1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_message *msg) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if (spi_valid_txbuf(msg, xfer)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if (spi_valid_rxbuf(msg, xfer)) 334 u64_stats_add(&stats->bytes_rx, xfer->len); 335 336 u64_stats_update_end(&stats->syncp); 337 put_cpu(); 338 } 339 340 /* 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 342 * and the sysfs version makes coldplug work too. 343 */ 344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 345 { 346 while (id->name[0]) { 347 if (!strcmp(name, id->name)) 348 return id; 349 id++; 350 } 351 return NULL; 352 } 353 354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 355 { 356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 357 358 return spi_match_id(sdrv->id_table, sdev->modalias); 359 } 360 EXPORT_SYMBOL_GPL(spi_get_device_id); 361 362 const void *spi_get_device_match_data(const struct spi_device *sdev) 363 { 364 const void *match; 365 366 match = device_get_match_data(&sdev->dev); 367 if (match) 368 return match; 369 370 return (const void *)spi_get_device_id(sdev)->driver_data; 371 } 372 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 373 374 static int spi_match_device(struct device *dev, struct device_driver *drv) 375 { 376 const struct spi_device *spi = to_spi_device(dev); 377 const struct spi_driver *sdrv = to_spi_driver(drv); 378 379 /* Check override first, and if set, only use the named driver */ 380 if (spi->driver_override) 381 return strcmp(spi->driver_override, drv->name) == 0; 382 383 /* Attempt an OF style match */ 384 if (of_driver_match_device(dev, drv)) 385 return 1; 386 387 /* Then try ACPI */ 388 if (acpi_driver_match_device(dev, drv)) 389 return 1; 390 391 if (sdrv->id_table) 392 return !!spi_match_id(sdrv->id_table, spi->modalias); 393 394 return strcmp(spi->modalias, drv->name) == 0; 395 } 396 397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 398 { 399 const struct spi_device *spi = to_spi_device(dev); 400 int rc; 401 402 rc = acpi_device_uevent_modalias(dev, env); 403 if (rc != -ENODEV) 404 return rc; 405 406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 407 } 408 409 static int spi_probe(struct device *dev) 410 { 411 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 412 struct spi_device *spi = to_spi_device(dev); 413 int ret; 414 415 ret = of_clk_set_defaults(dev->of_node, false); 416 if (ret) 417 return ret; 418 419 if (dev->of_node) { 420 spi->irq = of_irq_get(dev->of_node, 0); 421 if (spi->irq == -EPROBE_DEFER) 422 return -EPROBE_DEFER; 423 if (spi->irq < 0) 424 spi->irq = 0; 425 } 426 427 ret = dev_pm_domain_attach(dev, true); 428 if (ret) 429 return ret; 430 431 if (sdrv->probe) { 432 ret = sdrv->probe(spi); 433 if (ret) 434 dev_pm_domain_detach(dev, true); 435 } 436 437 return ret; 438 } 439 440 static void spi_remove(struct device *dev) 441 { 442 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 443 444 if (sdrv->remove) 445 sdrv->remove(to_spi_device(dev)); 446 447 dev_pm_domain_detach(dev, true); 448 } 449 450 static void spi_shutdown(struct device *dev) 451 { 452 if (dev->driver) { 453 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 454 455 if (sdrv->shutdown) 456 sdrv->shutdown(to_spi_device(dev)); 457 } 458 } 459 460 const struct bus_type spi_bus_type = { 461 .name = "spi", 462 .dev_groups = spi_dev_groups, 463 .match = spi_match_device, 464 .uevent = spi_uevent, 465 .probe = spi_probe, 466 .remove = spi_remove, 467 .shutdown = spi_shutdown, 468 }; 469 EXPORT_SYMBOL_GPL(spi_bus_type); 470 471 /** 472 * __spi_register_driver - register a SPI driver 473 * @owner: owner module of the driver to register 474 * @sdrv: the driver to register 475 * Context: can sleep 476 * 477 * Return: zero on success, else a negative error code. 478 */ 479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 480 { 481 sdrv->driver.owner = owner; 482 sdrv->driver.bus = &spi_bus_type; 483 484 /* 485 * For Really Good Reasons we use spi: modaliases not of: 486 * modaliases for DT so module autoloading won't work if we 487 * don't have a spi_device_id as well as a compatible string. 488 */ 489 if (sdrv->driver.of_match_table) { 490 const struct of_device_id *of_id; 491 492 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 493 of_id++) { 494 const char *of_name; 495 496 /* Strip off any vendor prefix */ 497 of_name = strnchr(of_id->compatible, 498 sizeof(of_id->compatible), ','); 499 if (of_name) 500 of_name++; 501 else 502 of_name = of_id->compatible; 503 504 if (sdrv->id_table) { 505 const struct spi_device_id *spi_id; 506 507 spi_id = spi_match_id(sdrv->id_table, of_name); 508 if (spi_id) 509 continue; 510 } else { 511 if (strcmp(sdrv->driver.name, of_name) == 0) 512 continue; 513 } 514 515 pr_warn("SPI driver %s has no spi_device_id for %s\n", 516 sdrv->driver.name, of_id->compatible); 517 } 518 } 519 520 return driver_register(&sdrv->driver); 521 } 522 EXPORT_SYMBOL_GPL(__spi_register_driver); 523 524 /*-------------------------------------------------------------------------*/ 525 526 /* 527 * SPI devices should normally not be created by SPI device drivers; that 528 * would make them board-specific. Similarly with SPI controller drivers. 529 * Device registration normally goes into like arch/.../mach.../board-YYY.c 530 * with other readonly (flashable) information about mainboard devices. 531 */ 532 533 struct boardinfo { 534 struct list_head list; 535 struct spi_board_info board_info; 536 }; 537 538 static LIST_HEAD(board_list); 539 static LIST_HEAD(spi_controller_list); 540 541 /* 542 * Used to protect add/del operation for board_info list and 543 * spi_controller list, and their matching process also used 544 * to protect object of type struct idr. 545 */ 546 static DEFINE_MUTEX(board_lock); 547 548 /** 549 * spi_alloc_device - Allocate a new SPI device 550 * @ctlr: Controller to which device is connected 551 * Context: can sleep 552 * 553 * Allows a driver to allocate and initialize a spi_device without 554 * registering it immediately. This allows a driver to directly 555 * fill the spi_device with device parameters before calling 556 * spi_add_device() on it. 557 * 558 * Caller is responsible to call spi_add_device() on the returned 559 * spi_device structure to add it to the SPI controller. If the caller 560 * needs to discard the spi_device without adding it, then it should 561 * call spi_dev_put() on it. 562 * 563 * Return: a pointer to the new device, or NULL. 564 */ 565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 566 { 567 struct spi_device *spi; 568 569 if (!spi_controller_get(ctlr)) 570 return NULL; 571 572 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 573 if (!spi) { 574 spi_controller_put(ctlr); 575 return NULL; 576 } 577 578 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 579 if (!spi->pcpu_statistics) { 580 kfree(spi); 581 spi_controller_put(ctlr); 582 return NULL; 583 } 584 585 spi->controller = ctlr; 586 spi->dev.parent = &ctlr->dev; 587 spi->dev.bus = &spi_bus_type; 588 spi->dev.release = spidev_release; 589 spi->mode = ctlr->buswidth_override_bits; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline bool is_valid_cs(s8 chip_select) 627 { 628 return chip_select != SPI_INVALID_CS; 629 } 630 631 static inline int spi_dev_check_cs(struct device *dev, 632 struct spi_device *spi, u8 idx, 633 struct spi_device *new_spi, u8 new_idx) 634 { 635 u8 cs, cs_new; 636 u8 idx_new; 637 638 cs = spi_get_chipselect(spi, idx); 639 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 640 cs_new = spi_get_chipselect(new_spi, idx_new); 641 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 642 dev_err(dev, "chipselect %u already in use\n", cs_new); 643 return -EBUSY; 644 } 645 } 646 return 0; 647 } 648 649 static int spi_dev_check(struct device *dev, void *data) 650 { 651 struct spi_device *spi = to_spi_device(dev); 652 struct spi_device *new_spi = data; 653 int status, idx; 654 655 if (spi->controller == new_spi->controller) { 656 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 657 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 658 if (status) 659 return status; 660 } 661 } 662 return 0; 663 } 664 665 static void spi_cleanup(struct spi_device *spi) 666 { 667 if (spi->controller->cleanup) 668 spi->controller->cleanup(spi); 669 } 670 671 static int __spi_add_device(struct spi_device *spi) 672 { 673 struct spi_controller *ctlr = spi->controller; 674 struct device *dev = ctlr->dev.parent; 675 int status, idx; 676 u8 cs; 677 678 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 679 /* Chipselects are numbered 0..max; validate. */ 680 cs = spi_get_chipselect(spi, idx); 681 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 682 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 683 ctlr->num_chipselect); 684 return -EINVAL; 685 } 686 } 687 688 /* 689 * Make sure that multiple logical CS doesn't map to the same physical CS. 690 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 691 */ 692 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 693 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 694 if (status) 695 return status; 696 } 697 698 /* Set the bus ID string */ 699 spi_dev_set_name(spi); 700 701 /* 702 * We need to make sure there's no other device with this 703 * chipselect **BEFORE** we call setup(), else we'll trash 704 * its configuration. 705 */ 706 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 707 if (status) 708 return status; 709 710 /* Controller may unregister concurrently */ 711 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 712 !device_is_registered(&ctlr->dev)) { 713 return -ENODEV; 714 } 715 716 if (ctlr->cs_gpiods) { 717 u8 cs; 718 719 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 720 cs = spi_get_chipselect(spi, idx); 721 if (is_valid_cs(cs)) 722 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 723 } 724 } 725 726 /* 727 * Drivers may modify this initial i/o setup, but will 728 * normally rely on the device being setup. Devices 729 * using SPI_CS_HIGH can't coexist well otherwise... 730 */ 731 status = spi_setup(spi); 732 if (status < 0) { 733 dev_err(dev, "can't setup %s, status %d\n", 734 dev_name(&spi->dev), status); 735 return status; 736 } 737 738 /* Device may be bound to an active driver when this returns */ 739 status = device_add(&spi->dev); 740 if (status < 0) { 741 dev_err(dev, "can't add %s, status %d\n", 742 dev_name(&spi->dev), status); 743 spi_cleanup(spi); 744 } else { 745 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 746 } 747 748 return status; 749 } 750 751 /** 752 * spi_add_device - Add spi_device allocated with spi_alloc_device 753 * @spi: spi_device to register 754 * 755 * Companion function to spi_alloc_device. Devices allocated with 756 * spi_alloc_device can be added onto the SPI bus with this function. 757 * 758 * Return: 0 on success; negative errno on failure 759 */ 760 int spi_add_device(struct spi_device *spi) 761 { 762 struct spi_controller *ctlr = spi->controller; 763 int status; 764 765 /* Set the bus ID string */ 766 spi_dev_set_name(spi); 767 768 mutex_lock(&ctlr->add_lock); 769 status = __spi_add_device(spi); 770 mutex_unlock(&ctlr->add_lock); 771 return status; 772 } 773 EXPORT_SYMBOL_GPL(spi_add_device); 774 775 static void spi_set_all_cs_unused(struct spi_device *spi) 776 { 777 u8 idx; 778 779 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 780 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 781 } 782 783 /** 784 * spi_new_device - instantiate one new SPI device 785 * @ctlr: Controller to which device is connected 786 * @chip: Describes the SPI device 787 * Context: can sleep 788 * 789 * On typical mainboards, this is purely internal; and it's not needed 790 * after board init creates the hard-wired devices. Some development 791 * platforms may not be able to use spi_register_board_info though, and 792 * this is exported so that for example a USB or parport based adapter 793 * driver could add devices (which it would learn about out-of-band). 794 * 795 * Return: the new device, or NULL. 796 */ 797 struct spi_device *spi_new_device(struct spi_controller *ctlr, 798 struct spi_board_info *chip) 799 { 800 struct spi_device *proxy; 801 int status; 802 803 /* 804 * NOTE: caller did any chip->bus_num checks necessary. 805 * 806 * Also, unless we change the return value convention to use 807 * error-or-pointer (not NULL-or-pointer), troubleshootability 808 * suggests syslogged diagnostics are best here (ugh). 809 */ 810 811 proxy = spi_alloc_device(ctlr); 812 if (!proxy) 813 return NULL; 814 815 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 816 817 /* Use provided chip-select for proxy device */ 818 spi_set_all_cs_unused(proxy); 819 spi_set_chipselect(proxy, 0, chip->chip_select); 820 821 proxy->max_speed_hz = chip->max_speed_hz; 822 proxy->mode = chip->mode; 823 proxy->irq = chip->irq; 824 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 825 proxy->dev.platform_data = (void *) chip->platform_data; 826 proxy->controller_data = chip->controller_data; 827 proxy->controller_state = NULL; 828 /* 829 * By default spi->chip_select[0] will hold the physical CS number, 830 * so set bit 0 in spi->cs_index_mask. 831 */ 832 proxy->cs_index_mask = BIT(0); 833 834 if (chip->swnode) { 835 status = device_add_software_node(&proxy->dev, chip->swnode); 836 if (status) { 837 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 838 chip->modalias, status); 839 goto err_dev_put; 840 } 841 } 842 843 status = spi_add_device(proxy); 844 if (status < 0) 845 goto err_dev_put; 846 847 return proxy; 848 849 err_dev_put: 850 device_remove_software_node(&proxy->dev); 851 spi_dev_put(proxy); 852 return NULL; 853 } 854 EXPORT_SYMBOL_GPL(spi_new_device); 855 856 /** 857 * spi_unregister_device - unregister a single SPI device 858 * @spi: spi_device to unregister 859 * 860 * Start making the passed SPI device vanish. Normally this would be handled 861 * by spi_unregister_controller(). 862 */ 863 void spi_unregister_device(struct spi_device *spi) 864 { 865 if (!spi) 866 return; 867 868 if (spi->dev.of_node) { 869 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 870 of_node_put(spi->dev.of_node); 871 } 872 if (ACPI_COMPANION(&spi->dev)) 873 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 874 device_remove_software_node(&spi->dev); 875 device_del(&spi->dev); 876 spi_cleanup(spi); 877 put_device(&spi->dev); 878 } 879 EXPORT_SYMBOL_GPL(spi_unregister_device); 880 881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 882 struct spi_board_info *bi) 883 { 884 struct spi_device *dev; 885 886 if (ctlr->bus_num != bi->bus_num) 887 return; 888 889 dev = spi_new_device(ctlr, bi); 890 if (!dev) 891 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 892 bi->modalias); 893 } 894 895 /** 896 * spi_register_board_info - register SPI devices for a given board 897 * @info: array of chip descriptors 898 * @n: how many descriptors are provided 899 * Context: can sleep 900 * 901 * Board-specific early init code calls this (probably during arch_initcall) 902 * with segments of the SPI device table. Any device nodes are created later, 903 * after the relevant parent SPI controller (bus_num) is defined. We keep 904 * this table of devices forever, so that reloading a controller driver will 905 * not make Linux forget about these hard-wired devices. 906 * 907 * Other code can also call this, e.g. a particular add-on board might provide 908 * SPI devices through its expansion connector, so code initializing that board 909 * would naturally declare its SPI devices. 910 * 911 * The board info passed can safely be __initdata ... but be careful of 912 * any embedded pointers (platform_data, etc), they're copied as-is. 913 * 914 * Return: zero on success, else a negative error code. 915 */ 916 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 917 { 918 struct boardinfo *bi; 919 int i; 920 921 if (!n) 922 return 0; 923 924 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 925 if (!bi) 926 return -ENOMEM; 927 928 for (i = 0; i < n; i++, bi++, info++) { 929 struct spi_controller *ctlr; 930 931 memcpy(&bi->board_info, info, sizeof(*info)); 932 933 mutex_lock(&board_lock); 934 list_add_tail(&bi->list, &board_list); 935 list_for_each_entry(ctlr, &spi_controller_list, list) 936 spi_match_controller_to_boardinfo(ctlr, 937 &bi->board_info); 938 mutex_unlock(&board_lock); 939 } 940 941 return 0; 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 /* Core methods for SPI resource management */ 947 948 /** 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed 950 * during the processing of a spi_message while using 951 * spi_transfer_one 952 * @spi: the SPI device for which we allocate memory 953 * @release: the release code to execute for this resource 954 * @size: size to alloc and return 955 * @gfp: GFP allocation flags 956 * 957 * Return: the pointer to the allocated data 958 * 959 * This may get enhanced in the future to allocate from a memory pool 960 * of the @spi_device or @spi_controller to avoid repeated allocations. 