1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/cache.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/mutex.h> 25 #include <linux/of_device.h> 26 #include <linux/of_irq.h> 27 #include <linux/clk/clk-conf.h> 28 #include <linux/slab.h> 29 #include <linux/mod_devicetable.h> 30 #include <linux/spi/spi.h> 31 #include <linux/of_gpio.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/pm_domain.h> 34 #include <linux/export.h> 35 #include <linux/sched/rt.h> 36 #include <linux/delay.h> 37 #include <linux/kthread.h> 38 #include <linux/ioport.h> 39 #include <linux/acpi.h> 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/spi.h> 43 44 static void spidev_release(struct device *dev) 45 { 46 struct spi_device *spi = to_spi_device(dev); 47 48 /* spi masters may cleanup for released devices */ 49 if (spi->master->cleanup) 50 spi->master->cleanup(spi); 51 52 spi_master_put(spi->master); 53 kfree(spi); 54 } 55 56 static ssize_t 57 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 58 { 59 const struct spi_device *spi = to_spi_device(dev); 60 int len; 61 62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 63 if (len != -ENODEV) 64 return len; 65 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 67 } 68 static DEVICE_ATTR_RO(modalias); 69 70 #define SPI_STATISTICS_ATTRS(field, file) \ 71 static ssize_t spi_master_##field##_show(struct device *dev, \ 72 struct device_attribute *attr, \ 73 char *buf) \ 74 { \ 75 struct spi_master *master = container_of(dev, \ 76 struct spi_master, dev); \ 77 return spi_statistics_##field##_show(&master->statistics, buf); \ 78 } \ 79 static struct device_attribute dev_attr_spi_master_##field = { \ 80 .attr = { .name = file, .mode = S_IRUGO }, \ 81 .show = spi_master_##field##_show, \ 82 }; \ 83 static ssize_t spi_device_##field##_show(struct device *dev, \ 84 struct device_attribute *attr, \ 85 char *buf) \ 86 { \ 87 struct spi_device *spi = to_spi_device(dev); \ 88 return spi_statistics_##field##_show(&spi->statistics, buf); \ 89 } \ 90 static struct device_attribute dev_attr_spi_device_##field = { \ 91 .attr = { .name = file, .mode = S_IRUGO }, \ 92 .show = spi_device_##field##_show, \ 93 } 94 95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 97 char *buf) \ 98 { \ 99 unsigned long flags; \ 100 ssize_t len; \ 101 spin_lock_irqsave(&stat->lock, flags); \ 102 len = sprintf(buf, format_string, stat->field); \ 103 spin_unlock_irqrestore(&stat->lock, flags); \ 104 return len; \ 105 } \ 106 SPI_STATISTICS_ATTRS(name, file) 107 108 #define SPI_STATISTICS_SHOW(field, format_string) \ 109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 110 field, format_string) 111 112 SPI_STATISTICS_SHOW(messages, "%lu"); 113 SPI_STATISTICS_SHOW(transfers, "%lu"); 114 SPI_STATISTICS_SHOW(errors, "%lu"); 115 SPI_STATISTICS_SHOW(timedout, "%lu"); 116 117 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 119 SPI_STATISTICS_SHOW(spi_async, "%lu"); 120 121 SPI_STATISTICS_SHOW(bytes, "%llu"); 122 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 123 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 124 125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 127 "transfer_bytes_histo_" number, \ 128 transfer_bytes_histo[index], "%lu") 129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 146 147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 148 149 static struct attribute *spi_dev_attrs[] = { 150 &dev_attr_modalias.attr, 151 NULL, 152 }; 153 154 static const struct attribute_group spi_dev_group = { 155 .attrs = spi_dev_attrs, 156 }; 157 158 static struct attribute *spi_device_statistics_attrs[] = { 159 &dev_attr_spi_device_messages.attr, 160 &dev_attr_spi_device_transfers.attr, 161 &dev_attr_spi_device_errors.attr, 162 &dev_attr_spi_device_timedout.attr, 163 &dev_attr_spi_device_spi_sync.attr, 164 &dev_attr_spi_device_spi_sync_immediate.attr, 165 &dev_attr_spi_device_spi_async.attr, 166 &dev_attr_spi_device_bytes.attr, 167 &dev_attr_spi_device_bytes_rx.attr, 168 &dev_attr_spi_device_bytes_tx.attr, 169 &dev_attr_spi_device_transfer_bytes_histo0.attr, 170 &dev_attr_spi_device_transfer_bytes_histo1.attr, 171 &dev_attr_spi_device_transfer_bytes_histo2.attr, 172 &dev_attr_spi_device_transfer_bytes_histo3.attr, 173 &dev_attr_spi_device_transfer_bytes_histo4.attr, 174 &dev_attr_spi_device_transfer_bytes_histo5.attr, 175 &dev_attr_spi_device_transfer_bytes_histo6.attr, 176 &dev_attr_spi_device_transfer_bytes_histo7.attr, 177 &dev_attr_spi_device_transfer_bytes_histo8.attr, 178 &dev_attr_spi_device_transfer_bytes_histo9.attr, 179 &dev_attr_spi_device_transfer_bytes_histo10.attr, 180 &dev_attr_spi_device_transfer_bytes_histo11.attr, 181 &dev_attr_spi_device_transfer_bytes_histo12.attr, 182 &dev_attr_spi_device_transfer_bytes_histo13.attr, 183 &dev_attr_spi_device_transfer_bytes_histo14.attr, 184 &dev_attr_spi_device_transfer_bytes_histo15.attr, 185 &dev_attr_spi_device_transfer_bytes_histo16.attr, 186 &dev_attr_spi_device_transfers_split_maxsize.attr, 187 NULL, 188 }; 189 190 static const struct attribute_group spi_device_statistics_group = { 191 .name = "statistics", 192 .attrs = spi_device_statistics_attrs, 193 }; 194 195 static const struct attribute_group *spi_dev_groups[] = { 196 &spi_dev_group, 197 &spi_device_statistics_group, 198 NULL, 199 }; 200 201 static struct attribute *spi_master_statistics_attrs[] = { 202 &dev_attr_spi_master_messages.attr, 203 &dev_attr_spi_master_transfers.attr, 204 &dev_attr_spi_master_errors.attr, 205 &dev_attr_spi_master_timedout.attr, 206 &dev_attr_spi_master_spi_sync.attr, 207 &dev_attr_spi_master_spi_sync_immediate.attr, 208 &dev_attr_spi_master_spi_async.attr, 209 &dev_attr_spi_master_bytes.attr, 210 &dev_attr_spi_master_bytes_rx.attr, 211 &dev_attr_spi_master_bytes_tx.attr, 212 &dev_attr_spi_master_transfer_bytes_histo0.attr, 213 &dev_attr_spi_master_transfer_bytes_histo1.attr, 214 &dev_attr_spi_master_transfer_bytes_histo2.attr, 215 &dev_attr_spi_master_transfer_bytes_histo3.attr, 216 &dev_attr_spi_master_transfer_bytes_histo4.attr, 217 &dev_attr_spi_master_transfer_bytes_histo5.attr, 218 &dev_attr_spi_master_transfer_bytes_histo6.attr, 219 &dev_attr_spi_master_transfer_bytes_histo7.attr, 220 &dev_attr_spi_master_transfer_bytes_histo8.attr, 221 &dev_attr_spi_master_transfer_bytes_histo9.attr, 222 &dev_attr_spi_master_transfer_bytes_histo10.attr, 223 &dev_attr_spi_master_transfer_bytes_histo11.attr, 224 &dev_attr_spi_master_transfer_bytes_histo12.attr, 225 &dev_attr_spi_master_transfer_bytes_histo13.attr, 226 &dev_attr_spi_master_transfer_bytes_histo14.attr, 227 &dev_attr_spi_master_transfer_bytes_histo15.attr, 228 &dev_attr_spi_master_transfer_bytes_histo16.attr, 229 &dev_attr_spi_master_transfers_split_maxsize.attr, 230 NULL, 231 }; 232 233 static const struct attribute_group spi_master_statistics_group = { 234 .name = "statistics", 235 .attrs = spi_master_statistics_attrs, 236 }; 237 238 static const struct attribute_group *spi_master_groups[] = { 239 &spi_master_statistics_group, 240 NULL, 241 }; 242 243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 244 struct spi_transfer *xfer, 245 struct spi_master *master) 246 { 247 unsigned long flags; 248 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 249 250 if (l2len < 0) 251 l2len = 0; 252 253 spin_lock_irqsave(&stats->lock, flags); 254 255 stats->transfers++; 256 stats->transfer_bytes_histo[l2len]++; 257 258 stats->bytes += xfer->len; 259 if ((xfer->tx_buf) && 260 (xfer->tx_buf != master->dummy_tx)) 261 stats->bytes_tx += xfer->len; 262 if ((xfer->rx_buf) && 263 (xfer->rx_buf != master->dummy_rx)) 264 stats->bytes_rx += xfer->len; 265 266 spin_unlock_irqrestore(&stats->lock, flags); 267 } 268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 269 270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 271 * and the sysfs version makes coldplug work too. 272 */ 273 274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 275 const struct spi_device *sdev) 276 { 277 while (id->name[0]) { 278 if (!strcmp(sdev->modalias, id->name)) 279 return id; 280 id++; 281 } 282 return NULL; 283 } 284 285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 286 { 287 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 288 289 return spi_match_id(sdrv->id_table, sdev); 290 } 291 EXPORT_SYMBOL_GPL(spi_get_device_id); 292 293 static int spi_match_device(struct device *dev, struct device_driver *drv) 294 { 295 const struct spi_device *spi = to_spi_device(dev); 296 const struct spi_driver *sdrv = to_spi_driver(drv); 297 298 /* Attempt an OF style match */ 299 if (of_driver_match_device(dev, drv)) 300 return 1; 301 302 /* Then try ACPI */ 303 if (acpi_driver_match_device(dev, drv)) 304 return 1; 305 306 if (sdrv->id_table) 307 return !!spi_match_id(sdrv->id_table, spi); 308 309 return strcmp(spi->modalias, drv->name) == 0; 310 } 311 312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 313 { 314 const struct spi_device *spi = to_spi_device(dev); 315 int rc; 316 317 rc = acpi_device_uevent_modalias(dev, env); 318 if (rc != -ENODEV) 319 return rc; 320 321 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 322 return 0; 323 } 324 325 struct bus_type spi_bus_type = { 326 .name = "spi", 327 .dev_groups = spi_dev_groups, 328 .match = spi_match_device, 329 .uevent = spi_uevent, 330 }; 331 EXPORT_SYMBOL_GPL(spi_bus_type); 332 333 334 static int spi_drv_probe(struct device *dev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 337 struct spi_device *spi = to_spi_device(dev); 338 int ret; 339 340 ret = of_clk_set_defaults(dev->of_node, false); 341 if (ret) 342 return ret; 343 344 if (dev->of_node) { 345 spi->irq = of_irq_get(dev->of_node, 0); 346 if (spi->irq == -EPROBE_DEFER) 347 return -EPROBE_DEFER; 348 if (spi->irq < 0) 349 spi->irq = 0; 350 } 351 352 ret = dev_pm_domain_attach(dev, true); 353 if (ret != -EPROBE_DEFER) { 354 ret = sdrv->probe(spi); 355 if (ret) 356 dev_pm_domain_detach(dev, true); 357 } 358 359 return ret; 360 } 361 362 static int spi_drv_remove(struct device *dev) 363 { 364 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 365 int ret; 366 367 ret = sdrv->remove(to_spi_device(dev)); 368 dev_pm_domain_detach(dev, true); 369 370 return ret; 371 } 372 373 static void spi_drv_shutdown(struct device *dev) 374 { 375 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 376 377 sdrv->shutdown(to_spi_device(dev)); 378 } 379 380 /** 381 * __spi_register_driver - register a SPI driver 382 * @owner: owner module of the driver to register 383 * @sdrv: the driver to register 384 * Context: can sleep 385 * 386 * Return: zero on success, else a negative error code. 387 */ 388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 389 { 390 sdrv->driver.owner = owner; 391 sdrv->driver.bus = &spi_bus_type; 392 if (sdrv->probe) 393 sdrv->driver.probe = spi_drv_probe; 394 if (sdrv->remove) 395 sdrv->driver.remove = spi_drv_remove; 396 if (sdrv->shutdown) 397 sdrv->driver.shutdown = spi_drv_shutdown; 398 return driver_register(&sdrv->driver); 399 } 400 EXPORT_SYMBOL_GPL(__spi_register_driver); 401 402 /*-------------------------------------------------------------------------*/ 403 404 /* SPI devices should normally not be created by SPI device drivers; that 405 * would make them board-specific. Similarly with SPI master drivers. 406 * Device registration normally goes into like arch/.../mach.../board-YYY.c 407 * with other readonly (flashable) information about mainboard devices. 