1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/device.h> 20 #include <linux/init.h> 21 #include <linux/cache.h> 22 #include <linux/dma-mapping.h> 23 #include <linux/dmaengine.h> 24 #include <linux/mutex.h> 25 #include <linux/of_device.h> 26 #include <linux/of_irq.h> 27 #include <linux/clk/clk-conf.h> 28 #include <linux/slab.h> 29 #include <linux/mod_devicetable.h> 30 #include <linux/spi/spi.h> 31 #include <linux/of_gpio.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/pm_domain.h> 34 #include <linux/export.h> 35 #include <linux/sched/rt.h> 36 #include <linux/delay.h> 37 #include <linux/kthread.h> 38 #include <linux/ioport.h> 39 #include <linux/acpi.h> 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/spi.h> 43 44 static void spidev_release(struct device *dev) 45 { 46 struct spi_device *spi = to_spi_device(dev); 47 48 /* spi masters may cleanup for released devices */ 49 if (spi->master->cleanup) 50 spi->master->cleanup(spi); 51 52 spi_master_put(spi->master); 53 kfree(spi); 54 } 55 56 static ssize_t 57 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 58 { 59 const struct spi_device *spi = to_spi_device(dev); 60 int len; 61 62 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 63 if (len != -ENODEV) 64 return len; 65 66 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 67 } 68 static DEVICE_ATTR_RO(modalias); 69 70 #define SPI_STATISTICS_ATTRS(field, file) \ 71 static ssize_t spi_master_##field##_show(struct device *dev, \ 72 struct device_attribute *attr, \ 73 char *buf) \ 74 { \ 75 struct spi_master *master = container_of(dev, \ 76 struct spi_master, dev); \ 77 return spi_statistics_##field##_show(&master->statistics, buf); \ 78 } \ 79 static struct device_attribute dev_attr_spi_master_##field = { \ 80 .attr = { .name = file, .mode = S_IRUGO }, \ 81 .show = spi_master_##field##_show, \ 82 }; \ 83 static ssize_t spi_device_##field##_show(struct device *dev, \ 84 struct device_attribute *attr, \ 85 char *buf) \ 86 { \ 87 struct spi_device *spi = to_spi_device(dev); \ 88 return spi_statistics_##field##_show(&spi->statistics, buf); \ 89 } \ 90 static struct device_attribute dev_attr_spi_device_##field = { \ 91 .attr = { .name = file, .mode = S_IRUGO }, \ 92 .show = spi_device_##field##_show, \ 93 } 94 95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 97 char *buf) \ 98 { \ 99 unsigned long flags; \ 100 ssize_t len; \ 101 spin_lock_irqsave(&stat->lock, flags); \ 102 len = sprintf(buf, format_string, stat->field); \ 103 spin_unlock_irqrestore(&stat->lock, flags); \ 104 return len; \ 105 } \ 106 SPI_STATISTICS_ATTRS(name, file) 107 108 #define SPI_STATISTICS_SHOW(field, format_string) \ 109 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 110 field, format_string) 111 112 SPI_STATISTICS_SHOW(messages, "%lu"); 113 SPI_STATISTICS_SHOW(transfers, "%lu"); 114 SPI_STATISTICS_SHOW(errors, "%lu"); 115 SPI_STATISTICS_SHOW(timedout, "%lu"); 116 117 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 119 SPI_STATISTICS_SHOW(spi_async, "%lu"); 120 121 SPI_STATISTICS_SHOW(bytes, "%llu"); 122 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 123 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 124 125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 126 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 127 "transfer_bytes_histo_" number, \ 128 transfer_bytes_histo[index], "%lu") 129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 146 147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 148 149 static struct attribute *spi_dev_attrs[] = { 150 &dev_attr_modalias.attr, 151 NULL, 152 }; 153 154 static const struct attribute_group spi_dev_group = { 155 .attrs = spi_dev_attrs, 156 }; 157 158 static struct attribute *spi_device_statistics_attrs[] = { 159 &dev_attr_spi_device_messages.attr, 160 &dev_attr_spi_device_transfers.attr, 161 &dev_attr_spi_device_errors.attr, 162 &dev_attr_spi_device_timedout.attr, 163 &dev_attr_spi_device_spi_sync.attr, 164 &dev_attr_spi_device_spi_sync_immediate.attr, 165 &dev_attr_spi_device_spi_async.attr, 166 &dev_attr_spi_device_bytes.attr, 167 &dev_attr_spi_device_bytes_rx.attr, 168 &dev_attr_spi_device_bytes_tx.attr, 169 &dev_attr_spi_device_transfer_bytes_histo0.attr, 170 &dev_attr_spi_device_transfer_bytes_histo1.attr, 171 &dev_attr_spi_device_transfer_bytes_histo2.attr, 172 &dev_attr_spi_device_transfer_bytes_histo3.attr, 173 &dev_attr_spi_device_transfer_bytes_histo4.attr, 174 &dev_attr_spi_device_transfer_bytes_histo5.attr, 175 &dev_attr_spi_device_transfer_bytes_histo6.attr, 176 &dev_attr_spi_device_transfer_bytes_histo7.attr, 177 &dev_attr_spi_device_transfer_bytes_histo8.attr, 178 &dev_attr_spi_device_transfer_bytes_histo9.attr, 179 &dev_attr_spi_device_transfer_bytes_histo10.attr, 180 &dev_attr_spi_device_transfer_bytes_histo11.attr, 181 &dev_attr_spi_device_transfer_bytes_histo12.attr, 182 &dev_attr_spi_device_transfer_bytes_histo13.attr, 183 &dev_attr_spi_device_transfer_bytes_histo14.attr, 184 &dev_attr_spi_device_transfer_bytes_histo15.attr, 185 &dev_attr_spi_device_transfer_bytes_histo16.attr, 186 &dev_attr_spi_device_transfers_split_maxsize.attr, 187 NULL, 188 }; 189 190 static const struct attribute_group spi_device_statistics_group = { 191 .name = "statistics", 192 .attrs = spi_device_statistics_attrs, 193 }; 194 195 static const struct attribute_group *spi_dev_groups[] = { 196 &spi_dev_group, 197 &spi_device_statistics_group, 198 NULL, 199 }; 200 201 static struct attribute *spi_master_statistics_attrs[] = { 202 &dev_attr_spi_master_messages.attr, 203 &dev_attr_spi_master_transfers.attr, 204 &dev_attr_spi_master_errors.attr, 205 &dev_attr_spi_master_timedout.attr, 206 &dev_attr_spi_master_spi_sync.attr, 207 &dev_attr_spi_master_spi_sync_immediate.attr, 208 &dev_attr_spi_master_spi_async.attr, 209 &dev_attr_spi_master_bytes.attr, 210 &dev_attr_spi_master_bytes_rx.attr, 211 &dev_attr_spi_master_bytes_tx.attr, 212 &dev_attr_spi_master_transfer_bytes_histo0.attr, 213 &dev_attr_spi_master_transfer_bytes_histo1.attr, 214 &dev_attr_spi_master_transfer_bytes_histo2.attr, 215 &dev_attr_spi_master_transfer_bytes_histo3.attr, 216 &dev_attr_spi_master_transfer_bytes_histo4.attr, 217 &dev_attr_spi_master_transfer_bytes_histo5.attr, 218 &dev_attr_spi_master_transfer_bytes_histo6.attr, 219 &dev_attr_spi_master_transfer_bytes_histo7.attr, 220 &dev_attr_spi_master_transfer_bytes_histo8.attr, 221 &dev_attr_spi_master_transfer_bytes_histo9.attr, 222 &dev_attr_spi_master_transfer_bytes_histo10.attr, 