961 */ 962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 963 size_t size, gfp_t gfp) 964 { 965 struct spi_res *sres; 966 967 sres = kzalloc(sizeof(*sres) + size, gfp); 968 if (!sres) 969 return NULL; 970 971 INIT_LIST_HEAD(&sres->entry); 972 sres->release = release; 973 974 return sres->data; 975 } 976 977 /** 978 * spi_res_free - free an SPI resource 979 * @res: pointer to the custom data of a resource 980 */ 981 static void spi_res_free(void *res) 982 { 983 struct spi_res *sres = container_of(res, struct spi_res, data); 984 985 if (!res) 986 return; 987 988 WARN_ON(!list_empty(&sres->entry)); 989 kfree(sres); 990 } 991 992 /** 993 * spi_res_add - add a spi_res to the spi_message 994 * @message: the SPI message 995 * @res: the spi_resource 996 */ 997 static void spi_res_add(struct spi_message *message, void *res) 998 { 999 struct spi_res *sres = container_of(res, struct spi_res, data); 1000 1001 WARN_ON(!list_empty(&sres->entry)); 1002 list_add_tail(&sres->entry, &message->resources); 1003 } 1004 1005 /** 1006 * spi_res_release - release all SPI resources for this message 1007 * @ctlr: the @spi_controller 1008 * @message: the @spi_message 1009 */ 1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1011 { 1012 struct spi_res *res, *tmp; 1013 1014 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1015 if (res->release) 1016 res->release(ctlr, message, res->data); 1017 1018 list_del(&res->entry); 1019 1020 kfree(res); 1021 } 1022 } 1023 1024 /*-------------------------------------------------------------------------*/ 1025 #define spi_for_each_valid_cs(spi, idx) \ 1026 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1027 if (!(spi->cs_index_mask & BIT(idx))) {} else 1028 1029 static inline bool spi_is_last_cs(struct spi_device *spi) 1030 { 1031 u8 idx; 1032 bool last = false; 1033 1034 spi_for_each_valid_cs(spi, idx) { 1035 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1036 last = true; 1037 } 1038 return last; 1039 } 1040 1041 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1042 { 1043 /* 1044 * Historically ACPI has no means of the GPIO polarity and 1045 * thus the SPISerialBus() resource defines it on the per-chip 1046 * basis. In order to avoid a chain of negations, the GPIO 1047 * polarity is considered being Active High. Even for the cases 1048 * when _DSD() is involved (in the updated versions of ACPI) 1049 * the GPIO CS polarity must be defined Active High to avoid 1050 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1051 * into account. 1052 */ 1053 if (has_acpi_companion(&spi->dev)) 1054 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1055 else 1056 /* Polarity handled by GPIO library */ 1057 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1058 1059 if (activate) 1060 spi_delay_exec(&spi->cs_setup, NULL); 1061 else 1062 spi_delay_exec(&spi->cs_inactive, NULL); 1063 } 1064 1065 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1066 { 1067 bool activate = enable; 1068 u8 idx; 1069 1070 /* 1071 * Avoid calling into the driver (or doing delays) if the chip select 1072 * isn't actually changing from the last time this was called. 1073 */ 1074 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1075 spi_is_last_cs(spi)) || 1076 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1077 !spi_is_last_cs(spi))) && 1078 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1079 return; 1080 1081 trace_spi_set_cs(spi, activate); 1082 1083 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1084 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1085 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1086 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1087 1088 if (spi->mode & SPI_CS_HIGH) 1089 enable = !enable; 1090 1091 /* 1092 * Handle chip select delays for GPIO based CS or controllers without 1093 * programmable chip select timing. 1094 */ 1095 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1096 spi_delay_exec(&spi->cs_hold, NULL); 1097 1098 if (spi_is_csgpiod(spi)) { 1099 if (!(spi->mode & SPI_NO_CS)) { 1100 spi_for_each_valid_cs(spi, idx) { 1101 if (spi_get_csgpiod(spi, idx)) 1102 spi_toggle_csgpiod(spi, idx, enable, activate); 1103 } 1104 } 1105 /* Some SPI masters need both GPIO CS & slave_select */ 1106 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1107 spi->controller->set_cs) 1108 spi->controller->set_cs(spi, !enable); 1109 } else if (spi->controller->set_cs) { 1110 spi->controller->set_cs(spi, !enable); 1111 } 1112 1113 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1114 if (activate) 1115 spi_delay_exec(&spi->cs_setup, NULL); 1116 else 1117 spi_delay_exec(&spi->cs_inactive, NULL); 1118 } 1119 } 1120 1121 #ifdef CONFIG_HAS_DMA 1122 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1123 struct sg_table *sgt, void *buf, size_t len, 1124 enum dma_data_direction dir, unsigned long attrs) 1125 { 1126 const bool vmalloced_buf = is_vmalloc_addr(buf); 1127 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1128 #ifdef CONFIG_HIGHMEM 1129 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1130 (unsigned long)buf < (PKMAP_BASE + 1131 (LAST_PKMAP * PAGE_SIZE))); 1132 #else 1133 const bool kmap_buf = false; 1134 #endif 1135 int desc_len; 1136 int sgs; 1137 struct page *vm_page; 1138 struct scatterlist *sg; 1139 void *sg_buf; 1140 size_t min; 1141 int i, ret; 1142 1143 if (vmalloced_buf || kmap_buf) { 1144 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1145 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1146 } else if (virt_addr_valid(buf)) { 1147 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1148 sgs = DIV_ROUND_UP(len, desc_len); 1149 } else { 1150 return -EINVAL; 1151 } 1152 1153 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1154 if (ret != 0) 1155 return ret; 1156 1157 sg = &sgt->sgl[0]; 1158 for (i = 0; i < sgs; i++) { 1159 1160 if (vmalloced_buf || kmap_buf) { 1161 /* 1162 * Next scatterlist entry size is the minimum between 1163 * the desc_len and the remaining buffer length that 1164 * fits in a page. 1165 */ 1166 min = min_t(size_t, desc_len, 1167 min_t(size_t, len, 1168 PAGE_SIZE - offset_in_page(buf))); 1169 if (vmalloced_buf) 1170 vm_page = vmalloc_to_page(buf); 1171 else 1172 vm_page = kmap_to_page(buf); 1173 if (!vm_page) { 1174 sg_free_table(sgt); 1175 return -ENOMEM; 1176 } 1177 sg_set_page(sg, vm_page, 1178 min, offset_in_page(buf)); 1179 } else { 1180 min = min_t(size_t, len, desc_len); 1181 sg_buf = buf; 1182 sg_set_buf(sg, sg_buf, min); 1183 } 1184 1185 buf += min; 1186 len -= min; 1187 sg = sg_next(sg); 1188 } 1189 1190 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1191 if (ret < 0) { 1192 sg_free_table(sgt); 1193 return ret; 1194 } 1195 1196 return 0; 1197 } 1198 1199 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1200 struct sg_table *sgt, void *buf, size_t len, 1201 enum dma_data_direction dir) 1202 { 1203 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1204 } 1205 1206 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1207 struct device *dev, struct sg_table *sgt, 1208 enum dma_data_direction dir, 1209 unsigned long attrs) 1210 { 1211 dma_unmap_sgtable(dev, sgt, dir, attrs); 1212 sg_free_table(sgt); 1213 sgt->orig_nents = 0; 1214 sgt->nents = 0; 1215 } 1216 1217 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1218 struct sg_table *sgt, enum dma_data_direction dir) 1219 { 1220 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1221 } 1222 1223 /* Dummy SG for unidirect transfers */ 1224 static struct scatterlist dummy_sg = { 1225 .page_link = SG_END, 1226 }; 1227 1228 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1229 { 1230 struct device *tx_dev, *rx_dev; 1231 struct spi_transfer *xfer; 1232 int ret; 1233 1234 if (!ctlr->can_dma) 1235 return 0; 1236 1237 if (ctlr->dma_tx) 1238 tx_dev = ctlr->dma_tx->device->dev; 1239 else if (ctlr->dma_map_dev) 1240 tx_dev = ctlr->dma_map_dev; 1241 else 1242 tx_dev = ctlr->dev.parent; 1243 1244 if (ctlr->dma_rx) 1245 rx_dev = ctlr->dma_rx->device->dev; 1246 else if (ctlr->dma_map_dev) 1247 rx_dev = ctlr->dma_map_dev; 1248 else 1249 rx_dev = ctlr->dev.parent; 1250 1251 ret = -ENOMSG; 1252 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1253 /* The sync is done before each transfer. */ 1254 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1255 1256 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1257 continue; 1258 1259 if (xfer->tx_buf != NULL) { 1260 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1261 (void *)xfer->tx_buf, 1262 xfer->len, DMA_TO_DEVICE, 1263 attrs); 1264 if (ret != 0) 1265 return ret; 1266 } else { 1267 xfer->tx_sg.sgl = &dummy_sg; 1268 } 1269 1270 if (xfer->rx_buf != NULL) { 1271 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1272 xfer->rx_buf, xfer->len, 1273 DMA_FROM_DEVICE, attrs); 1274 if (ret != 0) { 1275 spi_unmap_buf_attrs(ctlr, tx_dev, 1276 &xfer->tx_sg, DMA_TO_DEVICE, 1277 attrs); 1278 1279 return ret; 1280 } 1281 } else { 1282 xfer->rx_sg.sgl = &dummy_sg; 1283 } 1284 } 1285 /* No transfer has been mapped, bail out with success */ 1286 if (ret) 1287 return 0; 1288 1289 ctlr->cur_rx_dma_dev = rx_dev; 1290 ctlr->cur_tx_dma_dev = tx_dev; 1291 ctlr->cur_msg_mapped = true; 1292 1293 return 0; 1294 } 1295 1296 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1297 { 1298 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1299 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1300 struct spi_transfer *xfer; 1301 1302 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1303 return 0; 1304 1305 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1306 /* The sync has already been done after each transfer. */ 1307 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1308 1309 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1310 continue; 1311 1312 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1313 DMA_FROM_DEVICE, attrs); 1314 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1315 DMA_TO_DEVICE, attrs); 1316 } 1317 1318 ctlr->cur_msg_mapped = false; 1319 1320 return 0; 1321 } 1322 1323 static void spi_dma_sync_for_device(struct spi_controller *ctlr, struct spi_message *msg, 1324 struct spi_transfer *xfer) 1325 { 1326 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1327 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1328 1329 if (!ctlr->cur_msg_mapped) 1330 return; 1331 1332 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1333 return; 1334 1335 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1336 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1337 } 1338 1339 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, struct spi_message *msg, 1340 struct spi_transfer *xfer) 1341 { 1342 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1343 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1344 1345 if (!ctlr->cur_msg_mapped) 1346 return; 1347 1348 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1349 return; 1350 1351 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1352 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1353 } 1354 #else /* !CONFIG_HAS_DMA */ 1355 static inline int __spi_map_msg(struct spi_controller *ctlr, 1356 struct spi_message *msg) 1357 { 1358 return 0; 1359 } 1360 1361 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1362 struct spi_message *msg) 1363 { 1364 return 0; 1365 } 1366 1367 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1368 struct spi_message *msg, 1369 struct spi_transfer *xfer) 1370 { 1371 } 1372 1373 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1374 struct spi_message *msg, 1375 struct spi_transfer *xfer) 1376 { 1377 } 1378 #endif /* !CONFIG_HAS_DMA */ 1379 1380 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1381 struct spi_message *msg) 1382 { 1383 struct spi_transfer *xfer; 1384 1385 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1386 /* 1387 * Restore the original value of tx_buf or rx_buf if they are 1388 * NULL. 1389 */ 1390 if (xfer->tx_buf == ctlr->dummy_tx) 1391 xfer->tx_buf = NULL; 1392 if (xfer->rx_buf == ctlr->dummy_rx) 1393 xfer->rx_buf = NULL; 1394 } 1395 1396 return __spi_unmap_msg(ctlr, msg); 1397 } 1398 1399 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1400 { 1401 struct spi_transfer *xfer; 1402 void *tmp; 1403 unsigned int max_tx, max_rx; 1404 1405 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1406 && !(msg->spi->mode & SPI_3WIRE)) { 1407 max_tx = 0; 1408 max_rx = 0; 1409 1410 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1411 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1412 !xfer->tx_buf) 1413 max_tx = max(xfer->len, max_tx); 1414 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1415 !xfer->rx_buf) 1416 max_rx = max(xfer->len, max_rx); 1417 } 1418 1419 if (max_tx) { 1420 tmp = krealloc(ctlr->dummy_tx, max_tx, 1421 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1422 if (!tmp) 1423 return -ENOMEM; 1424 ctlr->dummy_tx = tmp; 1425 } 1426 1427 if (max_rx) { 1428 tmp = krealloc(ctlr->dummy_rx, max_rx, 1429 GFP_KERNEL | GFP_DMA); 1430 if (!tmp) 1431 return -ENOMEM; 1432 ctlr->dummy_rx = tmp; 1433 } 1434 1435 if (max_tx || max_rx) { 1436 list_for_each_entry(xfer, &msg->transfers, 1437 transfer_list) { 1438 if (!xfer->len) 1439 continue; 1440 if (!xfer->tx_buf) 1441 xfer->tx_buf = ctlr->dummy_tx; 1442 if (!xfer->rx_buf) 1443 xfer->rx_buf = ctlr->dummy_rx; 1444 } 1445 } 1446 } 1447 1448 return __spi_map_msg(ctlr, msg); 1449 } 1450 1451 static int spi_transfer_wait(struct spi_controller *ctlr, 1452 struct spi_message *msg, 1453 struct spi_transfer *xfer) 1454 { 1455 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1456 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1457 u32 speed_hz = xfer->speed_hz; 1458 unsigned long long ms; 1459 1460 if (spi_controller_is_slave(ctlr)) { 1461 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1462 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1463 return -EINTR; 1464 } 1465 } else { 1466 if (!speed_hz) 1467 speed_hz = 100000; 1468 1469 /* 1470 * For each byte we wait for 8 cycles of the SPI clock. 1471 * Since speed is defined in Hz and we want milliseconds, 1472 * use respective multiplier, but before the division, 1473 * otherwise we may get 0 for short transfers. 1474 */ 1475 ms = 8LL * MSEC_PER_SEC * xfer->len; 1476 do_div(ms, speed_hz); 1477 1478 /* 1479 * Increase it twice and add 200 ms tolerance, use 1480 * predefined maximum in case of overflow. 1481 */ 1482 ms += ms + 200; 1483 if (ms > UINT_MAX) 1484 ms = UINT_MAX; 1485 1486 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1487 msecs_to_jiffies(ms)); 1488 1489 if (ms == 0) { 1490 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1491 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1492 dev_err(&msg->spi->dev, 1493 "SPI transfer timed out\n"); 1494 return -ETIMEDOUT; 1495 } 1496 1497 if (xfer->error & SPI_TRANS_FAIL_IO) 1498 return -EIO; 1499 } 1500 1501 return 0; 1502 } 1503 1504 static void _spi_transfer_delay_ns(u32 ns) 1505 { 1506 if (!ns) 1507 return; 1508 if (ns <= NSEC_PER_USEC) { 1509 ndelay(ns); 1510 } else { 1511 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1512 1513 if (us <= 10) 1514 udelay(us); 1515 else 1516 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1517 } 1518 } 1519 1520 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1521 { 1522 u32 delay = _delay->value; 1523 u32 unit = _delay->unit; 1524 u32 hz; 1525 1526 if (!delay) 1527 return 0; 1528 1529 switch (unit) { 1530 case SPI_DELAY_UNIT_USECS: 1531 delay *= NSEC_PER_USEC; 1532 break; 1533 case SPI_DELAY_UNIT_NSECS: 1534 /* Nothing to do here */ 1535 break; 1536 case SPI_DELAY_UNIT_SCK: 1537 /* Clock cycles need to be obtained from spi_transfer */ 1538 if (!xfer) 1539 return -EINVAL; 1540 /* 1541 * If there is unknown effective speed, approximate it 1542 * by underestimating with half of the requested Hz. 1543 */ 1544 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1545 if (!hz) 1546 return -EINVAL; 1547 1548 /* Convert delay to nanoseconds */ 1549 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1550 break; 1551 default: 1552 return -EINVAL; 1553 } 1554 1555 return delay; 1556 } 1557 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1558 1559 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1560 { 1561 int delay; 1562 1563 might_sleep(); 1564 1565 if (!