1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/of_gpio.h> 22 #include <linux/gpio/consumer.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/pm_domain.h> 25 #include <linux/property.h> 26 #include <linux/export.h> 27 #include <linux/sched/rt.h> 28 #include <uapi/linux/sched/types.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/ioport.h> 32 #include <linux/acpi.h> 33 #include <linux/highmem.h> 34 #include <linux/idr.h> 35 #include <linux/platform_data/x86/apple.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 /* spi controllers may cleanup for released devices */ 51 if (spi->controller->cleanup) 52 spi->controller->cleanup(spi); 53 54 spi_controller_put(spi->controller); 55 kfree(spi->driver_override); 56 kfree(spi); 57 } 58 59 static ssize_t 60 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 61 { 62 const struct spi_device *spi = to_spi_device(dev); 63 int len; 64 65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 66 if (len != -ENODEV) 67 return len; 68 69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 70 } 71 static DEVICE_ATTR_RO(modalias); 72 73 static ssize_t driver_override_store(struct device *dev, 74 struct device_attribute *a, 75 const char *buf, size_t count) 76 { 77 struct spi_device *spi = to_spi_device(dev); 78 const char *end = memchr(buf, '\n', count); 79 const size_t len = end ? end - buf : count; 80 const char *driver_override, *old; 81 82 /* We need to keep extra room for a newline when displaying value */ 83 if (len >= (PAGE_SIZE - 1)) 84 return -EINVAL; 85 86 driver_override = kstrndup(buf, len, GFP_KERNEL); 87 if (!driver_override) 88 return -ENOMEM; 89 90 device_lock(dev); 91 old = spi->driver_override; 92 if (len) { 93 spi->driver_override = driver_override; 94 } else { 95 /* Empty string, disable driver override */ 96 spi->driver_override = NULL; 97 kfree(driver_override); 98 } 99 device_unlock(dev); 100 kfree(old); 101 102 return count; 103 } 104 105 static ssize_t driver_override_show(struct device *dev, 106 struct device_attribute *a, char *buf) 107 { 108 const struct spi_device *spi = to_spi_device(dev); 109 ssize_t len; 110 111 device_lock(dev); 112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 113 device_unlock(dev); 114 return len; 115 } 116 static DEVICE_ATTR_RW(driver_override); 117 118 #define SPI_STATISTICS_ATTRS(field, file) \ 119 static ssize_t spi_controller_##field##_show(struct device *dev, \ 120 struct device_attribute *attr, \ 121 char *buf) \ 122 { \ 123 struct spi_controller *ctlr = container_of(dev, \ 124 struct spi_controller, dev); \ 125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 126 } \ 127 static struct device_attribute dev_attr_spi_controller_##field = { \ 128 .attr = { .name = file, .mode = 0444 }, \ 129 .show = spi_controller_##field##_show, \ 130 }; \ 131 static ssize_t spi_device_##field##_show(struct device *dev, \ 132 struct device_attribute *attr, \ 133 char *buf) \ 134 { \ 135 struct spi_device *spi = to_spi_device(dev); \ 136 return spi_statistics_##field##_show(&spi->statistics, buf); \ 137 } \ 138 static struct device_attribute dev_attr_spi_device_##field = { \ 139 .attr = { .name = file, .mode = 0444 }, \ 140 .show = spi_device_##field##_show, \ 141 } 142 143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 145 char *buf) \ 146 { \ 147 unsigned long flags; \ 148 ssize_t len; \ 149 spin_lock_irqsave(&stat->lock, flags); \ 150 len = sprintf(buf, format_string, stat->field); \ 151 spin_unlock_irqrestore(&stat->lock, flags); \ 152 return len; \ 153 } \ 154 SPI_STATISTICS_ATTRS(name, file) 155 156 #define SPI_STATISTICS_SHOW(field, format_string) \ 157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 158 field, format_string) 159 160 SPI_STATISTICS_SHOW(messages, "%lu"); 161 SPI_STATISTICS_SHOW(transfers, "%lu"); 162 SPI_STATISTICS_SHOW(errors, "%lu"); 163 SPI_STATISTICS_SHOW(timedout, "%lu"); 164 165 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 167 SPI_STATISTICS_SHOW(spi_async, "%lu"); 168 169 SPI_STATISTICS_SHOW(bytes, "%llu"); 170 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 171 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 172 173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 175 "transfer_bytes_histo_" number, \ 176 transfer_bytes_histo[index], "%lu") 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 194 195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 196 197 static struct attribute *spi_dev_attrs[] = { 198 &dev_attr_modalias.attr, 199 &dev_attr_driver_override.attr, 200 NULL, 201 }; 202 203 static const struct attribute_group spi_dev_group = { 204 .attrs = spi_dev_attrs, 205 }; 206 207 static struct attribute *spi_device_statistics_attrs[] = { 208 &dev_attr_spi_device_messages.attr, 209 &dev_attr_spi_device_transfers.attr, 210 &dev_attr_spi_device_errors.attr, 211 &dev_attr_spi_device_timedout.attr, 212 &dev_attr_spi_device_spi_sync.attr, 213 &dev_attr_spi_device_spi_sync_immediate.attr, 214 &dev_attr_spi_device_spi_async.attr, 215 &dev_attr_spi_device_bytes.attr, 216 &dev_attr_spi_device_bytes_rx.attr, 217 &dev_attr_spi_device_bytes_tx.attr, 218 &dev_attr_spi_device_transfer_bytes_histo0.attr, 219 &dev_attr_spi_device_transfer_bytes_histo1.attr, 220 &dev_attr_spi_device_transfer_bytes_histo2.attr, 221 &dev_attr_spi_device_transfer_bytes_histo3.attr, 222 &dev_attr_spi_device_transfer_bytes_histo4.attr, 223 &dev_attr_spi_device_transfer_bytes_histo5.attr, 224 &dev_attr_spi_device_transfer_bytes_histo6.attr, 225 &dev_attr_spi_device_transfer_bytes_histo7.attr, 226 &dev_attr_spi_device_transfer_bytes_histo8.attr, 227 &dev_attr_spi_device_transfer_bytes_histo9.attr, 228 &dev_attr_spi_device_transfer_bytes_histo10.attr, 229 &dev_attr_spi_device_transfer_bytes_histo11.attr, 230 &dev_attr_spi_device_transfer_bytes_histo12.attr, 231 &dev_attr_spi_device_transfer_bytes_histo13.attr, 232 &dev_attr_spi_device_transfer_bytes_histo14.attr, 233 &dev_attr_spi_device_transfer_bytes_histo15.attr, 234 &dev_attr_spi_device_transfer_bytes_histo16.attr, 235 &dev_attr_spi_device_transfers_split_maxsize.attr, 236 NULL, 237 }; 238 239 static const struct attribute_group spi_device_statistics_group = { 240 .name = "statistics", 241 .attrs = spi_device_statistics_attrs, 242 }; 243 244 static const struct attribute_group *spi_dev_groups[] = { 245 &spi_dev_group, 246 &spi_device_statistics_group, 247 NULL, 248 }; 249 250 static struct attribute *spi_controller_statistics_attrs[] = { 251 &dev_attr_spi_controller_messages.attr, 252 &dev_attr_spi_controller_transfers.attr, 253 &dev_attr_spi_controller_errors.attr, 254 &dev_attr_spi_controller_timedout.attr, 255 &dev_attr_spi_controller_spi_sync.attr, 256 &dev_attr_spi_controller_spi_sync_immediate.attr, 257 &dev_attr_spi_controller_spi_async.attr, 258 &dev_attr_spi_controller_bytes.attr, 259 &dev_attr_spi_controller_bytes_rx.attr, 260 &dev_attr_spi_controller_bytes_tx.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 274 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 275 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 276 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 277 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 278 &dev_attr_spi_controller_transfers_split_maxsize.attr, 279 NULL, 280 }; 281 282 static const struct attribute_group spi_controller_statistics_group = { 283 .name = "statistics", 284 .attrs = spi_controller_statistics_attrs, 285 }; 286 287 static const struct attribute_group *spi_master_groups[] = { 288 &spi_controller_statistics_group, 289 NULL, 290 }; 291 292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 293 struct spi_transfer *xfer, 294 struct spi_controller *ctlr) 295 { 296 unsigned long flags; 297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 298 299 if (l2len < 0) 300 l2len = 0; 301 302 spin_lock_irqsave(&stats->lock, flags); 303 304 stats->transfers++; 305 stats->transfer_bytes_histo[l2len]++; 306 307 stats->bytes += xfer->len; 308 if ((xfer->tx_buf) && 309 (xfer->tx_buf != ctlr->dummy_tx)) 310 stats->bytes_tx += xfer->len; 311 if ((xfer->rx_buf) && 312 (xfer->rx_buf != ctlr->dummy_rx)) 313 stats->bytes_rx += xfer->len; 314 315 spin_unlock_irqrestore(&stats->lock, flags); 316 } 317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 318 319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 320 * and the sysfs version makes coldplug work too. 321 */ 322 323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 324 const struct spi_device *sdev) 325 { 326 while (id->name[0]) { 327 if (!strcmp(sdev->modalias, id->name)) 328 return id; 329 id++; 330 } 331 return NULL; 332 } 333 334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 337 338 return spi_match_id(sdrv->id_table, sdev); 339 } 340 EXPORT_SYMBOL_GPL(spi_get_device_id); 341 342 static int spi_match_device(struct device *dev, struct device_driver *drv) 343 { 344 const struct spi_device *spi = to_spi_device(dev); 345 const struct spi_driver *sdrv = to_spi_driver(drv); 346 347 /* Check override first, and if set, only use the named driver */ 348 if (spi->driver_override) 349 return strcmp(spi->driver_override, drv->name) == 0; 350 351 /* Attempt an OF style match */ 352 if (of_driver_match_device(dev, drv)) 353 return 1; 354 355 /* Then try ACPI */ 356 if (acpi_driver_match_device(dev, drv)) 357 return 1; 358 359 if (sdrv->id_table) 360 return !!spi_match_id(sdrv->id_table, spi); 361 362 return strcmp(spi->modalias, drv->name) == 0; 363 } 364 365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 366 { 367 const struct spi_device *spi = to_spi_device(dev); 368 int rc; 369 370 rc = acpi_device_uevent_modalias(dev, env); 371 if (rc != -ENODEV) 372 return rc; 373 374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 375 } 376 377 struct bus_type spi_bus_type = { 378 .name = "spi", 379 .dev_groups = spi_dev_groups, 380 .match = spi_match_device, 381 .uevent = spi_uevent, 382 }; 383 EXPORT_SYMBOL_GPL(spi_bus_type); 384 385 386 static int spi_drv_probe(struct device *dev) 387 { 388 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 389 struct spi_device *spi = to_spi_device(dev); 390 int ret; 391 392 ret = of_clk_set_defaults(dev->of_node, false); 393 if (ret) 394 return ret; 395 396 if (dev->of_node) { 397 spi->irq = of_irq_get(dev->of_node, 0); 398 if (spi->irq == -EPROBE_DEFER) 399 return -EPROBE_DEFER; 400 if (spi->irq < 0) 401 spi->irq = 0; 402 } 403 404 ret = dev_pm_domain_attach(dev, true); 405 if (ret) 406 return ret; 407 408 ret = sdrv->probe(spi); 409 if (ret) 410 dev_pm_domain_detach(dev, true); 411 412 return ret; 413 } 414 415 static int spi_drv_remove(struct device *dev) 416 { 417 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 418 int ret; 419 420 ret = sdrv->remove(to_spi_device(dev)); 421 dev_pm_domain_detach(dev, true); 422 423 return ret; 424 } 425 426 static void spi_drv_shutdown(struct device *dev) 427 { 428 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 429 430 sdrv->shutdown(to_spi_device(dev)); 431 } 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 if (sdrv->probe) 446 sdrv->driver.probe = spi_drv_probe; 447 if (sdrv->remove) 448 sdrv->driver.remove = spi_drv_remove; 449 if (sdrv->shutdown) 450 sdrv->driver.shutdown = spi_drv_shutdown; 451 return driver_register(&sdrv->driver); 452 } 453 EXPORT_SYMBOL_GPL(__spi_register_driver); 454 455 /*-------------------------------------------------------------------------*/ 456 457 /* SPI devices should normally not be created by SPI device drivers; that 458 * would make them board-specific. Similarly with SPI controller drivers. 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c 460 * with other readonly (flashable) information about mainboard devices. 461 */ 462 463 struct boardinfo { 464 struct list_head list; 465 struct spi_board_info board_info; 466 }; 467 468 static LIST_HEAD(board_list); 469 static LIST_HEAD(spi_controller_list); 470 471 /* 472 * Used to protect add/del operation for board_info list and 473 * spi_controller list, and their matching process 474 * also used to protect object of type struct idr 475 */ 476 static DEFINE_MUTEX(board_lock); 477 478 /** 479 * spi_alloc_device - Allocate a new SPI device 480 * @ctlr: Controller to which device is connected 481 * Context: can sleep 482 * 483 * Allows a driver to allocate and initialize a spi_device without 484 * registering it immediately. This allows a driver to directly 485 * fill the spi_device with device parameters before calling 486 * spi_add_device() on it. 487 * 488 * Caller is responsible to call spi_add_device() on the returned 489 * spi_device structure to add it to the SPI controller. If the caller 490 * needs to discard the spi_device without adding it, then it should 491 * call spi_dev_put() on it. 492 * 493 * Return: a pointer to the new device, or NULL. 494 */ 495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 496 { 497 struct spi_device *spi; 498 499 if (!spi_controller_get(ctlr)) 500 return NULL; 501 502 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 503 if (!spi) { 504 spi_controller_put(ctlr); 505 return NULL; 506 } 507 508 spi->master = spi->controller = ctlr; 509 spi->dev.parent = &ctlr->dev; 510 spi->dev.bus = &spi_bus_type; 511 spi->dev.release = spidev_release; 512 spi->cs_gpio = -ENOENT; 513 spi->mode = ctlr->buswidth_override_bits; 514 515 spin_lock_init(&spi->statistics.lock); 516 517 device_initialize(&spi->dev); 518 return spi; 519 } 520 EXPORT_SYMBOL_GPL(spi_alloc_device); 521 522 static void spi_dev_set_name(struct spi_device *spi) 523 { 524 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 525 526 if (adev) { 527 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 528 return; 529 } 530 531 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 532 spi->chip_select); 533 } 534 535 static int spi_dev_check(struct device *dev, void *data) 536 { 537 struct spi_device *spi = to_spi_device(dev); 538 struct spi_device *new_spi = data; 539 540 if (spi->controller == new_spi->controller && 541 spi->chip_select == new_spi->chip_select) 542 return -EBUSY; 543 return 0; 544 } 545 546 /** 547 * spi_add_device - Add spi_device allocated with spi_alloc_device 548 * @spi: spi_device to register 549 * 550 * Companion function to spi_alloc_device. Devices allocated with 551 * spi_alloc_device can be added onto the spi bus with this function. 552 * 553 * Return: 0 on success; negative errno on failure 554 */ 555 int spi_add_device(struct spi_device *spi) 556 { 557 static DEFINE_MUTEX(spi_add_lock); 558 struct spi_controller *ctlr = spi->controller; 559 struct device *dev = ctlr->dev.parent; 560 int status; 561 562 /* Chipselects are numbered 0..max; validate. */ 563 if (spi->chip_select >= ctlr->num_chipselect) { 564 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 565 ctlr->num_chipselect); 566 return -EINVAL; 567 } 568 569 /* Set the bus ID string */ 570 spi_dev_set_name(spi); 571 572 /* We need to make sure there's no other device with this 573 * chipselect **BEFORE** we call setup(), else we'll trash 574 * its configuration. Lock against concurrent add() calls. 