408 */ 409 410 struct boardinfo { 411 struct list_head list; 412 struct spi_board_info board_info; 413 }; 414 415 static LIST_HEAD(board_list); 416 static LIST_HEAD(spi_master_list); 417 418 /* 419 * Used to protect add/del opertion for board_info list and 420 * spi_master list, and their matching process 421 */ 422 static DEFINE_MUTEX(board_lock); 423 424 /** 425 * spi_alloc_device - Allocate a new SPI device 426 * @master: Controller to which device is connected 427 * Context: can sleep 428 * 429 * Allows a driver to allocate and initialize a spi_device without 430 * registering it immediately. This allows a driver to directly 431 * fill the spi_device with device parameters before calling 432 * spi_add_device() on it. 433 * 434 * Caller is responsible to call spi_add_device() on the returned 435 * spi_device structure to add it to the SPI master. If the caller 436 * needs to discard the spi_device without adding it, then it should 437 * call spi_dev_put() on it. 438 * 439 * Return: a pointer to the new device, or NULL. 440 */ 441 struct spi_device *spi_alloc_device(struct spi_master *master) 442 { 443 struct spi_device *spi; 444 445 if (!spi_master_get(master)) 446 return NULL; 447 448 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 449 if (!spi) { 450 spi_master_put(master); 451 return NULL; 452 } 453 454 spi->master = master; 455 spi->dev.parent = &master->dev; 456 spi->dev.bus = &spi_bus_type; 457 spi->dev.release = spidev_release; 458 spi->cs_gpio = -ENOENT; 459 460 spin_lock_init(&spi->statistics.lock); 461 462 device_initialize(&spi->dev); 463 return spi; 464 } 465 EXPORT_SYMBOL_GPL(spi_alloc_device); 466 467 static void spi_dev_set_name(struct spi_device *spi) 468 { 469 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 470 471 if (adev) { 472 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 473 return; 474 } 475 476 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 477 spi->chip_select); 478 } 479 480 static int spi_dev_check(struct device *dev, void *data) 481 { 482 struct spi_device *spi = to_spi_device(dev); 483 struct spi_device *new_spi = data; 484 485 if (spi->master == new_spi->master && 486 spi->chip_select == new_spi->chip_select) 487 return -EBUSY; 488 return 0; 489 } 490 491 /** 492 * spi_add_device - Add spi_device allocated with spi_alloc_device 493 * @spi: spi_device to register 494 * 495 * Companion function to spi_alloc_device. Devices allocated with 496 * spi_alloc_device can be added onto the spi bus with this function. 497 * 498 * Return: 0 on success; negative errno on failure 499 */ 500 int spi_add_device(struct spi_device *spi) 501 { 502 static DEFINE_MUTEX(spi_add_lock); 503 struct spi_master *master = spi->master; 504 struct device *dev = master->dev.parent; 505 int status; 506 507 /* Chipselects are numbered 0..max; validate. */ 508 if (spi->chip_select >= master->num_chipselect) { 509 dev_err(dev, "cs%d >= max %d\n", 510 spi->chip_select, 511 master->num_chipselect); 512 return -EINVAL; 513 } 514 515 /* Set the bus ID string */ 516 spi_dev_set_name(spi); 517 518 /* We need to make sure there's no other device with this 519 * chipselect **BEFORE** we call setup(), else we'll trash 520 * its configuration. Lock against concurrent add() calls. 521 */ 522 mutex_lock(&spi_add_lock); 523 524 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 525 if (status) { 526 dev_err(dev, "chipselect %d already in use\n", 527 spi->chip_select); 528 goto done; 529 } 530 531 if (master->cs_gpios) 532 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 533 534 /* Drivers may modify this initial i/o setup, but will 535 * normally rely on the device being setup. Devices 536 * using SPI_CS_HIGH can't coexist well otherwise... 537 */ 538 status = spi_setup(spi); 539 if (status < 0) { 540 dev_err(dev, "can't setup %s, status %d\n", 541 dev_name(&spi->dev), status); 542 goto done; 543 } 544 545 /* Device may be bound to an active driver when this returns */ 546 status = device_add(&spi->dev); 547 if (status < 0) 548 dev_err(dev, "can't add %s, status %d\n", 549 dev_name(&spi->dev), status); 550 else 551 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 552 553 done: 554 mutex_unlock(&spi_add_lock); 555 return status; 556 } 557 EXPORT_SYMBOL_GPL(spi_add_device); 558 559 /** 560 * spi_new_device - instantiate one new SPI device 561 * @master: Controller to which device is connected 562 * @chip: Describes the SPI device 563 * Context: can sleep 564 * 565 * On typical mainboards, this is purely internal; and it's not needed 566 * after board init creates the hard-wired devices. Some development 567 * platforms may not be able to use spi_register_board_info though, and 568 * this is exported so that for example a USB or parport based adapter 569 * driver could add devices (which it would learn about out-of-band). 570 * 571 * Return: the new device, or NULL. 572 */ 573 struct spi_device *spi_new_device(struct spi_master *master, 574 struct spi_board_info *chip) 575 { 576 struct spi_device *proxy; 577 int status; 578 579 /* NOTE: caller did any chip->bus_num checks necessary. 580 * 581 * Also, unless we change the return value convention to use 582 * error-or-pointer (not NULL-or-pointer), troubleshootability 583 * suggests syslogged diagnostics are best here (ugh). 584 */ 585 586 proxy = spi_alloc_device(master); 587 if (!proxy) 588 return NULL; 589 590 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 591 592 proxy->chip_select = chip->chip_select; 593 proxy->max_speed_hz = chip->max_speed_hz; 594 proxy->mode = chip->mode; 595 proxy->irq = chip->irq; 596 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 597 proxy->dev.platform_data = (void *) chip->platform_data; 598 proxy->controller_data = chip->controller_data; 599 proxy->controller_state = NULL; 600 601 status = spi_add_device(proxy); 602 if (status < 0) { 603 spi_dev_put(proxy); 604 return NULL; 605 } 606 607 return proxy; 608 } 609 EXPORT_SYMBOL_GPL(spi_new_device); 610 611 /** 612 * spi_unregister_device - unregister a single SPI device 613 * @spi: spi_device to unregister 614 * 615 * Start making the passed SPI device vanish. Normally this would be handled 616 * by spi_unregister_master(). 617 */ 618 void spi_unregister_device(struct spi_device *spi) 619 { 620 if (!spi) 621 return; 622 623 if (spi->dev.of_node) 624 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 625 if (ACPI_COMPANION(&spi->dev)) 626 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 627 device_unregister(&spi->dev); 628 } 629 EXPORT_SYMBOL_GPL(spi_unregister_device); 630 631 static void spi_match_master_to_boardinfo(struct spi_master *master, 632 struct spi_board_info *bi) 633 { 634 struct spi_device *dev; 635 636 if (master->bus_num != bi->bus_num) 637 return; 638 639 dev = spi_new_device(master, bi); 640 if (!dev) 641 dev_err(master->dev.parent, "can't create new device for %s\n", 642 bi->modalias); 643 } 644 645 /** 646 * spi_register_board_info - register SPI devices for a given board 647 * @info: array of chip descriptors 648 * @n: how many descriptors are provided 649 * Context: can sleep 650 * 651 * Board-specific early init code calls this (probably during arch_initcall) 652 * with segments of the SPI device table. Any device nodes are created later, 653 * after the relevant parent SPI controller (bus_num) is defined. We keep 654 * this table of devices forever, so that reloading a controller driver will 655 * not make Linux forget about these hard-wired devices. 656 * 657 * Other code can also call this, e.g. a particular add-on board might provide 658 * SPI devices through its expansion connector, so code initializing that board 659 * would naturally declare its SPI devices. 660 * 661 * The board info passed can safely be __initdata ... but be careful of 662 * any embedded pointers (platform_data, etc), they're copied as-is. 663 * 664 * Return: zero on success, else a negative error code. 665 */ 666 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 667 { 668 struct boardinfo *bi; 669 int i; 670 671 if (!n) 672 return -EINVAL; 673 674 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 675 if (!bi) 676 return -ENOMEM; 677 678 for (i = 0; i < n; i++, bi++, info++) { 679 struct spi_master *master; 680 681 memcpy(&bi->board_info, info, sizeof(*info)); 682 mutex_lock(&board_lock); 683 list_add_tail(&bi->list, &board_list); 684 list_for_each_entry(master, &spi_master_list, list) 685 spi_match_master_to_boardinfo(master, &bi->board_info); 686 mutex_unlock(&board_lock); 687 } 688 689 return 0; 690 } 691 692 /*-------------------------------------------------------------------------*/ 693 694 static void spi_set_cs(struct spi_device *spi, bool enable) 695 { 696 if (spi->mode & SPI_CS_HIGH) 697 enable = !enable; 698 699 if (gpio_is_valid(spi->cs_gpio)) 700 gpio_set_value(spi->cs_gpio, !enable); 701 else if (spi->master->set_cs) 702 spi->master->set_cs(spi, !enable); 703 } 704 705 #ifdef CONFIG_HAS_DMA 706 static int spi_map_buf(struct spi_master *master, struct device *dev, 707 struct sg_table *sgt, void *buf, size_t len, 708 enum dma_data_direction dir) 709 { 710 const bool vmalloced_buf = is_vmalloc_addr(buf); 711 unsigned int max_seg_size = dma_get_max_seg_size(dev); 712 int desc_len; 713 int sgs; 714 struct page *vm_page; 715 void *sg_buf; 716 size_t min; 717 int i, ret; 718 719 if (vmalloced_buf) { 720 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 721 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 722 } else if (virt_addr_valid(buf)) { 723 desc_len = min_t(int, max_seg_size, master->max_dma_len); 724 sgs = DIV_ROUND_UP(len, desc_len); 725 } else { 726 return -EINVAL; 727 } 728 729 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 730 if (ret != 0) 731 return ret; 732 733 for (i = 0; i < sgs; i++) { 734 735 if (vmalloced_buf) { 736 min = min_t(size_t, 737 len, desc_len - offset_in_page(buf)); 738 vm_page = vmalloc_to_page(buf); 739 if (!vm_page) { 740 sg_free_table(sgt); 741 return -ENOMEM; 742 } 743 sg_set_page(&sgt->sgl[i], vm_page, 744 min, offset_in_page(buf)); 745 } else { 746 min = min_t(size_t, len, desc_len); 747 sg_buf = buf; 748 sg_set_buf(&sgt->sgl[i], sg_buf, min); 749 } 750 751 buf += min; 752 len -= min; 753 } 754 755 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 756 if (!ret) 757 ret = -ENOMEM; 758 if (ret < 0) { 759 sg_free_table(sgt); 760 return ret; 761 } 762 763 sgt->nents = ret; 764 765 return 0; 766 } 767 768 static void spi_unmap_buf(struct spi_master *master, struct device *dev, 769 struct sg_table *sgt, enum dma_data_direction dir) 770 { 771 if (sgt->orig_nents) { 772 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 773 sg_free_table(sgt); 774 } 775 } 776 777 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) 778 { 779 struct device *tx_dev, *rx_dev; 780 struct spi_transfer *xfer; 781 int ret; 782 783 if (!master->can_dma) 784 return 0; 785 786 if (master->dma_tx) 787 tx_dev = master->dma_tx->device->dev; 788 else 789 tx_dev = &master->dev; 790 791 if (master->dma_rx) 792 rx_dev = master->dma_rx->device->dev; 793 else 794 rx_dev = &master->dev; 795 796 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 797 if (!master->can_dma(master, msg->spi, xfer)) 798 continue; 799 800 if (xfer->tx_buf != NULL) { 801 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, 802 (void *)xfer->tx_buf, xfer->len, 803 DMA_TO_DEVICE); 804 if (ret != 0) 805 return ret; 806 } 807 808 if (xfer->rx_buf != NULL) { 809 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, 810 xfer->rx_buf, xfer->len, 811 DMA_FROM_DEVICE); 812 if (ret != 0) { 813 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, 814 DMA_TO_DEVICE); 815 return ret; 816 } 817 } 818 } 819 820 master->cur_msg_mapped = true; 821 822 return 0; 823 } 824 825 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg) 826 { 827 struct spi_transfer *xfer; 828 struct device *tx_dev, *rx_dev; 829 830 if (!master->cur_msg_mapped || !master->can_dma) 831 return 0; 832 833 if (master->dma_tx) 834 tx_dev = master->dma_tx->device->dev; 835 else 836 tx_dev = &master->dev; 837 838 if (master->dma_rx) 839 rx_dev = master->dma_rx->device->dev; 840 else 841 rx_dev = &master->dev; 842 843 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 844 if (!master->can_dma(master, msg->spi, xfer)) 845 continue; 846 847 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 848 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 849 } 850 851 return 0; 852 } 853 #else /* !CONFIG_HAS_DMA */ 854 static inline int spi_map_buf(struct spi_master *master, 855 struct device *dev, struct sg_table *sgt, 856 void *buf, size_t len, 857 enum dma_data_direction dir) 858 { 859 return -EINVAL; 860 } 861 862 static inline void spi_unmap_buf(struct spi_master *master, 863 struct device *dev, struct