_delay) 1566 return -EINVAL; 1567 1568 delay = spi_delay_to_ns(_delay, xfer); 1569 if (delay < 0) 1570 return delay; 1571 1572 _spi_transfer_delay_ns(delay); 1573 1574 return 0; 1575 } 1576 EXPORT_SYMBOL_GPL(spi_delay_exec); 1577 1578 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1579 struct spi_transfer *xfer) 1580 { 1581 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1582 u32 delay = xfer->cs_change_delay.value; 1583 u32 unit = xfer->cs_change_delay.unit; 1584 int ret; 1585 1586 /* Return early on "fast" mode - for everything but USECS */ 1587 if (!delay) { 1588 if (unit == SPI_DELAY_UNIT_USECS) 1589 _spi_transfer_delay_ns(default_delay_ns); 1590 return; 1591 } 1592 1593 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1594 if (ret) { 1595 dev_err_once(&msg->spi->dev, 1596 "Use of unsupported delay unit %i, using default of %luus\n", 1597 unit, default_delay_ns / NSEC_PER_USEC); 1598 _spi_transfer_delay_ns(default_delay_ns); 1599 } 1600 } 1601 1602 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1603 struct spi_transfer *xfer) 1604 { 1605 _spi_transfer_cs_change_delay(msg, xfer); 1606 } 1607 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1608 1609 /* 1610 * spi_transfer_one_message - Default implementation of transfer_one_message() 1611 * 1612 * This is a standard implementation of transfer_one_message() for 1613 * drivers which implement a transfer_one() operation. It provides 1614 * standard handling of delays and chip select management. 1615 */ 1616 static int spi_transfer_one_message(struct spi_controller *ctlr, 1617 struct spi_message *msg) 1618 { 1619 struct spi_transfer *xfer; 1620 bool keep_cs = false; 1621 int ret = 0; 1622 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1623 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1624 1625 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1626 spi_set_cs(msg->spi, !xfer->cs_off, false); 1627 1628 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1629 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1630 1631 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1632 trace_spi_transfer_start(msg, xfer); 1633 1634 spi_statistics_add_transfer_stats(statm, xfer, msg); 1635 spi_statistics_add_transfer_stats(stats, xfer, msg); 1636 1637 if (!ctlr->ptp_sts_supported) { 1638 xfer->ptp_sts_word_pre = 0; 1639 ptp_read_system_prets(xfer->ptp_sts); 1640 } 1641 1642 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1643 reinit_completion(&ctlr->xfer_completion); 1644 1645 fallback_pio: 1646 spi_dma_sync_for_device(ctlr, msg, xfer); 1647 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1648 if (ret < 0) { 1649 spi_dma_sync_for_cpu(ctlr, msg, xfer); 1650 1651 if (ctlr->cur_msg_mapped && 1652 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1653 __spi_unmap_msg(ctlr, msg); 1654 ctlr->fallback = true; 1655 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1656 goto fallback_pio; 1657 } 1658 1659 SPI_STATISTICS_INCREMENT_FIELD(statm, 1660 errors); 1661 SPI_STATISTICS_INCREMENT_FIELD(stats, 1662 errors); 1663 dev_err(&msg->spi->dev, 1664 "SPI transfer failed: %d\n", ret); 1665 goto out; 1666 } 1667 1668 if (ret > 0) { 1669 ret = spi_transfer_wait(ctlr, msg, xfer); 1670 if (ret < 0) 1671 msg->status = ret; 1672 } 1673 1674 spi_dma_sync_for_cpu(ctlr, msg, xfer); 1675 } else { 1676 if (xfer->len) 1677 dev_err(&msg->spi->dev, 1678 "Bufferless transfer has length %u\n", 1679 xfer->len); 1680 } 1681 1682 if (!ctlr->ptp_sts_supported) { 1683 ptp_read_system_postts(xfer->ptp_sts); 1684 xfer->ptp_sts_word_post = xfer->len; 1685 } 1686 1687 trace_spi_transfer_stop(msg, xfer); 1688 1689 if (msg->status != -EINPROGRESS) 1690 goto out; 1691 1692 spi_transfer_delay_exec(xfer); 1693 1694 if (xfer->cs_change) { 1695 if (list_is_last(&xfer->transfer_list, 1696 &msg->transfers)) { 1697 keep_cs = true; 1698 } else { 1699 if (!xfer->cs_off) 1700 spi_set_cs(msg->spi, false, false); 1701 _spi_transfer_cs_change_delay(msg, xfer); 1702 if (!list_next_entry(xfer, transfer_list)->cs_off) 1703 spi_set_cs(msg->spi, true, false); 1704 } 1705 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1706 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1707 spi_set_cs(msg->spi, xfer->cs_off, false); 1708 } 1709 1710 msg->actual_length += xfer->len; 1711 } 1712 1713 out: 1714 if (ret != 0 || !keep_cs) 1715 spi_set_cs(msg->spi, false, false); 1716 1717 if (msg->status == -EINPROGRESS) 1718 msg->status = ret; 1719 1720 if (msg->status && ctlr->handle_err) 1721 ctlr->handle_err(ctlr, msg); 1722 1723 spi_finalize_current_message(ctlr); 1724 1725 return ret; 1726 } 1727 1728 /** 1729 * spi_finalize_current_transfer - report completion of a transfer 1730 * @ctlr: the controller reporting completion 1731 * 1732 * Called by SPI drivers using the core transfer_one_message() 1733 * implementation to notify it that the current interrupt driven 1734 * transfer has finished and the next one may be scheduled. 1735 */ 1736 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1737 { 1738 complete(&ctlr->xfer_completion); 1739 } 1740 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1741 1742 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1743 { 1744 if (ctlr->auto_runtime_pm) { 1745 pm_runtime_mark_last_busy(ctlr->dev.parent); 1746 pm_runtime_put_autosuspend(ctlr->dev.parent); 1747 } 1748 } 1749 1750 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1751 struct spi_message *msg, bool was_busy) 1752 { 1753 struct spi_transfer *xfer; 1754 int ret; 1755 1756 if (!was_busy && ctlr->auto_runtime_pm) { 1757 ret = pm_runtime_get_sync(ctlr->dev.parent); 1758 if (ret < 0) { 1759 pm_runtime_put_noidle(ctlr->dev.parent); 1760 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1761 ret); 1762 1763 msg->status = ret; 1764 spi_finalize_current_message(ctlr); 1765 1766 return ret; 1767 } 1768 } 1769 1770 if (!was_busy) 1771 trace_spi_controller_busy(ctlr); 1772 1773 if (!was_busy && ctlr->prepare_transfer_hardware) { 1774 ret = ctlr->prepare_transfer_hardware(ctlr); 1775 if (ret) { 1776 dev_err(&ctlr->dev, 1777 "failed to prepare transfer hardware: %d\n", 1778 ret); 1779 1780 if (ctlr->auto_runtime_pm) 1781 pm_runtime_put(ctlr->dev.parent); 1782 1783 msg->status = ret; 1784 spi_finalize_current_message(ctlr); 1785 1786 return ret; 1787 } 1788 } 1789 1790 trace_spi_message_start(msg); 1791 1792 if (ctlr->prepare_message) { 1793 ret = ctlr->prepare_message(ctlr, msg); 1794 if (ret) { 1795 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1796 ret); 1797 msg->status = ret; 1798 spi_finalize_current_message(ctlr); 1799 return ret; 1800 } 1801 msg->prepared = true; 1802 } 1803 1804 ret = spi_map_msg(ctlr, msg); 1805 if (ret) { 1806 msg->status = ret; 1807 spi_finalize_current_message(ctlr); 1808 return ret; 1809 } 1810 1811 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1812 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1813 xfer->ptp_sts_word_pre = 0; 1814 ptp_read_system_prets(xfer->ptp_sts); 1815 } 1816 } 1817 1818 /* 1819 * Drivers implementation of transfer_one_message() must arrange for 1820 * spi_finalize_current_message() to get called. Most drivers will do 1821 * this in the calling context, but some don't. For those cases, a 1822 * completion is used to guarantee that this function does not return 1823 * until spi_finalize_current_message() is done accessing 1824 * ctlr->cur_msg. 1825 * Use of the following two flags enable to opportunistically skip the 1826 * use of the completion since its use involves expensive spin locks. 1827 * In case of a race with the context that calls 1828 * spi_finalize_current_message() the completion will always be used, 1829 * due to strict ordering of these flags using barriers. 1830 */ 1831 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1832 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1833 reinit_completion(&ctlr->cur_msg_completion); 1834 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1835 1836 ret = ctlr->transfer_one_message(ctlr, msg); 1837 if (ret) { 1838 dev_err(&ctlr->dev, 1839 "failed to transfer one message from queue\n"); 1840 return ret; 1841 } 1842 1843 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1844 smp_mb(); /* See spi_finalize_current_message()... */ 1845 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1846 wait_for_completion(&ctlr->cur_msg_completion); 1847 1848 return 0; 1849 } 1850 1851 /** 1852 * __spi_pump_messages - function which processes SPI message queue 1853 * @ctlr: controller to process queue for 1854 * @in_kthread: true if we are in the context of the message pump thread 1855 * 1856 * This function checks if there is any SPI message in the queue that 1857 * needs processing and if so call out to the driver to initialize hardware 1858 * and transfer each message. 1859 * 1860 * Note that it is called both from the kthread itself and also from 1861 * inside spi_sync(); the queue extraction handling at the top of the 1862 * function should deal with this safely. 1863 */ 1864 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1865 { 1866 struct spi_message *msg; 1867 bool was_busy = false; 1868 unsigned long flags; 1869 int ret; 1870 1871 /* Take the I/O mutex */ 1872 mutex_lock(&ctlr->io_mutex); 1873 1874 /* Lock queue */ 1875 spin_lock_irqsave(&ctlr->queue_lock, flags); 1876 1877 /* Make sure we are not already running a message */ 1878 if (ctlr->cur_msg) 1879 goto out_unlock; 1880 1881 /* Check if the queue is idle */ 1882 if (list_empty(&ctlr->queue) || !ctlr->running) { 1883 if (!ctlr->busy) 1884 goto out_unlock; 1885 1886 /* Defer any non-atomic teardown to the thread */ 1887 if (!in_kthread) { 1888 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1889 !ctlr->unprepare_transfer_hardware) { 1890 spi_idle_runtime_pm(ctlr); 1891 ctlr->busy = false; 1892 ctlr->queue_empty = true; 1893 trace_spi_controller_idle(ctlr); 1894 } else { 1895 kthread_queue_work(ctlr->kworker, 1896 &ctlr->pump_messages); 1897 } 1898 goto out_unlock; 1899 } 1900 1901 ctlr->busy = false; 1902 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1903 1904 kfree(ctlr->dummy_rx); 1905 ctlr->dummy_rx = NULL; 1906 kfree(ctlr->dummy_tx); 1907 ctlr->dummy_tx = NULL; 1908 if (ctlr->unprepare_transfer_hardware && 1909 ctlr->unprepare_transfer_hardware(ctlr)) 1910 dev_err(&ctlr->dev, 1911 "failed to unprepare transfer hardware\n"); 1912 spi_idle_runtime_pm(ctlr); 1913 trace_spi_controller_idle(ctlr); 1914 1915 spin_lock_irqsave(&ctlr->queue_lock, flags); 1916 ctlr->queue_empty = true; 1917 goto out_unlock; 1918 } 1919 1920 /* Extract head of queue */ 1921 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1922 ctlr->cur_msg = msg; 1923 1924 list_del_init(&msg->queue); 1925 if (ctlr->busy) 1926 was_busy = true; 1927 else 1928 ctlr->busy = true; 1929 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1930 1931 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1932 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1933 1934 ctlr->cur_msg = NULL; 1935 ctlr->fallback = false; 1936 1937 mutex_unlock(&ctlr->io_mutex); 1938 1939 /* Prod the scheduler in case transfer_one() was busy waiting */ 1940 if (!ret) 1941 cond_resched(); 1942 return; 1943 1944 out_unlock: 1945 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1946 mutex_unlock(&ctlr->io_mutex); 1947 } 1948 1949 /** 1950 * spi_pump_messages - kthread work function which processes spi message queue 1951 * @work: pointer to kthread work struct contained in the controller struct 1952 */ 1953 static void spi_pump_messages(struct kthread_work *work) 1954 { 1955 struct spi_controller *ctlr = 1956 container_of(work, struct spi_controller, pump_messages); 1957 1958 __spi_pump_messages(ctlr, true); 1959 } 1960 1961 /** 1962 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1963 * @ctlr: Pointer to the spi_controller structure of the driver 1964 * @xfer: Pointer to the transfer being timestamped 1965 * @progress: How many words (not bytes) have been transferred so far 1966 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1967 * transfer, for less jitter in time measurement. Only compatible 1968 * with PIO drivers. If true, must follow up with 1969 * spi_take_timestamp_post or otherwise system will crash. 1970 * WARNING: for fully predictable results, the CPU frequency must 1971 * also be under control (governor). 1972 * 1973 * This is a helper for drivers to collect the beginning of the TX timestamp 1974 * for the requested byte from the SPI transfer. The frequency with which this 1975 * function must be called (once per word, once for the whole transfer, once 1976 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1977 * greater than or equal to the requested byte at the time of the call. The 1978 * timestamp is only taken once, at the first such call. It is assumed that 1979 * the driver advances its @tx buffer pointer monotonically. 1980 */ 1981 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1982 struct spi_transfer *xfer, 1983 size_t progress, bool irqs_off) 1984 { 1985 if (!xfer->ptp_sts) 1986 return; 1987 1988 if (xfer->timestamped) 1989 return; 1990 1991 if (progress > xfer->ptp_sts_word_pre) 1992 return; 1993 1994 /* Capture the resolution of the timestamp */ 1995 xfer->ptp_sts_word_pre = progress; 1996 1997 if (irqs_off) { 1998 local_irq_save(ctlr->irq_flags); 1999 preempt_disable(); 2000 } 2001 2002 ptp_read_system_prets(xfer->ptp_sts); 2003 } 2004 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 2005 2006 /** 2007 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 2008 * @ctlr: Pointer to the spi_controller structure of the driver 2009 * @xfer: Pointer to the transfer being timestamped 2010 * @progress: How many words (not bytes) have been transferred so far 2011 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 2012 * 2013 * This is a helper for drivers to collect the end of the TX timestamp for 2014 * the requested byte from the SPI transfer. Can be called with an arbitrary 2015 * frequency: only the first call where @tx exceeds or is equal to the 2016 * requested word will be timestamped. 2017 */ 2018 void spi_take_timestamp_post(struct spi_controller *ctlr, 2019 struct spi_transfer *xfer, 2020 size_t progress, bool irqs_off) 2021 { 2022 if (!xfer->ptp_sts) 2023 return; 2024 2025 if (xfer->timestamped) 2026 return; 2027 2028 if (progress < xfer->ptp_sts_word_post) 2029 return; 2030 2031 ptp_read_system_postts(xfer->ptp_sts); 2032 2033 if (irqs_off) { 2034 local_irq_restore(ctlr->irq_flags); 2035 preempt_enable(); 2036 } 2037 2038 /* Capture the resolution of the timestamp */ 2039 xfer->ptp_sts_word_post = progress; 2040 2041 xfer->timestamped = 1; 2042 } 2043 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2044 2045 /** 2046 * spi_set_thread_rt - set the controller to pump at realtime priority 2047 * @ctlr: controller to boost priority of 2048 * 2049 * This can be called because the controller requested realtime priority 2050 * (by setting the ->rt value before calling spi_register_controller()) or 2051 * because a device on the bus said that its transfers needed realtime 2052 * priority. 2053 * 2054 * NOTE: at the moment if any device on a bus says it needs realtime then 2055 * the thread will be at realtime priority for all transfers on that 2056 * controller. If this eventually becomes a problem we may see if we can 2057 * find a way to boost the priority only temporarily during relevant 2058 * transfers. 2059 */ 2060 static void spi_set_thread_rt(struct spi_controller *ctlr) 2061 { 2062 dev_info(&ctlr->dev, 2063 "will run message pump with realtime priority\n"); 2064 sched_set_fifo(ctlr->kworker->task); 2065 } 2066 2067 static int spi_init_queue(struct spi_controller *ctlr) 2068 { 2069 ctlr->running = false; 2070 ctlr->busy = false; 2071 ctlr->queue_empty = true; 2072 2073 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2074 if (IS_ERR(ctlr->kworker)) { 2075 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2076 return PTR_ERR(ctlr->kworker); 2077 } 2078 2079 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2080 2081 /* 2082 * Controller config will indicate if this controller should run the 2083 * message pump with high (realtime) priority to reduce the transfer 2084 * latency on the bus by minimising the delay between a transfer 2085 * request and the scheduling of the message pump thread. Without this 2086 * setting the message pump thread will remain at default priority. 2087 */ 2088 if (ctlr->rt) 2089 spi_set_thread_rt(ctlr); 2090 2091 return 0; 2092 } 2093 2094 /** 2095 * spi_get_next_queued_message() - called by driver to check for queued 2096 * messages 2097 * @ctlr: the controller to check for queued messages 2098 * 2099 * If there are more messages in the queue, the next message is returned from 2100 * this call. 2101 * 2102 * Return: the next message in the queue, else NULL if the queue is empty. 2103 */ 2104 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2105 { 2106 struct spi_message *next; 2107 unsigned long flags; 2108 2109 /* Get a pointer to the next message, if any */ 2110 spin_lock_irqsave(&ctlr->queue_lock, flags); 2111 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2112 queue); 2113 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2114 2115 return next; 2116 } 2117 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2118 2119 /* 2120 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2121 * and spi_maybe_unoptimize_message() 2122 * @msg: the message to unoptimize 2123 * 2124 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2125 * core should use spi_maybe_unoptimize_message() rather than calling this 2126 * function directly. 