
3314 
3315 /**
3316  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3317  * @spi: the device that requires specific CS timing configuration
3318  * @setup: CS setup time specified via @spi_delay
3319  * @hold: CS hold time specified via @spi_delay
3320  * @inactive: CS inactive delay between transfers specified via @spi_delay
3321  *
3322  * Return: zero on success, else a negative error code.
3323  */
3324 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3325 		      struct spi_delay *hold, struct spi_delay *inactive)
3326 {
3327 	size_t len;
3328 
3329 	if (spi->controller->set_cs_timing)
3330 		return spi->controller->set_cs_timing(spi, setup, hold,
3331 						      inactive);
3332 
3333 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3334 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3335 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3336 		dev_err(&spi->dev,
3337 			"Clock-cycle delays for CS not supported in SW mode\n");
3338 		return -ENOTSUPP;
3339 	}
3340 
3341 	len = sizeof(struct spi_delay);
3342 
3343 	/* copy delays to controller */
3344 	if (setup)
3345 		memcpy(&spi->controller->cs_setup, setup, len);
3346 	else
3347 		memset(&spi->controller->cs_setup, 0, len);
3348 
3349 	if (hold)
3350 		memcpy(&spi->controller->cs_hold, hold, len);
3351 	else
3352 		memset(&spi->controller->cs_hold, 0, len);
3353 
3354 	if (inactive)
3355 		memcpy(&spi->controller->cs_inactive, inactive, len);
3356 	else
3357 		memset(&spi->controller->cs_inactive, 0, len);
3358 
3359 	return 0;
3360 }
3361 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3362 
3363 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3364 				       struct spi_device *spi)
3365 {
3366 	int delay1, delay2;
3367 
3368 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3369 	if (delay1 < 0)
3370 		return delay1;
3371 
3372 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3373 	if (delay2 < 0)
3374 		return delay2;
3375 
3376 	if (delay1 < delay2)
3377 		memcpy(&xfer->word_delay, &spi->word_delay,
3378 		       sizeof(xfer->word_delay));
3379 
3380 	return 0;
3381 }
3382 
3383 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3384 {
3385 	struct spi_controller *ctlr = spi->controller;
3386 	struct spi_transfer *xfer;
3387 	int w_size;
3388 
3389 	if (list_empty(&message->transfers))
3390 		return -EINVAL;
3391 
3392 	/* If an SPI controller does not support toggling the CS line on each
3393 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3394 	 * for the CS line, we can emulate the CS-per-word hardware function by
3395 	 * splitting transfers into one-word transfers and ensuring that
3396 	 * cs_change is set for each transfer.
3397 	 */
3398 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3399 					  spi->cs_gpiod ||
3400 					  gpio_is_valid(spi->cs_gpio))) {
3401 		size_t maxsize;
3402 		int ret;
3403 
3404 		maxsize = (spi->bits_per_word + 7) / 8;
3405 
3406 		/* spi_split_transfers_maxsize() requires message->spi */
3407 		message->spi = spi;
3408 
3409 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3410 						  GFP_KERNEL);
3411 		if (ret)
3412 			return ret;
3413 
3414 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3415 			/* don't change cs_change on the last entry in the list */
3416 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3417 				break;
3418 			xfer->cs_change = 1;
3419 		}
3420 	}
3421 
3422 	/* Half-duplex links include original MicroWire, and ones with
3423 	 * only one data pin like SPI_3WIRE (switches direction) or where
3424 	 * either MOSI or MISO is missing.  They can also be caused by
3425 	 * software limitations.
3426 	 */
3427 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3428 	    (spi->mode & SPI_3WIRE)) {
3429 		unsigned flags = ctlr->flags;
3430 
3431 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3432 			if (xfer->rx_buf && xfer->tx_buf)
3433 				return -EINVAL;
3434 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3435 				return -EINVAL;
3436 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3437 				return -EINVAL;
3438 		}
3439 	}
3440 
3441 	/**
3442 	 * Set transfer bits_per_word and max speed as spi device default if
3443 	 * it is not set for this transfer.
3444 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3445 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3446 	 * Ensure transfer word_delay is at least as long as that required by
3447 	 * device itself.