sg_table *sgt, 864 enum dma_data_direction dir) 865 { 866 } 867 868 static inline int __spi_map_msg(struct spi_master *master, 869 struct spi_message *msg) 870 { 871 return 0; 872 } 873 874 static inline int __spi_unmap_msg(struct spi_master *master, 875 struct spi_message *msg) 876 { 877 return 0; 878 } 879 #endif /* !CONFIG_HAS_DMA */ 880 881 static inline int spi_unmap_msg(struct spi_master *master, 882 struct spi_message *msg) 883 { 884 struct spi_transfer *xfer; 885 886 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 887 /* 888 * Restore the original value of tx_buf or rx_buf if they are 889 * NULL. 890 */ 891 if (xfer->tx_buf == master->dummy_tx) 892 xfer->tx_buf = NULL; 893 if (xfer->rx_buf == master->dummy_rx) 894 xfer->rx_buf = NULL; 895 } 896 897 return __spi_unmap_msg(master, msg); 898 } 899 900 static int spi_map_msg(struct spi_master *master, struct spi_message *msg) 901 { 902 struct spi_transfer *xfer; 903 void *tmp; 904 unsigned int max_tx, max_rx; 905 906 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { 907 max_tx = 0; 908 max_rx = 0; 909 910 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 911 if ((master->flags & SPI_MASTER_MUST_TX) && 912 !xfer->tx_buf) 913 max_tx = max(xfer->len, max_tx); 914 if ((master->flags & SPI_MASTER_MUST_RX) && 915 !xfer->rx_buf) 916 max_rx = max(xfer->len, max_rx); 917 } 918 919 if (max_tx) { 920 tmp = krealloc(master->dummy_tx, max_tx, 921 GFP_KERNEL | GFP_DMA); 922 if (!tmp) 923 return -ENOMEM; 924 master->dummy_tx = tmp; 925 memset(tmp, 0, max_tx); 926 } 927 928 if (max_rx) { 929 tmp = krealloc(master->dummy_rx, max_rx, 930 GFP_KERNEL | GFP_DMA); 931 if (!tmp) 932 return -ENOMEM; 933 master->dummy_rx = tmp; 934 } 935 936 if (max_tx || max_rx) { 937 list_for_each_entry(xfer, &msg->transfers, 938 transfer_list) { 939 if (!xfer->tx_buf) 940 xfer->tx_buf = master->dummy_tx; 941 if (!xfer->rx_buf) 942 xfer->rx_buf = master->dummy_rx; 943 } 944 } 945 } 946 947 return __spi_map_msg(master, msg); 948 } 949 950 /* 951 * spi_transfer_one_message - Default implementation of transfer_one_message() 952 * 953 * This is a standard implementation of transfer_one_message() for 954 * drivers which implement a transfer_one() operation. It provides 955 * standard handling of delays and chip select management. 956 */ 957 static int spi_transfer_one_message(struct spi_master *master, 958 struct spi_message *msg) 959 { 960 struct spi_transfer *xfer; 961 bool keep_cs = false; 962 int ret = 0; 963 unsigned long ms = 1; 964 struct spi_statistics *statm = &master->statistics; 965 struct spi_statistics *stats = &msg->spi->statistics; 966 967 spi_set_cs(msg->spi, true); 968 969 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 970 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 971 972 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 973 trace_spi_transfer_start(msg, xfer); 974 975 spi_statistics_add_transfer_stats(statm, xfer, master); 976 spi_statistics_add_transfer_stats(stats, xfer, master); 977 978 if (xfer->tx_buf || xfer->rx_buf) { 979 reinit_completion(&master->xfer_completion); 980 981 ret = master->transfer_one(master, msg->spi, xfer); 982 if (ret < 0) { 983 SPI_STATISTICS_INCREMENT_FIELD(statm, 984 errors); 985 SPI_STATISTICS_INCREMENT_FIELD(stats, 986 errors); 987 dev_err(&msg->spi->dev, 988 "SPI transfer failed: %d\n", ret); 989 goto out; 990 } 991 992 if (ret > 0) { 993 ret = 0; 994 ms = xfer->len * 8 * 1000 / xfer->speed_hz; 995 ms += ms + 100; /* some tolerance */ 996 997 ms = wait_for_completion_timeout(&master->xfer_completion, 998 msecs_to_jiffies(ms)); 999 } 1000 1001 if (ms == 0) { 1002 SPI_STATISTICS_INCREMENT_FIELD(statm, 1003 timedout); 1004 SPI_STATISTICS_INCREMENT_FIELD(stats, 1005 timedout); 1006 dev_err(&msg->spi->dev, 1007 "SPI transfer timed out\n"); 1008 msg->status = -ETIMEDOUT; 1009 } 1010 } else { 1011 if (xfer->len) 1012 dev_err(&msg->spi->dev, 1013 "Bufferless transfer has length %u\n", 1014 xfer->len); 1015 } 1016 1017 trace_spi_transfer_stop(msg, xfer); 1018 1019 if (msg->status != -EINPROGRESS) 1020 goto out; 1021 1022 if (xfer->delay_usecs) 1023 udelay(xfer->delay_usecs); 1024 1025 if (xfer->cs_change) { 1026 if (list_is_last(&xfer->transfer_list, 1027 &msg->transfers)) { 1028 keep_cs = true; 1029 } else { 1030 spi_set_cs(msg->spi, false); 1031 udelay(10); 1032 spi_set_cs(msg->spi, true); 1033 } 1034 } 1035 1036 msg->actual_length += xfer->len; 1037 } 1038 1039 out: 1040 if (ret != 0 || !keep_cs) 1041 spi_set_cs(msg->spi, false); 1042 1043 if (msg->status == -EINPROGRESS) 1044 msg->status = ret; 1045 1046 if (msg->status && master->handle_err) 1047 master->handle_err(master, msg); 1048 1049 spi_res_release(master, msg); 1050 1051 spi_finalize_current_message(master); 1052 1053 return ret; 1054 } 1055 1056 /** 1057 * spi_finalize_current_transfer - report completion of a transfer 1058 * @master: the master reporting completion 1059 * 1060 * Called by SPI drivers using the core transfer_one_message() 1061 * implementation to notify it that the current interrupt driven 1062 * transfer has finished and the next one may be scheduled. 1063 */ 1064 void spi_finalize_current_transfer(struct spi_master *master) 1065 { 1066 complete(&master->xfer_completion); 1067 } 1068 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1069 1070 /** 1071 * __spi_pump_messages - function which processes spi message queue 1072 * @master: master to process queue for 1073 * @in_kthread: true if we are in the context of the message pump thread 1074 * 1075 * This function checks if there is any spi message in the queue that 1076 * needs processing and if so call out to the driver to initialize hardware 1077 * and transfer each message. 1078 * 1079 * Note that it is called both from the kthread itself and also from 1080 * inside spi_sync(); the queue extraction handling at the top of the 1081 * function should deal with this safely. 1082 */ 1083 static void __spi_pump_messages(struct spi_master *master, bool in_kthread) 1084 { 1085 unsigned long flags; 1086 bool was_busy = false; 1087 int ret; 1088 1089 /* Lock queue */ 1090 spin_lock_irqsave(&master->queue_lock, flags); 1091 1092 /* Make sure we are not already running a message */ 1093 if (master->cur_msg) { 1094 spin_unlock_irqrestore(&master->queue_lock, flags); 1095 return; 1096 } 1097 1098 /* If another context is idling the device then defer */ 1099 if (master->idling) { 1100 queue_kthread_work(&master->kworker, &master->pump_messages); 1101 spin_unlock_irqrestore(&master->queue_lock, flags); 1102 return; 1103 } 1104 1105 /* Check if the queue is idle */ 1106 if (list_empty(&master->queue) || !master->running) { 1107 if (!master->busy) { 1108 spin_unlock_irqrestore(&master->queue_lock, flags); 1109 return; 1110 } 1111 1112 /* Only do teardown in the thread */ 1113 if (!in_kthread) { 1114 queue_kthread_work(&master->kworker, 1115 &master->pump_messages); 1116 spin_unlock_irqrestore(&master->queue_lock, flags); 1117 return; 1118 } 1119 1120 master->busy = false; 1121 master->idling = true; 1122 spin_unlock_irqrestore(&master->queue_lock, flags); 1123 1124 kfree(master->dummy_rx); 1125 master->dummy_rx = NULL; 1126 kfree(master->dummy_tx); 1127 master->dummy_tx = NULL; 1128 if (master->unprepare_transfer_hardware && 1129 master->unprepare_transfer_hardware(master)) 1130 dev_err(&master->dev, 1131 "failed to unprepare transfer hardware\n"); 1132 if (master->auto_runtime_pm) { 1133 pm_runtime_mark_last_busy(master->dev.parent); 1134 pm_runtime_put_autosuspend(master->dev.parent); 1135 } 1136 trace_spi_master_idle(master); 1137 1138 spin_lock_irqsave(&master->queue_lock, flags); 1139 master->idling = false; 1140 spin_unlock_irqrestore(&master->queue_lock, flags); 1141 return; 1142 } 1143 1144 /* Extract head of queue */ 1145 master->cur_msg = 1146 list_first_entry(&master->queue, struct spi_message, queue); 1147 1148 list_del_init(&master->cur_msg->queue); 1149 if (master->busy) 1150 was_busy = true; 1151 else 1152 master->busy = true; 1153 spin_unlock_irqrestore(&master->queue_lock, flags); 1154 1155 mutex_lock(&master->io_mutex); 1156 1157 if (!was_busy && master->auto_runtime_pm) { 1158 ret = pm_runtime_get_sync(master->dev.parent); 1159 if (ret < 0) { 1160 dev_err(&master->dev, "Failed to power device: %d\n", 1161 ret); 1162 return; 1163 } 1164 } 1165 1166 if (!was_busy) 1167 trace_spi_master_busy(master); 1168 1169 if (!was_busy && master->prepare_transfer_hardware) { 1170 ret = master->prepare_transfer_hardware(master); 1171 if (ret) { 1172 dev_err(&master->dev, 1173 "failed to prepare transfer hardware\n"); 1174 1175 if (master->auto_runtime_pm) 1176 pm_runtime_put(master->dev.parent); 1177 return; 1178 } 1179 } 1180 1181 trace_spi_message_start(master->cur_msg); 1182 1183 if (master->prepare_message) { 1184 ret = master->prepare_message(master, master->cur_msg); 1185 if (ret) { 1186 dev_err(&master->dev, 1187 "failed to prepare message: %d\n", ret); 1188 master->cur_msg->status = ret; 1189 spi_finalize_current_message(master); 1190 goto out; 1191 } 1192 master->cur_msg_prepared = true; 1193 } 1194 1195 ret = spi_map_msg(master, master->cur_msg); 1196 if (ret) { 1197 master->cur_msg->status = ret; 1198 spi_finalize_current_message(master); 1199 goto out; 1200 } 1201 1202 ret = master->transfer_one_message(master, master->cur_msg); 1203 if (ret) { 1204 dev_err(&master->dev, 1205 "failed to transfer one message from queue\n"); 1206 goto out; 1207 } 1208 1209 out: 1210 mutex_unlock(&master->io_mutex); 1211 1212 /* Prod the scheduler in case transfer_one() was busy waiting */ 1213 if (!ret) 1214 cond_resched(); 1215 } 1216 1217 /** 1218 * spi_pump_messages - kthread work function which processes spi message queue 1219 * @work: pointer to kthread work struct contained in the master struct 1220 */ 1221 static void spi_pump_messages(struct kthread_work *work) 1222 { 1223 struct spi_master *master = 1224 container_of(work, struct spi_master, pump_messages); 1225 1226 __spi_pump_messages(master, true); 1227 } 1228 1229 static int spi_init_queue(struct spi_master *master) 1230 { 1231 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1232 1233 master->running = false; 1234 master->busy = false; 1235 1236 init_kthread_worker(&master->kworker); 1237 master->kworker_task = kthread_run(kthread_worker_fn, 1238 &master->kworker, "%s", 1239 dev_name(&master->dev)); 1240 if (IS_ERR(master->kworker_task)) { 1241 dev_err(&master->dev, "failed to create message pump task\n"); 1242 return PTR_ERR(master->kworker_task); 1243 } 1244 init_kthread_work(&master->pump_messages, spi_pump_messages); 1245 1246 /* 1247 * Master config will indicate if this controller should run the 1248 * message pump with high (realtime) priority to reduce the transfer 1249 * latency on the bus by minimising the delay between a transfer 1250 * request and the scheduling of the message pump thread. Without this 1251 * setting the message pump thread will remain at default priority. 1252 */ 1253 if (master->rt) { 1254 dev_info(&master->dev, 1255 "will run message pump with realtime priority\n"); 1256 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 1257 } 1258 1259 return 0; 1260 } 1261 1262 /** 1263 * spi_get_next_queued_message() - called by driver to check for queued 1264 * messages 1265 * @master: the master to check for queued messages 1266 * 1267 * If there are more messages in the queue, the next message is returned from 1268 * this call. 1269 * 1270 * Return: the next message in the queue, else NULL if the queue is empty. 1271 */ 1272 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 1273 { 1274 struct spi_message *next; 1275 unsigned long flags; 1276 1277 /* get a pointer to the next message, if any */ 1278 spin_lock_irqsave(&master->queue_lock, flags); 1279 next = list_first_entry_or_null(&master->queue, struct spi_message, 1280 queue); 1281 spin_unlock_irqrestore(&master->queue_lock, flags); 1282 1283 return next; 1284 } 1285 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1286 1287 /** 1288 * spi_finalize_current_message() - the current message is complete 1289 * @master: the master to return the message to 1290 * 1291 * Called by the driver to notify the core that the message in the front of the 1292 * queue is complete and can be removed from the queue. 