2127 * 2128 * It is not valid to call this on a message that is not currently optimized. 2129 */ 2130 static void __spi_unoptimize_message(struct spi_message *msg) 2131 { 2132 struct spi_controller *ctlr = msg->spi->controller; 2133 2134 if (ctlr->unoptimize_message) 2135 ctlr->unoptimize_message(msg); 2136 2137 spi_res_release(ctlr, msg); 2138 2139 msg->optimized = false; 2140 msg->opt_state = NULL; 2141 } 2142 2143 /* 2144 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2145 * @msg: the message to unoptimize 2146 * 2147 * This function is used to unoptimize a message if and only if it was 2148 * optimized by the core (via spi_maybe_optimize_message()). 2149 */ 2150 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2151 { 2152 if (!msg->pre_optimized && msg->optimized) 2153 __spi_unoptimize_message(msg); 2154 } 2155 2156 /** 2157 * spi_finalize_current_message() - the current message is complete 2158 * @ctlr: the controller to return the message to 2159 * 2160 * Called by the driver to notify the core that the message in the front of the 2161 * queue is complete and can be removed from the queue. 2162 */ 2163 void spi_finalize_current_message(struct spi_controller *ctlr) 2164 { 2165 struct spi_transfer *xfer; 2166 struct spi_message *mesg; 2167 int ret; 2168 2169 mesg = ctlr->cur_msg; 2170 2171 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2172 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2173 ptp_read_system_postts(xfer->ptp_sts); 2174 xfer->ptp_sts_word_post = xfer->len; 2175 } 2176 } 2177 2178 if (unlikely(ctlr->ptp_sts_supported)) 2179 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2180 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2181 2182 spi_unmap_msg(ctlr, mesg); 2183 2184 if (mesg->prepared && ctlr->unprepare_message) { 2185 ret = ctlr->unprepare_message(ctlr, mesg); 2186 if (ret) { 2187 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2188 ret); 2189 } 2190 } 2191 2192 mesg->prepared = false; 2193 2194 spi_maybe_unoptimize_message(mesg); 2195 2196 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2197 smp_mb(); /* See __spi_pump_transfer_message()... */ 2198 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2199 complete(&ctlr->cur_msg_completion); 2200 2201 trace_spi_message_done(mesg); 2202 2203 mesg->state = NULL; 2204 if (mesg->complete) 2205 mesg->complete(mesg->context); 2206 } 2207 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2208 2209 static int spi_start_queue(struct spi_controller *ctlr) 2210 { 2211 unsigned long flags; 2212 2213 spin_lock_irqsave(&ctlr->queue_lock, flags); 2214 2215 if (ctlr->running || ctlr->busy) { 2216 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2217 return -EBUSY; 2218 } 2219 2220 ctlr->running = true; 2221 ctlr->cur_msg = NULL; 2222 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2223 2224 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2225 2226 return 0; 2227 } 2228 2229 static int spi_stop_queue(struct spi_controller *ctlr) 2230 { 2231 unsigned long flags; 2232 unsigned limit = 500; 2233 int ret = 0; 2234 2235 spin_lock_irqsave(&ctlr->queue_lock, flags); 2236 2237 /* 2238 * This is a bit lame, but is optimized for the common execution path. 2239 * A wait_queue on the ctlr->busy could be used, but then the common 2240 * execution path (pump_messages) would be required to call wake_up or 2241 * friends on every SPI message. Do this instead. 2242 */ 2243 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2244 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2245 usleep_range(10000, 11000); 2246 spin_lock_irqsave(&ctlr->queue_lock, flags); 2247 } 2248 2249 if (!list_empty(&ctlr->queue) || ctlr->busy) 2250 ret = -EBUSY; 2251 else 2252 ctlr->running = false; 2253 2254 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2255 2256 return ret; 2257 } 2258 2259 static int spi_destroy_queue(struct spi_controller *ctlr) 2260 { 2261 int ret; 2262 2263 ret = spi_stop_queue(ctlr); 2264 2265 /* 2266 * kthread_flush_worker will block until all work is done. 2267 * If the reason that stop_queue timed out is that the work will never 2268 * finish, then it does no good to call flush/stop thread, so 2269 * return anyway. 2270 */ 2271 if (ret) { 2272 dev_err(&ctlr->dev, "problem destroying queue\n"); 2273 return ret; 2274 } 2275 2276 kthread_destroy_worker(ctlr->kworker); 2277 2278 return 0; 2279 } 2280 2281 static int __spi_queued_transfer(struct spi_device *spi, 2282 struct spi_message *msg, 2283 bool need_pump) 2284 { 2285 struct spi_controller *ctlr = spi->controller; 2286 unsigned long flags; 2287 2288 spin_lock_irqsave(&ctlr->queue_lock, flags); 2289 2290 if (!ctlr->running) { 2291 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2292 return -ESHUTDOWN; 2293 } 2294 msg->actual_length = 0; 2295 msg->status = -EINPROGRESS; 2296 2297 list_add_tail(&msg->queue, &ctlr->queue); 2298 ctlr->queue_empty = false; 2299 if (!ctlr->busy && need_pump) 2300 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2301 2302 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2303 return 0; 2304 } 2305 2306 /** 2307 * spi_queued_transfer - transfer function for queued transfers 2308 * @spi: SPI device which is requesting transfer 2309 * @msg: SPI message which is to handled is queued to driver queue 2310 * 2311 * Return: zero on success, else a negative error code. 2312 */ 2313 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2314 { 2315 return __spi_queued_transfer(spi, msg, true); 2316 } 2317 2318 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2319 { 2320 int ret; 2321 2322 ctlr->transfer = spi_queued_transfer; 2323 if (!ctlr->transfer_one_message) 2324 ctlr->transfer_one_message = spi_transfer_one_message; 2325 2326 /* Initialize and start queue */ 2327 ret = spi_init_queue(ctlr); 2328 if (ret) { 2329 dev_err(&ctlr->dev, "problem initializing queue\n"); 2330 goto err_init_queue; 2331 } 2332 ctlr->queued = true; 2333 ret = spi_start_queue(ctlr); 2334 if (ret) { 2335 dev_err(&ctlr->dev, "problem starting queue\n"); 2336 goto err_start_queue; 2337 } 2338 2339 return 0; 2340 2341 err_start_queue: 2342 spi_destroy_queue(ctlr); 2343 err_init_queue: 2344 return ret; 2345 } 2346 2347 /** 2348 * spi_flush_queue - Send all pending messages in the queue from the callers' 2349 * context 2350 * @ctlr: controller to process queue for 2351 * 2352 * This should be used when one wants to ensure all pending messages have been 2353 * sent before doing something. Is used by the spi-mem code to make sure SPI 2354 * memory operations do not preempt regular SPI transfers that have been queued 2355 * before the spi-mem operation. 2356 */ 2357 void spi_flush_queue(struct spi_controller *ctlr) 2358 { 2359 if (ctlr->transfer == spi_queued_transfer) 2360 __spi_pump_messages(ctlr, false); 2361 } 2362 2363 /*-------------------------------------------------------------------------*/ 2364 2365 #if defined(CONFIG_OF) 2366 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2367 struct spi_delay *delay, const char *prop) 2368 { 2369 u32 value; 2370 2371 if (!of_property_read_u32(nc, prop, &value)) { 2372 if (value > U16_MAX) { 2373 delay->value = DIV_ROUND_UP(value, 1000); 2374 delay->unit = SPI_DELAY_UNIT_USECS; 2375 } else { 2376 delay->value = value; 2377 delay->unit = SPI_DELAY_UNIT_NSECS; 2378 } 2379 } 2380 } 2381 2382 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2383 struct device_node *nc) 2384 { 2385 u32 value, cs[SPI_CS_CNT_MAX]; 2386 int rc, idx; 2387 2388 /* Mode (clock phase/polarity/etc.) */ 2389 if (of_property_read_bool(nc, "spi-cpha")) 2390 spi->mode |= SPI_CPHA; 2391 if (of_property_read_bool(nc, "spi-cpol")) 2392 spi->mode |= SPI_CPOL; 2393 if (of_property_read_bool(nc, "spi-3wire")) 2394 spi->mode |= SPI_3WIRE; 2395 if (of_property_read_bool(nc, "spi-lsb-first")) 2396 spi->mode |= SPI_LSB_FIRST; 2397 if (of_property_read_bool(nc, "spi-cs-high")) 2398 spi->mode |= SPI_CS_HIGH; 2399 2400 /* Device DUAL/QUAD mode */ 2401 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2402 switch (value) { 2403 case 0: 2404 spi->mode |= SPI_NO_TX; 2405 break; 2406 case 1: 2407 break; 2408 case 2: 2409 spi->mode |= SPI_TX_DUAL; 2410 break; 2411 case 4: 2412 spi->mode |= SPI_TX_QUAD; 2413 break; 2414 case 8: 2415 spi->mode |= SPI_TX_OCTAL; 2416 break; 2417 default: 2418 dev_warn(&ctlr->dev, 2419 "spi-tx-bus-width %d not supported\n", 2420 value); 2421 break; 2422 } 2423 } 2424 2425 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2426 switch (value) { 2427 case 0: 2428 spi->mode |= SPI_NO_RX; 2429 break; 2430 case 1: 2431 break; 2432 case 2: 2433 spi->mode |= SPI_RX_DUAL; 2434 break; 2435 case 4: 2436 spi->mode |= SPI_RX_QUAD; 2437 break; 2438 case 8: 2439 spi->mode |= SPI_RX_OCTAL; 2440 break; 2441 default: 2442 dev_warn(&ctlr->dev, 2443 "spi-rx-bus-width %d not supported\n", 2444 value); 2445 break; 2446 } 2447 } 2448 2449 if (spi_controller_is_slave(ctlr)) { 2450 if (!of_node_name_eq(nc, "slave")) { 2451 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2452 nc); 2453 return -EINVAL; 2454 } 2455 return 0; 2456 } 2457 2458 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2459 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2460 return -EINVAL; 2461 } 2462 2463 spi_set_all_cs_unused(spi); 2464 2465 /* Device address */ 2466 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2467 SPI_CS_CNT_MAX); 2468 if (rc < 0) { 2469 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2470 nc, rc); 2471 return rc; 2472 } 2473 if (rc > ctlr->num_chipselect) { 2474 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2475 nc, rc); 2476 return rc; 2477 } 2478 if ((of_property_read_bool(nc, "parallel-memories")) && 2479 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2480 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2481 return -EINVAL; 2482 } 2483 for (idx = 0; idx < rc; idx++) 2484 spi_set_chipselect(spi, idx, cs[idx]); 2485 2486 /* 2487 * By default spi->chip_select[0] will hold the physical CS number, 2488 * so set bit 0 in spi->cs_index_mask. 2489 */ 2490 spi->cs_index_mask = BIT(0); 2491 2492 /* Device speed */ 2493 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2494 spi->max_speed_hz = value; 2495 2496 /* Device CS delays */ 2497 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2498 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2499 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2500 2501 return 0; 2502 } 2503 2504 static struct spi_device * 2505 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2506 { 2507 struct spi_device *spi; 2508 int rc; 2509 2510 /* Alloc an spi_device */ 2511 spi = spi_alloc_device(ctlr); 2512 if (!spi) { 2513 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2514 rc = -ENOMEM; 2515 goto err_out; 2516 } 2517 2518 /* Select device driver */ 2519 rc = of_alias_from_compatible(nc, spi->modalias, 2520 sizeof(spi->modalias)); 2521 if (rc < 0) { 2522 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2523 goto err_out; 2524 } 2525 2526 rc = of_spi_parse_dt(ctlr, spi, nc); 2527 if (rc) 2528 goto err_out; 2529 2530 /* Store a pointer to the node in the device structure */ 2531 of_node_get(nc); 2532 2533 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2534 2535 /* Register the new device */ 2536 rc = spi_add_device(spi); 2537 if (rc) { 2538 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2539 goto err_of_node_put; 2540 } 2541 2542 return spi; 2543 2544 err_of_node_put: 2545 of_node_put(nc); 2546 err_out: 2547 spi_dev_put(spi); 2548 return ERR_PTR(rc); 2549 } 2550 2551 /** 2552 * of_register_spi_devices() - Register child devices onto the SPI bus 2553 * @ctlr: Pointer to spi_controller device 2554 * 2555 * Registers an spi_device for each child node of controller node which 2556 * represents a valid SPI slave. 2557 */ 2558 static void of_register_spi_devices(struct spi_controller *ctlr) 2559 { 2560 struct spi_device *spi; 2561 struct device_node *nc; 2562 2563 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2564 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2565 continue; 2566 spi = of_register_spi_device(ctlr, nc); 2567 if (IS_ERR(spi)) { 2568 dev_warn(&ctlr->dev, 2569 "Failed to create SPI device for %pOF\n", nc); 2570 of_node_clear_flag(nc, OF_POPULATED); 2571 } 2572 } 2573 } 2574 #else 2575 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2576 #endif 2577 2578 /** 2579 * spi_new_ancillary_device() - Register ancillary SPI device 2580 * @spi: Pointer to the main SPI device registering the ancillary device 2581 * @chip_select: Chip Select of the ancillary device 2582 * 2583 * Register an ancillary SPI device; for example some chips have a chip-select 2584 * for normal device usage and another one for setup/firmware upload. 2585 * 2586 * This may only be called from main SPI device's probe routine. 2587 * 2588 * Return: 0 on success; negative errno on failure 2589 */ 2590 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2591 u8 chip_select) 2592 { 2593 struct spi_controller *ctlr = spi->controller; 2594 struct spi_device *ancillary; 2595 int rc = 0; 2596 2597 /* Alloc an spi_device */ 2598 ancillary = spi_alloc_device(ctlr); 2599 if (!ancillary) { 2600 rc = -ENOMEM; 2601 goto err_out; 2602 } 2603 2604 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2605 2606 /* Use provided chip-select for ancillary device */ 2607 spi_set_all_cs_unused(ancillary); 2608 spi_set_chipselect(ancillary, 0, chip_select); 2609 2610 /* Take over SPI mode/speed from SPI main device */ 2611 ancillary->max_speed_hz = spi->max_speed_hz; 2612 ancillary->mode = spi->mode; 2613 /* 2614 * By default spi->chip_select[0] will hold the physical CS number, 2615 * so set bit 0 in spi->cs_index_mask. 2616 */ 2617 ancillary->cs_index_mask = BIT(0); 2618 2619 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2620 2621 /* Register the new device */ 2622 rc = __spi_add_device(ancillary); 2623 if (rc) { 2624 dev_err(&spi->dev, "failed to register ancillary device\n"); 2625 goto err_out; 2626 } 2627 2628 return ancillary; 2629 2630 err_out: 2631 spi_dev_put(ancillary); 2632 return ERR_PTR(rc); 2633 } 2634 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2635 2636 #ifdef CONFIG_ACPI 2637 struct acpi_spi_lookup { 2638 struct spi_controller *ctlr; 2639 u32 max_speed_hz; 2640 u32 mode; 2641 int irq; 2642 u8 bits_per_word; 2643 u8 chip_select; 2644 int n; 2645 int index; 2646 }; 2647 2648 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2649 { 2650 struct acpi_resource_spi_serialbus *sb; 2651 int *count = data; 2652 2653 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2654 return 1; 2655 2656 sb = &ares->data.spi_serial_bus; 2657 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2658 return 1; 2659 2660 *count = *count + 1; 2661 2662 return 1; 2663 } 2664 2665 /** 2666 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2667 * @adev: ACPI device 2668 * 2669 * Return: the number of SpiSerialBus resources in the ACPI-device's 2670 * resource-list; or a negative error code. 2671 */ 2672 int acpi_spi_count_resources(struct acpi_device *adev) 2673 { 2674 LIST_HEAD(r); 2675 int count = 0; 2676 int ret; 2677 2678 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2679 if (ret < 0) 2680 return ret; 2681 2682 acpi_dev_free_resource_list(&r); 2683 2684 return count; 2685 } 2686 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2687 2688 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2689 struct acpi_spi_lookup *lookup) 2690 { 2691 const union acpi_object *obj; 2692 2693 if (!x86_apple_machine) 2694 return; 2695 2696 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2697 && obj->buffer.length >= 4) 2698 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2699 2700 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2701 && obj->buffer.length == 8) 2702 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2703 2704 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2705 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2706 lookup->mode |= SPI_LSB_FIRST; 2707 2708 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2709 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2710 lookup->mode |= SPI_CPOL; 2711 2712 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2713 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2714 lookup->mode |= SPI_CPHA; 2715 } 2716 2717 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2718 { 2719 struct acpi_spi_lookup *lookup = data; 2720 struct spi_controller *ctlr = lookup->ctlr; 2721 2722 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2723 struct acpi_resource_spi_serialbus *sb; 2724 acpi_handle parent_handle; 2725 acpi_status status; 2726 2727 sb = &ares->data.spi_serial_bus; 2728 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2729 2730 if (lookup->index != -1 && lookup->n++ != lookup->index) 2731 return 1; 2732 2733 status = acpi_get_handle(NULL, 2734 sb->resource_source.string_ptr, 2735 &parent_handle); 2736 2737 if (ACPI_FAILURE(status)) 2738 return -ENODEV; 2739 2740 if (ctlr) { 2741 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2742 return -ENODEV; 2743 } else { 2744 struct acpi_device *adev; 2745 2746 adev = acpi_fetch_acpi_dev(parent_handle); 2747 if (!adev) 2748 return -ENODEV; 2749 2750 ctlr = acpi_spi_find_controller_by_adev(adev); 2751 if (!ctlr) 2752 return -EPROBE_DEFER; 2753 2754 lookup->ctlr = ctlr; 2755 } 2756 2757 /* 2758 * ACPI DeviceSelection numbering is handled by the 2759 * host controller driver in Windows and can vary 2760 * from driver to driver. In Linux we always expect 2761 * 0 .. max - 1 so we need to ask the driver to 2762 * translate between the two schemes. 