xref: /linux/drivers/spi/spi.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/autoconf.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/spi/spi.h>
27 
28 
29 /* SPI bustype and spi_master class are registered after board init code
30  * provides the SPI device tables, ensuring that both are present by the
31  * time controller driver registration causes spi_devices to "enumerate".
32  */
33 static void spidev_release(struct device *dev)
34 {
35 	const struct spi_device	*spi = to_spi_device(dev);
36 
37 	/* spi masters may cleanup for released devices */
38 	if (spi->master->cleanup)
39 		spi->master->cleanup(spi);
40 
41 	spi_master_put(spi->master);
42 	kfree(dev);
43 }
44 
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
47 {
48 	const struct spi_device	*spi = to_spi_device(dev);
49 
50 	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
51 }
52 
53 static struct device_attribute spi_dev_attrs[] = {
54 	__ATTR_RO(modalias),
55 	__ATTR_NULL,
56 };
57 
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59  * and the sysfs version makes coldplug work too.
60  */
61 
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
63 {
64 	const struct spi_device	*spi = to_spi_device(dev);
65 
66 	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
67 }
68 
69 static int spi_uevent(struct device *dev, char **envp, int num_envp,
70 		char *buffer, int buffer_size)
71 {
72 	const struct spi_device		*spi = to_spi_device(dev);
73 
74 	envp[0] = buffer;
75 	snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
76 	envp[1] = NULL;
77 	return 0;
78 }
79 
80 #ifdef	CONFIG_PM
81 
82 /*
83  * NOTE:  the suspend() method for an spi_master controller driver
84  * should verify that all its child devices are marked as suspended;
85  * suspend requests delivered through sysfs power/state files don't
86  * enforce such constraints.
87  */
88 static int spi_suspend(struct device *dev, pm_message_t message)
89 {
90 	int			value;
91 	struct spi_driver	*drv = to_spi_driver(dev->driver);
92 
93 	if (!drv || !drv->suspend)
94 		return 0;
95 
96 	/* suspend will stop irqs and dma; no more i/o */
97 	value = drv->suspend(to_spi_device(dev), message);
98 	if (value == 0)
99 		dev->power.power_state = message;
100 	return value;
101 }
102 
103 static int spi_resume(struct device *dev)
104 {
105 	int			value;
106 	struct spi_driver	*drv = to_spi_driver(dev->driver);
107 
108 	if (!drv || !drv->resume)
109 		return 0;
110 
111 	/* resume may restart the i/o queue */
112 	value = drv->resume(to_spi_device(dev));
113 	if (value == 0)
114 		dev->power.power_state = PMSG_ON;
115 	return value;
116 }
117 
118 #else
119 #define spi_suspend	NULL
120 #define spi_resume	NULL
121 #endif
122 
123 struct bus_type spi_bus_type = {
124 	.name		= "spi",
125 	.dev_attrs	= spi_dev_attrs,
126 	.match		= spi_match_device,
127 	.uevent		= spi_uevent,
128 	.suspend	= spi_suspend,
129 	.resume		= spi_resume,
130 };
131 EXPORT_SYMBOL_GPL(spi_bus_type);
132 
133 
134 static int spi_drv_probe(struct device *dev)
135 {
136 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
137 
138 	return sdrv->probe(to_spi_device(dev));
139 }
140 
141 static int spi_drv_remove(struct device *dev)
142 {
143 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
144 
145 	return sdrv->remove(to_spi_device(dev));
146 }
147 
148 static void spi_drv_shutdown(struct device *dev)
149 {
150 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
151 
152 	sdrv->shutdown(to_spi_device(dev));
153 }
154 
155 int spi_register_driver(struct spi_driver *sdrv)
156 {
157 	sdrv->driver.bus = &spi_bus_type;
158 	if (sdrv->probe)
159 		sdrv->driver.probe = spi_drv_probe;
160 	if (sdrv->remove)
161 		sdrv->driver.remove = spi_drv_remove;
162 	if (sdrv->shutdown)
163 		sdrv->driver.shutdown = spi_drv_shutdown;
164 	return driver_register(&sdrv->driver);
165 }
166 EXPORT_SYMBOL_GPL(spi_register_driver);
167 
168 /*-------------------------------------------------------------------------*/
169 
170 /* SPI devices should normally not be created by SPI device drivers; that
171  * would make them board-specific.  Similarly with SPI master drivers.
