xref: /linux/drivers/spi/spi.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	/* spi controllers may cleanup for released devices */
51 	if (spi->controller->cleanup)
52 		spi->controller->cleanup(spi);
53 
54 	spi_controller_put(spi->controller);
55 	kfree(spi->driver_override);
56 	kfree(spi);
57 }
58 
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
61 {
62 	const struct spi_device	*spi = to_spi_device(dev);
63 	int len;
64 
65 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 	if (len != -ENODEV)
67 		return len;
68 
69 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72 
73 static ssize_t driver_override_store(struct device *dev,
74 				     struct device_attribute *a,
75 				     const char *buf, size_t count)
76 {
77 	struct spi_device *spi = to_spi_device(dev);
78 	const char *end = memchr(buf, '\n', count);
79 	const size_t len = end ? end - buf : count;
80 	const char *driver_override, *old;
81 
82 	/* We need to keep extra room for a newline when displaying value */
83 	if (len >= (PAGE_SIZE - 1))
84 		return -EINVAL;
85 
86 	driver_override = kstrndup(buf, len, GFP_KERNEL);
87 	if (!driver_override)
88 		return -ENOMEM;
89 
90 	device_lock(dev);
91 	old = spi->driver_override;
92 	if (len) {
93 		spi->driver_override = driver_override;
94 	} else {
95 		/* Emptry string, disable driver override */
96 		spi->driver_override = NULL;
97 		kfree(driver_override);
98 	}
99 	device_unlock(dev);
100 	kfree(old);
101 
102 	return count;
103 }
104 
105 static ssize_t driver_override_show(struct device *dev,
106 				    struct device_attribute *a, char *buf)
107 {
108 	const struct spi_device *spi = to_spi_device(dev);
109 	ssize_t len;
110 
111 	device_lock(dev);
112 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 	device_unlock(dev);
114 	return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117 
118 #define SPI_STATISTICS_ATTRS(field, file)				\
119 static ssize_t spi_controller_##field##_show(struct device *dev,	\
120 					     struct device_attribute *attr, \
121 					     char *buf)			\
122 {									\
123 	struct spi_controller *ctlr = container_of(dev,			\
124 					 struct spi_controller, dev);	\
125 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
126 }									\
127 static struct device_attribute dev_attr_spi_controller_##field = {	\
128 	.attr = { .name = file, .mode = 0444 },				\
129 	.show = spi_controller_##field##_show,				\
130 };									\
131 static ssize_t spi_device_##field##_show(struct device *dev,		\
132 					 struct device_attribute *attr,	\
133 					char *buf)			\
134 {									\
135 	struct spi_device *spi = to_spi_device(dev);			\
136 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
137 }									\
138 static struct device_attribute dev_attr_spi_device_##field = {		\
139 	.attr = { .name = file, .mode = 0444 },				\
140 	.show = spi_device_##field##_show,				\
141 }
142 
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 					    char *buf)			\
146 {									\
147 	unsigned long flags;						\
148 	ssize_t len;							\
149 	spin_lock_irqsave(&stat->lock, flags);				\
150 	len = sprintf(buf, format_string, stat->field);			\
151 	spin_unlock_irqrestore(&stat->lock, flags);			\
152 	return len;							\
153 }									\
154 SPI_STATISTICS_ATTRS(name, file)
155 
156 #define SPI_STATISTICS_SHOW(field, format_string)			\
157 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
158 				 field, format_string)
159 
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164 
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168 
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172 
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
174 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
175 				 "transfer_bytes_histo_" number,	\
176 				 transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194 
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196 
197 static struct attribute *spi_dev_attrs[] = {
198 	&dev_attr_modalias.attr,
199 	&dev_attr_driver_override.attr,
200 	NULL,
201 };
202 
203 static const struct attribute_group spi_dev_group = {
204 	.attrs  = spi_dev_attrs,
205 };
206 
207 static struct attribute *spi_device_statistics_attrs[] = {
208 	&dev_attr_spi_device_messages.attr,
209 	&dev_attr_spi_device_transfers.attr,
210 	&dev_attr_spi_device_errors.attr,
211 	&dev_attr_spi_device_timedout.attr,
212 	&dev_attr_spi_device_spi_sync.attr,
213 	&dev_attr_spi_device_spi_sync_immediate.attr,
214 	&dev_attr_spi_device_spi_async.attr,
215 	&dev_attr_spi_device_bytes.attr,
216 	&dev_attr_spi_device_bytes_rx.attr,
217 	&dev_attr_spi_device_bytes_tx.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
231 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
232 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
233 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
234 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
235 	&dev_attr_spi_device_transfers_split_maxsize.attr,
236 	NULL,
237 };
238 
239 static const struct attribute_group spi_device_statistics_group = {
240 	.name  = "statistics",
241 	.attrs  = spi_device_statistics_attrs,
242 };
243 
244 static const struct attribute_group *spi_dev_groups[] = {
245 	&spi_dev_group,
246 	&spi_device_statistics_group,
247 	NULL,
248 };
249 
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 	&dev_attr_spi_controller_messages.attr,
252 	&dev_attr_spi_controller_transfers.attr,
253 	&dev_attr_spi_controller_errors.attr,
254 	&dev_attr_spi_controller_timedout.attr,
255 	&dev_attr_spi_controller_spi_sync.attr,
256 	&dev_attr_spi_controller_spi_sync_immediate.attr,
257 	&dev_attr_spi_controller_spi_async.attr,
258 	&dev_attr_spi_controller_bytes.attr,
259 	&dev_attr_spi_controller_bytes_rx.attr,
260 	&dev_attr_spi_controller_bytes_tx.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
279 	NULL,
280 };
281 
282 static const struct attribute_group spi_controller_statistics_group = {
283 	.name  = "statistics",
284 	.attrs  = spi_controller_statistics_attrs,
285 };
286 
287 static const struct attribute_group *spi_master_groups[] = {
288 	&spi_controller_statistics_group,
289 	NULL,
290 };
291 
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 				       struct spi_transfer *xfer,
294 				       struct spi_controller *ctlr)
295 {
296 	unsigned long flags;
297 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298 
299 	if (l2len < 0)
300 		l2len = 0;
301 
302 	spin_lock_irqsave(&stats->lock, flags);
303 
304 	stats->transfers++;
305 	stats->transfer_bytes_histo[l2len]++;
306 
307 	stats->bytes += xfer->len;
308 	if ((xfer->tx_buf) &&
309 	    (xfer->tx_buf != ctlr->dummy_tx))
310 		stats->bytes_tx += xfer->len;
311 	if ((xfer->rx_buf) &&
312 	    (xfer->rx_buf != ctlr->dummy_rx))
313 		stats->bytes_rx += xfer->len;
314 
315 	spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318 
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322 
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 						const struct spi_device *sdev)
325 {
326 	while (id->name[0]) {
327 		if (!strcmp(sdev->modalias, id->name))
328 			return id;
329 		id++;
330 	}
331 	return NULL;
332 }
333 
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337 
338 	return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341 
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344 	const struct spi_device	*spi = to_spi_device(dev);
345 	const struct spi_driver	*sdrv = to_spi_driver(drv);
346 
347 	/* Check override first, and if set, only use the named driver */
348 	if (spi->driver_override)
349 		return strcmp(spi->driver_override, drv->name) == 0;
350 
351 	/* Attempt an OF style match */
352 	if (of_driver_match_device(dev, drv))
353 		return 1;
354 
355 	/* Then try ACPI */
356 	if (acpi_driver_match_device(dev, drv))
357 		return 1;
358 
359 	if (sdrv->id_table)
360 		return !!spi_match_id(sdrv->id_table, spi);
361 
362 	return strcmp(spi->modalias, drv->name) == 0;
363 }
364 
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367 	const struct spi_device		*spi = to_spi_device(dev);
368 	int rc;
369 
370 	rc = acpi_device_uevent_modalias(dev, env);
371 	if (rc != -ENODEV)
372 		return rc;
373 
374 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376 
377 struct bus_type spi_bus_type = {
378 	.name		= "spi",
379 	.dev_groups	= spi_dev_groups,
380 	.match		= spi_match_device,
381 	.uevent		= spi_uevent,
382 };
383 EXPORT_SYMBOL_GPL(spi_bus_type);
384 
385 
386 static int spi_drv_probe(struct device *dev)
387 {
388 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
389 	struct spi_device		*spi = to_spi_device(dev);
390 	int ret;
391 
392 	ret = of_clk_set_defaults(dev->of_node, false);
393 	if (ret)
394 		return ret;
395 
396 	if (dev->of_node) {
397 		spi->irq = of_irq_get(dev->of_node, 0);
398 		if (spi->irq == -EPROBE_DEFER)
399 			return -EPROBE_DEFER;
400 		if (spi->irq < 0)
401 			spi->irq = 0;
402 	}
403 
404 	ret = dev_pm_domain_attach(dev, true);
405 	if (ret)
406 		return ret;
407 
408 	ret = sdrv->probe(spi);
409 	if (ret)
410 		dev_pm_domain_detach(dev, true);
411 
412 	return ret;
413 }
414 
415 static int spi_drv_remove(struct device *dev)
416 {
417 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
418 	int ret;
419 
420 	ret = sdrv->remove(to_spi_device(dev));
421 	dev_pm_domain_detach(dev, true);
422 
423 	return ret;
424 }
425 
426 static void spi_drv_shutdown(struct device *dev)
427 {
428 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
429 
430 	sdrv->shutdown(to_spi_device(dev));
431 }
432 
433 /**
434  * __spi_register_driver - register a SPI driver
435  * @owner: owner module of the driver to register
436  * @sdrv: the driver to register
437  * Context: can sleep
438  *
439  * Return: zero on success, else a negative error code.
440  */
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
442 {
443 	sdrv->driver.owner = owner;
444 	sdrv->driver.bus = &spi_bus_type;
445 	if (sdrv->probe)
446 		sdrv->driver.probe = spi_drv_probe;
447 	if (sdrv->remove)
448 		sdrv->driver.remove = spi_drv_remove;
449 	if (sdrv->shutdown)
450 		sdrv->driver.shutdown = spi_drv_shutdown;
451 	return driver_register(&sdrv->driver);
452 }
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
454 
455 /*-------------------------------------------------------------------------*/
456 
457 /* SPI devices should normally not be created by SPI device drivers; that
458  * would make them board-specific.  Similarly with SPI controller drivers.
459  * Device registration normally goes into like arch/.../mach.../board-YYY.c
460  * with other readonly (flashable) information about mainboard devices.
461  */
462 
463 struct boardinfo {
464 	struct list_head	list;
465 	struct spi_board_info	board_info;
466 };
467 
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
470 
471 /*
472  * Used to protect add/del opertion for board_info list and
473  * spi_controller list, and their matching process
474  * also used to protect object of type struct idr
475  */
476 static DEFINE_MUTEX(board_lock);
477 
478 /**
479  * spi_alloc_device - Allocate a new SPI device
480  * @ctlr: Controller to which device is connected
481  * Context: can sleep
482  *
483  * Allows a driver to allocate and initialize a spi_device without
484  * registering it immediately.  This allows a driver to directly
485  * fill the spi_device with device parameters before calling
486  * spi_add_device() on it.
487  *
488  * Caller is responsible to call spi_add_device() on the returned
489  * spi_device structure to add it to the SPI controller.  If the caller
490  * needs to discard the spi_device without adding it, then it should
491  * call spi_dev_put() on it.
492  *
493  * Return: a pointer to the new device, or NULL.
494  */
495 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
496 {
497 	struct spi_device	*spi;
498 
499 	if (!spi_controller_get(ctlr))
500 		return NULL;
501 
502 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
503 	if (!spi) {
504 		spi_controller_put(ctlr);
505 		return NULL;
506 	}
507 
508 	spi->master = spi->controller = ctlr;
509 	spi->dev.parent = &ctlr->dev;
510 	spi->dev.bus = &spi_bus_type;
511 	spi->dev.release = spidev_release;
512 	spi->cs_gpio = -ENOENT;
513 
514 	spin_lock_init(&spi->statistics.lock);
515 
516 	device_initialize(&spi->dev);
517 	return spi;
518 }
519 EXPORT_SYMBOL_GPL(spi_alloc_device);
520 
521 static void spi_dev_set_name(struct spi_device *spi)
522 {
523 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524 
525 	if (adev) {
526 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
527 		return;
528 	}
529 
530 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
531 		     spi->chip_select);
532 }
533 
534 static int spi_dev_check(struct device *dev, void *data)
535 {
536 	struct spi_device *spi = to_spi_device(dev);
537 	struct spi_device *new_spi = data;
538 
539 	if (spi->controller == new_spi->controller &&
540 	    spi->chip_select == new_spi->chip_select)
541 		return -EBUSY;
542 	return 0;
543 }
544 
545 /**
546  * spi_add_device - Add spi_device allocated with spi_alloc_device
547  * @spi: spi_device to register
548  *
549  * Companion function to spi_alloc_device.  Devices allocated with
550  * spi_alloc_device can be added onto the spi bus with this function.
551  *
552  * Return: 0 on success; negative errno on failure
553  */
554 int spi_add_device(struct spi_device *spi)
555 {
556 	static DEFINE_MUTEX(spi_add_lock);
557 	struct spi_controller *ctlr = spi->controller;
558 	struct device *dev = ctlr->dev.parent;
559 	int status;
560 
561 	/* Chipselects are numbered 0..max; validate. */
562 	if (spi->chip_select >= ctlr->num_chipselect) {
563 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
564 			ctlr->num_chipselect);
565 		return -EINVAL;
566 	}
567 
568 	/* Set the bus ID string */
569 	spi_dev_set_name(spi);
570 
571 	/* We need to make sure there's no other device with this
572 	 * chipselect **BEFORE** we call setup(), else we'll trash
573 	 * its configuration.  Lock against concurrent add() calls.
574 	 */
575 	mutex_lock(&spi_add_lock);
576 
577 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578 	if (status) {
579 		dev_err(dev, "chipselect %d already in use\n",
580 				spi->chip_select);
581 		goto done;
582 	}
583 
584 	/* Descriptors take precedence */
585 	if (ctlr->cs_gpiods)
586 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
587 	else if (ctlr->cs_gpios)
588 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
589 
590 	/* Drivers may modify this initial i/o setup, but will
591 	 * normally rely on the device being setup.  Devices
592 	 * using SPI_CS_HIGH can't coexist well otherwise...