1293 */ 1294 void spi_finalize_current_message(struct spi_master *master) 1295 { 1296 struct spi_message *mesg; 1297 unsigned long flags; 1298 int ret; 1299 1300 spin_lock_irqsave(&master->queue_lock, flags); 1301 mesg = master->cur_msg; 1302 spin_unlock_irqrestore(&master->queue_lock, flags); 1303 1304 spi_unmap_msg(master, mesg); 1305 1306 if (master->cur_msg_prepared && master->unprepare_message) { 1307 ret = master->unprepare_message(master, mesg); 1308 if (ret) { 1309 dev_err(&master->dev, 1310 "failed to unprepare message: %d\n", ret); 1311 } 1312 } 1313 1314 spin_lock_irqsave(&master->queue_lock, flags); 1315 master->cur_msg = NULL; 1316 master->cur_msg_prepared = false; 1317 queue_kthread_work(&master->kworker, &master->pump_messages); 1318 spin_unlock_irqrestore(&master->queue_lock, flags); 1319 1320 trace_spi_message_done(mesg); 1321 1322 mesg->state = NULL; 1323 if (mesg->complete) 1324 mesg->complete(mesg->context); 1325 } 1326 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1327 1328 static int spi_start_queue(struct spi_master *master) 1329 { 1330 unsigned long flags; 1331 1332 spin_lock_irqsave(&master->queue_lock, flags); 1333 1334 if (master->running || master->busy) { 1335 spin_unlock_irqrestore(&master->queue_lock, flags); 1336 return -EBUSY; 1337 } 1338 1339 master->running = true; 1340 master->cur_msg = NULL; 1341 spin_unlock_irqrestore(&master->queue_lock, flags); 1342 1343 queue_kthread_work(&master->kworker, &master->pump_messages); 1344 1345 return 0; 1346 } 1347 1348 static int spi_stop_queue(struct spi_master *master) 1349 { 1350 unsigned long flags; 1351 unsigned limit = 500; 1352 int ret = 0; 1353 1354 spin_lock_irqsave(&master->queue_lock, flags); 1355 1356 /* 1357 * This is a bit lame, but is optimized for the common execution path. 1358 * A wait_queue on the master->busy could be used, but then the common 1359 * execution path (pump_messages) would be required to call wake_up or 1360 * friends on every SPI message. Do this instead. 1361 */ 1362 while ((!list_empty(&master->queue) || master->busy) && limit--) { 1363 spin_unlock_irqrestore(&master->queue_lock, flags); 1364 usleep_range(10000, 11000); 1365 spin_lock_irqsave(&master->queue_lock, flags); 1366 } 1367 1368 if (!list_empty(&master->queue) || master->busy) 1369 ret = -EBUSY; 1370 else 1371 master->running = false; 1372 1373 spin_unlock_irqrestore(&master->queue_lock, flags); 1374 1375 if (ret) { 1376 dev_warn(&master->dev, 1377 "could not stop message queue\n"); 1378 return ret; 1379 } 1380 return ret; 1381 } 1382 1383 static int spi_destroy_queue(struct spi_master *master) 1384 { 1385 int ret; 1386 1387 ret = spi_stop_queue(master); 1388 1389 /* 1390 * flush_kthread_worker will block until all work is done. 1391 * If the reason that stop_queue timed out is that the work will never 1392 * finish, then it does no good to call flush/stop thread, so 1393 * return anyway. 1394 */ 1395 if (ret) { 1396 dev_err(&master->dev, "problem destroying queue\n"); 1397 return ret; 1398 } 1399 1400 flush_kthread_worker(&master->kworker); 1401 kthread_stop(master->kworker_task); 1402 1403 return 0; 1404 } 1405 1406 static int __spi_queued_transfer(struct spi_device *spi, 1407 struct spi_message *msg, 1408 bool need_pump) 1409 { 1410 struct spi_master *master = spi->master; 1411 unsigned long flags; 1412 1413 spin_lock_irqsave(&master->queue_lock, flags); 1414 1415 if (!master->running) { 1416 spin_unlock_irqrestore(&master->queue_lock, flags); 1417 return -ESHUTDOWN; 1418 } 1419 msg->actual_length = 0; 1420 msg->status = -EINPROGRESS; 1421 1422 list_add_tail(&msg->queue, &master->queue); 1423 if (!master->busy && need_pump) 1424 queue_kthread_work(&master->kworker, &master->pump_messages); 1425 1426 spin_unlock_irqrestore(&master->queue_lock, flags); 1427 return 0; 1428 } 1429 1430 /** 1431 * spi_queued_transfer - transfer function for queued transfers 1432 * @spi: spi device which is requesting transfer 1433 * @msg: spi message which is to handled is queued to driver queue 1434 * 1435 * Return: zero on success, else a negative error code. 1436 */ 1437 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1438 { 1439 return __spi_queued_transfer(spi, msg, true); 1440 } 1441 1442 static int spi_master_initialize_queue(struct spi_master *master) 1443 { 1444 int ret; 1445 1446 master->transfer = spi_queued_transfer; 1447 if (!master->transfer_one_message) 1448 master->transfer_one_message = spi_transfer_one_message; 1449 1450 /* Initialize and start queue */ 1451 ret = spi_init_queue(master); 1452 if (ret) { 1453 dev_err(&master->dev, "problem initializing queue\n"); 1454 goto err_init_queue; 1455 } 1456 master->queued = true; 1457 ret = spi_start_queue(master); 1458 if (ret) { 1459 dev_err(&master->dev, "problem starting queue\n"); 1460 goto err_start_queue; 1461 } 1462 1463 return 0; 1464 1465 err_start_queue: 1466 spi_destroy_queue(master); 1467 err_init_queue: 1468 return ret; 1469 } 1470 1471 /*-------------------------------------------------------------------------*/ 1472 1473 #if defined(CONFIG_OF) 1474 static struct spi_device * 1475 of_register_spi_device(struct spi_master *master, struct device_node *nc) 1476 { 1477 struct spi_device *spi; 1478 int rc; 1479 u32 value; 1480 1481 /* Alloc an spi_device */ 1482 spi = spi_alloc_device(master); 1483 if (!spi) { 1484 dev_err(&master->dev, "spi_device alloc error for %s\n", 1485 nc->full_name); 1486 rc = -ENOMEM; 1487 goto err_out; 1488 } 1489 1490 /* Select device driver */ 1491 rc = of_modalias_node(nc, spi->modalias, 1492 sizeof(spi->modalias)); 1493 if (rc < 0) { 1494 dev_err(&master->dev, "cannot find modalias for %s\n", 1495 nc->full_name); 1496 goto err_out; 1497 } 1498 1499 /* Device address */ 1500 rc = of_property_read_u32(nc, "reg", &value); 1501 if (rc) { 1502 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1503 nc->full_name, rc); 1504 goto err_out; 1505 } 1506 spi->chip_select = value; 1507 1508 /* Mode (clock phase/polarity/etc.) */ 1509 if (of_find_property(nc, "spi-cpha", NULL)) 1510 spi->mode |= SPI_CPHA; 1511 if (of_find_property(nc, "spi-cpol", NULL)) 1512 spi->mode |= SPI_CPOL; 1513 if (of_find_property(nc, "spi-cs-high", NULL)) 1514 spi->mode |= SPI_CS_HIGH; 1515 if (of_find_property(nc, "spi-3wire", NULL)) 1516 spi->mode |= SPI_3WIRE; 1517 if (of_find_property(nc, "spi-lsb-first", NULL)) 1518 spi->mode |= SPI_LSB_FIRST; 1519 1520 /* Device DUAL/QUAD mode */ 1521 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1522 switch (value) { 1523 case 1: 1524 break; 1525 case 2: 1526 spi->mode |= SPI_TX_DUAL; 1527 break; 1528 case 4: 1529 spi->mode |= SPI_TX_QUAD; 1530 break; 1531 default: 1532 dev_warn(&master->dev, 1533 "spi-tx-bus-width %d not supported\n", 1534 value); 1535 break; 1536 } 1537 } 1538 1539 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1540 switch (value) { 1541 case 1: 1542 break; 1543 case 2: 1544 spi->mode |= SPI_RX_DUAL; 1545 break; 1546 case 4: 1547 spi->mode |= SPI_RX_QUAD; 1548 break; 1549 default: 1550 dev_warn(&master->dev, 1551 "spi-rx-bus-width %d not supported\n", 1552 value); 1553 break; 1554 } 1555 } 1556 1557 /* Device speed */ 1558 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1559 if (rc) { 1560 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1561 nc->full_name, rc); 1562 goto err_out; 1563 } 1564 spi->max_speed_hz = value; 1565 1566 /* Store a pointer to the node in the device structure */ 1567 of_node_get(nc); 1568 spi->dev.of_node = nc; 1569 1570 /* Register the new device */ 1571 rc = spi_add_device(spi); 1572 if (rc) { 1573 dev_err(&master->dev, "spi_device register error %s\n", 1574 nc->full_name); 1575 goto err_out; 1576 } 1577 1578 return spi; 1579 1580 err_out: 1581 spi_dev_put(spi); 1582 return ERR_PTR(rc); 1583 } 1584 1585 /** 1586 * of_register_spi_devices() - Register child devices onto the SPI bus 1587 * @master: Pointer to spi_master device 1588 * 1589 * Registers an spi_device for each child node of master node which has a 'reg' 1590 * property. 1591 */ 1592 static void of_register_spi_devices(struct spi_master *master) 1593 { 1594 struct spi_device *spi; 1595 struct device_node *nc; 1596 1597 if (!master->dev.of_node) 1598 return; 1599 1600 for_each_available_child_of_node(master->dev.of_node, nc) { 1601 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1602 continue; 1603 spi = of_register_spi_device(master, nc); 1604 if (IS_ERR(spi)) 1605 dev_warn(&master->dev, "Failed to create SPI device for %s\n", 1606 nc->full_name); 1607 } 1608 } 1609 #else 1610 static void of_register_spi_devices(struct spi_master *master) { } 1611 #endif 1612 1613 #ifdef CONFIG_ACPI 1614 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1615 { 1616 struct spi_device *spi = data; 1617 struct spi_master *master = spi->master; 1618 1619 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1620 struct acpi_resource_spi_serialbus *sb; 1621 1622 sb = &ares->data.spi_serial_bus; 1623 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1624 /* 1625 * ACPI DeviceSelection numbering is handled by the 1626 * host controller driver in Windows and can vary 1627 * from driver to driver. In Linux we always expect 1628 * 0 .. max - 1 so we need to ask the driver to 1629 * translate between the two schemes. 1630 */ 1631 if (master->fw_translate_cs) { 1632 int cs = master->fw_translate_cs(master, 1633 sb->device_selection); 1634 if (cs < 0) 1635 return cs; 1636 spi->chip_select = cs; 1637 } else { 1638 spi->chip_select = sb->device_selection; 1639 } 1640 1641 spi->max_speed_hz = sb->connection_speed; 1642 1643 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1644 spi->mode |= SPI_CPHA; 1645 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1646 spi->mode |= SPI_CPOL; 1647 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1648 spi->mode |= SPI_CS_HIGH; 1649 } 1650 } else if (spi->irq < 0) { 1651 struct resource r; 1652 1653 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1654 spi->irq = r.start; 1655 } 1656 1657 /* Always tell the ACPI core to skip this resource */ 1658 return 1; 1659 } 1660 1661 static acpi_status acpi_register_spi_device(struct spi_master *master, 1662 struct acpi_device *adev) 1663 { 1664 struct list_head resource_list; 1665 struct spi_device *spi; 1666 int ret; 1667 1668 if (acpi_bus_get_status(adev) || !adev->status.present || 1669 acpi_device_enumerated(adev)) 1670 return AE_OK; 1671 1672 spi = spi_alloc_device(master); 1673 if (!spi) { 1674 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1675 dev_name(&adev->dev)); 1676 return AE_NO_MEMORY; 1677 } 1678 1679 ACPI_COMPANION_SET(&spi->dev, adev); 1680 spi->irq = -1; 1681 1682 INIT_LIST_HEAD(&resource_list); 1683 ret = acpi_dev_get_resources(adev, &resource_list, 1684 acpi_spi_add_resource, spi); 1685 acpi_dev_free_resource_list(&resource_list); 1686 1687 if (ret < 0 || !spi->max_speed_hz) { 1688 spi_dev_put(spi); 1689 return AE_OK; 1690 } 1691 1692 if (spi->irq < 0) 1693 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1694 1695 acpi_device_set_enumerated(adev); 1696 1697 adev->power.flags.ignore_parent = true; 1698 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1699 if (spi_add_device(spi)) { 1700 adev->power.flags.ignore_parent = false; 1701 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1702 dev_name(&adev->dev)); 1703 spi_dev_put(spi); 1704 } 1705 1706 return AE_OK; 1707 } 1708 1709 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1710 void *data, void **return_value) 1711 { 1712 struct spi_master *master = data; 1713 struct acpi_device *adev; 1714 1715 if (acpi_bus_get_device(handle, &adev)) 1716 return AE_OK; 1717 1718 return acpi_register_spi_device(master, adev); 1719 } 1720 1721 static void acpi_register_spi_devices(struct spi_master *master) 1722 { 1723 acpi_status status; 1724 acpi_handle handle; 1725 1726 handle = ACPI_HANDLE(master->dev.parent); 1727 if (!handle) 1728 return; 1729 1730 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1731 acpi_spi_add_device, NULL, 1732 master, NULL); 1733 if (ACPI_FAILURE(status)) 1734 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1735 } 1736 #else 1737 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1738 #endif /* CONFIG_ACPI */ 1739 1740 static void spi_master_release(struct device *dev) 1741 { 1742 struct spi_master *master; 1743 1744 master = container_of(dev, struct spi_master, dev); 1745 kfree(master); 1746 } 1747 1748 static struct class spi_master_class = { 1749 .name = "spi_master", 1750 .owner = THIS_MODULE, 1751 .dev_release = spi_master_release, 1752 .dev_groups = spi_master_groups, 1753 }; 1754 1755 1756 /** 1757 * spi_alloc_master - allocate SPI master controller 1758 * @dev: the controller, possibly using the platform_bus 1759 * @size: how much zeroed driver-private data to allocate; the pointer to this 1760 * memory is in the driver_data field of the returned device, 1761 * accessible with spi_master_get_devdata(). 