223 &dev_attr_spi_master_transfer_bytes_histo11.attr, 224 &dev_attr_spi_master_transfer_bytes_histo12.attr, 225 &dev_attr_spi_master_transfer_bytes_histo13.attr, 226 &dev_attr_spi_master_transfer_bytes_histo14.attr, 227 &dev_attr_spi_master_transfer_bytes_histo15.attr, 228 &dev_attr_spi_master_transfer_bytes_histo16.attr, 229 &dev_attr_spi_master_transfers_split_maxsize.attr, 230 NULL, 231 }; 232 233 static const struct attribute_group spi_master_statistics_group = { 234 .name = "statistics", 235 .attrs = spi_master_statistics_attrs, 236 }; 237 238 static const struct attribute_group *spi_master_groups[] = { 239 &spi_master_statistics_group, 240 NULL, 241 }; 242 243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 244 struct spi_transfer *xfer, 245 struct spi_master *master) 246 { 247 unsigned long flags; 248 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 249 250 if (l2len < 0) 251 l2len = 0; 252 253 spin_lock_irqsave(&stats->lock, flags); 254 255 stats->transfers++; 256 stats->transfer_bytes_histo[l2len]++; 257 258 stats->bytes += xfer->len; 259 if ((xfer->tx_buf) && 260 (xfer->tx_buf != master->dummy_tx)) 261 stats->bytes_tx += xfer->len; 262 if ((xfer->rx_buf) && 263 (xfer->rx_buf != master->dummy_rx)) 264 stats->bytes_rx += xfer->len; 265 266 spin_unlock_irqrestore(&stats->lock, flags); 267 } 268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats); 269 270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 271 * and the sysfs version makes coldplug work too. 272 */ 273 274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 275 const struct spi_device *sdev) 276 { 277 while (id->name[0]) { 278 if (!strcmp(sdev->modalias, id->name)) 279 return id; 280 id++; 281 } 282 return NULL; 283 } 284 285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 286 { 287 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 288 289 return spi_match_id(sdrv->id_table, sdev); 290 } 291 EXPORT_SYMBOL_GPL(spi_get_device_id); 292 293 static int spi_match_device(struct device *dev, struct device_driver *drv) 294 { 295 const struct spi_device *spi = to_spi_device(dev); 296 const struct spi_driver *sdrv = to_spi_driver(drv); 297 298 /* Attempt an OF style match */ 299 if (of_driver_match_device(dev, drv)) 300 return 1; 301 302 /* Then try ACPI */ 303 if (acpi_driver_match_device(dev, drv)) 304 return 1; 305 306 if (sdrv->id_table) 307 return !!spi_match_id(sdrv->id_table, spi); 308 309 return strcmp(spi->modalias, drv->name) == 0; 310 } 311 312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 313 { 314 const struct spi_device *spi = to_spi_device(dev); 315 int rc; 316 317 rc = acpi_device_uevent_modalias(dev, env); 318 if (rc != -ENODEV) 319 return rc; 320 321 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 322 return 0; 323 } 324 325 struct bus_type spi_bus_type = { 326 .name = "spi", 327 .dev_groups = spi_dev_groups, 328 .match = spi_match_device, 329 .uevent = spi_uevent, 330 }; 331 EXPORT_SYMBOL_GPL(spi_bus_type); 332 333 334 static int spi_drv_probe(struct device *dev) 335 { 336 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 337 struct spi_device *spi = to_spi_device(dev); 338 int ret; 339 340 ret = of_clk_set_defaults(dev->of_node, false); 341 if (ret) 342 return ret; 343 344 if (dev->of_node) { 345 spi->irq = of_irq_get(dev->of_node, 0); 346 if (spi->irq == -EPROBE_DEFER) 347 return -EPROBE_DEFER; 348 if (spi->irq < 0) 349 spi->irq = 0; 350 } 351 352 ret = dev_pm_domain_attach(dev, true); 353 if (ret != -EPROBE_DEFER) { 354 ret = sdrv->probe(spi); 355 if (ret) 356 dev_pm_domain_detach(dev, true); 357 } 358 359 return ret; 360 } 361 362 static int spi_drv_remove(struct device *dev) 363 { 364 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 365 int ret; 366 367 ret = sdrv->remove(to_spi_device(dev)); 368 dev_pm_domain_detach(dev, true); 369 370 return ret; 371 } 372 373 static void spi_drv_shutdown(struct device *dev) 374 { 375 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 376 377 sdrv->shutdown(to_spi_device(dev)); 378 } 379 380 /** 381 * __spi_register_driver - register a SPI driver 382 * @owner: owner module of the driver to register 383 * @sdrv: the driver to register 384 * Context: can sleep 385 * 386 * Return: zero on success, else a negative error code. 387 */ 388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 389 { 390 sdrv->driver.owner = owner; 391 sdrv->driver.bus = &spi_bus_type; 392 if (sdrv->probe) 393 sdrv->driver.probe = spi_drv_probe; 394 if (sdrv->remove) 395 sdrv->driver.remove = spi_drv_remove; 396 if (sdrv->shutdown) 397 sdrv->driver.shutdown = spi_drv_shutdown; 398 return driver_register(&sdrv->driver); 399 } 400 EXPORT_SYMBOL_GPL(__spi_register_driver); 401 402 /*-------------------------------------------------------------------------*/ 403 404 /* SPI devices should normally not be created by SPI device drivers; that 405 * would make them board-specific. Similarly with SPI master drivers. 406 * Device registration normally goes into like arch/.../mach.../board-YYY.c 407 * with other readonly (flashable) information about mainboard devices. 408 */ 409 410 struct boardinfo { 411 struct list_head list; 412 struct spi_board_info board_info; 413 }; 414 415 static LIST_HEAD(board_list); 416 static LIST_HEAD(spi_master_list); 417 418 /* 419 * Used to protect add/del opertion for board_info list and 420 * spi_master list, and their matching process 421 */ 422 static DEFINE_MUTEX(board_lock); 423 424 /** 425 * spi_alloc_device - Allocate a new SPI device 426 * @master: Controller to which device is connected 427 * Context: can sleep 428 * 429 * Allows a driver to allocate and initialize a spi_device without 430 * registering it immediately. This allows a driver to directly 431 * fill the spi_device with device parameters before calling 432 * spi_add_device() on it. 433 * 434 * Caller is responsible to call spi_add_device() on the returned 435 * spi_device structure to add it to the SPI master. If the caller 436 * needs to discard the spi_device without adding it, then it should 437 * call spi_dev_put() on it. 438 * 439 * Return: a pointer to the new device, or NULL. 440 */ 441 struct spi_device *spi_alloc_device(struct spi_master *master) 442 { 443 struct spi_device *spi; 444 445 if (!spi_master_get(master)) 446 return NULL; 447 448 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 449 if (!spi) { 450 spi_master_put(master); 451 return NULL; 452 } 453 454 spi->master = master; 455 spi->dev.parent = &master->dev; 