593 	 */
594 	status = spi_setup(spi);
595 	if (status < 0) {
596 		dev_err(dev, "can't setup %s, status %d\n",
597 				dev_name(&spi->dev), status);
598 		goto done;
599 	}
600 
601 	/* Device may be bound to an active driver when this returns */
602 	status = device_add(&spi->dev);
603 	if (status < 0)
604 		dev_err(dev, "can't add %s, status %d\n",
605 				dev_name(&spi->dev), status);
606 	else
607 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 
609 done:
610 	mutex_unlock(&spi_add_lock);
611 	return status;
612 }
613 EXPORT_SYMBOL_GPL(spi_add_device);
614 
615 /**
616  * spi_new_device - instantiate one new SPI device
617  * @ctlr: Controller to which device is connected
618  * @chip: Describes the SPI device
619  * Context: can sleep
620  *
621  * On typical mainboards, this is purely internal; and it's not needed
622  * after board init creates the hard-wired devices.  Some development
623  * platforms may not be able to use spi_register_board_info though, and
624  * this is exported so that for example a USB or parport based adapter
625  * driver could add devices (which it would learn about out-of-band).
626  *
627  * Return: the new device, or NULL.
628  */
629 struct spi_device *spi_new_device(struct spi_controller *ctlr,
630 				  struct spi_board_info *chip)
631 {
632 	struct spi_device	*proxy;
633 	int			status;
634 
635 	/* NOTE:  caller did any chip->bus_num checks necessary.
636 	 *
637 	 * Also, unless we change the return value convention to use
638 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
639 	 * suggests syslogged diagnostics are best here (ugh).
640 	 */
641 
642 	proxy = spi_alloc_device(ctlr);
643 	if (!proxy)
644 		return NULL;
645 
646 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
647 
648 	proxy->chip_select = chip->chip_select;
649 	proxy->max_speed_hz = chip->max_speed_hz;
650 	proxy->mode = chip->mode;
651 	proxy->irq = chip->irq;
652 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
653 	proxy->dev.platform_data = (void *) chip->platform_data;
654 	proxy->controller_data = chip->controller_data;
655 	proxy->controller_state = NULL;
656 
657 	if (chip->properties) {
658 		status = device_add_properties(&proxy->dev, chip->properties);
659 		if (status) {
660 			dev_err(&ctlr->dev,
661 				"failed to add properties to '%s': %d\n",
662 				chip->modalias, status);
663 			goto err_dev_put;
664 		}
665 	}
666 
667 	status = spi_add_device(proxy);
668 	if (status < 0)
669 		goto err_remove_props;
670 
671 	return proxy;
672 
673 err_remove_props:
674 	if (chip->properties)
675 		device_remove_properties(&proxy->dev);
676 err_dev_put:
677 	spi_dev_put(proxy);
678 	return NULL;
679 }
680 EXPORT_SYMBOL_GPL(spi_new_device);
681 
682 /**
683  * spi_unregister_device - unregister a single SPI device
684  * @spi: spi_device to unregister
685  *
686  * Start making the passed SPI device vanish. Normally this would be handled
687  * by spi_unregister_controller().
688  */
689 void spi_unregister_device(struct spi_device *spi)
690 {
691 	if (!spi)
692 		return;
693 
694 	if (spi->dev.of_node) {
695 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
696 		of_node_put(spi->dev.of_node);
697 	}
698 	if (ACPI_COMPANION(&spi->dev))
699 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
700 	device_unregister(&spi->dev);
701 }
702 EXPORT_SYMBOL_GPL(spi_unregister_device);
703 
704 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
705 					      struct spi_board_info *bi)
706 {
707 	struct spi_device *dev;
708 
709 	if (ctlr->bus_num != bi->bus_num)
710 		return;
711 
712 	dev = spi_new_device(ctlr, bi);
713 	if (!dev)
714 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
715 			bi->modalias);
716 }
717 
718 /**
719  * spi_register_board_info - register SPI devices for a given board
720  * @info: array of chip descriptors
721  * @n: how many descriptors are provided
722  * Context: can sleep
723  *
724  * Board-specific early init code calls this (probably during arch_initcall)
725  * with segments of the SPI device table.  Any device nodes are created later,
726  * after the relevant parent SPI controller (bus_num) is defined.  We keep
727  * this table of devices forever, so that reloading a controller driver will
728  * not make Linux forget about these hard-wired devices.
729  *
730  * Other code can also call this, e.g. a particular add-on board might provide
731  * SPI devices through its expansion connector, so code initializing that board
732  * would naturally declare its SPI devices.
733  *
734  * The board info passed can safely be __initdata ... but be careful of
735  * any embedded pointers (platform_data, etc), they're copied as-is.
736  * Device properties are deep-copied though.
737  *
738  * Return: zero on success, else a negative error code.
739  */
740 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
741 {
742 	struct boardinfo *bi;
743 	int i;
744 
745 	if (!n)
746 		return 0;
747 
748 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
749 	if (!bi)
750 		return -ENOMEM;
751 
752 	for (i = 0; i < n; i++, bi++, info++) {
753 		struct spi_controller *ctlr;
754 
755 		memcpy(&bi->board_info, info, sizeof(*info));
756 		if (info->properties) {
757 			bi->board_info.properties =
758 					property_entries_dup(info->properties);
759 			if (IS_ERR(bi->board_info.properties))
760 				return PTR_ERR(bi->board_info.properties);
761 		}
762 
763 		mutex_lock(&board_lock);
764 		list_add_tail(&bi->list, &board_list);
765 		list_for_each_entry(ctlr, &spi_controller_list, list)
766 			spi_match_controller_to_boardinfo(ctlr,
767 							  &bi->board_info);
768 		mutex_unlock(&board_lock);
769 	}
770 
771 	return 0;
772 }
773 
774 /*-------------------------------------------------------------------------*/
775 
776 static void spi_set_cs(struct spi_device *spi, bool enable)
777 {
778 	if (spi->mode & SPI_CS_HIGH)
779 		enable = !enable;
780 
781 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
782 		/*
783 		 * Honour the SPI_NO_CS flag and invert the enable line, as
784 		 * active low is default for SPI. Execution paths that handle
785 		 * polarity inversion in gpiolib (such as device tree) will
786 		 * enforce active high using the SPI_CS_HIGH resulting in a
787 		 * double inversion through the code above.
788 		 */
789 		if (!(spi->mode & SPI_NO_CS)) {
790 			if (spi->cs_gpiod)
791 				gpiod_set_value_cansleep(spi->cs_gpiod,
792 							 !enable);
793 			else
794 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
795 		}
796 		/* Some SPI masters need both GPIO CS & slave_select */
797 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
798 		    spi->controller->set_cs)
799 			spi->controller->set_cs(spi, !enable);
800 	} else if (spi->controller->set_cs) {
801 		spi->controller->set_cs(spi, !enable);
802 	}
803 }
804 
805 #ifdef CONFIG_HAS_DMA
806 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
807 		struct sg_table *sgt, void *buf, size_t len,
808 		enum dma_data_direction dir)
809 {
810 	const bool vmalloced_buf = is_vmalloc_addr(buf);
811 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
812 #ifdef CONFIG_HIGHMEM
813 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
814 				(unsigned long)buf < (PKMAP_BASE +
815 					(LAST_PKMAP * PAGE_SIZE)));
816 #else
817 	const bool kmap_buf = false;
818 #endif
819 	int desc_len;
820 	int sgs;
821 	struct page *vm_page;
822 	struct scatterlist *sg;
823 	void *sg_buf;
824 	size_t min;
825 	int i, ret;
826 
827 	if (vmalloced_buf || kmap_buf) {
828 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
829 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
830 	} else if (virt_addr_valid(buf)) {
831 		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
832 		sgs = DIV_ROUND_UP(len, desc_len);
833 	} else {
834 		return -EINVAL;
835 	}
836 
837 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
838 	if (ret != 0)
839 		return ret;
840 
841 	sg = &sgt->sgl[0];
842 	for (i = 0; i < sgs; i++) {
843 
844 		if (vmalloced_buf || kmap_buf) {
845 			/*
846 			 * Next scatterlist entry size is the minimum between
847 			 * the desc_len and the remaining buffer length that
848 			 * fits in a page.
849 			 */
850 			min = min_t(size_t, desc_len,
851 				    min_t(size_t, len,
852 					  PAGE_SIZE - offset_in_page(buf)));
853 			if (vmalloced_buf)
854 				vm_page = vmalloc_to_page(buf);
855 			else
856 				vm_page = kmap_to_page(buf);
857 			if (!vm_page) {
858 				sg_free_table(sgt);
859 				return -ENOMEM;
860 			}
861 			sg_set_page(sg, vm_page,
862 				    min, offset_in_page(buf));
863 		} else {
864 			min = min_t(size_t, len, desc_len);
865 			sg_buf = buf;
866 			sg_set_buf(sg, sg_buf, min);
867 		}
868 
869 		buf += min;
870 		len -= min;
871 		sg = sg_next(sg);
872 	}
873 
874 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
875 	if (!ret)
876 		ret = -ENOMEM;
877 	if (ret < 0) {
878 		sg_free_table(sgt);
879 		return ret;
880 	}
881 
882 	sgt->nents = ret;
883 
884 	return 0;
885 }
886 
887 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
888 		   struct sg_table *sgt, enum dma_data_direction dir)
889 {
890 	if (sgt->orig_nents) {
891 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
892 		sg_free_table(sgt);
893 	}
894 }
895 
896 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
897 {
898 	struct device *tx_dev, *rx_dev;
899 	struct spi_transfer *xfer;
900 	int ret;
901 
902 	if (!ctlr->can_dma)
903 		return 0;
904 
905 	if (ctlr->dma_tx)
906 		tx_dev = ctlr->dma_tx->device->dev;
907 	else
908 		tx_dev = ctlr->dev.parent;
909 
910 	if (ctlr->dma_rx)
911 		rx_dev = ctlr->dma_rx->device->dev;
912 	else
913 		rx_dev = ctlr->dev.parent;
914 
915 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
916 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 			continue;
918 
919 		if (xfer->tx_buf != NULL) {
920 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
921 					  (void *)xfer->tx_buf, xfer->len,
922 					  DMA_TO_DEVICE);
923 			if (ret != 0)
924 				return ret;
925 		}
926 
927 		if (xfer->rx_buf != NULL) {
928 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
929 					  xfer->rx_buf, xfer->len,
930 					  DMA_FROM_DEVICE);
931 			if (ret != 0) {
932 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
933 					      DMA_TO_DEVICE);
934 				return ret;
935 			}
936 		}
937 	}
938 
939 	ctlr->cur_msg_mapped = true;
940 
941 	return 0;
942 }
943 
944 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
945 {
946 	struct spi_transfer *xfer;
947 	struct device *tx_dev, *rx_dev;
948 
949 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
950 		return 0;
951 
952 	if (ctlr->dma_tx)
953 		tx_dev = ctlr->dma_tx->device->dev;
954 	else
955 		tx_dev = ctlr->dev.parent;
956 
957 	if (ctlr->dma_rx)
958 		rx_dev = ctlr->dma_rx->device->dev;
959 	else
960 		rx_dev = ctlr->dev.parent;
961 
962 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
963 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 			continue;
965 
966 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
967 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
968 	}
969 
970 	return 0;
971 }
972 #else /* !CONFIG_HAS_DMA */
973 static inline int __spi_map_msg(struct spi_controller *ctlr,
974 				struct spi_message *msg)
975 {
976 	return 0;
977 }
978 
979 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
980 				  struct spi_message *msg)
981 {
982 	return 0;
983 }
984 #endif /* !CONFIG_HAS_DMA */
985 
986 static inline int spi_unmap_msg(struct spi_controller *ctlr,
987 				struct spi_message *msg)
988 {
989 	struct spi_transfer *xfer;
990 
991 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 		/*
993 		 * Restore the original value of tx_buf or rx_buf if they are
994 		 * NULL.
995 		 */
996 		if (xfer->tx_buf == ctlr->dummy_tx)
997 			xfer->tx_buf = NULL;
998 		if (xfer->rx_buf == ctlr->dummy_rx)
999 			xfer->rx_buf = NULL;
1000 	}
1001 
1002 	return __spi_unmap_msg(ctlr, msg);
1003 }
1004 
1005 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006 {
1007 	struct spi_transfer *xfer;
1008 	void *tmp;
1009 	unsigned int max_tx, max_rx;
1010 
1011 	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012 		max_tx = 0;
1013 		max_rx = 0;
1014 
1015 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017 			    !xfer->tx_buf)
1018 				max_tx = max(xfer->len, max_tx);
1019 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020 			    !xfer->rx_buf)
1021 				max_rx = max(xfer->len, max_rx);
1022 		}
1023 
1024 		if (max_tx) {
1025 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026 				       GFP_KERNEL | GFP_DMA);
1027 			if (!tmp)
1028 				return -ENOMEM;
1029 			ctlr->dummy_tx = tmp;
1030 			memset(tmp, 0, max_tx);
1031 		}
1032 
1033 		if (max_rx) {
1034 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035 				       GFP_KERNEL | GFP_DMA);
1036 			if (!tmp)
1037 				return -ENOMEM;
1038 			ctlr->dummy_rx = tmp;
1039 		}
1040 
1041 		if (max_tx || max_rx) {
1042 			list_for_each_entry(xfer, &msg->transfers,
1043 					    transfer_list) {
1044 				if (!xfer->len)
1045 					continue;
1046 				if (!xfer->tx_buf)
1047 					xfer->tx_buf = ctlr->dummy_tx;
1048 				if (!xfer->rx_buf)
1049 					xfer->rx_buf = ctlr->dummy_rx;
1050 			}
1051 		}
1052 	}
1053 
1054 	return __spi_map_msg(ctlr, msg);
1055 }
1056 
1057 static int spi_transfer_wait(struct spi_controller *ctlr,
1058 			     struct spi_message *msg,
1059 			     struct spi_transfer *xfer)
1060 {
1061 	struct spi_statistics *statm = &ctlr->statistics;
1062 	struct spi_statistics *stats = &msg->spi->statistics;
1063 	unsigned long long ms = 1;
1064 
1065 	if (spi_controller_is_slave(ctlr)) {
1066 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068 			return -EINTR;
1069 		}
1070 	} else {
1071 		ms = 8LL * 1000LL * xfer->len;
1072 		do_div(ms, xfer->speed_hz);
1073 		ms += ms + 200; /* some tolerance */
1074 
1075 		if (ms > UINT_MAX)
1076 			ms = UINT_MAX;
1077 
1078 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079 						 msecs_to_jiffies(ms));
1080 
1081 		if (ms == 0) {
1082 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084 			dev_err(&msg->spi->dev,
1085 				"SPI transfer timed out\n");
1086 			return -ETIMEDOUT;
1087 		}
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static void _spi_transfer_delay_ns(u32 ns)
1094 {
1095 	if (!ns)
1096 		return;
1097 	if (ns <= 1000) {
1098 		ndelay(ns);
1099 	} else {
1100 		u32 us = DIV_ROUND_UP(ns, 1000);
1101 
1102 		if (us <= 10)
1103 			udelay(us);
1104 		else
1105 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106 	}
1107 }
1108 
1109 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110 					  struct spi_transfer *xfer)
1111 {
1112 	u32 delay = xfer->cs_change_delay;
1113 	u32 unit = xfer->cs_change_delay_unit;
1114 	u32 hz;
1115 
1116 	/* return early on "fast" mode - for everything but USECS */
1117 	if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118 		return;
1119 
1120 	switch (unit) {
1121 	case SPI_DELAY_UNIT_USECS:
1122 		/* for compatibility use default of 10us */
1123 		if (!delay)
1124 			delay = 10000;
1125 		else
1126 			delay *= 1000;
1127 		break;
1128 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129 		break;
1130 	case SPI_DELAY_UNIT_SCK:
1131 		/* if there is no effective speed know, then approximate
1132 		 * by underestimating with half the requested hz
1133 		 */
1134 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135 		delay *= DIV_ROUND_UP(1000000000, hz);
1136 		break;
1137 	default:
1138 		dev_err_once(&msg->spi->dev,
1139 			     "Use of unsupported delay unit %i, using default of 10us\n",
1140 			     xfer->cs_change_delay_unit);
1141 		delay = 10000;
1142 	}
1143 	/* now sleep for the requested amount of time */
1144 	_spi_transfer_delay_ns(delay);
1145 }
1146 
1147 /*
1148  * spi_transfer_one_message - Default implementation of transfer_one_message()
1149  *
1150  * This is a standard implementation of transfer_one_message() for
1151  * drivers which implement a transfer_one() operation.  It provides
1152  * standard handling of delays and chip select management.