3448 	 */
3449 	message->frame_length = 0;
3450 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3451 		xfer->effective_speed_hz = 0;
3452 		message->frame_length += xfer->len;
3453 		if (!xfer->bits_per_word)
3454 			xfer->bits_per_word = spi->bits_per_word;
3455 
3456 		if (!xfer->speed_hz)
3457 			xfer->speed_hz = spi->max_speed_hz;
3458 
3459 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3460 			xfer->speed_hz = ctlr->max_speed_hz;
3461 
3462 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3463 			return -EINVAL;
3464 
3465 		/*
3466 		 * SPI transfer length should be multiple of SPI word size
3467 		 * where SPI word size should be power-of-two multiple
3468 		 */
3469 		if (xfer->bits_per_word <= 8)
3470 			w_size = 1;
3471 		else if (xfer->bits_per_word <= 16)
3472 			w_size = 2;
3473 		else
3474 			w_size = 4;
3475 
3476 		/* No partial transfers accepted */
3477 		if (xfer->len % w_size)
3478 			return -EINVAL;
3479 
3480 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3481 		    xfer->speed_hz < ctlr->min_speed_hz)
3482 			return -EINVAL;
3483 
3484 		if (xfer->tx_buf && !xfer->tx_nbits)
3485 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3486 		if (xfer->rx_buf && !xfer->rx_nbits)
3487 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3488 		/* check transfer tx/rx_nbits:
3489 		 * 1. check the value matches one of single, dual and quad
3490 		 * 2. check tx/rx_nbits match the mode in spi_device
3491 		 */
3492 		if (xfer->tx_buf) {
3493 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3494 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3495 				xfer->tx_nbits != SPI_NBITS_QUAD)
3496 				return -EINVAL;
3497 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3498 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3499 				return -EINVAL;
3500 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3501 				!(spi->mode & SPI_TX_QUAD))
3502 				return -EINVAL;
3503 		}
3504 		/* check transfer rx_nbits */
3505 		if (xfer->rx_buf) {
3506 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3507 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3508 				xfer->rx_nbits != SPI_NBITS_QUAD)
3509 				return -EINVAL;
3510 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3511 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3512 				return -EINVAL;
3513 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3514 				!(spi->mode & SPI_RX_QUAD))
3515 				return -EINVAL;
3516 		}
3517 
3518 		if (_spi_xfer_word_delay_update(xfer, spi))
3519 			return -EINVAL;
3520 	}
3521 
3522 	message->status = -EINPROGRESS;
3523 
3524 	return 0;
3525 }
3526 
3527 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3528 {
3529 	struct spi_controller *ctlr = spi->controller;
3530 	struct spi_transfer *xfer;
3531 
3532 	/*
3533 	 * Some controllers do not support doing regular SPI transfers. Return
3534 	 * ENOTSUPP when this is the case.
3535 	 */
3536 	if (!ctlr->transfer)
3537 		return -ENOTSUPP;
3538 
3539 	message->spi = spi;
3540 
3541 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3542 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3543 
3544 	trace_spi_message_submit(message);
3545 
3546 	if (!ctlr->ptp_sts_supported) {
3547 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3548 			xfer->ptp_sts_word_pre = 0;
3549 			ptp_read_system_prets(xfer->ptp_sts);
3550 		}
3551 	}
3552 
3553 	return ctlr->transfer(spi, message);
3554 }
3555 
3556 /**
3557  * spi_async - asynchronous SPI transfer
3558  * @spi: device with which data will be exchanged
3559  * @message: describes the data transfers, including completion callback
3560  * Context: any (irqs may be blocked, etc)
3561  *
3562  * This call may be used in_irq and other contexts which can't sleep,
3563  * as well as from task contexts which can sleep.
3564  *
3565  * The completion callback is invoked in a context which can't sleep.
3566  * Before that invocation, the value of message->status is undefined.
3567  * When the callback is issued, message->status holds either zero (to
3568  * indicate complete success) or a negative error code.  After that
3569  * callback returns, the driver which issued the transfer request may
3570  * deallocate the associated memory; it's no longer in use by any SPI
3571  * core or controller driver code.
3572  *
3573  * Note that although all messages to a spi_device are handled in
3574  * FIFO order, messages may go to different devices in other orders.
3575  * Some device might be higher priority, or have various "hard" access
3576  * time requirements, for example.
3577  *
3578  * On detection of any fault during the transfer, processing of
3579  * the entire message is aborted, and the device is deselected.
3580  * Until returning from the associated message completion callback,
3581  * no other spi_message queued to that device will be processed.