456 spi->dev.bus = &spi_bus_type; 457 spi->dev.release = spidev_release; 458 spi->cs_gpio = -ENOENT; 459 460 spin_lock_init(&spi->statistics.lock); 461 462 device_initialize(&spi->dev); 463 return spi; 464 } 465 EXPORT_SYMBOL_GPL(spi_alloc_device); 466 467 static void spi_dev_set_name(struct spi_device *spi) 468 { 469 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 470 471 if (adev) { 472 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 473 return; 474 } 475 476 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 477 spi->chip_select); 478 } 479 480 static int spi_dev_check(struct device *dev, void *data) 481 { 482 struct spi_device *spi = to_spi_device(dev); 483 struct spi_device *new_spi = data; 484 485 if (spi->master == new_spi->master && 486 spi->chip_select == new_spi->chip_select) 487 return -EBUSY; 488 return 0; 489 } 490 491 /** 492 * spi_add_device - Add spi_device allocated with spi_alloc_device 493 * @spi: spi_device to register 494 * 495 * Companion function to spi_alloc_device. Devices allocated with 496 * spi_alloc_device can be added onto the spi bus with this function. 497 * 498 * Return: 0 on success; negative errno on failure 499 */ 500 int spi_add_device(struct spi_device *spi) 501 { 502 static DEFINE_MUTEX(spi_add_lock); 503 struct spi_master *master = spi->master; 504 struct device *dev = master->dev.parent; 505 int status; 506 507 /* Chipselects are numbered 0..max; validate. */ 508 if (spi->chip_select >= master->num_chipselect) { 509 dev_err(dev, "cs%d >= max %d\n", 510 spi->chip_select, 511 master->num_chipselect); 512 return -EINVAL; 513 } 514 515 /* Set the bus ID string */ 516 spi_dev_set_name(spi); 517 518 /* We need to make sure there's no other device with this 519 * chipselect **BEFORE** we call setup(), else we'll trash 520 * its configuration. Lock against concurrent add() calls. 521 */ 522 mutex_lock(&spi_add_lock); 523 524 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 525 if (status) { 526 dev_err(dev, "chipselect %d already in use\n", 527 spi->chip_select); 528 goto done; 529 } 530 531 if (master->cs_gpios) 532 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 533 534 /* Drivers may modify this initial i/o setup, but will 535 * normally rely on the device being setup. Devices 536 * using SPI_CS_HIGH can't coexist well otherwise... 537 */ 538 status = spi_setup(spi); 539 if (status < 0) { 540 dev_err(dev, "can't setup %s, status %d\n", 541 dev_name(&spi->dev), status); 542 goto done; 543 } 544 545 /* Device may be bound to an active driver when this returns */ 546 status = device_add(&spi->dev); 547 if (status < 0) 548 dev_err(dev, "can't add %s, status %d\n", 549 dev_name(&spi->dev), status); 550 else 551 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 552 553 done: 554 mutex_unlock(&spi_add_lock); 555 return status; 556 } 557 EXPORT_SYMBOL_GPL(spi_add_device); 558 559 /** 560 * spi_new_device - instantiate one new SPI device 561 * @master: Controller to which device is connected 562 * @chip: Describes the SPI device 563 * Context: can sleep 564 * 565 * On typical mainboards, this is purely internal; and it's not needed 566 * after board init creates the hard-wired devices. Some development 567 * platforms may not be able to use spi_register_board_info though, and 568 * this is exported so that for example a USB or parport based adapter 569 * driver could add devices (which it would learn about out-of-band). 570 * 571 * Return: the new device, or NULL. 572 */ 573 struct spi_device *spi_new_device(struct spi_master *master, 574 struct spi_board_info *chip) 575 { 576 struct spi_device *proxy; 577 int status; 578 579 /* NOTE: caller did any chip->bus_num checks necessary. 580 * 581 * Also, unless we change the return value convention to use 582 * error-or-pointer (not NULL-or-pointer), troubleshootability 583 * suggests syslogged diagnostics are best here (ugh). 584 */ 585 586 proxy = spi_alloc_device(master); 587 if (!proxy) 588 return NULL; 589 590 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 591 592 proxy->chip_select = chip->chip_select; 593 proxy->max_speed_hz = chip->max_speed_hz; 594 proxy->mode = chip->mode; 595 proxy->irq = chip->irq; 596 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 597 proxy->dev.platform_data = (void *) chip->platform_data; 598 proxy->controller_data = chip->controller_data; 599 proxy->controller_state = NULL; 600 601 status = spi_add_device(proxy); 602 if (status < 0) { 603 spi_dev_put(proxy); 604 return NULL; 605 } 606 607 return proxy; 608 } 609 EXPORT_SYMBOL_GPL(spi_new_device); 610 611 /** 612 * spi_unregister_device - unregister a single SPI device 613 * @spi: spi_device to unregister 614 * 615 * Start making the passed SPI device vanish. Normally this would be handled 616 * by spi_unregister_master(). 617 */ 618 void spi_unregister_device(struct spi_device *spi) 619 { 620 if (!spi) 621 return; 622 623 if (spi->dev.of_node) 624 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 625 device_unregister(&spi->dev); 626 } 627 EXPORT_SYMBOL_GPL(spi_unregister_device); 628 629 static void spi_match_master_to_boardinfo(struct spi_master *master, 630 struct spi_board_info *bi) 631 { 632 struct spi_device *dev; 633 634 if (master->bus_num != bi->bus_num) 635 return; 636 637 dev = spi_new_device(master, bi); 638 if (!dev) 639 dev_err(master->dev.parent, "can't create new device for %s\n", 640 bi->modalias); 641 } 642 643 /** 644 * spi_register_board_info - register SPI devices for a given board 645 * @info: array of chip descriptors 646 * @n: how many descriptors are provided 647 * Context: can sleep 648 * 649 * Board-specific early init code calls this (probably during arch_initcall) 650 * with segments of the SPI device table. Any device nodes are created later, 651 * after the relevant parent SPI controller (bus_num) is defined. We keep 652 * this table of devices forever, so that reloading a controller driver will 653 * not make Linux forget about these hard-wired devices. 654 * 655 * Other code can also call this, e.g. a particular add-on board might provide 656 * SPI devices through its expansion connector, so code initializing that board 657 * would naturally declare its SPI devices. 