1153  */
1154 static int spi_transfer_one_message(struct spi_controller *ctlr,
1155 				    struct spi_message *msg)
1156 {
1157 	struct spi_transfer *xfer;
1158 	bool keep_cs = false;
1159 	int ret = 0;
1160 	struct spi_statistics *statm = &ctlr->statistics;
1161 	struct spi_statistics *stats = &msg->spi->statistics;
1162 
1163 	spi_set_cs(msg->spi, true);
1164 
1165 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167 
1168 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169 		trace_spi_transfer_start(msg, xfer);
1170 
1171 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1173 
1174 		if (xfer->tx_buf || xfer->rx_buf) {
1175 			reinit_completion(&ctlr->xfer_completion);
1176 
1177 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178 			if (ret < 0) {
1179 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1180 							       errors);
1181 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1182 							       errors);
1183 				dev_err(&msg->spi->dev,
1184 					"SPI transfer failed: %d\n", ret);
1185 				goto out;
1186 			}
1187 
1188 			if (ret > 0) {
1189 				ret = spi_transfer_wait(ctlr, msg, xfer);
1190 				if (ret < 0)
1191 					msg->status = ret;
1192 			}
1193 		} else {
1194 			if (xfer->len)
1195 				dev_err(&msg->spi->dev,
1196 					"Bufferless transfer has length %u\n",
1197 					xfer->len);
1198 		}
1199 
1200 		trace_spi_transfer_stop(msg, xfer);
1201 
1202 		if (msg->status != -EINPROGRESS)
1203 			goto out;
1204 
1205 		if (xfer->delay_usecs)
1206 			_spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207 
1208 		if (xfer->cs_change) {
1209 			if (list_is_last(&xfer->transfer_list,
1210 					 &msg->transfers)) {
1211 				keep_cs = true;
1212 			} else {
1213 				spi_set_cs(msg->spi, false);
1214 				_spi_transfer_cs_change_delay(msg, xfer);
1215 				spi_set_cs(msg->spi, true);
1216 			}
1217 		}
1218 
1219 		msg->actual_length += xfer->len;
1220 	}
1221 
1222 out:
1223 	if (ret != 0 || !keep_cs)
1224 		spi_set_cs(msg->spi, false);
1225 
1226 	if (msg->status == -EINPROGRESS)
1227 		msg->status = ret;
1228 
1229 	if (msg->status && ctlr->handle_err)
1230 		ctlr->handle_err(ctlr, msg);
1231 
1232 	spi_res_release(ctlr, msg);
1233 
1234 	spi_finalize_current_message(ctlr);
1235 
1236 	return ret;
1237 }
1238 
1239 /**
1240  * spi_finalize_current_transfer - report completion of a transfer
1241  * @ctlr: the controller reporting completion
1242  *
1243  * Called by SPI drivers using the core transfer_one_message()
1244  * implementation to notify it that the current interrupt driven
1245  * transfer has finished and the next one may be scheduled.
1246  */
1247 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248 {
1249 	complete(&ctlr->xfer_completion);
1250 }
1251 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252 
1253 /**
1254  * __spi_pump_messages - function which processes spi message queue
1255  * @ctlr: controller to process queue for
1256  * @in_kthread: true if we are in the context of the message pump thread
1257  *
1258  * This function checks if there is any spi message in the queue that
1259  * needs processing and if so call out to the driver to initialize hardware
1260  * and transfer each message.
1261  *
1262  * Note that it is called both from the kthread itself and also from
1263  * inside spi_sync(); the queue extraction handling at the top of the
1264  * function should deal with this safely.
1265  */
1266 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267 {
1268 	struct spi_message *msg;
1269 	bool was_busy = false;
1270 	unsigned long flags;
1271 	int ret;
1272 
1273 	/* Lock queue */
1274 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1275 
1276 	/* Make sure we are not already running a message */
1277 	if (ctlr->cur_msg) {
1278 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1279 		return;
1280 	}
1281 
1282 	/* If another context is idling the device then defer */
1283 	if (ctlr->idling) {
1284 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1285 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286 		return;
1287 	}
1288 
1289 	/* Check if the queue is idle */
1290 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1291 		if (!ctlr->busy) {
1292 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1293 			return;
1294 		}
1295 
1296 		/* Only do teardown in the thread */
1297 		if (!in_kthread) {
1298 			kthread_queue_work(&ctlr->kworker,
1299 					   &ctlr->pump_messages);
1300 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1301 			return;
1302 		}
1303 
1304 		ctlr->busy = false;
1305 		ctlr->idling = true;
1306 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307 
1308 		kfree(ctlr->dummy_rx);
1309 		ctlr->dummy_rx = NULL;
1310 		kfree(ctlr->dummy_tx);
1311 		ctlr->dummy_tx = NULL;
1312 		if (ctlr->unprepare_transfer_hardware &&
1313 		    ctlr->unprepare_transfer_hardware(ctlr))
1314 			dev_err(&ctlr->dev,
1315 				"failed to unprepare transfer hardware\n");
1316 		if (ctlr->auto_runtime_pm) {
1317 			pm_runtime_mark_last_busy(ctlr->dev.parent);
1318 			pm_runtime_put_autosuspend(ctlr->dev.parent);
1319 		}
1320 		trace_spi_controller_idle(ctlr);
1321 
1322 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1323 		ctlr->idling = false;
1324 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325 		return;
1326 	}
1327 
1328 	/* Extract head of queue */
1329 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1330 	ctlr->cur_msg = msg;
1331 
1332 	list_del_init(&msg->queue);
1333 	if (ctlr->busy)
1334 		was_busy = true;
1335 	else
1336 		ctlr->busy = true;
1337 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338 
1339 	mutex_lock(&ctlr->io_mutex);
1340 
1341 	if (!was_busy && ctlr->auto_runtime_pm) {
1342 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1343 		if (ret < 0) {
1344 			pm_runtime_put_noidle(ctlr->dev.parent);
1345 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346 				ret);
1347 			mutex_unlock(&ctlr->io_mutex);
1348 			return;
1349 		}
1350 	}
1351 
1352 	if (!was_busy)
1353 		trace_spi_controller_busy(ctlr);
1354 
1355 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1356 		ret = ctlr->prepare_transfer_hardware(ctlr);
1357 		if (ret) {
1358 			dev_err(&ctlr->dev,
1359 				"failed to prepare transfer hardware: %d\n",
1360 				ret);
1361 
1362 			if (ctlr->auto_runtime_pm)
1363 				pm_runtime_put(ctlr->dev.parent);
1364 
1365 			msg->status = ret;
1366 			spi_finalize_current_message(ctlr);
1367 
1368 			mutex_unlock(&ctlr->io_mutex);
1369 			return;
1370 		}
1371 	}
1372 
1373 	trace_spi_message_start(msg);
1374 
1375 	if (ctlr->prepare_message) {
1376 		ret = ctlr->prepare_message(ctlr, msg);
1377 		if (ret) {
1378 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379 				ret);
1380 			msg->status = ret;
1381 			spi_finalize_current_message(ctlr);
1382 			goto out;
1383 		}
1384 		ctlr->cur_msg_prepared = true;
1385 	}
1386 
1387 	ret = spi_map_msg(ctlr, msg);
1388 	if (ret) {
1389 		msg->status = ret;
1390 		spi_finalize_current_message(ctlr);
1391 		goto out;
1392 	}
1393 
1394 	ret = ctlr->transfer_one_message(ctlr, msg);
1395 	if (ret) {
1396 		dev_err(&ctlr->dev,
1397 			"failed to transfer one message from queue\n");
1398 		goto out;
1399 	}
1400 
1401 out:
1402 	mutex_unlock(&ctlr->io_mutex);
1403 
1404 	/* Prod the scheduler in case transfer_one() was busy waiting */
1405 	if (!ret)
1406 		cond_resched();
1407 }
1408 
1409 /**
1410  * spi_pump_messages - kthread work function which processes spi message queue
1411  * @work: pointer to kthread work struct contained in the controller struct
1412  */
1413 static void spi_pump_messages(struct kthread_work *work)
1414 {
1415 	struct spi_controller *ctlr =
1416 		container_of(work, struct spi_controller, pump_messages);
1417 
1418 	__spi_pump_messages(ctlr, true);
1419 }
1420 
1421 /**
1422  * spi_set_thread_rt - set the controller to pump at realtime priority
1423  * @ctlr: controller to boost priority of
1424  *
1425  * This can be called because the controller requested realtime priority
1426  * (by setting the ->rt value before calling spi_register_controller()) or
1427  * because a device on the bus said that its transfers needed realtime
1428  * priority.
1429  *
1430  * NOTE: at the moment if any device on a bus says it needs realtime then
1431  * the thread will be at realtime priority for all transfers on that
1432  * controller.  If this eventually becomes a problem we may see if we can
1433  * find a way to boost the priority only temporarily during relevant
1434  * transfers.
1435  */
1436 static void spi_set_thread_rt(struct spi_controller *ctlr)
1437 {
1438 	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1439 
1440 	dev_info(&ctlr->dev,
1441 		"will run message pump with realtime priority\n");
1442 	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1443 }
1444 
1445 static int spi_init_queue(struct spi_controller *ctlr)
1446 {
1447 	ctlr->running = false;
1448 	ctlr->busy = false;
1449 
1450 	kthread_init_worker(&ctlr->kworker);
1451 	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1452 					 "%s", dev_name(&ctlr->dev));
1453 	if (IS_ERR(ctlr->kworker_task)) {
1454 		dev_err(&ctlr->dev, "failed to create message pump task\n");
1455 		return PTR_ERR(ctlr->kworker_task);
1456 	}
1457 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1458 
1459 	/*
1460 	 * Controller config will indicate if this controller should run the
1461 	 * message pump with high (realtime) priority to reduce the transfer
1462 	 * latency on the bus by minimising the delay between a transfer
1463 	 * request and the scheduling of the message pump thread. Without this
1464 	 * setting the message pump thread will remain at default priority.
1465 	 */
1466 	if (ctlr->rt)
1467 		spi_set_thread_rt(ctlr);
1468 
1469 	return 0;
1470 }
1471 
1472 /**
1473  * spi_get_next_queued_message() - called by driver to check for queued
1474  * messages
1475  * @ctlr: the controller to check for queued messages
1476  *
1477  * If there are more messages in the queue, the next message is returned from
1478  * this call.
1479  *
1480  * Return: the next message in the queue, else NULL if the queue is empty.
1481  */
1482 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483 {
1484 	struct spi_message *next;
1485 	unsigned long flags;
1486 
1487 	/* get a pointer to the next message, if any */
1488 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1489 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490 					queue);
1491 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492 
1493 	return next;
1494 }
1495 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1496 
1497 /**
1498  * spi_finalize_current_message() - the current message is complete
1499  * @ctlr: the controller to return the message to
1500  *
1501  * Called by the driver to notify the core that the message in the front of the
1502  * queue is complete and can be removed from the queue.
1503  */
1504 void spi_finalize_current_message(struct spi_controller *ctlr)
1505 {
1506 	struct spi_message *mesg;
1507 	unsigned long flags;
1508 	int ret;
1509 
1510 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1511 	mesg = ctlr->cur_msg;
1512 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1513 
1514 	spi_unmap_msg(ctlr, mesg);
1515 
1516 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1517 		ret = ctlr->unprepare_message(ctlr, mesg);
1518 		if (ret) {
1519 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1520 				ret);
1521 		}
1522 	}
1523 
1524 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1525 	ctlr->cur_msg = NULL;
1526 	ctlr->cur_msg_prepared = false;
1527 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1528 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529 
1530 	trace_spi_message_done(mesg);
1531 
1532 	mesg->state = NULL;
1533 	if (mesg->complete)
1534 		mesg->complete(mesg->context);
1535 }
1536 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537 
1538 static int spi_start_queue(struct spi_controller *ctlr)
1539 {
1540 	unsigned long flags;
1541 
1542 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1543 
1544 	if (ctlr->running || ctlr->busy) {
1545 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1546 		return -EBUSY;
1547 	}
1548 
1549 	ctlr->running = true;
1550 	ctlr->cur_msg = NULL;
1551 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552 
1553 	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1554 
1555 	return 0;
1556 }
1557 
1558 static int spi_stop_queue(struct spi_controller *ctlr)
1559 {
1560 	unsigned long flags;
1561 	unsigned limit = 500;
1562 	int ret = 0;
1563 
1564 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1565 
1566 	/*
1567 	 * This is a bit lame, but is optimized for the common execution path.