1762 * Context: can sleep 1763 * 1764 * This call is used only by SPI master controller drivers, which are the 1765 * only ones directly touching chip registers. It's how they allocate 1766 * an spi_master structure, prior to calling spi_register_master(). 1767 * 1768 * This must be called from context that can sleep. 1769 * 1770 * The caller is responsible for assigning the bus number and initializing 1771 * the master's methods before calling spi_register_master(); and (after errors 1772 * adding the device) calling spi_master_put() to prevent a memory leak. 1773 * 1774 * Return: the SPI master structure on success, else NULL. 1775 */ 1776 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1777 { 1778 struct spi_master *master; 1779 1780 if (!dev) 1781 return NULL; 1782 1783 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1784 if (!master) 1785 return NULL; 1786 1787 device_initialize(&master->dev); 1788 master->bus_num = -1; 1789 master->num_chipselect = 1; 1790 master->dev.class = &spi_master_class; 1791 master->dev.parent = dev; 1792 pm_suspend_ignore_children(&master->dev, true); 1793 spi_master_set_devdata(master, &master[1]); 1794 1795 return master; 1796 } 1797 EXPORT_SYMBOL_GPL(spi_alloc_master); 1798 1799 #ifdef CONFIG_OF 1800 static int of_spi_register_master(struct spi_master *master) 1801 { 1802 int nb, i, *cs; 1803 struct device_node *np = master->dev.of_node; 1804 1805 if (!np) 1806 return 0; 1807 1808 nb = of_gpio_named_count(np, "cs-gpios"); 1809 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1810 1811 /* Return error only for an incorrectly formed cs-gpios property */ 1812 if (nb == 0 || nb == -ENOENT) 1813 return 0; 1814 else if (nb < 0) 1815 return nb; 1816 1817 cs = devm_kzalloc(&master->dev, 1818 sizeof(int) * master->num_chipselect, 1819 GFP_KERNEL); 1820 master->cs_gpios = cs; 1821 1822 if (!master->cs_gpios) 1823 return -ENOMEM; 1824 1825 for (i = 0; i < master->num_chipselect; i++) 1826 cs[i] = -ENOENT; 1827 1828 for (i = 0; i < nb; i++) 1829 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1830 1831 return 0; 1832 } 1833 #else 1834 static int of_spi_register_master(struct spi_master *master) 1835 { 1836 return 0; 1837 } 1838 #endif 1839 1840 /** 1841 * spi_register_master - register SPI master controller 1842 * @master: initialized master, originally from spi_alloc_master() 1843 * Context: can sleep 1844 * 1845 * SPI master controllers connect to their drivers using some non-SPI bus, 1846 * such as the platform bus. The final stage of probe() in that code 1847 * includes calling spi_register_master() to hook up to this SPI bus glue. 1848 * 1849 * SPI controllers use board specific (often SOC specific) bus numbers, 1850 * and board-specific addressing for SPI devices combines those numbers 1851 * with chip select numbers. Since SPI does not directly support dynamic 1852 * device identification, boards need configuration tables telling which 1853 * chip is at which address. 1854 * 1855 * This must be called from context that can sleep. It returns zero on 1856 * success, else a negative error code (dropping the master's refcount). 1857 * After a successful return, the caller is responsible for calling 1858 * spi_unregister_master(). 1859 * 1860 * Return: zero on success, else a negative error code. 1861 */ 1862 int spi_register_master(struct spi_master *master) 1863 { 1864 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1865 struct device *dev = master->dev.parent; 1866 struct boardinfo *bi; 1867 int status = -ENODEV; 1868 int dynamic = 0; 1869 1870 if (!dev) 1871 return -ENODEV; 1872 1873 status = of_spi_register_master(master); 1874 if (status) 1875 return status; 1876 1877 /* even if it's just one always-selected device, there must 1878 * be at least one chipselect 1879 */ 1880 if (master->num_chipselect == 0) 1881 return -EINVAL; 1882 1883 if ((master->bus_num < 0) && master->dev.of_node) 1884 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1885 1886 /* convention: dynamically assigned bus IDs count down from the max */ 1887 if (master->bus_num < 0) { 1888 /* FIXME switch to an IDR based scheme, something like 1889 * I2C now uses, so we can't run out of "dynamic" IDs 1890 */ 1891 master->bus_num = atomic_dec_return(&dyn_bus_id); 1892 dynamic = 1; 1893 } 1894 1895 INIT_LIST_HEAD(&master->queue); 1896 spin_lock_init(&master->queue_lock); 1897 spin_lock_init(&master->bus_lock_spinlock); 1898 mutex_init(&master->bus_lock_mutex); 1899 mutex_init(&master->io_mutex); 1900 master->bus_lock_flag = 0; 1901 init_completion(&master->xfer_completion); 1902 if (!master->max_dma_len) 1903 master->max_dma_len = INT_MAX; 1904 1905 /* register the device, then userspace will see it. 1906 * registration fails if the bus ID is in use. 1907 */ 1908 dev_set_name(&master->dev, "spi%u", master->bus_num); 1909 status = device_add(&master->dev); 1910 if (status < 0) 1911 goto done; 1912 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1913 dynamic ? " (dynamic)" : ""); 1914 1915 /* If we're using a queued driver, start the queue */ 1916 if (master->transfer) 1917 dev_info(dev, "master is unqueued, this is deprecated\n"); 1918 else { 1919 status = spi_master_initialize_queue(master); 1920 if (status) { 1921 device_del(&master->dev); 1922 goto done; 1923 } 1924 } 1925 /* add statistics */ 1926 spin_lock_init(&master->statistics.lock); 1927 1928 mutex_lock(&board_lock); 1929 list_add_tail(&master->list, &spi_master_list); 1930 list_for_each_entry(bi, &board_list, list) 1931 spi_match_master_to_boardinfo(master, &bi->board_info); 1932 mutex_unlock(&board_lock); 1933 1934 /* Register devices from the device tree and ACPI */ 1935 of_register_spi_devices(master); 1936 acpi_register_spi_devices(master); 1937 done: 1938 return status; 1939 } 1940 EXPORT_SYMBOL_GPL(spi_register_master); 1941 1942 static void devm_spi_unregister(struct device *dev, void *res) 1943 { 1944 spi_unregister_master(*(struct spi_master **)res); 1945 } 1946 1947 /** 1948 * dev_spi_register_master - register managed SPI master controller 1949 * @dev: device managing SPI master 1950 * @master: initialized master, originally from spi_alloc_master() 1951 * Context: can sleep 1952 * 1953 * Register a SPI device as with spi_register_master() which will 1954 * automatically be unregister 1955 * 1956 * Return: zero on success, else a negative error code. 1957 */ 1958 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1959 { 1960 struct spi_master **ptr; 1961 int ret; 1962 1963 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1964 if (!ptr) 1965 return -ENOMEM; 1966 1967 ret = spi_register_master(master); 1968 if (!ret) { 1969 *ptr = master; 1970 devres_add(dev, ptr); 1971 } else { 1972 devres_free(ptr); 1973 } 1974 1975 return ret; 1976 } 1977 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1978 1979 static int __unregister(struct device *dev, void *null) 1980 { 1981 spi_unregister_device(to_spi_device(dev)); 1982 return 0; 1983 } 1984 1985 /** 1986 * spi_unregister_master - unregister SPI master controller 1987 * @master: the master being unregistered 1988 * Context: can sleep 1989 * 1990 * This call is used only by SPI master controller drivers, which are the 1991 * only ones directly touching chip registers. 1992 * 1993 * This must be called from context that can sleep. 1994 */ 1995 void spi_unregister_master(struct spi_master *master) 1996 { 1997 int dummy; 1998 1999 if (master->queued) { 2000 if (spi_destroy_queue(master)) 2001 dev_err(&master->dev, "queue remove failed\n"); 2002 } 2003 2004 mutex_lock(&board_lock); 2005 list_del(&master->list); 2006 mutex_unlock(&board_lock); 2007 2008 dummy = device_for_each_child(&master->dev, NULL, __unregister); 2009 device_unregister(&master->dev); 2010 } 2011 EXPORT_SYMBOL_GPL(spi_unregister_master); 2012 2013 int spi_master_suspend(struct spi_master *master) 2014 { 2015 int ret; 2016 2017 /* Basically no-ops for non-queued masters */ 2018 if (!master->queued) 2019 return 0; 2020 2021 ret = spi_stop_queue(master); 2022 if (ret) 2023 dev_err(&master->dev, "queue stop failed\n"); 2024 2025 return ret; 2026 } 2027 EXPORT_SYMBOL_GPL(spi_master_suspend); 2028 2029 int spi_master_resume(struct spi_master *master) 2030 { 2031 int ret; 2032 2033 if (!master->queued) 2034 return 0; 2035 2036 ret = spi_start_queue(master); 2037 if (ret) 2038 dev_err(&master->dev, "queue restart failed\n"); 2039 2040 return ret; 2041 } 2042 EXPORT_SYMBOL_GPL(spi_master_resume); 2043 2044 static int __spi_master_match(struct device *dev, const void *data) 2045 { 2046 struct spi_master *m; 2047 const u16 *bus_num = data; 2048 2049 m = container_of(dev, struct spi_master, dev); 2050 return m->bus_num == *bus_num; 2051 } 2052 2053 /** 2054 * spi_busnum_to_master - look up master associated with bus_num 2055 * @bus_num: the master's bus number 2056 * Context: can sleep 2057 * 2058 * This call may be used with devices that are registered after 2059 * arch init time. It returns a refcounted pointer to the relevant 2060 * spi_master (which the caller must release), or NULL if there is 2061 * no such master registered. 2062 * 2063 * Return: the SPI master structure on success, else NULL. 2064 */ 2065 struct spi_master *spi_busnum_to_master(u16 bus_num) 2066 { 2067 struct device *dev; 2068 struct spi_master *master = NULL; 2069 2070 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2071 __spi_master_match); 2072 if (dev) 2073 master = container_of(dev, struct spi_master, dev); 2074 /* reference got in class_find_device */ 2075 return master; 2076 } 2077 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2078 2079 /*-------------------------------------------------------------------------*/ 2080 2081 /* Core methods for SPI resource management */ 2082 2083 /** 2084 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2085 * during the processing of a spi_message while using 2086 * spi_transfer_one 2087 * @spi: the spi device for which we allocate memory 2088 * @release: the release code to execute for this resource 2089 * @size: size to alloc and return 2090 * @gfp: GFP allocation flags 2091 * 2092 * Return: the pointer to the allocated data 2093 * 2094 * This may get enhanced in the future to allocate from a memory pool 2095 * of the @spi_device or @spi_master to avoid repeated allocations. 