575 */ 576 mutex_lock(&spi_add_lock); 577 578 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 579 if (status) { 580 dev_err(dev, "chipselect %d already in use\n", 581 spi->chip_select); 582 goto done; 583 } 584 585 /* Descriptors take precedence */ 586 if (ctlr->cs_gpiods) 587 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 588 else if (ctlr->cs_gpios) 589 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select]; 590 591 /* Drivers may modify this initial i/o setup, but will 592 * normally rely on the device being setup. Devices 593 * using SPI_CS_HIGH can't coexist well otherwise... 594 */ 595 status = spi_setup(spi); 596 if (status < 0) { 597 dev_err(dev, "can't setup %s, status %d\n", 598 dev_name(&spi->dev), status); 599 goto done; 600 } 601 602 /* Device may be bound to an active driver when this returns */ 603 status = device_add(&spi->dev); 604 if (status < 0) 605 dev_err(dev, "can't add %s, status %d\n", 606 dev_name(&spi->dev), status); 607 else 608 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 609 610 done: 611 mutex_unlock(&spi_add_lock); 612 return status; 613 } 614 EXPORT_SYMBOL_GPL(spi_add_device); 615 616 /** 617 * spi_new_device - instantiate one new SPI device 618 * @ctlr: Controller to which device is connected 619 * @chip: Describes the SPI device 620 * Context: can sleep 621 * 622 * On typical mainboards, this is purely internal; and it's not needed 623 * after board init creates the hard-wired devices. Some development 624 * platforms may not be able to use spi_register_board_info though, and 625 * this is exported so that for example a USB or parport based adapter 626 * driver could add devices (which it would learn about out-of-band). 627 * 628 * Return: the new device, or NULL. 629 */ 630 struct spi_device *spi_new_device(struct spi_controller *ctlr, 631 struct spi_board_info *chip) 632 { 633 struct spi_device *proxy; 634 int status; 635 636 /* NOTE: caller did any chip->bus_num checks necessary. 637 * 638 * Also, unless we change the return value convention to use 639 * error-or-pointer (not NULL-or-pointer), troubleshootability 640 * suggests syslogged diagnostics are best here (ugh). 641 */ 642 643 proxy = spi_alloc_device(ctlr); 644 if (!proxy) 645 return NULL; 646 647 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 648 649 proxy->chip_select = chip->chip_select; 650 proxy->max_speed_hz = chip->max_speed_hz; 651 proxy->mode = chip->mode; 652 proxy->irq = chip->irq; 653 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 654 proxy->dev.platform_data = (void *) chip->platform_data; 655 proxy->controller_data = chip->controller_data; 656 proxy->controller_state = NULL; 657 658 if (chip->properties) { 659 status = device_add_properties(&proxy->dev, chip->properties); 660 if (status) { 661 dev_err(&ctlr->dev, 662 "failed to add properties to '%s': %d\n", 663 chip->modalias, status); 664 goto err_dev_put; 665 } 666 } 667 668 status = spi_add_device(proxy); 669 if (status < 0) 670 goto err_remove_props; 671 672 return proxy; 673 674 err_remove_props: 675 if (chip->properties) 676 device_remove_properties(&proxy->dev); 677 err_dev_put: 678 spi_dev_put(proxy); 679 return NULL; 680 } 681 EXPORT_SYMBOL_GPL(spi_new_device); 682 683 /** 684 * spi_unregister_device - unregister a single SPI device 685 * @spi: spi_device to unregister 686 * 687 * Start making the passed SPI device vanish. Normally this would be handled 688 * by spi_unregister_controller(). 689 */ 690 void spi_unregister_device(struct spi_device *spi) 691 { 692 if (!spi) 693 return; 694 695 if (spi->dev.of_node) { 696 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 697 of_node_put(spi->dev.of_node); 698 } 699 if (ACPI_COMPANION(&spi->dev)) 700 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 701 device_unregister(&spi->dev); 702 } 703 EXPORT_SYMBOL_GPL(spi_unregister_device); 704 705 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 706 struct spi_board_info *bi) 707 { 708 struct spi_device *dev; 709 710 if (ctlr->bus_num != bi->bus_num) 711 return; 712 713 dev = spi_new_device(ctlr, bi); 714 if (!dev) 715 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 716 bi->modalias); 717 } 718 719 /** 720 * spi_register_board_info - register SPI devices for a given board 721 * @info: array of chip descriptors 722 * @n: how many descriptors are provided 723 * Context: can sleep 724 * 725 * Board-specific early init code calls this (probably during arch_initcall) 726 * with segments of the SPI device table. Any device nodes are created later, 727 * after the relevant parent SPI controller (bus_num) is defined. We keep 728 * this table of devices forever, so that reloading a controller driver will 729 * not make Linux forget about these hard-wired devices. 730 * 731 * Other code can also call this, e.g. a particular add-on board might provide 732 * SPI devices through its expansion connector, so code initializing that board 733 * would naturally declare its SPI devices. 734 * 735 * The board info passed can safely be __initdata ... but be careful of 736 * any embedded pointers (platform_data, etc), they're copied as-is. 737 * Device properties are deep-copied though. 738 * 739 * Return: zero on success, else a negative error code. 740 */ 741 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 742 { 743 struct boardinfo *bi; 744 int i; 745 746 if (!n) 747 return 0; 748 749 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 750 if (!bi) 751 return -ENOMEM; 752 753 for (i = 0; i < n; i++, bi++, info++) { 754 struct spi_controller *ctlr; 755 756 memcpy(&bi->board_info, info, sizeof(*info)); 757 if (info->properties) { 758 bi->board_info.properties = 759 property_entries_dup(info->properties); 760 if (IS_ERR(bi->board_info.properties)) 761 return PTR_ERR(bi->board_info.properties); 762 } 763 764 mutex_lock(&board_lock); 765 list_add_tail(&bi->list, &board_list); 766 list_for_each_entry(ctlr, &spi_controller_list, list) 767 spi_match_controller_to_boardinfo(ctlr, 768 &bi->board_info); 769 mutex_unlock(&board_lock); 770 } 771 772 return 0; 773 } 774 775 /*-------------------------------------------------------------------------*/ 776 777 static void spi_set_cs(struct spi_device *spi, bool enable) 778 { 779 bool enable1 = enable; 780 781 if (!spi->controller->set_cs_timing) { 782 if (enable1) 783 spi_delay_exec(&spi->controller->cs_setup, NULL); 784 else 785 spi_delay_exec(&spi->controller->cs_hold, NULL); 786 } 787 788 if (spi->mode & SPI_CS_HIGH) 789 enable = !enable; 790 791 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) { 792 /* 793 * Honour the SPI_NO_CS flag and invert the enable line, as 794 * active low is default for SPI. Execution paths that handle 795 * polarity inversion in gpiolib (such as device tree) will 796 * enforce active high using the SPI_CS_HIGH resulting in a 797 * double inversion through the code above. 798 */ 799 if (!(spi->mode & SPI_NO_CS)) { 800 if (spi->cs_gpiod) 801 gpiod_set_value_cansleep(spi->cs_gpiod, 802 !enable); 803 else 804 gpio_set_value_cansleep(spi->cs_gpio, !enable); 805 } 806 /* Some SPI masters need both GPIO CS & slave_select */ 807 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 808 spi->controller->set_cs) 809 spi->controller->set_cs(spi, !enable); 810 } else if (spi->controller->set_cs) { 811 spi->controller->set_cs(spi, !enable); 812 } 813 814 if (!spi->controller->set_cs_timing) { 815 if (!enable1) 816 spi_delay_exec(&spi->controller->cs_inactive, NULL); 817 } 818 } 819 820 #ifdef CONFIG_HAS_DMA 821 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 822 struct sg_table *sgt, void *buf, size_t len, 823 enum dma_data_direction dir) 824 { 825 const bool vmalloced_buf = is_vmalloc_addr(buf); 826 unsigned int max_seg_size = dma_get_max_seg_size(dev); 827 #ifdef CONFIG_HIGHMEM 828 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 829 (unsigned long)buf < (PKMAP_BASE + 830 (LAST_PKMAP * PAGE_SIZE))); 831 #else 832 const bool kmap_buf = false; 833 #endif 834 int desc_len; 835 int sgs; 836 struct page *vm_page; 837 struct scatterlist *sg; 838 void *sg_buf; 839 size_t min; 840 int i, ret; 841 842 if (vmalloced_buf || kmap_buf) { 843 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 844 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 845 } else if (virt_addr_valid(buf)) { 846 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len); 847 sgs = DIV_ROUND_UP(len, desc_len); 848 } else { 849 return -EINVAL; 850 } 851 852 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 853 if (ret != 0) 854 return ret; 855 856 sg = &sgt->sgl[0]; 857 for (i = 0; i < sgs; i++) { 858 859 if (vmalloced_buf || kmap_buf) { 860 /* 861 * Next scatterlist entry size is the minimum between 862 * the desc_len and the remaining buffer length that 863 * fits in a page. 864 */ 865 min = min_t(size_t, desc_len, 866 min_t(size_t, len, 867 PAGE_SIZE - offset_in_page(buf))); 868 if (vmalloced_buf) 869 vm_page = vmalloc_to_page(buf); 870 else 871 vm_page = kmap_to_page(buf); 872 if (!vm_page) { 873 sg_free_table(sgt); 874 return -ENOMEM; 875 } 876 sg_set_page(sg, vm_page, 877 min, offset_in_page(buf)); 878 } else { 879 min = min_t(size_t, len, desc_len); 880 sg_buf = buf; 881 sg_set_buf(sg, sg_buf, min); 882 } 883 884 buf += min; 885 len -= min; 886 sg = sg_next(sg); 887 } 888 889 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 890 if (!ret) 891 ret = -ENOMEM; 892 if (ret < 0) { 893 sg_free_table(sgt); 894 return ret; 895 } 896 897 sgt->nents = ret; 898 899 return 0; 900 } 901 902 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 903 struct sg_table *sgt, enum dma_data_direction dir) 904 { 905 if (sgt->orig_nents) { 906 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 907 sg_free_table(sgt); 908 } 909 } 910 911 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 912 { 913 struct device *tx_dev, *rx_dev; 914 struct spi_transfer *xfer; 915 int ret; 916 917 if (!ctlr->can_dma) 918 return 0; 919 920 if (ctlr->dma_tx) 921 tx_dev = ctlr->dma_tx->device->dev; 922 else 923 tx_dev = ctlr->dev.parent; 924 925 if (ctlr->dma_rx) 926 rx_dev = ctlr->dma_rx->device->dev; 927 else 928 rx_dev = ctlr->dev.parent; 929 930 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 931 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 932 continue; 933 934 if (xfer->tx_buf != NULL) { 935 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 936 (void *)xfer->tx_buf, xfer->len, 937 DMA_TO_DEVICE); 938 if (ret != 0) 939 return ret; 940 } 941 942 if (xfer->rx_buf != NULL) { 943 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 944 xfer->rx_buf, xfer->len, 945 DMA_FROM_DEVICE); 946 if (ret != 0) { 947 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 948 DMA_TO_DEVICE); 949 return ret; 950 } 951 } 952 } 953 954 ctlr->cur_msg_mapped = true; 955 956 return 0; 957 } 958 959 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 960 { 961 struct spi_transfer *xfer; 962 struct device *tx_dev, *rx_dev; 963 964 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 965 return 0; 966 967 if (ctlr->dma_tx) 968 tx_dev = ctlr->dma_tx->device->dev; 969 else 970 tx_dev = ctlr->dev.parent; 971 972 if (ctlr->dma_rx) 973 rx_dev = ctlr->dma_rx->device->dev; 974 else 975 rx_dev = ctlr->dev.parent; 976 977 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 978 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 979 continue; 980 981 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 982 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 983 } 984 985 return 0; 986 } 987 #else /* !CONFIG_HAS_DMA */ 988 static inline int __spi_map_msg(struct spi_controller *ctlr, 989 struct spi_message *msg) 990 { 991 return 0; 992 } 993 994 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 995 struct spi_message *msg) 996 { 997 return 0; 998 } 999 #endif /* !CONFIG_HAS_DMA */ 1000 1001 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1002 struct spi_message *msg) 1003 { 1004 struct spi_transfer *xfer; 1005 1006 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1007 /* 1008 * Restore the original value of tx_buf or rx_buf if they are 1009 * NULL. 1010 */ 1011 if (xfer->tx_buf == ctlr->dummy_tx) 1012 xfer->tx_buf = NULL; 1013 if (xfer->rx_buf == ctlr->dummy_rx) 1014 xfer->rx_buf = NULL; 1015 } 1016 1017 return __spi_unmap_msg(ctlr, msg); 1018 } 1019 1020 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1021 { 1022 struct spi_transfer *xfer; 1023 void *tmp; 1024 unsigned int max_tx, max_rx; 1025 1026 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { 1027 max_tx = 0; 1028 max_rx = 0; 1029 1030 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1031 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1032 !xfer->tx_buf) 1033 max_tx = max(xfer->len, max_tx); 1034 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1035 !xfer->rx_buf) 1036 max_rx = max(xfer->len, max_rx); 1037 } 1038 1039 if (max_tx) { 1040 tmp = krealloc(ctlr->dummy_tx, max_tx, 1041 GFP_KERNEL | GFP_DMA); 1042 if (!tmp) 1043 return -ENOMEM; 1044 ctlr->dummy_tx = tmp; 1045 memset(tmp, 0, max_tx); 1046 } 1047 1048 if (max_rx) { 1049 tmp = krealloc(ctlr->dummy_rx, max_rx, 1050 GFP_KERNEL | GFP_DMA); 1051 if (!tmp) 1052 return -ENOMEM; 1053 ctlr->dummy_rx = tmp; 1054 } 1055 1056 if (max_tx || max_rx) { 1057 list_for_each_entry(xfer, &msg->transfers, 1058 transfer_list) { 1059 if (!xfer->len) 1060 continue; 1061 if (!xfer->tx_buf) 1062 xfer->tx_buf = ctlr->dummy_tx; 1063 if (!xfer->rx_buf) 1064 xfer->rx_buf = ctlr->dummy_rx; 1065 } 1066 } 1067 } 1068 1069 return __spi_map_msg(ctlr, msg); 1070 } 1071 1072 static int spi_transfer_wait(struct spi_controller *ctlr, 1073 struct spi_message *msg, 1074 struct spi_transfer *xfer) 1075 { 1076 struct spi_statistics *statm = &ctlr->statistics; 1077 struct spi_statistics *stats = &msg->spi->statistics; 1078 unsigned long long ms = 1; 1079 1080 if (spi_controller_is_slave(ctlr)) { 1081 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1082 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1083 return -EINTR; 1084 } 1085 } else { 1086 ms = 8LL * 1000LL * xfer->len; 1087 do_div(ms, xfer->speed_hz); 1088 ms += ms + 200; /* some tolerance */ 1089 1090 if (ms > UINT_MAX) 1091 ms = UINT_MAX; 1092 1093 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1094 msecs_to_jiffies(ms)); 1095 1096 if (ms == 0) { 1097 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1098 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1099 dev_err(&msg->spi->dev, 1100 "SPI transfer timed out\n"); 1101 return -ETIMEDOUT; 1102 } 1103 } 1104 1105 return 0; 1106 } 1107 1108 static void _spi_transfer_delay_ns(u32 ns) 1109 { 1110 if (!ns) 1111 return; 1112 if (ns <= 1000) { 1113 ndelay(ns); 1114 } else { 1115 u32 us = DIV_ROUND_UP(ns, 1000); 1116 1117 if (us <= 10) 1118 udelay(us); 1119 else 1120 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1121 } 1122 } 1123 1124 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1125 { 1126 u32 delay = _delay->value; 1127 u32 unit = _delay->unit; 1128 u32 hz; 1129 1130 if (!delay) 1131 return 0; 1132 1133 switch (unit) { 1134 case SPI_DELAY_UNIT_USECS: 1135 delay *= 1000; 1136 break; 1137 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */ 1138 break; 1139 case SPI_DELAY_UNIT_SCK: 1140 /* clock cycles need to be obtained from spi_transfer */ 1141 if (!xfer) 1142 return -EINVAL; 1143 /* if there is no effective speed know, then approximate 1144 * by underestimating with half the requested hz 1145 */ 1146 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1147 if (!hz) 1148 return -EINVAL; 1149 delay *= DIV_ROUND_UP(1000000000, hz); 1150 break; 1151 default: 1152 return -EINVAL; 1153 } 1154 1155 return delay; 1156 } 1157 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1158 1159 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1160 { 1161 int delay; 1162 1163 if (!