2763 */ 2764 if (ctlr->fw_translate_cs) { 2765 int cs = ctlr->fw_translate_cs(ctlr, 2766 sb->device_selection); 2767 if (cs < 0) 2768 return cs; 2769 lookup->chip_select = cs; 2770 } else { 2771 lookup->chip_select = sb->device_selection; 2772 } 2773 2774 lookup->max_speed_hz = sb->connection_speed; 2775 lookup->bits_per_word = sb->data_bit_length; 2776 2777 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2778 lookup->mode |= SPI_CPHA; 2779 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2780 lookup->mode |= SPI_CPOL; 2781 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2782 lookup->mode |= SPI_CS_HIGH; 2783 } 2784 } else if (lookup->irq < 0) { 2785 struct resource r; 2786 2787 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2788 lookup->irq = r.start; 2789 } 2790 2791 /* Always tell the ACPI core to skip this resource */ 2792 return 1; 2793 } 2794 2795 /** 2796 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2797 * @ctlr: controller to which the spi device belongs 2798 * @adev: ACPI Device for the spi device 2799 * @index: Index of the spi resource inside the ACPI Node 2800 * 2801 * This should be used to allocate a new SPI device from and ACPI Device node. 2802 * The caller is responsible for calling spi_add_device to register the SPI device. 2803 * 2804 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2805 * using the resource. 2806 * If index is set to -1, index is not used. 2807 * Note: If index is -1, ctlr must be set. 2808 * 2809 * Return: a pointer to the new device, or ERR_PTR on error. 2810 */ 2811 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2812 struct acpi_device *adev, 2813 int index) 2814 { 2815 acpi_handle parent_handle = NULL; 2816 struct list_head resource_list; 2817 struct acpi_spi_lookup lookup = {}; 2818 struct spi_device *spi; 2819 int ret; 2820 2821 if (!ctlr && index == -1) 2822 return ERR_PTR(-EINVAL); 2823 2824 lookup.ctlr = ctlr; 2825 lookup.irq = -1; 2826 lookup.index = index; 2827 lookup.n = 0; 2828 2829 INIT_LIST_HEAD(&resource_list); 2830 ret = acpi_dev_get_resources(adev, &resource_list, 2831 acpi_spi_add_resource, &lookup); 2832 acpi_dev_free_resource_list(&resource_list); 2833 2834 if (ret < 0) 2835 /* Found SPI in _CRS but it points to another controller */ 2836 return ERR_PTR(ret); 2837 2838 if (!lookup.max_speed_hz && 2839 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2840 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2841 /* Apple does not use _CRS but nested devices for SPI slaves */ 2842 acpi_spi_parse_apple_properties(adev, &lookup); 2843 } 2844 2845 if (!lookup.max_speed_hz) 2846 return ERR_PTR(-ENODEV); 2847 2848 spi = spi_alloc_device(lookup.ctlr); 2849 if (!spi) { 2850 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2851 dev_name(&adev->dev)); 2852 return ERR_PTR(-ENOMEM); 2853 } 2854 2855 spi_set_all_cs_unused(spi); 2856 spi_set_chipselect(spi, 0, lookup.chip_select); 2857 2858 ACPI_COMPANION_SET(&spi->dev, adev); 2859 spi->max_speed_hz = lookup.max_speed_hz; 2860 spi->mode |= lookup.mode; 2861 spi->irq = lookup.irq; 2862 spi->bits_per_word = lookup.bits_per_word; 2863 /* 2864 * By default spi->chip_select[0] will hold the physical CS number, 2865 * so set bit 0 in spi->cs_index_mask. 2866 */ 2867 spi->cs_index_mask = BIT(0); 2868 2869 return spi; 2870 } 2871 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2872 2873 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2874 struct acpi_device *adev) 2875 { 2876 struct spi_device *spi; 2877 2878 if (acpi_bus_get_status(adev) || !adev->status.present || 2879 acpi_device_enumerated(adev)) 2880 return AE_OK; 2881 2882 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2883 if (IS_ERR(spi)) { 2884 if (PTR_ERR(spi) == -ENOMEM) 2885 return AE_NO_MEMORY; 2886 else 2887 return AE_OK; 2888 } 2889 2890 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2891 sizeof(spi->modalias)); 2892 2893 if (spi->irq < 0) 2894 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2895 2896 acpi_device_set_enumerated(adev); 2897 2898 adev->power.flags.ignore_parent = true; 2899 if (spi_add_device(spi)) { 2900 adev->power.flags.ignore_parent = false; 2901 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2902 dev_name(&adev->dev)); 2903 spi_dev_put(spi); 2904 } 2905 2906 return AE_OK; 2907 } 2908 2909 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2910 void *data, void **return_value) 2911 { 2912 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2913 struct spi_controller *ctlr = data; 2914 2915 if (!adev) 2916 return AE_OK; 2917 2918 return acpi_register_spi_device(ctlr, adev); 2919 } 2920 2921 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2922 2923 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2924 { 2925 acpi_status status; 2926 acpi_handle handle; 2927 2928 handle = ACPI_HANDLE(ctlr->dev.parent); 2929 if (!handle) 2930 return; 2931 2932 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2933 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2934 acpi_spi_add_device, NULL, ctlr, NULL); 2935 if (ACPI_FAILURE(status)) 2936 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2937 } 2938 #else 2939 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2940 #endif /* CONFIG_ACPI */ 2941 2942 static void spi_controller_release(struct device *dev) 2943 { 2944 struct spi_controller *ctlr; 2945 2946 ctlr = container_of(dev, struct spi_controller, dev); 2947 kfree(ctlr); 2948 } 2949 2950 static struct class spi_master_class = { 2951 .name = "spi_master", 2952 .dev_release = spi_controller_release, 2953 .dev_groups = spi_master_groups, 2954 }; 2955 2956 #ifdef CONFIG_SPI_SLAVE 2957 /** 2958 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2959 * controller 2960 * @spi: device used for the current transfer 2961 */ 2962 int spi_slave_abort(struct spi_device *spi) 2963 { 2964 struct spi_controller *ctlr = spi->controller; 2965 2966 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2967 return ctlr->slave_abort(ctlr); 2968 2969 return -ENOTSUPP; 2970 } 2971 EXPORT_SYMBOL_GPL(spi_slave_abort); 2972 2973 int spi_target_abort(struct spi_device *spi) 2974 { 2975 struct spi_controller *ctlr = spi->controller; 2976 2977 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2978 return ctlr->target_abort(ctlr); 2979 2980 return -ENOTSUPP; 2981 } 2982 EXPORT_SYMBOL_GPL(spi_target_abort); 2983 2984 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2985 char *buf) 2986 { 2987 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2988 dev); 2989 struct device *child; 2990 2991 child = device_find_any_child(&ctlr->dev); 2992 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2993 } 2994 2995 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2996 const char *buf, size_t count) 2997 { 2998 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2999 dev); 3000 struct spi_device *spi; 3001 struct device *child; 3002 char name[32]; 3003 int rc; 3004 3005 rc = sscanf(buf, "%31s", name); 3006 if (rc != 1 || !name[0]) 3007 return -EINVAL; 3008 3009 child = device_find_any_child(&ctlr->dev); 3010 if (child) { 3011 /* Remove registered slave */ 3012 device_unregister(child); 3013 put_device(child); 3014 } 3015 3016 if (strcmp(name, "(null)")) { 3017 /* Register new slave */ 3018 spi = spi_alloc_device(ctlr); 3019 if (!spi) 3020 return -ENOMEM; 3021 3022 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3023 3024 rc = spi_add_device(spi); 3025 if (rc) { 3026 spi_dev_put(spi); 3027 return rc; 3028 } 3029 } 3030 3031 return count; 3032 } 3033 3034 static DEVICE_ATTR_RW(slave); 3035 3036 static struct attribute *spi_slave_attrs[] = { 3037 &dev_attr_slave.attr, 3038 NULL, 3039 }; 3040 3041 static const struct attribute_group spi_slave_group = { 3042 .attrs = spi_slave_attrs, 3043 }; 3044 3045 static const struct attribute_group *spi_slave_groups[] = { 3046 &spi_controller_statistics_group, 3047 &spi_slave_group, 3048 NULL, 3049 }; 3050 3051 static struct class spi_slave_class = { 3052 .name = "spi_slave", 3053 .dev_release = spi_controller_release, 3054 .dev_groups = spi_slave_groups, 3055 }; 3056 #else 3057 extern struct class spi_slave_class; /* dummy */ 3058 #endif 3059 3060 /** 3061 * __spi_alloc_controller - allocate an SPI master or slave controller 3062 * @dev: the controller, possibly using the platform_bus 3063 * @size: how much zeroed driver-private data to allocate; the pointer to this 3064 * memory is in the driver_data field of the returned device, accessible 3065 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3066 * drivers granting DMA access to portions of their private data need to 3067 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3068 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3069 * slave (true) controller 3070 * Context: can sleep 3071 * 3072 * This call is used only by SPI controller drivers, which are the 3073 * only ones directly touching chip registers. It's how they allocate 3074 * an spi_controller structure, prior to calling spi_register_controller(). 3075 * 3076 * This must be called from context that can sleep. 3077 * 3078 * The caller is responsible for assigning the bus number and initializing the 3079 * controller's methods before calling spi_register_controller(); and (after 3080 * errors adding the device) calling spi_controller_put() to prevent a memory 3081 * leak. 3082 * 3083 * Return: the SPI controller structure on success, else NULL. 3084 */ 3085 struct spi_controller *__spi_alloc_controller(struct device *dev, 3086 unsigned int size, bool slave) 3087 { 3088 struct spi_controller *ctlr; 3089 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3090 3091 if (!dev) 3092 return NULL; 3093 3094 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3095 if (!ctlr) 3096 return NULL; 3097 3098 device_initialize(&ctlr->dev); 3099 INIT_LIST_HEAD(&ctlr->queue); 3100 spin_lock_init(&ctlr->queue_lock); 3101 spin_lock_init(&ctlr->bus_lock_spinlock); 3102 mutex_init(&ctlr->bus_lock_mutex); 3103 mutex_init(&ctlr->io_mutex); 3104 mutex_init(&ctlr->add_lock); 3105 ctlr->bus_num = -1; 3106 ctlr->num_chipselect = 1; 3107 ctlr->slave = slave; 3108 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3109 ctlr->dev.class = &spi_slave_class; 3110 else 3111 ctlr->dev.class = &spi_master_class; 3112 ctlr->dev.parent = dev; 3113 pm_suspend_ignore_children(&ctlr->dev, true); 3114 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3115 3116 return ctlr; 3117 } 3118 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3119 3120 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3121 { 3122 spi_controller_put(*(struct spi_controller **)ctlr); 3123 } 3124 3125 /** 3126 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3127 * @dev: physical device of SPI controller 3128 * @size: how much zeroed driver-private data to allocate 3129 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3130 * Context: can sleep 3131 * 3132 * Allocate an SPI controller and automatically release a reference on it 3133 * when @dev is unbound from its driver. Drivers are thus relieved from 3134 * having to call spi_controller_put(). 3135 * 3136 * The arguments to this function are identical to __spi_alloc_controller(). 3137 * 3138 * Return: the SPI controller structure on success, else NULL. 3139 */ 3140 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3141 unsigned int size, 3142 bool slave) 3143 { 3144 struct spi_controller **ptr, *ctlr; 3145 3146 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3147 GFP_KERNEL); 3148 if (!ptr) 3149 return NULL; 3150 3151 ctlr = __spi_alloc_controller(dev, size, slave); 3152 if (ctlr) { 3153 ctlr->devm_allocated = true; 3154 *ptr = ctlr; 3155 devres_add(dev, ptr); 3156 } else { 3157 devres_free(ptr); 3158 } 3159 3160 return ctlr; 3161 } 3162 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3163 3164 /** 3165 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3166 * @ctlr: The SPI master to grab GPIO descriptors for 3167 */ 3168 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3169 { 3170 int nb, i; 3171 struct gpio_desc **cs; 3172 struct device *dev = &ctlr->dev; 3173 unsigned long native_cs_mask = 0; 3174 unsigned int num_cs_gpios = 0; 3175 3176 nb = gpiod_count(dev, "cs"); 3177 if (nb < 0) { 3178 /* No GPIOs at all is fine, else return the error */ 3179 if (nb == -ENOENT) 3180 return 0; 3181 return nb; 3182 } 3183 3184 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3185 3186 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3187 GFP_KERNEL); 3188 if (!cs) 3189 return -ENOMEM; 3190 ctlr->cs_gpiods = cs; 3191 3192 for (i = 0; i < nb; i++) { 3193 /* 3194 * Most chipselects are active low, the inverted 3195 * semantics are handled by special quirks in gpiolib, 3196 * so initializing them GPIOD_OUT_LOW here means 3197 * "unasserted", in most cases this will drive the physical 3198 * line high. 3199 */ 3200 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3201 GPIOD_OUT_LOW); 3202 if (IS_ERR(cs[i])) 3203 return PTR_ERR(cs[i]); 3204 3205 if (cs[i]) { 3206 /* 3207 * If we find a CS GPIO, name it after the device and 3208 * chip select line. 3209 */ 3210 char *gpioname; 3211 3212 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3213 dev_name(dev), i); 3214 if (!gpioname) 3215 return -ENOMEM; 3216 gpiod_set_consumer_name(cs[i], gpioname); 3217 num_cs_gpios++; 3218 continue; 3219 } 3220 3221 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3222 dev_err(dev, "Invalid native chip select %d\n", i); 3223 return -EINVAL; 3224 } 3225 native_cs_mask |= BIT(i); 3226 } 3227 3228 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3229 3230 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3231 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3232 dev_err(dev, "No unused native chip select available\n"); 3233 return -EINVAL; 3234 } 3235 3236 return 0; 3237 } 3238 3239 static int spi_controller_check_ops(struct spi_controller *ctlr) 3240 { 3241 /* 3242 * The controller may implement only the high-level SPI-memory like 3243 * operations if it does not support regular SPI transfers, and this is 3244 * valid use case. 3245 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3246 * one of the ->transfer_xxx() method be implemented. 3247 */ 3248 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3249 if (!ctlr->transfer && !ctlr->transfer_one && 3250 !ctlr->transfer_one_message) { 3251 return -EINVAL; 3252 } 3253 } 3254 3255 return 0; 3256 } 3257 3258 /* Allocate dynamic bus number using Linux idr */ 3259 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3260 { 3261 int id; 3262 3263 mutex_lock(&board_lock); 3264 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3265 mutex_unlock(&board_lock); 3266 if (WARN(id < 0, "couldn't get idr")) 3267 return id == -ENOSPC ? -EBUSY : id; 3268 ctlr->bus_num = id; 3269 return 0; 3270 } 3271 3272 /** 3273 * spi_register_controller - register SPI master or slave controller 3274 * @ctlr: initialized master, originally from spi_alloc_master() or 3275 * spi_alloc_slave() 3276 * Context: can sleep 3277 * 3278 * SPI controllers connect to their drivers using some non-SPI bus, 3279 * such as the platform bus. The final stage of probe() in that code 3280 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3281 * 3282 * SPI controllers use board specific (often SOC specific) bus numbers, 3283 * and board-specific addressing for SPI devices combines those numbers 3284 * with chip select numbers. Since SPI does not directly support dynamic 3285 * device identification, boards need configuration tables telling which 3286 * chip is at which address. 3287 * 3288 * This must be called from context that can sleep. It returns zero on 3289 * success, else a negative error code (dropping the controller's refcount). 3290 * After a successful return, the caller is responsible for calling 3291 * spi_unregister_controller(). 