1568 	 * A wait_queue on the ctlr->busy could be used, but then the common
1569 	 * execution path (pump_messages) would be required to call wake_up or
1570 	 * friends on every SPI message. Do this instead.
1571 	 */
1572 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1573 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1574 		usleep_range(10000, 11000);
1575 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1576 	}
1577 
1578 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1579 		ret = -EBUSY;
1580 	else
1581 		ctlr->running = false;
1582 
1583 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584 
1585 	if (ret) {
1586 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1587 		return ret;
1588 	}
1589 	return ret;
1590 }
1591 
1592 static int spi_destroy_queue(struct spi_controller *ctlr)
1593 {
1594 	int ret;
1595 
1596 	ret = spi_stop_queue(ctlr);
1597 
1598 	/*
1599 	 * kthread_flush_worker will block until all work is done.
1600 	 * If the reason that stop_queue timed out is that the work will never
1601 	 * finish, then it does no good to call flush/stop thread, so
1602 	 * return anyway.
1603 	 */
1604 	if (ret) {
1605 		dev_err(&ctlr->dev, "problem destroying queue\n");
1606 		return ret;
1607 	}
1608 
1609 	kthread_flush_worker(&ctlr->kworker);
1610 	kthread_stop(ctlr->kworker_task);
1611 
1612 	return 0;
1613 }
1614 
1615 static int __spi_queued_transfer(struct spi_device *spi,
1616 				 struct spi_message *msg,
1617 				 bool need_pump)
1618 {
1619 	struct spi_controller *ctlr = spi->controller;
1620 	unsigned long flags;
1621 
1622 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1623 
1624 	if (!ctlr->running) {
1625 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1626 		return -ESHUTDOWN;
1627 	}
1628 	msg->actual_length = 0;
1629 	msg->status = -EINPROGRESS;
1630 
1631 	list_add_tail(&msg->queue, &ctlr->queue);
1632 	if (!ctlr->busy && need_pump)
1633 		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634 
1635 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1636 	return 0;
1637 }
1638 
1639 /**
1640  * spi_queued_transfer - transfer function for queued transfers
1641  * @spi: spi device which is requesting transfer
1642  * @msg: spi message which is to handled is queued to driver queue
1643  *
1644  * Return: zero on success, else a negative error code.
1645  */
1646 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647 {
1648 	return __spi_queued_transfer(spi, msg, true);
1649 }
1650 
1651 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1652 {
1653 	int ret;
1654 
1655 	ctlr->transfer = spi_queued_transfer;
1656 	if (!ctlr->transfer_one_message)
1657 		ctlr->transfer_one_message = spi_transfer_one_message;
1658 
1659 	/* Initialize and start queue */
1660 	ret = spi_init_queue(ctlr);
1661 	if (ret) {
1662 		dev_err(&ctlr->dev, "problem initializing queue\n");
1663 		goto err_init_queue;
1664 	}
1665 	ctlr->queued = true;
1666 	ret = spi_start_queue(ctlr);
1667 	if (ret) {
1668 		dev_err(&ctlr->dev, "problem starting queue\n");
1669 		goto err_start_queue;
1670 	}
1671 
1672 	return 0;
1673 
1674 err_start_queue:
1675 	spi_destroy_queue(ctlr);
1676 err_init_queue:
1677 	return ret;
1678 }
1679 
1680 /**
1681  * spi_flush_queue - Send all pending messages in the queue from the callers'
1682  *		     context
1683  * @ctlr: controller to process queue for
1684  *
1685  * This should be used when one wants to ensure all pending messages have been
1686  * sent before doing something. Is used by the spi-mem code to make sure SPI
1687  * memory operations do not preempt regular SPI transfers that have been queued
1688  * before the spi-mem operation.
1689  */
1690 void spi_flush_queue(struct spi_controller *ctlr)
1691 {
1692 	if (ctlr->transfer == spi_queued_transfer)
1693 		__spi_pump_messages(ctlr, false);
1694 }
1695 
1696 /*-------------------------------------------------------------------------*/
1697 
1698 #if defined(CONFIG_OF)
1699 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1700 			   struct device_node *nc)
1701 {
1702 	u32 value;
1703 	int rc;
1704 
1705 	/* Mode (clock phase/polarity/etc.) */
1706 	if (of_property_read_bool(nc, "spi-cpha"))
1707 		spi->mode |= SPI_CPHA;
1708 	if (of_property_read_bool(nc, "spi-cpol"))
1709 		spi->mode |= SPI_CPOL;
1710 	if (of_property_read_bool(nc, "spi-3wire"))
1711 		spi->mode |= SPI_3WIRE;
1712 	if (of_property_read_bool(nc, "spi-lsb-first"))
1713 		spi->mode |= SPI_LSB_FIRST;
1714 
1715 	/*
1716 	 * For descriptors associated with the device, polarity inversion is
1717 	 * handled in the gpiolib, so all chip selects are "active high" in
1718 	 * the logical sense, the gpiolib will invert the line if need be.
1719 	 */
1720 	if (ctlr->use_gpio_descriptors)
1721 		spi->mode |= SPI_CS_HIGH;
1722 	else if (of_property_read_bool(nc, "spi-cs-high"))
1723 		spi->mode |= SPI_CS_HIGH;
1724 
1725 	/* Device DUAL/QUAD mode */
1726 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1727 		switch (value) {
1728 		case 1:
1729 			break;
1730 		case 2:
1731 			spi->mode |= SPI_TX_DUAL;
1732 			break;
1733 		case 4:
1734 			spi->mode |= SPI_TX_QUAD;
1735 			break;
1736 		case 8:
1737 			spi->mode |= SPI_TX_OCTAL;
1738 			break;
1739 		default:
1740 			dev_warn(&ctlr->dev,
1741 				"spi-tx-bus-width %d not supported\n",
1742 				value);
1743 			break;
1744 		}
1745 	}
1746 
1747 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1748 		switch (value) {
1749 		case 1:
1750 			break;
1751 		case 2:
1752 			spi->mode |= SPI_RX_DUAL;
1753 			break;
1754 		case 4:
1755 			spi->mode |= SPI_RX_QUAD;
1756 			break;
1757 		case 8:
1758 			spi->mode |= SPI_RX_OCTAL;
1759 			break;
1760 		default:
1761 			dev_warn(&ctlr->dev,
1762 				"spi-rx-bus-width %d not supported\n",
1763 				value);
1764 			break;
1765 		}
1766 	}
1767 
1768 	if (spi_controller_is_slave(ctlr)) {
1769 		if (!of_node_name_eq(nc, "slave")) {
1770 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1771 				nc);
1772 			return -EINVAL;
1773 		}
1774 		return 0;
1775 	}
1776 
1777 	/* Device address */
1778 	rc = of_property_read_u32(nc, "reg", &value);
1779 	if (rc) {
1780 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1781 			nc, rc);
1782 		return rc;
1783 	}
1784 	spi->chip_select = value;
1785 
1786 	/* Device speed */
1787 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1788 	if (rc) {
1789 		dev_err(&ctlr->dev,
1790 			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1791 		return rc;
1792 	}
1793 	spi->max_speed_hz = value;
1794 
1795 	return 0;
1796 }
1797 
1798 static struct spi_device *
1799 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1800 {
1801 	struct spi_device *spi;
1802 	int rc;
1803 
1804 	/* Alloc an spi_device */
1805 	spi = spi_alloc_device(ctlr);
1806 	if (!spi) {
1807 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1808 		rc = -ENOMEM;
1809 		goto err_out;
1810 	}
1811 
1812 	/* Select device driver */
1813 	rc = of_modalias_node(nc, spi->modalias,
1814 				sizeof(spi->modalias));
1815 	if (rc < 0) {
1816 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1817 		goto err_out;
1818 	}
1819 
1820 	rc = of_spi_parse_dt(ctlr, spi, nc);
1821 	if (rc)
1822 		goto err_out;
1823 
1824 	/* Store a pointer to the node in the device structure */
1825 	of_node_get(nc);
1826 	spi->dev.of_node = nc;
1827 
1828 	/* Register the new device */
1829 	rc = spi_add_device(spi);
1830 	if (rc) {
1831 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1832 		goto err_of_node_put;
1833 	}
1834 
1835 	return spi;
1836 
1837 err_of_node_put:
1838 	of_node_put(nc);
1839 err_out:
1840 	spi_dev_put(spi);
1841 	return ERR_PTR(rc);
1842 }
1843 
1844 /**
1845  * of_register_spi_devices() - Register child devices onto the SPI bus
1846  * @ctlr:	Pointer to spi_controller device
1847  *
1848  * Registers an spi_device for each child node of controller node which
1849  * represents a valid SPI slave.
1850  */
1851 static void of_register_spi_devices(struct spi_controller *ctlr)
1852 {
1853 	struct spi_device *spi;
1854 	struct device_node *nc;
1855 
1856 	if (!ctlr->dev.of_node)
1857 		return;
1858 
1859 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1860 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1861 			continue;
1862 		spi = of_register_spi_device(ctlr, nc);
1863 		if (IS_ERR(spi)) {
1864 			dev_warn(&ctlr->dev,
1865 				 "Failed to create SPI device for %pOF\n", nc);
1866 			of_node_clear_flag(nc, OF_POPULATED);
1867 		}
1868 	}
1869 }
1870 #else
1871 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1872 #endif
1873 
1874 #ifdef CONFIG_ACPI
1875 struct acpi_spi_lookup {
1876 	struct spi_controller 	*ctlr;
1877 	u32			max_speed_hz;
1878 	u32			mode;
1879 	int			irq;
1880 	u8			bits_per_word;
1881 	u8			chip_select;
1882 };
1883 
1884 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1885 					    struct acpi_spi_lookup *lookup)
1886 {
1887 	const union acpi_object *obj;
1888 
1889 	if (!x86_apple_machine)
1890 		return;
1891 
1892 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1893 	    && obj->buffer.length >= 4)
1894 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1895 
1896 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1897 	    && obj->buffer.length == 8)
1898 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1899 
1900 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1901 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1902 		lookup->mode |= SPI_LSB_FIRST;
1903 
1904 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1905 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1906 		lookup->mode |= SPI_CPOL;
1907 
1908 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1909 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1910 		lookup->mode |= SPI_CPHA;
1911 }
1912 
1913 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1914 {
1915 	struct acpi_spi_lookup *lookup = data;
1916 	struct spi_controller *ctlr = lookup->ctlr;
1917 
1918 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1919 		struct acpi_resource_spi_serialbus *sb;
1920 		acpi_handle parent_handle;
1921 		acpi_status status;
1922 
1923 		sb = &ares->data.spi_serial_bus;
1924 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1925 
1926 			status = acpi_get_handle(NULL,
1927 						 sb->resource_source.string_ptr,
1928 						 &parent_handle);
1929 
1930 			if (ACPI_FAILURE(status) ||
1931 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1932 				return -ENODEV;
1933 
1934 			/*
1935 			 * ACPI DeviceSelection numbering is handled by the
1936 			 * host controller driver in Windows and can vary
1937 			 * from driver to driver. In Linux we always expect
1938 			 * 0 .. max - 1 so we need to ask the driver to
1939 			 * translate between the two schemes.