_delay) 1164 return -EINVAL; 1165 1166 delay = spi_delay_to_ns(_delay, xfer); 1167 if (delay < 0) 1168 return delay; 1169 1170 _spi_transfer_delay_ns(delay); 1171 1172 return 0; 1173 } 1174 EXPORT_SYMBOL_GPL(spi_delay_exec); 1175 1176 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1177 struct spi_transfer *xfer) 1178 { 1179 u32 delay = xfer->cs_change_delay.value; 1180 u32 unit = xfer->cs_change_delay.unit; 1181 int ret; 1182 1183 /* return early on "fast" mode - for everything but USECS */ 1184 if (!delay) { 1185 if (unit == SPI_DELAY_UNIT_USECS) 1186 _spi_transfer_delay_ns(10000); 1187 return; 1188 } 1189 1190 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1191 if (ret) { 1192 dev_err_once(&msg->spi->dev, 1193 "Use of unsupported delay unit %i, using default of 10us\n", 1194 unit); 1195 _spi_transfer_delay_ns(10000); 1196 } 1197 } 1198 1199 /* 1200 * spi_transfer_one_message - Default implementation of transfer_one_message() 1201 * 1202 * This is a standard implementation of transfer_one_message() for 1203 * drivers which implement a transfer_one() operation. It provides 1204 * standard handling of delays and chip select management. 1205 */ 1206 static int spi_transfer_one_message(struct spi_controller *ctlr, 1207 struct spi_message *msg) 1208 { 1209 struct spi_transfer *xfer; 1210 bool keep_cs = false; 1211 int ret = 0; 1212 struct spi_statistics *statm = &ctlr->statistics; 1213 struct spi_statistics *stats = &msg->spi->statistics; 1214 1215 spi_set_cs(msg->spi, true); 1216 1217 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1218 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1219 1220 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1221 trace_spi_transfer_start(msg, xfer); 1222 1223 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1224 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1225 1226 if (!ctlr->ptp_sts_supported) { 1227 xfer->ptp_sts_word_pre = 0; 1228 ptp_read_system_prets(xfer->ptp_sts); 1229 } 1230 1231 if (xfer->tx_buf || xfer->rx_buf) { 1232 reinit_completion(&ctlr->xfer_completion); 1233 1234 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1235 if (ret < 0) { 1236 SPI_STATISTICS_INCREMENT_FIELD(statm, 1237 errors); 1238 SPI_STATISTICS_INCREMENT_FIELD(stats, 1239 errors); 1240 dev_err(&msg->spi->dev, 1241 "SPI transfer failed: %d\n", ret); 1242 goto out; 1243 } 1244 1245 if (ret > 0) { 1246 ret = spi_transfer_wait(ctlr, msg, xfer); 1247 if (ret < 0) 1248 msg->status = ret; 1249 } 1250 } else { 1251 if (xfer->len) 1252 dev_err(&msg->spi->dev, 1253 "Bufferless transfer has length %u\n", 1254 xfer->len); 1255 } 1256 1257 if (!ctlr->ptp_sts_supported) { 1258 ptp_read_system_postts(xfer->ptp_sts); 1259 xfer->ptp_sts_word_post = xfer->len; 1260 } 1261 1262 trace_spi_transfer_stop(msg, xfer); 1263 1264 if (msg->status != -EINPROGRESS) 1265 goto out; 1266 1267 spi_transfer_delay_exec(xfer); 1268 1269 if (xfer->cs_change) { 1270 if (list_is_last(&xfer->transfer_list, 1271 &msg->transfers)) { 1272 keep_cs = true; 1273 } else { 1274 spi_set_cs(msg->spi, false); 1275 _spi_transfer_cs_change_delay(msg, xfer); 1276 spi_set_cs(msg->spi, true); 1277 } 1278 } 1279 1280 msg->actual_length += xfer->len; 1281 } 1282 1283 out: 1284 if (ret != 0 || !keep_cs) 1285 spi_set_cs(msg->spi, false); 1286 1287 if (msg->status == -EINPROGRESS) 1288 msg->status = ret; 1289 1290 if (msg->status && ctlr->handle_err) 1291 ctlr->handle_err(ctlr, msg); 1292 1293 spi_res_release(ctlr, msg); 1294 1295 spi_finalize_current_message(ctlr); 1296 1297 return ret; 1298 } 1299 1300 /** 1301 * spi_finalize_current_transfer - report completion of a transfer 1302 * @ctlr: the controller reporting completion 1303 * 1304 * Called by SPI drivers using the core transfer_one_message() 1305 * implementation to notify it that the current interrupt driven 1306 * transfer has finished and the next one may be scheduled. 1307 */ 1308 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1309 { 1310 complete(&ctlr->xfer_completion); 1311 } 1312 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1313 1314 /** 1315 * __spi_pump_messages - function which processes spi message queue 1316 * @ctlr: controller to process queue for 1317 * @in_kthread: true if we are in the context of the message pump thread 1318 * 1319 * This function checks if there is any spi message in the queue that 1320 * needs processing and if so call out to the driver to initialize hardware 1321 * and transfer each message. 1322 * 1323 * Note that it is called both from the kthread itself and also from 1324 * inside spi_sync(); the queue extraction handling at the top of the 1325 * function should deal with this safely. 1326 */ 1327 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1328 { 1329 struct spi_transfer *xfer; 1330 struct spi_message *msg; 1331 bool was_busy = false; 1332 unsigned long flags; 1333 int ret; 1334 1335 /* Lock queue */ 1336 spin_lock_irqsave(&ctlr->queue_lock, flags); 1337 1338 /* Make sure we are not already running a message */ 1339 if (ctlr->cur_msg) { 1340 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1341 return; 1342 } 1343 1344 /* If another context is idling the device then defer */ 1345 if (ctlr->idling) { 1346 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1347 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1348 return; 1349 } 1350 1351 /* Check if the queue is idle */ 1352 if (list_empty(&ctlr->queue) || !ctlr->running) { 1353 if (!ctlr->busy) { 1354 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1355 return; 1356 } 1357 1358 /* Only do teardown in the thread */ 1359 if (!in_kthread) { 1360 kthread_queue_work(&ctlr->kworker, 1361 &ctlr->pump_messages); 1362 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1363 return; 1364 } 1365 1366 ctlr->busy = false; 1367 ctlr->idling = true; 1368 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1369 1370 kfree(ctlr->dummy_rx); 1371 ctlr->dummy_rx = NULL; 1372 kfree(ctlr->dummy_tx); 1373 ctlr->dummy_tx = NULL; 1374 if (ctlr->unprepare_transfer_hardware && 1375 ctlr->unprepare_transfer_hardware(ctlr)) 1376 dev_err(&ctlr->dev, 1377 "failed to unprepare transfer hardware\n"); 1378 if (ctlr->auto_runtime_pm) { 1379 pm_runtime_mark_last_busy(ctlr->dev.parent); 1380 pm_runtime_put_autosuspend(ctlr->dev.parent); 1381 } 1382 trace_spi_controller_idle(ctlr); 1383 1384 spin_lock_irqsave(&ctlr->queue_lock, flags); 1385 ctlr->idling = false; 1386 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1387 return; 1388 } 1389 1390 /* Extract head of queue */ 1391 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1392 ctlr->cur_msg = msg; 1393 1394 list_del_init(&msg->queue); 1395 if (ctlr->busy) 1396 was_busy = true; 1397 else 1398 ctlr->busy = true; 1399 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1400 1401 mutex_lock(&ctlr->io_mutex); 1402 1403 if (!was_busy && ctlr->auto_runtime_pm) { 1404 ret = pm_runtime_get_sync(ctlr->dev.parent); 1405 if (ret < 0) { 1406 pm_runtime_put_noidle(ctlr->dev.parent); 1407 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1408 ret); 1409 mutex_unlock(&ctlr->io_mutex); 1410 return; 1411 } 1412 } 1413 1414 if (!was_busy) 1415 trace_spi_controller_busy(ctlr); 1416 1417 if (!was_busy && ctlr->prepare_transfer_hardware) { 1418 ret = ctlr->prepare_transfer_hardware(ctlr); 1419 if (ret) { 1420 dev_err(&ctlr->dev, 1421 "failed to prepare transfer hardware: %d\n", 1422 ret); 1423 1424 if (ctlr->auto_runtime_pm) 1425 pm_runtime_put(ctlr->dev.parent); 1426 1427 msg->status = ret; 1428 spi_finalize_current_message(ctlr); 1429 1430 mutex_unlock(&ctlr->io_mutex); 1431 return; 1432 } 1433 } 1434 1435 trace_spi_message_start(msg); 1436 1437 if (ctlr->prepare_message) { 1438 ret = ctlr->prepare_message(ctlr, msg); 1439 if (ret) { 1440 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1441 ret); 1442 msg->status = ret; 1443 spi_finalize_current_message(ctlr); 1444 goto out; 1445 } 1446 ctlr->cur_msg_prepared = true; 1447 } 1448 1449 ret = spi_map_msg(ctlr, msg); 1450 if (ret) { 1451 msg->status = ret; 1452 spi_finalize_current_message(ctlr); 1453 goto out; 1454 } 1455 1456 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1457 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1458 xfer->ptp_sts_word_pre = 0; 1459 ptp_read_system_prets(xfer->ptp_sts); 1460 } 1461 } 1462 1463 ret = ctlr->transfer_one_message(ctlr, msg); 1464 if (ret) { 1465 dev_err(&ctlr->dev, 1466 "failed to transfer one message from queue\n"); 1467 goto out; 1468 } 1469 1470 out: 1471 mutex_unlock(&ctlr->io_mutex); 1472 1473 /* Prod the scheduler in case transfer_one() was busy waiting */ 1474 if (!ret) 1475 cond_resched(); 1476 } 1477 1478 /** 1479 * spi_pump_messages - kthread work function which processes spi message queue 1480 * @work: pointer to kthread work struct contained in the controller struct 1481 */ 1482 static void spi_pump_messages(struct kthread_work *work) 1483 { 1484 struct spi_controller *ctlr = 1485 container_of(work, struct spi_controller, pump_messages); 1486 1487 __spi_pump_messages(ctlr, true); 1488 } 1489 1490 /** 1491 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the 1492 * TX timestamp for the requested byte from the SPI 1493 * transfer. The frequency with which this function 1494 * must be called (once per word, once for the whole 1495 * transfer, once per batch of words etc) is arbitrary 1496 * as long as the @tx buffer offset is greater than or 1497 * equal to the requested byte at the time of the 1498 * call. The timestamp is only taken once, at the 1499 * first such call. It is assumed that the driver 1500 * advances its @tx buffer pointer monotonically. 1501 * @ctlr: Pointer to the spi_controller structure of the driver 1502 * @xfer: Pointer to the transfer being timestamped 1503 * @progress: How many words (not bytes) have been transferred so far 1504 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1505 * transfer, for less jitter in time measurement. Only compatible 1506 * with PIO drivers. If true, must follow up with 1507 * spi_take_timestamp_post or otherwise system will crash. 1508 * WARNING: for fully predictable results, the CPU frequency must 1509 * also be under control (governor). 1510 */ 1511 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1512 struct spi_transfer *xfer, 1513 size_t progress, bool irqs_off) 1514 { 1515 if (!xfer->ptp_sts) 1516 return; 1517 1518 if (xfer->timestamped) 1519 return; 1520 1521 if (progress > xfer->ptp_sts_word_pre) 1522 return; 1523 1524 /* Capture the resolution of the timestamp */ 1525 xfer->ptp_sts_word_pre = progress; 1526 1527 if (irqs_off) { 1528 local_irq_save(ctlr->irq_flags); 1529 preempt_disable(); 1530 } 1531 1532 ptp_read_system_prets(xfer->ptp_sts); 1533 } 1534 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1535 1536 /** 1537 * spi_take_timestamp_post - helper for drivers to collect the end of the 1538 * TX timestamp for the requested byte from the SPI 1539 * transfer. Can be called with an arbitrary 1540 * frequency: only the first call where @tx exceeds 1541 * or is equal to the requested word will be 1542 * timestamped. 1543 * @ctlr: Pointer to the spi_controller structure of the driver 1544 * @xfer: Pointer to the transfer being timestamped 1545 * @progress: How many words (not bytes) have been transferred so far 1546 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1547 */ 1548 void spi_take_timestamp_post(struct spi_controller *ctlr, 1549 struct spi_transfer *xfer, 1550 size_t progress, bool irqs_off) 1551 { 1552 if (!xfer->ptp_sts) 1553 return; 1554 1555 if (xfer->timestamped) 1556 return; 1557 1558 if (progress < xfer->ptp_sts_word_post) 1559 return; 1560 1561 ptp_read_system_postts(xfer->ptp_sts); 1562 1563 if (irqs_off) { 1564 local_irq_restore(ctlr->irq_flags); 1565 preempt_enable(); 1566 } 1567 1568 /* Capture the resolution of the timestamp */ 1569 xfer->ptp_sts_word_post = progress; 1570 1571 xfer->timestamped = true; 1572 } 1573 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1574 1575 /** 1576 * spi_set_thread_rt - set the controller to pump at realtime priority 1577 * @ctlr: controller to boost priority of 1578 * 1579 * This can be called because the controller requested realtime priority 1580 * (by setting the ->rt value before calling spi_register_controller()) or 1581 * because a device on the bus said that its transfers needed realtime 1582 * priority. 1583 * 1584 * NOTE: at the moment if any device on a bus says it needs realtime then 1585 * the thread will be at realtime priority for all transfers on that 1586 * controller. If this eventually becomes a problem we may see if we can 1587 * find a way to boost the priority only temporarily during relevant 1588 * transfers. 1589 */ 1590 static void spi_set_thread_rt(struct spi_controller *ctlr) 1591 { 1592 struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; 1593 1594 dev_info(&ctlr->dev, 1595 "will run message pump with realtime priority\n"); 1596 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m); 1597 } 1598 1599 static int spi_init_queue(struct spi_controller *ctlr) 1600 { 1601 ctlr->running = false; 1602 ctlr->busy = false; 1603 1604 kthread_init_worker(&ctlr->kworker); 1605 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker, 1606 "%s", dev_name(&ctlr->dev)); 1607 if (IS_ERR(ctlr->kworker_task)) { 1608 dev_err(&ctlr->dev, "failed to create message pump task\n"); 1609 return PTR_ERR(ctlr->kworker_task); 1610 } 1611 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1612 1613 /* 1614 * Controller config will indicate if this controller should run the 1615 * message pump with high (realtime) priority to reduce the transfer 1616 * latency on the bus by minimising the delay between a transfer 1617 * request and the scheduling of the message pump thread. Without this 1618 * setting the message pump thread will remain at default priority. 1619 */ 1620 if (ctlr->rt) 1621 spi_set_thread_rt(ctlr); 1622 1623 return 0; 1624 } 1625 1626 /** 1627 * spi_get_next_queued_message() - called by driver to check for queued 1628 * messages 1629 * @ctlr: the controller to check for queued messages 1630 * 1631 * If there are more messages in the queue, the next message is returned from 1632 * this call. 1633 * 1634 * Return: the next message in the queue, else NULL if the queue is empty. 