xref: /linux/drivers/spi/spi.c (revision 2573c25e2c482b53b6e1142ff3cd28f6de13e659)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_controller *ctlr)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if ((xfer->tx_buf) &&
332 	    (xfer->tx_buf != ctlr->dummy_tx))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if ((xfer->rx_buf) &&
335 	    (xfer->rx_buf != ctlr->dummy_rx))
336 		u64_stats_add(&stats->bytes_rx, xfer->len);
337 
338 	u64_stats_update_end(&stats->syncp);
339 	put_cpu();
340 }
341 
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 	while (id->name[0]) {
349 		if (!strcmp(name, id->name))
350 			return id;
351 		id++;
352 	}
353 	return NULL;
354 }
355 
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 
360 	return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 	const void *match;
367 
368 	match = device_get_match_data(&sdev->dev);
369 	if (match)
370 		return match;
371 
372 	return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 	const struct spi_device	*spi = to_spi_device(dev);
379 	const struct spi_driver	*sdrv = to_spi_driver(drv);
380 
381 	/* Check override first, and if set, only use the named driver */
382 	if (spi->driver_override)
383 		return strcmp(spi->driver_override, drv->name) == 0;
384 
385 	/* Attempt an OF style match */
386 	if (of_driver_match_device(dev, drv))
387 		return 1;
388 
389 	/* Then try ACPI */
390 	if (acpi_driver_match_device(dev, drv))
391 		return 1;
392 
393 	if (sdrv->id_table)
394 		return !!spi_match_id(sdrv->id_table, spi->modalias);
395 
396 	return strcmp(spi->modalias, drv->name) == 0;
397 }
398 
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 	const struct spi_device		*spi = to_spi_device(dev);
402 	int rc;
403 
404 	rc = acpi_device_uevent_modalias(dev, env);
405 	if (rc != -ENODEV)
406 		return rc;
407 
408 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410 
411 static int spi_probe(struct device *dev)
412 {
413 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414 	struct spi_device		*spi = to_spi_device(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (dev->of_node) {
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 		if (spi->irq == -EPROBE_DEFER)
424 			return -EPROBE_DEFER;
425 		if (spi->irq < 0)
426 			spi->irq = 0;
427 	}
428 
429 	ret = dev_pm_domain_attach(dev, true);
430 	if (ret)
431 		return ret;
432 
433 	if (sdrv->probe) {
434 		ret = sdrv->probe(spi);
435 		if (ret)
436 			dev_pm_domain_detach(dev, true);
437 	}
438 
439 	return ret;
440 }
441 
442 static void spi_remove(struct device *dev)
443 {
444 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
445 
446 	if (sdrv->remove)
447 		sdrv->remove(to_spi_device(dev));
448 
449 	dev_pm_domain_detach(dev, true);
450 }
451 
452 static void spi_shutdown(struct device *dev)
453 {
454 	if (dev->driver) {
455 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
456 
457 		if (sdrv->shutdown)
458 			sdrv->shutdown(to_spi_device(dev));
459 	}
460 }
461 
462 const struct bus_type spi_bus_type = {
463 	.name		= "spi",
464 	.dev_groups	= spi_dev_groups,
465 	.match		= spi_match_device,
466 	.uevent		= spi_uevent,
467 	.probe		= spi_probe,
468 	.remove		= spi_remove,
469 	.shutdown	= spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472 
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483 	sdrv->driver.owner = owner;
484 	sdrv->driver.bus = &spi_bus_type;
485 
486 	/*
487 	 * For Really Good Reasons we use spi: modaliases not of:
488 	 * modaliases for DT so module autoloading won't work if we
489 	 * don't have a spi_device_id as well as a compatible string.
490 	 */
491 	if (sdrv->driver.of_match_table) {
492 		const struct of_device_id *of_id;
493 
494 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 		     of_id++) {
496 			const char *of_name;
497 
498 			/* Strip off any vendor prefix */
499 			of_name = strnchr(of_id->compatible,
500 					  sizeof(of_id->compatible), ',');
501 			if (of_name)
502 				of_name++;
503 			else
504 				of_name = of_id->compatible;
505 
506 			if (sdrv->id_table) {
507 				const struct spi_device_id *spi_id;
508 
509 				spi_id = spi_match_id(sdrv->id_table, of_name);
510 				if (spi_id)
511 					continue;
512 			} else {
513 				if (strcmp(sdrv->driver.name, of_name) == 0)
514 					continue;
515 			}
516 
517 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 				sdrv->driver.name, of_id->compatible);
519 		}
520 	}
521 
522 	return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534 
535 struct boardinfo {
536 	struct list_head	list;
537 	struct spi_board_info	board_info;
538 };
539 
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542 
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549 
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569 	struct spi_device	*spi;
570 
571 	if (!spi_controller_get(ctlr))
572 		return NULL;
573 
574 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 	if (!spi) {
576 		spi_controller_put(ctlr);
577 		return NULL;
578 	}
579 
580 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 	if (!spi->pcpu_statistics) {
582 		kfree(spi);
583 		spi_controller_put(ctlr);
584 		return NULL;
585 	}
586 
587 	spi->controller = ctlr;
588 	spi->dev.parent = &ctlr->dev;
589 	spi->dev.bus = &spi_bus_type;
590 	spi->dev.release = spidev_release;
591 	spi->mode = ctlr->buswidth_override_bits;
592 
593 	device_initialize(&spi->dev);
594 	return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597 
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601 
602 	if (adev) {
603 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604 		return;
605 	}
606 
607 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 		     spi_get_chipselect(spi, 0));
609 }
610 
611 /*
612  * Zero(0) is a valid physical CS value and can be located at any
613  * logical CS in the spi->chip_select[]. If all the physical CS
614  * are initialized to 0 then It would be difficult to differentiate
615  * between a valid physical CS 0 & an unused logical CS whose physical
616  * CS can be 0. As a solution to this issue initialize all the CS to -1.
617  * Now all the unused logical CS will have -1 physical CS value & can be
618  * ignored while performing physical CS validity checks.
619  */
620 #define SPI_INVALID_CS		((s8)-1)
621 
622 static inline bool is_valid_cs(s8 chip_select)
623 {
624 	return chip_select != SPI_INVALID_CS;
625 }
626 
627 static inline int spi_dev_check_cs(struct device *dev,
628 				   struct spi_device *spi, u8 idx,
629 				   struct spi_device *new_spi, u8 new_idx)
630 {
631 	u8 cs, cs_new;
632 	u8 idx_new;
633 
634 	cs = spi_get_chipselect(spi, idx);
635 	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
636 		cs_new = spi_get_chipselect(new_spi, idx_new);
637 		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
638 			dev_err(dev, "chipselect %u already in use\n", cs_new);
639 			return -EBUSY;
640 		}
641 	}
642 	return 0;
643 }
644 
645 static int spi_dev_check(struct device *dev, void *data)
646 {
647 	struct spi_device *spi = to_spi_device(dev);
648 	struct spi_device *new_spi = data;
649 	int status, idx;
650 
651 	if (spi->controller == new_spi->controller) {
652 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
653 			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
654 			if (status)
655 				return status;
656 		}
657 	}
658 	return 0;
659 }
660 
661 static void spi_cleanup(struct spi_device *spi)
662 {
663 	if (spi->controller->cleanup)
664 		spi->controller->cleanup(spi);
665 }
666 
667 static int __spi_add_device(struct spi_device *spi)
668 {
669 	struct spi_controller *ctlr = spi->controller;
670 	struct device *dev = ctlr->dev.parent;
671 	int status, idx;
672 	u8 cs;
673 
674 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
675 		/* Chipselects are numbered 0..max; validate. */
676 		cs = spi_get_chipselect(spi, idx);
677 		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
678 			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
679 				ctlr->num_chipselect);
680 			return -EINVAL;
681 		}
682 	}
683 
684 	/*
685 	 * Make sure that multiple logical CS doesn't map to the same physical CS.
686 	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
687 	 */
688 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689 		status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
690 		if (status)
691 			return status;
692 	}
693 
694 	/* Set the bus ID string */
695 	spi_dev_set_name(spi);
696 
697 	/*
698 	 * We need to make sure there's no other device with this
699 	 * chipselect **BEFORE** we call setup(), else we'll trash
700 	 * its configuration.
701 	 */
702 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
703 	if (status)
704 		return status;
705 
706 	/* Controller may unregister concurrently */
707 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
708 	    !device_is_registered(&ctlr->dev)) {
709 		return -ENODEV;
710 	}
711 
712 	if (ctlr->cs_gpiods) {
713 		u8 cs;
714 
715 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
716 			cs = spi_get_chipselect(spi, idx);
717 			if (is_valid_cs(cs))
718 				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
719 		}
720 	}
721 
722 	/*
723 	 * Drivers may modify this initial i/o setup, but will
724 	 * normally rely on the device being setup.  Devices
725 	 * using SPI_CS_HIGH can't coexist well otherwise...
726 	 */
727 	status = spi_setup(spi);
728 	if (status < 0) {
729 		dev_err(dev, "can't setup %s, status %d\n",
730 				dev_name(&spi->dev), status);
731 		return status;
732 	}
733 
734 	/* Device may be bound to an active driver when this returns */
735 	status = device_add(&spi->dev);
736 	if (status < 0) {
737 		dev_err(dev, "can't add %s, status %d\n",
738 				dev_name(&spi->dev), status);
739 		spi_cleanup(spi);
740 	} else {
741 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
742 	}
743 
744 	return status;
745 }
746 
747 /**
748  * spi_add_device - Add spi_device allocated with spi_alloc_device
749  * @spi: spi_device to register
750  *
751  * Companion function to spi_alloc_device.  Devices allocated with
752  * spi_alloc_device can be added onto the SPI bus with this function.
753  *
754  * Return: 0 on success; negative errno on failure
755  */
756 int spi_add_device(struct spi_device *spi)
757 {
758 	struct spi_controller *ctlr = spi->controller;
759 	int status;
760 
761 	/* Set the bus ID string */
762 	spi_dev_set_name(spi);
763 
764 	mutex_lock(&ctlr->add_lock);
765 	status = __spi_add_device(spi);
766 	mutex_unlock(&ctlr->add_lock);
767 	return status;
768 }
769 EXPORT_SYMBOL_GPL(spi_add_device);
770 
771 static void spi_set_all_cs_unused(struct spi_device *spi)
772 {
773 	u8 idx;
774 
775 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
776 		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
777 }
778 
779 /**
780  * spi_new_device - instantiate one new SPI device
781  * @ctlr: Controller to which device is connected
782  * @chip: Describes the SPI device
783  * Context: can sleep
784  *
785  * On typical mainboards, this is purely internal; and it's not needed
786  * after board init creates the hard-wired devices.  Some development
787  * platforms may not be able to use spi_register_board_info though, and
788  * this is exported so that for example a USB or parport based adapter
789  * driver could add devices (which it would learn about out-of-band).
790  *
791  * Return: the new device, or NULL.
792  */
793 struct spi_device *spi_new_device(struct spi_controller *ctlr,
794 				  struct spi_board_info *chip)
795 {
796 	struct spi_device	*proxy;
797 	int			status;
798 
799 	/*
800 	 * NOTE:  caller did any chip->bus_num checks necessary.
801 	 *
802 	 * Also, unless we change the return value convention to use
803 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
804 	 * suggests syslogged diagnostics are best here (ugh).
805 	 */
806 
807 	proxy = spi_alloc_device(ctlr);
808 	if (!proxy)
809 		return NULL;
810 
811 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
812 
813 	/* Use provided chip-select for proxy device */
814 	spi_set_all_cs_unused(proxy);
815 	spi_set_chipselect(proxy, 0, chip->chip_select);
816 
817 	proxy->max_speed_hz = chip->max_speed_hz;
818 	proxy->mode = chip->mode;
819 	proxy->irq = chip->irq;
820 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
821 	proxy->dev.platform_data = (void *) chip->platform_data;
822 	proxy->controller_data = chip->controller_data;
823 	proxy->controller_state = NULL;
824 	/*
825 	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
826 	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
827 	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
828 	 * spi->chip_select[0] will give the physical CS.
829 	 * By default spi->chip_select[0] will hold the physical CS number so, set
830 	 * spi->cs_index_mask as 0x01.
831 	 */
832 	proxy->cs_index_mask = 0x01;
833 
834 	if (chip->swnode) {
835 		status = device_add_software_node(&proxy->dev, chip->swnode);
836 		if (status) {
837 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
838 				chip->modalias, status);
839 			goto err_dev_put;
840 		}
841 	}
842 
843 	status = spi_add_device(proxy);
844 	if (status < 0)
845 		goto err_dev_put;
846 
847 	return proxy;
848 
849 err_dev_put:
850 	device_remove_software_node(&proxy->dev);
851 	spi_dev_put(proxy);
852 	return NULL;
853 }
854 EXPORT_SYMBOL_GPL(spi_new_device);
855 
856 /**
857  * spi_unregister_device - unregister a single SPI device
858  * @spi: spi_device to unregister
859  *
860  * Start making the passed SPI device vanish. Normally this would be handled
861  * by spi_unregister_controller().
862  */
863 void spi_unregister_device(struct spi_device *spi)
864 {
865 	if (!spi)
866 		return;
867 
868 	if (spi->dev.of_node) {
869 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
870 		of_node_put(spi->dev.of_node);
871 	}
872 	if (ACPI_COMPANION(&spi->dev))
873 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
874 	device_remove_software_node(&spi->dev);
875 	device_del(&spi->dev);
876 	spi_cleanup(spi);
877 	put_device(&spi->dev);
878 }
879 EXPORT_SYMBOL_GPL(spi_unregister_device);
880 
881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
882 					      struct spi_board_info *bi)
883 {
884 	struct spi_device *dev;
885 
886 	if (ctlr->bus_num != bi->bus_num)
887 		return;
888 
889 	dev = spi_new_device(ctlr, bi);
890 	if (!dev)
891 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
892 			bi->modalias);
893 }
894 
895 /**
896  * spi_register_board_info - register SPI devices for a given board
897  * @info: array of chip descriptors
898  * @n: how many descriptors are provided
899  * Context: can sleep
900  *
901  * Board-specific early init code calls this (probably during arch_initcall)
902  * with segments of the SPI device table.  Any device nodes are created later,
903  * after the relevant parent SPI controller (bus_num) is defined.  We keep
904  * this table of devices forever, so that reloading a controller driver will
905  * not make Linux forget about these hard-wired devices.
906  *
907  * Other code can also call this, e.g. a particular add-on board might provide
908  * SPI devices through its expansion connector, so code initializing that board
909  * would naturally declare its SPI devices.
910  *
911  * The board info passed can safely be __initdata ... but be careful of
912  * any embedded pointers (platform_data, etc), they're copied as-is.
913  *
914  * Return: zero on success, else a negative error code.
915  */
916 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
917 {
918 	struct boardinfo *bi;
919 	int i;
920 
921 	if (!n)
922 		return 0;
923 
924 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
925 	if (!bi)
926 		return -ENOMEM;
927 
928 	for (i = 0; i < n; i++, bi++, info++) {
929 		struct spi_controller *ctlr;
930 
931 		memcpy(&bi->board_info, info, sizeof(*info));
932 
933 		mutex_lock(&board_lock);
934 		list_add_tail(&bi->list, &board_list);
935 		list_for_each_entry(ctlr, &spi_controller_list, list)
936 			spi_match_controller_to_boardinfo(ctlr,
937 							  &bi->board_info);
938 		mutex_unlock(&board_lock);
939 	}
940 
941 	return 0;
942 }
943 
944 /*-------------------------------------------------------------------------*/
945 
946 /* Core methods for SPI resource management */
947 
948 /**
949  * spi_res_alloc - allocate a spi resource that is life-cycle managed
950  *                 during the processing of a spi_message while using
951  *                 spi_transfer_one
952  * @spi:     the SPI device for which we allocate memory
953  * @release: the release code to execute for this resource
954  * @size:    size to alloc and return
955  * @gfp:     GFP allocation flags
956  *
957  * Return: the pointer to the allocated data
958  *
959  * This may get enhanced in the future to allocate from a memory pool
960  * of the @spi_device or @spi_controller to avoid repeated allocations.