2096 */ 2097 void *spi_res_alloc(struct spi_device *spi, 2098 spi_res_release_t release, 2099 size_t size, gfp_t gfp) 2100 { 2101 struct spi_res *sres; 2102 2103 sres = kzalloc(sizeof(*sres) + size, gfp); 2104 if (!sres) 2105 return NULL; 2106 2107 INIT_LIST_HEAD(&sres->entry); 2108 sres->release = release; 2109 2110 return sres->data; 2111 } 2112 EXPORT_SYMBOL_GPL(spi_res_alloc); 2113 2114 /** 2115 * spi_res_free - free an spi resource 2116 * @res: pointer to the custom data of a resource 2117 * 2118 */ 2119 void spi_res_free(void *res) 2120 { 2121 struct spi_res *sres = container_of(res, struct spi_res, data); 2122 2123 if (!res) 2124 return; 2125 2126 WARN_ON(!list_empty(&sres->entry)); 2127 kfree(sres); 2128 } 2129 EXPORT_SYMBOL_GPL(spi_res_free); 2130 2131 /** 2132 * spi_res_add - add a spi_res to the spi_message 2133 * @message: the spi message 2134 * @res: the spi_resource 2135 */ 2136 void spi_res_add(struct spi_message *message, void *res) 2137 { 2138 struct spi_res *sres = container_of(res, struct spi_res, data); 2139 2140 WARN_ON(!list_empty(&sres->entry)); 2141 list_add_tail(&sres->entry, &message->resources); 2142 } 2143 EXPORT_SYMBOL_GPL(spi_res_add); 2144 2145 /** 2146 * spi_res_release - release all spi resources for this message 2147 * @master: the @spi_master 2148 * @message: the @spi_message 2149 */ 2150 void spi_res_release(struct spi_master *master, 2151 struct spi_message *message) 2152 { 2153 struct spi_res *res; 2154 2155 while (!list_empty(&message->resources)) { 2156 res = list_last_entry(&message->resources, 2157 struct spi_res, entry); 2158 2159 if (res->release) 2160 res->release(master, message, res->data); 2161 2162 list_del(&res->entry); 2163 2164 kfree(res); 2165 } 2166 } 2167 EXPORT_SYMBOL_GPL(spi_res_release); 2168 2169 /*-------------------------------------------------------------------------*/ 2170 2171 /* Core methods for spi_message alterations */ 2172 2173 static void __spi_replace_transfers_release(struct spi_master *master, 2174 struct spi_message *msg, 2175 void *res) 2176 { 2177 struct spi_replaced_transfers *rxfer = res; 2178 size_t i; 2179 2180 /* call extra callback if requested */ 2181 if (rxfer->release) 2182 rxfer->release(master, msg, res); 2183 2184 /* insert replaced transfers back into the message */ 2185 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2186 2187 /* remove the formerly inserted entries */ 2188 for (i = 0; i < rxfer->inserted; i++) 2189 list_del(&rxfer->inserted_transfers[i].transfer_list); 2190 } 2191 2192 /** 2193 * spi_replace_transfers - replace transfers with several transfers 2194 * and register change with spi_message.resources 2195 * @msg: the spi_message we work upon 2196 * @xfer_first: the first spi_transfer we want to replace 2197 * @remove: number of transfers to remove 2198 * @insert: the number of transfers we want to insert instead 2199 * @release: extra release code necessary in some circumstances 2200 * @extradatasize: extra data to allocate (with alignment guarantees 2201 * of struct @spi_transfer) 2202 * @gfp: gfp flags 2203 * 2204 * Returns: pointer to @spi_replaced_transfers, 2205 * PTR_ERR(...) in case of errors. 2206 */ 2207 struct spi_replaced_transfers *spi_replace_transfers( 2208 struct spi_message *msg, 2209 struct spi_transfer *xfer_first, 2210 size_t remove, 2211 size_t insert, 2212 spi_replaced_release_t release, 2213 size_t extradatasize, 2214 gfp_t gfp) 2215 { 2216 struct spi_replaced_transfers *rxfer; 2217 struct spi_transfer *xfer; 2218 size_t i; 2219 2220 /* allocate the structure using spi_res */ 2221 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2222 insert * sizeof(struct spi_transfer) 2223 + sizeof(struct spi_replaced_transfers) 2224 + extradatasize, 2225 gfp); 2226 if (!rxfer) 2227 return ERR_PTR(-ENOMEM); 2228 2229 /* the release code to invoke before running the generic release */ 2230 rxfer->release = release; 2231 2232 /* assign extradata */ 2233 if (extradatasize) 2234 rxfer->extradata = 2235 &rxfer->inserted_transfers[insert]; 2236 2237 /* init the replaced_transfers list */ 2238 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2239 2240 /* assign the list_entry after which we should reinsert 2241 * the @replaced_transfers - it may be spi_message.messages! 2242 */ 2243 rxfer->replaced_after = xfer_first->transfer_list.prev; 2244 2245 /* remove the requested number of transfers */ 2246 for (i = 0; i < remove; i++) { 2247 /* if the entry after replaced_after it is msg->transfers 2248 * then we have been requested to remove more transfers 2249 * than are in the list 2250 */ 2251 if (rxfer->replaced_after->next == &msg->transfers) { 2252 dev_err(&msg->spi->dev, 2253 "requested to remove more spi_transfers than are available\n"); 2254 /* insert replaced transfers back into the message */ 2255 list_splice(&rxfer->replaced_transfers, 2256 rxfer->replaced_after); 2257 2258 /* free the spi_replace_transfer structure */ 2259 spi_res_free(rxfer); 2260 2261 /* and return with an error */ 2262 return ERR_PTR(-EINVAL); 2263 } 2264 2265 /* remove the entry after replaced_after from list of 2266 * transfers and add it to list of replaced_transfers 2267 */ 2268 list_move_tail(rxfer->replaced_after->next, 2269 &rxfer->replaced_transfers); 2270 } 2271 2272 /* create copy of the given xfer with identical settings 2273 * based on the first transfer to get removed 2274 */ 2275 for (i = 0; i < insert; i++) { 2276 /* we need to run in reverse order */ 2277 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2278 2279 /* copy all spi_transfer data */ 2280 memcpy(xfer, xfer_first, sizeof(*xfer)); 2281 2282 /* add to list */ 2283 list_add(&xfer->transfer_list, rxfer->replaced_after); 2284 2285 /* clear cs_change and delay_usecs for all but the last */ 2286 if (i) { 2287 xfer->cs_change = false; 2288 xfer->delay_usecs = 0; 2289 } 2290 } 2291 2292 /* set up inserted */ 2293 rxfer->inserted = insert; 2294 2295 /* and register it with spi_res/spi_message */ 2296 spi_res_add(msg, rxfer); 2297 2298 return rxfer; 2299 } 2300 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2301 2302 static int __spi_split_transfer_maxsize(struct spi_master *master, 2303 struct spi_message *msg, 2304 struct spi_transfer **xferp, 2305 size_t maxsize, 2306 gfp_t gfp) 2307 { 2308 struct spi_transfer *xfer = *xferp, *xfers; 2309 struct spi_replaced_transfers *srt; 2310 size_t offset; 2311 size_t count, i; 2312 2313 /* warn once about this fact that we are splitting a transfer */ 2314 dev_warn_once(&msg->spi->dev, 2315 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", 2316 xfer->len, maxsize); 2317 2318 /* calculate how many we have to replace */ 2319 count = DIV_ROUND_UP(xfer->len, maxsize); 2320 2321 /* create replacement */ 2322 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2323 if (IS_ERR(srt)) 2324 return PTR_ERR(srt); 2325 xfers = srt->inserted_transfers; 2326 2327 /* now handle each of those newly inserted spi_transfers 2328 * note that the replacements spi_transfers all are preset 2329 * to the same values as *xferp, so tx_buf, rx_buf and len 2330 * are all identical (as well as most others) 2331 * so we just have to fix up len and the pointers. 2332 * 2333 * this also includes support for the depreciated 2334 * spi_message.is_dma_mapped interface 2335 */ 2336 2337 /* the first transfer just needs the length modified, so we 2338 * run it outside the loop 2339 */ 2340 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2341 2342 /* all the others need rx_buf/tx_buf also set */ 2343 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2344 /* update rx_buf, tx_buf and dma */ 2345 if (xfers[i].rx_buf) 2346 xfers[i].rx_buf += offset; 2347 if (xfers[i].rx_dma) 2348 xfers[i].rx_dma += offset; 2349 if (xfers[i].tx_buf) 2350 xfers[i].tx_buf += offset; 2351 if (xfers[i].tx_dma) 2352 xfers[i].tx_dma += offset; 2353 2354 /* update length */ 2355 xfers[i].len = min(maxsize, xfers[i].len - offset); 2356 } 2357 2358 /* we set up xferp to the last entry we have inserted, 2359 * so that we skip those already split transfers 2360 */ 2361 *xferp = &xfers[count - 1]; 2362 2363 /* increment statistics counters */ 2364 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, 2365 transfers_split_maxsize); 2366 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2367 transfers_split_maxsize); 2368 2369 return 0; 2370 } 2371 2372 /** 2373 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2374 * when an individual transfer exceeds a 2375 * certain size 2376 * @master: the @spi_master for this transfer 2377 * @msg: the @spi_message to transform 2378 * @maxsize: the maximum when to apply this 2379 * @gfp: GFP allocation flags 2380 * 2381 * Return: status of transformation 2382 */ 2383 int spi_split_transfers_maxsize(struct spi_master *master, 2384 struct spi_message *msg, 2385 size_t maxsize, 2386 gfp_t gfp) 2387 { 2388 struct spi_transfer *xfer; 2389 int ret; 2390 2391 /* iterate over the transfer_list, 2392 * but note that xfer is advanced to the last transfer inserted 2393 * to avoid checking sizes again unnecessarily (also xfer does 2394 * potentiall belong to a different list by the time the 2395 * replacement has happened 2396 */ 2397 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2398 if (xfer->len > maxsize) { 2399 ret = __spi_split_transfer_maxsize( 2400 master, msg, &xfer, maxsize, gfp); 2401 if (ret) 2402 return ret; 2403 } 2404 } 2405 2406 return 0; 2407 } 2408 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2409 2410 /*-------------------------------------------------------------------------*/ 2411 2412 /* Core methods for SPI master protocol drivers. Some of the 2413 * other core methods are currently defined as inline functions. 2414 */ 2415 2416 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word) 2417 { 2418 if (master->bits_per_word_mask) { 2419 /* Only 32 bits fit in the mask */ 2420 if (bits_per_word > 32) 2421 return -EINVAL; 2422 if (!(master->bits_per_word_mask & 2423 SPI_BPW_MASK(bits_per_word))) 2424 return -EINVAL; 2425 } 2426 2427 return 0; 2428 } 2429 2430 /** 2431 * spi_setup - setup SPI mode and clock rate 2432 * @spi: the device whose settings are being modified 2433 * Context: can sleep, and no requests are queued to the device 2434 * 2435 * SPI protocol drivers may need to update the transfer mode if the 2436 * device doesn't work with its default. They may likewise need 2437 * to update clock rates or word sizes from initial values. This function 2438 * changes those settings, and must be called from a context that can sleep. 2439 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2440 * effect the next time the device is selected and data is transferred to 2441 * or from it. When this function returns, the spi device is deselected. 2442 * 2443 * Note that this call will fail if the protocol driver specifies an option 2444 * that the underlying controller or its driver does not support. For 2445 * example, not all hardware supports wire transfers using nine bit words, 2446 * LSB-first wire encoding, or active-high chipselects. 2447 * 2448 * Return: zero on success, else a negative error code. 2449 */ 2450 int spi_setup(struct spi_device *spi) 2451 { 2452 unsigned bad_bits, ugly_bits; 2453 int status; 2454 2455 /* check mode to prevent that DUAL and QUAD set at the same time 2456 */ 2457 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2458 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2459 dev_err(&spi->dev, 2460 "setup: can not select dual and quad at the same time\n"); 2461 return -EINVAL; 2462 } 2463 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2464 */ 2465 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2466 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 2467 return -EINVAL; 2468 /* help drivers fail *cleanly* when they need options 2469 * that aren't supported with their current master 2470 */ 2471 bad_bits = spi->mode & ~spi->master->mode_bits; 2472 ugly_bits = bad_bits & 2473 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 2474 if (ugly_bits) { 2475 dev_warn(&spi->dev, 2476 "setup: ignoring unsupported mode bits %x\n", 2477 ugly_bits); 2478 spi->mode &= ~ugly_bits; 2479 bad_bits &= ~ugly_bits; 2480 } 2481 if (bad_bits) { 2482 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2483 bad_bits); 2484 return -EINVAL; 2485 } 2486 2487 if (!spi->bits_per_word) 2488 spi->bits_per_word = 8; 2489 2490 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word); 2491 if (status) 2492 return status; 2493 2494 if (!spi->max_speed_hz) 2495 spi->max_speed_hz = spi->master->max_speed_hz; 2496 2497 if (spi->master->setup) 2498 status = spi->master->setup(spi); 2499 2500 spi_set_cs(spi, false); 2501 2502 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2503 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2504 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2505 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2506 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2507 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2508 spi->bits_per_word, spi->max_speed_hz, 2509 status); 2510 2511 return status; 2512 } 2513 EXPORT_SYMBOL_GPL(spi_setup); 2514 2515 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 2516 { 2517 struct spi_master *master = spi->master; 2518 struct spi_transfer *xfer; 2519 int w_size; 2520 2521 if (list_empty(&message->transfers)) 2522 return -EINVAL; 2523 2524 /* Half-duplex links include original MicroWire, and ones with 2525 * only one data pin like SPI_3WIRE (switches direction) or where 2526 * either MOSI or MISO is missing. They can also be caused by 2527 * software limitations. 