658 * 659 * The board info passed can safely be __initdata ... but be careful of 660 * any embedded pointers (platform_data, etc), they're copied as-is. 661 * 662 * Return: zero on success, else a negative error code. 663 */ 664 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 665 { 666 struct boardinfo *bi; 667 int i; 668 669 if (!n) 670 return -EINVAL; 671 672 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 673 if (!bi) 674 return -ENOMEM; 675 676 for (i = 0; i < n; i++, bi++, info++) { 677 struct spi_master *master; 678 679 memcpy(&bi->board_info, info, sizeof(*info)); 680 mutex_lock(&board_lock); 681 list_add_tail(&bi->list, &board_list); 682 list_for_each_entry(master, &spi_master_list, list) 683 spi_match_master_to_boardinfo(master, &bi->board_info); 684 mutex_unlock(&board_lock); 685 } 686 687 return 0; 688 } 689 690 /*-------------------------------------------------------------------------*/ 691 692 static void spi_set_cs(struct spi_device *spi, bool enable) 693 { 694 if (spi->mode & SPI_CS_HIGH) 695 enable = !enable; 696 697 if (gpio_is_valid(spi->cs_gpio)) 698 gpio_set_value(spi->cs_gpio, !enable); 699 else if (spi->master->set_cs) 700 spi->master->set_cs(spi, !enable); 701 } 702 703 #ifdef CONFIG_HAS_DMA 704 static int spi_map_buf(struct spi_master *master, struct device *dev, 705 struct sg_table *sgt, void *buf, size_t len, 706 enum dma_data_direction dir) 707 { 708 const bool vmalloced_buf = is_vmalloc_addr(buf); 709 unsigned int max_seg_size = dma_get_max_seg_size(dev); 710 int desc_len; 711 int sgs; 712 struct page *vm_page; 713 void *sg_buf; 714 size_t min; 715 int i, ret; 716 717 if (vmalloced_buf) { 718 desc_len = min_t(int, max_seg_size, PAGE_SIZE); 719 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 720 } else { 721 desc_len = min_t(int, max_seg_size, master->max_dma_len); 722 sgs = DIV_ROUND_UP(len, desc_len); 723 } 724 725 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 726 if (ret != 0) 727 return ret; 728 729 for (i = 0; i < sgs; i++) { 730 731 if (vmalloced_buf) { 732 min = min_t(size_t, 733 len, desc_len - offset_in_page(buf)); 734 vm_page = vmalloc_to_page(buf); 735 if (!vm_page) { 736 sg_free_table(sgt); 737 return -ENOMEM; 738 } 739 sg_set_page(&sgt->sgl[i], vm_page, 740 min, offset_in_page(buf)); 741 } else { 742 min = min_t(size_t, len, desc_len); 743 sg_buf = buf; 744 sg_set_buf(&sgt->sgl[i], sg_buf, min); 745 } 746 747 buf += min; 748 len -= min; 749 } 750 751 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 752 if (!ret) 753 ret = -ENOMEM; 754 if (ret < 0) { 755 sg_free_table(sgt); 756 return ret; 757 } 758 759 sgt->nents = ret; 760 761 return 0; 762 } 763 764 static void spi_unmap_buf(struct spi_master *master, struct device *dev, 765 struct sg_table *sgt, enum dma_data_direction dir) 766 { 767 if (sgt->orig_nents) { 768 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 769 sg_free_table(sgt); 770 } 771 } 772 773 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) 774 { 775 struct device *tx_dev, *rx_dev; 776 struct spi_transfer *xfer; 777 int ret; 778 779 if (!master->can_dma) 780 return 0; 781 782 if (master->dma_tx) 783 tx_dev = master->dma_tx->device->dev; 784 else 785 tx_dev = &master->dev; 786 787 if (master->dma_rx) 788 rx_dev = master->dma_rx->device->dev; 789 else 790 rx_dev = &master->dev; 791 792 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 793 if (!master->can_dma(master, msg->spi, xfer)) 794 continue; 795 796 if (xfer->tx_buf != NULL) { 797 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, 798 (void *)xfer->tx_buf, xfer->len, 799 DMA_TO_DEVICE); 800 if (ret != 0) 801 return ret; 802 } 803 804 if (xfer->rx_buf != NULL) { 805 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, 806 xfer->rx_buf, xfer->len, 807 DMA_FROM_DEVICE); 808 if (ret != 0) { 809 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, 810 DMA_TO_DEVICE); 811 return ret; 812 } 813 } 814 } 815 816 master->cur_msg_mapped = true; 817 818 return 0; 819 } 820 821 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg) 822 { 823 struct spi_transfer *xfer; 824 struct device *tx_dev, *rx_dev; 825 826 if (!master->cur_msg_mapped || !master->can_dma) 827 return 0; 828 829 if (master->dma_tx) 830 tx_dev = master->dma_tx->device->dev; 831 else 832 tx_dev = &master->dev; 833 834 if (master->dma_rx) 835 rx_dev = master->dma_rx->device->dev; 836 else 837 rx_dev = &master->dev; 838 839 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 840 if (!master->can_dma(master, msg->spi, xfer)) 841 continue; 842 843 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 844 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 845 } 846 847 return 0; 848 } 849 #else /* !CONFIG_HAS_DMA */ 850 static inline int __spi_map_msg(struct spi_master *master, 851 struct spi_message *msg) 852 { 853 return 0; 854 } 855 856 static inline int __spi_unmap_msg(struct spi_master *master, 857 struct spi_message *msg) 858 { 859 return 0; 860 } 861 #endif /* !CONFIG_HAS_DMA */ 862 863 static inline int spi_unmap_msg(struct spi_master *master, 864 struct spi_message *msg) 865 { 866 struct spi_transfer *xfer; 867 868 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 869 /* 870 * Restore the original value of tx_buf or rx_buf if they are 871 * NULL. 872 */ 873 if (xfer->tx_buf == master->dummy_tx) 874 xfer->tx_buf = NULL; 875 if (xfer->rx_buf == master->dummy_rx) 876 xfer->rx_buf = NULL; 877 } 878 879 return __spi_unmap_msg(master, msg); 880 } 881 882 static int spi_map_msg(struct spi_master *master, struct spi_message *msg) 883 { 884 struct spi_transfer *xfer; 885 void *tmp; 886 unsigned int max_tx, max_rx; 887 888 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { 889 max_tx = 0; 890 max_rx = 0; 891 892 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 893 if ((master->flags & SPI_MASTER_MUST_TX) && 894 !xfer->tx_buf) 895 max_tx = max(xfer->len, max_tx); 896 if ((master->flags & SPI_MASTER_MUST_RX) && 897 !xfer->rx_buf) 898 max_rx = max(xfer->len, max_rx); 899 } 900 901 if (max_tx) { 902 tmp = krealloc(master->dummy_tx, max_tx, 903 GFP_KERNEL | GFP_DMA); 904 if (!tmp) 905 return -ENOMEM; 906 master->dummy_tx = tmp; 907 memset(tmp, 0, max_tx); 908 } 909 910 if (max_rx) { 911 tmp = krealloc(master->dummy_rx, max_rx, 912 GFP_KERNEL | GFP_DMA); 913 if (!tmp) 914 return -ENOMEM; 915 master->dummy_rx = tmp; 916 } 917 918 if (max_tx || max_rx) { 919 list_for_each_entry(xfer, &msg->transfers, 920 transfer_list) { 921 if (!xfer->tx_buf) 922 xfer->tx_buf = master->dummy_tx; 923 if (!xfer->rx_buf) 924 xfer->rx_buf = master->dummy_rx; 925 } 926 } 927 } 928 929 return __spi_map_msg(master, msg); 930 } 931 932 /* 933 * spi_transfer_one_message - Default implementation of transfer_one_message() 934 * 935 * This is a standard implementation of transfer_one_message() for 936 * drivers which impelment a transfer_one() operation. It provides 937 * standard handling of delays and chip select management. 