1940 			 */
1941 			if (ctlr->fw_translate_cs) {
1942 				int cs = ctlr->fw_translate_cs(ctlr,
1943 						sb->device_selection);
1944 				if (cs < 0)
1945 					return cs;
1946 				lookup->chip_select = cs;
1947 			} else {
1948 				lookup->chip_select = sb->device_selection;
1949 			}
1950 
1951 			lookup->max_speed_hz = sb->connection_speed;
1952 
1953 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1954 				lookup->mode |= SPI_CPHA;
1955 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1956 				lookup->mode |= SPI_CPOL;
1957 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1958 				lookup->mode |= SPI_CS_HIGH;
1959 		}
1960 	} else if (lookup->irq < 0) {
1961 		struct resource r;
1962 
1963 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1964 			lookup->irq = r.start;
1965 	}
1966 
1967 	/* Always tell the ACPI core to skip this resource */
1968 	return 1;
1969 }
1970 
1971 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1972 					    struct acpi_device *adev)
1973 {
1974 	acpi_handle parent_handle = NULL;
1975 	struct list_head resource_list;
1976 	struct acpi_spi_lookup lookup = {};
1977 	struct spi_device *spi;
1978 	int ret;
1979 
1980 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1981 	    acpi_device_enumerated(adev))
1982 		return AE_OK;
1983 
1984 	lookup.ctlr		= ctlr;
1985 	lookup.irq		= -1;
1986 
1987 	INIT_LIST_HEAD(&resource_list);
1988 	ret = acpi_dev_get_resources(adev, &resource_list,
1989 				     acpi_spi_add_resource, &lookup);
1990 	acpi_dev_free_resource_list(&resource_list);
1991 
1992 	if (ret < 0)
1993 		/* found SPI in _CRS but it points to another controller */
1994 		return AE_OK;
1995 
1996 	if (!lookup.max_speed_hz &&
1997 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1998 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1999 		/* Apple does not use _CRS but nested devices for SPI slaves */
2000 		acpi_spi_parse_apple_properties(adev, &lookup);
2001 	}
2002 
2003 	if (!lookup.max_speed_hz)
2004 		return AE_OK;
2005 
2006 	spi = spi_alloc_device(ctlr);
2007 	if (!spi) {
2008 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2009 			dev_name(&adev->dev));
2010 		return AE_NO_MEMORY;
2011 	}
2012 
2013 	ACPI_COMPANION_SET(&spi->dev, adev);
2014 	spi->max_speed_hz	= lookup.max_speed_hz;
2015 	spi->mode		= lookup.mode;
2016 	spi->irq		= lookup.irq;
2017 	spi->bits_per_word	= lookup.bits_per_word;
2018 	spi->chip_select	= lookup.chip_select;
2019 
2020 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2021 			  sizeof(spi->modalias));
2022 
2023 	if (spi->irq < 0)
2024 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2025 
2026 	acpi_device_set_enumerated(adev);
2027 
2028 	adev->power.flags.ignore_parent = true;
2029 	if (spi_add_device(spi)) {
2030 		adev->power.flags.ignore_parent = false;
2031 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2032 			dev_name(&adev->dev));
2033 		spi_dev_put(spi);
2034 	}
2035 
2036 	return AE_OK;
2037 }
2038 
2039 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2040 				       void *data, void **return_value)
2041 {
2042 	struct spi_controller *ctlr = data;
2043 	struct acpi_device *adev;
2044 
2045 	if (acpi_bus_get_device(handle, &adev))
2046 		return AE_OK;
2047 
2048 	return acpi_register_spi_device(ctlr, adev);
2049 }
2050 
2051 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2052 
2053 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2054 {
2055 	acpi_status status;
2056 	acpi_handle handle;
2057 
2058 	handle = ACPI_HANDLE(ctlr->dev.parent);
2059 	if (!handle)
2060 		return;
2061 
2062 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2063 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2064 				     acpi_spi_add_device, NULL, ctlr, NULL);
2065 	if (ACPI_FAILURE(status))
2066 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2067 }
2068 #else
2069 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2070 #endif /* CONFIG_ACPI */
2071 
2072 static void spi_controller_release(struct device *dev)
2073 {
2074 	struct spi_controller *ctlr;
2075 
2076 	ctlr = container_of(dev, struct spi_controller, dev);
2077 	kfree(ctlr);
2078 }
2079 
2080 static struct class spi_master_class = {
2081 	.name		= "spi_master",
2082 	.owner		= THIS_MODULE,
2083 	.dev_release	= spi_controller_release,
2084 	.dev_groups	= spi_master_groups,
2085 };
2086 
2087 #ifdef CONFIG_SPI_SLAVE
2088 /**
2089  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2090  *		     controller
2091  * @spi: device used for the current transfer
2092  */
2093 int spi_slave_abort(struct spi_device *spi)
2094 {
2095 	struct spi_controller *ctlr = spi->controller;
2096 
2097 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2098 		return ctlr->slave_abort(ctlr);
2099 
2100 	return -ENOTSUPP;
2101 }
2102 EXPORT_SYMBOL_GPL(spi_slave_abort);
2103 
2104 static int match_true(struct device *dev, void *data)
2105 {
2106 	return 1;
2107 }
2108 
2109 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2110 			  char *buf)
2111 {
2112 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2113 						   dev);
2114 	struct device *child;
2115 
2116 	child = device_find_child(&ctlr->dev, NULL, match_true);
2117 	return sprintf(buf, "%s\n",
2118 		       child ? to_spi_device(child)->modalias : NULL);
2119 }
2120 
2121 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2122 			   const char *buf, size_t count)
2123 {
2124 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2125 						   dev);
2126 	struct spi_device *spi;
2127 	struct device *child;
2128 	char name[32];
2129 	int rc;
2130 
2131 	rc = sscanf(buf, "%31s", name);
2132 	if (rc != 1 || !name[0])
2133 		return -EINVAL;
2134 
2135 	child = device_find_child(&ctlr->dev, NULL, match_true);
2136 	if (child) {
2137 		/* Remove registered slave */
2138 		device_unregister(child);
2139 		put_device(child);
2140 	}
2141 
2142 	if (strcmp(name, "(null)")) {
2143 		/* Register new slave */
2144 		spi = spi_alloc_device(ctlr);
2145 		if (!spi)
2146 			return -ENOMEM;
2147 
2148 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2149 
2150 		rc = spi_add_device(spi);
2151 		if (rc) {
2152 			spi_dev_put(spi);
2153 			return rc;
2154 		}
2155 	}
2156 
2157 	return count;
2158 }
2159 
2160 static DEVICE_ATTR_RW(slave);
2161 
2162 static struct attribute *spi_slave_attrs[] = {
2163 	&dev_attr_slave.attr,
2164 	NULL,
2165 };
2166 
2167 static const struct attribute_group spi_slave_group = {
2168 	.attrs = spi_slave_attrs,
2169 };
2170 
2171 static const struct attribute_group *spi_slave_groups[] = {
2172 	&spi_controller_statistics_group,
2173 	&spi_slave_group,
2174 	NULL,
2175 };
2176 
2177 static struct class spi_slave_class = {
2178 	.name		= "spi_slave",
2179 	.owner		= THIS_MODULE,
2180 	.dev_release	= spi_controller_release,
2181 	.dev_groups	= spi_slave_groups,
2182 };
2183 #else
2184 extern struct class spi_slave_class;	/* dummy */
2185 #endif
2186 
2187 /**
2188  * __spi_alloc_controller - allocate an SPI master or slave controller
2189  * @dev: the controller, possibly using the platform_bus
2190  * @size: how much zeroed driver-private data to allocate; the pointer to this
2191  *	memory is in the driver_data field of the returned device, accessible
2192  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2193  *	drivers granting DMA access to portions of their private data need to
2194  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2195  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2196  *	slave (true) controller
2197  * Context: can sleep
2198  *
2199  * This call is used only by SPI controller drivers, which are the
2200  * only ones directly touching chip registers.  It's how they allocate
2201  * an spi_controller structure, prior to calling spi_register_controller().
2202  *
2203  * This must be called from context that can sleep.
2204  *
2205  * The caller is responsible for assigning the bus number and initializing the
2206  * controller's methods before calling spi_register_controller(); and (after
2207  * errors adding the device) calling spi_controller_put() to prevent a memory
2208  * leak.
2209  *
2210  * Return: the SPI controller structure on success, else NULL.
2211  */
2212 struct spi_controller *__spi_alloc_controller(struct device *dev,
2213 					      unsigned int size, bool slave)
2214 {
2215 	struct spi_controller	*ctlr;
2216 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2217 
2218 	if (!dev)
2219 		return NULL;
2220 
2221 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2222 	if (!ctlr)
2223 		return NULL;
2224 
2225 	device_initialize(&ctlr->dev);
2226 	ctlr->bus_num = -1;
2227 	ctlr->num_chipselect = 1;
2228 	ctlr->slave = slave;
2229 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2230 		ctlr->dev.class = &spi_slave_class;
2231 	else
2232 		ctlr->dev.class = &spi_master_class;
2233 	ctlr->dev.parent = dev;
2234 	pm_suspend_ignore_children(&ctlr->dev, true);
2235 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2236 
2237 	return ctlr;
2238 }
2239 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2240 
2241 #ifdef CONFIG_OF
2242 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2243 {
2244 	int nb, i, *cs;
2245 	struct device_node *np = ctlr->dev.of_node;
2246 
2247 	if (!np)
2248 		return 0;
2249 
2250 	nb = of_gpio_named_count(np, "cs-gpios");
2251 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2252 
2253 	/* Return error only for an incorrectly formed cs-gpios property */
2254 	if (nb == 0 || nb == -ENOENT)
2255 		return 0;
2256 	else if (nb < 0)
2257 		return nb;
2258 
2259 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2260 			  GFP_KERNEL);
2261 	ctlr->cs_gpios = cs;
2262 
2263 	if (!ctlr->cs_gpios)
2264 		return -ENOMEM;
2265 
2266 	for (i = 0; i < ctlr->num_chipselect; i++)
2267 		cs[i] = -ENOENT;
2268 
2269 	for (i = 0; i < nb; i++)
2270 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2271 
2272 	return 0;
2273 }
2274 #else
2275 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2276 {
2277 	return 0;
2278 }
2279 #endif
2280 
2281 /**
2282  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2283  * @ctlr: The SPI master to grab GPIO descriptors for
2284  */
2285 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2286 {
2287 	int nb, i;
2288 	struct gpio_desc **cs;
2289 	struct device *dev = &ctlr->dev;
2290 
2291 	nb = gpiod_count(dev, "cs");
2292 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2293 
2294 	/* No GPIOs at all is fine, else return the error */
2295 	if (nb == 0 || nb == -ENOENT)
2296 		return 0;
2297 	else if (nb < 0)
2298 		return nb;
2299 
2300 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2301 			  GFP_KERNEL);
2302 	if (!cs)
2303 		return -ENOMEM;
2304 	ctlr->cs_gpiods = cs;
2305 
2306 	for (i = 0; i < nb; i++) {
2307 		/*
2308 		 * Most chipselects are active low, the inverted
2309 		 * semantics are handled by special quirks in gpiolib,
2310 		 * so initializing them GPIOD_OUT_LOW here means
2311 		 * "unasserted", in most cases this will drive the physical
2312 		 * line high.
2313 		 */
2314 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2315 						      GPIOD_OUT_LOW);
2316 		if (IS_ERR(cs[i]))
2317 			return PTR_ERR(cs[i]);
2318 
2319 		if (cs[i]) {
2320 			/*
2321 			 * If we find a CS GPIO, name it after the device and
2322 			 * chip select line.
2323 			 */
2324 			char *gpioname;
2325 
2326 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2327 						  dev_name(dev), i);
2328 			if (!gpioname)
2329 				return -ENOMEM;
2330 			gpiod_set_consumer_name(cs[i], gpioname);
2331 		}
2332 	}
2333 
2334 	return 0;
2335 }
2336 
2337 static int spi_controller_check_ops(struct spi_controller *ctlr)
2338 {
2339 	/*
2340 	 * The controller may implement only the high-level SPI-memory like
2341 	 * operations if it does not support regular SPI transfers, and this is
2342 	 * valid use case.
2343 	 * If ->mem_ops is NULL, we request that at least one of the
2344 	 * ->transfer_xxx() method be implemented.
2345 	 */
2346 	if (ctlr->mem_ops) {
2347 		if (!ctlr->mem_ops->exec_op)
2348 			return -EINVAL;
2349 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2350 		   !ctlr->transfer_one_message) {
2351 		return -EINVAL;
2352 	}
2353 
2354 	return 0;
2355 }
2356 
2357 /**
2358  * spi_register_controller - register SPI master or slave controller
2359  * @ctlr: initialized master, originally from spi_alloc_master() or
2360  *	spi_alloc_slave()
2361  * Context: can sleep
2362  *
2363  * SPI controllers connect to their drivers using some non-SPI bus,
2364  * such as the platform bus.  The final stage of probe() in that code
2365  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2366  *
2367  * SPI controllers use board specific (often SOC specific) bus numbers,
2368  * and board-specific addressing for SPI devices combines those numbers
2369  * with chip select numbers.  Since SPI does not directly support dynamic
2370  * device identification, boards need configuration tables telling which
2371  * chip is at which address.
2372  *
2373  * This must be called from context that can sleep.  It returns zero on
2374  * success, else a negative error code (dropping the controller's refcount).
2375  * After a successful return, the caller is responsible for calling
2376  * spi_unregister_controller().
2377  *
2378  * Return: zero on success, else a negative error code.
2379  */
2380 int spi_register_controller(struct spi_controller *ctlr)
2381 {
2382 	struct device		*dev = ctlr->dev.parent;
2383 	struct boardinfo	*bi;
2384 	int			status;
2385 	int			id, first_dynamic;
2386 
2387 	if (!dev)
2388 		return -ENODEV;
2389 
2390 	/*
2391 	 * Make sure all necessary hooks are implemented before registering
2392 	 * the SPI controller.
2393 	 */
2394 	status = spi_controller_check_ops(ctlr);
2395 	if (status)
2396 		return status;
2397 
2398 	if (ctlr->bus_num >= 0) {
2399 		/* devices with a fixed bus num must check-in with the num */
2400 		mutex_lock(&board_lock);
2401 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2402 			ctlr->bus_num + 1, GFP_KERNEL);
2403 		mutex_unlock(&board_lock);
2404 		if (WARN(id < 0, "couldn't get idr"))
2405 			return id == -ENOSPC ? -EBUSY : id;
2406 		ctlr->bus_num = id;
2407 	} else if (ctlr->dev.of_node) {
2408 		/* allocate dynamic bus number using Linux idr */
2409 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2410 		if (id >= 0) {
2411 			ctlr->bus_num = id;
2412 			mutex_lock(&board_lock);
2413 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2414 				       ctlr->bus_num + 1, GFP_KERNEL);
2415 			mutex_unlock(&board_lock);
2416 			if (WARN(id < 0, "couldn't get idr"))
2417 				return id == -ENOSPC ? -EBUSY : id;
2418 		}
2419 	}
2420 	if (ctlr->bus_num < 0) {
2421 		first_dynamic = of_alias_get_highest_id("spi");
2422 		if (first_dynamic < 0)
2423 			first_dynamic = 0;
2424 		else
2425 			first_dynamic++;
2426 
2427 		mutex_lock(&board_lock);
2428 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2429 			       0, GFP_KERNEL);
2430 		mutex_unlock(&board_lock);
2431 		if (WARN(id < 0, "couldn't get idr"))
2432 			return id;
2433 		ctlr->bus_num = id;
2434 	}
2435 	INIT_LIST_HEAD(&ctlr->queue);
2436 	spin_lock_init(&ctlr->queue_lock);
2437 	spin_lock_init(&ctlr->bus_lock_spinlock);
2438 	mutex_init(&ctlr->bus_lock_mutex);
2439 	mutex_init(&ctlr->io_mutex);
2440 	ctlr->bus_lock_flag = 0;
2441 	init_completion(&ctlr->xfer_completion);
2442 	if (!ctlr->max_dma_len)
2443 		ctlr->max_dma_len = INT_MAX;
2444 
2445 	/* register the device, then userspace will see it.
2446 	 * registration fails if the bus ID is in use.
2447 	 */
2448 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2449 
2450 	if (!spi_controller_is_slave(ctlr)) {
2451 		if (ctlr->use_gpio_descriptors) {
2452 			status = spi_get_gpio_descs(ctlr);
2453 			if (status)
2454 				return status;
2455 			/*
2456 			 * A controller using GPIO descriptors always
2457 			 * supports SPI_CS_HIGH if need be.
2458 			 */
2459 			ctlr->mode_bits |= SPI_CS_HIGH;
2460 		} else {
2461 			/* Legacy code path for GPIOs from DT */
2462 			status = of_spi_get_gpio_numbers(ctlr);
2463 			if (status)
2464 				return status;
2465 		}
2466 	}
2467 
2468 	/*
2469 	 * Even if it's just one always-selected device, there must
2470 	 * be at least one chipselect.
2471 	 */
2472 	if (!ctlr->num_chipselect)
2473 		return -EINVAL;
2474 
2475 	status = device_add(&ctlr->dev);
2476 	if (status < 0) {
2477 		/* free bus id */
2478 		mutex_lock(&board_lock);
2479 		idr_remove(&spi_master_idr, ctlr->bus_num);
2480 		mutex_unlock(&board_lock);
2481 		goto done;
2482 	}
2483 	dev_dbg(dev, "registered %s %s\n",
2484 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2485 			dev_name(&ctlr->dev));
2486 
2487 	/*
2488 	 * If we're using a queued driver, start the queue. Note that we don't
2489 	 * need the queueing logic if the driver is only supporting high-level
2490 	 * memory operations.