1635 */ 1636 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1637 { 1638 struct spi_message *next; 1639 unsigned long flags; 1640 1641 /* get a pointer to the next message, if any */ 1642 spin_lock_irqsave(&ctlr->queue_lock, flags); 1643 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1644 queue); 1645 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1646 1647 return next; 1648 } 1649 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1650 1651 /** 1652 * spi_finalize_current_message() - the current message is complete 1653 * @ctlr: the controller to return the message to 1654 * 1655 * Called by the driver to notify the core that the message in the front of the 1656 * queue is complete and can be removed from the queue. 1657 */ 1658 void spi_finalize_current_message(struct spi_controller *ctlr) 1659 { 1660 struct spi_transfer *xfer; 1661 struct spi_message *mesg; 1662 unsigned long flags; 1663 int ret; 1664 1665 spin_lock_irqsave(&ctlr->queue_lock, flags); 1666 mesg = ctlr->cur_msg; 1667 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1668 1669 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1670 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1671 ptp_read_system_postts(xfer->ptp_sts); 1672 xfer->ptp_sts_word_post = xfer->len; 1673 } 1674 } 1675 1676 if (unlikely(ctlr->ptp_sts_supported)) 1677 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1678 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1679 1680 spi_unmap_msg(ctlr, mesg); 1681 1682 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1683 ret = ctlr->unprepare_message(ctlr, mesg); 1684 if (ret) { 1685 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1686 ret); 1687 } 1688 } 1689 1690 spin_lock_irqsave(&ctlr->queue_lock, flags); 1691 ctlr->cur_msg = NULL; 1692 ctlr->cur_msg_prepared = false; 1693 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1694 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1695 1696 trace_spi_message_done(mesg); 1697 1698 mesg->state = NULL; 1699 if (mesg->complete) 1700 mesg->complete(mesg->context); 1701 } 1702 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1703 1704 static int spi_start_queue(struct spi_controller *ctlr) 1705 { 1706 unsigned long flags; 1707 1708 spin_lock_irqsave(&ctlr->queue_lock, flags); 1709 1710 if (ctlr->running || ctlr->busy) { 1711 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1712 return -EBUSY; 1713 } 1714 1715 ctlr->running = true; 1716 ctlr->cur_msg = NULL; 1717 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1718 1719 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1720 1721 return 0; 1722 } 1723 1724 static int spi_stop_queue(struct spi_controller *ctlr) 1725 { 1726 unsigned long flags; 1727 unsigned limit = 500; 1728 int ret = 0; 1729 1730 spin_lock_irqsave(&ctlr->queue_lock, flags); 1731 1732 /* 1733 * This is a bit lame, but is optimized for the common execution path. 1734 * A wait_queue on the ctlr->busy could be used, but then the common 1735 * execution path (pump_messages) would be required to call wake_up or 1736 * friends on every SPI message. Do this instead. 1737 */ 1738 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1739 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1740 usleep_range(10000, 11000); 1741 spin_lock_irqsave(&ctlr->queue_lock, flags); 1742 } 1743 1744 if (!list_empty(&ctlr->queue) || ctlr->busy) 1745 ret = -EBUSY; 1746 else 1747 ctlr->running = false; 1748 1749 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1750 1751 if (ret) { 1752 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1753 return ret; 1754 } 1755 return ret; 1756 } 1757 1758 static int spi_destroy_queue(struct spi_controller *ctlr) 1759 { 1760 int ret; 1761 1762 ret = spi_stop_queue(ctlr); 1763 1764 /* 1765 * kthread_flush_worker will block until all work is done. 1766 * If the reason that stop_queue timed out is that the work will never 1767 * finish, then it does no good to call flush/stop thread, so 1768 * return anyway. 1769 */ 1770 if (ret) { 1771 dev_err(&ctlr->dev, "problem destroying queue\n"); 1772 return ret; 1773 } 1774 1775 kthread_flush_worker(&ctlr->kworker); 1776 kthread_stop(ctlr->kworker_task); 1777 1778 return 0; 1779 } 1780 1781 static int __spi_queued_transfer(struct spi_device *spi, 1782 struct spi_message *msg, 1783 bool need_pump) 1784 { 1785 struct spi_controller *ctlr = spi->controller; 1786 unsigned long flags; 1787 1788 spin_lock_irqsave(&ctlr->queue_lock, flags); 1789 1790 if (!ctlr->running) { 1791 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1792 return -ESHUTDOWN; 1793 } 1794 msg->actual_length = 0; 1795 msg->status = -EINPROGRESS; 1796 1797 list_add_tail(&msg->queue, &ctlr->queue); 1798 if (!ctlr->busy && need_pump) 1799 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages); 1800 1801 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1802 return 0; 1803 } 1804 1805 /** 1806 * spi_queued_transfer - transfer function for queued transfers 1807 * @spi: spi device which is requesting transfer 1808 * @msg: spi message which is to handled is queued to driver queue 1809 * 1810 * Return: zero on success, else a negative error code. 1811 */ 1812 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1813 { 1814 return __spi_queued_transfer(spi, msg, true); 1815 } 1816 1817 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 1818 { 1819 int ret; 1820 1821 ctlr->transfer = spi_queued_transfer; 1822 if (!ctlr->transfer_one_message) 1823 ctlr->transfer_one_message = spi_transfer_one_message; 1824 1825 /* Initialize and start queue */ 1826 ret = spi_init_queue(ctlr); 1827 if (ret) { 1828 dev_err(&ctlr->dev, "problem initializing queue\n"); 1829 goto err_init_queue; 1830 } 1831 ctlr->queued = true; 1832 ret = spi_start_queue(ctlr); 1833 if (ret) { 1834 dev_err(&ctlr->dev, "problem starting queue\n"); 1835 goto err_start_queue; 1836 } 1837 1838 return 0; 1839 1840 err_start_queue: 1841 spi_destroy_queue(ctlr); 1842 err_init_queue: 1843 return ret; 1844 } 1845 1846 /** 1847 * spi_flush_queue - Send all pending messages in the queue from the callers' 1848 * context 1849 * @ctlr: controller to process queue for 1850 * 1851 * This should be used when one wants to ensure all pending messages have been 1852 * sent before doing something. Is used by the spi-mem code to make sure SPI 1853 * memory operations do not preempt regular SPI transfers that have been queued 1854 * before the spi-mem operation. 1855 */ 1856 void spi_flush_queue(struct spi_controller *ctlr) 1857 { 1858 if (ctlr->transfer == spi_queued_transfer) 1859 __spi_pump_messages(ctlr, false); 1860 } 1861 1862 /*-------------------------------------------------------------------------*/ 1863 1864 #if defined(CONFIG_OF) 1865 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 1866 struct device_node *nc) 1867 { 1868 u32 value; 1869 int rc; 1870 1871 /* Mode (clock phase/polarity/etc.) */ 1872 if (of_property_read_bool(nc, "spi-cpha")) 1873 spi->mode |= SPI_CPHA; 1874 if (of_property_read_bool(nc, "spi-cpol")) 1875 spi->mode |= SPI_CPOL; 1876 if (of_property_read_bool(nc, "spi-3wire")) 1877 spi->mode |= SPI_3WIRE; 1878 if (of_property_read_bool(nc, "spi-lsb-first")) 1879 spi->mode |= SPI_LSB_FIRST; 1880 if (of_property_read_bool(nc, "spi-cs-high")) 1881 spi->mode |= SPI_CS_HIGH; 1882 1883 /* Device DUAL/QUAD mode */ 1884 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1885 switch (value) { 1886 case 1: 1887 break; 1888 case 2: 1889 spi->mode |= SPI_TX_DUAL; 1890 break; 1891 case 4: 1892 spi->mode |= SPI_TX_QUAD; 1893 break; 1894 case 8: 1895 spi->mode |= SPI_TX_OCTAL; 1896 break; 1897 default: 1898 dev_warn(&ctlr->dev, 1899 "spi-tx-bus-width %d not supported\n", 1900 value); 1901 break; 1902 } 1903 } 1904 1905 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1906 switch (value) { 1907 case 1: 1908 break; 1909 case 2: 1910 spi->mode |= SPI_RX_DUAL; 1911 break; 1912 case 4: 1913 spi->mode |= SPI_RX_QUAD; 1914 break; 1915 case 8: 1916 spi->mode |= SPI_RX_OCTAL; 1917 break; 1918 default: 1919 dev_warn(&ctlr->dev, 1920 "spi-rx-bus-width %d not supported\n", 1921 value); 1922 break; 1923 } 1924 } 1925 1926 if (spi_controller_is_slave(ctlr)) { 1927 if (!of_node_name_eq(nc, "slave")) { 1928 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 1929 nc); 1930 return -EINVAL; 1931 } 1932 return 0; 1933 } 1934 1935 /* Device address */ 1936 rc = of_property_read_u32(nc, "reg", &value); 1937 if (rc) { 1938 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 1939 nc, rc); 1940 return rc; 1941 } 1942 spi->chip_select = value; 1943 1944 /* 1945 * For descriptors associated with the device, polarity inversion is 1946 * handled in the gpiolib, so all gpio chip selects are "active high" 1947 * in the logical sense, the gpiolib will invert the line if need be. 1948 */ 1949 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods && 1950 ctlr->cs_gpiods[spi->chip_select]) 1951 spi->mode |= SPI_CS_HIGH; 1952 1953 /* Device speed */ 1954 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 1955 spi->max_speed_hz = value; 1956 1957 return 0; 1958 } 1959 1960 static struct spi_device * 1961 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 1962 { 1963 struct spi_device *spi; 1964 int rc; 1965 1966 /* Alloc an spi_device */ 1967 spi = spi_alloc_device(ctlr); 1968 if (!spi) { 1969 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 1970 rc = -ENOMEM; 1971 goto err_out; 1972 } 1973 1974 /* Select device driver */ 1975 rc = of_modalias_node(nc, spi->modalias, 1976 sizeof(spi->modalias)); 1977 if (rc < 0) { 1978 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 1979 goto err_out; 1980 } 1981 1982 rc = of_spi_parse_dt(ctlr, spi, nc); 1983 if (rc) 1984 goto err_out; 1985 1986 /* Store a pointer to the node in the device structure */ 1987 of_node_get(nc); 1988 spi->dev.of_node = nc; 1989 1990 /* Register the new device */ 1991 rc = spi_add_device(spi); 1992 if (rc) { 1993 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 1994 goto err_of_node_put; 1995 } 1996 1997 return spi; 1998 1999 err_of_node_put: 2000 of_node_put(nc); 2001 err_out: 2002 spi_dev_put(spi); 2003 return ERR_PTR(rc); 2004 } 2005 2006 /** 2007 * of_register_spi_devices() - Register child devices onto the SPI bus 2008 * @ctlr: Pointer to spi_controller device 2009 * 2010 * Registers an spi_device for each child node of controller node which 2011 * represents a valid SPI slave. 2012 */ 2013 static void of_register_spi_devices(struct spi_controller *ctlr) 2014 { 2015 struct spi_device *spi; 2016 struct device_node *nc; 2017 2018 if (!ctlr->dev.of_node) 2019 return; 2020 2021 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2022 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2023 continue; 2024 spi = of_register_spi_device(ctlr, nc); 2025 if (IS_ERR(spi)) { 2026 dev_warn(&ctlr->dev, 2027 "Failed to create SPI device for %pOF\n", nc); 2028 of_node_clear_flag(nc, OF_POPULATED); 2029 } 2030 } 2031 } 2032 #else 2033 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2034 #endif 2035 2036 #ifdef CONFIG_ACPI 2037 struct acpi_spi_lookup { 2038 struct spi_controller *ctlr; 2039 u32 max_speed_hz; 2040 u32 mode; 2041 int irq; 2042 u8 bits_per_word; 2043 u8 chip_select; 2044 }; 2045 2046 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2047 struct acpi_spi_lookup *lookup) 2048 { 2049 const union acpi_object *obj; 2050 2051 if (!x86_apple_machine) 2052 return; 2053 2054 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2055 && obj->buffer.length >= 4) 2056 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2057 2058 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2059 && obj->buffer.length == 8) 2060 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2061 2062 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2063 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2064 lookup->mode |= SPI_LSB_FIRST; 2065 2066 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2067 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2068 lookup->mode |= SPI_CPOL; 2069 2070 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2071 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2072 lookup->mode |= SPI_CPHA; 2073 } 2074 2075 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2076 { 2077 struct acpi_spi_lookup *lookup = data; 2078 struct spi_controller *ctlr = lookup->ctlr; 2079 2080 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2081 struct acpi_resource_spi_serialbus *sb; 2082 acpi_handle parent_handle; 2083 acpi_status status; 2084 2085 sb = &ares->data.spi_serial_bus; 2086 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2087 2088 status = acpi_get_handle(NULL, 2089 sb->resource_source.string_ptr, 2090 &parent_handle); 2091 2092 if (ACPI_FAILURE(status) || 2093 ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2094 return -ENODEV; 2095 2096 /* 2097 * ACPI DeviceSelection numbering is handled by the 2098 * host controller driver in Windows and can vary 2099 * from driver to driver. In Linux we always expect 2100 * 0 .. max - 1 so we need to ask the driver to 2101 * translate between the two schemes. 