938 */ 939 static int spi_transfer_one_message(struct spi_master *master, 940 struct spi_message *msg) 941 { 942 struct spi_transfer *xfer; 943 bool keep_cs = false; 944 int ret = 0; 945 unsigned long ms = 1; 946 struct spi_statistics *statm = &master->statistics; 947 struct spi_statistics *stats = &msg->spi->statistics; 948 949 spi_set_cs(msg->spi, true); 950 951 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 952 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 953 954 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 955 trace_spi_transfer_start(msg, xfer); 956 957 spi_statistics_add_transfer_stats(statm, xfer, master); 958 spi_statistics_add_transfer_stats(stats, xfer, master); 959 960 if (xfer->tx_buf || xfer->rx_buf) { 961 reinit_completion(&master->xfer_completion); 962 963 ret = master->transfer_one(master, msg->spi, xfer); 964 if (ret < 0) { 965 SPI_STATISTICS_INCREMENT_FIELD(statm, 966 errors); 967 SPI_STATISTICS_INCREMENT_FIELD(stats, 968 errors); 969 dev_err(&msg->spi->dev, 970 "SPI transfer failed: %d\n", ret); 971 goto out; 972 } 973 974 if (ret > 0) { 975 ret = 0; 976 ms = xfer->len * 8 * 1000 / xfer->speed_hz; 977 ms += ms + 100; /* some tolerance */ 978 979 ms = wait_for_completion_timeout(&master->xfer_completion, 980 msecs_to_jiffies(ms)); 981 } 982 983 if (ms == 0) { 984 SPI_STATISTICS_INCREMENT_FIELD(statm, 985 timedout); 986 SPI_STATISTICS_INCREMENT_FIELD(stats, 987 timedout); 988 dev_err(&msg->spi->dev, 989 "SPI transfer timed out\n"); 990 msg->status = -ETIMEDOUT; 991 } 992 } else { 993 if (xfer->len) 994 dev_err(&msg->spi->dev, 995 "Bufferless transfer has length %u\n", 996 xfer->len); 997 } 998 999 trace_spi_transfer_stop(msg, xfer); 1000 1001 if (msg->status != -EINPROGRESS) 1002 goto out; 1003 1004 if (xfer->delay_usecs) 1005 udelay(xfer->delay_usecs); 1006 1007 if (xfer->cs_change) { 1008 if (list_is_last(&xfer->transfer_list, 1009 &msg->transfers)) { 1010 keep_cs = true; 1011 } else { 1012 spi_set_cs(msg->spi, false); 1013 udelay(10); 1014 spi_set_cs(msg->spi, true); 1015 } 1016 } 1017 1018 msg->actual_length += xfer->len; 1019 } 1020 1021 out: 1022 if (ret != 0 || !keep_cs) 1023 spi_set_cs(msg->spi, false); 1024 1025 if (msg->status == -EINPROGRESS) 1026 msg->status = ret; 1027 1028 if (msg->status && master->handle_err) 1029 master->handle_err(master, msg); 1030 1031 spi_res_release(master, msg); 1032 1033 spi_finalize_current_message(master); 1034 1035 return ret; 1036 } 1037 1038 /** 1039 * spi_finalize_current_transfer - report completion of a transfer 1040 * @master: the master reporting completion 1041 * 1042 * Called by SPI drivers using the core transfer_one_message() 1043 * implementation to notify it that the current interrupt driven 1044 * transfer has finished and the next one may be scheduled. 1045 */ 1046 void spi_finalize_current_transfer(struct spi_master *master) 1047 { 1048 complete(&master->xfer_completion); 1049 } 1050 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1051 1052 /** 1053 * __spi_pump_messages - function which processes spi message queue 1054 * @master: master to process queue for 1055 * @in_kthread: true if we are in the context of the message pump thread 1056 * @bus_locked: true if the bus mutex is held when calling this function 1057 * 1058 * This function checks if there is any spi message in the queue that 1059 * needs processing and if so call out to the driver to initialize hardware 1060 * and transfer each message. 1061 * 1062 * Note that it is called both from the kthread itself and also from 1063 * inside spi_sync(); the queue extraction handling at the top of the 1064 * function should deal with this safely. 1065 */ 1066 static void __spi_pump_messages(struct spi_master *master, bool in_kthread, 1067 bool bus_locked) 1068 { 1069 unsigned long flags; 1070 bool was_busy = false; 1071 int ret; 1072 1073 /* Lock queue */ 1074 spin_lock_irqsave(&master->queue_lock, flags); 1075 1076 /* Make sure we are not already running a message */ 1077 if (master->cur_msg) { 1078 spin_unlock_irqrestore(&master->queue_lock, flags); 1079 return; 1080 } 1081 1082 /* If another context is idling the device then defer */ 1083 if (master->idling) { 1084 queue_kthread_work(&master->kworker, &master->pump_messages); 1085 spin_unlock_irqrestore(&master->queue_lock, flags); 1086 return; 1087 } 1088 1089 /* Check if the queue is idle */ 1090 if (list_empty(&master->queue) || !master->running) { 1091 if (!master->busy) { 1092 spin_unlock_irqrestore(&master->queue_lock, flags); 1093 return; 1094 } 1095 1096 /* Only do teardown in the thread */ 1097 if (!in_kthread) { 1098 queue_kthread_work(&master->kworker, 1099 &master->pump_messages); 1100 spin_unlock_irqrestore(&master->queue_lock, flags); 1101 return; 1102 } 1103 1104 master->busy = false; 1105 master->idling = true; 1106 spin_unlock_irqrestore(&master->queue_lock, flags); 1107 1108 kfree(master->dummy_rx); 1109 master->dummy_rx = NULL; 1110 kfree(master->dummy_tx); 1111 master->dummy_tx = NULL; 1112 if (master->unprepare_transfer_hardware && 1113 master->unprepare_transfer_hardware(master)) 1114 dev_err(&master->dev, 1115 "failed to unprepare transfer hardware\n"); 1116 if (master->auto_runtime_pm) { 1117 pm_runtime_mark_last_busy(master->dev.parent); 1118 pm_runtime_put_autosuspend(master->dev.parent); 1119 } 1120 trace_spi_master_idle(master); 1121 1122 spin_lock_irqsave(&master->queue_lock, flags); 1123 master->idling = false; 1124 spin_unlock_irqrestore(&master->queue_lock, flags); 1125 return; 1126 } 1127 1128 /* Extract head of queue */ 1129 master->cur_msg = 1130 list_first_entry(&master->queue, struct spi_message, queue); 1131 1132 list_del_init(&master->cur_msg->queue); 1133 if (master->busy) 1134 was_busy = true; 1135 else 1136 master->busy = true; 1137 spin_unlock_irqrestore(&master->queue_lock, flags); 1138 1139 if (!was_busy && master->auto_runtime_pm) { 1140 ret = pm_runtime_get_sync(master->dev.parent); 1141 if (ret < 0) { 1142 dev_err(&master->dev, "Failed to power device: %d\n", 1143 ret); 1144 return; 1145 } 1146 } 1147 1148 if (!was_busy) 1149 trace_spi_master_busy(master); 1150 1151 if (!was_busy && master->prepare_transfer_hardware) { 1152 ret = master->prepare_transfer_hardware(master); 1153 if (ret) { 1154 dev_err(&master->dev, 1155 "failed to prepare