3582  * (This rule applies equally to all the synchronous transfer calls,
3583  * which are wrappers around this core asynchronous primitive.)
3584  *
3585  * Return: zero on success, else a negative error code.
3586  */
3587 int spi_async(struct spi_device *spi, struct spi_message *message)
3588 {
3589 	struct spi_controller *ctlr = spi->controller;
3590 	int ret;
3591 	unsigned long flags;
3592 
3593 	ret = __spi_validate(spi, message);
3594 	if (ret != 0)
3595 		return ret;
3596 
3597 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3598 
3599 	if (ctlr->bus_lock_flag)
3600 		ret = -EBUSY;
3601 	else
3602 		ret = __spi_async(spi, message);
3603 
3604 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3605 
3606 	return ret;
3607 }
3608 EXPORT_SYMBOL_GPL(spi_async);
3609 
3610 /**
3611  * spi_async_locked - version of spi_async with exclusive bus usage
3612  * @spi: device with which data will be exchanged
3613  * @message: describes the data transfers, including completion callback
3614  * Context: any (irqs may be blocked, etc)
3615  *
3616  * This call may be used in_irq and other contexts which can't sleep,
3617  * as well as from task contexts which can sleep.
3618  *
3619  * The completion callback is invoked in a context which can't sleep.
3620  * Before that invocation, the value of message->status is undefined.
3621  * When the callback is issued, message->status holds either zero (to
3622  * indicate complete success) or a negative error code.  After that
3623  * callback returns, the driver which issued the transfer request may
3624  * deallocate the associated memory; it's no longer in use by any SPI
3625  * core or controller driver code.
3626  *
3627  * Note that although all messages to a spi_device are handled in
3628  * FIFO order, messages may go to different devices in other orders.
3629  * Some device might be higher priority, or have various "hard" access
3630  * time requirements, for example.
3631  *
3632  * On detection of any fault during the transfer, processing of
3633  * the entire message is aborted, and the device is deselected.
3634  * Until returning from the associated message completion callback,
3635  * no other spi_message queued to that device will be processed.
3636  * (This rule applies equally to all the synchronous transfer calls,
3637  * which are wrappers around this core asynchronous primitive.)
3638  *
3639  * Return: zero on success, else a negative error code.
3640  */
3641 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3642 {
3643 	struct spi_controller *ctlr = spi->controller;
3644 	int ret;
3645 	unsigned long flags;
3646 
3647 	ret = __spi_validate(spi, message);
3648 	if (ret != 0)
3649 		return ret;
3650 
3651 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3652 
3653 	ret = __spi_async(spi, message);
3654 
3655 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3656 
3657 	return ret;
3658 
3659 }
3660 EXPORT_SYMBOL_GPL(spi_async_locked);
3661 
3662 /*-------------------------------------------------------------------------*/
3663 
3664 /* Utility methods for SPI protocol drivers, layered on
3665  * top of the core.  Some other utility methods are defined as
3666  * inline functions.
3667  */
3668 
3669 static void spi_complete(void *arg)
3670 {
3671 	complete(arg);
3672 }
3673 
3674 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3675 {
3676 	DECLARE_COMPLETION_ONSTACK(done);
3677 	int status;
3678 	struct spi_controller *ctlr = spi->controller;
3679 	unsigned long flags;
3680 
3681 	status = __spi_validate(spi, message);
3682 	if (status != 0)
3683 		return status;
3684 
3685 	message->complete = spi_complete;
3686 	message->context = &done;
3687 	message->spi = spi;
3688 
3689 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3690 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3691 
3692 	/* If we're not using the legacy transfer method then we will
3693 	 * try to transfer in the calling context so special case.
3694 	 * This code would be less tricky if we could remove the
3695 	 * support for driver implemented message queues.
3696 	 */
3697 	if (ctlr->transfer == spi_queued_transfer) {
3698 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3699 
3700 		trace_spi_message_submit(message);
3701 
3702 		status = __spi_queued_transfer(spi, message, false);
3703 
3704 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3705 	} else {
3706 		status = spi_async_locked(spi, message);
3707 	}
3708 
3709 	if (status == 0) {
3710 		/* Push out the messages in the calling context if we
3711 		 * can.