2491 	 */
2492 	if (ctlr->transfer) {
2493 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2494 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2495 		status = spi_controller_initialize_queue(ctlr);
2496 		if (status) {
2497 			device_del(&ctlr->dev);
2498 			/* free bus id */
2499 			mutex_lock(&board_lock);
2500 			idr_remove(&spi_master_idr, ctlr->bus_num);
2501 			mutex_unlock(&board_lock);
2502 			goto done;
2503 		}
2504 	}
2505 	/* add statistics */
2506 	spin_lock_init(&ctlr->statistics.lock);
2507 
2508 	mutex_lock(&board_lock);
2509 	list_add_tail(&ctlr->list, &spi_controller_list);
2510 	list_for_each_entry(bi, &board_list, list)
2511 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2512 	mutex_unlock(&board_lock);
2513 
2514 	/* Register devices from the device tree and ACPI */
2515 	of_register_spi_devices(ctlr);
2516 	acpi_register_spi_devices(ctlr);
2517 done:
2518 	return status;
2519 }
2520 EXPORT_SYMBOL_GPL(spi_register_controller);
2521 
2522 static void devm_spi_unregister(struct device *dev, void *res)
2523 {
2524 	spi_unregister_controller(*(struct spi_controller **)res);
2525 }
2526 
2527 /**
2528  * devm_spi_register_controller - register managed SPI master or slave
2529  *	controller
2530  * @dev:    device managing SPI controller
2531  * @ctlr: initialized controller, originally from spi_alloc_master() or
2532  *	spi_alloc_slave()
2533  * Context: can sleep
2534  *
2535  * Register a SPI device as with spi_register_controller() which will
2536  * automatically be unregistered and freed.
2537  *
2538  * Return: zero on success, else a negative error code.
2539  */
2540 int devm_spi_register_controller(struct device *dev,
2541 				 struct spi_controller *ctlr)
2542 {
2543 	struct spi_controller **ptr;
2544 	int ret;
2545 
2546 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2547 	if (!ptr)
2548 		return -ENOMEM;
2549 
2550 	ret = spi_register_controller(ctlr);
2551 	if (!ret) {
2552 		*ptr = ctlr;
2553 		devres_add(dev, ptr);
2554 	} else {
2555 		devres_free(ptr);
2556 	}
2557 
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2561 
2562 static int __unregister(struct device *dev, void *null)
2563 {
2564 	spi_unregister_device(to_spi_device(dev));
2565 	return 0;
2566 }
2567 
2568 /**
2569  * spi_unregister_controller - unregister SPI master or slave controller
2570  * @ctlr: the controller being unregistered
2571  * Context: can sleep
2572  *
2573  * This call is used only by SPI controller drivers, which are the
2574  * only ones directly touching chip registers.
2575  *
2576  * This must be called from context that can sleep.
2577  *
2578  * Note that this function also drops a reference to the controller.
2579  */
2580 void spi_unregister_controller(struct spi_controller *ctlr)
2581 {
2582 	struct spi_controller *found;
2583 	int id = ctlr->bus_num;
2584 
2585 	/* First make sure that this controller was ever added */
2586 	mutex_lock(&board_lock);
2587 	found = idr_find(&spi_master_idr, id);
2588 	mutex_unlock(&board_lock);
2589 	if (ctlr->queued) {
2590 		if (spi_destroy_queue(ctlr))
2591 			dev_err(&ctlr->dev, "queue remove failed\n");
2592 	}
2593 	mutex_lock(&board_lock);
2594 	list_del(&ctlr->list);
2595 	mutex_unlock(&board_lock);
2596 
2597 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2598 	device_unregister(&ctlr->dev);
2599 	/* free bus id */
2600 	mutex_lock(&board_lock);
2601 	if (found == ctlr)
2602 		idr_remove(&spi_master_idr, id);
2603 	mutex_unlock(&board_lock);
2604 }
2605 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2606 
2607 int spi_controller_suspend(struct spi_controller *ctlr)
2608 {
2609 	int ret;
2610 
2611 	/* Basically no-ops for non-queued controllers */
2612 	if (!ctlr->queued)
2613 		return 0;
2614 
2615 	ret = spi_stop_queue(ctlr);
2616 	if (ret)
2617 		dev_err(&ctlr->dev, "queue stop failed\n");
2618 
2619 	return ret;
2620 }
2621 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2622 
2623 int spi_controller_resume(struct spi_controller *ctlr)
2624 {
2625 	int ret;
2626 
2627 	if (!ctlr->queued)
2628 		return 0;
2629 
2630 	ret = spi_start_queue(ctlr);
2631 	if (ret)
2632 		dev_err(&ctlr->dev, "queue restart failed\n");
2633 
2634 	return ret;
2635 }
2636 EXPORT_SYMBOL_GPL(spi_controller_resume);
2637 
2638 static int __spi_controller_match(struct device *dev, const void *data)
2639 {
2640 	struct spi_controller *ctlr;
2641 	const u16 *bus_num = data;
2642 
2643 	ctlr = container_of(dev, struct spi_controller, dev);
2644 	return ctlr->bus_num == *bus_num;
2645 }
2646 
2647 /**
2648  * spi_busnum_to_master - look up master associated with bus_num
2649  * @bus_num: the master's bus number
2650  * Context: can sleep
2651  *
2652  * This call may be used with devices that are registered after
2653  * arch init time.  It returns a refcounted pointer to the relevant
2654  * spi_controller (which the caller must release), or NULL if there is
2655  * no such master registered.
2656  *
2657  * Return: the SPI master structure on success, else NULL.
2658  */
2659 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2660 {
2661 	struct device		*dev;
2662 	struct spi_controller	*ctlr = NULL;
2663 
2664 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2665 				__spi_controller_match);
2666 	if (dev)
2667 		ctlr = container_of(dev, struct spi_controller, dev);
2668 	/* reference got in class_find_device */
2669 	return ctlr;
2670 }
2671 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2672 
2673 /*-------------------------------------------------------------------------*/
2674 
2675 /* Core methods for SPI resource management */
2676 
2677 /**
2678  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2679  *                 during the processing of a spi_message while using
2680  *                 spi_transfer_one
2681  * @spi:     the spi device for which we allocate memory
2682  * @release: the release code to execute for this resource
2683  * @size:    size to alloc and return
2684  * @gfp:     GFP allocation flags
2685  *
2686  * Return: the pointer to the allocated data
2687  *
2688  * This may get enhanced in the future to allocate from a memory pool
2689  * of the @spi_device or @spi_controller to avoid repeated allocations.
2690  */
2691 void *spi_res_alloc(struct spi_device *spi,
2692 		    spi_res_release_t release,
2693 		    size_t size, gfp_t gfp)
2694 {
2695 	struct spi_res *sres;
2696 
2697 	sres = kzalloc(sizeof(*sres) + size, gfp);
2698 	if (!sres)
2699 		return NULL;
2700 
2701 	INIT_LIST_HEAD(&sres->entry);
2702 	sres->release = release;
2703 
2704 	return sres->data;
2705 }
2706 EXPORT_SYMBOL_GPL(spi_res_alloc);
2707 
2708 /**
2709  * spi_res_free - free an spi resource
2710  * @res: pointer to the custom data of a resource
2711  *
2712  */
2713 void spi_res_free(void *res)
2714 {
2715 	struct spi_res *sres = container_of(res, struct spi_res, data);
2716 
2717 	if (!res)
2718 		return;
2719 
2720 	WARN_ON(!list_empty(&sres->entry));
2721 	kfree(sres);
2722 }
2723 EXPORT_SYMBOL_GPL(spi_res_free);
2724 
2725 /**
2726  * spi_res_add - add a spi_res to the spi_message
2727  * @message: the spi message
2728  * @res:     the spi_resource
2729  */
2730 void spi_res_add(struct spi_message *message, void *res)
2731 {
2732 	struct spi_res *sres = container_of(res, struct spi_res, data);
2733 
2734 	WARN_ON(!list_empty(&sres->entry));
2735 	list_add_tail(&sres->entry, &message->resources);
2736 }
2737 EXPORT_SYMBOL_GPL(spi_res_add);
2738 
2739 /**
2740  * spi_res_release - release all spi resources for this message
2741  * @ctlr:  the @spi_controller
2742  * @message: the @spi_message
2743  */
2744 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2745 {
2746 	struct spi_res *res, *tmp;
2747 
2748 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2749 		if (res->release)
2750 			res->release(ctlr, message, res->data);
2751 
2752 		list_del(&res->entry);
2753 
2754 		kfree(res);
2755 	}
2756 }
2757 EXPORT_SYMBOL_GPL(spi_res_release);
2758 
2759 /*-------------------------------------------------------------------------*/
2760 
2761 /* Core methods for spi_message alterations */
2762 
2763 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2764 					    struct spi_message *msg,
2765 					    void *res)
2766 {
2767 	struct spi_replaced_transfers *rxfer = res;
2768 	size_t i;
2769 
2770 	/* call extra callback if requested */
2771 	if (rxfer->release)
2772 		rxfer->release(ctlr, msg, res);
2773 
2774 	/* insert replaced transfers back into the message */
2775 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2776 
2777 	/* remove the formerly inserted entries */
2778 	for (i = 0; i < rxfer->inserted; i++)
2779 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2780 }
2781 
2782 /**
2783  * spi_replace_transfers - replace transfers with several transfers
2784  *                         and register change with spi_message.resources
2785  * @msg:           the spi_message we work upon
2786  * @xfer_first:    the first spi_transfer we want to replace
2787  * @remove:        number of transfers to remove
2788  * @insert:        the number of transfers we want to insert instead
2789  * @release:       extra release code necessary in some circumstances
2790  * @extradatasize: extra data to allocate (with alignment guarantees
2791  *                 of struct @spi_transfer)
2792  * @gfp:           gfp flags
2793  *
2794  * Returns: pointer to @spi_replaced_transfers,
2795  *          PTR_ERR(...) in case of errors.
2796  */
2797 struct spi_replaced_transfers *spi_replace_transfers(
2798 	struct spi_message *msg,
2799 	struct spi_transfer *xfer_first,
2800 	size_t remove,
2801 	size_t insert,
2802 	spi_replaced_release_t release,
2803 	size_t extradatasize,
2804 	gfp_t gfp)
2805 {
2806 	struct spi_replaced_transfers *rxfer;
2807 	struct spi_transfer *xfer;
2808 	size_t i;
2809 
2810 	/* allocate the structure using spi_res */
2811 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2812 			      struct_size(rxfer, inserted_transfers, insert)
2813 			      + extradatasize,
2814 			      gfp);
2815 	if (!rxfer)
2816 		return ERR_PTR(-ENOMEM);
2817 
2818 	/* the release code to invoke before running the generic release */
2819 	rxfer->release = release;
2820 
2821 	/* assign extradata */
2822 	if (extradatasize)
2823 		rxfer->extradata =
2824 			&rxfer->inserted_transfers[insert];
2825 
2826 	/* init the replaced_transfers list */
2827 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2828 
2829 	/* assign the list_entry after which we should reinsert
2830 	 * the @replaced_transfers - it may be spi_message.messages!
2831 	 */
2832 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2833 
2834 	/* remove the requested number of transfers */
2835 	for (i = 0; i < remove; i++) {
2836 		/* if the entry after replaced_after it is msg->transfers
2837 		 * then we have been requested to remove more transfers
2838 		 * than are in the list
2839 		 */
2840 		if (rxfer->replaced_after->next == &msg->transfers) {
2841 			dev_err(&msg->spi->dev,
2842 				"requested to remove more spi_transfers than are available\n");
2843 			/* insert replaced transfers back into the message */
2844 			list_splice(&rxfer->replaced_transfers,
2845 				    rxfer->replaced_after);
2846 
2847 			/* free the spi_replace_transfer structure */
2848 			spi_res_free(rxfer);
2849 
2850 			/* and return with an error */
2851 			return ERR_PTR(-EINVAL);
2852 		}
2853 
2854 		/* remove the entry after replaced_after from list of
2855 		 * transfers and add it to list of replaced_transfers
2856 		 */
2857 		list_move_tail(rxfer->replaced_after->next,
2858 			       &rxfer->replaced_transfers);
2859 	}
2860 
2861 	/* create copy of the given xfer with identical settings
2862 	 * based on the first transfer to get removed
2863 	 */
2864 	for (i = 0; i < insert; i++) {
2865 		/* we need to run in reverse order */
2866 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2867 
2868 		/* copy all spi_transfer data */
2869 		memcpy(xfer, xfer_first, sizeof(*xfer));
2870 
2871 		/* add to list */
2872 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2873 
2874 		/* clear cs_change and delay_usecs for all but the last */
2875 		if (i) {
2876 			xfer->cs_change = false;
2877 			xfer->delay_usecs = 0;
2878 		}
2879 	}
2880 
2881 	/* set up inserted */
2882 	rxfer->inserted = insert;
2883 
2884 	/* and register it with spi_res/spi_message */
2885 	spi_res_add(msg, rxfer);
2886 
2887 	return rxfer;
2888 }
2889 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2890 
2891 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2892 					struct spi_message *msg,
2893 					struct spi_transfer **xferp,
2894 					size_t maxsize,
2895 					gfp_t gfp)
2896 {
2897 	struct spi_transfer *xfer = *xferp, *xfers;
2898 	struct spi_replaced_transfers *srt;
2899 	size_t offset;
2900 	size_t count, i;
2901 
2902 	/* calculate how many we have to replace */
2903 	count = DIV_ROUND_UP(xfer->len, maxsize);
2904 
2905 	/* create replacement */
2906 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2907 	if (IS_ERR(srt))
2908 		return PTR_ERR(srt);
2909 	xfers = srt->inserted_transfers;
2910 
2911 	/* now handle each of those newly inserted spi_transfers
2912 	 * note that the replacements spi_transfers all are preset
2913 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2914 	 * are all identical (as well as most others)
2915 	 * so we just have to fix up len and the pointers.