172  * Device registration normally goes into like arch/.../mach.../board-YYY.c
173  * with other readonly (flashable) information about mainboard devices.
174  */
175 
176 struct boardinfo {
177 	struct list_head	list;
178 	unsigned		n_board_info;
179 	struct spi_board_info	board_info[0];
180 };
181 
182 static LIST_HEAD(board_list);
183 static DECLARE_MUTEX(board_lock);
184 
185 
186 /* On typical mainboards, this is purely internal; and it's not needed
187  * after board init creates the hard-wired devices.  Some development
188  * platforms may not be able to use spi_register_board_info though, and
189  * this is exported so that for example a USB or parport based adapter
190  * driver could add devices (which it would learn about out-of-band).
191  */
192 struct spi_device *__init_or_module
193 spi_new_device(struct spi_master *master, struct spi_board_info *chip)
194 {
195 	struct spi_device	*proxy;
196 	struct device		*dev = master->cdev.dev;
197 	int			status;
198 
199 	/* NOTE:  caller did any chip->bus_num checks necessary */
200 
201 	if (!spi_master_get(master))
202 		return NULL;
203 
204 	proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
205 	if (!proxy) {
206 		dev_err(dev, "can't alloc dev for cs%d\n",
207 			chip->chip_select);
208 		goto fail;
209 	}
210 	proxy->master = master;
211 	proxy->chip_select = chip->chip_select;
212 	proxy->max_speed_hz = chip->max_speed_hz;
213 	proxy->mode = chip->mode;
214 	proxy->irq = chip->irq;
215 	proxy->modalias = chip->modalias;
216 
217 	snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
218 			"%s.%u", master->cdev.class_id,
219 			chip->chip_select);
220 	proxy->dev.parent = dev;
221 	proxy->dev.bus = &spi_bus_type;
222 	proxy->dev.platform_data = (void *) chip->platform_data;
223 	proxy->controller_data = chip->controller_data;
224 	proxy->controller_state = NULL;
225 	proxy->dev.release = spidev_release;
226 
227 	/* drivers may modify this default i/o setup */
228 	status = master->setup(proxy);
229 	if (status < 0) {
230 		dev_dbg(dev, "can't %s %s, status %d\n",
231 				"setup", proxy->dev.bus_id, status);
232 		goto fail;
233 	}
234 
235 	/* driver core catches callers that misbehave by defining
236 	 * devices that already exist.
237 	 */
238 	status = device_register(&proxy->dev);
239 	if (status < 0) {
240 		dev_dbg(dev, "can't %s %s, status %d\n",
241 				"add", proxy->dev.bus_id, status);
242 		goto fail;
243 	}
244 	dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
245 	return proxy;
246 
247 fail:
248 	spi_master_put(master);
249 	kfree(proxy);
250 	return NULL;
251 }
252 EXPORT_SYMBOL_GPL(spi_new_device);
253 
254 /*
255  * Board-specific early init code calls this (probably during arch_initcall)
256  * with segments of the SPI device table.  Any device nodes are created later,
257  * after the relevant parent SPI controller (bus_num) is defined.  We keep
258  * this table of devices forever, so that reloading a controller driver will
259  * not make Linux forget about these hard-wired devices.
260  *
261  * Other code can also call this, e.g. a particular add-on board might provide
262  * SPI devices through its expansion connector, so code initializing that board
263  * would naturally declare its SPI devices.
264  *
265  * The board info passed can safely be __initdata ... but be careful of
266  * any embedded pointers (platform_data, etc), they're copied as-is.