961  */
962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
963 			   size_t size, gfp_t gfp)
964 {
965 	struct spi_res *sres;
966 
967 	sres = kzalloc(sizeof(*sres) + size, gfp);
968 	if (!sres)
969 		return NULL;
970 
971 	INIT_LIST_HEAD(&sres->entry);
972 	sres->release = release;
973 
974 	return sres->data;
975 }
976 
977 /**
978  * spi_res_free - free an SPI resource
979  * @res: pointer to the custom data of a resource
980  */
981 static void spi_res_free(void *res)
982 {
983 	struct spi_res *sres = container_of(res, struct spi_res, data);
984 
985 	if (!res)
986 		return;
987 
988 	WARN_ON(!list_empty(&sres->entry));
989 	kfree(sres);
990 }
991 
992 /**
993  * spi_res_add - add a spi_res to the spi_message
994  * @message: the SPI message
995  * @res:     the spi_resource
996  */
997 static void spi_res_add(struct spi_message *message, void *res)
998 {
999 	struct spi_res *sres = container_of(res, struct spi_res, data);
1000 
1001 	WARN_ON(!list_empty(&sres->entry));
1002 	list_add_tail(&sres->entry, &message->resources);
1003 }
1004 
1005 /**
1006  * spi_res_release - release all SPI resources for this message
1007  * @ctlr:  the @spi_controller
1008  * @message: the @spi_message
1009  */
1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011 {
1012 	struct spi_res *res, *tmp;
1013 
1014 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015 		if (res->release)
1016 			res->release(ctlr, message, res->data);
1017 
1018 		list_del(&res->entry);
1019 
1020 		kfree(res);
1021 	}
1022 }
1023 
1024 /*-------------------------------------------------------------------------*/
1025 static inline bool spi_is_last_cs(struct spi_device *spi)
1026 {
1027 	u8 idx;
1028 	bool last = false;
1029 
1030 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031 		if (spi->cs_index_mask & BIT(idx)) {
1032 			if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033 				last = true;
1034 		}
1035 	}
1036 	return last;
1037 }
1038 
1039 
1040 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041 {
1042 	bool activate = enable;
1043 	u8 idx;
1044 
1045 	/*
1046 	 * Avoid calling into the driver (or doing delays) if the chip select
1047 	 * isn't actually changing from the last time this was called.
1048 	 */
1049 	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050 			spi_is_last_cs(spi)) ||
1051 		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052 			!spi_is_last_cs(spi))) &&
1053 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054 		return;
1055 
1056 	trace_spi_set_cs(spi, activate);
1057 
1058 	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060 		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062 
1063 	if (spi->mode & SPI_CS_HIGH)
1064 		enable = !enable;
1065 
1066 	/*
1067 	 * Handle chip select delays for GPIO based CS or controllers without
1068 	 * programmable chip select timing.
1069 	 */
1070 	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1071 		spi_delay_exec(&spi->cs_hold, NULL);
1072 
1073 	if (spi_is_csgpiod(spi)) {
1074 		if (!(spi->mode & SPI_NO_CS)) {
1075 			/*
1076 			 * Historically ACPI has no means of the GPIO polarity and
1077 			 * thus the SPISerialBus() resource defines it on the per-chip
1078 			 * basis. In order to avoid a chain of negations, the GPIO
1079 			 * polarity is considered being Active High. Even for the cases
1080 			 * when _DSD() is involved (in the updated versions of ACPI)
1081 			 * the GPIO CS polarity must be defined Active High to avoid
1082 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1083 			 * into account.
1084 			 */
1085 			for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1086 				if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1087 					if (has_acpi_companion(&spi->dev))
1088 						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1089 									 !enable);
1090 					else
1091 						/* Polarity handled by GPIO library */
1092 						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1093 									 activate);
1094 
1095 					if (activate)
1096 						spi_delay_exec(&spi->cs_setup, NULL);
1097 					else
1098 						spi_delay_exec(&spi->cs_inactive, NULL);
1099 				}
1100 			}
1101 		}
1102 		/* Some SPI masters need both GPIO CS & slave_select */
1103 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1104 		    spi->controller->set_cs)
1105 			spi->controller->set_cs(spi, !enable);
1106 	} else if (spi->controller->set_cs) {
1107 		spi->controller->set_cs(spi, !enable);
1108 	}
1109 
1110 	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1111 		if (activate)
1112 			spi_delay_exec(&spi->cs_setup, NULL);
1113 		else
1114 			spi_delay_exec(&spi->cs_inactive, NULL);
1115 	}
1116 }
1117 
1118 #ifdef CONFIG_HAS_DMA
1119 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1120 			     struct sg_table *sgt, void *buf, size_t len,
1121 			     enum dma_data_direction dir, unsigned long attrs)
1122 {
1123 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1124 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1125 #ifdef CONFIG_HIGHMEM
1126 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1127 				(unsigned long)buf < (PKMAP_BASE +
1128 					(LAST_PKMAP * PAGE_SIZE)));
1129 #else
1130 	const bool kmap_buf = false;
1131 #endif
1132 	int desc_len;
1133 	int sgs;
1134 	struct page *vm_page;
1135 	struct scatterlist *sg;
1136 	void *sg_buf;
1137 	size_t min;
1138 	int i, ret;
1139 
1140 	if (vmalloced_buf || kmap_buf) {
1141 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1142 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1143 	} else if (virt_addr_valid(buf)) {
1144 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1145 		sgs = DIV_ROUND_UP(len, desc_len);
1146 	} else {
1147 		return -EINVAL;
1148 	}
1149 
1150 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1151 	if (ret != 0)
1152 		return ret;
1153 
1154 	sg = &sgt->sgl[0];
1155 	for (i = 0; i < sgs; i++) {
1156 
1157 		if (vmalloced_buf || kmap_buf) {
1158 			/*
1159 			 * Next scatterlist entry size is the minimum between
1160 			 * the desc_len and the remaining buffer length that
1161 			 * fits in a page.
1162 			 */
1163 			min = min_t(size_t, desc_len,
1164 				    min_t(size_t, len,
1165 					  PAGE_SIZE - offset_in_page(buf)));
1166 			if (vmalloced_buf)
1167 				vm_page = vmalloc_to_page(buf);
1168 			else
1169 				vm_page = kmap_to_page(buf);
1170 			if (!vm_page) {
1171 				sg_free_table(sgt);
1172 				return -ENOMEM;
1173 			}
1174 			sg_set_page(sg, vm_page,
1175 				    min, offset_in_page(buf));
1176 		} else {
1177 			min = min_t(size_t, len, desc_len);
1178 			sg_buf = buf;
1179 			sg_set_buf(sg, sg_buf, min);
1180 		}
1181 
1182 		buf += min;
1183 		len -= min;
1184 		sg = sg_next(sg);
1185 	}
1186 
1187 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1188 	if (ret < 0) {
1189 		sg_free_table(sgt);
1190 		return ret;
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1197 		struct sg_table *sgt, void *buf, size_t len,
1198 		enum dma_data_direction dir)
1199 {
1200 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1201 }
1202 
1203 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1204 				struct device *dev, struct sg_table *sgt,
1205 				enum dma_data_direction dir,
1206 				unsigned long attrs)
1207 {
1208 	if (sgt->orig_nents) {
1209 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1210 		sg_free_table(sgt);
1211 		sgt->orig_nents = 0;
1212 		sgt->nents = 0;
1213 	}
1214 }
1215 
1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1217 		   struct sg_table *sgt, enum dma_data_direction dir)
1218 {
1219 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1220 }
1221 
1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224 	struct device *tx_dev, *rx_dev;
1225 	struct spi_transfer *xfer;
1226 	int ret;
1227 
1228 	if (!ctlr->can_dma)
1229 		return 0;
1230 
1231 	if (ctlr->dma_tx)
1232 		tx_dev = ctlr->dma_tx->device->dev;
1233 	else if (ctlr->dma_map_dev)
1234 		tx_dev = ctlr->dma_map_dev;
1235 	else
1236 		tx_dev = ctlr->dev.parent;
1237 
1238 	if (ctlr->dma_rx)
1239 		rx_dev = ctlr->dma_rx->device->dev;
1240 	else if (ctlr->dma_map_dev)
1241 		rx_dev = ctlr->dma_map_dev;
1242 	else
1243 		rx_dev = ctlr->dev.parent;
1244 
1245 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1246 		/* The sync is done before each transfer. */
1247 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1248 
1249 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1250 			continue;
1251 
1252 		if (xfer->tx_buf != NULL) {
1253 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1254 						(void *)xfer->tx_buf,
1255 						xfer->len, DMA_TO_DEVICE,
1256 						attrs);
1257 			if (ret != 0)
1258 				return ret;
1259 		}
1260 
1261 		if (xfer->rx_buf != NULL) {
1262 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1263 						xfer->rx_buf, xfer->len,
1264 						DMA_FROM_DEVICE, attrs);
1265 			if (ret != 0) {
1266 				spi_unmap_buf_attrs(ctlr, tx_dev,
1267 						&xfer->tx_sg, DMA_TO_DEVICE,
1268 						attrs);
1269 
1270 				return ret;
1271 			}
1272 		}
1273 	}
1274 
1275 	ctlr->cur_rx_dma_dev = rx_dev;
1276 	ctlr->cur_tx_dma_dev = tx_dev;
1277 	ctlr->cur_msg_mapped = true;
1278 
1279 	return 0;
1280 }
1281 
1282 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1283 {
1284 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1285 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1286 	struct spi_transfer *xfer;
1287 
1288 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1289 		return 0;
1290 
1291 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1292 		/* The sync has already been done after each transfer. */
1293 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1294 
1295 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1296 			continue;
1297 
1298 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1299 				    DMA_FROM_DEVICE, attrs);
1300 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1301 				    DMA_TO_DEVICE, attrs);
1302 	}
1303 
1304 	ctlr->cur_msg_mapped = false;
1305 
1306 	return 0;
1307 }
1308 
1309 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1310 				    struct spi_transfer *xfer)
1311 {
1312 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1313 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1314 
1315 	if (!ctlr->cur_msg_mapped)
1316 		return;
1317 
1318 	if (xfer->tx_sg.orig_nents)
1319 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1320 	if (xfer->rx_sg.orig_nents)
1321 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1322 }
1323 
1324 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1325 				 struct spi_transfer *xfer)
1326 {
1327 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1328 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1329 
1330 	if (!ctlr->cur_msg_mapped)
1331 		return;
1332 
1333 	if (xfer->rx_sg.orig_nents)
1334 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1335 	if (xfer->tx_sg.orig_nents)
1336 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1337 }
1338 #else /* !CONFIG_HAS_DMA */
1339 static inline int __spi_map_msg(struct spi_controller *ctlr,
1340 				struct spi_message *msg)
1341 {
1342 	return 0;
1343 }
1344 
1345 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1346 				  struct spi_message *msg)
1347 {
1348 	return 0;
1349 }
1350 
1351 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1352 				    struct spi_transfer *xfer)
1353 {
1354 }
1355 
1356 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1357 				 struct spi_transfer *xfer)
1358 {
1359 }
1360 #endif /* !CONFIG_HAS_DMA */
1361 
1362 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1363 				struct spi_message *msg)
1364 {
1365 	struct spi_transfer *xfer;
1366 
1367 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1368 		/*
1369 		 * Restore the original value of tx_buf or rx_buf if they are
1370 		 * NULL.
1371 		 */
1372 		if (xfer->tx_buf == ctlr->dummy_tx)
1373 			xfer->tx_buf = NULL;
1374 		if (xfer->rx_buf == ctlr->dummy_rx)
1375 			xfer->rx_buf = NULL;
1376 	}
1377 
1378 	return __spi_unmap_msg(ctlr, msg);
1379 }
1380 
1381 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1382 {
1383 	struct spi_transfer *xfer;
1384 	void *tmp;
1385 	unsigned int max_tx, max_rx;
1386 
1387 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1388 		&& !(msg->spi->mode & SPI_3WIRE)) {
1389 		max_tx = 0;
1390 		max_rx = 0;
1391 
1392 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1393 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1394 			    !xfer->tx_buf)
1395 				max_tx = max(xfer->len, max_tx);
1396 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1397 			    !xfer->rx_buf)
1398 				max_rx = max(xfer->len, max_rx);
1399 		}
1400 
1401 		if (max_tx) {
1402 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1403 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1404 			if (!tmp)
1405 				return -ENOMEM;
1406 			ctlr->dummy_tx = tmp;
1407 		}
1408 
1409 		if (max_rx) {
1410 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1411 				       GFP_KERNEL | GFP_DMA);
1412 			if (!tmp)
1413 				return -ENOMEM;
1414 			ctlr->dummy_rx = tmp;
1415 		}
1416 
1417 		if (max_tx || max_rx) {
1418 			list_for_each_entry(xfer, &msg->transfers,
1419 					    transfer_list) {
1420 				if (!xfer->len)
1421 					continue;
1422 				if (!xfer->tx_buf)
1423 					xfer->tx_buf = ctlr->dummy_tx;
1424 				if (!xfer->rx_buf)
1425 					xfer->rx_buf = ctlr->dummy_rx;
1426 			}
1427 		}
1428 	}
1429 
1430 	return __spi_map_msg(ctlr, msg);
1431 }
1432 
1433 static int spi_transfer_wait(struct spi_controller *ctlr,
1434 			     struct spi_message *msg,
1435 			     struct spi_transfer *xfer)
1436 {
1437 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1438 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1439 	u32 speed_hz = xfer->speed_hz;
1440 	unsigned long long ms;
1441 
1442 	if (spi_controller_is_slave(ctlr)) {
1443 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1444 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1445 			return -EINTR;
1446 		}
1447 	} else {
1448 		if (!speed_hz)
1449 			speed_hz = 100000;
1450 
1451 		/*
1452 		 * For each byte we wait for 8 cycles of the SPI clock.
1453 		 * Since speed is defined in Hz and we want milliseconds,
1454 		 * use respective multiplier, but before the division,
1455 		 * otherwise we may get 0 for short transfers.
1456 		 */
1457 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1458 		do_div(ms, speed_hz);
1459 
1460 		/*
1461 		 * Increase it twice and add 200 ms tolerance, use
1462 		 * predefined maximum in case of overflow.
1463 		 */
1464 		ms += ms + 200;
1465 		if (ms > UINT_MAX)
1466 			ms = UINT_MAX;
1467 
1468 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1469 						 msecs_to_jiffies(ms));
1470 
1471 		if (ms == 0) {
1472 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1473 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1474 			dev_err(&msg->spi->dev,
1475 				"SPI transfer timed out\n");
1476 			return -ETIMEDOUT;
1477 		}
1478 
1479 		if (xfer->error & SPI_TRANS_FAIL_IO)
1480 			return -EIO;
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 static void _spi_transfer_delay_ns(u32 ns)
1487 {
1488 	if (!ns)
1489 		return;
1490 	if (ns <= NSEC_PER_USEC) {
1491 		ndelay(ns);
1492 	} else {
1493 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1494 
1495 		if (us <= 10)
1496 			udelay(us);
1497 		else
1498 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1499 	}
1500 }
1501 
1502 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1503 {
1504 	u32 delay = _delay->value;
1505 	u32 unit = _delay->unit;
1506 	u32 hz;
1507 
1508 	if (!delay)
1509 		return 0;
1510 
1511 	switch (unit) {
1512 	case SPI_DELAY_UNIT_USECS:
1513 		delay *= NSEC_PER_USEC;
1514 		break;
1515 	case SPI_DELAY_UNIT_NSECS:
1516 		/* Nothing to do here */
1517 		break;
1518 	case SPI_DELAY_UNIT_SCK:
1519 		/* Clock cycles need to be obtained from spi_transfer */
1520 		if (!xfer)
1521 			return -EINVAL;
1522 		/*
1523 		 * If there is unknown effective speed, approximate it
1524 		 * by underestimating with half of the requested Hz.
1525 		 */
1526 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1527 		if (!hz)
1528 			return -EINVAL;
1529 
1530 		/* Convert delay to nanoseconds */
1531 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1532 		break;
1533 	default:
1534 		return -EINVAL;
1535 	}
1536 
1537 	return delay;
1538 }
1539 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1540 
1541 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1542 {
1543 	int delay;
1544 
1545 	might_sleep();
1546 
1547 	if (!_delay)
1548 		return -EINVAL;
1549 
1550 	delay = spi_delay_to_ns(_delay, xfer);
1551 	if (delay < 0)
1552 		return delay;
1553 
1554 	_spi_transfer_delay_ns(delay);
1555 
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL_GPL(spi_delay_exec);
1559 
1560 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1561 					  struct spi_transfer *xfer)
1562 {
1563 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1564 	u32 delay = xfer->cs_change_delay.value;
1565 	u32 unit = xfer->cs_change_delay.unit;
1566 	int ret;
1567 
1568 	/* Return early on "fast" mode - for everything but USECS */
1569 	if (!delay) {
1570 		if (unit == SPI_DELAY_UNIT_USECS)
1571 			_spi_transfer_delay_ns(default_delay_ns);
1572 		return;
1573 	}
1574 
1575 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1576 	if (ret) {
1577 		dev_err_once(&msg->spi->dev,
1578 			     "Use of unsupported delay unit %i, using default of %luus\n",
1579 			     unit, default_delay_ns / NSEC_PER_USEC);
1580 		_spi_transfer_delay_ns(default_delay_ns);
1581 	}
1582 }
1583 
1584 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1585 						  struct spi_transfer *xfer)
1586 {
1587 	_spi_transfer_cs_change_delay(msg, xfer);
1588 }
1589 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1590 
1591 /*
1592  * spi_transfer_one_message - Default implementation of transfer_one_message()
1593  *
1594  * This is a standard implementation of transfer_one_message() for
1595  * drivers which implement a transfer_one() operation.  It provides
1596  * standard handling of delays and chip select management.
