xref: /linux/drivers/spi/spi.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/spi/spi.h>
27 
28 
29 /* SPI bustype and spi_master class are registered after board init code
30  * provides the SPI device tables, ensuring that both are present by the
31  * time controller driver registration causes spi_devices to "enumerate".
32  */
33 static void spidev_release(struct device *dev)
34 {
35 	struct spi_device	*spi = to_spi_device(dev);
36 
37 	/* spi masters may cleanup for released devices */
38 	if (spi->master->cleanup)
39 		spi->master->cleanup(spi);
40 
41 	spi_master_put(spi->master);
42 	kfree(dev);
43 }
44 
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
47 {
48 	const struct spi_device	*spi = to_spi_device(dev);
49 
50 	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
51 }
52 
53 static struct device_attribute spi_dev_attrs[] = {
54 	__ATTR_RO(modalias),
55 	__ATTR_NULL,
56 };
57 
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59  * and the sysfs version makes coldplug work too.
60  */
61 
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
63 {
64 	const struct spi_device	*spi = to_spi_device(dev);
65 
66 	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
67 }
68 
69 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
70 {
71 	const struct spi_device		*spi = to_spi_device(dev);
72 
73 	add_uevent_var(env, "MODALIAS=%s", spi->modalias);
74 	return 0;
75 }
76 
77 #ifdef	CONFIG_PM
78 
79 static int spi_suspend(struct device *dev, pm_message_t message)
80 {
81 	int			value = 0;
82 	struct spi_driver	*drv = to_spi_driver(dev->driver);
83 
84 	/* suspend will stop irqs and dma; no more i/o */
85 	if (drv) {
86 		if (drv->suspend)
87 			value = drv->suspend(to_spi_device(dev), message);
88 		else
89 			dev_dbg(dev, "... can't suspend\n");
90 	}
91 	return value;
92 }
93 
94 static int spi_resume(struct device *dev)
95 {
96 	int			value = 0;
97 	struct spi_driver	*drv = to_spi_driver(dev->driver);
98 
99 	/* resume may restart the i/o queue */
100 	if (drv) {
101 		if (drv->resume)
102 			value = drv->resume(to_spi_device(dev));
103 		else
104 			dev_dbg(dev, "... can't resume\n");
105 	}
106 	return value;
107 }
108 
109 #else
110 #define spi_suspend	NULL
111 #define spi_resume	NULL
112 #endif
113 
114 struct bus_type spi_bus_type = {
115 	.name		= "spi",
116 	.dev_attrs	= spi_dev_attrs,
117 	.match		= spi_match_device,
118 	.uevent		= spi_uevent,
119 	.suspend	= spi_suspend,
120 	.resume		= spi_resume,
121 };
122 EXPORT_SYMBOL_GPL(spi_bus_type);
123 
124 
125 static int spi_drv_probe(struct device *dev)
126 {
127 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
128 
129 	return sdrv->probe(to_spi_device(dev));
130 }
131 
132 static int spi_drv_remove(struct device *dev)
133 {
134 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
135 
136 	return sdrv->remove(to_spi_device(dev));
137 }
138 
139 static void spi_drv_shutdown(struct device *dev)
140 {
141 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
142 
143 	sdrv->shutdown(to_spi_device(dev));
144 }
145 
146 /**
147  * spi_register_driver - register a SPI driver
148  * @sdrv: the driver to register
149  * Context: can sleep
150  */
151 int spi_register_driver(struct spi_driver *sdrv)
152 {
153 	sdrv->driver.bus = &spi_bus_type;
154 	if (sdrv->probe)
155 		sdrv->driver.probe = spi_drv_probe;
156 	if (sdrv->remove)
157 		sdrv->driver.remove = spi_drv_remove;
158 	if (sdrv->shutdown)
159 		sdrv->driver.shutdown = spi_drv_shutdown;
160 	return driver_register(&sdrv->driver);
161 }
162 EXPORT_SYMBOL_GPL(spi_register_driver);
163 
164 /*-------------------------------------------------------------------------*/
165 
166 /* SPI devices should normally not be created by SPI device drivers; that
167  * would make them board-specific.  Similarly with SPI master drivers.