267  */
268 int __init
269 spi_register_board_info(struct spi_board_info const *info, unsigned n)
270 {
271 	struct boardinfo	*bi;
272 
273 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
274 	if (!bi)
275 		return -ENOMEM;
276 	bi->n_board_info = n;
277 	memcpy(bi->board_info, info, n * sizeof *info);
278 
279 	down(&board_lock);
280 	list_add_tail(&bi->list, &board_list);
281 	up(&board_lock);
282 	return 0;
283 }
284 EXPORT_SYMBOL_GPL(spi_register_board_info);
285 
286 /* FIXME someone should add support for a __setup("spi", ...) that
287  * creates board info from kernel command lines
288  */
289 
290 static void __init_or_module
291 scan_boardinfo(struct spi_master *master)
292 {
293 	struct boardinfo	*bi;
294 	struct device		*dev = master->cdev.dev;
295 
296 	down(&board_lock);
297 	list_for_each_entry(bi, &board_list, list) {
298 		struct spi_board_info	*chip = bi->board_info;
299 		unsigned		n;
300 
301 		for (n = bi->n_board_info; n > 0; n--, chip++) {
302 			if (chip->bus_num != master->bus_num)
303 				continue;
304 			/* some controllers only have one chip, so they
305 			 * might not use chipselects.  otherwise, the
306 			 * chipselects are numbered 0..max.
307 			 */
308 			if (chip->chip_select >= master->num_chipselect
309 					&& master->num_chipselect) {
310 				dev_dbg(dev, "cs%d > max %d\n",
311 					chip->chip_select,
312 					master->num_chipselect);
313 				continue;
314 			}
315 			(void) spi_new_device(master, chip);
316 		}
317 	}
318 	up(&board_lock);
319 }
320 
321 /*-------------------------------------------------------------------------*/
322 
323 static void spi_master_release(struct class_device *cdev)
324 {
325 	struct spi_master *master;
326 
327 	master = container_of(cdev, struct spi_master, cdev);
328 	kfree(master);
329 }
330 
331 static struct class spi_master_class = {
332 	.name		= "spi_master",
333 	.owner		= THIS_MODULE,
334 	.release	= spi_master_release,
335 };
336 
337 
338 /**
339  * spi_alloc_master - allocate SPI master controller
340  * @dev: the controller, possibly using the platform_bus
341  * @size: how much driver-private data to preallocate; the pointer to this
342  *	memory is in the class_data field of the returned class_device,
343  *	accessible with spi_master_get_devdata().
344  *
345  * This call is used only by SPI master controller drivers, which are the
346  * only ones directly touching chip registers.  It's how they allocate
347  * an spi_master structure, prior to calling spi_register_master().
348  *
349  * This must be called from context that can sleep.  It returns the SPI
350  * master structure on success, else NULL.
351  *
352  * The caller is responsible for assigning the bus number and initializing
353  * the master's methods before calling spi_register_master(); and (after errors
354  * adding the device) calling spi_master_put() to prevent a memory leak.
355  */
356 struct spi_master * __init_or_module
357 spi_alloc_master(struct device *dev, unsigned size)
358 {
359 	struct spi_master	*master;
360 
361 	if (!dev)
362 		return NULL;
363 
364 	master = kzalloc(size + sizeof *master, SLAB_KERNEL);
365 	if (!master)
366 		return NULL;
367 
368 	class_device_initialize(&master->cdev);
369 	master->cdev.class = &spi_master_class;
370 	master->cdev.dev = get_device(dev);
371 	spi_master_set_devdata(master, &master[1]);
372 
373 	return master;
374 }
375 EXPORT_SYMBOL_GPL(spi_alloc_master);
376 
377 /**
378  * spi_register_master - register SPI master controller
379  * @master: initialized master, originally from spi_alloc_master()
380  *
381  * SPI master controllers connect to their drivers using some non-SPI bus,
382  * such as the platform bus.  The final stage of probe() in that code
383  * includes calling spi_register_master() to hook up to this SPI bus glue.
384  *
385  * SPI controllers use board specific (often SOC specific) bus numbers,
386  * and board-specific addressing for SPI devices combines those numbers
387  * with chip select numbers.  Since SPI does not directly support dynamic
388  * device identification, boards need configuration tables telling which
389  * chip is at which address.
390  *
391  * This must be called from context that can sleep.  It returns zero on
392  * success, else a negative error code (dropping the master's refcount).