2916 	 *
2917 	 * this also includes support for the depreciated
2918 	 * spi_message.is_dma_mapped interface
2919 	 */
2920 
2921 	/* the first transfer just needs the length modified, so we
2922 	 * run it outside the loop
2923 	 */
2924 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2925 
2926 	/* all the others need rx_buf/tx_buf also set */
2927 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2928 		/* update rx_buf, tx_buf and dma */
2929 		if (xfers[i].rx_buf)
2930 			xfers[i].rx_buf += offset;
2931 		if (xfers[i].rx_dma)
2932 			xfers[i].rx_dma += offset;
2933 		if (xfers[i].tx_buf)
2934 			xfers[i].tx_buf += offset;
2935 		if (xfers[i].tx_dma)
2936 			xfers[i].tx_dma += offset;
2937 
2938 		/* update length */
2939 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2940 	}
2941 
2942 	/* we set up xferp to the last entry we have inserted,
2943 	 * so that we skip those already split transfers
2944 	 */
2945 	*xferp = &xfers[count - 1];
2946 
2947 	/* increment statistics counters */
2948 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2949 				       transfers_split_maxsize);
2950 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2951 				       transfers_split_maxsize);
2952 
2953 	return 0;
2954 }
2955 
2956 /**
2957  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2958  *                              when an individual transfer exceeds a
2959  *                              certain size
2960  * @ctlr:    the @spi_controller for this transfer
2961  * @msg:   the @spi_message to transform
2962  * @maxsize:  the maximum when to apply this
2963  * @gfp: GFP allocation flags
2964  *
2965  * Return: status of transformation
2966  */
2967 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2968 				struct spi_message *msg,
2969 				size_t maxsize,
2970 				gfp_t gfp)
2971 {
2972 	struct spi_transfer *xfer;
2973 	int ret;
2974 
2975 	/* iterate over the transfer_list,
2976 	 * but note that xfer is advanced to the last transfer inserted
2977 	 * to avoid checking sizes again unnecessarily (also xfer does
2978 	 * potentiall belong to a different list by the time the
2979 	 * replacement has happened
2980 	 */
2981 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2982 		if (xfer->len > maxsize) {
2983 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2984 							   maxsize, gfp);
2985 			if (ret)
2986 				return ret;
2987 		}
2988 	}
2989 
2990 	return 0;
2991 }
2992 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2993 
2994 /*-------------------------------------------------------------------------*/
2995 
2996 /* Core methods for SPI controller protocol drivers.  Some of the
2997  * other core methods are currently defined as inline functions.
2998  */
2999 
3000 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3001 					u8 bits_per_word)
3002 {
3003 	if (ctlr->bits_per_word_mask) {
3004 		/* Only 32 bits fit in the mask */
3005 		if (bits_per_word > 32)
3006 			return -EINVAL;
3007 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3008 			return -EINVAL;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 /**
3015  * spi_setup - setup SPI mode and clock rate
3016  * @spi: the device whose settings are being modified
3017  * Context: can sleep, and no requests are queued to the device
3018  *
3019  * SPI protocol drivers may need to update the transfer mode if the
3020  * device doesn't work with its default.  They may likewise need
3021  * to update clock rates or word sizes from initial values.  This function
3022  * changes those settings, and must be called from a context that can sleep.
3023  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3024  * effect the next time the device is selected and data is transferred to
3025  * or from it.  When this function returns, the spi device is deselected.
3026  *
3027  * Note that this call will fail if the protocol driver specifies an option
3028  * that the underlying controller or its driver does not support.  For
3029  * example, not all hardware supports wire transfers using nine bit words,
3030  * LSB-first wire encoding, or active-high chipselects.
3031  *
3032  * Return: zero on success, else a negative error code.
3033  */
3034 int spi_setup(struct spi_device *spi)
3035 {
3036 	unsigned	bad_bits, ugly_bits;
3037 	int		status;
3038 
3039 	/* check mode to prevent that DUAL and QUAD set at the same time
3040 	 */
3041 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3042 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3043 		dev_err(&spi->dev,
3044 		"setup: can not select dual and quad at the same time\n");
3045 		return -EINVAL;
3046 	}
3047 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3048 	 */
3049 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3050 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3051 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3052 		return -EINVAL;
3053 	/* help drivers fail *cleanly* when they need options
3054 	 * that aren't supported with their current controller
3055 	 * SPI_CS_WORD has a fallback software implementation,
3056 	 * so it is ignored here.
3057 	 */
3058 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3059 	/* nothing prevents from working with active-high CS in case if it
3060 	 * is driven by GPIO.
3061 	 */
3062 	if (gpio_is_valid(spi->cs_gpio))
3063 		bad_bits &= ~SPI_CS_HIGH;
3064 	ugly_bits = bad_bits &
3065 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3066 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3067 	if (ugly_bits) {
3068 		dev_warn(&spi->dev,
3069 			 "setup: ignoring unsupported mode bits %x\n",
3070 			 ugly_bits);
3071 		spi->mode &= ~ugly_bits;
3072 		bad_bits &= ~ugly_bits;
3073 	}
3074 	if (bad_bits) {
3075 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3076 			bad_bits);
3077 		return -EINVAL;
3078 	}
3079 
3080 	if (!spi->bits_per_word)
3081 		spi->bits_per_word = 8;
3082 
3083 	status = __spi_validate_bits_per_word(spi->controller,
3084 					      spi->bits_per_word);
3085 	if (status)
3086 		return status;
3087 
3088 	if (!spi->max_speed_hz)
3089 		spi->max_speed_hz = spi->controller->max_speed_hz;
3090 
3091 	if (spi->controller->setup)
3092 		status = spi->controller->setup(spi);
3093 
3094 	spi_set_cs(spi, false);
3095 
3096 	if (spi->rt && !spi->controller->rt) {
3097 		spi->controller->rt = true;
3098 		spi_set_thread_rt(spi->controller);
3099 	}
3100 
3101 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3102 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3103 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3104 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3105 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3106 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3107 			spi->bits_per_word, spi->max_speed_hz,
3108 			status);
3109 
3110 	return status;
3111 }
3112 EXPORT_SYMBOL_GPL(spi_setup);
3113 
3114 /**
3115  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3116  * @spi: the device that requires specific CS timing configuration
3117  * @setup: CS setup time in terms of clock count
3118  * @hold: CS hold time in terms of clock count
3119  * @inactive_dly: CS inactive delay between transfers in terms of clock count
3120  */
3121 void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3122 		       u8 inactive_dly)
3123 {
3124 	if (spi->controller->set_cs_timing)
3125 		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3126 }
3127 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3128 
3129 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3130 {
3131 	struct spi_controller *ctlr = spi->controller;
3132 	struct spi_transfer *xfer;
3133 	int w_size;
3134 
3135 	if (list_empty(&message->transfers))
3136 		return -EINVAL;
3137 
3138 	/* If an SPI controller does not support toggling the CS line on each
3139 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3140 	 * for the CS line, we can emulate the CS-per-word hardware function by
3141 	 * splitting transfers into one-word transfers and ensuring that
3142 	 * cs_change is set for each transfer.
3143 	 */
3144 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3145 					  spi->cs_gpiod ||
3146 					  gpio_is_valid(spi->cs_gpio))) {
3147 		size_t maxsize;
3148 		int ret;
3149 
3150 		maxsize = (spi->bits_per_word + 7) / 8;
3151 
3152 		/* spi_split_transfers_maxsize() requires message->spi */
3153 		message->spi = spi;
3154 
3155 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3156 						  GFP_KERNEL);
3157 		if (ret)
3158 			return ret;
3159 
3160 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3161 			/* don't change cs_change on the last entry in the list */
3162 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3163 				break;
3164 			xfer->cs_change = 1;
3165 		}
3166 	}
3167 
3168 	/* Half-duplex links include original MicroWire, and ones with
3169 	 * only one data pin like SPI_3WIRE (switches direction) or where
3170 	 * either MOSI or MISO is missing.  They can also be caused by
3171 	 * software limitations.
3172 	 */
3173 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3174 	    (spi->mode & SPI_3WIRE)) {
3175 		unsigned flags = ctlr->flags;
3176 
3177 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3178 			if (xfer->rx_buf && xfer->tx_buf)
3179 				return -EINVAL;
3180 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3181 				return -EINVAL;
3182 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3183 				return -EINVAL;
3184 		}
3185 	}
3186 
3187 	/**
3188 	 * Set transfer bits_per_word and max speed as spi device default if
3189 	 * it is not set for this transfer.
3190 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3191 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3192 	 * Ensure transfer word_delay is at least as long as that required by
3193 	 * device itself.
3194 	 */
3195 	message->frame_length = 0;
3196 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3197 		xfer->effective_speed_hz = 0;
3198 		message->frame_length += xfer->len;
3199 		if (!xfer->bits_per_word)
3200 			xfer->bits_per_word = spi->bits_per_word;
3201 
3202 		if (!xfer->speed_hz)
3203 			xfer->speed_hz = spi->max_speed_hz;
3204 
3205 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3206 			xfer->speed_hz = ctlr->max_speed_hz;
3207 
3208 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3209 			return -EINVAL;
3210 
3211 		/*
3212 		 * SPI transfer length should be multiple of SPI word size
3213 		 * where SPI word size should be power-of-two multiple
3214 		 */
3215 		if (xfer->bits_per_word <= 8)
3216 			w_size = 1;
3217 		else if (xfer->bits_per_word <= 16)
3218 			w_size = 2;
3219 		else
3220 			w_size = 4;
3221 
3222 		/* No partial transfers accepted */
3223 		if (xfer->len % w_size)
3224 			return -EINVAL;
3225 
3226 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3227 		    xfer->speed_hz < ctlr->min_speed_hz)
3228 			return -EINVAL;
3229 
3230 		if (xfer->tx_buf && !xfer->tx_nbits)
3231 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3232 		if (xfer->rx_buf && !xfer->rx_nbits)
3233 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3234 		/* check transfer tx/rx_nbits:
3235 		 * 1. check the value matches one of single, dual and quad
3236 		 * 2. check tx/rx_nbits match the mode in spi_device
3237 		 */
3238 		if (xfer->tx_buf) {
3239 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3240 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3241 				xfer->tx_nbits != SPI_NBITS_QUAD)
3242 				return -EINVAL;
3243 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3244 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3245 				return -EINVAL;
3246 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3247 				!(spi->mode & SPI_TX_QUAD))
3248 				return -EINVAL;
3249 		}
3250 		/* check transfer rx_nbits */
3251 		if (xfer->rx_buf) {
3252 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3253 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3254 				xfer->rx_nbits != SPI_NBITS_QUAD)
3255 				return -EINVAL;
3256 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3257 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3258 				return -EINVAL;
3259 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3260 				!(spi->mode & SPI_RX_QUAD))
3261 				return -EINVAL;
3262 		}
3263 
3264 		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3265 			xfer->word_delay_usecs = spi->word_delay_usecs;
3266 	}
3267 
3268 	message->status = -EINPROGRESS;
3269 
3270 	return 0;
3271 }
3272 
3273 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3274 {
3275 	struct spi_controller *ctlr = spi->controller;
3276 
3277 	/*
3278 	 * Some controllers do not support doing regular SPI transfers. Return
3279 	 * ENOTSUPP when this is the case.
3280 	 */
3281 	if (!ctlr->transfer)
3282 		return -ENOTSUPP;
3283 
3284 	message->spi = spi;
3285 
3286 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3287 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3288 
3289 	trace_spi_message_submit(message);
3290 
3291 	return ctlr->transfer(spi, message);
3292 }
3293 
3294 /**
3295  * spi_async - asynchronous SPI transfer
3296  * @spi: device with which data will be exchanged
3297  * @message: describes the data transfers, including completion callback
3298  * Context: any (irqs may be blocked, etc)
3299  *
3300  * This call may be used in_irq and other contexts which can't sleep,
3301  * as well as from task contexts which can sleep.
3302  *
3303  * The completion callback is invoked in a context which can't sleep.
3304  * Before that invocation, the value of message->status is undefined.
3305  * When the callback is issued, message->status holds either zero (to
3306  * indicate complete success) or a negative error code.  After that
3307  * callback returns, the driver which issued the transfer request may
3308  * deallocate the associated memory; it's no longer in use by any SPI
3309  * core or controller driver code.
3310  *
3311  * Note that although all messages to a spi_device are handled in
3312  * FIFO order, messages may go to different devices in other orders.
3313  * Some device might be higher priority, or have various "hard" access
3314  * time requirements, for example.
3315  *
3316  * On detection of any fault during the transfer, processing of
3317  * the entire message is aborted, and the device is deselected.
3318  * Until returning from the associated message completion callback,
3319  * no other spi_message queued to that device will be processed.
3320  * (This rule applies equally to all the synchronous transfer calls,
3321  * which are wrappers around this core asynchronous primitive.)
3322  *
3323  * Return: zero on success, else a negative error code.
3324  */
3325 int spi_async(struct spi_device *spi, struct spi_message *message)
3326 {
3327 	struct spi_controller *ctlr = spi->controller;
3328 	int ret;
3329 	unsigned long flags;
3330 
3331 	ret = __spi_validate(spi, message);
3332 	if (ret != 0)
3333 		return ret;
3334 
3335 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3336 
3337 	if (ctlr->bus_lock_flag)
3338 		ret = -EBUSY;
3339 	else
3340 		ret = __spi_async(spi, message);
3341 
3342 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3343 
3344 	return ret;
3345 }
3346 EXPORT_SYMBOL_GPL(spi_async);
3347 
3348 /**
3349  * spi_async_locked - version of spi_async with exclusive bus usage
3350  * @spi: device with which data will be exchanged
3351  * @message: describes the data transfers, including completion callback
3352  * Context: any (irqs may be blocked, etc)
3353  *
3354  * This call may be used in_irq and other contexts which can't sleep,
3355  * as well as from task contexts which can sleep.
3356  *
3357  * The completion callback is invoked in a context which can't sleep.
3358  * Before that invocation, the value of message->status is undefined.
3359  * When the callback is issued, message->status holds either zero (to
3360  * indicate complete success) or a negative error code.  After that
3361  * callback returns, the driver which issued the transfer request may
3362  * deallocate the associated memory; it's no longer in use by any SPI
3363  * core or controller driver code.
3364  *
3365  * Note that although all messages to a spi_device are handled in
3366  * FIFO order, messages may go to different devices in other orders.
3367  * Some device might be higher priority, or have various "hard" access
3368  * time requirements, for example.
3369  *
3370  * On detection of any fault during the transfer, processing of
3371  * the entire message is aborted, and the device is deselected.
3372  * Until returning from the associated message completion callback,
3373  * no other spi_message queued to that device will be processed.
3374  * (This rule applies equally to all the synchronous transfer calls,
3375  * which are wrappers around this core asynchronous primitive.)
3376  *
3377  * Return: zero on success, else a negative error code.
3378  */
3379 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3380 {
3381 	struct spi_controller *ctlr = spi->controller;
3382 	int ret;
3383 	unsigned long flags;
3384 
3385 	ret = __spi_validate(spi, message);
3386 	if (ret != 0)
3387 		return ret;
3388 
3389 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3390 
3391 	ret = __spi_async(spi, message);
3392 
3393 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3394 
3395 	return ret;
3396 
3397 }
3398 EXPORT_SYMBOL_GPL(spi_async_locked);
3399 
3400 /*-------------------------------------------------------------------------*/
3401 
3402 /* Utility methods for SPI protocol drivers, layered on
3403  * top of the core.  Some other utility methods are defined as
3404  * inline functions.