2102 */ 2103 if (ctlr->fw_translate_cs) { 2104 int cs = ctlr->fw_translate_cs(ctlr, 2105 sb->device_selection); 2106 if (cs < 0) 2107 return cs; 2108 lookup->chip_select = cs; 2109 } else { 2110 lookup->chip_select = sb->device_selection; 2111 } 2112 2113 lookup->max_speed_hz = sb->connection_speed; 2114 2115 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2116 lookup->mode |= SPI_CPHA; 2117 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2118 lookup->mode |= SPI_CPOL; 2119 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2120 lookup->mode |= SPI_CS_HIGH; 2121 } 2122 } else if (lookup->irq < 0) { 2123 struct resource r; 2124 2125 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2126 lookup->irq = r.start; 2127 } 2128 2129 /* Always tell the ACPI core to skip this resource */ 2130 return 1; 2131 } 2132 2133 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2134 struct acpi_device *adev) 2135 { 2136 acpi_handle parent_handle = NULL; 2137 struct list_head resource_list; 2138 struct acpi_spi_lookup lookup = {}; 2139 struct spi_device *spi; 2140 int ret; 2141 2142 if (acpi_bus_get_status(adev) || !adev->status.present || 2143 acpi_device_enumerated(adev)) 2144 return AE_OK; 2145 2146 lookup.ctlr = ctlr; 2147 lookup.irq = -1; 2148 2149 INIT_LIST_HEAD(&resource_list); 2150 ret = acpi_dev_get_resources(adev, &resource_list, 2151 acpi_spi_add_resource, &lookup); 2152 acpi_dev_free_resource_list(&resource_list); 2153 2154 if (ret < 0) 2155 /* found SPI in _CRS but it points to another controller */ 2156 return AE_OK; 2157 2158 if (!lookup.max_speed_hz && 2159 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) && 2160 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) { 2161 /* Apple does not use _CRS but nested devices for SPI slaves */ 2162 acpi_spi_parse_apple_properties(adev, &lookup); 2163 } 2164 2165 if (!lookup.max_speed_hz) 2166 return AE_OK; 2167 2168 spi = spi_alloc_device(ctlr); 2169 if (!spi) { 2170 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n", 2171 dev_name(&adev->dev)); 2172 return AE_NO_MEMORY; 2173 } 2174 2175 2176 ACPI_COMPANION_SET(&spi->dev, adev); 2177 spi->max_speed_hz = lookup.max_speed_hz; 2178 spi->mode |= lookup.mode; 2179 spi->irq = lookup.irq; 2180 spi->bits_per_word = lookup.bits_per_word; 2181 spi->chip_select = lookup.chip_select; 2182 2183 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2184 sizeof(spi->modalias)); 2185 2186 if (spi->irq < 0) 2187 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2188 2189 acpi_device_set_enumerated(adev); 2190 2191 adev->power.flags.ignore_parent = true; 2192 if (spi_add_device(spi)) { 2193 adev->power.flags.ignore_parent = false; 2194 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2195 dev_name(&adev->dev)); 2196 spi_dev_put(spi); 2197 } 2198 2199 return AE_OK; 2200 } 2201 2202 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2203 void *data, void **return_value) 2204 { 2205 struct spi_controller *ctlr = data; 2206 struct acpi_device *adev; 2207 2208 if (acpi_bus_get_device(handle, &adev)) 2209 return AE_OK; 2210 2211 return acpi_register_spi_device(ctlr, adev); 2212 } 2213 2214 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2215 2216 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2217 { 2218 acpi_status status; 2219 acpi_handle handle; 2220 2221 handle = ACPI_HANDLE(ctlr->dev.parent); 2222 if (!handle) 2223 return; 2224 2225 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2226 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2227 acpi_spi_add_device, NULL, ctlr, NULL); 2228 if (ACPI_FAILURE(status)) 2229 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2230 } 2231 #else 2232 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2233 #endif /* CONFIG_ACPI */ 2234 2235 static void spi_controller_release(struct device *dev) 2236 { 2237 struct spi_controller *ctlr; 2238 2239 ctlr = container_of(dev, struct spi_controller, dev); 2240 kfree(ctlr); 2241 } 2242 2243 static struct class spi_master_class = { 2244 .name = "spi_master", 2245 .owner = THIS_MODULE, 2246 .dev_release = spi_controller_release, 2247 .dev_groups = spi_master_groups, 2248 }; 2249 2250 #ifdef CONFIG_SPI_SLAVE 2251 /** 2252 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2253 * controller 2254 * @spi: device used for the current transfer 2255 */ 2256 int spi_slave_abort(struct spi_device *spi) 2257 { 2258 struct spi_controller *ctlr = spi->controller; 2259 2260 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2261 return ctlr->slave_abort(ctlr); 2262 2263 return -ENOTSUPP; 2264 } 2265 EXPORT_SYMBOL_GPL(spi_slave_abort); 2266 2267 static int match_true(struct device *dev, void *data) 2268 { 2269 return 1; 2270 } 2271 2272 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2273 char *buf) 2274 { 2275 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2276 dev); 2277 struct device *child; 2278 2279 child = device_find_child(&ctlr->dev, NULL, match_true); 2280 return sprintf(buf, "%s\n", 2281 child ? to_spi_device(child)->modalias : NULL); 2282 } 2283 2284 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2285 const char *buf, size_t count) 2286 { 2287 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2288 dev); 2289 struct spi_device *spi; 2290 struct device *child; 2291 char name[32]; 2292 int rc; 2293 2294 rc = sscanf(buf, "%31s", name); 2295 if (rc != 1 || !name[0]) 2296 return -EINVAL; 2297 2298 child = device_find_child(&ctlr->dev, NULL, match_true); 2299 if (child) { 2300 /* Remove registered slave */ 2301 device_unregister(child); 2302 put_device(child); 2303 } 2304 2305 if (strcmp(name, "(null)")) { 2306 /* Register new slave */ 2307 spi = spi_alloc_device(ctlr); 2308 if (!spi) 2309 return -ENOMEM; 2310 2311 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2312 2313 rc = spi_add_device(spi); 2314 if (rc) { 2315 spi_dev_put(spi); 2316 return rc; 2317 } 2318 } 2319 2320 return count; 2321 } 2322 2323 static DEVICE_ATTR_RW(slave); 2324 2325 static struct attribute *spi_slave_attrs[] = { 2326 &dev_attr_slave.attr, 2327 NULL, 2328 }; 2329 2330 static const struct attribute_group spi_slave_group = { 2331 .attrs = spi_slave_attrs, 2332 }; 2333 2334 static const struct attribute_group *spi_slave_groups[] = { 2335 &spi_controller_statistics_group, 2336 &spi_slave_group, 2337 NULL, 2338 }; 2339 2340 static struct class spi_slave_class = { 2341 .name = "spi_slave", 2342 .owner = THIS_MODULE, 2343 .dev_release = spi_controller_release, 2344 .dev_groups = spi_slave_groups, 2345 }; 2346 #else 2347 extern struct class spi_slave_class; /* dummy */ 2348 #endif 2349 2350 /** 2351 * __spi_alloc_controller - allocate an SPI master or slave controller 2352 * @dev: the controller, possibly using the platform_bus 2353 * @size: how much zeroed driver-private data to allocate; the pointer to this 2354 * memory is in the driver_data field of the returned device, accessible 2355 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2356 * drivers granting DMA access to portions of their private data need to 2357 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2358 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2359 * slave (true) controller 2360 * Context: can sleep 2361 * 2362 * This call is used only by SPI controller drivers, which are the 2363 * only ones directly touching chip registers. It's how they allocate 2364 * an spi_controller structure, prior to calling spi_register_controller(). 2365 * 2366 * This must be called from context that can sleep. 2367 * 2368 * The caller is responsible for assigning the bus number and initializing the 2369 * controller's methods before calling spi_register_controller(); and (after 2370 * errors adding the device) calling spi_controller_put() to prevent a memory 2371 * leak. 2372 * 2373 * Return: the SPI controller structure on success, else NULL. 2374 */ 2375 struct spi_controller *__spi_alloc_controller(struct device *dev, 2376 unsigned int size, bool slave) 2377 { 2378 struct spi_controller *ctlr; 2379 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2380 2381 if (!dev) 2382 return NULL; 2383 2384 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2385 if (!ctlr) 2386 return NULL; 2387 2388 device_initialize(&ctlr->dev); 2389 ctlr->bus_num = -1; 2390 ctlr->num_chipselect = 1; 2391 ctlr->slave = slave; 2392 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2393 ctlr->dev.class = &spi_slave_class; 2394 else 2395 ctlr->dev.class = &spi_master_class; 2396 ctlr->dev.parent = dev; 2397 pm_suspend_ignore_children(&ctlr->dev, true); 2398 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2399 2400 return ctlr; 2401 } 2402 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2403 2404 #ifdef CONFIG_OF 2405 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2406 { 2407 int nb, i, *cs; 2408 struct device_node *np = ctlr->dev.of_node; 2409 2410 if (!np) 2411 return 0; 2412 2413 nb = of_gpio_named_count(np, "cs-gpios"); 2414 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2415 2416 /* Return error only for an incorrectly formed cs-gpios property */ 2417 if (nb == 0 || nb == -ENOENT) 2418 return 0; 2419 else if (nb < 0) 2420 return nb; 2421 2422 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int), 2423 GFP_KERNEL); 2424 ctlr->cs_gpios = cs; 2425 2426 if (!ctlr->cs_gpios) 2427 return -ENOMEM; 2428 2429 for (i = 0; i < ctlr->num_chipselect; i++) 2430 cs[i] = -ENOENT; 2431 2432 for (i = 0; i < nb; i++) 2433 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 2434 2435 return 0; 2436 } 2437 #else 2438 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr) 2439 { 2440 return 0; 2441 } 2442 #endif 2443 2444 /** 2445 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2446 * @ctlr: The SPI master to grab GPIO descriptors for 2447 */ 2448 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2449 { 2450 int nb, i; 2451 struct gpio_desc **cs; 2452 struct device *dev = &ctlr->dev; 2453 unsigned long native_cs_mask = 0; 2454 unsigned int num_cs_gpios = 0; 2455 2456 nb = gpiod_count(dev, "cs"); 2457 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2458 2459 /* No GPIOs at all is fine, else return the error */ 2460 if (nb == 0 || nb == -ENOENT) 2461 return 0; 2462 else if (nb < 0) 2463 return nb; 2464 2465 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2466 GFP_KERNEL); 2467 if (!cs) 2468 return -ENOMEM; 2469 ctlr->cs_gpiods = cs; 2470 2471 for (i = 0; i < nb; i++) { 2472 /* 2473 * Most chipselects are active low, the inverted 2474 * semantics are handled by special quirks in gpiolib, 2475 * so initializing them GPIOD_OUT_LOW here means 2476 * "unasserted", in most cases this will drive the physical 2477 * line high. 2478 */ 2479 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2480 GPIOD_OUT_LOW); 2481 if (IS_ERR(cs[i])) 2482 return PTR_ERR(cs[i]); 2483 2484 if (cs[i]) { 2485 /* 2486 * If we find a CS GPIO, name it after the device and 2487 * chip select line. 2488 */ 2489 char *gpioname; 2490 2491 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2492 dev_name(dev), i); 2493 if (!gpioname) 2494 return -ENOMEM; 2495 gpiod_set_consumer_name(cs[i], gpioname); 2496 num_cs_gpios++; 2497 continue; 2498 } 2499 2500 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2501 dev_err(dev, "Invalid native chip select %d\n", i); 2502 return -EINVAL; 2503 } 2504 native_cs_mask |= BIT(i); 2505 } 2506 2507 ctlr->unused_native_cs = ffz(native_cs_mask); 2508 if (num_cs_gpios && ctlr->max_native_cs && 2509 ctlr->unused_native_cs >= ctlr->max_native_cs) { 2510 dev_err(dev, "No unused native chip select available\n"); 2511 return -EINVAL; 2512 } 2513 2514 return 0; 2515 } 2516 2517 static int spi_controller_check_ops(struct spi_controller *ctlr) 2518 { 2519 /* 2520 * The controller may implement only the high-level SPI-memory like 2521 * operations if it does not support regular SPI transfers, and this is 2522 * valid use case. 2523 * If ->mem_ops is NULL, we request that at least one of the 2524 * ->transfer_xxx() method be implemented. 2525 */ 2526 if (ctlr->mem_ops) { 2527 if (!ctlr->mem_ops->exec_op) 2528 return -EINVAL; 2529 } else if (!ctlr->transfer && !ctlr->transfer_one && 2530 !ctlr->transfer_one_message) { 2531 return -EINVAL; 2532 } 2533 2534 return 0; 2535 } 2536 2537 /** 2538 * spi_register_controller - register SPI master or slave controller 2539 * @ctlr: initialized master, originally from spi_alloc_master() or 2540 * spi_alloc_slave() 2541 * Context: can sleep 2542 * 2543 * SPI controllers connect to their drivers using some non-SPI bus, 2544 * such as the platform bus. The final stage of probe() in that code 2545 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2546 * 2547 * SPI controllers use board specific (often SOC specific) bus numbers, 2548 * and board-specific addressing for SPI devices combines those numbers 2549 * with chip select numbers. Since SPI does not directly support dynamic 2550 * device identification, boards need configuration tables telling which 2551 * chip is at which address. 2552 * 2553 * This must be called from context that can sleep. It returns zero on 2554 * success, else a negative error code (dropping the controller's refcount). 2555 * After a successful return, the caller is responsible for calling 2556 * spi_unregister_controller(). 2557 * 2558 * Return: zero on success, else a negative error code. 2559 */ 2560 int spi_register_controller(struct spi_controller *ctlr) 2561 { 2562 struct device *dev = ctlr->dev.parent; 2563 struct boardinfo *bi; 2564 int status; 2565 int id, first_dynamic; 2566 2567 if (!dev) 2568 return -ENODEV; 2569 2570 /* 2571 * Make sure all necessary hooks are implemented before registering 2572 * the SPI controller. 2573 */ 2574 status = spi_controller_check_ops(ctlr); 2575 if (status) 2576 return status; 2577 2578 if (ctlr->bus_num >= 0) { 2579 /* devices with a fixed bus num must check-in with the num */ 2580 mutex_lock(&board_lock); 2581 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2582 ctlr->bus_num + 1, GFP_KERNEL); 2583 mutex_unlock(&board_lock); 2584 if (WARN(id < 0, "couldn't get idr")) 2585 return id == -ENOSPC ? -EBUSY : id; 2586 ctlr->bus_num = id; 2587 } else if (ctlr->dev.of_node) { 2588 /* allocate dynamic bus number using Linux idr */ 2589 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2590 if (id >= 0) { 2591 ctlr->bus_num = id; 2592 mutex_lock(&board_lock); 2593 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2594 ctlr->bus_num + 1, GFP_KERNEL); 2595 mutex_unlock(&board_lock); 2596 if (WARN(id < 0, "couldn't get idr")) 2597 return id == -ENOSPC ? -EBUSY : id; 2598 } 2599 } 2600 if (ctlr->bus_num < 0) { 2601 first_dynamic = of_alias_get_highest_id("spi"); 2602 if (first_dynamic < 0) 2603 first_dynamic = 0; 2604 else 2605 first_dynamic++; 2606 2607 mutex_lock(&board_lock); 2608 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2609 0, GFP_KERNEL); 2610 mutex_unlock(&board_lock); 2611 if (WARN(id < 0, "couldn't get idr")) 2612 return id; 2613 ctlr->bus_num = id; 2614 } 2615 INIT_LIST_HEAD(&ctlr->queue); 2616 spin_lock_init(&ctlr->queue_lock); 2617 spin_lock_init(&ctlr->bus_lock_spinlock); 2618 mutex_init(&ctlr->bus_lock_mutex); 2619 mutex_init(&ctlr->io_mutex); 2620 ctlr->bus_lock_flag = 0; 2621 init_completion(&ctlr->xfer_completion); 2622 if (!ctlr->max_dma_len) 2623 ctlr->max_dma_len = INT_MAX; 2624 2625 /* register the device, then userspace will see it. 2626 * registration fails if the bus ID is in use. 2627 */ 2628 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 2629 2630 if (!spi_controller_is_slave(ctlr)) { 2631 if (ctlr->use_gpio_descriptors) { 2632 status = spi_get_gpio_descs(ctlr); 2633 if (status) 2634 goto free_bus_id; 2635 /* 2636 * A controller using GPIO descriptors always 2637 * supports SPI_CS_HIGH if need be. 2638 */ 2639 ctlr->mode_bits |= SPI_CS_HIGH; 2640 } else { 2641 /* Legacy code path for GPIOs from DT */ 2642 status = of_spi_get_gpio_numbers(ctlr); 2643 if (status) 2644 goto free_bus_id; 2645 } 2646 } 2647 2648 /* 2649 * Even if it's just one always-selected device, there must 2650 * be at least one chipselect. 2651 */ 2652 if (!ctlr->num_chipselect) { 2653 status = -EINVAL; 2654 goto free_bus_id; 2655 } 2656 2657 status = device_add(&ctlr->dev); 2658 if (status < 0) 2659 goto free_bus_id; 2660 dev_dbg(dev, "registered %s %s\n", 2661 spi_controller_is_slave(ctlr) ? "slave" : "master", 2662 dev_name(&ctlr->dev)); 2663 2664 /* 2665 * If we're using a queued driver, start the queue. Note that we don't 2666 * need the queueing logic if the driver is only supporting high-level 2667 * memory operations. 