3712 		 */
3713 		if (ctlr->transfer == spi_queued_transfer) {
3714 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3715 						       spi_sync_immediate);
3716 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3717 						       spi_sync_immediate);
3718 			__spi_pump_messages(ctlr, false);
3719 		}
3720 
3721 		wait_for_completion(&done);
3722 		status = message->status;
3723 	}
3724 	message->context = NULL;
3725 	return status;
3726 }
3727 
3728 /**
3729  * spi_sync - blocking/synchronous SPI data transfers
3730  * @spi: device with which data will be exchanged
3731  * @message: describes the data transfers
3732  * Context: can sleep
3733  *
3734  * This call may only be used from a context that may sleep.  The sleep
3735  * is non-interruptible, and has no timeout.  Low-overhead controller
3736  * drivers may DMA directly into and out of the message buffers.
3737  *
3738  * Note that the SPI device's chip select is active during the message,
3739  * and then is normally disabled between messages.  Drivers for some
3740  * frequently-used devices may want to minimize costs of selecting a chip,
3741  * by leaving it selected in anticipation that the next message will go
3742  * to the same chip.  (That may increase power usage.)
3743  *
3744  * Also, the caller is guaranteeing that the memory associated with the
3745  * message will not be freed before this call returns.
3746  *
3747  * Return: zero on success, else a negative error code.
3748  */
3749 int spi_sync(struct spi_device *spi, struct spi_message *message)
3750 {
3751 	int ret;
3752 
3753 	mutex_lock(&spi->controller->bus_lock_mutex);
3754 	ret = __spi_sync(spi, message);
3755 	mutex_unlock(&spi->controller->bus_lock_mutex);
3756 
3757 	return ret;
3758 }
3759 EXPORT_SYMBOL_GPL(spi_sync);
3760 
3761 /**
3762  * spi_sync_locked - version of spi_sync with exclusive bus usage
3763  * @spi: device with which data will be exchanged
3764  * @message: describes the data transfers
3765  * Context: can sleep
3766  *
3767  * This call may only be used from a context that may sleep.  The sleep
3768  * is non-interruptible, and has no timeout.  Low-overhead controller
3769  * drivers may DMA directly into and out of the message buffers.
3770  *
3771  * This call should be used by drivers that require exclusive access to the
3772  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3773  * be released by a spi_bus_unlock call when the exclusive access is over.
3774  *
3775  * Return: zero on success, else a negative error code.
3776  */
3777 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3778 {
3779 	return __spi_sync(spi, message);
3780 }
3781 EXPORT_SYMBOL_GPL(spi_sync_locked);
3782 
3783 /**
3784  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3785  * @ctlr: SPI bus master that should be locked for exclusive bus access
3786  * Context: can sleep
3787  *
3788  * This call may only be used from a context that may sleep.  The sleep
3789  * is non-interruptible, and has no timeout.
3790  *
3791  * This call should be used by drivers that require exclusive access to the
3792  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3793  * exclusive access is over. Data transfer must be done by spi_sync_locked
3794  * and spi_async_locked calls when the SPI bus lock is held.
3795  *
3796  * Return: always zero.
3797  */
3798 int spi_bus_lock(struct spi_controller *ctlr)
3799 {
3800 	unsigned long flags;
3801 
3802 	mutex_lock(&ctlr->bus_lock_mutex);
3803 
3804 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3805 	ctlr->bus_lock_flag = 1;
3806 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3807 
3808 	/* mutex remains locked until spi_bus_unlock is called */
3809 
3810 	return 0;
3811 }
3812 EXPORT_SYMBOL_GPL(spi_bus_lock);
3813 
3814 /**
3815  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3816  * @ctlr: SPI bus master that was locked for exclusive bus access
3817  * Context: can sleep
3818  *
3819  * This call may only be used from a context that may sleep.  The sleep
3820  * is non-interruptible, and has no timeout.
3821  *
3822  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3823  * call.
3824  *
3825  * Return: always zero.
3826  */
3827 int spi_bus_unlock(struct spi_controller *ctlr)
3828 {
3829 	ctlr->bus_lock_flag = 0;
3830 
3831 	mutex_unlock(&ctlr->bus_lock_mutex);
3832 
3833 	return 0;
3834 }
3835 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3836 
3837 /* portable code must never pass more than 32 bytes */
3838 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3839 
3840 static u8	*buf;
3841 
3842 /**
3843  * spi_write_then_read - SPI synchronous write followed by read
3844  * @spi: device with which data will be exchanged
3845  * @txbuf: data to be written (need not be dma-safe)
3846  * @n_tx: size of txbuf, in bytes
3847  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3848  * @n_rx: size of rxbuf, in bytes
3849  * Context: can sleep
3850  *
3851  * This performs a half duplex MicroWire style transaction with the
3852  * device, sending txbuf and then reading rxbuf.  The return value
3853  * is zero for success, else a negative errno status code.