393  * After a successful return, the caller is responsible for calling
394  * spi_unregister_master().
395  */
396 int __init_or_module
397 spi_register_master(struct spi_master *master)
398 {
399 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<16) - 1);
400 	struct device		*dev = master->cdev.dev;
401 	int			status = -ENODEV;
402 	int			dynamic = 0;
403 
404 	if (!dev)
405 		return -ENODEV;
406 
407 	/* convention:  dynamically assigned bus IDs count down from the max */
408 	if (master->bus_num < 0) {
409 		master->bus_num = atomic_dec_return(&dyn_bus_id);
410 		dynamic = 1;
411 	}
412 
413 	/* register the device, then userspace will see it.
414 	 * registration fails if the bus ID is in use.
415 	 */
416 	snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
417 		"spi%u", master->bus_num);
418 	status = class_device_add(&master->cdev);
419 	if (status < 0)
420 		goto done;
421 	dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
422 			dynamic ? " (dynamic)" : "");
423 
424 	/* populate children from any spi device tables */
425 	scan_boardinfo(master);
426 	status = 0;
427 done:
428 	return status;
429 }
430 EXPORT_SYMBOL_GPL(spi_register_master);
431 
432 
433 static int __unregister(struct device *dev, void *unused)
434 {
435 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
436 	spi_unregister_device(to_spi_device(dev));
437 	return 0;
438 }
439 
440 /**
441  * spi_unregister_master - unregister SPI master controller
442  * @master: the master being unregistered
443  *
444  * This call is used only by SPI master controller drivers, which are the
445  * only ones directly touching chip registers.
446  *
447  * This must be called from context that can sleep.
448  */
449 void spi_unregister_master(struct spi_master *master)
450 {
451 	(void) device_for_each_child(master->cdev.dev, NULL, __unregister);
452 	class_device_unregister(&master->cdev);
453 }
454 EXPORT_SYMBOL_GPL(spi_unregister_master);
455 
456 /**
457  * spi_busnum_to_master - look up master associated with bus_num
458  * @bus_num: the master's bus number
459  *
460  * This call may be used with devices that are registered after
461  * arch init time.  It returns a refcounted pointer to the relevant
462  * spi_master (which the caller must release), or NULL if there is
463  * no such master registered.
464  */
465 struct spi_master *spi_busnum_to_master(u16 bus_num)
466 {
467 	if (bus_num) {
468 		char			name[8];
469 		struct kobject		*bus;
470 
471 		snprintf(name, sizeof name, "spi%u", bus_num);
472 		bus = kset_find_obj(&spi_master_class.subsys.kset, name);
473 		if (bus)
474 			return container_of(bus, struct spi_master, cdev.kobj);
475 	}
476 	return NULL;
477 }
478 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
479 
480 
481 /*-------------------------------------------------------------------------*/
482 
483 static void spi_complete(void *arg)
484 {
485 	complete(arg);
486 }
487 
488 /**
489  * spi_sync - blocking/synchronous SPI data transfers
490  * @spi: device with which data will be exchanged
491  * @message: describes the data transfers
492  *
493  * This call may only be used from a context that may sleep.  The sleep
494  * is non-interruptible, and has no timeout.  Low-overhead controller
495  * drivers may DMA directly into and out of the message buffers.
496  *
497  * Note that the SPI device's chip select is active during the message,
498  * and then is normally disabled between messages.  Drivers for some
499  * frequently-used devices may want to minimize costs of selecting a chip,
500  * by leaving it selected in anticipation that the next message will go
501  * to the same chip.  (That may increase power usage.)
502  *
503  * Also, the caller is guaranteeing that the memory associated with the
504  * message will not be freed before this call returns.
505  *
506  * The return value is a negative error code if the message could not be
507  * submitted, else zero.  When the value is zero, then message->status is
508  * also defined:  it's the completion code for the transfer, either zero
509  * or a negative error code from the controller driver.