3292 * 3293 * Return: zero on success, else a negative error code. 3294 */ 3295 int spi_register_controller(struct spi_controller *ctlr) 3296 { 3297 struct device *dev = ctlr->dev.parent; 3298 struct boardinfo *bi; 3299 int first_dynamic; 3300 int status; 3301 int idx; 3302 3303 if (!dev) 3304 return -ENODEV; 3305 3306 /* 3307 * Make sure all necessary hooks are implemented before registering 3308 * the SPI controller. 3309 */ 3310 status = spi_controller_check_ops(ctlr); 3311 if (status) 3312 return status; 3313 3314 if (ctlr->bus_num < 0) 3315 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3316 if (ctlr->bus_num >= 0) { 3317 /* Devices with a fixed bus num must check-in with the num */ 3318 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3319 if (status) 3320 return status; 3321 } 3322 if (ctlr->bus_num < 0) { 3323 first_dynamic = of_alias_get_highest_id("spi"); 3324 if (first_dynamic < 0) 3325 first_dynamic = 0; 3326 else 3327 first_dynamic++; 3328 3329 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3330 if (status) 3331 return status; 3332 } 3333 ctlr->bus_lock_flag = 0; 3334 init_completion(&ctlr->xfer_completion); 3335 init_completion(&ctlr->cur_msg_completion); 3336 if (!ctlr->max_dma_len) 3337 ctlr->max_dma_len = INT_MAX; 3338 3339 /* 3340 * Register the device, then userspace will see it. 3341 * Registration fails if the bus ID is in use. 3342 */ 3343 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3344 3345 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3346 status = spi_get_gpio_descs(ctlr); 3347 if (status) 3348 goto free_bus_id; 3349 /* 3350 * A controller using GPIO descriptors always 3351 * supports SPI_CS_HIGH if need be. 3352 */ 3353 ctlr->mode_bits |= SPI_CS_HIGH; 3354 } 3355 3356 /* 3357 * Even if it's just one always-selected device, there must 3358 * be at least one chipselect. 3359 */ 3360 if (!ctlr->num_chipselect) { 3361 status = -EINVAL; 3362 goto free_bus_id; 3363 } 3364 3365 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3366 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3367 ctlr->last_cs[idx] = SPI_INVALID_CS; 3368 3369 status = device_add(&ctlr->dev); 3370 if (status < 0) 3371 goto free_bus_id; 3372 dev_dbg(dev, "registered %s %s\n", 3373 spi_controller_is_slave(ctlr) ? "slave" : "master", 3374 dev_name(&ctlr->dev)); 3375 3376 /* 3377 * If we're using a queued driver, start the queue. Note that we don't 3378 * need the queueing logic if the driver is only supporting high-level 3379 * memory operations. 3380 */ 3381 if (ctlr->transfer) { 3382 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3383 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3384 status = spi_controller_initialize_queue(ctlr); 3385 if (status) { 3386 device_del(&ctlr->dev); 3387 goto free_bus_id; 3388 } 3389 } 3390 /* Add statistics */ 3391 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3392 if (!ctlr->pcpu_statistics) { 3393 dev_err(dev, "Error allocating per-cpu statistics\n"); 3394 status = -ENOMEM; 3395 goto destroy_queue; 3396 } 3397 3398 mutex_lock(&board_lock); 3399 list_add_tail(&ctlr->list, &spi_controller_list); 3400 list_for_each_entry(bi, &board_list, list) 3401 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3402 mutex_unlock(&board_lock); 3403 3404 /* Register devices from the device tree and ACPI */ 3405 of_register_spi_devices(ctlr); 3406 acpi_register_spi_devices(ctlr); 3407 return status; 3408 3409 destroy_queue: 3410 spi_destroy_queue(ctlr); 3411 free_bus_id: 3412 mutex_lock(&board_lock); 3413 idr_remove(&spi_master_idr, ctlr->bus_num); 3414 mutex_unlock(&board_lock); 3415 return status; 3416 } 3417 EXPORT_SYMBOL_GPL(spi_register_controller); 3418 3419 static void devm_spi_unregister(struct device *dev, void *res) 3420 { 3421 spi_unregister_controller(*(struct spi_controller **)res); 3422 } 3423 3424 /** 3425 * devm_spi_register_controller - register managed SPI master or slave 3426 * controller 3427 * @dev: device managing SPI controller 3428 * @ctlr: initialized controller, originally from spi_alloc_master() or 3429 * spi_alloc_slave() 3430 * Context: can sleep 3431 * 3432 * Register a SPI device as with spi_register_controller() which will 3433 * automatically be unregistered and freed. 3434 * 3435 * Return: zero on success, else a negative error code. 3436 */ 3437 int devm_spi_register_controller(struct device *dev, 3438 struct spi_controller *ctlr) 3439 { 3440 struct spi_controller **ptr; 3441 int ret; 3442 3443 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3444 if (!ptr) 3445 return -ENOMEM; 3446 3447 ret = spi_register_controller(ctlr); 3448 if (!ret) { 3449 *ptr = ctlr; 3450 devres_add(dev, ptr); 3451 } else { 3452 devres_free(ptr); 3453 } 3454 3455 return ret; 3456 } 3457 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3458 3459 static int __unregister(struct device *dev, void *null) 3460 { 3461 spi_unregister_device(to_spi_device(dev)); 3462 return 0; 3463 } 3464 3465 /** 3466 * spi_unregister_controller - unregister SPI master or slave controller 3467 * @ctlr: the controller being unregistered 3468 * Context: can sleep 3469 * 3470 * This call is used only by SPI controller drivers, which are the 3471 * only ones directly touching chip registers. 3472 * 3473 * This must be called from context that can sleep. 3474 * 3475 * Note that this function also drops a reference to the controller. 3476 */ 3477 void spi_unregister_controller(struct spi_controller *ctlr) 3478 { 3479 struct spi_controller *found; 3480 int id = ctlr->bus_num; 3481 3482 /* Prevent addition of new devices, unregister existing ones */ 3483 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3484 mutex_lock(&ctlr->add_lock); 3485 3486 device_for_each_child(&ctlr->dev, NULL, __unregister); 3487 3488 /* First make sure that this controller was ever added */ 3489 mutex_lock(&board_lock); 3490 found = idr_find(&spi_master_idr, id); 3491 mutex_unlock(&board_lock); 3492 if (ctlr->queued) { 3493 if (spi_destroy_queue(ctlr)) 3494 dev_err(&ctlr->dev, "queue remove failed\n"); 3495 } 3496 mutex_lock(&board_lock); 3497 list_del(&ctlr->list); 3498 mutex_unlock(&board_lock); 3499 3500 device_del(&ctlr->dev); 3501 3502 /* Free bus id */ 3503 mutex_lock(&board_lock); 3504 if (found == ctlr) 3505 idr_remove(&spi_master_idr, id); 3506 mutex_unlock(&board_lock); 3507 3508 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3509 mutex_unlock(&ctlr->add_lock); 3510 3511 /* 3512 * Release the last reference on the controller if its driver 3513 * has not yet been converted to devm_spi_alloc_master/slave(). 3514 */ 3515 if (!ctlr->devm_allocated) 3516 put_device(&ctlr->dev); 3517 } 3518 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3519 3520 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3521 { 3522 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3523 } 3524 3525 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3526 { 3527 mutex_lock(&ctlr->bus_lock_mutex); 3528 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3529 mutex_unlock(&ctlr->bus_lock_mutex); 3530 } 3531 3532 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3533 { 3534 mutex_lock(&ctlr->bus_lock_mutex); 3535 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3536 mutex_unlock(&ctlr->bus_lock_mutex); 3537 } 3538 3539 int spi_controller_suspend(struct spi_controller *ctlr) 3540 { 3541 int ret = 0; 3542 3543 /* Basically no-ops for non-queued controllers */ 3544 if (ctlr->queued) { 3545 ret = spi_stop_queue(ctlr); 3546 if (ret) 3547 dev_err(&ctlr->dev, "queue stop failed\n"); 3548 } 3549 3550 __spi_mark_suspended(ctlr); 3551 return ret; 3552 } 3553 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3554 3555 int spi_controller_resume(struct spi_controller *ctlr) 3556 { 3557 int ret = 0; 3558 3559 __spi_mark_resumed(ctlr); 3560 3561 if (ctlr->queued) { 3562 ret = spi_start_queue(ctlr); 3563 if (ret) 3564 dev_err(&ctlr->dev, "queue restart failed\n"); 3565 } 3566 return ret; 3567 } 3568 EXPORT_SYMBOL_GPL(spi_controller_resume); 3569 3570 /*-------------------------------------------------------------------------*/ 3571 3572 /* Core methods for spi_message alterations */ 3573 3574 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3575 struct spi_message *msg, 3576 void *res) 3577 { 3578 struct spi_replaced_transfers *rxfer = res; 3579 size_t i; 3580 3581 /* Call extra callback if requested */ 3582 if (rxfer->release) 3583 rxfer->release(ctlr, msg, res); 3584 3585 /* Insert replaced transfers back into the message */ 3586 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3587 3588 /* Remove the formerly inserted entries */ 3589 for (i = 0; i < rxfer->inserted; i++) 3590 list_del(&rxfer->inserted_transfers[i].transfer_list); 3591 } 3592 3593 /** 3594 * spi_replace_transfers - replace transfers with several transfers 3595 * and register change with spi_message.resources 3596 * @msg: the spi_message we work upon 3597 * @xfer_first: the first spi_transfer we want to replace 3598 * @remove: number of transfers to remove 3599 * @insert: the number of transfers we want to insert instead 3600 * @release: extra release code necessary in some circumstances 3601 * @extradatasize: extra data to allocate (with alignment guarantees 3602 * of struct @spi_transfer) 3603 * @gfp: gfp flags 3604 * 3605 * Returns: pointer to @spi_replaced_transfers, 3606 * PTR_ERR(...) in case of errors. 3607 */ 3608 static struct spi_replaced_transfers *spi_replace_transfers( 3609 struct spi_message *msg, 3610 struct spi_transfer *xfer_first, 3611 size_t remove, 3612 size_t insert, 3613 spi_replaced_release_t release, 3614 size_t extradatasize, 3615 gfp_t gfp) 3616 { 3617 struct spi_replaced_transfers *rxfer; 3618 struct spi_transfer *xfer; 3619 size_t i; 3620 3621 /* Allocate the structure using spi_res */ 3622 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3623 struct_size(rxfer, inserted_transfers, insert) 3624 + extradatasize, 3625 gfp); 3626 if (!rxfer) 3627 return ERR_PTR(-ENOMEM); 3628 3629 /* The release code to invoke before running the generic release */ 3630 rxfer->release = release; 3631 3632 /* Assign extradata */ 3633 if (extradatasize) 3634 rxfer->extradata = 3635 &rxfer->inserted_transfers[insert]; 3636 3637 /* Init the replaced_transfers list */ 3638 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3639 3640 /* 3641 * Assign the list_entry after which we should reinsert 3642 * the @replaced_transfers - it may be spi_message.messages! 3643 */ 3644 rxfer->replaced_after = xfer_first->transfer_list.prev; 3645 3646 /* Remove the requested number of transfers */ 3647 for (i = 0; i < remove; i++) { 3648 /* 3649 * If the entry after replaced_after it is msg->transfers 3650 * then we have been requested to remove more transfers 3651 * than are in the list. 3652 */ 3653 if (rxfer->replaced_after->next == &msg->transfers) { 3654 dev_err(&msg->spi->dev, 3655 "requested to remove more spi_transfers than are available\n"); 3656 /* Insert replaced transfers back into the message */ 3657 list_splice(&rxfer->replaced_transfers, 3658 rxfer->replaced_after); 3659 3660 /* Free the spi_replace_transfer structure... */ 3661 spi_res_free(rxfer); 3662 3663 /* ...and return with an error */ 3664 return ERR_PTR(-EINVAL); 3665 } 3666 3667 /* 3668 * Remove the entry after replaced_after from list of 3669 * transfers and add it to list of replaced_transfers. 3670 */ 3671 list_move_tail(rxfer->replaced_after->next, 3672 &rxfer->replaced_transfers); 3673 } 3674 3675 /* 3676 * Create copy of the given xfer with identical settings 3677 * based on the first transfer to get removed. 3678 */ 3679 for (i = 0; i < insert; i++) { 3680 /* We need to run in reverse order */ 3681 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3682 3683 /* Copy all spi_transfer data */ 3684 memcpy(xfer, xfer_first, sizeof(*xfer)); 3685 3686 /* Add to list */ 3687 list_add(&xfer->transfer_list, rxfer->replaced_after); 3688 3689 /* Clear cs_change and delay for all but the last */ 3690 if (i) { 3691 xfer->cs_change = false; 3692 xfer->delay.value = 0; 3693 } 3694 } 3695 3696 /* Set up inserted... */ 3697 rxfer->inserted = insert; 3698 3699 /* ...and register it with spi_res/spi_message */ 3700 spi_res_add(msg, rxfer); 3701 3702 return rxfer; 3703 } 3704 3705 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3706 struct spi_message *msg, 3707 struct spi_transfer **xferp, 3708 size_t maxsize) 3709 { 3710 struct spi_transfer *xfer = *xferp, *xfers; 3711 struct spi_replaced_transfers *srt; 3712 size_t offset; 3713 size_t count, i; 3714 3715 /* Calculate how many we have to replace */ 3716 count = DIV_ROUND_UP(xfer->len, maxsize); 3717 3718 /* Create replacement */ 3719 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3720 if (IS_ERR(srt)) 3721 return PTR_ERR(srt); 3722 xfers = srt->inserted_transfers; 3723 3724 /* 3725 * Now handle each of those newly inserted spi_transfers. 3726 * Note that the replacements spi_transfers all are preset 3727 * to the same values as *xferp, so tx_buf, rx_buf and len 3728 * are all identical (as well as most others) 3729 * so we just have to fix up len and the pointers. 3730 */ 3731 3732 /* 3733 * The first transfer just needs the length modified, so we 3734 * run it outside the loop. 3735 */ 3736 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3737 3738 /* All the others need rx_buf/tx_buf also set */ 3739 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3740 /* Update rx_buf, tx_buf and DMA */ 3741 if (xfers[i].rx_buf) 3742 xfers[i].rx_buf += offset; 3743 if (xfers[i].tx_buf) 3744 xfers[i].tx_buf += offset; 3745 3746 /* Update length */ 3747 xfers[i].len = min(maxsize, xfers[i].len - offset); 3748 } 3749 3750 /* 3751 * We set up xferp to the last entry we have inserted, 3752 * so that we skip those already split transfers. 3753 */ 3754 *xferp = &xfers[count - 1]; 3755 3756 /* Increment statistics counters */ 3757 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3758 transfers_split_maxsize); 3759 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3760 transfers_split_maxsize); 3761 3762 return 0; 3763 } 3764 3765 /** 3766 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3767 * when an individual transfer exceeds a 3768 * certain size 3769 * @ctlr: the @spi_controller for this transfer 3770 * @msg: the @spi_message to transform 3771 * @maxsize: the maximum when to apply this 3772 * 3773 * This function allocates resources that are automatically freed during the 3774 * spi message unoptimize phase so this function should only be called from 3775 * optimize_message callbacks. 3776 * 3777 * Return: status of transformation 3778 */ 3779 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3780 struct spi_message *msg, 3781 size_t maxsize) 3782 { 3783 struct spi_transfer *xfer; 3784 int ret; 3785 3786 /* 3787 * Iterate over the transfer_list, 3788 * but note that xfer is advanced to the last transfer inserted 3789 * to avoid checking sizes again unnecessarily (also xfer does 3790 * potentially belong to a different list by the time the 3791 * replacement has happened). 3792 */ 3793 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3794 if (xfer->len > maxsize) { 3795 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3796 maxsize); 3797 if (ret) 3798 return ret; 3799 } 3800 } 3801 3802 return 0; 3803 } 3804 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3805 3806 3807 /** 3808 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3809 * when an individual transfer exceeds a 3810 * certain number of SPI words 3811 * @ctlr: the @spi_controller for this transfer 3812 * @msg: the @spi_message to transform 3813 * @maxwords: the number of words to limit each transfer to 3814 * 3815 * This function allocates resources that are automatically freed during the 3816 * spi message unoptimize phase so this function should only be called from 3817 * optimize_message callbacks. 3818 * 3819 * Return: status of transformation 3820 */ 3821 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3822 struct spi_message *msg, 3823 size_t maxwords) 3824 { 3825 struct spi_transfer *xfer; 3826 3827 /* 3828 * Iterate over the transfer_list, 3829 * but note that xfer is advanced to the last transfer inserted 3830 * to avoid checking sizes again unnecessarily (also xfer does 3831 * potentially belong to a different list by the time the 3832 * replacement has happened). 3833 */ 3834 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3835 size_t maxsize; 3836 int ret; 3837 3838 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3839 if (xfer->len > maxsize) { 3840 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3841 maxsize); 3842 if (ret) 3843 return ret; 3844 } 3845 } 3846 3847 return 0; 3848 } 3849 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3850 3851 /*-------------------------------------------------------------------------*/ 3852 3853 /* 3854 * Core methods for SPI controller protocol drivers. Some of the 3855 * other core methods are currently defined as inline functions. 