2528 */ 2529 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 2530 || (spi->mode & SPI_3WIRE)) { 2531 unsigned flags = master->flags; 2532 2533 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2534 if (xfer->rx_buf && xfer->tx_buf) 2535 return -EINVAL; 2536 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 2537 return -EINVAL; 2538 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 2539 return -EINVAL; 2540 } 2541 } 2542 2543 /** 2544 * Set transfer bits_per_word and max speed as spi device default if 2545 * it is not set for this transfer. 2546 * Set transfer tx_nbits and rx_nbits as single transfer default 2547 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 2548 */ 2549 message->frame_length = 0; 2550 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2551 message->frame_length += xfer->len; 2552 if (!xfer->bits_per_word) 2553 xfer->bits_per_word = spi->bits_per_word; 2554 2555 if (!xfer->speed_hz) 2556 xfer->speed_hz = spi->max_speed_hz; 2557 if (!xfer->speed_hz) 2558 xfer->speed_hz = master->max_speed_hz; 2559 2560 if (master->max_speed_hz && 2561 xfer->speed_hz > master->max_speed_hz) 2562 xfer->speed_hz = master->max_speed_hz; 2563 2564 if (__spi_validate_bits_per_word(master, xfer->bits_per_word)) 2565 return -EINVAL; 2566 2567 /* 2568 * SPI transfer length should be multiple of SPI word size 2569 * where SPI word size should be power-of-two multiple 2570 */ 2571 if (xfer->bits_per_word <= 8) 2572 w_size = 1; 2573 else if (xfer->bits_per_word <= 16) 2574 w_size = 2; 2575 else 2576 w_size = 4; 2577 2578 /* No partial transfers accepted */ 2579 if (xfer->len % w_size) 2580 return -EINVAL; 2581 2582 if (xfer->speed_hz && master->min_speed_hz && 2583 xfer->speed_hz < master->min_speed_hz) 2584 return -EINVAL; 2585 2586 if (xfer->tx_buf && !xfer->tx_nbits) 2587 xfer->tx_nbits = SPI_NBITS_SINGLE; 2588 if (xfer->rx_buf && !xfer->rx_nbits) 2589 xfer->rx_nbits = SPI_NBITS_SINGLE; 2590 /* check transfer tx/rx_nbits: 2591 * 1. check the value matches one of single, dual and quad 2592 * 2. check tx/rx_nbits match the mode in spi_device 2593 */ 2594 if (xfer->tx_buf) { 2595 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 2596 xfer->tx_nbits != SPI_NBITS_DUAL && 2597 xfer->tx_nbits != SPI_NBITS_QUAD) 2598 return -EINVAL; 2599 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 2600 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2601 return -EINVAL; 2602 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 2603 !(spi->mode & SPI_TX_QUAD)) 2604 return -EINVAL; 2605 } 2606 /* check transfer rx_nbits */ 2607 if (xfer->rx_buf) { 2608 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 2609 xfer->rx_nbits != SPI_NBITS_DUAL && 2610 xfer->rx_nbits != SPI_NBITS_QUAD) 2611 return -EINVAL; 2612 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 2613 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2614 return -EINVAL; 2615 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 2616 !(spi->mode & SPI_RX_QUAD)) 2617 return -EINVAL; 2618 } 2619 } 2620 2621 message->status = -EINPROGRESS; 2622 2623 return 0; 2624 } 2625 2626 static int __spi_async(struct spi_device *spi, struct spi_message *message) 2627 { 2628 struct spi_master *master = spi->master; 2629 2630 message->spi = spi; 2631 2632 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async); 2633 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 2634 2635 trace_spi_message_submit(message); 2636 2637 return master->transfer(spi, message); 2638 } 2639 2640 /** 2641 * spi_async - asynchronous SPI transfer 2642 * @spi: device with which data will be exchanged 2643 * @message: describes the data transfers, including completion callback 2644 * Context: any (irqs may be blocked, etc) 2645 * 2646 * This call may be used in_irq and other contexts which can't sleep, 2647 * as well as from task contexts which can sleep. 2648 * 2649 * The completion callback is invoked in a context which can't sleep. 2650 * Before that invocation, the value of message->status is undefined. 2651 * When the callback is issued, message->status holds either zero (to 2652 * indicate complete success) or a negative error code. After that 2653 * callback returns, the driver which issued the transfer request may 2654 * deallocate the associated memory; it's no longer in use by any SPI 2655 * core or controller driver code. 2656 * 2657 * Note that although all messages to a spi_device are handled in 2658 * FIFO order, messages may go to different devices in other orders. 2659 * Some device might be higher priority, or have various "hard" access 2660 * time requirements, for example. 2661 * 2662 * On detection of any fault during the transfer, processing of 2663 * the entire message is aborted, and the device is deselected. 2664 * Until returning from the associated message completion callback, 2665 * no other spi_message queued to that device will be processed. 2666 * (This rule applies equally to all the synchronous transfer calls, 2667 * which are wrappers around this core asynchronous primitive.) 2668 * 2669 * Return: zero on success, else a negative error code. 2670 */ 2671 int spi_async(struct spi_device *spi, struct spi_message *message) 2672 { 2673 struct spi_master *master = spi->master; 2674 int ret; 2675 unsigned long flags; 2676 2677 ret = __spi_validate(spi, message); 2678 if (ret != 0) 2679 return ret; 2680 2681 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2682 2683 if (master->bus_lock_flag) 2684 ret = -EBUSY; 2685 else 2686 ret = __spi_async(spi, message); 2687 2688 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2689 2690 return ret; 2691 } 2692 EXPORT_SYMBOL_GPL(spi_async); 2693 2694 /** 2695 * spi_async_locked - version of spi_async with exclusive bus usage 2696 * @spi: device with which data will be exchanged 2697 * @message: describes the data transfers, including completion callback 2698 * Context: any (irqs may be blocked, etc) 2699 * 2700 * This call may be used in_irq and other contexts which can't sleep, 2701 * as well as from task contexts which can sleep. 2702 * 2703 * The completion callback is invoked in a context which can't sleep. 2704 * Before that invocation, the value of message->status is undefined. 2705 * When the callback is issued, message->status holds either zero (to 2706 * indicate complete success) or a negative error code. After that 2707 * callback returns, the driver which issued the transfer request may 2708 * deallocate the associated memory; it's no longer in use by any SPI 2709 * core or controller driver code. 2710 * 2711 * Note that although all messages to a spi_device are handled in 2712 * FIFO order, messages may go to different devices in other orders. 2713 * Some device might be higher priority, or have various "hard" access 2714 * time requirements, for example. 2715 * 2716 * On detection of any fault during the transfer, processing of 2717 * the entire message is aborted, and the device is deselected. 2718 * Until returning from the associated message completion callback, 2719 * no other spi_message queued to that device will be processed. 2720 * (This rule applies equally to all the synchronous transfer calls, 2721 * which are wrappers around this core asynchronous primitive.) 2722 * 2723 * Return: zero on success, else a negative error code. 2724 */ 2725 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2726 { 2727 struct spi_master *master = spi->master; 2728 int ret; 2729 unsigned long flags; 2730 2731 ret = __spi_validate(spi, message); 2732 if (ret != 0) 2733 return ret; 2734 2735 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2736 2737 ret = __spi_async(spi, message); 2738 2739 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2740 2741 return ret; 2742 2743 } 2744 EXPORT_SYMBOL_GPL(spi_async_locked); 2745 2746 2747 int spi_flash_read(struct spi_device *spi, 2748 struct spi_flash_read_message *msg) 2749 2750 { 2751 struct spi_master *master = spi->master; 2752 struct device *rx_dev = NULL; 2753 int ret; 2754 2755 if ((msg->opcode_nbits == SPI_NBITS_DUAL || 2756 msg->addr_nbits == SPI_NBITS_DUAL) && 2757 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2758 return -EINVAL; 2759 if ((msg->opcode_nbits == SPI_NBITS_QUAD || 2760 msg->addr_nbits == SPI_NBITS_QUAD) && 2761 !(spi->mode & SPI_TX_QUAD)) 2762 return -EINVAL; 2763 if (msg->data_nbits == SPI_NBITS_DUAL && 2764 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2765 return -EINVAL; 2766 if (msg->data_nbits == SPI_NBITS_QUAD && 2767 !(spi->mode & SPI_RX_QUAD)) 2768 return -EINVAL; 2769 2770 if (master->auto_runtime_pm) { 2771 ret = pm_runtime_get_sync(master->dev.parent); 2772 if (ret < 0) { 2773 dev_err(&master->dev, "Failed to power device: %d\n", 2774 ret); 2775 return ret; 2776 } 2777 } 2778 2779 mutex_lock(&master->bus_lock_mutex); 2780 mutex_lock(&master->io_mutex); 2781 if (master->dma_rx) { 2782 rx_dev = master->dma_rx->device->dev; 2783 ret = spi_map_buf(master, rx_dev, &msg->rx_sg, 2784 msg->buf, msg->len, 2785 DMA_FROM_DEVICE); 2786 if (!ret) 2787 msg->cur_msg_mapped = true; 2788 } 2789 ret = master->spi_flash_read(spi, msg); 2790 if (msg->cur_msg_mapped) 2791 spi_unmap_buf(master, rx_dev, &msg->rx_sg, 2792 DMA_FROM_DEVICE); 2793 mutex_unlock(&master->io_mutex); 2794 mutex_unlock(&master->bus_lock_mutex); 2795 2796 if (master->auto_runtime_pm) 2797 pm_runtime_put(master->dev.parent); 2798 2799 return ret; 2800 } 2801 EXPORT_SYMBOL_GPL(spi_flash_read); 2802 2803 /*-------------------------------------------------------------------------*/ 2804 2805 /* Utility methods for SPI master protocol drivers, layered on 2806 * top of the core. Some other utility methods are defined as 2807 * inline functions. 2808 */ 2809 2810 static void spi_complete(void *arg) 2811 { 2812 complete(arg); 2813 } 2814 2815 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 2816 { 2817 DECLARE_COMPLETION_ONSTACK(done); 2818 int status; 2819 struct spi_master *master = spi->master; 2820 unsigned long flags; 2821 2822 status = __spi_validate(spi, message); 2823 if (status != 0) 2824 return status; 2825 2826 message->complete = spi_complete; 2827 message->context = &done; 2828 message->spi = spi; 2829 2830 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync); 2831 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 2832 2833 /* If we're not using the legacy transfer method then we will 2834 * try to transfer in the calling context so special case. 2835 * This code would be less tricky if we could remove the 2836 * support for driver implemented message queues. 2837 */ 2838 if (master->transfer == spi_queued_transfer) { 2839 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2840 2841 trace_spi_message_submit(message); 2842 2843 status = __spi_queued_transfer(spi, message, false); 2844 2845 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2846 } else { 2847 status = spi_async_locked(spi, message); 2848 } 2849 2850 if (status == 0) { 2851 /* Push out the messages in the calling context if we 2852 * can. 2853 */ 2854 if (master->transfer == spi_queued_transfer) { 2855 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, 2856 spi_sync_immediate); 2857 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 2858 spi_sync_immediate); 2859 __spi_pump_messages(master, false); 2860 } 2861 2862 wait_for_completion(&done); 2863 status = message->status; 2864 } 2865 message->context = NULL; 2866 return status; 2867 } 2868 2869 /** 2870 * spi_sync - blocking/synchronous SPI data transfers 2871 * @spi: device with which data will be exchanged 2872 * @message: describes the data transfers 2873 * Context: can sleep 2874 * 2875 * This call may only be used from a context that may sleep. The sleep 2876 * is non-interruptible, and has no timeout. Low-overhead controller 2877 * drivers may DMA directly into and out of the message buffers. 