168  * Device registration normally goes into like arch/.../mach.../board-YYY.c
169  * with other readonly (flashable) information about mainboard devices.
170  */
171 
172 struct boardinfo {
173 	struct list_head	list;
174 	unsigned		n_board_info;
175 	struct spi_board_info	board_info[0];
176 };
177 
178 static LIST_HEAD(board_list);
179 static DEFINE_MUTEX(board_lock);
180 
181 /**
182  * spi_alloc_device - Allocate a new SPI device
183  * @master: Controller to which device is connected
184  * Context: can sleep
185  *
186  * Allows a driver to allocate and initialize a spi_device without
187  * registering it immediately.  This allows a driver to directly
188  * fill the spi_device with device parameters before calling
189  * spi_add_device() on it.
190  *
191  * Caller is responsible to call spi_add_device() on the returned
192  * spi_device structure to add it to the SPI master.  If the caller
193  * needs to discard the spi_device without adding it, then it should
194  * call spi_dev_put() on it.
195  *
196  * Returns a pointer to the new device, or NULL.
197  */
198 struct spi_device *spi_alloc_device(struct spi_master *master)
199 {
200 	struct spi_device	*spi;
201 	struct device		*dev = master->dev.parent;
202 
203 	if (!spi_master_get(master))
204 		return NULL;
205 
206 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
207 	if (!spi) {
208 		dev_err(dev, "cannot alloc spi_device\n");
209 		spi_master_put(master);
210 		return NULL;
211 	}
212 
213 	spi->master = master;
214 	spi->dev.parent = dev;
215 	spi->dev.bus = &spi_bus_type;
216 	spi->dev.release = spidev_release;
217 	device_initialize(&spi->dev);
218 	return spi;
219 }
220 EXPORT_SYMBOL_GPL(spi_alloc_device);
221 
222 /**
223  * spi_add_device - Add spi_device allocated with spi_alloc_device
224  * @spi: spi_device to register
225  *
226  * Companion function to spi_alloc_device.  Devices allocated with
227  * spi_alloc_device can be added onto the spi bus with this function.
228  *
229  * Returns 0 on success; negative errno on failure
230  */
231 int spi_add_device(struct spi_device *spi)
232 {
233 	static DEFINE_MUTEX(spi_add_lock);
234 	struct device *dev = spi->master->dev.parent;
235 	int status;
236 
237 	/* Chipselects are numbered 0..max; validate. */
238 	if (spi->chip_select >= spi->master->num_chipselect) {
239 		dev_err(dev, "cs%d >= max %d\n",
240 			spi->chip_select,
241 			spi->master->num_chipselect);
242 		return -EINVAL;
243 	}
244 
245 	/* Set the bus ID string */
246 	snprintf(spi->dev.bus_id, sizeof spi->dev.bus_id,
247 			"%s.%u", spi->master->dev.bus_id,
248 			spi->chip_select);
249 
250 
251 	/* We need to make sure there's no other device with this
252 	 * chipselect **BEFORE** we call setup(), else we'll trash
253 	 * its configuration.  Lock against concurrent add() calls.
254 	 */
255 	mutex_lock(&spi_add_lock);
256 
257 	if (bus_find_device_by_name(&spi_bus_type, NULL, spi->dev.bus_id)
258 			!= NULL) {
259 		dev_err(dev, "chipselect %d already in use\n",
260 				spi->chip_select);
261 		status = -EBUSY;
262 		goto done;
263 	}
264 
265 	/* Drivers may modify this initial i/o setup, but will
266 	 * normally rely on the device being setup.  Devices
267 	 * using SPI_CS_HIGH can't coexist well otherwise...