3856 */ 3857 3858 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3859 u8 bits_per_word) 3860 { 3861 if (ctlr->bits_per_word_mask) { 3862 /* Only 32 bits fit in the mask */ 3863 if (bits_per_word > 32) 3864 return -EINVAL; 3865 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3866 return -EINVAL; 3867 } 3868 3869 return 0; 3870 } 3871 3872 /** 3873 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3874 * @spi: the device that requires specific CS timing configuration 3875 * 3876 * Return: zero on success, else a negative error code. 3877 */ 3878 static int spi_set_cs_timing(struct spi_device *spi) 3879 { 3880 struct device *parent = spi->controller->dev.parent; 3881 int status = 0; 3882 3883 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3884 if (spi->controller->auto_runtime_pm) { 3885 status = pm_runtime_get_sync(parent); 3886 if (status < 0) { 3887 pm_runtime_put_noidle(parent); 3888 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3889 status); 3890 return status; 3891 } 3892 3893 status = spi->controller->set_cs_timing(spi); 3894 pm_runtime_mark_last_busy(parent); 3895 pm_runtime_put_autosuspend(parent); 3896 } else { 3897 status = spi->controller->set_cs_timing(spi); 3898 } 3899 } 3900 return status; 3901 } 3902 3903 /** 3904 * spi_setup - setup SPI mode and clock rate 3905 * @spi: the device whose settings are being modified 3906 * Context: can sleep, and no requests are queued to the device 3907 * 3908 * SPI protocol drivers may need to update the transfer mode if the 3909 * device doesn't work with its default. They may likewise need 3910 * to update clock rates or word sizes from initial values. This function 3911 * changes those settings, and must be called from a context that can sleep. 3912 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3913 * effect the next time the device is selected and data is transferred to 3914 * or from it. When this function returns, the SPI device is deselected. 3915 * 3916 * Note that this call will fail if the protocol driver specifies an option 3917 * that the underlying controller or its driver does not support. For 3918 * example, not all hardware supports wire transfers using nine bit words, 3919 * LSB-first wire encoding, or active-high chipselects. 3920 * 3921 * Return: zero on success, else a negative error code. 3922 */ 3923 int spi_setup(struct spi_device *spi) 3924 { 3925 unsigned bad_bits, ugly_bits; 3926 int status = 0; 3927 3928 /* 3929 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3930 * are set at the same time. 3931 */ 3932 if ((hweight_long(spi->mode & 3933 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3934 (hweight_long(spi->mode & 3935 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3936 dev_err(&spi->dev, 3937 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3938 return -EINVAL; 3939 } 3940 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3941 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3942 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3943 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3944 return -EINVAL; 3945 /* 3946 * Help drivers fail *cleanly* when they need options 3947 * that aren't supported with their current controller. 3948 * SPI_CS_WORD has a fallback software implementation, 3949 * so it is ignored here. 3950 */ 3951 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3952 SPI_NO_TX | SPI_NO_RX); 3953 ugly_bits = bad_bits & 3954 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3955 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3956 if (ugly_bits) { 3957 dev_warn(&spi->dev, 3958 "setup: ignoring unsupported mode bits %x\n", 3959 ugly_bits); 3960 spi->mode &= ~ugly_bits; 3961 bad_bits &= ~ugly_bits; 3962 } 3963 if (bad_bits) { 3964 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3965 bad_bits); 3966 return -EINVAL; 3967 } 3968 3969 if (!spi->bits_per_word) { 3970 spi->bits_per_word = 8; 3971 } else { 3972 /* 3973 * Some controllers may not support the default 8 bits-per-word 3974 * so only perform the check when this is explicitly provided. 3975 */ 3976 status = __spi_validate_bits_per_word(spi->controller, 3977 spi->bits_per_word); 3978 if (status) 3979 return status; 3980 } 3981 3982 if (spi->controller->max_speed_hz && 3983 (!spi->max_speed_hz || 3984 spi->max_speed_hz > spi->controller->max_speed_hz)) 3985 spi->max_speed_hz = spi->controller->max_speed_hz; 3986 3987 mutex_lock(&spi->controller->io_mutex); 3988 3989 if (spi->controller->setup) { 3990 status = spi->controller->setup(spi); 3991 if (status) { 3992 mutex_unlock(&spi->controller->io_mutex); 3993 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3994 status); 3995 return status; 3996 } 3997 } 3998 3999 status = spi_set_cs_timing(spi); 4000 if (status) { 4001 mutex_unlock(&spi->controller->io_mutex); 4002 return status; 4003 } 4004 4005 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 4006 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 4007 if (status < 0) { 4008 mutex_unlock(&spi->controller->io_mutex); 4009 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 4010 status); 4011 return status; 4012 } 4013 4014 /* 4015 * We do not want to return positive value from pm_runtime_get, 4016 * there are many instances of devices calling spi_setup() and 4017 * checking for a non-zero return value instead of a negative 4018 * return value. 4019 */ 4020 status = 0; 4021 4022 spi_set_cs(spi, false, true); 4023 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4024 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4025 } else { 4026 spi_set_cs(spi, false, true); 4027 } 4028 4029 mutex_unlock(&spi->controller->io_mutex); 4030 4031 if (spi->rt && !spi->controller->rt) { 4032 spi->controller->rt = true; 4033 spi_set_thread_rt(spi->controller); 4034 } 4035 4036 trace_spi_setup(spi, status); 4037 4038 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4039 spi->mode & SPI_MODE_X_MASK, 4040 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4041 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4042 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4043 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4044 spi->bits_per_word, spi->max_speed_hz, 4045 status); 4046 4047 return status; 4048 } 4049 EXPORT_SYMBOL_GPL(spi_setup); 4050 4051 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4052 struct spi_device *spi) 4053 { 4054 int delay1, delay2; 4055 4056 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4057 if (delay1 < 0) 4058 return delay1; 4059 4060 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4061 if (delay2 < 0) 4062 return delay2; 4063 4064 if (delay1 < delay2) 4065 memcpy(&xfer->word_delay, &spi->word_delay, 4066 sizeof(xfer->word_delay)); 4067 4068 return 0; 4069 } 4070 4071 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4072 { 4073 struct spi_controller *ctlr = spi->controller; 4074 struct spi_transfer *xfer; 4075 int w_size; 4076 4077 if (list_empty(&message->transfers)) 4078 return -EINVAL; 4079 4080 message->spi = spi; 4081 4082 /* 4083 * Half-duplex links include original MicroWire, and ones with 4084 * only one data pin like SPI_3WIRE (switches direction) or where 4085 * either MOSI or MISO is missing. They can also be caused by 4086 * software limitations. 4087 */ 4088 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4089 (spi->mode & SPI_3WIRE)) { 4090 unsigned flags = ctlr->flags; 4091 4092 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4093 if (xfer->rx_buf && xfer->tx_buf) 4094 return -EINVAL; 4095 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4096 return -EINVAL; 4097 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4098 return -EINVAL; 4099 } 4100 } 4101 4102 /* 4103 * Set transfer bits_per_word and max speed as spi device default if 4104 * it is not set for this transfer. 4105 * Set transfer tx_nbits and rx_nbits as single transfer default 4106 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4107 * Ensure transfer word_delay is at least as long as that required by 4108 * device itself. 4109 */ 4110 message->frame_length = 0; 4111 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4112 xfer->effective_speed_hz = 0; 4113 message->frame_length += xfer->len; 4114 if (!xfer->bits_per_word) 4115 xfer->bits_per_word = spi->bits_per_word; 4116 4117 if (!xfer->speed_hz) 4118 xfer->speed_hz = spi->max_speed_hz; 4119 4120 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4121 xfer->speed_hz = ctlr->max_speed_hz; 4122 4123 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4124 return -EINVAL; 4125 4126 /* 4127 * SPI transfer length should be multiple of SPI word size 4128 * where SPI word size should be power-of-two multiple. 4129 */ 4130 if (xfer->bits_per_word <= 8) 4131 w_size = 1; 4132 else if (xfer->bits_per_word <= 16) 4133 w_size = 2; 4134 else 4135 w_size = 4; 4136 4137 /* No partial transfers accepted */ 4138 if (xfer->len % w_size) 4139 return -EINVAL; 4140 4141 if (xfer->speed_hz && ctlr->min_speed_hz && 4142 xfer->speed_hz < ctlr->min_speed_hz) 4143 return -EINVAL; 4144 4145 if (xfer->tx_buf && !xfer->tx_nbits) 4146 xfer->tx_nbits = SPI_NBITS_SINGLE; 4147 if (xfer->rx_buf && !xfer->rx_nbits) 4148 xfer->rx_nbits = SPI_NBITS_SINGLE; 4149 /* 4150 * Check transfer tx/rx_nbits: 4151 * 1. check the value matches one of single, dual and quad 4152 * 2. check tx/rx_nbits match the mode in spi_device 4153 */ 4154 if (xfer->tx_buf) { 4155 if (spi->mode & SPI_NO_TX) 4156 return -EINVAL; 4157 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4158 xfer->tx_nbits != SPI_NBITS_DUAL && 4159 xfer->tx_nbits != SPI_NBITS_QUAD) 4160 return -EINVAL; 4161 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4162 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4163 return -EINVAL; 4164 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4165 !(spi->mode & SPI_TX_QUAD)) 4166 return -EINVAL; 4167 } 4168 /* Check transfer rx_nbits */ 4169 if (xfer->rx_buf) { 4170 if (spi->mode & SPI_NO_RX) 4171 return -EINVAL; 4172 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4173 xfer->rx_nbits != SPI_NBITS_DUAL && 4174 xfer->rx_nbits != SPI_NBITS_QUAD) 4175 return -EINVAL; 4176 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4177 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4178 return -EINVAL; 4179 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4180 !(spi->mode & SPI_RX_QUAD)) 4181 return -EINVAL; 4182 } 4183 4184 if (_spi_xfer_word_delay_update(xfer, spi)) 4185 return -EINVAL; 4186 } 4187 4188 message->status = -EINPROGRESS; 4189 4190 return 0; 4191 } 4192 4193 /* 4194 * spi_split_transfers - generic handling of transfer splitting 4195 * @msg: the message to split 4196 * 4197 * Under certain conditions, a SPI controller may not support arbitrary 4198 * transfer sizes or other features required by a peripheral. This function 4199 * will split the transfers in the message into smaller transfers that are 4200 * supported by the controller. 4201 * 4202 * Controllers with special requirements not covered here can also split 4203 * transfers in the optimize_message() callback. 4204 * 4205 * Context: can sleep 4206 * Return: zero on success, else a negative error code 4207 */ 4208 static int spi_split_transfers(struct spi_message *msg) 4209 { 4210 struct spi_controller *ctlr = msg->spi->controller; 4211 struct spi_transfer *xfer; 4212 int ret; 4213 4214 /* 4215 * If an SPI controller does not support toggling the CS line on each 4216 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4217 * for the CS line, we can emulate the CS-per-word hardware function by 4218 * splitting transfers into one-word transfers and ensuring that 4219 * cs_change is set for each transfer. 4220 */ 4221 if ((msg->spi->mode & SPI_CS_WORD) && 4222 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4223 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4224 if (ret) 4225 return ret; 4226 4227 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4228 /* Don't change cs_change on the last entry in the list */ 4229 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4230 break; 4231 4232 xfer->cs_change = 1; 4233 } 4234 } else { 4235 ret = spi_split_transfers_maxsize(ctlr, msg, 4236 spi_max_transfer_size(msg->spi)); 4237 if (ret) 4238 return ret; 4239 } 4240 4241 return 0; 4242 } 4243 4244 /* 4245 * __spi_optimize_message - shared implementation for spi_optimize_message() 4246 * and spi_maybe_optimize_message() 4247 * @spi: the device that will be used for the message 4248 * @msg: the message to optimize 4249 * 4250 * Peripheral drivers will call spi_optimize_message() and the spi core will 4251 * call spi_maybe_optimize_message() instead of calling this directly. 4252 * 4253 * It is not valid to call this on a message that has already been optimized. 4254 * 4255 * Return: zero on success, else a negative error code 4256 */ 4257 static int __spi_optimize_message(struct spi_device *spi, 4258 struct spi_message *msg) 4259 { 4260 struct spi_controller *ctlr = spi->controller; 4261 int ret; 4262 4263 ret = __spi_validate(spi, msg); 4264 if (ret) 4265 return ret; 4266 4267 ret = spi_split_transfers(msg); 4268 if (ret) 4269 return ret; 4270 4271 if (ctlr->optimize_message) { 4272 ret = ctlr->optimize_message(msg); 4273 if (ret) { 4274 spi_res_release(ctlr, msg); 4275 return ret; 4276 } 4277 } 4278 4279 msg->optimized = true; 4280 4281 return 0; 4282 } 4283 4284 /* 4285 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4286 * @spi: the device that will be used for the message 4287 * @msg: the message to optimize 4288 * Return: zero on success, else a negative error code 4289 */ 4290 static int spi_maybe_optimize_message(struct spi_device *spi, 4291 struct spi_message *msg) 4292 { 4293 if (msg->pre_optimized) 4294 return 0; 4295 4296 return __spi_optimize_message(spi, msg); 4297 } 4298 4299 /** 4300 * spi_optimize_message - do any one-time validation and setup for a SPI message 4301 * @spi: the device that will be used for the message 4302 * @msg: the message to optimize 4303 * 4304 * Peripheral drivers that reuse the same message repeatedly may call this to 4305 * perform as much message prep as possible once, rather than repeating it each 4306 * time a message transfer is performed to improve throughput and reduce CPU 4307 * usage. 4308 * 4309 * Once a message has been optimized, it cannot be modified with the exception 4310 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4311 * only the data in the memory it points to). 4312 * 4313 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4314 * to avoid leaking resources. 4315 * 4316 * Context: can sleep 4317 * Return: zero on success, else a negative error code 4318 */ 4319 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4320 { 4321 int ret; 4322 4323 ret = __spi_optimize_message(spi, msg); 4324 if (ret) 4325 return ret; 4326 4327 /* 4328 * This flag indicates that the peripheral driver called spi_optimize_message() 4329 * and therefore we shouldn't unoptimize message automatically when finalizing 4330 * the message but rather wait until spi_unoptimize_message() is called 4331 * by the peripheral driver. 4332 */ 4333 msg->pre_optimized = true; 4334 4335 return 0; 4336 } 4337 EXPORT_SYMBOL_GPL(spi_optimize_message); 4338 4339 /** 4340 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4341 * @msg: the message to unoptimize 4342 * 4343 * Calls to this function must be balanced with calls to spi_optimize_message(). 4344 * 4345 * Context: can sleep 4346 */ 4347 void spi_unoptimize_message(struct spi_message *msg) 4348 { 4349 __spi_unoptimize_message(msg); 4350 msg->pre_optimized = false; 4351 } 4352 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4353 4354 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4355 { 4356 struct spi_controller *ctlr = spi->controller; 4357 struct spi_transfer *xfer; 4358 4359 /* 4360 * Some controllers do not support doing regular SPI transfers. Return 4361 * ENOTSUPP when this is the case. 4362 */ 4363 if (!ctlr->transfer) 4364 return -ENOTSUPP; 4365 4366 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4367 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4368 4369 trace_spi_message_submit(message); 4370 4371 if (!ctlr->ptp_sts_supported) { 4372 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4373 xfer->ptp_sts_word_pre = 0; 4374 ptp_read_system_prets(xfer->ptp_sts); 4375 } 4376 } 4377 4378 return ctlr->transfer(spi, message); 4379 } 4380 4381 /** 4382 * spi_async - asynchronous SPI transfer 4383 * @spi: device with which data will be exchanged 4384 * @message: describes the data transfers, including completion callback 4385 * Context: any (IRQs may be blocked, etc) 4386 * 4387 * This call may be used in_irq and other contexts which can't sleep, 4388 * as well as from task contexts which can sleep. 4389 * 4390 * The completion callback is invoked in a context which can't sleep. 4391 * Before that invocation, the value of message->status is undefined. 