3854  * This call may only be used from a context that may sleep.
3855  *
3856  * Parameters to this routine are always copied using a small buffer;
3857  * portable code should never use this for more than 32 bytes.
3858  * Performance-sensitive or bulk transfer code should instead use
3859  * spi_{async,sync}() calls with dma-safe buffers.
3860  *
3861  * Return: zero on success, else a negative error code.
3862  */
3863 int spi_write_then_read(struct spi_device *spi,
3864 		const void *txbuf, unsigned n_tx,
3865 		void *rxbuf, unsigned n_rx)
3866 {
3867 	static DEFINE_MUTEX(lock);
3868 
3869 	int			status;
3870 	struct spi_message	message;
3871 	struct spi_transfer	x[2];
3872 	u8			*local_buf;
3873 
3874 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3875 	 * copying here, (as a pure convenience thing), but we can
3876 	 * keep heap costs out of the hot path unless someone else is
3877 	 * using the pre-allocated buffer or the transfer is too large.
3878 	 */
3879 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3880 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3881 				    GFP_KERNEL | GFP_DMA);
3882 		if (!local_buf)
3883 			return -ENOMEM;
3884 	} else {
3885 		local_buf = buf;
3886 	}
3887 
3888 	spi_message_init(&message);
3889 	memset(x, 0, sizeof(x));
3890 	if (n_tx) {
3891 		x[0].len = n_tx;
3892 		spi_message_add_tail(&x[0], &message);
3893 	}
3894 	if (n_rx) {
3895 		x[1].len = n_rx;
3896 		spi_message_add_tail(&x[1], &message);
3897 	}
3898 
3899 	memcpy(local_buf, txbuf, n_tx);
3900 	x[0].tx_buf = local_buf;
3901 	x[1].rx_buf = local_buf + n_tx;
3902 
3903 	/* do the i/o */
3904 	status = spi_sync(spi, &message);
3905 	if (status == 0)
3906 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3907 
3908 	if (x[0].tx_buf == buf)
3909 		mutex_unlock(&lock);
3910 	else
3911 		kfree(local_buf);
3912 
3913 	return status;
3914 }
3915 EXPORT_SYMBOL_GPL(spi_write_then_read);
3916 
3917 /*-------------------------------------------------------------------------*/
3918 
3919 #if IS_ENABLED(CONFIG_OF)
3920 /* must call put_device() when done with returned spi_device device */
3921 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3922 {
3923 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3924 
3925 	return dev ? to_spi_device(dev) : NULL;
3926 }
3927 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3928 #endif /* IS_ENABLED(CONFIG_OF) */
3929 
3930 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3931 /* the spi controllers are not using spi_bus, so we find it with another way */
3932 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3933 {
3934 	struct device *dev;
3935 
3936 	dev = class_find_device_by_of_node(&spi_master_class, node);
3937 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3938 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3939 	if (!dev)
3940 		return NULL;
3941 
3942 	/* reference got in class_find_device */
3943 	return container_of(dev, struct spi_controller, dev);
3944 }
3945 
3946 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3947 			 void *arg)
3948 {
3949 	struct of_reconfig_data *rd = arg;
3950 	struct spi_controller *ctlr;
3951 	struct spi_device *spi;
3952 
3953 	switch (of_reconfig_get_state_change(action, arg)) {
3954 	case OF_RECONFIG_CHANGE_ADD:
3955 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3956 		if (ctlr == NULL)
3957 			return NOTIFY_OK;	/* not for us */
3958 
3959 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3960 			put_device(&ctlr->dev);
3961 			return NOTIFY_OK;
3962 		}
3963 
3964 		spi = of_register_spi_device(ctlr, rd->dn);
3965 		put_device(&ctlr->dev);
3966 
3967 		if (IS_ERR(spi)) {
3968 			pr_err("%s: failed to create for '%pOF'\n",
3969 					__func__, rd->dn);
3970 			of_node_clear_flag(rd->dn, OF_POPULATED);
3971 			return notifier_from_errno(PTR_ERR(spi));
3972 		}
3973 		break;
3974 
3975 	case OF_RECONFIG_CHANGE_REMOVE:
3976 		/* already depopulated? */