2668 */ 2669 if (ctlr->transfer) { 2670 dev_info(dev, "controller is unqueued, this is deprecated\n"); 2671 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 2672 status = spi_controller_initialize_queue(ctlr); 2673 if (status) { 2674 device_del(&ctlr->dev); 2675 goto free_bus_id; 2676 } 2677 } 2678 /* add statistics */ 2679 spin_lock_init(&ctlr->statistics.lock); 2680 2681 mutex_lock(&board_lock); 2682 list_add_tail(&ctlr->list, &spi_controller_list); 2683 list_for_each_entry(bi, &board_list, list) 2684 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 2685 mutex_unlock(&board_lock); 2686 2687 /* Register devices from the device tree and ACPI */ 2688 of_register_spi_devices(ctlr); 2689 acpi_register_spi_devices(ctlr); 2690 return status; 2691 2692 free_bus_id: 2693 mutex_lock(&board_lock); 2694 idr_remove(&spi_master_idr, ctlr->bus_num); 2695 mutex_unlock(&board_lock); 2696 return status; 2697 } 2698 EXPORT_SYMBOL_GPL(spi_register_controller); 2699 2700 static void devm_spi_unregister(struct device *dev, void *res) 2701 { 2702 spi_unregister_controller(*(struct spi_controller **)res); 2703 } 2704 2705 /** 2706 * devm_spi_register_controller - register managed SPI master or slave 2707 * controller 2708 * @dev: device managing SPI controller 2709 * @ctlr: initialized controller, originally from spi_alloc_master() or 2710 * spi_alloc_slave() 2711 * Context: can sleep 2712 * 2713 * Register a SPI device as with spi_register_controller() which will 2714 * automatically be unregistered and freed. 2715 * 2716 * Return: zero on success, else a negative error code. 2717 */ 2718 int devm_spi_register_controller(struct device *dev, 2719 struct spi_controller *ctlr) 2720 { 2721 struct spi_controller **ptr; 2722 int ret; 2723 2724 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 2725 if (!ptr) 2726 return -ENOMEM; 2727 2728 ret = spi_register_controller(ctlr); 2729 if (!ret) { 2730 *ptr = ctlr; 2731 devres_add(dev, ptr); 2732 } else { 2733 devres_free(ptr); 2734 } 2735 2736 return ret; 2737 } 2738 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 2739 2740 static int __unregister(struct device *dev, void *null) 2741 { 2742 spi_unregister_device(to_spi_device(dev)); 2743 return 0; 2744 } 2745 2746 /** 2747 * spi_unregister_controller - unregister SPI master or slave controller 2748 * @ctlr: the controller being unregistered 2749 * Context: can sleep 2750 * 2751 * This call is used only by SPI controller drivers, which are the 2752 * only ones directly touching chip registers. 2753 * 2754 * This must be called from context that can sleep. 2755 * 2756 * Note that this function also drops a reference to the controller. 2757 */ 2758 void spi_unregister_controller(struct spi_controller *ctlr) 2759 { 2760 struct spi_controller *found; 2761 int id = ctlr->bus_num; 2762 2763 /* First make sure that this controller was ever added */ 2764 mutex_lock(&board_lock); 2765 found = idr_find(&spi_master_idr, id); 2766 mutex_unlock(&board_lock); 2767 if (ctlr->queued) { 2768 if (spi_destroy_queue(ctlr)) 2769 dev_err(&ctlr->dev, "queue remove failed\n"); 2770 } 2771 mutex_lock(&board_lock); 2772 list_del(&ctlr->list); 2773 mutex_unlock(&board_lock); 2774 2775 device_for_each_child(&ctlr->dev, NULL, __unregister); 2776 device_unregister(&ctlr->dev); 2777 /* free bus id */ 2778 mutex_lock(&board_lock); 2779 if (found == ctlr) 2780 idr_remove(&spi_master_idr, id); 2781 mutex_unlock(&board_lock); 2782 } 2783 EXPORT_SYMBOL_GPL(spi_unregister_controller); 2784 2785 int spi_controller_suspend(struct spi_controller *ctlr) 2786 { 2787 int ret; 2788 2789 /* Basically no-ops for non-queued controllers */ 2790 if (!ctlr->queued) 2791 return 0; 2792 2793 ret = spi_stop_queue(ctlr); 2794 if (ret) 2795 dev_err(&ctlr->dev, "queue stop failed\n"); 2796 2797 return ret; 2798 } 2799 EXPORT_SYMBOL_GPL(spi_controller_suspend); 2800 2801 int spi_controller_resume(struct spi_controller *ctlr) 2802 { 2803 int ret; 2804 2805 if (!ctlr->queued) 2806 return 0; 2807 2808 ret = spi_start_queue(ctlr); 2809 if (ret) 2810 dev_err(&ctlr->dev, "queue restart failed\n"); 2811 2812 return ret; 2813 } 2814 EXPORT_SYMBOL_GPL(spi_controller_resume); 2815 2816 static int __spi_controller_match(struct device *dev, const void *data) 2817 { 2818 struct spi_controller *ctlr; 2819 const u16 *bus_num = data; 2820 2821 ctlr = container_of(dev, struct spi_controller, dev); 2822 return ctlr->bus_num == *bus_num; 2823 } 2824 2825 /** 2826 * spi_busnum_to_master - look up master associated with bus_num 2827 * @bus_num: the master's bus number 2828 * Context: can sleep 2829 * 2830 * This call may be used with devices that are registered after 2831 * arch init time. It returns a refcounted pointer to the relevant 2832 * spi_controller (which the caller must release), or NULL if there is 2833 * no such master registered. 2834 * 2835 * Return: the SPI master structure on success, else NULL. 2836 */ 2837 struct spi_controller *spi_busnum_to_master(u16 bus_num) 2838 { 2839 struct device *dev; 2840 struct spi_controller *ctlr = NULL; 2841 2842 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2843 __spi_controller_match); 2844 if (dev) 2845 ctlr = container_of(dev, struct spi_controller, dev); 2846 /* reference got in class_find_device */ 2847 return ctlr; 2848 } 2849 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2850 2851 /*-------------------------------------------------------------------------*/ 2852 2853 /* Core methods for SPI resource management */ 2854 2855 /** 2856 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2857 * during the processing of a spi_message while using 2858 * spi_transfer_one 2859 * @spi: the spi device for which we allocate memory 2860 * @release: the release code to execute for this resource 2861 * @size: size to alloc and return 2862 * @gfp: GFP allocation flags 2863 * 2864 * Return: the pointer to the allocated data 2865 * 2866 * This may get enhanced in the future to allocate from a memory pool 2867 * of the @spi_device or @spi_controller to avoid repeated allocations. 2868 */ 2869 void *spi_res_alloc(struct spi_device *spi, 2870 spi_res_release_t release, 2871 size_t size, gfp_t gfp) 2872 { 2873 struct spi_res *sres; 2874 2875 sres = kzalloc(sizeof(*sres) + size, gfp); 2876 if (!sres) 2877 return NULL; 2878 2879 INIT_LIST_HEAD(&sres->entry); 2880 sres->release = release; 2881 2882 return sres->data; 2883 } 2884 EXPORT_SYMBOL_GPL(spi_res_alloc); 2885 2886 /** 2887 * spi_res_free - free an spi resource 2888 * @res: pointer to the custom data of a resource 2889 * 2890 */ 2891 void spi_res_free(void *res) 2892 { 2893 struct spi_res *sres = container_of(res, struct spi_res, data); 2894 2895 if (!res) 2896 return; 2897 2898 WARN_ON(!list_empty(&sres->entry)); 2899 kfree(sres); 2900 } 2901 EXPORT_SYMBOL_GPL(spi_res_free); 2902 2903 /** 2904 * spi_res_add - add a spi_res to the spi_message 2905 * @message: the spi message 2906 * @res: the spi_resource 2907 */ 2908 void spi_res_add(struct spi_message *message, void *res) 2909 { 2910 struct spi_res *sres = container_of(res, struct spi_res, data); 2911 2912 WARN_ON(!list_empty(&sres->entry)); 2913 list_add_tail(&sres->entry, &message->resources); 2914 } 2915 EXPORT_SYMBOL_GPL(spi_res_add); 2916 2917 /** 2918 * spi_res_release - release all spi resources for this message 2919 * @ctlr: the @spi_controller 2920 * @message: the @spi_message 2921 */ 2922 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 2923 { 2924 struct spi_res *res, *tmp; 2925 2926 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 2927 if (res->release) 2928 res->release(ctlr, message, res->data); 2929 2930 list_del(&res->entry); 2931 2932 kfree(res); 2933 } 2934 } 2935 EXPORT_SYMBOL_GPL(spi_res_release); 2936 2937 /*-------------------------------------------------------------------------*/ 2938 2939 /* Core methods for spi_message alterations */ 2940 2941 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 2942 struct spi_message *msg, 2943 void *res) 2944 { 2945 struct spi_replaced_transfers *rxfer = res; 2946 size_t i; 2947 2948 /* call extra callback if requested */ 2949 if (rxfer->release) 2950 rxfer->release(ctlr, msg, res); 2951 2952 /* insert replaced transfers back into the message */ 2953 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2954 2955 /* remove the formerly inserted entries */ 2956 for (i = 0; i < rxfer->inserted; i++) 2957 list_del(&rxfer->inserted_transfers[i].transfer_list); 2958 } 2959 2960 /** 2961 * spi_replace_transfers - replace transfers with several transfers 2962 * and register change with spi_message.resources 2963 * @msg: the spi_message we work upon 2964 * @xfer_first: the first spi_transfer we want to replace 2965 * @remove: number of transfers to remove 2966 * @insert: the number of transfers we want to insert instead 2967 * @release: extra release code necessary in some circumstances 2968 * @extradatasize: extra data to allocate (with alignment guarantees 2969 * of struct @spi_transfer) 2970 * @gfp: gfp flags 2971 * 2972 * Returns: pointer to @spi_replaced_transfers, 2973 * PTR_ERR(...) in case of errors. 2974 */ 2975 struct spi_replaced_transfers *spi_replace_transfers( 2976 struct spi_message *msg, 2977 struct spi_transfer *xfer_first, 2978 size_t remove, 2979 size_t insert, 2980 spi_replaced_release_t release, 2981 size_t extradatasize, 2982 gfp_t gfp) 2983 { 2984 struct spi_replaced_transfers *rxfer; 2985 struct spi_transfer *xfer; 2986 size_t i; 2987 2988 /* allocate the structure using spi_res */ 2989 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2990 struct_size(rxfer, inserted_transfers, insert) 2991 + extradatasize, 2992 gfp); 2993 if (!rxfer) 2994 return ERR_PTR(-ENOMEM); 2995 2996 /* the release code to invoke before running the generic release */ 2997 rxfer->release = release; 2998 2999 /* assign extradata */ 3000 if (extradatasize) 3001 rxfer->extradata = 3002 &rxfer->inserted_transfers[insert]; 3003 3004 /* init the replaced_transfers list */ 3005 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3006 3007 /* assign the list_entry after which we should reinsert 3008 * the @replaced_transfers - it may be spi_message.messages! 3009 */ 3010 rxfer->replaced_after = xfer_first->transfer_list.prev; 3011 3012 /* remove the requested number of transfers */ 3013 for (i = 0; i < remove; i++) { 3014 /* if the entry after replaced_after it is msg->transfers 3015 * then we have been requested to remove more transfers 3016 * than are in the list 3017 */ 3018 if (rxfer->replaced_after->next == &msg->transfers) { 3019 dev_err(&msg->spi->dev, 3020 "requested to remove more spi_transfers than are available\n"); 3021 /* insert replaced transfers back into the message */ 3022 list_splice(&rxfer->replaced_transfers, 3023 rxfer->replaced_after); 3024 3025 /* free the spi_replace_transfer structure */ 3026 spi_res_free(rxfer); 3027 3028 /* and return with an error */ 3029 return ERR_PTR(-EINVAL); 3030 } 3031 3032 /* remove the entry after replaced_after from list of 3033 * transfers and add it to list of replaced_transfers 3034 */ 3035 list_move_tail(rxfer->replaced_after->next, 3036 &rxfer->replaced_transfers); 3037 } 3038 3039 /* create copy of the given xfer with identical settings 3040 * based on the first transfer to get removed 3041 */ 3042 for (i = 0; i < insert; i++) { 3043 /* we need to run in reverse order */ 3044 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3045 3046 /* copy all spi_transfer data */ 3047 memcpy(xfer, xfer_first, sizeof(*xfer)); 3048 3049 /* add to list */ 3050 list_add(&xfer->transfer_list, rxfer->replaced_after); 3051 3052 /* clear cs_change and delay for all but the last */ 3053 if (i) { 3054 xfer->cs_change = false; 3055 xfer->delay_usecs = 0; 3056 xfer->delay.value = 0; 3057 } 3058 } 3059 3060 /* set up inserted */ 3061 rxfer->inserted = insert; 3062 3063 /* and register it with spi_res/spi_message */ 3064 spi_res_add(msg, rxfer); 3065 3066 return rxfer; 3067 } 3068 EXPORT_SYMBOL_GPL(spi_replace_transfers); 3069 3070 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3071 struct spi_message *msg, 3072 struct spi_transfer **xferp, 3073 size_t maxsize, 3074 gfp_t gfp) 3075 { 3076 struct spi_transfer *xfer = *xferp, *xfers; 3077 struct spi_replaced_transfers *srt; 3078 size_t offset; 3079 size_t count, i; 3080 3081 /* calculate how many we have to replace */ 3082 count = DIV_ROUND_UP(xfer->len, maxsize); 3083 3084 /* create replacement */ 3085 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3086 if (IS_ERR(srt)) 3087 return PTR_ERR(srt); 3088 xfers = srt->inserted_transfers; 3089 3090 /* now handle each of those newly inserted spi_transfers 3091 * note that the replacements spi_transfers all are preset 3092 * to the same values as *xferp, so tx_buf, rx_buf and len 3093 * are all identical (as well as most others) 3094 * so we just have to fix up len and the pointers. 3095 * 3096 * this also includes support for the depreciated 3097 * spi_message.is_dma_mapped interface 3098 */ 3099 3100 /* the first transfer just needs the length modified, so we 3101 * run it outside the loop 3102 */ 3103 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3104 3105 /* all the others need rx_buf/tx_buf also set */ 3106 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3107 /* update rx_buf, tx_buf and dma */ 3108 if (xfers[i].rx_buf) 3109 xfers[i].rx_buf += offset; 3110 if (xfers[i].rx_dma) 3111 xfers[i].rx_dma += offset; 3112 if (xfers[i].tx_buf) 3113 xfers[i].tx_buf += offset; 3114 if (xfers[i].tx_dma) 3115 xfers[i].tx_dma += offset; 3116 3117 /* update length */ 3118 xfers[i].len = min(maxsize, xfers[i].len - offset); 3119 } 3120 3121 /* we set up xferp to the last entry we have inserted, 3122 * so that we skip those already split transfers 3123 */ 3124 *xferp = &xfers[count - 1]; 3125 3126 /* increment statistics counters */ 3127 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3128 transfers_split_maxsize); 3129 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3130 transfers_split_maxsize); 3131 3132 return 0; 3133 } 3134 3135 /** 3136 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 3137 * when an individual transfer exceeds a 3138 * certain size 3139 * @ctlr: the @spi_controller for this transfer 3140 * @msg: the @spi_message to transform 3141 * @maxsize: the maximum when to apply this 3142 * @gfp: GFP allocation flags 3143 * 3144 * Return: status of transformation 3145 */ 3146 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3147 struct spi_message *msg, 3148 size_t maxsize, 3149 gfp_t gfp) 3150 { 3151 struct spi_transfer *xfer; 3152 int ret; 3153 3154 /* iterate over the transfer_list, 3155 * but note that xfer is advanced to the last transfer inserted 3156 * to avoid checking sizes again unnecessarily (also xfer does 3157 * potentiall belong to a different list by the time the 3158 * replacement has happened 3159 */ 3160 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3161 if (xfer->len > maxsize) { 3162 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3163 maxsize, gfp); 3164 if (ret) 3165 return ret; 3166 } 3167 } 3168 3169 return 0; 3170 } 3171 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3172 3173 /*-------------------------------------------------------------------------*/ 3174 3175 /* Core methods for SPI controller protocol drivers. Some of the 3176 * other core methods are currently defined as inline functions. 