1597  */
1598 static int spi_transfer_one_message(struct spi_controller *ctlr,
1599 				    struct spi_message *msg)
1600 {
1601 	struct spi_transfer *xfer;
1602 	bool keep_cs = false;
1603 	int ret = 0;
1604 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1605 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1606 
1607 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1608 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1609 
1610 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1611 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1612 
1613 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1614 		trace_spi_transfer_start(msg, xfer);
1615 
1616 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1617 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1618 
1619 		if (!ctlr->ptp_sts_supported) {
1620 			xfer->ptp_sts_word_pre = 0;
1621 			ptp_read_system_prets(xfer->ptp_sts);
1622 		}
1623 
1624 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1625 			reinit_completion(&ctlr->xfer_completion);
1626 
1627 fallback_pio:
1628 			spi_dma_sync_for_device(ctlr, xfer);
1629 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1630 			if (ret < 0) {
1631 				spi_dma_sync_for_cpu(ctlr, xfer);
1632 
1633 				if (ctlr->cur_msg_mapped &&
1634 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1635 					__spi_unmap_msg(ctlr, msg);
1636 					ctlr->fallback = true;
1637 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1638 					goto fallback_pio;
1639 				}
1640 
1641 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1642 							       errors);
1643 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1644 							       errors);
1645 				dev_err(&msg->spi->dev,
1646 					"SPI transfer failed: %d\n", ret);
1647 				goto out;
1648 			}
1649 
1650 			if (ret > 0) {
1651 				ret = spi_transfer_wait(ctlr, msg, xfer);
1652 				if (ret < 0)
1653 					msg->status = ret;
1654 			}
1655 
1656 			spi_dma_sync_for_cpu(ctlr, xfer);
1657 		} else {
1658 			if (xfer->len)
1659 				dev_err(&msg->spi->dev,
1660 					"Bufferless transfer has length %u\n",
1661 					xfer->len);
1662 		}
1663 
1664 		if (!ctlr->ptp_sts_supported) {
1665 			ptp_read_system_postts(xfer->ptp_sts);
1666 			xfer->ptp_sts_word_post = xfer->len;
1667 		}
1668 
1669 		trace_spi_transfer_stop(msg, xfer);
1670 
1671 		if (msg->status != -EINPROGRESS)
1672 			goto out;
1673 
1674 		spi_transfer_delay_exec(xfer);
1675 
1676 		if (xfer->cs_change) {
1677 			if (list_is_last(&xfer->transfer_list,
1678 					 &msg->transfers)) {
1679 				keep_cs = true;
1680 			} else {
1681 				if (!xfer->cs_off)
1682 					spi_set_cs(msg->spi, false, false);
1683 				_spi_transfer_cs_change_delay(msg, xfer);
1684 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1685 					spi_set_cs(msg->spi, true, false);
1686 			}
1687 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1688 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1689 			spi_set_cs(msg->spi, xfer->cs_off, false);
1690 		}
1691 
1692 		msg->actual_length += xfer->len;
1693 	}
1694 
1695 out:
1696 	if (ret != 0 || !keep_cs)
1697 		spi_set_cs(msg->spi, false, false);
1698 
1699 	if (msg->status == -EINPROGRESS)
1700 		msg->status = ret;
1701 
1702 	if (msg->status && ctlr->handle_err)
1703 		ctlr->handle_err(ctlr, msg);
1704 
1705 	spi_finalize_current_message(ctlr);
1706 
1707 	return ret;
1708 }
1709 
1710 /**
1711  * spi_finalize_current_transfer - report completion of a transfer
1712  * @ctlr: the controller reporting completion
1713  *
1714  * Called by SPI drivers using the core transfer_one_message()
1715  * implementation to notify it that the current interrupt driven
1716  * transfer has finished and the next one may be scheduled.
1717  */
1718 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1719 {
1720 	complete(&ctlr->xfer_completion);
1721 }
1722 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1723 
1724 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1725 {
1726 	if (ctlr->auto_runtime_pm) {
1727 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1728 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1729 	}
1730 }
1731 
1732 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1733 		struct spi_message *msg, bool was_busy)
1734 {
1735 	struct spi_transfer *xfer;
1736 	int ret;
1737 
1738 	if (!was_busy && ctlr->auto_runtime_pm) {
1739 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1740 		if (ret < 0) {
1741 			pm_runtime_put_noidle(ctlr->dev.parent);
1742 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1743 				ret);
1744 
1745 			msg->status = ret;
1746 			spi_finalize_current_message(ctlr);
1747 
1748 			return ret;
1749 		}
1750 	}
1751 
1752 	if (!was_busy)
1753 		trace_spi_controller_busy(ctlr);
1754 
1755 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1756 		ret = ctlr->prepare_transfer_hardware(ctlr);
1757 		if (ret) {
1758 			dev_err(&ctlr->dev,
1759 				"failed to prepare transfer hardware: %d\n",
1760 				ret);
1761 
1762 			if (ctlr->auto_runtime_pm)
1763 				pm_runtime_put(ctlr->dev.parent);
1764 
1765 			msg->status = ret;
1766 			spi_finalize_current_message(ctlr);
1767 
1768 			return ret;
1769 		}
1770 	}
1771 
1772 	trace_spi_message_start(msg);
1773 
1774 	if (ctlr->prepare_message) {
1775 		ret = ctlr->prepare_message(ctlr, msg);
1776 		if (ret) {
1777 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1778 				ret);
1779 			msg->status = ret;
1780 			spi_finalize_current_message(ctlr);
1781 			return ret;
1782 		}
1783 		msg->prepared = true;
1784 	}
1785 
1786 	ret = spi_map_msg(ctlr, msg);
1787 	if (ret) {
1788 		msg->status = ret;
1789 		spi_finalize_current_message(ctlr);
1790 		return ret;
1791 	}
1792 
1793 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1794 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1795 			xfer->ptp_sts_word_pre = 0;
1796 			ptp_read_system_prets(xfer->ptp_sts);
1797 		}
1798 	}
1799 
1800 	/*
1801 	 * Drivers implementation of transfer_one_message() must arrange for
1802 	 * spi_finalize_current_message() to get called. Most drivers will do
1803 	 * this in the calling context, but some don't. For those cases, a
1804 	 * completion is used to guarantee that this function does not return
1805 	 * until spi_finalize_current_message() is done accessing
1806 	 * ctlr->cur_msg.
1807 	 * Use of the following two flags enable to opportunistically skip the
1808 	 * use of the completion since its use involves expensive spin locks.
1809 	 * In case of a race with the context that calls
1810 	 * spi_finalize_current_message() the completion will always be used,
1811 	 * due to strict ordering of these flags using barriers.
1812 	 */
1813 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1814 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1815 	reinit_completion(&ctlr->cur_msg_completion);
1816 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1817 
1818 	ret = ctlr->transfer_one_message(ctlr, msg);
1819 	if (ret) {
1820 		dev_err(&ctlr->dev,
1821 			"failed to transfer one message from queue\n");
1822 		return ret;
1823 	}
1824 
1825 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1826 	smp_mb(); /* See spi_finalize_current_message()... */
1827 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1828 		wait_for_completion(&ctlr->cur_msg_completion);
1829 
1830 	return 0;
1831 }
1832 
1833 /**
1834  * __spi_pump_messages - function which processes SPI message queue
1835  * @ctlr: controller to process queue for
1836  * @in_kthread: true if we are in the context of the message pump thread
1837  *
1838  * This function checks if there is any SPI message in the queue that
1839  * needs processing and if so call out to the driver to initialize hardware
1840  * and transfer each message.
1841  *
1842  * Note that it is called both from the kthread itself and also from
1843  * inside spi_sync(); the queue extraction handling at the top of the
1844  * function should deal with this safely.
1845  */
1846 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1847 {
1848 	struct spi_message *msg;
1849 	bool was_busy = false;
1850 	unsigned long flags;
1851 	int ret;
1852 
1853 	/* Take the I/O mutex */
1854 	mutex_lock(&ctlr->io_mutex);
1855 
1856 	/* Lock queue */
1857 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1858 
1859 	/* Make sure we are not already running a message */
1860 	if (ctlr->cur_msg)
1861 		goto out_unlock;
1862 
1863 	/* Check if the queue is idle */
1864 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1865 		if (!ctlr->busy)
1866 			goto out_unlock;
1867 
1868 		/* Defer any non-atomic teardown to the thread */
1869 		if (!in_kthread) {
1870 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1871 			    !ctlr->unprepare_transfer_hardware) {
1872 				spi_idle_runtime_pm(ctlr);
1873 				ctlr->busy = false;
1874 				ctlr->queue_empty = true;
1875 				trace_spi_controller_idle(ctlr);
1876 			} else {
1877 				kthread_queue_work(ctlr->kworker,
1878 						   &ctlr->pump_messages);
1879 			}
1880 			goto out_unlock;
1881 		}
1882 
1883 		ctlr->busy = false;
1884 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1885 
1886 		kfree(ctlr->dummy_rx);
1887 		ctlr->dummy_rx = NULL;
1888 		kfree(ctlr->dummy_tx);
1889 		ctlr->dummy_tx = NULL;
1890 		if (ctlr->unprepare_transfer_hardware &&
1891 		    ctlr->unprepare_transfer_hardware(ctlr))
1892 			dev_err(&ctlr->dev,
1893 				"failed to unprepare transfer hardware\n");
1894 		spi_idle_runtime_pm(ctlr);
1895 		trace_spi_controller_idle(ctlr);
1896 
1897 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1898 		ctlr->queue_empty = true;
1899 		goto out_unlock;
1900 	}
1901 
1902 	/* Extract head of queue */
1903 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1904 	ctlr->cur_msg = msg;
1905 
1906 	list_del_init(&msg->queue);
1907 	if (ctlr->busy)
1908 		was_busy = true;
1909 	else
1910 		ctlr->busy = true;
1911 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1912 
1913 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1914 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1915 
1916 	ctlr->cur_msg = NULL;
1917 	ctlr->fallback = false;
1918 
1919 	mutex_unlock(&ctlr->io_mutex);
1920 
1921 	/* Prod the scheduler in case transfer_one() was busy waiting */
1922 	if (!ret)
1923 		cond_resched();
1924 	return;
1925 
1926 out_unlock:
1927 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1928 	mutex_unlock(&ctlr->io_mutex);
1929 }
1930 
1931 /**
1932  * spi_pump_messages - kthread work function which processes spi message queue
1933  * @work: pointer to kthread work struct contained in the controller struct
1934  */
1935 static void spi_pump_messages(struct kthread_work *work)
1936 {
1937 	struct spi_controller *ctlr =
1938 		container_of(work, struct spi_controller, pump_messages);
1939 
1940 	__spi_pump_messages(ctlr, true);
1941 }
1942 
1943 /**
1944  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1945  * @ctlr: Pointer to the spi_controller structure of the driver
1946  * @xfer: Pointer to the transfer being timestamped
1947  * @progress: How many words (not bytes) have been transferred so far
1948  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1949  *	      transfer, for less jitter in time measurement. Only compatible
1950  *	      with PIO drivers. If true, must follow up with
1951  *	      spi_take_timestamp_post or otherwise system will crash.
1952  *	      WARNING: for fully predictable results, the CPU frequency must
1953  *	      also be under control (governor).
1954  *
1955  * This is a helper for drivers to collect the beginning of the TX timestamp
1956  * for the requested byte from the SPI transfer. The frequency with which this
1957  * function must be called (once per word, once for the whole transfer, once
1958  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1959  * greater than or equal to the requested byte at the time of the call. The
1960  * timestamp is only taken once, at the first such call. It is assumed that
1961  * the driver advances its @tx buffer pointer monotonically.
1962  */
1963 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1964 			    struct spi_transfer *xfer,
1965 			    size_t progress, bool irqs_off)
1966 {
1967 	if (!xfer->ptp_sts)
1968 		return;
1969 
1970 	if (xfer->timestamped)
1971 		return;
1972 
1973 	if (progress > xfer->ptp_sts_word_pre)
1974 		return;
1975 
1976 	/* Capture the resolution of the timestamp */
1977 	xfer->ptp_sts_word_pre = progress;
1978 
1979 	if (irqs_off) {
1980 		local_irq_save(ctlr->irq_flags);
1981 		preempt_disable();
1982 	}
1983 
1984 	ptp_read_system_prets(xfer->ptp_sts);
1985 }
1986 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1987 
1988 /**
1989  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1990  * @ctlr: Pointer to the spi_controller structure of the driver
1991  * @xfer: Pointer to the transfer being timestamped
1992  * @progress: How many words (not bytes) have been transferred so far
1993  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1994  *
1995  * This is a helper for drivers to collect the end of the TX timestamp for
1996  * the requested byte from the SPI transfer. Can be called with an arbitrary
1997  * frequency: only the first call where @tx exceeds or is equal to the
1998  * requested word will be timestamped.
1999  */
2000 void spi_take_timestamp_post(struct spi_controller *ctlr,
2001 			     struct spi_transfer *xfer,
2002 			     size_t progress, bool irqs_off)
2003 {
2004 	if (!xfer->ptp_sts)
2005 		return;
2006 
2007 	if (xfer->timestamped)
2008 		return;
2009 
2010 	if (progress < xfer->ptp_sts_word_post)
2011 		return;
2012 
2013 	ptp_read_system_postts(xfer->ptp_sts);
2014 
2015 	if (irqs_off) {
2016 		local_irq_restore(ctlr->irq_flags);
2017 		preempt_enable();
2018 	}
2019 
2020 	/* Capture the resolution of the timestamp */
2021 	xfer->ptp_sts_word_post = progress;
2022 
2023 	xfer->timestamped = 1;
2024 }
2025 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2026 
2027 /**
2028  * spi_set_thread_rt - set the controller to pump at realtime priority
2029  * @ctlr: controller to boost priority of
2030  *
2031  * This can be called because the controller requested realtime priority
2032  * (by setting the ->rt value before calling spi_register_controller()) or
2033  * because a device on the bus said that its transfers needed realtime
2034  * priority.
2035  *
2036  * NOTE: at the moment if any device on a bus says it needs realtime then
2037  * the thread will be at realtime priority for all transfers on that
2038  * controller.  If this eventually becomes a problem we may see if we can
2039  * find a way to boost the priority only temporarily during relevant
2040  * transfers.
2041  */
2042 static void spi_set_thread_rt(struct spi_controller *ctlr)
2043 {
2044 	dev_info(&ctlr->dev,
2045 		"will run message pump with realtime priority\n");
2046 	sched_set_fifo(ctlr->kworker->task);
2047 }
2048 
2049 static int spi_init_queue(struct spi_controller *ctlr)
2050 {
2051 	ctlr->running = false;
2052 	ctlr->busy = false;
2053 	ctlr->queue_empty = true;
2054 
2055 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2056 	if (IS_ERR(ctlr->kworker)) {
2057 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2058 		return PTR_ERR(ctlr->kworker);
2059 	}
2060 
2061 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2062 
2063 	/*
2064 	 * Controller config will indicate if this controller should run the
2065 	 * message pump with high (realtime) priority to reduce the transfer
2066 	 * latency on the bus by minimising the delay between a transfer
2067 	 * request and the scheduling of the message pump thread. Without this
2068 	 * setting the message pump thread will remain at default priority.
2069 	 */
2070 	if (ctlr->rt)
2071 		spi_set_thread_rt(ctlr);
2072 
2073 	return 0;
2074 }
2075 
2076 /**
2077  * spi_get_next_queued_message() - called by driver to check for queued
2078  * messages
2079  * @ctlr: the controller to check for queued messages
2080  *
2081  * If there are more messages in the queue, the next message is returned from
2082  * this call.
2083  *
2084  * Return: the next message in the queue, else NULL if the queue is empty.
2085  */
2086 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2087 {
2088 	struct spi_message *next;
2089 	unsigned long flags;
2090 
2091 	/* Get a pointer to the next message, if any */
2092 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2093 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2094 					queue);
2095 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2096 
2097 	return next;
2098 }
2099 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2100 
2101 /*
2102  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2103  *                            and spi_maybe_unoptimize_message()
2104  * @msg: the message to unoptimize
2105  *
2106  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2107  * core should use spi_maybe_unoptimize_message() rather than calling this
2108  * function directly.
2109  *
2110  * It is not valid to call this on a message that is not currently optimized.
2111  */
2112 static void __spi_unoptimize_message(struct spi_message *msg)
2113 {
2114 	struct spi_controller *ctlr = msg->spi->controller;
2115 
2116 	if (ctlr->unoptimize_message)
2117 		ctlr->unoptimize_message(msg);
2118 
2119 	spi_res_release(ctlr, msg);
2120 
2121 	msg->optimized = false;
2122 	msg->opt_state = NULL;
2123 }
2124 
2125 /*
2126  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2127  * @msg: the message to unoptimize
2128  *
2129  * This function is used to unoptimize a message if and only if it was
2130  * optimized by the core (via spi_maybe_optimize_message()).
2131  */
2132 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2133 {
2134 	if (!msg->pre_optimized && msg->optimized)
2135 		__spi_unoptimize_message(msg);
2136 }
2137 
2138 /**
2139  * spi_finalize_current_message() - the current message is complete
2140  * @ctlr: the controller to return the message to
2141  *
2142  * Called by the driver to notify the core that the message in the front of the
2143  * queue is complete and can be removed from the queue.