transfer hardware\n"); 1156 1157 if (master->auto_runtime_pm) 1158 pm_runtime_put(master->dev.parent); 1159 return; 1160 } 1161 } 1162 1163 if (!bus_locked) 1164 mutex_lock(&master->bus_lock_mutex); 1165 1166 trace_spi_message_start(master->cur_msg); 1167 1168 if (master->prepare_message) { 1169 ret = master->prepare_message(master, master->cur_msg); 1170 if (ret) { 1171 dev_err(&master->dev, 1172 "failed to prepare message: %d\n", ret); 1173 master->cur_msg->status = ret; 1174 spi_finalize_current_message(master); 1175 goto out; 1176 } 1177 master->cur_msg_prepared = true; 1178 } 1179 1180 ret = spi_map_msg(master, master->cur_msg); 1181 if (ret) { 1182 master->cur_msg->status = ret; 1183 spi_finalize_current_message(master); 1184 goto out; 1185 } 1186 1187 ret = master->transfer_one_message(master, master->cur_msg); 1188 if (ret) { 1189 dev_err(&master->dev, 1190 "failed to transfer one message from queue\n"); 1191 goto out; 1192 } 1193 1194 out: 1195 if (!bus_locked) 1196 mutex_unlock(&master->bus_lock_mutex); 1197 1198 /* Prod the scheduler in case transfer_one() was busy waiting */ 1199 if (!ret) 1200 cond_resched(); 1201 } 1202 1203 /** 1204 * spi_pump_messages - kthread work function which processes spi message queue 1205 * @work: pointer to kthread work struct contained in the master struct 1206 */ 1207 static void spi_pump_messages(struct kthread_work *work) 1208 { 1209 struct spi_master *master = 1210 container_of(work, struct spi_master, pump_messages); 1211 1212 __spi_pump_messages(master, true, master->bus_lock_flag); 1213 } 1214 1215 static int spi_init_queue(struct spi_master *master) 1216 { 1217 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1218 1219 master->running = false; 1220 master->busy = false; 1221 1222 init_kthread_worker(&master->kworker); 1223 master->kworker_task = kthread_run(kthread_worker_fn, 1224 &master->kworker, "%s", 1225 dev_name(&master->dev)); 1226 if (IS_ERR(master->kworker_task)) { 1227 dev_err(&master->dev, "failed to create message pump task\n"); 1228 return PTR_ERR(master->kworker_task); 1229 } 1230 init_kthread_work(&master->pump_messages, spi_pump_messages); 1231 1232 /* 1233 * Master config will indicate if this controller should run the 1234 * message pump with high (realtime) priority to reduce the transfer 1235 * latency on the bus by minimising the delay between a transfer 1236 * request and the scheduling of the message pump thread. Without this 1237 * setting the message pump thread will remain at default priority. 1238 */ 1239 if (master->rt) { 1240 dev_info(&master->dev, 1241 "will run message pump with realtime priority\n"); 1242 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 1243 } 1244 1245 return 0; 1246 } 1247 1248 /** 1249 * spi_get_next_queued_message() - called by driver to check for queued 1250 * messages 1251 * @master: the master to check for queued messages 1252 * 1253 * If there are more messages in the queue, the next message is returned from 1254 * this call. 1255 * 1256 * Return: the next message in the queue, else NULL if the queue is empty. 1257 */ 1258 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 1259 { 1260 struct spi_message *next; 1261 unsigned long flags; 1262 1263 /* get a pointer to the next message, if any */ 1264 spin_lock_irqsave(&master->queue_lock, flags); 1265 next = list_first_entry_or_null(&master->queue, struct spi_message, 1266 queue); 1267 spin_unlock_irqrestore(&master->queue_lock, flags); 1268 1269 return next; 1270 } 1271 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1272 1273 /** 1274 * spi_finalize_current_message() - the current message is complete 1275 * @master: the master to return the message to 1276 * 1277 * Called by the driver to notify the core that the message in the front of the 1278 * queue is complete and can be removed from the queue. 1279 */ 1280 void spi_finalize_current_message(struct spi_master *master) 1281 { 1282 struct spi_message *mesg; 1283 unsigned long flags; 1284 int ret; 1285 1286 spin_lock_irqsave(&master->queue_lock, flags); 1287 mesg = master->cur_msg; 1288 spin_unlock_irqrestore(&master->queue_lock, flags); 1289 1290 spi_unmap_msg(master, mesg); 1291 1292 if (master->cur_msg_prepared && master->unprepare_message) { 1293 ret = master->unprepare_message(master, mesg); 1294 if (ret) { 1295 dev_err(&master->dev, 1296 "failed to unprepare message: %d\n", ret); 1297 } 1298 } 1299 1300 spin_lock_irqsave(&master->queue_lock, flags); 1301 master->cur_msg = NULL; 1302 master->cur_msg_prepared = false; 1303 queue_kthread_work(&master->kworker, &master->pump_messages); 1304 spin_unlock_irqrestore(&master->queue_lock, flags); 1305 1306 trace_spi_message_done(mesg); 1307 1308 mesg->state = NULL; 1309 if (mesg->complete) 1310 mesg->complete(mesg->context); 1311 } 1312 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1313 1314 static int spi_start_queue(struct spi_master *master) 1315 { 1316 unsigned long flags; 1317 1318 spin_lock_irqsave(&master->queue_lock, flags); 1319 1320 if (master->running || master->busy) { 1321 spin_unlock_irqrestore(&master->queue_lock, flags); 1322 return -EBUSY; 1323 } 1324 1325 master->running = true; 1326 master->cur_msg = NULL; 1327 spin_unlock_irqrestore(&master->queue_lock, flags); 1328 1329 queue_kthread_work(&master->kworker, &master->pump_messages); 1330 1331 return 0; 1332 } 1333 1334 static int spi_stop_queue(struct spi_master *master) 1335 { 1336 unsigned long flags; 1337 unsigned limit = 500; 1338 int ret = 0; 1339 1340 spin_lock_irqsave(&master->queue_lock, flags); 1341 1342 /* 1343 * This is a bit lame, but is optimized for the common execution path. 1344 * A wait_queue on the master->busy could be used, but then the common 1345 * execution path (pump_messages) would be required to call wake_up or 1346 * friends on every SPI message. Do this instead. 1347 */ 1348 while ((!list_empty(&master->queue) || master->busy) && limit--) { 1349 spin_unlock_irqrestore(&master->queue_lock, flags); 1350 usleep_range(10000, 11000); 1351 spin_lock_irqsave(&master->queue_lock, flags); 1352 } 1353 1354 if (!list_empty(&master->queue) || master->busy) 1355 ret = -EBUSY; 1356 else 1357 master->running = false; 1358 1359 spin_unlock_irqrestore(&master->queue_lock, flags); 1360 1361 if (ret) { 1362 dev_warn(&master->dev, 1363 "could not stop message queue\n"); 1364 return ret; 1365 } 1366 return ret; 1367 } 1368 1369 static int spi_destroy_queue(struct spi_master *master) 1370 { 1371 int ret; 1372 1373 ret = spi_stop_queue(master); 1374 1375 /* 1376 * flush_kthread_worker will block until all work is done. 1377 * If the reason that stop_queue timed out is that the work will never 1378 * finish, then it does no good to call flush/stop thread, so 1379 * return anyway. 