268 	 */
269 	status = spi->master->setup(spi);
270 	if (status < 0) {
271 		dev_err(dev, "can't %s %s, status %d\n",
272 				"setup", spi->dev.bus_id, status);
273 		goto done;
274 	}
275 
276 	/* Device may be bound to an active driver when this returns */
277 	status = device_add(&spi->dev);
278 	if (status < 0)
279 		dev_err(dev, "can't %s %s, status %d\n",
280 				"add", spi->dev.bus_id, status);
281 	else
282 		dev_dbg(dev, "registered child %s\n", spi->dev.bus_id);
283 
284 done:
285 	mutex_unlock(&spi_add_lock);
286 	return status;
287 }
288 EXPORT_SYMBOL_GPL(spi_add_device);
289 
290 /**
291  * spi_new_device - instantiate one new SPI device
292  * @master: Controller to which device is connected
293  * @chip: Describes the SPI device
294  * Context: can sleep
295  *
296  * On typical mainboards, this is purely internal; and it's not needed
297  * after board init creates the hard-wired devices.  Some development
298  * platforms may not be able to use spi_register_board_info though, and
299  * this is exported so that for example a USB or parport based adapter
300  * driver could add devices (which it would learn about out-of-band).
301  *
302  * Returns the new device, or NULL.
303  */
304 struct spi_device *spi_new_device(struct spi_master *master,
305 				  struct spi_board_info *chip)
306 {
307 	struct spi_device	*proxy;
308 	int			status;
309 
310 	/* NOTE:  caller did any chip->bus_num checks necessary.
311 	 *
312 	 * Also, unless we change the return value convention to use
313 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
314 	 * suggests syslogged diagnostics are best here (ugh).
315 	 */
316 
317 	proxy = spi_alloc_device(master);
318 	if (!proxy)
319 		return NULL;
320 
321 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
322 
323 	proxy->chip_select = chip->chip_select;
324 	proxy->max_speed_hz = chip->max_speed_hz;
325 	proxy->mode = chip->mode;
326 	proxy->irq = chip->irq;
327 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
328 	proxy->dev.platform_data = (void *) chip->platform_data;
329 	proxy->controller_data = chip->controller_data;
330 	proxy->controller_state = NULL;
331 
332 	status = spi_add_device(proxy);
333 	if (status < 0) {
334 		spi_dev_put(proxy);
335 		return NULL;
336 	}
337 
338 	return proxy;
339 }
340 EXPORT_SYMBOL_GPL(spi_new_device);
341 
342 /**
343  * spi_register_board_info - register SPI devices for a given board
344  * @info: array of chip descriptors
345  * @n: how many descriptors are provided
346  * Context: can sleep
347  *
348  * Board-specific early init code calls this (probably during arch_initcall)
349  * with segments of the SPI device table.  Any device nodes are created later,
350  * after the relevant parent SPI controller (bus_num) is defined.  We keep
351  * this table of devices forever, so that reloading a controller driver will
352  * not make Linux forget about these hard-wired devices.
353  *
354  * Other code can also call this, e.g. a particular add-on board might provide
355  * SPI devices through its expansion connector, so code initializing that board
356  * would naturally declare its SPI devices.
357  *
358  * The board info passed can safely be __initdata ... but be careful of
359  * any embedded pointers (platform_data, etc), they're copied as-is.