2144  */
2145 void spi_finalize_current_message(struct spi_controller *ctlr)
2146 {
2147 	struct spi_transfer *xfer;
2148 	struct spi_message *mesg;
2149 	int ret;
2150 
2151 	mesg = ctlr->cur_msg;
2152 
2153 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2154 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2155 			ptp_read_system_postts(xfer->ptp_sts);
2156 			xfer->ptp_sts_word_post = xfer->len;
2157 		}
2158 	}
2159 
2160 	if (unlikely(ctlr->ptp_sts_supported))
2161 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2162 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2163 
2164 	spi_unmap_msg(ctlr, mesg);
2165 
2166 	if (mesg->prepared && ctlr->unprepare_message) {
2167 		ret = ctlr->unprepare_message(ctlr, mesg);
2168 		if (ret) {
2169 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2170 				ret);
2171 		}
2172 	}
2173 
2174 	mesg->prepared = false;
2175 
2176 	spi_maybe_unoptimize_message(mesg);
2177 
2178 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2179 	smp_mb(); /* See __spi_pump_transfer_message()... */
2180 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2181 		complete(&ctlr->cur_msg_completion);
2182 
2183 	trace_spi_message_done(mesg);
2184 
2185 	mesg->state = NULL;
2186 	if (mesg->complete)
2187 		mesg->complete(mesg->context);
2188 }
2189 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2190 
2191 static int spi_start_queue(struct spi_controller *ctlr)
2192 {
2193 	unsigned long flags;
2194 
2195 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2196 
2197 	if (ctlr->running || ctlr->busy) {
2198 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2199 		return -EBUSY;
2200 	}
2201 
2202 	ctlr->running = true;
2203 	ctlr->cur_msg = NULL;
2204 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2205 
2206 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2207 
2208 	return 0;
2209 }
2210 
2211 static int spi_stop_queue(struct spi_controller *ctlr)
2212 {
2213 	unsigned long flags;
2214 	unsigned limit = 500;
2215 	int ret = 0;
2216 
2217 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2218 
2219 	/*
2220 	 * This is a bit lame, but is optimized for the common execution path.
2221 	 * A wait_queue on the ctlr->busy could be used, but then the common
2222 	 * execution path (pump_messages) would be required to call wake_up or
2223 	 * friends on every SPI message. Do this instead.
2224 	 */
2225 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2226 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2227 		usleep_range(10000, 11000);
2228 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2229 	}
2230 
2231 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2232 		ret = -EBUSY;
2233 	else
2234 		ctlr->running = false;
2235 
2236 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2237 
2238 	return ret;
2239 }
2240 
2241 static int spi_destroy_queue(struct spi_controller *ctlr)
2242 {
2243 	int ret;
2244 
2245 	ret = spi_stop_queue(ctlr);
2246 
2247 	/*
2248 	 * kthread_flush_worker will block until all work is done.
2249 	 * If the reason that stop_queue timed out is that the work will never
2250 	 * finish, then it does no good to call flush/stop thread, so
2251 	 * return anyway.
2252 	 */
2253 	if (ret) {
2254 		dev_err(&ctlr->dev, "problem destroying queue\n");
2255 		return ret;
2256 	}
2257 
2258 	kthread_destroy_worker(ctlr->kworker);
2259 
2260 	return 0;
2261 }
2262 
2263 static int __spi_queued_transfer(struct spi_device *spi,
2264 				 struct spi_message *msg,
2265 				 bool need_pump)
2266 {
2267 	struct spi_controller *ctlr = spi->controller;
2268 	unsigned long flags;
2269 
2270 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2271 
2272 	if (!ctlr->running) {
2273 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2274 		return -ESHUTDOWN;
2275 	}
2276 	msg->actual_length = 0;
2277 	msg->status = -EINPROGRESS;
2278 
2279 	list_add_tail(&msg->queue, &ctlr->queue);
2280 	ctlr->queue_empty = false;
2281 	if (!ctlr->busy && need_pump)
2282 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2283 
2284 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2285 	return 0;
2286 }
2287 
2288 /**
2289  * spi_queued_transfer - transfer function for queued transfers
2290  * @spi: SPI device which is requesting transfer
2291  * @msg: SPI message which is to handled is queued to driver queue
2292  *
2293  * Return: zero on success, else a negative error code.
2294  */
2295 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2296 {
2297 	return __spi_queued_transfer(spi, msg, true);
2298 }
2299 
2300 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2301 {
2302 	int ret;
2303 
2304 	ctlr->transfer = spi_queued_transfer;
2305 	if (!ctlr->transfer_one_message)
2306 		ctlr->transfer_one_message = spi_transfer_one_message;
2307 
2308 	/* Initialize and start queue */
2309 	ret = spi_init_queue(ctlr);
2310 	if (ret) {
2311 		dev_err(&ctlr->dev, "problem initializing queue\n");
2312 		goto err_init_queue;
2313 	}
2314 	ctlr->queued = true;
2315 	ret = spi_start_queue(ctlr);
2316 	if (ret) {
2317 		dev_err(&ctlr->dev, "problem starting queue\n");
2318 		goto err_start_queue;
2319 	}
2320 
2321 	return 0;
2322 
2323 err_start_queue:
2324 	spi_destroy_queue(ctlr);
2325 err_init_queue:
2326 	return ret;
2327 }
2328 
2329 /**
2330  * spi_flush_queue - Send all pending messages in the queue from the callers'
2331  *		     context
2332  * @ctlr: controller to process queue for
2333  *
2334  * This should be used when one wants to ensure all pending messages have been
2335  * sent before doing something. Is used by the spi-mem code to make sure SPI
2336  * memory operations do not preempt regular SPI transfers that have been queued
2337  * before the spi-mem operation.
2338  */
2339 void spi_flush_queue(struct spi_controller *ctlr)
2340 {
2341 	if (ctlr->transfer == spi_queued_transfer)
2342 		__spi_pump_messages(ctlr, false);
2343 }
2344 
2345 /*-------------------------------------------------------------------------*/
2346 
2347 #if defined(CONFIG_OF)
2348 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2349 				     struct spi_delay *delay, const char *prop)
2350 {
2351 	u32 value;
2352 
2353 	if (!of_property_read_u32(nc, prop, &value)) {
2354 		if (value > U16_MAX) {
2355 			delay->value = DIV_ROUND_UP(value, 1000);
2356 			delay->unit = SPI_DELAY_UNIT_USECS;
2357 		} else {
2358 			delay->value = value;
2359 			delay->unit = SPI_DELAY_UNIT_NSECS;
2360 		}
2361 	}
2362 }
2363 
2364 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2365 			   struct device_node *nc)
2366 {
2367 	u32 value, cs[SPI_CS_CNT_MAX];
2368 	int rc, idx;
2369 
2370 	/* Mode (clock phase/polarity/etc.) */
2371 	if (of_property_read_bool(nc, "spi-cpha"))
2372 		spi->mode |= SPI_CPHA;
2373 	if (of_property_read_bool(nc, "spi-cpol"))
2374 		spi->mode |= SPI_CPOL;
2375 	if (of_property_read_bool(nc, "spi-3wire"))
2376 		spi->mode |= SPI_3WIRE;
2377 	if (of_property_read_bool(nc, "spi-lsb-first"))
2378 		spi->mode |= SPI_LSB_FIRST;
2379 	if (of_property_read_bool(nc, "spi-cs-high"))
2380 		spi->mode |= SPI_CS_HIGH;
2381 
2382 	/* Device DUAL/QUAD mode */
2383 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2384 		switch (value) {
2385 		case 0:
2386 			spi->mode |= SPI_NO_TX;
2387 			break;
2388 		case 1:
2389 			break;
2390 		case 2:
2391 			spi->mode |= SPI_TX_DUAL;
2392 			break;
2393 		case 4:
2394 			spi->mode |= SPI_TX_QUAD;
2395 			break;
2396 		case 8:
2397 			spi->mode |= SPI_TX_OCTAL;
2398 			break;
2399 		default:
2400 			dev_warn(&ctlr->dev,
2401 				"spi-tx-bus-width %d not supported\n",
2402 				value);
2403 			break;
2404 		}
2405 	}
2406 
2407 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2408 		switch (value) {
2409 		case 0:
2410 			spi->mode |= SPI_NO_RX;
2411 			break;
2412 		case 1:
2413 			break;
2414 		case 2:
2415 			spi->mode |= SPI_RX_DUAL;
2416 			break;
2417 		case 4:
2418 			spi->mode |= SPI_RX_QUAD;
2419 			break;
2420 		case 8:
2421 			spi->mode |= SPI_RX_OCTAL;
2422 			break;
2423 		default:
2424 			dev_warn(&ctlr->dev,
2425 				"spi-rx-bus-width %d not supported\n",
2426 				value);
2427 			break;
2428 		}
2429 	}
2430 
2431 	if (spi_controller_is_slave(ctlr)) {
2432 		if (!of_node_name_eq(nc, "slave")) {
2433 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2434 				nc);
2435 			return -EINVAL;
2436 		}
2437 		return 0;
2438 	}
2439 
2440 	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2441 		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2442 		return -EINVAL;
2443 	}
2444 
2445 	spi_set_all_cs_unused(spi);
2446 
2447 	/* Device address */
2448 	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2449 						 SPI_CS_CNT_MAX);
2450 	if (rc < 0) {
2451 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2452 			nc, rc);
2453 		return rc;
2454 	}
2455 	if (rc > ctlr->num_chipselect) {
2456 		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2457 			nc, rc);
2458 		return rc;
2459 	}
2460 	if ((of_property_read_bool(nc, "parallel-memories")) &&
2461 	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2462 		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2463 		return -EINVAL;
2464 	}
2465 	for (idx = 0; idx < rc; idx++)
2466 		spi_set_chipselect(spi, idx, cs[idx]);
2467 
2468 	/*
2469 	 * By default spi->chip_select[0] will hold the physical CS number,
2470 	 * so set bit 0 in spi->cs_index_mask.
2471 	 */
2472 	spi->cs_index_mask = BIT(0);
2473 
2474 	/* Device speed */
2475 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2476 		spi->max_speed_hz = value;
2477 
2478 	/* Device CS delays */
2479 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2480 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2481 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2482 
2483 	return 0;
2484 }
2485 
2486 static struct spi_device *
2487 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2488 {
2489 	struct spi_device *spi;
2490 	int rc;
2491 
2492 	/* Alloc an spi_device */
2493 	spi = spi_alloc_device(ctlr);
2494 	if (!spi) {
2495 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2496 		rc = -ENOMEM;
2497 		goto err_out;
2498 	}
2499 
2500 	/* Select device driver */
2501 	rc = of_alias_from_compatible(nc, spi->modalias,
2502 				      sizeof(spi->modalias));
2503 	if (rc < 0) {
2504 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2505 		goto err_out;
2506 	}
2507 
2508 	rc = of_spi_parse_dt(ctlr, spi, nc);
2509 	if (rc)
2510 		goto err_out;
2511 
2512 	/* Store a pointer to the node in the device structure */
2513 	of_node_get(nc);
2514 
2515 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2516 
2517 	/* Register the new device */
2518 	rc = spi_add_device(spi);
2519 	if (rc) {
2520 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2521 		goto err_of_node_put;
2522 	}
2523 
2524 	return spi;
2525 
2526 err_of_node_put:
2527 	of_node_put(nc);
2528 err_out:
2529 	spi_dev_put(spi);
2530 	return ERR_PTR(rc);
2531 }
2532 
2533 /**
2534  * of_register_spi_devices() - Register child devices onto the SPI bus
2535  * @ctlr:	Pointer to spi_controller device
2536  *
2537  * Registers an spi_device for each child node of controller node which
2538  * represents a valid SPI slave.
2539  */
2540 static void of_register_spi_devices(struct spi_controller *ctlr)
2541 {
2542 	struct spi_device *spi;
2543 	struct device_node *nc;
2544 
2545 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2546 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2547 			continue;
2548 		spi = of_register_spi_device(ctlr, nc);
2549 		if (IS_ERR(spi)) {
2550 			dev_warn(&ctlr->dev,
2551 				 "Failed to create SPI device for %pOF\n", nc);
2552 			of_node_clear_flag(nc, OF_POPULATED);
2553 		}
2554 	}
2555 }
2556 #else
2557 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2558 #endif
2559 
2560 /**
2561  * spi_new_ancillary_device() - Register ancillary SPI device
2562  * @spi:         Pointer to the main SPI device registering the ancillary device
2563  * @chip_select: Chip Select of the ancillary device
2564  *
2565  * Register an ancillary SPI device; for example some chips have a chip-select
2566  * for normal device usage and another one for setup/firmware upload.
2567  *
2568  * This may only be called from main SPI device's probe routine.
2569  *
2570  * Return: 0 on success; negative errno on failure
2571  */
2572 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2573 					     u8 chip_select)
2574 {
2575 	struct spi_controller *ctlr = spi->controller;
2576 	struct spi_device *ancillary;
2577 	int rc = 0;
2578 
2579 	/* Alloc an spi_device */
2580 	ancillary = spi_alloc_device(ctlr);
2581 	if (!ancillary) {
2582 		rc = -ENOMEM;
2583 		goto err_out;
2584 	}
2585 
2586 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2587 
2588 	/* Use provided chip-select for ancillary device */
2589 	spi_set_all_cs_unused(ancillary);
2590 	spi_set_chipselect(ancillary, 0, chip_select);
2591 
2592 	/* Take over SPI mode/speed from SPI main device */
2593 	ancillary->max_speed_hz = spi->max_speed_hz;
2594 	ancillary->mode = spi->mode;
2595 	/*
2596 	 * By default spi->chip_select[0] will hold the physical CS number,
2597 	 * so set bit 0 in spi->cs_index_mask.
2598 	 */
2599 	ancillary->cs_index_mask = BIT(0);
2600 
2601 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2602 
2603 	/* Register the new device */
2604 	rc = __spi_add_device(ancillary);
2605 	if (rc) {
2606 		dev_err(&spi->dev, "failed to register ancillary device\n");
2607 		goto err_out;
2608 	}
2609 
2610 	return ancillary;
2611 
2612 err_out:
2613 	spi_dev_put(ancillary);
2614 	return ERR_PTR(rc);
2615 }
2616 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2617 
2618 #ifdef CONFIG_ACPI
2619 struct acpi_spi_lookup {
2620 	struct spi_controller 	*ctlr;
2621 	u32			max_speed_hz;
2622 	u32			mode;
2623 	int			irq;
2624 	u8			bits_per_word;
2625 	u8			chip_select;
2626 	int			n;
2627 	int			index;
2628 };
2629 
2630 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2631 {
2632 	struct acpi_resource_spi_serialbus *sb;
2633 	int *count = data;
2634 
2635 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2636 		return 1;
2637 
2638 	sb = &ares->data.spi_serial_bus;
2639 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2640 		return 1;
2641 
2642 	*count = *count + 1;
2643 
2644 	return 1;
2645 }
2646 
2647 /**
2648  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2649  * @adev:	ACPI device
2650  *
2651  * Return: the number of SpiSerialBus resources in the ACPI-device's
2652  * resource-list; or a negative error code.
2653  */
2654 int acpi_spi_count_resources(struct acpi_device *adev)
2655 {
2656 	LIST_HEAD(r);
2657 	int count = 0;
2658 	int ret;
2659 
2660 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2661 	if (ret < 0)
2662 		return ret;
2663 
2664 	acpi_dev_free_resource_list(&r);
2665 
2666 	return count;
2667 }
2668 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2669 
2670 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2671 					    struct acpi_spi_lookup *lookup)
2672 {
2673 	const union acpi_object *obj;
2674 
2675 	if (!x86_apple_machine)
2676 		return;
2677 
2678 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2679 	    && obj->buffer.length >= 4)
2680 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2681 
2682 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2683 	    && obj->buffer.length == 8)
2684 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2685 
2686 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2687 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2688 		lookup->mode |= SPI_LSB_FIRST;
2689 
2690 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2691 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2692 		lookup->mode |= SPI_CPOL;
2693 
2694 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2695 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696 		lookup->mode |= SPI_CPHA;
2697 }
2698 
2699 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2700 {
2701 	struct acpi_spi_lookup *lookup = data;
2702 	struct spi_controller *ctlr = lookup->ctlr;
2703 
2704 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2705 		struct acpi_resource_spi_serialbus *sb;
2706 		acpi_handle parent_handle;
2707 		acpi_status status;
2708 
2709 		sb = &ares->data.spi_serial_bus;
2710 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2711 
2712 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2713 				return 1;
2714 
2715 			status = acpi_get_handle(NULL,
2716 						 sb->resource_source.string_ptr,
2717 						 &parent_handle);
2718 
2719 			if (ACPI_FAILURE(status))
2720 				return -ENODEV;
2721 
2722 			if (ctlr) {
2723 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2724 					return -ENODEV;
2725 			} else {
2726 				struct acpi_device *adev;
2727 
2728 				adev = acpi_fetch_acpi_dev(parent_handle);
2729 				if (!adev)
2730 					return -ENODEV;
2731 
2732 				ctlr = acpi_spi_find_controller_by_adev(adev);
2733 				if (!ctlr)
2734 					return -EPROBE_DEFER;
2735 
2736 				lookup->ctlr = ctlr;
2737 			}
2738 
2739 			/*
2740 			 * ACPI DeviceSelection numbering is handled by the
2741 			 * host controller driver in Windows and can vary
2742 			 * from driver to driver. In Linux we always expect
2743 			 * 0 .. max - 1 so we need to ask the driver to
2744 			 * translate between the two schemes.