1380 */ 1381 if (ret) { 1382 dev_err(&master->dev, "problem destroying queue\n"); 1383 return ret; 1384 } 1385 1386 flush_kthread_worker(&master->kworker); 1387 kthread_stop(master->kworker_task); 1388 1389 return 0; 1390 } 1391 1392 static int __spi_queued_transfer(struct spi_device *spi, 1393 struct spi_message *msg, 1394 bool need_pump) 1395 { 1396 struct spi_master *master = spi->master; 1397 unsigned long flags; 1398 1399 spin_lock_irqsave(&master->queue_lock, flags); 1400 1401 if (!master->running) { 1402 spin_unlock_irqrestore(&master->queue_lock, flags); 1403 return -ESHUTDOWN; 1404 } 1405 msg->actual_length = 0; 1406 msg->status = -EINPROGRESS; 1407 1408 list_add_tail(&msg->queue, &master->queue); 1409 if (!master->busy && need_pump) 1410 queue_kthread_work(&master->kworker, &master->pump_messages); 1411 1412 spin_unlock_irqrestore(&master->queue_lock, flags); 1413 return 0; 1414 } 1415 1416 /** 1417 * spi_queued_transfer - transfer function for queued transfers 1418 * @spi: spi device which is requesting transfer 1419 * @msg: spi message which is to handled is queued to driver queue 1420 * 1421 * Return: zero on success, else a negative error code. 1422 */ 1423 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1424 { 1425 return __spi_queued_transfer(spi, msg, true); 1426 } 1427 1428 static int spi_master_initialize_queue(struct spi_master *master) 1429 { 1430 int ret; 1431 1432 master->transfer = spi_queued_transfer; 1433 if (!master->transfer_one_message) 1434 master->transfer_one_message = spi_transfer_one_message; 1435 1436 /* Initialize and start queue */ 1437 ret = spi_init_queue(master); 1438 if (ret) { 1439 dev_err(&master->dev, "problem initializing queue\n"); 1440 goto err_init_queue; 1441 } 1442 master->queued = true; 1443 ret = spi_start_queue(master); 1444 if (ret) { 1445 dev_err(&master->dev, "problem starting queue\n"); 1446 goto err_start_queue; 1447 } 1448 1449 return 0; 1450 1451 err_start_queue: 1452 spi_destroy_queue(master); 1453 err_init_queue: 1454 return ret; 1455 } 1456 1457 /*-------------------------------------------------------------------------*/ 1458 1459 #if defined(CONFIG_OF) 1460 static struct spi_device * 1461 of_register_spi_device(struct spi_master *master, struct device_node *nc) 1462 { 1463 struct spi_device *spi; 1464 int rc; 1465 u32 value; 1466 1467 /* Alloc an spi_device */ 1468 spi = spi_alloc_device(master); 1469 if (!spi) { 1470 dev_err(&master->dev, "spi_device alloc error for %s\n", 1471 nc->full_name); 1472 rc = -ENOMEM; 1473 goto err_out; 1474 } 1475 1476 /* Select device driver */ 1477 rc = of_modalias_node(nc, spi->modalias, 1478 sizeof(spi->modalias)); 1479 if (rc < 0) { 1480 dev_err(&master->dev, "cannot find modalias for %s\n", 1481 nc->full_name); 1482 goto err_out; 1483 } 1484 1485 /* Device address */ 1486 rc = of_property_read_u32(nc, "reg", &value); 1487 if (rc) { 1488 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1489 nc->full_name, rc); 1490 goto err_out; 1491 } 1492 spi->chip_select = value; 1493 1494 /* Mode (clock phase/polarity/etc.) */ 1495 if (of_find_property(nc, "spi-cpha", NULL)) 1496 spi->mode |= SPI_CPHA; 1497 if (of_find_property(nc, "spi-cpol", NULL)) 1498 spi->mode |= SPI_CPOL; 1499 if (of_find_property(nc, "spi-cs-high", NULL)) 1500 spi->mode |= SPI_CS_HIGH; 1501 if (of_find_property(nc, "spi-3wire", NULL)) 1502 spi->mode |= SPI_3WIRE; 1503 if (of_find_property(nc, "spi-lsb-first", NULL)) 1504 spi->mode |= SPI_LSB_FIRST; 1505 1506 /* Device DUAL/QUAD mode */ 1507 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1508 switch (value) { 1509 case 1: 1510 break; 1511 case 2: 1512 spi->mode |= SPI_TX_DUAL; 1513 break; 1514 case 4: 1515 spi->mode |= SPI_TX_QUAD; 1516 break; 1517 default: 1518 dev_warn(&master->dev, 1519 "spi-tx-bus-width %d not supported\n", 1520 value); 1521 break; 1522 } 1523 } 1524 1525 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1526 switch (value) { 1527 case 1: 1528 break; 1529 case 2: 1530 spi->mode |= SPI_RX_DUAL; 1531 break; 1532 case 4: 1533 spi->mode |= SPI_RX_QUAD; 1534 break; 1535 default: 1536 dev_warn(&master->dev, 1537 "spi-rx-bus-width %d not supported\n", 1538 value); 1539 break; 1540 } 1541 } 1542 1543 /* Device speed */ 1544 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1545 if (rc) { 1546 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1547 nc->full_name, rc); 1548 goto err_out; 1549 } 1550 spi->max_speed_hz = value; 1551 1552 /* Store a pointer to the node in the device structure */ 1553 of_node_get(nc); 1554 spi->dev.of_node = nc; 1555 1556 /* Register the new device */ 1557 rc = spi_add_device(spi); 1558 if (rc) { 1559 dev_err(&master->dev, "spi_device register error %s\n", 1560 nc->full_name); 1561 goto err_out; 1562 } 1563 1564 return spi; 1565 1566 err_out: 1567 spi_dev_put(spi); 1568 return ERR_PTR(rc); 1569 } 1570 1571 /** 1572 * of_register_spi_devices() - Register child devices onto the SPI bus 1573 * @master: Pointer to spi_master device 1574 * 1575 * Registers an spi_device for each child node of master node which has a 'reg' 1576 * property. 1577 */ 1578 static void of_register_spi_devices(struct spi_master *master) 1579 { 1580 struct spi_device *spi; 1581 struct device_node *nc; 1582 1583 if (!master->dev.of_node) 1584 return; 1585 1586 for_each_available_child_of_node(master->dev.of_node, nc) { 1587 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 1588 continue; 1589 spi = of_register_spi_device(master, nc); 1590 if (IS_ERR(spi)) 1591 dev_warn(&master->dev, "Failed to create SPI device for %s\n", 1592 nc->full_name); 1593 } 1594 } 1595 #else 1596 static void of_register_spi_devices(struct spi_master *master) { } 1597 #endif 1598 1599 #ifdef CONFIG_ACPI 1600 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1601 { 1602 struct spi_device *spi = data; 1603 struct spi_master *master = spi->master; 1604 1605 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1606 struct acpi_resource_spi_serialbus *sb; 1607 1608 sb = &ares->data.spi_serial_bus; 1609 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1610 /* 1611 * ACPI DeviceSelection numbering is handled by the 1612 * host controller driver in Windows and can vary 1613 * from driver to driver. In Linux we always expect 1614 * 0 .. max - 1 so we need to ask the driver to 1615 * translate between the two schemes. 