3177 */ 3178 3179 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3180 u8 bits_per_word) 3181 { 3182 if (ctlr->bits_per_word_mask) { 3183 /* Only 32 bits fit in the mask */ 3184 if (bits_per_word > 32) 3185 return -EINVAL; 3186 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3187 return -EINVAL; 3188 } 3189 3190 return 0; 3191 } 3192 3193 /** 3194 * spi_setup - setup SPI mode and clock rate 3195 * @spi: the device whose settings are being modified 3196 * Context: can sleep, and no requests are queued to the device 3197 * 3198 * SPI protocol drivers may need to update the transfer mode if the 3199 * device doesn't work with its default. They may likewise need 3200 * to update clock rates or word sizes from initial values. This function 3201 * changes those settings, and must be called from a context that can sleep. 3202 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3203 * effect the next time the device is selected and data is transferred to 3204 * or from it. When this function returns, the spi device is deselected. 3205 * 3206 * Note that this call will fail if the protocol driver specifies an option 3207 * that the underlying controller or its driver does not support. For 3208 * example, not all hardware supports wire transfers using nine bit words, 3209 * LSB-first wire encoding, or active-high chipselects. 3210 * 3211 * Return: zero on success, else a negative error code. 3212 */ 3213 int spi_setup(struct spi_device *spi) 3214 { 3215 unsigned bad_bits, ugly_bits; 3216 int status; 3217 3218 /* check mode to prevent that DUAL and QUAD set at the same time 3219 */ 3220 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 3221 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 3222 dev_err(&spi->dev, 3223 "setup: can not select dual and quad at the same time\n"); 3224 return -EINVAL; 3225 } 3226 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 3227 */ 3228 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3229 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3230 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3231 return -EINVAL; 3232 /* help drivers fail *cleanly* when they need options 3233 * that aren't supported with their current controller 3234 * SPI_CS_WORD has a fallback software implementation, 3235 * so it is ignored here. 3236 */ 3237 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD); 3238 /* nothing prevents from working with active-high CS in case if it 3239 * is driven by GPIO. 3240 */ 3241 if (gpio_is_valid(spi->cs_gpio)) 3242 bad_bits &= ~SPI_CS_HIGH; 3243 ugly_bits = bad_bits & 3244 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3245 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3246 if (ugly_bits) { 3247 dev_warn(&spi->dev, 3248 "setup: ignoring unsupported mode bits %x\n", 3249 ugly_bits); 3250 spi->mode &= ~ugly_bits; 3251 bad_bits &= ~ugly_bits; 3252 } 3253 if (bad_bits) { 3254 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3255 bad_bits); 3256 return -EINVAL; 3257 } 3258 3259 if (!spi->bits_per_word) 3260 spi->bits_per_word = 8; 3261 3262 status = __spi_validate_bits_per_word(spi->controller, 3263 spi->bits_per_word); 3264 if (status) 3265 return status; 3266 3267 if (!spi->max_speed_hz) 3268 spi->max_speed_hz = spi->controller->max_speed_hz; 3269 3270 if (spi->controller->setup) 3271 status = spi->controller->setup(spi); 3272 3273 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3274 status = pm_runtime_get_sync(spi->controller->dev.parent); 3275 if (status < 0) { 3276 pm_runtime_put_noidle(spi->controller->dev.parent); 3277 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3278 status); 3279 return status; 3280 } 3281 3282 /* 3283 * We do not want to return positive value from pm_runtime_get, 3284 * there are many instances of devices calling spi_setup() and 3285 * checking for a non-zero return value instead of a negative 3286 * return value. 3287 */ 3288 status = 0; 3289 3290 spi_set_cs(spi, false); 3291 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3292 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3293 } else { 3294 spi_set_cs(spi, false); 3295 } 3296 3297 if (spi->rt && !spi->controller->rt) { 3298 spi->controller->rt = true; 3299 spi_set_thread_rt(spi->controller); 3300 } 3301 3302 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3303 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 3304 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3305 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3306 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3307 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3308 spi->bits_per_word, spi->max_speed_hz, 3309 status); 3310 3311 return status; 3312 } 3313 EXPORT_SYMBOL_GPL(spi_setup); 3314 3315 /** 3316 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3317 * @spi: the device that requires specific CS timing configuration 3318 * @setup: CS setup time specified via @spi_delay 3319 * @hold: CS hold time specified via @spi_delay 3320 * @inactive: CS inactive delay between transfers specified via @spi_delay 3321 * 3322 * Return: zero on success, else a negative error code. 3323 */ 3324 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup, 3325 struct spi_delay *hold, struct spi_delay *inactive) 3326 { 3327 size_t len; 3328 3329 if (spi->controller->set_cs_timing) 3330 return spi->controller->set_cs_timing(spi, setup, hold, 3331 inactive); 3332 3333 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) || 3334 (hold && hold->unit == SPI_DELAY_UNIT_SCK) || 3335 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) { 3336 dev_err(&spi->dev, 3337 "Clock-cycle delays for CS not supported in SW mode\n"); 3338 return -ENOTSUPP; 3339 } 3340 3341 len = sizeof(struct spi_delay); 3342 3343 /* copy delays to controller */ 3344 if (setup) 3345 memcpy(&spi->controller->cs_setup, setup, len); 3346 else 3347 memset(&spi->controller->cs_setup, 0, len); 3348 3349 if (hold) 3350 memcpy(&spi->controller->cs_hold, hold, len); 3351 else 3352 memset(&spi->controller->cs_hold, 0, len); 3353 3354 if (inactive) 3355 memcpy(&spi->controller->cs_inactive, inactive, len); 3356 else 3357 memset(&spi->controller->cs_inactive, 0, len); 3358 3359 return 0; 3360 } 3361 EXPORT_SYMBOL_GPL(spi_set_cs_timing); 3362 3363 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3364 struct spi_device *spi) 3365 { 3366 int delay1, delay2; 3367 3368 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3369 if (delay1 < 0) 3370 return delay1; 3371 3372 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3373 if (delay2 < 0) 3374 return delay2; 3375 3376 if (delay1 < delay2) 3377 memcpy(&xfer->word_delay, &spi->word_delay, 3378 sizeof(xfer->word_delay)); 3379 3380 return 0; 3381 } 3382 3383 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3384 { 3385 struct spi_controller *ctlr = spi->controller; 3386 struct spi_transfer *xfer; 3387 int w_size; 3388 3389 if (list_empty(&message->transfers)) 3390 return -EINVAL; 3391 3392 /* If an SPI controller does not support toggling the CS line on each 3393 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3394 * for the CS line, we can emulate the CS-per-word hardware function by 3395 * splitting transfers into one-word transfers and ensuring that 3396 * cs_change is set for each transfer. 3397 */ 3398 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3399 spi->cs_gpiod || 3400 gpio_is_valid(spi->cs_gpio))) { 3401 size_t maxsize; 3402 int ret; 3403 3404 maxsize = (spi->bits_per_word + 7) / 8; 3405 3406 /* spi_split_transfers_maxsize() requires message->spi */ 3407 message->spi = spi; 3408 3409 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3410 GFP_KERNEL); 3411 if (ret) 3412 return ret; 3413 3414 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3415 /* don't change cs_change on the last entry in the list */ 3416 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3417 break; 3418 xfer->cs_change = 1; 3419 } 3420 } 3421 3422 /* Half-duplex links include original MicroWire, and ones with 3423 * only one data pin like SPI_3WIRE (switches direction) or where 3424 * either MOSI or MISO is missing. They can also be caused by 3425 * software limitations. 3426 */ 3427 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3428 (spi->mode & SPI_3WIRE)) { 3429 unsigned flags = ctlr->flags; 3430 3431 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3432 if (xfer->rx_buf && xfer->tx_buf) 3433 return -EINVAL; 3434 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3435 return -EINVAL; 3436 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3437 return -EINVAL; 3438 } 3439 } 3440 3441 /** 3442 * Set transfer bits_per_word and max speed as spi device default if 3443 * it is not set for this transfer. 3444 * Set transfer tx_nbits and rx_nbits as single transfer default 3445 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3446 * Ensure transfer word_delay is at least as long as that required by 3447 * device itself. 3448 */ 3449 message->frame_length = 0; 3450 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3451 xfer->effective_speed_hz = 0; 3452 message->frame_length += xfer->len; 3453 if (!xfer->bits_per_word) 3454 xfer->bits_per_word = spi->bits_per_word; 3455 3456 if (!xfer->speed_hz) 3457 xfer->speed_hz = spi->max_speed_hz; 3458 3459 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3460 xfer->speed_hz = ctlr->max_speed_hz; 3461 3462 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3463 return -EINVAL; 3464 3465 /* 3466 * SPI transfer length should be multiple of SPI word size 3467 * where SPI word size should be power-of-two multiple 3468 */ 3469 if (xfer->bits_per_word <= 8) 3470 w_size = 1; 3471 else if (xfer->bits_per_word <= 16) 3472 w_size = 2; 3473 else 3474 w_size = 4; 3475 3476 /* No partial transfers accepted */ 3477 if (xfer->len % w_size) 3478 return -EINVAL; 3479 3480 if (xfer->speed_hz && ctlr->min_speed_hz && 3481 xfer->speed_hz < ctlr->min_speed_hz) 3482 return -EINVAL; 3483 3484 if (xfer->tx_buf && !xfer->tx_nbits) 3485 xfer->tx_nbits = SPI_NBITS_SINGLE; 3486 if (xfer->rx_buf && !xfer->rx_nbits) 3487 xfer->rx_nbits = SPI_NBITS_SINGLE; 3488 /* check transfer tx/rx_nbits: 3489 * 1. check the value matches one of single, dual and quad 3490 * 2. check tx/rx_nbits match the mode in spi_device 3491 */ 3492 if (xfer->tx_buf) { 3493 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3494 xfer->tx_nbits != SPI_NBITS_DUAL && 3495 xfer->tx_nbits != SPI_NBITS_QUAD) 3496 return -EINVAL; 3497 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3498 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3499 return -EINVAL; 3500 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3501 !(spi->mode & SPI_TX_QUAD)) 3502 return -EINVAL; 3503 } 3504 /* check transfer rx_nbits */ 3505 if (xfer->rx_buf) { 3506 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3507 xfer->rx_nbits != SPI_NBITS_DUAL && 3508 xfer->rx_nbits != SPI_NBITS_QUAD) 3509 return -EINVAL; 3510 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3511 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3512 return -EINVAL; 3513 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3514 !(spi->mode & SPI_RX_QUAD)) 3515 return -EINVAL; 3516 } 3517 3518 if (_spi_xfer_word_delay_update(xfer, spi)) 3519 return -EINVAL; 3520 } 3521 3522 message->status = -EINPROGRESS; 3523 3524 return 0; 3525 } 3526 3527 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3528 { 3529 struct spi_controller *ctlr = spi->controller; 3530 struct spi_transfer *xfer; 3531 3532 /* 3533 * Some controllers do not support doing regular SPI transfers. Return 3534 * ENOTSUPP when this is the case. 3535 */ 3536 if (!ctlr->transfer) 3537 return -ENOTSUPP; 3538 3539 message->spi = spi; 3540 3541 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3542 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3543 3544 trace_spi_message_submit(message); 3545 3546 if (!ctlr->ptp_sts_supported) { 3547 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3548 xfer->ptp_sts_word_pre = 0; 3549 ptp_read_system_prets(xfer->ptp_sts); 3550 } 3551 } 3552 3553 return ctlr->transfer(spi, message); 3554 } 3555 3556 /** 3557 * spi_async - asynchronous SPI transfer 3558 * @spi: device with which data will be exchanged 3559 * @message: describes the data transfers, including completion callback 3560 * Context: any (irqs may be blocked, etc) 3561 * 3562 * This call may be used in_irq and other contexts which can't sleep, 3563 * as well as from task contexts which can sleep. 3564 * 3565 * The completion callback is invoked in a context which can't sleep. 3566 * Before that invocation, the value of message->status is undefined. 3567 * When the callback is issued, message->status holds either zero (to 3568 * indicate complete success) or a negative error code. After that 3569 * callback returns, the driver which issued the transfer request may 3570 * deallocate the associated memory; it's no longer in use by any SPI 3571 * core or controller driver code. 3572 * 3573 * Note that although all messages to a spi_device are handled in 3574 * FIFO order, messages may go to different devices in other orders. 3575 * Some device might be higher priority, or have various "hard" access 3576 * time requirements, for example. 3577 * 3578 * On detection of any fault during the transfer, processing of 3579 * the entire message is aborted, and the device is deselected. 3580 * Until returning from the associated message completion callback, 3581 * no other spi_message queued to that device will be processed. 3582 * (This rule applies equally to all the synchronous transfer calls, 3583 * which are wrappers around this core asynchronous primitive.) 3584 * 3585 * Return: zero on success, else a negative error code. 3586 */ 3587 int spi_async(struct spi_device *spi, struct spi_message *message) 3588 { 3589 struct spi_controller *ctlr = spi->controller; 3590 int ret; 3591 unsigned long flags; 3592 3593 ret = __spi_validate(spi, message); 3594 if (ret != 0) 3595 return ret; 3596 3597 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3598 3599 if (ctlr->bus_lock_flag) 3600 ret = -EBUSY; 3601 else 3602 ret = __spi_async(spi, message); 3603 3604 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3605 3606 return ret; 3607 } 3608 EXPORT_SYMBOL_GPL(spi_async); 3609 3610 /** 3611 * spi_async_locked - version of spi_async with exclusive bus usage 3612 * @spi: device with which data will be exchanged 3613 * @message: describes the data transfers, including completion callback 3614 * Context: any (irqs may be blocked, etc) 3615 * 3616 * This call may be used in_irq and other contexts which can't sleep, 3617 * as well as from task contexts which can sleep. 3618 * 3619 * The completion callback is invoked in a context which can't sleep. 3620 * Before that invocation, the value of message->status is undefined. 3621 * When the callback is issued, message->status holds either zero (to 3622 * indicate complete success) or a negative error code. After that 3623 * callback returns, the driver which issued the transfer request may 3624 * deallocate the associated memory; it's no longer in use by any SPI 3625 * core or controller driver code. 3626 * 3627 * Note that although all messages to a spi_device are handled in 3628 * FIFO order, messages may go to different devices in other orders. 3629 * Some device might be higher priority, or have various "hard" access 3630 * time requirements, for example. 