2878 * 2879 * Note that the SPI device's chip select is active during the message, 2880 * and then is normally disabled between messages. Drivers for some 2881 * frequently-used devices may want to minimize costs of selecting a chip, 2882 * by leaving it selected in anticipation that the next message will go 2883 * to the same chip. (That may increase power usage.) 2884 * 2885 * Also, the caller is guaranteeing that the memory associated with the 2886 * message will not be freed before this call returns. 2887 * 2888 * Return: zero on success, else a negative error code. 2889 */ 2890 int spi_sync(struct spi_device *spi, struct spi_message *message) 2891 { 2892 int ret; 2893 2894 mutex_lock(&spi->master->bus_lock_mutex); 2895 ret = __spi_sync(spi, message); 2896 mutex_unlock(&spi->master->bus_lock_mutex); 2897 2898 return ret; 2899 } 2900 EXPORT_SYMBOL_GPL(spi_sync); 2901 2902 /** 2903 * spi_sync_locked - version of spi_sync with exclusive bus usage 2904 * @spi: device with which data will be exchanged 2905 * @message: describes the data transfers 2906 * Context: can sleep 2907 * 2908 * This call may only be used from a context that may sleep. The sleep 2909 * is non-interruptible, and has no timeout. Low-overhead controller 2910 * drivers may DMA directly into and out of the message buffers. 2911 * 2912 * This call should be used by drivers that require exclusive access to the 2913 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 2914 * be released by a spi_bus_unlock call when the exclusive access is over. 2915 * 2916 * Return: zero on success, else a negative error code. 2917 */ 2918 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 2919 { 2920 return __spi_sync(spi, message); 2921 } 2922 EXPORT_SYMBOL_GPL(spi_sync_locked); 2923 2924 /** 2925 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 2926 * @master: SPI bus master that should be locked for exclusive bus access 2927 * Context: can sleep 2928 * 2929 * This call may only be used from a context that may sleep. The sleep 2930 * is non-interruptible, and has no timeout. 2931 * 2932 * This call should be used by drivers that require exclusive access to the 2933 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 2934 * exclusive access is over. Data transfer must be done by spi_sync_locked 2935 * and spi_async_locked calls when the SPI bus lock is held. 2936 * 2937 * Return: always zero. 2938 */ 2939 int spi_bus_lock(struct spi_master *master) 2940 { 2941 unsigned long flags; 2942 2943 mutex_lock(&master->bus_lock_mutex); 2944 2945 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2946 master->bus_lock_flag = 1; 2947 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2948 2949 /* mutex remains locked until spi_bus_unlock is called */ 2950 2951 return 0; 2952 } 2953 EXPORT_SYMBOL_GPL(spi_bus_lock); 2954 2955 /** 2956 * spi_bus_unlock - release the lock for exclusive SPI bus usage 2957 * @master: SPI bus master that was locked for exclusive bus access 2958 * Context: can sleep 2959 * 2960 * This call may only be used from a context that may sleep. The sleep 2961 * is non-interruptible, and has no timeout. 2962 * 2963 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 2964 * call. 2965 * 2966 * Return: always zero. 2967 */ 2968 int spi_bus_unlock(struct spi_master *master) 2969 { 2970 master->bus_lock_flag = 0; 2971 2972 mutex_unlock(&master->bus_lock_mutex); 2973 2974 return 0; 2975 } 2976 EXPORT_SYMBOL_GPL(spi_bus_unlock); 2977 2978 /* portable code must never pass more than 32 bytes */ 2979 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 2980 2981 static u8 *buf; 2982 2983 /** 2984 * spi_write_then_read - SPI synchronous write followed by read 2985 * @spi: device with which data will be exchanged 2986 * @txbuf: data to be written (need not be dma-safe) 2987 * @n_tx: size of txbuf, in bytes 2988 * @rxbuf: buffer into which data will be read (need not be dma-safe) 2989 * @n_rx: size of rxbuf, in bytes 2990 * Context: can sleep 2991 * 2992 * This performs a half duplex MicroWire style transaction with the 2993 * device, sending txbuf and then reading rxbuf. The return value 2994 * is zero for success, else a negative errno status code. 2995 * This call may only be used from a context that may sleep. 2996 * 2997 * Parameters to this routine are always copied using a small buffer; 2998 * portable code should never use this for more than 32 bytes. 2999 * Performance-sensitive or bulk transfer code should instead use 3000 * spi_{async,sync}() calls with dma-safe buffers. 3001 * 3002 * Return: zero on success, else a negative error code. 3003 */ 3004 int spi_write_then_read(struct spi_device *spi, 3005 const void *txbuf, unsigned n_tx, 3006 void *rxbuf, unsigned n_rx) 3007 { 3008 static DEFINE_MUTEX(lock); 3009 3010 int status; 3011 struct spi_message message; 3012 struct spi_transfer x[2]; 3013 u8 *local_buf; 3014 3015 /* Use preallocated DMA-safe buffer if we can. We can't avoid 3016 * copying here, (as a pure convenience thing), but we can 3017 * keep heap costs out of the hot path unless someone else is 3018 * using the pre-allocated buffer or the transfer is too large. 3019 */ 3020 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 3021 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 3022 GFP_KERNEL | GFP_DMA); 3023 if (!local_buf) 3024 return -ENOMEM; 3025 } else { 3026 local_buf = buf; 3027 } 3028 3029 spi_message_init(&message); 3030 memset(x, 0, sizeof(x)); 3031 if (n_tx) { 3032 x[0].len = n_tx; 3033 spi_message_add_tail(&x[0], &message); 3034 } 3035 if (n_rx) { 3036 x[1].len = n_rx; 3037 spi_message_add_tail(&x[1], &message); 3038 } 3039 3040 memcpy(local_buf, txbuf, n_tx); 3041 x[0].tx_buf = local_buf; 3042 x[1].rx_buf = local_buf + n_tx; 3043 3044 /* do the i/o */ 3045 status = spi_sync(spi, &message); 3046 if (status == 0) 3047 memcpy(rxbuf, x[1].rx_buf, n_rx); 3048 3049 if (x[0].tx_buf == buf) 3050 mutex_unlock(&lock); 3051 else 3052 kfree(local_buf); 3053 3054 return status; 3055 } 3056 EXPORT_SYMBOL_GPL(spi_write_then_read); 3057 3058 /*-------------------------------------------------------------------------*/ 3059 3060 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3061 static int __spi_of_device_match(struct device *dev, void *data) 3062 { 3063 return dev->of_node == data; 3064 } 3065 3066 /* must call put_device() when done with returned spi_device device */ 3067 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3068 { 3069 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3070 __spi_of_device_match); 3071 return dev ? to_spi_device(dev) : NULL; 3072 } 3073 3074 static int __spi_of_master_match(struct device *dev, const void *data) 3075 { 3076 return dev->of_node == data; 3077 } 3078 3079 /* the spi masters are not using spi_bus, so we find it with another way */ 3080 static struct spi_master *of_find_spi_master_by_node(struct device_node *node) 3081 { 3082 struct device *dev; 3083 3084 dev = class_find_device(&spi_master_class, NULL, node, 3085 __spi_of_master_match); 3086 if (!dev) 3087 return NULL; 3088 3089 /* reference got in class_find_device */ 3090 return container_of(dev, struct spi_master, dev); 3091 } 3092 3093 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3094 void *arg) 3095 { 3096 struct of_reconfig_data *rd = arg; 3097 struct spi_master *master; 3098 struct spi_device *spi; 3099 3100 switch (of_reconfig_get_state_change(action, arg)) { 3101 case OF_RECONFIG_CHANGE_ADD: 3102 master = of_find_spi_master_by_node(rd->dn->parent); 3103 if (master == NULL) 3104 return NOTIFY_OK; /* not for us */ 3105 3106 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3107 put_device(&master->dev); 3108 return NOTIFY_OK; 3109 } 3110 3111 spi = of_register_spi_device(master, rd->dn); 3112 put_device(&master->dev); 3113 3114 if (IS_ERR(spi)) { 3115 pr_err("%s: failed to create for '%s'\n", 3116 __func__, rd->dn->full_name); 3117 return notifier_from_errno(PTR_ERR(spi)); 3118 } 3119 break; 3120 3121 case OF_RECONFIG_CHANGE_REMOVE: 3122 /* already depopulated? */ 3123 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3124 return NOTIFY_OK; 3125 3126 /* find our device by node */ 3127 spi = of_find_spi_device_by_node(rd->dn); 3128 if (spi == NULL) 3129 return NOTIFY_OK; /* no? not meant for us */ 3130 3131 /* unregister takes one ref away */ 3132 spi_unregister_device(spi); 3133 3134 /* and put the reference of the find */ 3135 put_device(&spi->dev); 3136 break; 3137 } 3138 3139 return NOTIFY_OK; 3140 } 3141 3142 static struct notifier_block spi_of_notifier = { 3143 .notifier_call = of_spi_notify, 3144 }; 3145 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3146 extern struct notifier_block spi_of_notifier; 3147 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3148 3149 #if IS_ENABLED(CONFIG_ACPI) 3150 static int spi_acpi_master_match(struct device *dev, const void *data) 3151 { 3152 return ACPI_COMPANION(dev->parent) == data; 3153 } 3154 3155 static int spi_acpi_device_match(struct device *dev, void *data) 3156 { 3157 return ACPI_COMPANION(dev) == data; 3158 } 3159 3160 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev) 3161 { 3162 struct device *dev; 3163 3164 dev = class_find_device(&spi_master_class, NULL, adev, 3165 spi_acpi_master_match); 3166 if (!dev) 3167 return NULL; 3168 3169 return container_of(dev, struct spi_master, dev); 3170 } 3171 3172 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 3173 { 3174 struct device *dev; 3175 3176 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match); 3177 3178 return dev ? to_spi_device(dev) : NULL; 3179 } 3180 3181 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 3182 void *arg) 3183 { 3184 struct acpi_device *adev = arg; 3185 struct spi_master *master; 3186 struct spi_device *spi; 3187 3188 switch (value) { 3189 case ACPI_RECONFIG_DEVICE_ADD: 3190 master = acpi_spi_find_master_by_adev(adev->parent); 3191 if (!master) 3192 break; 3193 3194 acpi_register_spi_device(master, adev); 3195 put_device(&master->dev); 3196 break; 3197 case ACPI_RECONFIG_DEVICE_REMOVE: 3198 if (!acpi_device_enumerated(adev)) 3199 break; 3200 3201 spi = acpi_spi_find_device_by_adev(adev); 3202 if (!spi) 3203 break; 3204 3205 spi_unregister_device(spi); 3206 put_device(&spi->dev); 3207 break; 3208 } 3209 3210 return NOTIFY_OK; 3211 } 3212 3213 static struct notifier_block spi_acpi_notifier = { 3214 .notifier_call = acpi_spi_notify, 3215 }; 3216 #else 3217 extern struct notifier_block spi_acpi_notifier; 3218 #endif 3219 3220 static int __init spi_init(void) 3221 { 3222 int status; 3223 3224 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3225 if (!buf) { 3226 status = -ENOMEM; 3227 goto err0; 3228 } 3229 3230 status = bus_register(&spi_bus_type); 3231 if (status < 0) 3232 goto err1; 3233 3234 status = class_register(&spi_master_class); 3235 if (status < 0) 3236 goto err2; 3237 3238 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3239 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3240 if (IS_ENABLED(CONFIG_ACPI)) 3241 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 3242 3243 return 0; 3244 3245 err2: 3246 bus_unregister(&spi_bus_type); 3247 err1: 3248 kfree(buf); 3249 buf = NULL; 3250 err0: 3251 return status; 3252 } 3253 3254 /* board_info is normally registered in arch_initcall(), 3255 * but even essential drivers wait till later 3256 * 3257 * REVISIT only boardinfo really needs static linking. the rest (device and 3258 * driver registration) _could_ be dynamically linked (modular) ... costs 3259 * include needing to have boardinfo data structures be much more public. 3260 */ 3261 postcore_initcall(spi_init); 3262 3263