4392 * When the callback is issued, message->status holds either zero (to 4393 * indicate complete success) or a negative error code. After that 4394 * callback returns, the driver which issued the transfer request may 4395 * deallocate the associated memory; it's no longer in use by any SPI 4396 * core or controller driver code. 4397 * 4398 * Note that although all messages to a spi_device are handled in 4399 * FIFO order, messages may go to different devices in other orders. 4400 * Some device might be higher priority, or have various "hard" access 4401 * time requirements, for example. 4402 * 4403 * On detection of any fault during the transfer, processing of 4404 * the entire message is aborted, and the device is deselected. 4405 * Until returning from the associated message completion callback, 4406 * no other spi_message queued to that device will be processed. 4407 * (This rule applies equally to all the synchronous transfer calls, 4408 * which are wrappers around this core asynchronous primitive.) 4409 * 4410 * Return: zero on success, else a negative error code. 4411 */ 4412 int spi_async(struct spi_device *spi, struct spi_message *message) 4413 { 4414 struct spi_controller *ctlr = spi->controller; 4415 int ret; 4416 unsigned long flags; 4417 4418 ret = spi_maybe_optimize_message(spi, message); 4419 if (ret) 4420 return ret; 4421 4422 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4423 4424 if (ctlr->bus_lock_flag) 4425 ret = -EBUSY; 4426 else 4427 ret = __spi_async(spi, message); 4428 4429 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4430 4431 spi_maybe_unoptimize_message(message); 4432 4433 return ret; 4434 } 4435 EXPORT_SYMBOL_GPL(spi_async); 4436 4437 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4438 { 4439 bool was_busy; 4440 int ret; 4441 4442 mutex_lock(&ctlr->io_mutex); 4443 4444 was_busy = ctlr->busy; 4445 4446 ctlr->cur_msg = msg; 4447 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4448 if (ret) 4449 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4450 ctlr->cur_msg = NULL; 4451 ctlr->fallback = false; 4452 4453 if (!was_busy) { 4454 kfree(ctlr->dummy_rx); 4455 ctlr->dummy_rx = NULL; 4456 kfree(ctlr->dummy_tx); 4457 ctlr->dummy_tx = NULL; 4458 if (ctlr->unprepare_transfer_hardware && 4459 ctlr->unprepare_transfer_hardware(ctlr)) 4460 dev_err(&ctlr->dev, 4461 "failed to unprepare transfer hardware\n"); 4462 spi_idle_runtime_pm(ctlr); 4463 } 4464 4465 mutex_unlock(&ctlr->io_mutex); 4466 } 4467 4468 /*-------------------------------------------------------------------------*/ 4469 4470 /* 4471 * Utility methods for SPI protocol drivers, layered on 4472 * top of the core. Some other utility methods are defined as 4473 * inline functions. 4474 */ 4475 4476 static void spi_complete(void *arg) 4477 { 4478 complete(arg); 4479 } 4480 4481 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4482 { 4483 DECLARE_COMPLETION_ONSTACK(done); 4484 unsigned long flags; 4485 int status; 4486 struct spi_controller *ctlr = spi->controller; 4487 4488 if (__spi_check_suspended(ctlr)) { 4489 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4490 return -ESHUTDOWN; 4491 } 4492 4493 status = spi_maybe_optimize_message(spi, message); 4494 if (status) 4495 return status; 4496 4497 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4498 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4499 4500 /* 4501 * Checking queue_empty here only guarantees async/sync message 4502 * ordering when coming from the same context. It does not need to 4503 * guard against reentrancy from a different context. The io_mutex 4504 * will catch those cases. 4505 */ 4506 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4507 message->actual_length = 0; 4508 message->status = -EINPROGRESS; 4509 4510 trace_spi_message_submit(message); 4511 4512 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4513 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4514 4515 __spi_transfer_message_noqueue(ctlr, message); 4516 4517 return message->status; 4518 } 4519 4520 /* 4521 * There are messages in the async queue that could have originated 4522 * from the same context, so we need to preserve ordering. 4523 * Therefor we send the message to the async queue and wait until they 4524 * are completed. 4525 */ 4526 message->complete = spi_complete; 4527 message->context = &done; 4528 4529 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4530 status = __spi_async(spi, message); 4531 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4532 4533 if (status == 0) { 4534 wait_for_completion(&done); 4535 status = message->status; 4536 } 4537 message->complete = NULL; 4538 message->context = NULL; 4539 4540 return status; 4541 } 4542 4543 /** 4544 * spi_sync - blocking/synchronous SPI data transfers 4545 * @spi: device with which data will be exchanged 4546 * @message: describes the data transfers 4547 * Context: can sleep 4548 * 4549 * This call may only be used from a context that may sleep. The sleep 4550 * is non-interruptible, and has no timeout. Low-overhead controller 4551 * drivers may DMA directly into and out of the message buffers. 4552 * 4553 * Note that the SPI device's chip select is active during the message, 4554 * and then is normally disabled between messages. Drivers for some 4555 * frequently-used devices may want to minimize costs of selecting a chip, 4556 * by leaving it selected in anticipation that the next message will go 4557 * to the same chip. (That may increase power usage.) 4558 * 4559 * Also, the caller is guaranteeing that the memory associated with the 4560 * message will not be freed before this call returns. 4561 * 4562 * Return: zero on success, else a negative error code. 4563 */ 4564 int spi_sync(struct spi_device *spi, struct spi_message *message) 4565 { 4566 int ret; 4567 4568 mutex_lock(&spi->controller->bus_lock_mutex); 4569 ret = __spi_sync(spi, message); 4570 mutex_unlock(&spi->controller->bus_lock_mutex); 4571 4572 return ret; 4573 } 4574 EXPORT_SYMBOL_GPL(spi_sync); 4575 4576 /** 4577 * spi_sync_locked - version of spi_sync with exclusive bus usage 4578 * @spi: device with which data will be exchanged 4579 * @message: describes the data transfers 4580 * Context: can sleep 4581 * 4582 * This call may only be used from a context that may sleep. The sleep 4583 * is non-interruptible, and has no timeout. Low-overhead controller 4584 * drivers may DMA directly into and out of the message buffers. 4585 * 4586 * This call should be used by drivers that require exclusive access to the 4587 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4588 * be released by a spi_bus_unlock call when the exclusive access is over. 4589 * 4590 * Return: zero on success, else a negative error code. 4591 */ 4592 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4593 { 4594 return __spi_sync(spi, message); 4595 } 4596 EXPORT_SYMBOL_GPL(spi_sync_locked); 4597 4598 /** 4599 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4600 * @ctlr: SPI bus master that should be locked for exclusive bus access 4601 * Context: can sleep 4602 * 4603 * This call may only be used from a context that may sleep. The sleep 4604 * is non-interruptible, and has no timeout. 4605 * 4606 * This call should be used by drivers that require exclusive access to the 4607 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4608 * exclusive access is over. Data transfer must be done by spi_sync_locked 4609 * and spi_async_locked calls when the SPI bus lock is held. 4610 * 4611 * Return: always zero. 4612 */ 4613 int spi_bus_lock(struct spi_controller *ctlr) 4614 { 4615 unsigned long flags; 4616 4617 mutex_lock(&ctlr->bus_lock_mutex); 4618 4619 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4620 ctlr->bus_lock_flag = 1; 4621 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4622 4623 /* Mutex remains locked until spi_bus_unlock() is called */ 4624 4625 return 0; 4626 } 4627 EXPORT_SYMBOL_GPL(spi_bus_lock); 4628 4629 /** 4630 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4631 * @ctlr: SPI bus master that was locked for exclusive bus access 4632 * Context: can sleep 4633 * 4634 * This call may only be used from a context that may sleep. The sleep 4635 * is non-interruptible, and has no timeout. 4636 * 4637 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4638 * call. 4639 * 4640 * Return: always zero. 4641 */ 4642 int spi_bus_unlock(struct spi_controller *ctlr) 4643 { 4644 ctlr->bus_lock_flag = 0; 4645 4646 mutex_unlock(&ctlr->bus_lock_mutex); 4647 4648 return 0; 4649 } 4650 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4651 4652 /* Portable code must never pass more than 32 bytes */ 4653 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4654 4655 static u8 *buf; 4656 4657 /** 4658 * spi_write_then_read - SPI synchronous write followed by read 4659 * @spi: device with which data will be exchanged 4660 * @txbuf: data to be written (need not be DMA-safe) 4661 * @n_tx: size of txbuf, in bytes 4662 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4663 * @n_rx: size of rxbuf, in bytes 4664 * Context: can sleep 4665 * 4666 * This performs a half duplex MicroWire style transaction with the 4667 * device, sending txbuf and then reading rxbuf. The return value 4668 * is zero for success, else a negative errno status code. 4669 * This call may only be used from a context that may sleep. 4670 * 4671 * Parameters to this routine are always copied using a small buffer. 4672 * Performance-sensitive or bulk transfer code should instead use 4673 * spi_{async,sync}() calls with DMA-safe buffers. 4674 * 4675 * Return: zero on success, else a negative error code. 4676 */ 4677 int spi_write_then_read(struct spi_device *spi, 4678 const void *txbuf, unsigned n_tx, 4679 void *rxbuf, unsigned n_rx) 4680 { 4681 static DEFINE_MUTEX(lock); 4682 4683 int status; 4684 struct spi_message message; 4685 struct spi_transfer x[2]; 4686 u8 *local_buf; 4687 4688 /* 4689 * Use preallocated DMA-safe buffer if we can. We can't avoid 4690 * copying here, (as a pure convenience thing), but we can 4691 * keep heap costs out of the hot path unless someone else is 4692 * using the pre-allocated buffer or the transfer is too large. 4693 */ 4694 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4695 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4696 GFP_KERNEL | GFP_DMA); 4697 if (!local_buf) 4698 return -ENOMEM; 4699 } else { 4700 local_buf = buf; 4701 } 4702 4703 spi_message_init(&message); 4704 memset(x, 0, sizeof(x)); 4705 if (n_tx) { 4706 x[0].len = n_tx; 4707 spi_message_add_tail(&x[0], &message); 4708 } 4709 if (n_rx) { 4710 x[1].len = n_rx; 4711 spi_message_add_tail(&x[1], &message); 4712 } 4713 4714 memcpy(local_buf, txbuf, n_tx); 4715 x[0].tx_buf = local_buf; 4716 x[1].rx_buf = local_buf + n_tx; 4717 4718 /* Do the I/O */ 4719 status = spi_sync(spi, &message); 4720 if (status == 0) 4721 memcpy(rxbuf, x[1].rx_buf, n_rx); 4722 4723 if (x[0].tx_buf == buf) 4724 mutex_unlock(&lock); 4725 else 4726 kfree(local_buf); 4727 4728 return status; 4729 } 4730 EXPORT_SYMBOL_GPL(spi_write_then_read); 4731 4732 /*-------------------------------------------------------------------------*/ 4733 4734 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4735 /* Must call put_device() when done with returned spi_device device */ 4736 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4737 { 4738 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4739 4740 return dev ? to_spi_device(dev) : NULL; 4741 } 4742 4743 /* The spi controllers are not using spi_bus, so we find it with another way */ 4744 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4745 { 4746 struct device *dev; 4747 4748 dev = class_find_device_by_of_node(&spi_master_class, node); 4749 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4750 dev = class_find_device_by_of_node(&spi_slave_class, node); 4751 if (!dev) 4752 return NULL; 4753 4754 /* Reference got in class_find_device */ 4755 return container_of(dev, struct spi_controller, dev); 4756 } 4757 4758 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4759 void *arg) 4760 { 4761 struct of_reconfig_data *rd = arg; 4762 struct spi_controller *ctlr; 4763 struct spi_device *spi; 4764 4765 switch (of_reconfig_get_state_change(action, arg)) { 4766 case OF_RECONFIG_CHANGE_ADD: 4767 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4768 if (ctlr == NULL) 4769 return NOTIFY_OK; /* Not for us */ 4770 4771 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4772 put_device(&ctlr->dev); 4773 return NOTIFY_OK; 4774 } 4775 4776 /* 4777 * Clear the flag before adding the device so that fw_devlink 4778 * doesn't skip adding consumers to this device. 4779 */ 4780 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4781 spi = of_register_spi_device(ctlr, rd->dn); 4782 put_device(&ctlr->dev); 4783 4784 if (IS_ERR(spi)) { 4785 pr_err("%s: failed to create for '%pOF'\n", 4786 __func__, rd->dn); 4787 of_node_clear_flag(rd->dn, OF_POPULATED); 4788 return notifier_from_errno(PTR_ERR(spi)); 4789 } 4790 break; 4791 4792 case OF_RECONFIG_CHANGE_REMOVE: 4793 /* Already depopulated? */ 4794 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4795 return NOTIFY_OK; 4796 4797 /* Find our device by node */ 4798 spi = of_find_spi_device_by_node(rd->dn); 4799 if (spi == NULL) 4800 return NOTIFY_OK; /* No? not meant for us */ 4801 4802 /* Unregister takes one ref away */ 4803 spi_unregister_device(spi); 4804 4805 /* And put the reference of the find */ 4806 put_device(&spi->dev); 4807 break; 4808 } 4809 4810 return NOTIFY_OK; 4811 } 4812 4813 static struct notifier_block spi_of_notifier = { 4814 .notifier_call = of_spi_notify, 4815 }; 4816 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4817 extern struct notifier_block spi_of_notifier; 4818 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4819 4820 #if IS_ENABLED(CONFIG_ACPI) 4821 static int spi_acpi_controller_match(struct device *dev, const void *data) 4822 { 4823 return ACPI_COMPANION(dev->parent) == data; 4824 } 4825 4826 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4827 { 4828 struct device *dev; 4829 4830 dev = class_find_device(&spi_master_class, NULL, adev, 4831 spi_acpi_controller_match); 4832 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4833 dev = class_find_device(&spi_slave_class, NULL, adev, 4834 spi_acpi_controller_match); 4835 if (!dev) 4836 return NULL; 4837 4838 return container_of(dev, struct spi_controller, dev); 4839 } 4840 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4841 4842 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4843 { 4844 struct device *dev; 4845 4846 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4847 return to_spi_device(dev); 4848 } 4849 4850 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4851 void *arg) 4852 { 4853 struct acpi_device *adev = arg; 4854 struct spi_controller *ctlr; 4855 struct spi_device *spi; 4856 4857 switch (value) { 4858 case ACPI_RECONFIG_DEVICE_ADD: 4859 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4860 if (!ctlr) 4861 break; 4862 4863 acpi_register_spi_device(ctlr, adev); 4864 put_device(&ctlr->dev); 4865 break; 4866 case ACPI_RECONFIG_DEVICE_REMOVE: 4867 if (!acpi_device_enumerated(adev)) 4868 break; 4869 4870 spi = acpi_spi_find_device_by_adev(adev); 4871 if (!spi) 4872 break; 4873 4874 spi_unregister_device(spi); 4875 put_device(&spi->dev); 4876 break; 4877 } 4878 4879 return NOTIFY_OK; 4880 } 4881 4882 static struct notifier_block spi_acpi_notifier = { 4883 .notifier_call = acpi_spi_notify, 4884 }; 4885 #else 4886 extern struct notifier_block spi_acpi_notifier; 4887 #endif 4888 4889 static int __init spi_init(void) 4890 { 4891 int status; 4892 4893 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4894 if (!buf) { 4895 status = -ENOMEM; 4896 goto err0; 4897 } 4898 4899 status = bus_register(&spi_bus_type); 4900 if (status < 0) 4901 goto err1; 4902 4903 status = class_register(&spi_master_class); 4904 if (status < 0) 4905 goto err2; 4906 4907 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4908 status = class_register(&spi_slave_class); 4909 if (status < 0) 4910 goto err3; 4911 } 4912 4913 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4914 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4915 if (IS_ENABLED(CONFIG_ACPI)) 4916 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4917 4918 return 0; 4919 4920 err3: 4921 class_unregister(&spi_master_class); 4922 err2: 4923 bus_unregister(&spi_bus_type); 4924 err1: 4925 kfree(buf); 4926 buf = NULL; 4927 err0: 4928 return status; 4929 } 4930 4931 /* 4932 * A board_info is normally registered in arch_initcall(), 4933 * but even essential drivers wait till later. 4934 * 4935 * REVISIT only boardinfo really needs static linking. The rest (device and 4936 * driver registration) _could_ be dynamically linked (modular) ... Costs 4937 * include needing to have boardinfo data structures be much more public. 4938 */ 4939 postcore_initcall(spi_init); 4940