3631 * 3632 * On detection of any fault during the transfer, processing of 3633 * the entire message is aborted, and the device is deselected. 3634 * Until returning from the associated message completion callback, 3635 * no other spi_message queued to that device will be processed. 3636 * (This rule applies equally to all the synchronous transfer calls, 3637 * which are wrappers around this core asynchronous primitive.) 3638 * 3639 * Return: zero on success, else a negative error code. 3640 */ 3641 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3642 { 3643 struct spi_controller *ctlr = spi->controller; 3644 int ret; 3645 unsigned long flags; 3646 3647 ret = __spi_validate(spi, message); 3648 if (ret != 0) 3649 return ret; 3650 3651 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3652 3653 ret = __spi_async(spi, message); 3654 3655 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3656 3657 return ret; 3658 3659 } 3660 EXPORT_SYMBOL_GPL(spi_async_locked); 3661 3662 /*-------------------------------------------------------------------------*/ 3663 3664 /* Utility methods for SPI protocol drivers, layered on 3665 * top of the core. Some other utility methods are defined as 3666 * inline functions. 3667 */ 3668 3669 static void spi_complete(void *arg) 3670 { 3671 complete(arg); 3672 } 3673 3674 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3675 { 3676 DECLARE_COMPLETION_ONSTACK(done); 3677 int status; 3678 struct spi_controller *ctlr = spi->controller; 3679 unsigned long flags; 3680 3681 status = __spi_validate(spi, message); 3682 if (status != 0) 3683 return status; 3684 3685 message->complete = spi_complete; 3686 message->context = &done; 3687 message->spi = spi; 3688 3689 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3690 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3691 3692 /* If we're not using the legacy transfer method then we will 3693 * try to transfer in the calling context so special case. 3694 * This code would be less tricky if we could remove the 3695 * support for driver implemented message queues. 3696 */ 3697 if (ctlr->transfer == spi_queued_transfer) { 3698 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3699 3700 trace_spi_message_submit(message); 3701 3702 status = __spi_queued_transfer(spi, message, false); 3703 3704 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3705 } else { 3706 status = spi_async_locked(spi, message); 3707 } 3708 3709 if (status == 0) { 3710 /* Push out the messages in the calling context if we 3711 * can. 3712 */ 3713 if (ctlr->transfer == spi_queued_transfer) { 3714 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3715 spi_sync_immediate); 3716 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3717 spi_sync_immediate); 3718 __spi_pump_messages(ctlr, false); 3719 } 3720 3721 wait_for_completion(&done); 3722 status = message->status; 3723 } 3724 message->context = NULL; 3725 return status; 3726 } 3727 3728 /** 3729 * spi_sync - blocking/synchronous SPI data transfers 3730 * @spi: device with which data will be exchanged 3731 * @message: describes the data transfers 3732 * Context: can sleep 3733 * 3734 * This call may only be used from a context that may sleep. The sleep 3735 * is non-interruptible, and has no timeout. Low-overhead controller 3736 * drivers may DMA directly into and out of the message buffers. 3737 * 3738 * Note that the SPI device's chip select is active during the message, 3739 * and then is normally disabled between messages. Drivers for some 3740 * frequently-used devices may want to minimize costs of selecting a chip, 3741 * by leaving it selected in anticipation that the next message will go 3742 * to the same chip. (That may increase power usage.) 3743 * 3744 * Also, the caller is guaranteeing that the memory associated with the 3745 * message will not be freed before this call returns. 3746 * 3747 * Return: zero on success, else a negative error code. 3748 */ 3749 int spi_sync(struct spi_device *spi, struct spi_message *message) 3750 { 3751 int ret; 3752 3753 mutex_lock(&spi->controller->bus_lock_mutex); 3754 ret = __spi_sync(spi, message); 3755 mutex_unlock(&spi->controller->bus_lock_mutex); 3756 3757 return ret; 3758 } 3759 EXPORT_SYMBOL_GPL(spi_sync); 3760 3761 /** 3762 * spi_sync_locked - version of spi_sync with exclusive bus usage 3763 * @spi: device with which data will be exchanged 3764 * @message: describes the data transfers 3765 * Context: can sleep 3766 * 3767 * This call may only be used from a context that may sleep. The sleep 3768 * is non-interruptible, and has no timeout. Low-overhead controller 3769 * drivers may DMA directly into and out of the message buffers. 3770 * 3771 * This call should be used by drivers that require exclusive access to the 3772 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 3773 * be released by a spi_bus_unlock call when the exclusive access is over. 3774 * 3775 * Return: zero on success, else a negative error code. 3776 */ 3777 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 3778 { 3779 return __spi_sync(spi, message); 3780 } 3781 EXPORT_SYMBOL_GPL(spi_sync_locked); 3782 3783 /** 3784 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 3785 * @ctlr: SPI bus master that should be locked for exclusive bus access 3786 * Context: can sleep 3787 * 3788 * This call may only be used from a context that may sleep. The sleep 3789 * is non-interruptible, and has no timeout. 3790 * 3791 * This call should be used by drivers that require exclusive access to the 3792 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 3793 * exclusive access is over. Data transfer must be done by spi_sync_locked 3794 * and spi_async_locked calls when the SPI bus lock is held. 3795 * 3796 * Return: always zero. 3797 */ 3798 int spi_bus_lock(struct spi_controller *ctlr) 3799 { 3800 unsigned long flags; 3801 3802 mutex_lock(&ctlr->bus_lock_mutex); 3803 3804 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3805 ctlr->bus_lock_flag = 1; 3806 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3807 3808 /* mutex remains locked until spi_bus_unlock is called */ 3809 3810 return 0; 3811 } 3812 EXPORT_SYMBOL_GPL(spi_bus_lock); 3813 3814 /** 3815 * spi_bus_unlock - release the lock for exclusive SPI bus usage 3816 * @ctlr: SPI bus master that was locked for exclusive bus access 3817 * Context: can sleep 3818 * 3819 * This call may only be used from a context that may sleep. The sleep 3820 * is non-interruptible, and has no timeout. 3821 * 3822 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 3823 * call. 3824 * 3825 * Return: always zero. 3826 */ 3827 int spi_bus_unlock(struct spi_controller *ctlr) 3828 { 3829 ctlr->bus_lock_flag = 0; 3830 3831 mutex_unlock(&ctlr->bus_lock_mutex); 3832 3833 return 0; 3834 } 3835 EXPORT_SYMBOL_GPL(spi_bus_unlock); 3836 3837 /* portable code must never pass more than 32 bytes */ 3838 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 3839 3840 static u8 *buf; 3841 3842 /** 3843 * spi_write_then_read - SPI synchronous write followed by read 3844 * @spi: device with which data will be exchanged 3845 * @txbuf: data to be written (need not be dma-safe) 3846 * @n_tx: size of txbuf, in bytes 3847 * @rxbuf: buffer into which data will be read (need not be dma-safe) 3848 * @n_rx: size of rxbuf, in bytes 3849 * Context: can sleep 3850 * 3851 * This performs a half duplex MicroWire style transaction with the 3852 * device, sending txbuf and then reading rxbuf. The return value 3853 * is zero for success, else a negative errno status code. 3854 * This call may only be used from a context that may sleep. 3855 * 3856 * Parameters to this routine are always copied using a small buffer; 3857 * portable code should never use this for more than 32 bytes. 3858 * Performance-sensitive or bulk transfer code should instead use 3859 * spi_{async,sync}() calls with dma-safe buffers. 3860 * 3861 * Return: zero on success, else a negative error code. 3862 */ 3863 int spi_write_then_read(struct spi_device *spi, 3864 const void *txbuf, unsigned n_tx, 3865 void *rxbuf, unsigned n_rx) 3866 { 3867 static DEFINE_MUTEX(lock); 3868 3869 int status; 3870 struct spi_message message; 3871 struct spi_transfer x[2]; 3872 u8 *local_buf; 3873 3874 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3875 * copying here, (as a pure convenience thing), but we can 3876 * keep heap costs out of the hot path unless someone else is 3877 * using the pre-allocated buffer or the transfer is too large. 3878 */ 3879 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3880 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3881 GFP_KERNEL | GFP_DMA); 3882 if (!local_buf) 3883 return -ENOMEM; 3884 } else { 3885 local_buf = buf; 3886 } 3887 3888 spi_message_init(&message); 3889 memset(x, 0, sizeof(x)); 3890 if (n_tx) { 3891 x[0].len = n_tx; 3892 spi_message_add_tail(&x[0], &message); 3893 } 3894 if (n_rx) { 3895 x[1].len = n_rx; 3896 spi_message_add_tail(&x[1], &message); 3897 } 3898 3899 memcpy(local_buf, txbuf, n_tx); 3900 x[0].tx_buf = local_buf; 3901 x[1].rx_buf = local_buf + n_tx; 3902 3903 /* do the i/o */ 3904 status = spi_sync(spi, &message); 3905 if (status == 0) 3906 memcpy(rxbuf, x[1].rx_buf, n_rx); 3907 3908 if (x[0].tx_buf == buf) 3909 mutex_unlock(&lock); 3910 else 3911 kfree(local_buf); 3912 3913 return status; 3914 } 3915 EXPORT_SYMBOL_GPL(spi_write_then_read); 3916 3917 /*-------------------------------------------------------------------------*/ 3918 3919 #if IS_ENABLED(CONFIG_OF) 3920 /* must call put_device() when done with returned spi_device device */ 3921 struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3922 { 3923 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 3924 3925 return dev ? to_spi_device(dev) : NULL; 3926 } 3927 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node); 3928 #endif /* IS_ENABLED(CONFIG_OF) */ 3929 3930 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3931 /* the spi controllers are not using spi_bus, so we find it with another way */ 3932 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 3933 { 3934 struct device *dev; 3935 3936 dev = class_find_device_by_of_node(&spi_master_class, node); 3937 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 3938 dev = class_find_device_by_of_node(&spi_slave_class, node); 3939 if (!dev) 3940 return NULL; 3941 3942 /* reference got in class_find_device */ 3943 return container_of(dev, struct spi_controller, dev); 3944 } 3945 3946 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3947 void *arg) 3948 { 3949 struct of_reconfig_data *rd = arg; 3950 struct spi_controller *ctlr; 3951 struct spi_device *spi; 3952 3953 switch (of_reconfig_get_state_change(action, arg)) { 3954 case OF_RECONFIG_CHANGE_ADD: 3955 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 3956 if (ctlr == NULL) 3957 return NOTIFY_OK; /* not for us */ 3958 3959 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3960 put_device(&ctlr->dev); 3961 return NOTIFY_OK; 3962 } 3963 3964 spi = of_register_spi_device(ctlr, rd->dn); 3965 put_device(&ctlr->dev); 3966 3967 if (IS_ERR(spi)) { 3968 pr_err("%s: failed to create for '%pOF'\n", 3969 __func__, rd->dn); 3970 of_node_clear_flag(rd->dn, OF_POPULATED); 3971 return notifier_from_errno(PTR_ERR(spi)); 3972 } 3973 break; 3974 3975 case OF_RECONFIG_CHANGE_REMOVE: 3976 /* already depopulated? */ 3977 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3978 return NOTIFY_OK; 3979 3980 /* find our device by node */ 3981 spi = of_find_spi_device_by_node(rd->dn); 3982 if (spi == NULL) 3983 return NOTIFY_OK; /* no? not meant for us */ 3984 3985 /* unregister takes one ref away */ 3986 spi_unregister_device(spi); 3987 3988 /* and put the reference of the find */ 3989 put_device(&spi->dev); 3990 break; 3991 } 3992 3993 return NOTIFY_OK; 3994 } 3995 3996 static struct notifier_block spi_of_notifier = { 3997 .notifier_call = of_spi_notify, 3998 }; 3999 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4000 extern struct notifier_block spi_of_notifier; 4001 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4002 4003 #if IS_ENABLED(CONFIG_ACPI) 4004 static int spi_acpi_controller_match(struct device *dev, const void *data) 4005 { 4006 return ACPI_COMPANION(dev->parent) == data; 4007 } 4008 4009 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4010 { 4011 struct device *dev; 4012 4013 dev = class_find_device(&spi_master_class, NULL, adev, 4014 spi_acpi_controller_match); 4015 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4016 dev = class_find_device(&spi_slave_class, NULL, adev, 4017 spi_acpi_controller_match); 4018 if (!dev) 4019 return NULL; 4020 4021 return container_of(dev, struct spi_controller, dev); 4022 } 4023 4024 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4025 { 4026 struct device *dev; 4027 4028 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4029 return to_spi_device(dev); 4030 } 4031 4032 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4033 void *arg) 4034 { 4035 struct acpi_device *adev = arg; 4036 struct spi_controller *ctlr; 4037 struct spi_device *spi; 4038 4039 switch (value) { 4040 case ACPI_RECONFIG_DEVICE_ADD: 4041 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4042 if (!ctlr) 4043 break; 4044 4045 acpi_register_spi_device(ctlr, adev); 4046 put_device(&ctlr->dev); 4047 break; 4048 case ACPI_RECONFIG_DEVICE_REMOVE: 4049 if (!acpi_device_enumerated(adev)) 4050 break; 4051 4052 spi = acpi_spi_find_device_by_adev(adev); 4053 if (!spi) 4054 break; 4055 4056 spi_unregister_device(spi); 4057 put_device(&spi->dev); 4058 break; 4059 } 4060 4061 return NOTIFY_OK; 4062 } 4063 4064 static struct notifier_block spi_acpi_notifier = { 4065 .notifier_call = acpi_spi_notify, 4066 }; 4067 #else 4068 extern struct notifier_block spi_acpi_notifier; 4069 #endif 4070 4071 static int __init spi_init(void) 4072 { 4073 int status; 4074 4075 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4076 if (!buf) { 4077 status = -ENOMEM; 4078 goto err0; 4079 } 4080 4081 status = bus_register(&spi_bus_type); 4082 if (status < 0) 4083 goto err1; 4084 4085 status = class_register(&spi_master_class); 4086 if (status < 0) 4087 goto err2; 4088 4089 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4090 status = class_register(&spi_slave_class); 4091 if (status < 0) 4092 goto err3; 4093 } 4094 4095 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4096 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4097 if (IS_ENABLED(CONFIG_ACPI)) 4098 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4099 4100 return 0; 4101 4102 err3: 4103 class_unregister(&spi_master_class); 4104 err2: 4105 bus_unregister(&spi_bus_type); 4106 err1: 4107 kfree(buf); 4108 buf = NULL; 4109 err0: 4110 return status; 4111 } 4112 4113 /* board_info is normally registered in arch_initcall(), 4114 * but even essential drivers wait till later 4115 * 4116 * REVISIT only boardinfo really needs static linking. the rest (device and 4117 * driver registration) _could_ be dynamically linked (modular) ... costs 4118 * include needing to have boardinfo data structures be much more public. 4119 */ 4120 postcore_initcall(spi_init); 4121