510  */
511 int spi_sync(struct spi_device *spi, struct spi_message *message)
512 {
513 	DECLARE_COMPLETION_ONSTACK(done);
514 	int status;
515 
516 	message->complete = spi_complete;
517 	message->context = &done;
518 	status = spi_async(spi, message);
519 	if (status == 0)
520 		wait_for_completion(&done);
521 	message->context = NULL;
522 	return status;
523 }
524 EXPORT_SYMBOL_GPL(spi_sync);
525 
526 /* portable code must never pass more than 32 bytes */
527 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
528 
529 static u8	*buf;
530 
531 /**
532  * spi_write_then_read - SPI synchronous write followed by read
533  * @spi: device with which data will be exchanged
534  * @txbuf: data to be written (need not be dma-safe)
535  * @n_tx: size of txbuf, in bytes
536  * @rxbuf: buffer into which data will be read
537  * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
538  *
539  * This performs a half duplex MicroWire style transaction with the
540  * device, sending txbuf and then reading rxbuf.  The return value
541  * is zero for success, else a negative errno status code.
542  * This call may only be used from a context that may sleep.
543  *
544  * Parameters to this routine are always copied using a small buffer;
545  * performance-sensitive or bulk transfer code should instead use
546  * spi_{async,sync}() calls with dma-safe buffers.
547  */
548 int spi_write_then_read(struct spi_device *spi,
549 		const u8 *txbuf, unsigned n_tx,
550 		u8 *rxbuf, unsigned n_rx)
551 {
552 	static DECLARE_MUTEX(lock);
553 
554 	int			status;
555 	struct spi_message	message;
556 	struct spi_transfer	x[2];
557 	u8			*local_buf;
558 
559 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
560 	 * (as a pure convenience thing), but we can keep heap costs
561 	 * out of the hot path ...
562 	 */
563 	if ((n_tx + n_rx) > SPI_BUFSIZ)
564 		return -EINVAL;
565 
566 	spi_message_init(&message);
567 	memset(x, 0, sizeof x);
568 	if (n_tx) {
569 		x[0].len = n_tx;
570 		spi_message_add_tail(&x[0], &message);
571 	}
572 	if (n_rx) {
573 		x[1].len = n_rx;
574 		spi_message_add_tail(&x[1], &message);
575 	}
576 
577 	/* ... unless someone else is using the pre-allocated buffer */
578 	if (down_trylock(&lock)) {
579 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
580 		if (!local_buf)
581 			return -ENOMEM;
582 	} else
583 		local_buf = buf;
584 
585 	memcpy(local_buf, txbuf, n_tx);
586 	x[0].tx_buf = local_buf;
587 	x[1].rx_buf = local_buf + n_tx;
588 
589 	/* do the i/o */
590 	status = spi_sync(spi, &message);
591 	if (status == 0) {
592 		memcpy(rxbuf, x[1].rx_buf, n_rx);
593 		status = message.status;
594 	}
595 
596 	if (x[0].tx_buf == buf)
597 		up(&lock);
598 	else
599 		kfree(local_buf);
600 
601 	return status;
602 }
603 EXPORT_SYMBOL_GPL(spi_write_then_read);
604 
605 /*-------------------------------------------------------------------------*/
606 
607 static int __init spi_init(void)
608 {
609 	int	status;
610 
611 	buf = kmalloc(SPI_BUFSIZ, SLAB_KERNEL);
612 	if (!buf) {
613 		status = -ENOMEM;
614 		goto err0;
615 	}
616 
617 	status = bus_register(&spi_bus_type);
618 	if (status < 0)
619 		goto err1;
620 
621 	status = class_register(&spi_master_class);
622 	if (status < 0)
623 		goto err2;
624 	return 0;
625 
626 err2:
627 	bus_unregister(&spi_bus_type);
628 err1:
629 	kfree(buf);
630 	buf = NULL;
631 err0:
632 	return status;
633 }
634 
635 /* board_info is normally registered in arch_initcall(),
636  * but even essential drivers wait till later
637  *
638  * REVISIT only boardinfo really needs static linking. the rest (device and
639  * driver registration) _could_ be dynamically linked (modular) ... costs
640  * include needing to have boardinfo data structures be much more public.
641  */
642 subsys_initcall(spi_init);
643 
644