360  */
361 int __init
362 spi_register_board_info(struct spi_board_info const *info, unsigned n)
363 {
364 	struct boardinfo	*bi;
365 
366 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
367 	if (!bi)
368 		return -ENOMEM;
369 	bi->n_board_info = n;
370 	memcpy(bi->board_info, info, n * sizeof *info);
371 
372 	mutex_lock(&board_lock);
373 	list_add_tail(&bi->list, &board_list);
374 	mutex_unlock(&board_lock);
375 	return 0;
376 }
377 
378 /* FIXME someone should add support for a __setup("spi", ...) that
379  * creates board info from kernel command lines
380  */
381 
382 static void scan_boardinfo(struct spi_master *master)
383 {
384 	struct boardinfo	*bi;
385 
386 	mutex_lock(&board_lock);
387 	list_for_each_entry(bi, &board_list, list) {
388 		struct spi_board_info	*chip = bi->board_info;
389 		unsigned		n;
390 
391 		for (n = bi->n_board_info; n > 0; n--, chip++) {
392 			if (chip->bus_num != master->bus_num)
393 				continue;
394 			/* NOTE: this relies on spi_new_device to
395 			 * issue diagnostics when given bogus inputs
396 			 */
397 			(void) spi_new_device(master, chip);
398 		}
399 	}
400 	mutex_unlock(&board_lock);
401 }
402 
403 /*-------------------------------------------------------------------------*/
404 
405 static void spi_master_release(struct device *dev)
406 {
407 	struct spi_master *master;
408 
409 	master = container_of(dev, struct spi_master, dev);
410 	kfree(master);
411 }
412 
413 static struct class spi_master_class = {
414 	.name		= "spi_master",
415 	.owner		= THIS_MODULE,
416 	.dev_release	= spi_master_release,
417 };
418 
419 
420 /**
421  * spi_alloc_master - allocate SPI master controller
422  * @dev: the controller, possibly using the platform_bus
423  * @size: how much zeroed driver-private data to allocate; the pointer to this
424  *	memory is in the driver_data field of the returned device,
425  *	accessible with spi_master_get_devdata().
426  * Context: can sleep
427  *
428  * This call is used only by SPI master controller drivers, which are the
429  * only ones directly touching chip registers.  It's how they allocate
430  * an spi_master structure, prior to calling spi_register_master().
431  *
432  * This must be called from context that can sleep.  It returns the SPI
433  * master structure on success, else NULL.
434  *
435  * The caller is responsible for assigning the bus number and initializing
436  * the master's methods before calling spi_register_master(); and (after errors
437  * adding the device) calling spi_master_put() to prevent a memory leak.
438  */
439 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
440 {
441 	struct spi_master	*master;
442 
443 	if (!dev)
444 		return NULL;
445 
446 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
447 	if (!master)
448 		return NULL;
449 
450 	device_initialize(&master->dev);
451 	master->dev.class = &spi_master_class;
452 	master->dev.parent = get_device(dev);
453 	spi_master_set_devdata(master, &master[1]);
454 
455 	return master;
456 }
457 EXPORT_SYMBOL_GPL(spi_alloc_master);
458 
459 /**
460  * spi_register_master - register SPI master controller
461  * @master: initialized master, originally from spi_alloc_master()
462  * Context: can sleep
463  *
464  * SPI master controllers connect to their drivers using some non-SPI bus,
465  * such as the platform bus.  The final stage of probe() in that code
466  * includes calling spi_register_master() to hook up to this SPI bus glue.
467  *
468  * SPI controllers use board specific (often SOC specific) bus numbers,
469  * and board-specific addressing for SPI devices combines those numbers
470  * with chip select numbers.  Since SPI does not directly support dynamic
471  * device identification, boards need configuration tables telling which
472  * chip is at which address.
473  *
474  * This must be called from context that can sleep.  It returns zero on
475  * success, else a negative error code (dropping the master's refcount).
476  * After a successful return, the caller is responsible for calling
477  * spi_unregister_master().
478  */
479 int spi_register_master(struct spi_master *master)
480 {
481 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
482 	struct device		*dev = master->dev.parent;
483 	int			status = -ENODEV;
484 	int			dynamic = 0;
485 
486 	if (!dev)
487 		return -ENODEV;
488 
489 	/* even if it's just one always-selected device, there must
490 	 * be at least one chipselect
491 	 */
492 	if (master->num_chipselect == 0)
493 		return -EINVAL;
494 
495 	/* convention:  dynamically assigned bus IDs count down from the max */
496 	if (master->bus_num < 0) {
497 		/* FIXME switch to an IDR based scheme, something like
498 		 * I2C now uses, so we can't run out of "dynamic" IDs
499 		 */
500 		master->bus_num = atomic_dec_return(&dyn_bus_id);
501 		dynamic = 1;
502 	}
503 
504 	/* register the device, then userspace will see it.