2745 			 */
2746 			if (ctlr->fw_translate_cs) {
2747 				int cs = ctlr->fw_translate_cs(ctlr,
2748 						sb->device_selection);
2749 				if (cs < 0)
2750 					return cs;
2751 				lookup->chip_select = cs;
2752 			} else {
2753 				lookup->chip_select = sb->device_selection;
2754 			}
2755 
2756 			lookup->max_speed_hz = sb->connection_speed;
2757 			lookup->bits_per_word = sb->data_bit_length;
2758 
2759 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2760 				lookup->mode |= SPI_CPHA;
2761 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2762 				lookup->mode |= SPI_CPOL;
2763 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2764 				lookup->mode |= SPI_CS_HIGH;
2765 		}
2766 	} else if (lookup->irq < 0) {
2767 		struct resource r;
2768 
2769 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2770 			lookup->irq = r.start;
2771 	}
2772 
2773 	/* Always tell the ACPI core to skip this resource */
2774 	return 1;
2775 }
2776 
2777 /**
2778  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2779  * @ctlr: controller to which the spi device belongs
2780  * @adev: ACPI Device for the spi device
2781  * @index: Index of the spi resource inside the ACPI Node
2782  *
2783  * This should be used to allocate a new SPI device from and ACPI Device node.
2784  * The caller is responsible for calling spi_add_device to register the SPI device.
2785  *
2786  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2787  * using the resource.
2788  * If index is set to -1, index is not used.
2789  * Note: If index is -1, ctlr must be set.
2790  *
2791  * Return: a pointer to the new device, or ERR_PTR on error.
2792  */
2793 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2794 					 struct acpi_device *adev,
2795 					 int index)
2796 {
2797 	acpi_handle parent_handle = NULL;
2798 	struct list_head resource_list;
2799 	struct acpi_spi_lookup lookup = {};
2800 	struct spi_device *spi;
2801 	int ret;
2802 
2803 	if (!ctlr && index == -1)
2804 		return ERR_PTR(-EINVAL);
2805 
2806 	lookup.ctlr		= ctlr;
2807 	lookup.irq		= -1;
2808 	lookup.index		= index;
2809 	lookup.n		= 0;
2810 
2811 	INIT_LIST_HEAD(&resource_list);
2812 	ret = acpi_dev_get_resources(adev, &resource_list,
2813 				     acpi_spi_add_resource, &lookup);
2814 	acpi_dev_free_resource_list(&resource_list);
2815 
2816 	if (ret < 0)
2817 		/* Found SPI in _CRS but it points to another controller */
2818 		return ERR_PTR(ret);
2819 
2820 	if (!lookup.max_speed_hz &&
2821 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2822 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2823 		/* Apple does not use _CRS but nested devices for SPI slaves */
2824 		acpi_spi_parse_apple_properties(adev, &lookup);
2825 	}
2826 
2827 	if (!lookup.max_speed_hz)
2828 		return ERR_PTR(-ENODEV);
2829 
2830 	spi = spi_alloc_device(lookup.ctlr);
2831 	if (!spi) {
2832 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2833 			dev_name(&adev->dev));
2834 		return ERR_PTR(-ENOMEM);
2835 	}
2836 
2837 	spi_set_all_cs_unused(spi);
2838 	spi_set_chipselect(spi, 0, lookup.chip_select);
2839 
2840 	ACPI_COMPANION_SET(&spi->dev, adev);
2841 	spi->max_speed_hz	= lookup.max_speed_hz;
2842 	spi->mode		|= lookup.mode;
2843 	spi->irq		= lookup.irq;
2844 	spi->bits_per_word	= lookup.bits_per_word;
2845 	/*
2846 	 * By default spi->chip_select[0] will hold the physical CS number,
2847 	 * so set bit 0 in spi->cs_index_mask.
2848 	 */
2849 	spi->cs_index_mask	= BIT(0);
2850 
2851 	return spi;
2852 }
2853 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2854 
2855 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2856 					    struct acpi_device *adev)
2857 {
2858 	struct spi_device *spi;
2859 
2860 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2861 	    acpi_device_enumerated(adev))
2862 		return AE_OK;
2863 
2864 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2865 	if (IS_ERR(spi)) {
2866 		if (PTR_ERR(spi) == -ENOMEM)
2867 			return AE_NO_MEMORY;
2868 		else
2869 			return AE_OK;
2870 	}
2871 
2872 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2873 			  sizeof(spi->modalias));
2874 
2875 	if (spi->irq < 0)
2876 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2877 
2878 	acpi_device_set_enumerated(adev);
2879 
2880 	adev->power.flags.ignore_parent = true;
2881 	if (spi_add_device(spi)) {
2882 		adev->power.flags.ignore_parent = false;
2883 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2884 			dev_name(&adev->dev));
2885 		spi_dev_put(spi);
2886 	}
2887 
2888 	return AE_OK;
2889 }
2890 
2891 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2892 				       void *data, void **return_value)
2893 {
2894 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2895 	struct spi_controller *ctlr = data;
2896 
2897 	if (!adev)
2898 		return AE_OK;
2899 
2900 	return acpi_register_spi_device(ctlr, adev);
2901 }
2902 
2903 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2904 
2905 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2906 {
2907 	acpi_status status;
2908 	acpi_handle handle;
2909 
2910 	handle = ACPI_HANDLE(ctlr->dev.parent);
2911 	if (!handle)
2912 		return;
2913 
2914 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2915 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2916 				     acpi_spi_add_device, NULL, ctlr, NULL);
2917 	if (ACPI_FAILURE(status))
2918 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2919 }
2920 #else
2921 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2922 #endif /* CONFIG_ACPI */
2923 
2924 static void spi_controller_release(struct device *dev)
2925 {
2926 	struct spi_controller *ctlr;
2927 
2928 	ctlr = container_of(dev, struct spi_controller, dev);
2929 	kfree(ctlr);
2930 }
2931 
2932 static struct class spi_master_class = {
2933 	.name		= "spi_master",
2934 	.dev_release	= spi_controller_release,
2935 	.dev_groups	= spi_master_groups,
2936 };
2937 
2938 #ifdef CONFIG_SPI_SLAVE
2939 /**
2940  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2941  *		     controller
2942  * @spi: device used for the current transfer
2943  */
2944 int spi_slave_abort(struct spi_device *spi)
2945 {
2946 	struct spi_controller *ctlr = spi->controller;
2947 
2948 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2949 		return ctlr->slave_abort(ctlr);
2950 
2951 	return -ENOTSUPP;
2952 }
2953 EXPORT_SYMBOL_GPL(spi_slave_abort);
2954 
2955 int spi_target_abort(struct spi_device *spi)
2956 {
2957 	struct spi_controller *ctlr = spi->controller;
2958 
2959 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2960 		return ctlr->target_abort(ctlr);
2961 
2962 	return -ENOTSUPP;
2963 }
2964 EXPORT_SYMBOL_GPL(spi_target_abort);
2965 
2966 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2967 			  char *buf)
2968 {
2969 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2970 						   dev);
2971 	struct device *child;
2972 
2973 	child = device_find_any_child(&ctlr->dev);
2974 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2975 }
2976 
2977 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2978 			   const char *buf, size_t count)
2979 {
2980 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2981 						   dev);
2982 	struct spi_device *spi;
2983 	struct device *child;
2984 	char name[32];
2985 	int rc;
2986 
2987 	rc = sscanf(buf, "%31s", name);
2988 	if (rc != 1 || !name[0])
2989 		return -EINVAL;
2990 
2991 	child = device_find_any_child(&ctlr->dev);
2992 	if (child) {
2993 		/* Remove registered slave */
2994 		device_unregister(child);
2995 		put_device(child);
2996 	}
2997 
2998 	if (strcmp(name, "(null)")) {
2999 		/* Register new slave */
3000 		spi = spi_alloc_device(ctlr);
3001 		if (!spi)
3002 			return -ENOMEM;
3003 
3004 		strscpy(spi->modalias, name, sizeof(spi->modalias));
3005 
3006 		rc = spi_add_device(spi);
3007 		if (rc) {
3008 			spi_dev_put(spi);
3009 			return rc;
3010 		}
3011 	}
3012 
3013 	return count;
3014 }
3015 
3016 static DEVICE_ATTR_RW(slave);
3017 
3018 static struct attribute *spi_slave_attrs[] = {
3019 	&dev_attr_slave.attr,
3020 	NULL,
3021 };
3022 
3023 static const struct attribute_group spi_slave_group = {
3024 	.attrs = spi_slave_attrs,
3025 };
3026 
3027 static const struct attribute_group *spi_slave_groups[] = {
3028 	&spi_controller_statistics_group,
3029 	&spi_slave_group,
3030 	NULL,
3031 };
3032 
3033 static struct class spi_slave_class = {
3034 	.name		= "spi_slave",
3035 	.dev_release	= spi_controller_release,
3036 	.dev_groups	= spi_slave_groups,
3037 };
3038 #else
3039 extern struct class spi_slave_class;	/* dummy */
3040 #endif
3041 
3042 /**
3043  * __spi_alloc_controller - allocate an SPI master or slave controller
3044  * @dev: the controller, possibly using the platform_bus
3045  * @size: how much zeroed driver-private data to allocate; the pointer to this
3046  *	memory is in the driver_data field of the returned device, accessible
3047  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3048  *	drivers granting DMA access to portions of their private data need to
3049  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3050  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3051  *	slave (true) controller
3052  * Context: can sleep
3053  *
3054  * This call is used only by SPI controller drivers, which are the
3055  * only ones directly touching chip registers.  It's how they allocate
3056  * an spi_controller structure, prior to calling spi_register_controller().
3057  *
3058  * This must be called from context that can sleep.
3059  *
3060  * The caller is responsible for assigning the bus number and initializing the
3061  * controller's methods before calling spi_register_controller(); and (after
3062  * errors adding the device) calling spi_controller_put() to prevent a memory
3063  * leak.
3064  *
3065  * Return: the SPI controller structure on success, else NULL.
3066  */
3067 struct spi_controller *__spi_alloc_controller(struct device *dev,
3068 					      unsigned int size, bool slave)
3069 {
3070 	struct spi_controller	*ctlr;
3071 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3072 
3073 	if (!dev)
3074 		return NULL;
3075 
3076 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3077 	if (!ctlr)
3078 		return NULL;
3079 
3080 	device_initialize(&ctlr->dev);
3081 	INIT_LIST_HEAD(&ctlr->queue);
3082 	spin_lock_init(&ctlr->queue_lock);
3083 	spin_lock_init(&ctlr->bus_lock_spinlock);
3084 	mutex_init(&ctlr->bus_lock_mutex);
3085 	mutex_init(&ctlr->io_mutex);
3086 	mutex_init(&ctlr->add_lock);
3087 	ctlr->bus_num = -1;
3088 	ctlr->num_chipselect = 1;
3089 	ctlr->slave = slave;
3090 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3091 		ctlr->dev.class = &spi_slave_class;
3092 	else
3093 		ctlr->dev.class = &spi_master_class;
3094 	ctlr->dev.parent = dev;
3095 	pm_suspend_ignore_children(&ctlr->dev, true);
3096 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3097 
3098 	return ctlr;
3099 }
3100 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3101 
3102 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3103 {
3104 	spi_controller_put(*(struct spi_controller **)ctlr);
3105 }
3106 
3107 /**
3108  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3109  * @dev: physical device of SPI controller
3110  * @size: how much zeroed driver-private data to allocate
3111  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3112  * Context: can sleep
3113  *
3114  * Allocate an SPI controller and automatically release a reference on it
3115  * when @dev is unbound from its driver.  Drivers are thus relieved from
3116  * having to call spi_controller_put().
3117  *
3118  * The arguments to this function are identical to __spi_alloc_controller().
3119  *
3120  * Return: the SPI controller structure on success, else NULL.
3121  */
3122 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3123 						   unsigned int size,
3124 						   bool slave)
3125 {
3126 	struct spi_controller **ptr, *ctlr;
3127 
3128 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3129 			   GFP_KERNEL);
3130 	if (!ptr)
3131 		return NULL;
3132 
3133 	ctlr = __spi_alloc_controller(dev, size, slave);
3134 	if (ctlr) {
3135 		ctlr->devm_allocated = true;
3136 		*ptr = ctlr;
3137 		devres_add(dev, ptr);
3138 	} else {
3139 		devres_free(ptr);
3140 	}
3141 
3142 	return ctlr;
3143 }
3144 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3145 
3146 /**
3147  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3148  * @ctlr: The SPI master to grab GPIO descriptors for
3149  */
3150 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3151 {
3152 	int nb, i;
3153 	struct gpio_desc **cs;
3154 	struct device *dev = &ctlr->dev;
3155 	unsigned long native_cs_mask = 0;
3156 	unsigned int num_cs_gpios = 0;
3157 
3158 	nb = gpiod_count(dev, "cs");
3159 	if (nb < 0) {
3160 		/* No GPIOs at all is fine, else return the error */
3161 		if (nb == -ENOENT)
3162 			return 0;
3163 		return nb;
3164 	}
3165 
3166 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3167 
3168 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3169 			  GFP_KERNEL);
3170 	if (!cs)
3171 		return -ENOMEM;
3172 	ctlr->cs_gpiods = cs;
3173 
3174 	for (i = 0; i < nb; i++) {
3175 		/*
3176 		 * Most chipselects are active low, the inverted
3177 		 * semantics are handled by special quirks in gpiolib,
3178 		 * so initializing them GPIOD_OUT_LOW here means
3179 		 * "unasserted", in most cases this will drive the physical
3180 		 * line high.
3181 		 */
3182 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3183 						      GPIOD_OUT_LOW);
3184 		if (IS_ERR(cs[i]))
3185 			return PTR_ERR(cs[i]);
3186 
3187 		if (cs[i]) {
3188 			/*
3189 			 * If we find a CS GPIO, name it after the device and
3190 			 * chip select line.
3191 			 */
3192 			char *gpioname;
3193 
3194 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3195 						  dev_name(dev), i);
3196 			if (!gpioname)
3197 				return -ENOMEM;
3198 			gpiod_set_consumer_name(cs[i], gpioname);
3199 			num_cs_gpios++;
3200 			continue;
3201 		}
3202 
3203 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3204 			dev_err(dev, "Invalid native chip select %d\n", i);
3205 			return -EINVAL;
3206 		}
3207 		native_cs_mask |= BIT(i);
3208 	}
3209 
3210 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3211 
3212 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3213 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3214 		dev_err(dev, "No unused native chip select available\n");
3215 		return -EINVAL;
3216 	}
3217 
3218 	return 0;
3219 }
3220 
3221 static int spi_controller_check_ops(struct spi_controller *ctlr)
3222 {
3223 	/*
3224 	 * The controller may implement only the high-level SPI-memory like
3225 	 * operations if it does not support regular SPI transfers, and this is
3226 	 * valid use case.
3227 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3228 	 * one of the ->transfer_xxx() method be implemented.
3229 	 */
3230 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3231 		if (!ctlr->transfer && !ctlr->transfer_one &&
3232 		   !ctlr->transfer_one_message) {
3233 			return -EINVAL;
3234 		}
3235 	}
3236 
3237 	return 0;
3238 }
3239 
3240 /* Allocate dynamic bus number using Linux idr */
3241 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3242 {
3243 	int id;
3244 
3245 	mutex_lock(&board_lock);
3246 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3247 	mutex_unlock(&board_lock);
3248 	if (WARN(id < 0, "couldn't get idr"))
3249 		return id == -ENOSPC ? -EBUSY : id;
3250 	ctlr->bus_num = id;
3251 	return 0;
3252 }
3253 
3254 /**
3255  * spi_register_controller - register SPI master or slave controller
3256  * @ctlr: initialized master, originally from spi_alloc_master() or
3257  *	spi_alloc_slave()
3258  * Context: can sleep
3259  *
3260  * SPI controllers connect to their drivers using some non-SPI bus,
3261  * such as the platform bus.  The final stage of probe() in that code
3262  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3263  *
3264  * SPI controllers use board specific (often SOC specific) bus numbers,
3265  * and board-specific addressing for SPI devices combines those numbers
3266  * with chip select numbers.  Since SPI does not directly support dynamic
3267  * device identification, boards need configuration tables telling which
3268  * chip is at which address.
3269  *
3270  * This must be called from context that can sleep.  It returns zero on
3271  * success, else a negative error code (dropping the controller's refcount).
3272  * After a successful return, the caller is responsible for calling
3273  * spi_unregister_controller().
3274  *
3275  * Return: zero on success, else a negative error code.
3276  */
3277 int spi_register_controller(struct spi_controller *ctlr)
3278 {
3279 	struct device		*dev = ctlr->dev.parent;
3280 	struct boardinfo	*bi;
3281 	int			first_dynamic;
3282 	int			status;
3283 	int			idx;
3284 
3285 	if (!dev)
3286 		return -ENODEV;
3287 
3288 	/*
3289 	 * Make sure all necessary hooks are implemented before registering
3290 	 * the SPI controller.