3405  */
3406 
3407 static void spi_complete(void *arg)
3408 {
3409 	complete(arg);
3410 }
3411 
3412 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3413 {
3414 	DECLARE_COMPLETION_ONSTACK(done);
3415 	int status;
3416 	struct spi_controller *ctlr = spi->controller;
3417 	unsigned long flags;
3418 
3419 	status = __spi_validate(spi, message);
3420 	if (status != 0)
3421 		return status;
3422 
3423 	message->complete = spi_complete;
3424 	message->context = &done;
3425 	message->spi = spi;
3426 
3427 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3428 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3429 
3430 	/* If we're not using the legacy transfer method then we will
3431 	 * try to transfer in the calling context so special case.
3432 	 * This code would be less tricky if we could remove the
3433 	 * support for driver implemented message queues.
3434 	 */
3435 	if (ctlr->transfer == spi_queued_transfer) {
3436 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3437 
3438 		trace_spi_message_submit(message);
3439 
3440 		status = __spi_queued_transfer(spi, message, false);
3441 
3442 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3443 	} else {
3444 		status = spi_async_locked(spi, message);
3445 	}
3446 
3447 	if (status == 0) {
3448 		/* Push out the messages in the calling context if we
3449 		 * can.
3450 		 */
3451 		if (ctlr->transfer == spi_queued_transfer) {
3452 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3453 						       spi_sync_immediate);
3454 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3455 						       spi_sync_immediate);
3456 			__spi_pump_messages(ctlr, false);
3457 		}
3458 
3459 		wait_for_completion(&done);
3460 		status = message->status;
3461 	}
3462 	message->context = NULL;
3463 	return status;
3464 }
3465 
3466 /**
3467  * spi_sync - blocking/synchronous SPI data transfers
3468  * @spi: device with which data will be exchanged
3469  * @message: describes the data transfers
3470  * Context: can sleep
3471  *
3472  * This call may only be used from a context that may sleep.  The sleep
3473  * is non-interruptible, and has no timeout.  Low-overhead controller
3474  * drivers may DMA directly into and out of the message buffers.
3475  *
3476  * Note that the SPI device's chip select is active during the message,
3477  * and then is normally disabled between messages.  Drivers for some
3478  * frequently-used devices may want to minimize costs of selecting a chip,
3479  * by leaving it selected in anticipation that the next message will go
3480  * to the same chip.  (That may increase power usage.)
3481  *
3482  * Also, the caller is guaranteeing that the memory associated with the
3483  * message will not be freed before this call returns.
3484  *
3485  * Return: zero on success, else a negative error code.
3486  */
3487 int spi_sync(struct spi_device *spi, struct spi_message *message)
3488 {
3489 	int ret;
3490 
3491 	mutex_lock(&spi->controller->bus_lock_mutex);
3492 	ret = __spi_sync(spi, message);
3493 	mutex_unlock(&spi->controller->bus_lock_mutex);
3494 
3495 	return ret;
3496 }
3497 EXPORT_SYMBOL_GPL(spi_sync);
3498 
3499 /**
3500  * spi_sync_locked - version of spi_sync with exclusive bus usage
3501  * @spi: device with which data will be exchanged
3502  * @message: describes the data transfers
3503  * Context: can sleep
3504  *
3505  * This call may only be used from a context that may sleep.  The sleep
3506  * is non-interruptible, and has no timeout.  Low-overhead controller
3507  * drivers may DMA directly into and out of the message buffers.
3508  *
3509  * This call should be used by drivers that require exclusive access to the
3510  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3511  * be released by a spi_bus_unlock call when the exclusive access is over.
3512  *
3513  * Return: zero on success, else a negative error code.
3514  */
3515 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3516 {
3517 	return __spi_sync(spi, message);
3518 }
3519 EXPORT_SYMBOL_GPL(spi_sync_locked);
3520 
3521 /**
3522  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3523  * @ctlr: SPI bus master that should be locked for exclusive bus access
3524  * Context: can sleep
3525  *
3526  * This call may only be used from a context that may sleep.  The sleep
3527  * is non-interruptible, and has no timeout.
3528  *
3529  * This call should be used by drivers that require exclusive access to the
3530  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3531  * exclusive access is over. Data transfer must be done by spi_sync_locked
3532  * and spi_async_locked calls when the SPI bus lock is held.
3533  *
3534  * Return: always zero.
3535  */
3536 int spi_bus_lock(struct spi_controller *ctlr)
3537 {
3538 	unsigned long flags;
3539 
3540 	mutex_lock(&ctlr->bus_lock_mutex);
3541 
3542 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3543 	ctlr->bus_lock_flag = 1;
3544 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3545 
3546 	/* mutex remains locked until spi_bus_unlock is called */
3547 
3548 	return 0;
3549 }
3550 EXPORT_SYMBOL_GPL(spi_bus_lock);
3551 
3552 /**
3553  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3554  * @ctlr: SPI bus master that was locked for exclusive bus access
3555  * Context: can sleep
3556  *
3557  * This call may only be used from a context that may sleep.  The sleep
3558  * is non-interruptible, and has no timeout.
3559  *
3560  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3561  * call.
3562  *
3563  * Return: always zero.
3564  */
3565 int spi_bus_unlock(struct spi_controller *ctlr)
3566 {
3567 	ctlr->bus_lock_flag = 0;
3568 
3569 	mutex_unlock(&ctlr->bus_lock_mutex);
3570 
3571 	return 0;
3572 }
3573 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3574 
3575 /* portable code must never pass more than 32 bytes */
3576 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3577 
3578 static u8	*buf;
3579 
3580 /**
3581  * spi_write_then_read - SPI synchronous write followed by read
3582  * @spi: device with which data will be exchanged
3583  * @txbuf: data to be written (need not be dma-safe)
3584  * @n_tx: size of txbuf, in bytes
3585  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3586  * @n_rx: size of rxbuf, in bytes
3587  * Context: can sleep
3588  *
3589  * This performs a half duplex MicroWire style transaction with the
3590  * device, sending txbuf and then reading rxbuf.  The return value
3591  * is zero for success, else a negative errno status code.
3592  * This call may only be used from a context that may sleep.
3593  *
3594  * Parameters to this routine are always copied using a small buffer;
3595  * portable code should never use this for more than 32 bytes.
3596  * Performance-sensitive or bulk transfer code should instead use
3597  * spi_{async,sync}() calls with dma-safe buffers.
3598  *
3599  * Return: zero on success, else a negative error code.
3600  */
3601 int spi_write_then_read(struct spi_device *spi,
3602 		const void *txbuf, unsigned n_tx,
3603 		void *rxbuf, unsigned n_rx)
3604 {
3605 	static DEFINE_MUTEX(lock);
3606 
3607 	int			status;
3608 	struct spi_message	message;
3609 	struct spi_transfer	x[2];
3610 	u8			*local_buf;
3611 
3612 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3613 	 * copying here, (as a pure convenience thing), but we can
3614 	 * keep heap costs out of the hot path unless someone else is
3615 	 * using the pre-allocated buffer or the transfer is too large.
3616 	 */
3617 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3618 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3619 				    GFP_KERNEL | GFP_DMA);
3620 		if (!local_buf)
3621 			return -ENOMEM;
3622 	} else {
3623 		local_buf = buf;
3624 	}
3625 
3626 	spi_message_init(&message);
3627 	memset(x, 0, sizeof(x));
3628 	if (n_tx) {
3629 		x[0].len = n_tx;
3630 		spi_message_add_tail(&x[0], &message);
3631 	}
3632 	if (n_rx) {
3633 		x[1].len = n_rx;
3634 		spi_message_add_tail(&x[1], &message);
3635 	}
3636 
3637 	memcpy(local_buf, txbuf, n_tx);
3638 	x[0].tx_buf = local_buf;
3639 	x[1].rx_buf = local_buf + n_tx;
3640 
3641 	/* do the i/o */
3642 	status = spi_sync(spi, &message);
3643 	if (status == 0)
3644 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3645 
3646 	if (x[0].tx_buf == buf)
3647 		mutex_unlock(&lock);
3648 	else
3649 		kfree(local_buf);
3650 
3651 	return status;
3652 }
3653 EXPORT_SYMBOL_GPL(spi_write_then_read);
3654 
3655 /*-------------------------------------------------------------------------*/
3656 
3657 #if IS_ENABLED(CONFIG_OF)
3658 /* must call put_device() when done with returned spi_device device */
3659 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3660 {
3661 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3662 
3663 	return dev ? to_spi_device(dev) : NULL;
3664 }
3665 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3666 #endif /* IS_ENABLED(CONFIG_OF) */
3667 
3668 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3669 /* the spi controllers are not using spi_bus, so we find it with another way */
3670 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3671 {
3672 	struct device *dev;
3673 
3674 	dev = class_find_device_by_of_node(&spi_master_class, node);
3675 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3676 		dev = class_find_device_by_of_node(&spi_slave_class, node);
3677 	if (!dev)
3678 		return NULL;
3679 
3680 	/* reference got in class_find_device */
3681 	return container_of(dev, struct spi_controller, dev);
3682 }
3683 
3684 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3685 			 void *arg)
3686 {
3687 	struct of_reconfig_data *rd = arg;
3688 	struct spi_controller *ctlr;
3689 	struct spi_device *spi;
3690 
3691 	switch (of_reconfig_get_state_change(action, arg)) {
3692 	case OF_RECONFIG_CHANGE_ADD:
3693 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3694 		if (ctlr == NULL)
3695 			return NOTIFY_OK;	/* not for us */
3696 
3697 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3698 			put_device(&ctlr->dev);
3699 			return NOTIFY_OK;
3700 		}
3701 
3702 		spi = of_register_spi_device(ctlr, rd->dn);
3703 		put_device(&ctlr->dev);
3704 
3705 		if (IS_ERR(spi)) {
3706 			pr_err("%s: failed to create for '%pOF'\n",
3707 					__func__, rd->dn);
3708 			of_node_clear_flag(rd->dn, OF_POPULATED);
3709 			return notifier_from_errno(PTR_ERR(spi));
3710 		}
3711 		break;
3712 
3713 	case OF_RECONFIG_CHANGE_REMOVE:
3714 		/* already depopulated? */
3715 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3716 			return NOTIFY_OK;
3717 
3718 		/* find our device by node */
3719 		spi = of_find_spi_device_by_node(rd->dn);
3720 		if (spi == NULL)
3721 			return NOTIFY_OK;	/* no? not meant for us */
3722 
3723 		/* unregister takes one ref away */
3724 		spi_unregister_device(spi);
3725 
3726 		/* and put the reference of the find */
3727 		put_device(&spi->dev);
3728 		break;
3729 	}
3730 
3731 	return NOTIFY_OK;
3732 }
3733 
3734 static struct notifier_block spi_of_notifier = {
3735 	.notifier_call = of_spi_notify,
3736 };
3737 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3738 extern struct notifier_block spi_of_notifier;
3739 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3740 
3741 #if IS_ENABLED(CONFIG_ACPI)
3742 static int spi_acpi_controller_match(struct device *dev, const void *data)
3743 {
3744 	return ACPI_COMPANION(dev->parent) == data;
3745 }
3746 
3747 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3748 {
3749 	struct device *dev;
3750 
3751 	dev = class_find_device(&spi_master_class, NULL, adev,
3752 				spi_acpi_controller_match);
3753 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3754 		dev = class_find_device(&spi_slave_class, NULL, adev,
3755 					spi_acpi_controller_match);
3756 	if (!dev)
3757 		return NULL;
3758 
3759 	return container_of(dev, struct spi_controller, dev);
3760 }
3761 
3762 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3763 {
3764 	struct device *dev;
3765 
3766 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3767 	return dev ? to_spi_device(dev) : NULL;
3768 }
3769 
3770 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3771 			   void *arg)
3772 {
3773 	struct acpi_device *adev = arg;
3774 	struct spi_controller *ctlr;
3775 	struct spi_device *spi;
3776 
3777 	switch (value) {
3778 	case ACPI_RECONFIG_DEVICE_ADD:
3779 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3780 		if (!ctlr)
3781 			break;
3782 
3783 		acpi_register_spi_device(ctlr, adev);
3784 		put_device(&ctlr->dev);
3785 		break;
3786 	case ACPI_RECONFIG_DEVICE_REMOVE:
3787 		if (!acpi_device_enumerated(adev))
3788 			break;
3789 
3790 		spi = acpi_spi_find_device_by_adev(adev);
3791 		if (!spi)
3792 			break;
3793 
3794 		spi_unregister_device(spi);
3795 		put_device(&spi->dev);
3796 		break;
3797 	}
3798 
3799 	return NOTIFY_OK;
3800 }
3801 
3802 static struct notifier_block spi_acpi_notifier = {
3803 	.notifier_call = acpi_spi_notify,
3804 };
3805 #else
3806 extern struct notifier_block spi_acpi_notifier;
3807 #endif
3808 
3809 static int __init spi_init(void)
3810 {
3811 	int	status;
3812 
3813 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3814 	if (!buf) {
3815 		status = -ENOMEM;
3816 		goto err0;
3817 	}
3818 
3819 	status = bus_register(&spi_bus_type);
3820 	if (status < 0)
3821 		goto err1;
3822 
3823 	status = class_register(&spi_master_class);
3824 	if (status < 0)
3825 		goto err2;
3826 
3827 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3828 		status = class_register(&spi_slave_class);
3829 		if (status < 0)
3830 			goto err3;
3831 	}
3832 
3833 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3834 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3835 	if (IS_ENABLED(CONFIG_ACPI))
3836 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3837 
3838 	return 0;
3839 
3840 err3:
3841 	class_unregister(&spi_master_class);
3842 err2:
3843 	bus_unregister(&spi_bus_type);
3844 err1:
3845 	kfree(buf);
3846 	buf = NULL;
3847 err0:
3848 	return status;
3849 }
3850 
3851 /* board_info is normally registered in arch_initcall(),
3852  * but even essential drivers wait till later
3853  *
3854  * REVISIT only boardinfo really needs static linking. the rest (device and
3855  * driver registration) _could_ be dynamically linked (modular) ... costs
3856  * include needing to have boardinfo data structures be much more public.
3857  */
3858 postcore_initcall(spi_init);
3859