505 	 * registration fails if the bus ID is in use.
506 	 */
507 	snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
508 		"spi%u", master->bus_num);
509 	status = device_add(&master->dev);
510 	if (status < 0)
511 		goto done;
512 	dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
513 			dynamic ? " (dynamic)" : "");
514 
515 	/* populate children from any spi device tables */
516 	scan_boardinfo(master);
517 	status = 0;
518 done:
519 	return status;
520 }
521 EXPORT_SYMBOL_GPL(spi_register_master);
522 
523 
524 static int __unregister(struct device *dev, void *master_dev)
525 {
526 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
527 	if (dev != master_dev)
528 		spi_unregister_device(to_spi_device(dev));
529 	return 0;
530 }
531 
532 /**
533  * spi_unregister_master - unregister SPI master controller
534  * @master: the master being unregistered
535  * Context: can sleep
536  *
537  * This call is used only by SPI master controller drivers, which are the
538  * only ones directly touching chip registers.
539  *
540  * This must be called from context that can sleep.
541  */
542 void spi_unregister_master(struct spi_master *master)
543 {
544 	int dummy;
545 
546 	dummy = device_for_each_child(master->dev.parent, &master->dev,
547 					__unregister);
548 	device_unregister(&master->dev);
549 }
550 EXPORT_SYMBOL_GPL(spi_unregister_master);
551 
552 static int __spi_master_match(struct device *dev, void *data)
553 {
554 	struct spi_master *m;
555 	u16 *bus_num = data;
556 
557 	m = container_of(dev, struct spi_master, dev);
558 	return m->bus_num == *bus_num;
559 }
560 
561 /**
562  * spi_busnum_to_master - look up master associated with bus_num
563  * @bus_num: the master's bus number
564  * Context: can sleep
565  *
566  * This call may be used with devices that are registered after
567  * arch init time.  It returns a refcounted pointer to the relevant
568  * spi_master (which the caller must release), or NULL if there is
569  * no such master registered.
570  */
571 struct spi_master *spi_busnum_to_master(u16 bus_num)
572 {
573 	struct device		*dev;
574 	struct spi_master	*master = NULL;
575 
576 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
577 				__spi_master_match);
578 	if (dev)
579 		master = container_of(dev, struct spi_master, dev);
580 	/* reference got in class_find_device */
581 	return master;
582 }
583 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
584 
585 
586 /*-------------------------------------------------------------------------*/
587 
588 static void spi_complete(void *arg)
589 {
590 	complete(arg);
591 }
592 
593 /**
594  * spi_sync - blocking/synchronous SPI data transfers
595  * @spi: device with which data will be exchanged
596  * @message: describes the data transfers
597  * Context: can sleep
598  *
599  * This call may only be used from a context that may sleep.  The sleep
600  * is non-interruptible, and has no timeout.  Low-overhead controller
601  * drivers may DMA directly into and out of the message buffers.
602  *
603  * Note that the SPI device's chip select is active during the message,
604  * and then is normally disabled between messages.  Drivers for some
605  * frequently-used devices may want to minimize costs of selecting a chip,
606  * by leaving it selected in anticipation that the next message will go
607  * to the same chip.  (That may increase power usage.)
608  *
609  * Also, the caller is guaranteeing that the memory associated with the
610  * message will not be freed before this call returns.
611  *
612  * It returns zero on success, else a negative error code.