3291 	 */
3292 	status = spi_controller_check_ops(ctlr);
3293 	if (status)
3294 		return status;
3295 
3296 	if (ctlr->bus_num < 0)
3297 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3298 	if (ctlr->bus_num >= 0) {
3299 		/* Devices with a fixed bus num must check-in with the num */
3300 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3301 		if (status)
3302 			return status;
3303 	}
3304 	if (ctlr->bus_num < 0) {
3305 		first_dynamic = of_alias_get_highest_id("spi");
3306 		if (first_dynamic < 0)
3307 			first_dynamic = 0;
3308 		else
3309 			first_dynamic++;
3310 
3311 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3312 		if (status)
3313 			return status;
3314 	}
3315 	ctlr->bus_lock_flag = 0;
3316 	init_completion(&ctlr->xfer_completion);
3317 	init_completion(&ctlr->cur_msg_completion);
3318 	if (!ctlr->max_dma_len)
3319 		ctlr->max_dma_len = INT_MAX;
3320 
3321 	/*
3322 	 * Register the device, then userspace will see it.
3323 	 * Registration fails if the bus ID is in use.
3324 	 */
3325 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3326 
3327 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3328 		status = spi_get_gpio_descs(ctlr);
3329 		if (status)
3330 			goto free_bus_id;
3331 		/*
3332 		 * A controller using GPIO descriptors always
3333 		 * supports SPI_CS_HIGH if need be.
3334 		 */
3335 		ctlr->mode_bits |= SPI_CS_HIGH;
3336 	}
3337 
3338 	/*
3339 	 * Even if it's just one always-selected device, there must
3340 	 * be at least one chipselect.
3341 	 */
3342 	if (!ctlr->num_chipselect) {
3343 		status = -EINVAL;
3344 		goto free_bus_id;
3345 	}
3346 
3347 	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3348 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3349 		ctlr->last_cs[idx] = SPI_INVALID_CS;
3350 
3351 	status = device_add(&ctlr->dev);
3352 	if (status < 0)
3353 		goto free_bus_id;
3354 	dev_dbg(dev, "registered %s %s\n",
3355 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3356 			dev_name(&ctlr->dev));
3357 
3358 	/*
3359 	 * If we're using a queued driver, start the queue. Note that we don't
3360 	 * need the queueing logic if the driver is only supporting high-level
3361 	 * memory operations.
3362 	 */
3363 	if (ctlr->transfer) {
3364 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3365 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3366 		status = spi_controller_initialize_queue(ctlr);
3367 		if (status) {
3368 			device_del(&ctlr->dev);
3369 			goto free_bus_id;
3370 		}
3371 	}
3372 	/* Add statistics */
3373 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3374 	if (!ctlr->pcpu_statistics) {
3375 		dev_err(dev, "Error allocating per-cpu statistics\n");
3376 		status = -ENOMEM;
3377 		goto destroy_queue;
3378 	}
3379 
3380 	mutex_lock(&board_lock);
3381 	list_add_tail(&ctlr->list, &spi_controller_list);
3382 	list_for_each_entry(bi, &board_list, list)
3383 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3384 	mutex_unlock(&board_lock);
3385 
3386 	/* Register devices from the device tree and ACPI */
3387 	of_register_spi_devices(ctlr);
3388 	acpi_register_spi_devices(ctlr);
3389 	return status;
3390 
3391 destroy_queue:
3392 	spi_destroy_queue(ctlr);
3393 free_bus_id:
3394 	mutex_lock(&board_lock);
3395 	idr_remove(&spi_master_idr, ctlr->bus_num);
3396 	mutex_unlock(&board_lock);
3397 	return status;
3398 }
3399 EXPORT_SYMBOL_GPL(spi_register_controller);
3400 
3401 static void devm_spi_unregister(struct device *dev, void *res)
3402 {
3403 	spi_unregister_controller(*(struct spi_controller **)res);
3404 }
3405 
3406 /**
3407  * devm_spi_register_controller - register managed SPI master or slave
3408  *	controller
3409  * @dev:    device managing SPI controller
3410  * @ctlr: initialized controller, originally from spi_alloc_master() or
3411  *	spi_alloc_slave()
3412  * Context: can sleep
3413  *
3414  * Register a SPI device as with spi_register_controller() which will
3415  * automatically be unregistered and freed.
3416  *
3417  * Return: zero on success, else a negative error code.
3418  */
3419 int devm_spi_register_controller(struct device *dev,
3420 				 struct spi_controller *ctlr)
3421 {
3422 	struct spi_controller **ptr;
3423 	int ret;
3424 
3425 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3426 	if (!ptr)
3427 		return -ENOMEM;
3428 
3429 	ret = spi_register_controller(ctlr);
3430 	if (!ret) {
3431 		*ptr = ctlr;
3432 		devres_add(dev, ptr);
3433 	} else {
3434 		devres_free(ptr);
3435 	}
3436 
3437 	return ret;
3438 }
3439 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3440 
3441 static int __unregister(struct device *dev, void *null)
3442 {
3443 	spi_unregister_device(to_spi_device(dev));
3444 	return 0;
3445 }
3446 
3447 /**
3448  * spi_unregister_controller - unregister SPI master or slave controller
3449  * @ctlr: the controller being unregistered
3450  * Context: can sleep
3451  *
3452  * This call is used only by SPI controller drivers, which are the
3453  * only ones directly touching chip registers.
3454  *
3455  * This must be called from context that can sleep.
3456  *
3457  * Note that this function also drops a reference to the controller.
3458  */
3459 void spi_unregister_controller(struct spi_controller *ctlr)
3460 {
3461 	struct spi_controller *found;
3462 	int id = ctlr->bus_num;
3463 
3464 	/* Prevent addition of new devices, unregister existing ones */
3465 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3466 		mutex_lock(&ctlr->add_lock);
3467 
3468 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3469 
3470 	/* First make sure that this controller was ever added */
3471 	mutex_lock(&board_lock);
3472 	found = idr_find(&spi_master_idr, id);
3473 	mutex_unlock(&board_lock);
3474 	if (ctlr->queued) {
3475 		if (spi_destroy_queue(ctlr))
3476 			dev_err(&ctlr->dev, "queue remove failed\n");
3477 	}
3478 	mutex_lock(&board_lock);
3479 	list_del(&ctlr->list);
3480 	mutex_unlock(&board_lock);
3481 
3482 	device_del(&ctlr->dev);
3483 
3484 	/* Free bus id */
3485 	mutex_lock(&board_lock);
3486 	if (found == ctlr)
3487 		idr_remove(&spi_master_idr, id);
3488 	mutex_unlock(&board_lock);
3489 
3490 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3491 		mutex_unlock(&ctlr->add_lock);
3492 
3493 	/*
3494 	 * Release the last reference on the controller if its driver
3495 	 * has not yet been converted to devm_spi_alloc_master/slave().
3496 	 */
3497 	if (!ctlr->devm_allocated)
3498 		put_device(&ctlr->dev);
3499 }
3500 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3501 
3502 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3503 {
3504 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3505 }
3506 
3507 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3508 {
3509 	mutex_lock(&ctlr->bus_lock_mutex);
3510 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3511 	mutex_unlock(&ctlr->bus_lock_mutex);
3512 }
3513 
3514 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3515 {
3516 	mutex_lock(&ctlr->bus_lock_mutex);
3517 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3518 	mutex_unlock(&ctlr->bus_lock_mutex);
3519 }
3520 
3521 int spi_controller_suspend(struct spi_controller *ctlr)
3522 {
3523 	int ret = 0;
3524 
3525 	/* Basically no-ops for non-queued controllers */
3526 	if (ctlr->queued) {
3527 		ret = spi_stop_queue(ctlr);
3528 		if (ret)
3529 			dev_err(&ctlr->dev, "queue stop failed\n");
3530 	}
3531 
3532 	__spi_mark_suspended(ctlr);
3533 	return ret;
3534 }
3535 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3536 
3537 int spi_controller_resume(struct spi_controller *ctlr)
3538 {
3539 	int ret = 0;
3540 
3541 	__spi_mark_resumed(ctlr);
3542 
3543 	if (ctlr->queued) {
3544 		ret = spi_start_queue(ctlr);
3545 		if (ret)
3546 			dev_err(&ctlr->dev, "queue restart failed\n");
3547 	}
3548 	return ret;
3549 }
3550 EXPORT_SYMBOL_GPL(spi_controller_resume);
3551 
3552 /*-------------------------------------------------------------------------*/
3553 
3554 /* Core methods for spi_message alterations */
3555 
3556 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3557 					    struct spi_message *msg,
3558 					    void *res)
3559 {
3560 	struct spi_replaced_transfers *rxfer = res;
3561 	size_t i;
3562 
3563 	/* Call extra callback if requested */
3564 	if (rxfer->release)
3565 		rxfer->release(ctlr, msg, res);
3566 
3567 	/* Insert replaced transfers back into the message */
3568 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3569 
3570 	/* Remove the formerly inserted entries */
3571 	for (i = 0; i < rxfer->inserted; i++)
3572 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3573 }
3574 
3575 /**
3576  * spi_replace_transfers - replace transfers with several transfers
3577  *                         and register change with spi_message.resources
3578  * @msg:           the spi_message we work upon
3579  * @xfer_first:    the first spi_transfer we want to replace
3580  * @remove:        number of transfers to remove
3581  * @insert:        the number of transfers we want to insert instead
3582  * @release:       extra release code necessary in some circumstances
3583  * @extradatasize: extra data to allocate (with alignment guarantees
3584  *                 of struct @spi_transfer)
3585  * @gfp:           gfp flags
3586  *
3587  * Returns: pointer to @spi_replaced_transfers,
3588  *          PTR_ERR(...) in case of errors.
3589  */
3590 static struct spi_replaced_transfers *spi_replace_transfers(
3591 	struct spi_message *msg,
3592 	struct spi_transfer *xfer_first,
3593 	size_t remove,
3594 	size_t insert,
3595 	spi_replaced_release_t release,
3596 	size_t extradatasize,
3597 	gfp_t gfp)
3598 {
3599 	struct spi_replaced_transfers *rxfer;
3600 	struct spi_transfer *xfer;
3601 	size_t i;
3602 
3603 	/* Allocate the structure using spi_res */
3604 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3605 			      struct_size(rxfer, inserted_transfers, insert)
3606 			      + extradatasize,
3607 			      gfp);
3608 	if (!rxfer)
3609 		return ERR_PTR(-ENOMEM);
3610 
3611 	/* The release code to invoke before running the generic release */
3612 	rxfer->release = release;
3613 
3614 	/* Assign extradata */
3615 	if (extradatasize)
3616 		rxfer->extradata =
3617 			&rxfer->inserted_transfers[insert];
3618 
3619 	/* Init the replaced_transfers list */
3620 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3621 
3622 	/*
3623 	 * Assign the list_entry after which we should reinsert
3624 	 * the @replaced_transfers - it may be spi_message.messages!
3625 	 */
3626 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3627 
3628 	/* Remove the requested number of transfers */
3629 	for (i = 0; i < remove; i++) {
3630 		/*
3631 		 * If the entry after replaced_after it is msg->transfers
3632 		 * then we have been requested to remove more transfers
3633 		 * than are in the list.
3634 		 */
3635 		if (rxfer->replaced_after->next == &msg->transfers) {
3636 			dev_err(&msg->spi->dev,
3637 				"requested to remove more spi_transfers than are available\n");
3638 			/* Insert replaced transfers back into the message */
3639 			list_splice(&rxfer->replaced_transfers,
3640 				    rxfer->replaced_after);
3641 
3642 			/* Free the spi_replace_transfer structure... */
3643 			spi_res_free(rxfer);
3644 
3645 			/* ...and return with an error */
3646 			return ERR_PTR(-EINVAL);
3647 		}
3648 
3649 		/*
3650 		 * Remove the entry after replaced_after from list of
3651 		 * transfers and add it to list of replaced_transfers.
3652 		 */
3653 		list_move_tail(rxfer->replaced_after->next,
3654 			       &rxfer->replaced_transfers);
3655 	}
3656 
3657 	/*
3658 	 * Create copy of the given xfer with identical settings
3659 	 * based on the first transfer to get removed.
3660 	 */
3661 	for (i = 0; i < insert; i++) {
3662 		/* We need to run in reverse order */
3663 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3664 
3665 		/* Copy all spi_transfer data */
3666 		memcpy(xfer, xfer_first, sizeof(*xfer));
3667 
3668 		/* Add to list */
3669 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3670 
3671 		/* Clear cs_change and delay for all but the last */
3672 		if (i) {
3673 			xfer->cs_change = false;
3674 			xfer->delay.value = 0;
3675 		}
3676 	}
3677 
3678 	/* Set up inserted... */
3679 	rxfer->inserted = insert;
3680 
3681 	/* ...and register it with spi_res/spi_message */
3682 	spi_res_add(msg, rxfer);
3683 
3684 	return rxfer;
3685 }
3686 
3687 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3688 					struct spi_message *msg,
3689 					struct spi_transfer **xferp,
3690 					size_t maxsize)
3691 {
3692 	struct spi_transfer *xfer = *xferp, *xfers;
3693 	struct spi_replaced_transfers *srt;
3694 	size_t offset;
3695 	size_t count, i;
3696 
3697 	/* Calculate how many we have to replace */
3698 	count = DIV_ROUND_UP(xfer->len, maxsize);
3699 
3700 	/* Create replacement */
3701 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3702 	if (IS_ERR(srt))
3703 		return PTR_ERR(srt);
3704 	xfers = srt->inserted_transfers;
3705 
3706 	/*
3707 	 * Now handle each of those newly inserted spi_transfers.
3708 	 * Note that the replacements spi_transfers all are preset
3709 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3710 	 * are all identical (as well as most others)
3711 	 * so we just have to fix up len and the pointers.
3712 	 *
3713 	 * This also includes support for the depreciated
3714 	 * spi_message.is_dma_mapped interface.
3715 	 */
3716 
3717 	/*
3718 	 * The first transfer just needs the length modified, so we
3719 	 * run it outside the loop.
3720 	 */
3721 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3722 
3723 	/* All the others need rx_buf/tx_buf also set */
3724 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3725 		/* Update rx_buf, tx_buf and DMA */
3726 		if (xfers[i].rx_buf)
3727 			xfers[i].rx_buf += offset;
3728 		if (xfers[i].rx_dma)
3729 			xfers[i].rx_dma += offset;
3730 		if (xfers[i].tx_buf)
3731 			xfers[i].tx_buf += offset;
3732 		if (xfers[i].tx_dma)
3733 			xfers[i].tx_dma += offset;
3734 
3735 		/* Update length */
3736 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3737 	}
3738 
3739 	/*
3740 	 * We set up xferp to the last entry we have inserted,
3741 	 * so that we skip those already split transfers.
3742 	 */
3743 	*xferp = &xfers[count - 1];
3744 
3745 	/* Increment statistics counters */
3746 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3747 				       transfers_split_maxsize);
3748 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3749 				       transfers_split_maxsize);
3750 
3751 	return 0;
3752 }
3753 
3754 /**
3755  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3756  *                               when an individual transfer exceeds a
3757  *                               certain size
3758  * @ctlr:    the @spi_controller for this transfer
3759  * @msg:   the @spi_message to transform
3760  * @maxsize:  the maximum when to apply this
3761  *
3762  * This function allocates resources that are automatically freed during the
3763  * spi message unoptimize phase so this function should only be called from
3764  * optimize_message callbacks.
3765  *
3766  * Return: status of transformation
3767  */
3768 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3769 				struct spi_message *msg,
3770 				size_t maxsize)
3771 {
3772 	struct spi_transfer *xfer;
3773 	int ret;
3774 
3775 	/*
3776 	 * Iterate over the transfer_list,
3777 	 * but note that xfer is advanced to the last transfer inserted
3778 	 * to avoid checking sizes again unnecessarily (also xfer does
3779 	 * potentially belong to a different list by the time the
3780 	 * replacement has happened).
3781 	 */
3782 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3783 		if (xfer->len > maxsize) {
3784 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3785 							   maxsize);
3786 			if (ret)
3787 				return ret;
3788 		}
3789 	}
3790 
3791 	return 0;
3792 }
3793 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3794 
3795 
3796 /**
3797  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3798  *                                when an individual transfer exceeds a
3799  *                                certain number of SPI words
3800  * @ctlr:     the @spi_controller for this transfer
3801  * @msg:      the @spi_message to transform
3802  * @maxwords: the number of words to limit each transfer to
3803  *
3804  * This function allocates resources that are automatically freed during the
3805  * spi message unoptimize phase so this function should only be called from
3806  * optimize_message callbacks.
3807  *
3808  * Return: status of transformation
3809  */
3810 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3811 				 struct spi_message *msg,
3812 				 size_t maxwords)
3813 {
3814 	struct spi_transfer *xfer;
3815 
3816 	/*
3817 	 * Iterate over the transfer_list,
3818 	 * but note that xfer is advanced to the last transfer inserted
3819 	 * to avoid checking sizes again unnecessarily (also xfer does
3820 	 * potentially belong to a different list by the time the
3821 	 * replacement has happened).