3977 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3978 			return NOTIFY_OK;
3979 
3980 		/* find our device by node */
3981 		spi = of_find_spi_device_by_node(rd->dn);
3982 		if (spi == NULL)
3983 			return NOTIFY_OK;	/* no? not meant for us */
3984 
3985 		/* unregister takes one ref away */
3986 		spi_unregister_device(spi);
3987 
3988 		/* and put the reference of the find */
3989 		put_device(&spi->dev);
3990 		break;
3991 	}
3992 
3993 	return NOTIFY_OK;
3994 }
3995 
3996 static struct notifier_block spi_of_notifier = {
3997 	.notifier_call = of_spi_notify,
3998 };
3999 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4000 extern struct notifier_block spi_of_notifier;
4001 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4002 
4003 #if IS_ENABLED(CONFIG_ACPI)
4004 static int spi_acpi_controller_match(struct device *dev, const void *data)
4005 {
4006 	return ACPI_COMPANION(dev->parent) == data;
4007 }
4008 
4009 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4010 {
4011 	struct device *dev;
4012 
4013 	dev = class_find_device(&spi_master_class, NULL, adev,
4014 				spi_acpi_controller_match);
4015 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4016 		dev = class_find_device(&spi_slave_class, NULL, adev,
4017 					spi_acpi_controller_match);
4018 	if (!dev)
4019 		return NULL;
4020 
4021 	return container_of(dev, struct spi_controller, dev);
4022 }
4023 
4024 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4025 {
4026 	struct device *dev;
4027 
4028 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4029 	return to_spi_device(dev);
4030 }
4031 
4032 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4033 			   void *arg)
4034 {
4035 	struct acpi_device *adev = arg;
4036 	struct spi_controller *ctlr;
4037 	struct spi_device *spi;
4038 
4039 	switch (value) {
4040 	case ACPI_RECONFIG_DEVICE_ADD:
4041 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4042 		if (!ctlr)
4043 			break;
4044 
4045 		acpi_register_spi_device(ctlr, adev);
4046 		put_device(&ctlr->dev);
4047 		break;
4048 	case ACPI_RECONFIG_DEVICE_REMOVE:
4049 		if (!acpi_device_enumerated(adev))
4050 			break;
4051 
4052 		spi = acpi_spi_find_device_by_adev(adev);
4053 		if (!spi)
4054 			break;
4055 
4056 		spi_unregister_device(spi);
4057 		put_device(&spi->dev);
4058 		break;
4059 	}
4060 
4061 	return NOTIFY_OK;
4062 }
4063 
4064 static struct notifier_block spi_acpi_notifier = {
4065 	.notifier_call = acpi_spi_notify,
4066 };
4067 #else
4068 extern struct notifier_block spi_acpi_notifier;
4069 #endif
4070 
4071 static int __init spi_init(void)
4072 {
4073 	int	status;
4074 
4075 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4076 	if (!buf) {
4077 		status = -ENOMEM;
4078 		goto err0;
4079 	}
4080 
4081 	status = bus_register(&spi_bus_type);
4082 	if (status < 0)
4083 		goto err1;
4084 
4085 	status = class_register(&spi_master_class);
4086 	if (status < 0)
4087 		goto err2;
4088 
4089 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4090 		status = class_register(&spi_slave_class);
4091 		if (status < 0)
4092 			goto err3;
4093 	}
4094 
4095 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4096 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4097 	if (IS_ENABLED(CONFIG_ACPI))
4098 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4099 
4100 	return 0;
4101 
4102 err3:
4103 	class_unregister(&spi_master_class);
4104 err2:
4105 	bus_unregister(&spi_bus_type);
4106 err1:
4107 	kfree(buf);
4108 	buf = NULL;
4109 err0:
4110 	return status;
4111 }
4112 
4113 /* board_info is normally registered in arch_initcall(),
4114  * but even essential drivers wait till later
4115  *
4116  * REVISIT only boardinfo really needs static linking. the rest (device and
4117  * driver registration) _could_ be dynamically linked (modular) ... costs
4118  * include needing to have boardinfo data structures be much more public.
4119  */
4120 postcore_initcall(spi_init);
4121