613  */
614 int spi_sync(struct spi_device *spi, struct spi_message *message)
615 {
616 	DECLARE_COMPLETION_ONSTACK(done);
617 	int status;
618 
619 	message->complete = spi_complete;
620 	message->context = &done;
621 	status = spi_async(spi, message);
622 	if (status == 0) {
623 		wait_for_completion(&done);
624 		status = message->status;
625 	}
626 	message->context = NULL;
627 	return status;
628 }
629 EXPORT_SYMBOL_GPL(spi_sync);
630 
631 /* portable code must never pass more than 32 bytes */
632 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
633 
634 static u8	*buf;
635 
636 /**
637  * spi_write_then_read - SPI synchronous write followed by read
638  * @spi: device with which data will be exchanged
639  * @txbuf: data to be written (need not be dma-safe)
640  * @n_tx: size of txbuf, in bytes
641  * @rxbuf: buffer into which data will be read
642  * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
643  * Context: can sleep
644  *
645  * This performs a half duplex MicroWire style transaction with the
646  * device, sending txbuf and then reading rxbuf.  The return value
647  * is zero for success, else a negative errno status code.
648  * This call may only be used from a context that may sleep.
649  *
650  * Parameters to this routine are always copied using a small buffer;
651  * portable code should never use this for more than 32 bytes.
652  * Performance-sensitive or bulk transfer code should instead use
653  * spi_{async,sync}() calls with dma-safe buffers.
654  */
655 int spi_write_then_read(struct spi_device *spi,
656 		const u8 *txbuf, unsigned n_tx,
657 		u8 *rxbuf, unsigned n_rx)
658 {
659 	static DEFINE_MUTEX(lock);
660 
661 	int			status;
662 	struct spi_message	message;
663 	struct spi_transfer	x;
664 	u8			*local_buf;
665 
666 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
667 	 * (as a pure convenience thing), but we can keep heap costs
668 	 * out of the hot path ...
669 	 */
670 	if ((n_tx + n_rx) > SPI_BUFSIZ)
671 		return -EINVAL;
672 
673 	spi_message_init(&message);
674 	memset(&x, 0, sizeof x);
675 	x.len = n_tx + n_rx;
676 	spi_message_add_tail(&x, &message);
677 
678 	/* ... unless someone else is using the pre-allocated buffer */
679 	if (!mutex_trylock(&lock)) {
680 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
681 		if (!local_buf)
682 			return -ENOMEM;
683 	} else
684 		local_buf = buf;
685 
686 	memcpy(local_buf, txbuf, n_tx);
687 	x.tx_buf = local_buf;
688 	x.rx_buf = local_buf;
689 
690 	/* do the i/o */
691 	status = spi_sync(spi, &message);
692 	if (status == 0)
693 		memcpy(rxbuf, x.rx_buf + n_tx, n_rx);
694 
695 	if (x.tx_buf == buf)
696 		mutex_unlock(&lock);
697 	else
698 		kfree(local_buf);
699 
700 	return status;
701 }
702 EXPORT_SYMBOL_GPL(spi_write_then_read);
703 
704 /*-------------------------------------------------------------------------*/
705 
706 static int __init spi_init(void)
707 {
708 	int	status;
709 
710 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
711 	if (!buf) {
712 		status = -ENOMEM;
713 		goto err0;
714 	}
715 
716 	status = bus_register(&spi_bus_type);
717 	if (status < 0)
718 		goto err1;
719 
720 	status = class_register(&spi_master_class);
721 	if (status < 0)
722 		goto err2;
723 	return 0;
724 
725 err2:
726 	bus_unregister(&spi_bus_type);
727 err1:
728 	kfree(buf);
729 	buf = NULL;
730 err0:
731 	return status;
732 }
733 
734 /* board_info is normally registered in arch_initcall(),
735  * but even essential drivers wait till later
736  *
737  * REVISIT only boardinfo really needs static linking. the rest (device and
738  * driver registration) _could_ be dynamically linked (modular) ... costs
739  * include needing to have boardinfo data structures be much more public.
740  */
741 postcore_initcall(spi_init);
742 
743