3822 	 */
3823 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3824 		size_t maxsize;
3825 		int ret;
3826 
3827 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3828 		if (xfer->len > maxsize) {
3829 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3830 							   maxsize);
3831 			if (ret)
3832 				return ret;
3833 		}
3834 	}
3835 
3836 	return 0;
3837 }
3838 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3839 
3840 /*-------------------------------------------------------------------------*/
3841 
3842 /*
3843  * Core methods for SPI controller protocol drivers. Some of the
3844  * other core methods are currently defined as inline functions.
3845  */
3846 
3847 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3848 					u8 bits_per_word)
3849 {
3850 	if (ctlr->bits_per_word_mask) {
3851 		/* Only 32 bits fit in the mask */
3852 		if (bits_per_word > 32)
3853 			return -EINVAL;
3854 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3855 			return -EINVAL;
3856 	}
3857 
3858 	return 0;
3859 }
3860 
3861 /**
3862  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3863  * @spi: the device that requires specific CS timing configuration
3864  *
3865  * Return: zero on success, else a negative error code.
3866  */
3867 static int spi_set_cs_timing(struct spi_device *spi)
3868 {
3869 	struct device *parent = spi->controller->dev.parent;
3870 	int status = 0;
3871 
3872 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3873 		if (spi->controller->auto_runtime_pm) {
3874 			status = pm_runtime_get_sync(parent);
3875 			if (status < 0) {
3876 				pm_runtime_put_noidle(parent);
3877 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3878 					status);
3879 				return status;
3880 			}
3881 
3882 			status = spi->controller->set_cs_timing(spi);
3883 			pm_runtime_mark_last_busy(parent);
3884 			pm_runtime_put_autosuspend(parent);
3885 		} else {
3886 			status = spi->controller->set_cs_timing(spi);
3887 		}
3888 	}
3889 	return status;
3890 }
3891 
3892 /**
3893  * spi_setup - setup SPI mode and clock rate
3894  * @spi: the device whose settings are being modified
3895  * Context: can sleep, and no requests are queued to the device
3896  *
3897  * SPI protocol drivers may need to update the transfer mode if the
3898  * device doesn't work with its default.  They may likewise need
3899  * to update clock rates or word sizes from initial values.  This function
3900  * changes those settings, and must be called from a context that can sleep.
3901  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3902  * effect the next time the device is selected and data is transferred to
3903  * or from it.  When this function returns, the SPI device is deselected.
3904  *
3905  * Note that this call will fail if the protocol driver specifies an option
3906  * that the underlying controller or its driver does not support.  For
3907  * example, not all hardware supports wire transfers using nine bit words,
3908  * LSB-first wire encoding, or active-high chipselects.
3909  *
3910  * Return: zero on success, else a negative error code.
3911  */
3912 int spi_setup(struct spi_device *spi)
3913 {
3914 	unsigned	bad_bits, ugly_bits;
3915 	int		status = 0;
3916 
3917 	/*
3918 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3919 	 * are set at the same time.
3920 	 */
3921 	if ((hweight_long(spi->mode &
3922 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3923 	    (hweight_long(spi->mode &
3924 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3925 		dev_err(&spi->dev,
3926 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3927 		return -EINVAL;
3928 	}
3929 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3930 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3931 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3932 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3933 		return -EINVAL;
3934 	/*
3935 	 * Help drivers fail *cleanly* when they need options
3936 	 * that aren't supported with their current controller.
3937 	 * SPI_CS_WORD has a fallback software implementation,
3938 	 * so it is ignored here.
3939 	 */
3940 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3941 				 SPI_NO_TX | SPI_NO_RX);
3942 	ugly_bits = bad_bits &
3943 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3944 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3945 	if (ugly_bits) {
3946 		dev_warn(&spi->dev,
3947 			 "setup: ignoring unsupported mode bits %x\n",
3948 			 ugly_bits);
3949 		spi->mode &= ~ugly_bits;
3950 		bad_bits &= ~ugly_bits;
3951 	}
3952 	if (bad_bits) {
3953 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3954 			bad_bits);
3955 		return -EINVAL;
3956 	}
3957 
3958 	if (!spi->bits_per_word) {
3959 		spi->bits_per_word = 8;
3960 	} else {
3961 		/*
3962 		 * Some controllers may not support the default 8 bits-per-word
3963 		 * so only perform the check when this is explicitly provided.
3964 		 */
3965 		status = __spi_validate_bits_per_word(spi->controller,
3966 						      spi->bits_per_word);
3967 		if (status)
3968 			return status;
3969 	}
3970 
3971 	if (spi->controller->max_speed_hz &&
3972 	    (!spi->max_speed_hz ||
3973 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3974 		spi->max_speed_hz = spi->controller->max_speed_hz;
3975 
3976 	mutex_lock(&spi->controller->io_mutex);
3977 
3978 	if (spi->controller->setup) {
3979 		status = spi->controller->setup(spi);
3980 		if (status) {
3981 			mutex_unlock(&spi->controller->io_mutex);
3982 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3983 				status);
3984 			return status;
3985 		}
3986 	}
3987 
3988 	status = spi_set_cs_timing(spi);
3989 	if (status) {
3990 		mutex_unlock(&spi->controller->io_mutex);
3991 		return status;
3992 	}
3993 
3994 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3995 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3996 		if (status < 0) {
3997 			mutex_unlock(&spi->controller->io_mutex);
3998 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3999 				status);
4000 			return status;
4001 		}
4002 
4003 		/*
4004 		 * We do not want to return positive value from pm_runtime_get,
4005 		 * there are many instances of devices calling spi_setup() and
4006 		 * checking for a non-zero return value instead of a negative
4007 		 * return value.
4008 		 */
4009 		status = 0;
4010 
4011 		spi_set_cs(spi, false, true);
4012 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4013 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4014 	} else {
4015 		spi_set_cs(spi, false, true);
4016 	}
4017 
4018 	mutex_unlock(&spi->controller->io_mutex);
4019 
4020 	if (spi->rt && !spi->controller->rt) {
4021 		spi->controller->rt = true;
4022 		spi_set_thread_rt(spi->controller);
4023 	}
4024 
4025 	trace_spi_setup(spi, status);
4026 
4027 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4028 			spi->mode & SPI_MODE_X_MASK,
4029 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4030 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4031 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4032 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4033 			spi->bits_per_word, spi->max_speed_hz,
4034 			status);
4035 
4036 	return status;
4037 }
4038 EXPORT_SYMBOL_GPL(spi_setup);
4039 
4040 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4041 				       struct spi_device *spi)
4042 {
4043 	int delay1, delay2;
4044 
4045 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4046 	if (delay1 < 0)
4047 		return delay1;
4048 
4049 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4050 	if (delay2 < 0)
4051 		return delay2;
4052 
4053 	if (delay1 < delay2)
4054 		memcpy(&xfer->word_delay, &spi->word_delay,
4055 		       sizeof(xfer->word_delay));
4056 
4057 	return 0;
4058 }
4059 
4060 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4061 {
4062 	struct spi_controller *ctlr = spi->controller;
4063 	struct spi_transfer *xfer;
4064 	int w_size;
4065 
4066 	if (list_empty(&message->transfers))
4067 		return -EINVAL;
4068 
4069 	message->spi = spi;
4070 
4071 	/*
4072 	 * Half-duplex links include original MicroWire, and ones with
4073 	 * only one data pin like SPI_3WIRE (switches direction) or where
4074 	 * either MOSI or MISO is missing.  They can also be caused by
4075 	 * software limitations.
4076 	 */
4077 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4078 	    (spi->mode & SPI_3WIRE)) {
4079 		unsigned flags = ctlr->flags;
4080 
4081 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4082 			if (xfer->rx_buf && xfer->tx_buf)
4083 				return -EINVAL;
4084 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4085 				return -EINVAL;
4086 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4087 				return -EINVAL;
4088 		}
4089 	}
4090 
4091 	/*
4092 	 * Set transfer bits_per_word and max speed as spi device default if
4093 	 * it is not set for this transfer.
4094 	 * Set transfer tx_nbits and rx_nbits as single transfer default
4095 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4096 	 * Ensure transfer word_delay is at least as long as that required by
4097 	 * device itself.
4098 	 */
4099 	message->frame_length = 0;
4100 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4101 		xfer->effective_speed_hz = 0;
4102 		message->frame_length += xfer->len;
4103 		if (!xfer->bits_per_word)
4104 			xfer->bits_per_word = spi->bits_per_word;
4105 
4106 		if (!xfer->speed_hz)
4107 			xfer->speed_hz = spi->max_speed_hz;
4108 
4109 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4110 			xfer->speed_hz = ctlr->max_speed_hz;
4111 
4112 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4113 			return -EINVAL;
4114 
4115 		/*
4116 		 * SPI transfer length should be multiple of SPI word size
4117 		 * where SPI word size should be power-of-two multiple.
4118 		 */
4119 		if (xfer->bits_per_word <= 8)
4120 			w_size = 1;
4121 		else if (xfer->bits_per_word <= 16)
4122 			w_size = 2;
4123 		else
4124 			w_size = 4;
4125 
4126 		/* No partial transfers accepted */
4127 		if (xfer->len % w_size)
4128 			return -EINVAL;
4129 
4130 		if (xfer->speed_hz && ctlr->min_speed_hz &&
4131 		    xfer->speed_hz < ctlr->min_speed_hz)
4132 			return -EINVAL;
4133 
4134 		if (xfer->tx_buf && !xfer->tx_nbits)
4135 			xfer->tx_nbits = SPI_NBITS_SINGLE;
4136 		if (xfer->rx_buf && !xfer->rx_nbits)
4137 			xfer->rx_nbits = SPI_NBITS_SINGLE;
4138 		/*
4139 		 * Check transfer tx/rx_nbits:
4140 		 * 1. check the value matches one of single, dual and quad
4141 		 * 2. check tx/rx_nbits match the mode in spi_device
4142 		 */
4143 		if (xfer->tx_buf) {
4144 			if (spi->mode & SPI_NO_TX)
4145 				return -EINVAL;
4146 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4147 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4148 				xfer->tx_nbits != SPI_NBITS_QUAD)
4149 				return -EINVAL;
4150 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4151 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4152 				return -EINVAL;
4153 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4154 				!(spi->mode & SPI_TX_QUAD))
4155 				return -EINVAL;
4156 		}
4157 		/* Check transfer rx_nbits */
4158 		if (xfer->rx_buf) {
4159 			if (spi->mode & SPI_NO_RX)
4160 				return -EINVAL;
4161 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4162 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4163 				xfer->rx_nbits != SPI_NBITS_QUAD)
4164 				return -EINVAL;
4165 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4166 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4167 				return -EINVAL;
4168 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4169 				!(spi->mode & SPI_RX_QUAD))
4170 				return -EINVAL;
4171 		}
4172 
4173 		if (_spi_xfer_word_delay_update(xfer, spi))
4174 			return -EINVAL;
4175 	}
4176 
4177 	message->status = -EINPROGRESS;
4178 
4179 	return 0;
4180 }
4181 
4182 /*
4183  * spi_split_transfers - generic handling of transfer splitting
4184  * @msg: the message to split
4185  *
4186  * Under certain conditions, a SPI controller may not support arbitrary
4187  * transfer sizes or other features required by a peripheral. This function
4188  * will split the transfers in the message into smaller transfers that are
4189  * supported by the controller.
4190  *
4191  * Controllers with special requirements not covered here can also split
4192  * transfers in the optimize_message() callback.
4193  *
4194  * Context: can sleep
4195  * Return: zero on success, else a negative error code
4196  */
4197 static int spi_split_transfers(struct spi_message *msg)
4198 {
4199 	struct spi_controller *ctlr = msg->spi->controller;
4200 	struct spi_transfer *xfer;
4201 	int ret;
4202 
4203 	/*
4204 	 * If an SPI controller does not support toggling the CS line on each
4205 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4206 	 * for the CS line, we can emulate the CS-per-word hardware function by
4207 	 * splitting transfers into one-word transfers and ensuring that
4208 	 * cs_change is set for each transfer.
4209 	 */
4210 	if ((msg->spi->mode & SPI_CS_WORD) &&
4211 	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4212 		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4213 		if (ret)
4214 			return ret;
4215 
4216 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4217 			/* Don't change cs_change on the last entry in the list */
4218 			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4219 				break;
4220 
4221 			xfer->cs_change = 1;
4222 		}
4223 	} else {
4224 		ret = spi_split_transfers_maxsize(ctlr, msg,
4225 						  spi_max_transfer_size(msg->spi));
4226 		if (ret)
4227 			return ret;
4228 	}
4229 
4230 	return 0;
4231 }
4232 
4233 /*
4234  * __spi_optimize_message - shared implementation for spi_optimize_message()
4235  *                          and spi_maybe_optimize_message()
4236  * @spi: the device that will be used for the message
4237  * @msg: the message to optimize
4238  *
4239  * Peripheral drivers will call spi_optimize_message() and the spi core will
4240  * call spi_maybe_optimize_message() instead of calling this directly.
4241  *
4242  * It is not valid to call this on a message that has already been optimized.
4243  *
4244  * Return: zero on success, else a negative error code
4245  */
4246 static int __spi_optimize_message(struct spi_device *spi,
4247 				  struct spi_message *msg)
4248 {
4249 	struct spi_controller *ctlr = spi->controller;
4250 	int ret;
4251 
4252 	ret = __spi_validate(spi, msg);
4253 	if (ret)
4254 		return ret;
4255 
4256 	ret = spi_split_transfers(msg);
4257 	if (ret)
4258 		return ret;
4259 
4260 	if (ctlr->optimize_message) {
4261 		ret = ctlr->optimize_message(msg);
4262 		if (ret) {
4263 			spi_res_release(ctlr, msg);
4264 			return ret;
4265 		}
4266 	}
4267 
4268 	msg->optimized = true;
4269 
4270 	return 0;
4271 }
4272 
4273 /*
4274  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4275  * @spi: the device that will be used for the message
4276  * @msg: the message to optimize
4277  * Return: zero on success, else a negative error code
4278  */
4279 static int spi_maybe_optimize_message(struct spi_device *spi,
4280 				      struct spi_message *msg)
4281 {
4282 	if (msg->pre_optimized)
4283 		return 0;
4284 
4285 	return __spi_optimize_message(spi, msg);
4286 }
4287 
4288 /**
4289  * spi_optimize_message - do any one-time validation and setup for a SPI message
4290  * @spi: the device that will be used for the message
4291  * @msg: the message to optimize
4292  *
4293  * Peripheral drivers that reuse the same message repeatedly may call this to
4294  * perform as much message prep as possible once, rather than repeating it each
4295  * time a message transfer is performed to improve throughput and reduce CPU
4296  * usage.
4297  *
4298  * Once a message has been optimized, it cannot be modified with the exception
4299  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4300  * only the data in the memory it points to).
4301  *
4302  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4303  * to avoid leaking resources.
4304  *
4305  * Context: can sleep
4306  * Return: zero on success, else a negative error code
4307  */
4308 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4309 {
4310 	int ret;
4311 
4312 	ret = __spi_optimize_message(spi, msg);
4313 	if (ret)
4314 		return ret;
4315 
4316 	/*
4317 	 * This flag indicates that the peripheral driver called spi_optimize_message()
4318 	 * and therefore we shouldn't unoptimize message automatically when finalizing
4319 	 * the message but rather wait until spi_unoptimize_message() is called
4320 	 * by the peripheral driver.
4321 	 */
4322 	msg->pre_optimized = true;
4323 
4324 	return 0;
4325 }
4326 EXPORT_SYMBOL_GPL(spi_optimize_message);
4327 
4328 /**
4329  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4330  * @msg: the message to unoptimize
4331  *
4332  * Calls to this function must be balanced with calls to spi_optimize_message().
4333  *
4334  * Context: can sleep
4335  */
4336 void spi_unoptimize_message(struct spi_message *msg)
4337 {
4338 	__spi_unoptimize_message(msg);
4339 	msg->pre_optimized = false;
4340 }
4341 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4342 
4343 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4344 {
4345 	struct spi_controller *ctlr = spi->controller;
4346 	struct spi_transfer *xfer;
4347 
4348 	/*
4349 	 * Some controllers do not support doing regular SPI transfers. Return
4350 	 * ENOTSUPP when this is the case.
4351 	 */
4352 	if (!ctlr->transfer)
4353 		return -ENOTSUPP;
4354 
4355 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4356 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4357 
4358 	trace_spi_message_submit(message);
4359 
4360 	if (!ctlr->ptp_sts_supported) {
4361 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4362 			xfer->ptp_sts_word_pre = 0;
4363 			ptp_read_system_prets(xfer->ptp_sts);
4364 		}
4365 	}
4366 
4367 	return ctlr->transfer(spi, message);
4368 }
4369 
4370 /**
4371  * spi_async - asynchronous SPI transfer
4372  * @spi: device with which data will be exchanged
4373  * @message: describes the data transfers, including completion callback
4374  * Context: any (IRQs may be blocked, etc)
4375  *
4376  * This call may be used in_irq and other contexts which can't sleep,
4377  * as well as from task contexts which can sleep.
4378  *
4379  * The completion callback is invoked in a context which can't sleep.
4380  * Before that invocation, the value of message->status is undefined.
4381  * When the callback is issued, message->status holds either zero (to
4382  * indicate complete success) or a negative error code.  After that
4383  * callback returns, the driver which issued the transfer request may
4384  * deallocate the associated memory; it's no longer in use by any SPI
4385  * core or controller driver code.
4386  *
4387  * Note that although all messages to a spi_device are handled in
4388  * FIFO order, messages may go to different devices in other orders.
4389  * Some device might be higher priority, or have various "hard" access
4390  * time requirements, for example.
4391  *
4392  * On detection of any fault during the transfer, processing of
4393  * the entire message is aborted, and the device is deselected.
4394  * Until returning from the associated message completion callback,
4395  * no other spi_message queued to that device will be processed.
4396  * (This rule applies equally to all the synchronous transfer calls,
4397  * which are wrappers around this core asynchronous primitive.)
4398  *
4399  * Return: zero on success, else a negative error code.
4400  */
4401 int spi_async(struct spi_device *spi, struct spi_message *message)
4402 {
4403 	struct spi_controller *ctlr = spi->controller;
4404 	int ret;
4405 	unsigned long flags;
4406 
4407 	ret = spi_maybe_optimize_message(spi, message);
4408 	if (ret)
4409 		return ret;
4410 
4411 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4412 
4413 	if (ctlr->bus_lock_flag)
4414 		ret = -EBUSY;
4415 	else
4416 		ret = __spi_async(spi, message);
4417 
4418 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4419 
4420 	spi_maybe_unoptimize_message(message);
4421 
4422 	return ret;
4423 }
4424 EXPORT_SYMBOL_GPL(spi_async);
4425 
4426 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4427 {
4428 	bool was_busy;
4429 	int ret;
4430 
4431 	mutex_lock(&ctlr->io_mutex);
4432 
4433 	was_busy = ctlr->busy;
4434 
4435 	ctlr->cur_msg = msg;
4436 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4437 	if (ret)
4438 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4439 	ctlr->cur_msg = NULL;
4440 	ctlr->fallback = false;
4441 
4442 	if (!was_busy) {
4443 		kfree(ctlr->dummy_rx);
4444 		ctlr->dummy_rx = NULL;
4445 		kfree(ctlr->dummy_tx);
4446 		ctlr->dummy_tx = NULL;
4447 		if (ctlr->unprepare_transfer_hardware &&
4448 		    ctlr->unprepare_transfer_hardware(ctlr))
4449 			dev_err(&ctlr->dev,
4450 				"failed to unprepare transfer hardware\n");
4451 		spi_idle_runtime_pm(ctlr);
4452 	}
4453 
4454 	mutex_unlock(&ctlr->io_mutex);
4455 }
4456 
4457 /*-------------------------------------------------------------------------*/
4458 
4459 /*
4460  * Utility methods for SPI protocol drivers, layered on
4461  * top of the core.  Some other utility methods are defined as
4462  * inline functions.
4463  */
4464 
4465 static void spi_complete(void *arg)
4466 {
4467 	complete(arg);
4468 }
4469 
4470 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4471 {
4472 	DECLARE_COMPLETION_ONSTACK(done);
4473 	unsigned long flags;
4474 	int status;
4475 	struct spi_controller *ctlr = spi->controller;
4476 
4477 	if (__spi_check_suspended(ctlr)) {
4478 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4479 		return -ESHUTDOWN;
4480 	}
4481 
4482 	status = spi_maybe_optimize_message(spi, message);
4483 	if (status)
4484 		return status;
4485 
4486 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4487 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4488 
4489 	/*
4490 	 * Checking queue_empty here only guarantees async/sync message
4491 	 * ordering when coming from the same context. It does not need to
4492 	 * guard against reentrancy from a different context. The io_mutex
4493 	 * will catch those cases.
4494 	 */
4495 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4496 		message->actual_length = 0;
4497 		message->status = -EINPROGRESS;
4498 
4499 		trace_spi_message_submit(message);
4500 
4501 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4502 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4503 
4504 		__spi_transfer_message_noqueue(ctlr, message);
4505 
4506 		return message->status;
4507 	}
4508 
4509 	/*
4510 	 * There are messages in the async queue that could have originated
4511 	 * from the same context, so we need to preserve ordering.
4512 	 * Therefor we send the message to the async queue and wait until they
4513 	 * are completed.
4514 	 */
4515 	message->complete = spi_complete;
4516 	message->context = &done;
4517 
4518 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4519 	status = __spi_async(spi, message);
4520 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4521 
4522 	if (status == 0) {
4523 		wait_for_completion(&done);
4524 		status = message->status;
4525 	}
4526 	message->context = NULL;
4527 
4528 	return status;
4529 }
4530 
4531 /**
4532  * spi_sync - blocking/synchronous SPI data transfers
4533  * @spi: device with which data will be exchanged
4534  * @message: describes the data transfers
4535  * Context: can sleep
4536  *
4537  * This call may only be used from a context that may sleep.  The sleep
4538  * is non-interruptible, and has no timeout.  Low-overhead controller
4539  * drivers may DMA directly into and out of the message buffers.
4540  *
4541  * Note that the SPI device's chip select is active during the message,
4542  * and then is normally disabled between messages.  Drivers for some
4543  * frequently-used devices may want to minimize costs of selecting a chip,
4544  * by leaving it selected in anticipation that the next message will go
4545  * to the same chip.  (That may increase power usage.)
4546  *
4547  * Also, the caller is guaranteeing that the memory associated with the
4548  * message will not be freed before this call returns.
4549  *
4550  * Return: zero on success, else a negative error code.
4551  */
4552 int spi_sync(struct spi_device *spi, struct spi_message *message)
4553 {
4554 	int ret;
4555 
4556 	mutex_lock(&spi->controller->bus_lock_mutex);
4557 	ret = __spi_sync(spi, message);
4558 	mutex_unlock(&spi->controller->bus_lock_mutex);
4559 
4560 	return ret;
4561 }
4562 EXPORT_SYMBOL_GPL(spi_sync);
4563 
4564 /**
4565  * spi_sync_locked - version of spi_sync with exclusive bus usage
4566  * @spi: device with which data will be exchanged
4567  * @message: describes the data transfers
4568  * Context: can sleep
4569  *
4570  * This call may only be used from a context that may sleep.  The sleep
4571  * is non-interruptible, and has no timeout.  Low-overhead controller
4572  * drivers may DMA directly into and out of the message buffers.
4573  *
4574  * This call should be used by drivers that require exclusive access to the
4575  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4576  * be released by a spi_bus_unlock call when the exclusive access is over.
4577  *
4578  * Return: zero on success, else a negative error code.
4579  */
4580 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4581 {
4582 	return __spi_sync(spi, message);
4583 }
4584 EXPORT_SYMBOL_GPL(spi_sync_locked);
4585 
4586 /**
4587  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4588  * @ctlr: SPI bus master that should be locked for exclusive bus access
4589  * Context: can sleep
4590  *
4591  * This call may only be used from a context that may sleep.  The sleep
4592  * is non-interruptible, and has no timeout.
4593  *
4594  * This call should be used by drivers that require exclusive access to the
4595  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4596  * exclusive access is over. Data transfer must be done by spi_sync_locked
4597  * and spi_async_locked calls when the SPI bus lock is held.
4598  *
4599  * Return: always zero.
4600  */
4601 int spi_bus_lock(struct spi_controller *ctlr)
4602 {
4603 	unsigned long flags;
4604 
4605 	mutex_lock(&ctlr->bus_lock_mutex);
4606 
4607 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4608 	ctlr->bus_lock_flag = 1;
4609 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4610 
4611 	/* Mutex remains locked until spi_bus_unlock() is called */
4612 
4613 	return 0;
4614 }
4615 EXPORT_SYMBOL_GPL(spi_bus_lock);
4616 
4617 /**
4618  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4619  * @ctlr: SPI bus master that was locked for exclusive bus access
4620  * Context: can sleep
4621  *
4622  * This call may only be used from a context that may sleep.  The sleep
4623  * is non-interruptible, and has no timeout.
4624  *
4625  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4626  * call.
4627  *
4628  * Return: always zero.
4629  */
4630 int spi_bus_unlock(struct spi_controller *ctlr)
4631 {
4632 	ctlr->bus_lock_flag = 0;
4633 
4634 	mutex_unlock(&ctlr->bus_lock_mutex);
4635 
4636 	return 0;
4637 }
4638 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4639 
4640 /* Portable code must never pass more than 32 bytes */
4641 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4642 
4643 static u8	*buf;
4644 
4645 /**
4646  * spi_write_then_read - SPI synchronous write followed by read
4647  * @spi: device with which data will be exchanged
4648  * @txbuf: data to be written (need not be DMA-safe)
4649  * @n_tx: size of txbuf, in bytes
4650  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4651  * @n_rx: size of rxbuf, in bytes
4652  * Context: can sleep
4653  *
4654  * This performs a half duplex MicroWire style transaction with the
4655  * device, sending txbuf and then reading rxbuf.  The return value
4656  * is zero for success, else a negative errno status code.
4657  * This call may only be used from a context that may sleep.
4658  *
4659  * Parameters to this routine are always copied using a small buffer.
4660  * Performance-sensitive or bulk transfer code should instead use
4661  * spi_{async,sync}() calls with DMA-safe buffers.
4662  *
4663  * Return: zero on success, else a negative error code.
4664  */
4665 int spi_write_then_read(struct spi_device *spi,
4666 		const void *txbuf, unsigned n_tx,
4667 		void *rxbuf, unsigned n_rx)
4668 {
4669 	static DEFINE_MUTEX(lock);
4670 
4671 	int			status;
4672 	struct spi_message	message;
4673 	struct spi_transfer	x[2];
4674 	u8			*local_buf;
4675 
4676 	/*
4677 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4678 	 * copying here, (as a pure convenience thing), but we can
4679 	 * keep heap costs out of the hot path unless someone else is
4680 	 * using the pre-allocated buffer or the transfer is too large.
4681 	 */
4682 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4683 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4684 				    GFP_KERNEL | GFP_DMA);
4685 		if (!local_buf)
4686 			return -ENOMEM;
4687 	} else {
4688 		local_buf = buf;
4689 	}
4690 
4691 	spi_message_init(&message);
4692 	memset(x, 0, sizeof(x));
4693 	if (n_tx) {
4694 		x[0].len = n_tx;
4695 		spi_message_add_tail(&x[0], &message);
4696 	}
4697 	if (n_rx) {
4698 		x[1].len = n_rx;
4699 		spi_message_add_tail(&x[1], &message);
4700 	}
4701 
4702 	memcpy(local_buf, txbuf, n_tx);
4703 	x[0].tx_buf = local_buf;
4704 	x[1].rx_buf = local_buf + n_tx;
4705 
4706 	/* Do the I/O */
4707 	status = spi_sync(spi, &message);
4708 	if (status == 0)
4709 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4710 
4711 	if (x[0].tx_buf == buf)
4712 		mutex_unlock(&lock);
4713 	else
4714 		kfree(local_buf);
4715 
4716 	return status;
4717 }
4718 EXPORT_SYMBOL_GPL(spi_write_then_read);
4719 
4720 /*-------------------------------------------------------------------------*/
4721 
4722 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4723 /* Must call put_device() when done with returned spi_device device */
4724 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4725 {
4726 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4727 
4728 	return dev ? to_spi_device(dev) : NULL;
4729 }
4730 
4731 /* The spi controllers are not using spi_bus, so we find it with another way */
4732 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4733 {
4734 	struct device *dev;
4735 
4736 	dev = class_find_device_by_of_node(&spi_master_class, node);
4737 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4738 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4739 	if (!dev)
4740 		return NULL;
4741 
4742 	/* Reference got in class_find_device */
4743 	return container_of(dev, struct spi_controller, dev);
4744 }
4745 
4746 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4747 			 void *arg)
4748 {
4749 	struct of_reconfig_data *rd = arg;
4750 	struct spi_controller *ctlr;
4751 	struct spi_device *spi;
4752 
4753 	switch (of_reconfig_get_state_change(action, arg)) {
4754 	case OF_RECONFIG_CHANGE_ADD:
4755 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4756 		if (ctlr == NULL)
4757 			return NOTIFY_OK;	/* Not for us */
4758 
4759 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4760 			put_device(&ctlr->dev);
4761 			return NOTIFY_OK;
4762 		}
4763 
4764 		/*
4765 		 * Clear the flag before adding the device so that fw_devlink
4766 		 * doesn't skip adding consumers to this device.
4767 		 */
4768 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4769 		spi = of_register_spi_device(ctlr, rd->dn);
4770 		put_device(&ctlr->dev);
4771 
4772 		if (IS_ERR(spi)) {
4773 			pr_err("%s: failed to create for '%pOF'\n",
4774 					__func__, rd->dn);
4775 			of_node_clear_flag(rd->dn, OF_POPULATED);
4776 			return notifier_from_errno(PTR_ERR(spi));
4777 		}
4778 		break;
4779 
4780 	case OF_RECONFIG_CHANGE_REMOVE:
4781 		/* Already depopulated? */
4782 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4783 			return NOTIFY_OK;
4784 
4785 		/* Find our device by node */
4786 		spi = of_find_spi_device_by_node(rd->dn);
4787 		if (spi == NULL)
4788 			return NOTIFY_OK;	/* No? not meant for us */
4789 
4790 		/* Unregister takes one ref away */
4791 		spi_unregister_device(spi);
4792 
4793 		/* And put the reference of the find */
4794 		put_device(&spi->dev);
4795 		break;
4796 	}
4797 
4798 	return NOTIFY_OK;
4799 }
4800 
4801 static struct notifier_block spi_of_notifier = {
4802 	.notifier_call = of_spi_notify,
4803 };
4804 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4805 extern struct notifier_block spi_of_notifier;
4806 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4807 
4808 #if IS_ENABLED(CONFIG_ACPI)
4809 static int spi_acpi_controller_match(struct device *dev, const void *data)
4810 {
4811 	return ACPI_COMPANION(dev->parent) == data;
4812 }
4813 
4814 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4815 {
4816 	struct device *dev;
4817 
4818 	dev = class_find_device(&spi_master_class, NULL, adev,
4819 				spi_acpi_controller_match);
4820 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4821 		dev = class_find_device(&spi_slave_class, NULL, adev,
4822 					spi_acpi_controller_match);
4823 	if (!dev)
4824 		return NULL;
4825 
4826 	return container_of(dev, struct spi_controller, dev);
4827 }
4828 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4829 
4830 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4831 {
4832 	struct device *dev;
4833 
4834 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4835 	return to_spi_device(dev);
4836 }
4837 
4838 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4839 			   void *arg)
4840 {
4841 	struct acpi_device *adev = arg;
4842 	struct spi_controller *ctlr;
4843 	struct spi_device *spi;
4844 
4845 	switch (value) {
4846 	case ACPI_RECONFIG_DEVICE_ADD:
4847 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4848 		if (!ctlr)
4849 			break;
4850 
4851 		acpi_register_spi_device(ctlr, adev);
4852 		put_device(&ctlr->dev);
4853 		break;
4854 	case ACPI_RECONFIG_DEVICE_REMOVE:
4855 		if (!acpi_device_enumerated(adev))
4856 			break;
4857 
4858 		spi = acpi_spi_find_device_by_adev(adev);
4859 		if (!spi)
4860 			break;
4861 
4862 		spi_unregister_device(spi);
4863 		put_device(&spi->dev);
4864 		break;
4865 	}
4866 
4867 	return NOTIFY_OK;
4868 }
4869 
4870 static struct notifier_block spi_acpi_notifier = {
4871 	.notifier_call = acpi_spi_notify,
4872 };
4873 #else
4874 extern struct notifier_block spi_acpi_notifier;
4875 #endif
4876 
4877 static int __init spi_init(void)
4878 {
4879 	int	status;
4880 
4881 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4882 	if (!buf) {
4883 		status = -ENOMEM;
4884 		goto err0;
4885 	}
4886 
4887 	status = bus_register(&spi_bus_type);
4888 	if (status < 0)
4889 		goto err1;
4890 
4891 	status = class_register(&spi_master_class);
4892 	if (status < 0)
4893 		goto err2;
4894 
4895 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4896 		status = class_register(&spi_slave_class);
4897 		if (status < 0)
4898 			goto err3;
4899 	}
4900 
4901 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4902 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4903 	if (IS_ENABLED(CONFIG_ACPI))
4904 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4905 
4906 	return 0;
4907 
4908 err3:
4909 	class_unregister(&spi_master_class);
4910 err2:
4911 	bus_unregister(&spi_bus_type);
4912 err1:
4913 	kfree(buf);
4914 	buf = NULL;
4915 err0:
4916 	return status;
4917 }
4918 
4919 /*
4920  * A board_info is normally registered in arch_initcall(),
4921  * but even essential drivers wait till later.
4922  *
4923  * REVISIT only boardinfo really needs static linking. The rest (device and
4924  * driver registration) _could_ be dynamically linked (modular) ... Costs
4925  * include needing to have boardinfo data structures be much more public.
4926  */
4927 postcore_initcall(spi_init);
4928