1616 */ 1617 if (master->fw_translate_cs) { 1618 int cs = master->fw_translate_cs(master, 1619 sb->device_selection); 1620 if (cs < 0) 1621 return cs; 1622 spi->chip_select = cs; 1623 } else { 1624 spi->chip_select = sb->device_selection; 1625 } 1626 1627 spi->max_speed_hz = sb->connection_speed; 1628 1629 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1630 spi->mode |= SPI_CPHA; 1631 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1632 spi->mode |= SPI_CPOL; 1633 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1634 spi->mode |= SPI_CS_HIGH; 1635 } 1636 } else if (spi->irq < 0) { 1637 struct resource r; 1638 1639 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1640 spi->irq = r.start; 1641 } 1642 1643 /* Always tell the ACPI core to skip this resource */ 1644 return 1; 1645 } 1646 1647 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1648 void *data, void **return_value) 1649 { 1650 struct spi_master *master = data; 1651 struct list_head resource_list; 1652 struct acpi_device *adev; 1653 struct spi_device *spi; 1654 int ret; 1655 1656 if (acpi_bus_get_device(handle, &adev)) 1657 return AE_OK; 1658 if (acpi_bus_get_status(adev) || !adev->status.present) 1659 return AE_OK; 1660 1661 spi = spi_alloc_device(master); 1662 if (!spi) { 1663 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1664 dev_name(&adev->dev)); 1665 return AE_NO_MEMORY; 1666 } 1667 1668 ACPI_COMPANION_SET(&spi->dev, adev); 1669 spi->irq = -1; 1670 1671 INIT_LIST_HEAD(&resource_list); 1672 ret = acpi_dev_get_resources(adev, &resource_list, 1673 acpi_spi_add_resource, spi); 1674 acpi_dev_free_resource_list(&resource_list); 1675 1676 if (ret < 0 || !spi->max_speed_hz) { 1677 spi_dev_put(spi); 1678 return AE_OK; 1679 } 1680 1681 if (spi->irq < 0) 1682 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 1683 1684 adev->power.flags.ignore_parent = true; 1685 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1686 if (spi_add_device(spi)) { 1687 adev->power.flags.ignore_parent = false; 1688 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1689 dev_name(&adev->dev)); 1690 spi_dev_put(spi); 1691 } 1692 1693 return AE_OK; 1694 } 1695 1696 static void acpi_register_spi_devices(struct spi_master *master) 1697 { 1698 acpi_status status; 1699 acpi_handle handle; 1700 1701 handle = ACPI_HANDLE(master->dev.parent); 1702 if (!handle) 1703 return; 1704 1705 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1706 acpi_spi_add_device, NULL, 1707 master, NULL); 1708 if (ACPI_FAILURE(status)) 1709 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1710 } 1711 #else 1712 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1713 #endif /* CONFIG_ACPI */ 1714 1715 static void spi_master_release(struct device *dev) 1716 { 1717 struct spi_master *master; 1718 1719 master = container_of(dev, struct spi_master, dev); 1720 kfree(master); 1721 } 1722 1723 static struct class spi_master_class = { 1724 .name = "spi_master", 1725 .owner = THIS_MODULE, 1726 .dev_release = spi_master_release, 1727 .dev_groups = spi_master_groups, 1728 }; 1729 1730 1731 /** 1732 * spi_alloc_master - allocate SPI master controller 1733 * @dev: the controller, possibly using the platform_bus 1734 * @size: how much zeroed driver-private data to allocate; the pointer to this 1735 * memory is in the driver_data field of the returned device, 1736 * accessible with spi_master_get_devdata(). 1737 * Context: can sleep 1738 * 1739 * This call is used only by SPI master controller drivers, which are the 1740 * only ones directly touching chip registers. It's how they allocate 1741 * an spi_master structure, prior to calling spi_register_master(). 1742 * 1743 * This must be called from context that can sleep. 1744 * 1745 * The caller is responsible for assigning the bus number and initializing 1746 * the master's methods before calling spi_register_master(); and (after errors 1747 * adding the device) calling spi_master_put() to prevent a memory leak. 1748 * 1749 * Return: the SPI master structure on success, else NULL. 1750 */ 1751 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1752 { 1753 struct spi_master *master; 1754 1755 if (!dev) 1756 return NULL; 1757 1758 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1759 if (!master) 1760 return NULL; 1761 1762 device_initialize(&master->dev); 1763 master->bus_num = -1; 1764 master->num_chipselect = 1; 1765 master->dev.class = &spi_master_class; 1766 master->dev.parent = dev; 1767 spi_master_set_devdata(master, &master[1]); 1768 1769 return master; 1770 } 1771 EXPORT_SYMBOL_GPL(spi_alloc_master); 1772 1773 #ifdef CONFIG_OF 1774 static int of_spi_register_master(struct spi_master *master) 1775 { 1776 int nb, i, *cs; 1777 struct device_node *np = master->dev.of_node; 1778 1779 if (!np) 1780 return 0; 1781 1782 nb = of_gpio_named_count(np, "cs-gpios"); 1783 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1784 1785 /* Return error only for an incorrectly formed cs-gpios property */ 1786 if (nb == 0 || nb == -ENOENT) 1787 return 0; 1788 else if (nb < 0) 1789 return nb; 1790 1791 cs = devm_kzalloc(&master->dev, 1792 sizeof(int) * master->num_chipselect, 1793 GFP_KERNEL); 1794 master->cs_gpios = cs; 1795 1796 if (!master->cs_gpios) 1797 return -ENOMEM; 1798 1799 for (i = 0; i < master->num_chipselect; i++) 1800 cs[i] = -ENOENT; 1801 1802 for (i = 0; i < nb; i++) 1803 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1804 1805 return 0; 1806 } 1807 #else 1808 static int of_spi_register_master(struct spi_master *master) 1809 { 1810 return 0; 1811 } 1812 #endif 1813 1814 /** 1815 * spi_register_master - register SPI master controller 1816 * @master: initialized master, originally from spi_alloc_master() 1817 * Context: can sleep 1818 * 1819 * SPI master controllers connect to their drivers using some non-SPI bus, 1820 * such as the platform bus. The final stage of probe() in that code 1821 * includes calling spi_register_master() to hook up to this SPI bus glue. 1822 * 1823 * SPI controllers use board specific (often SOC specific) bus numbers, 1824 * and board-specific addressing for SPI devices combines those numbers 1825 * with chip select numbers. Since SPI does not directly support dynamic 1826 * device identification, boards need configuration tables telling which 1827 * chip is at which address. 1828 * 1829 * This must be called from context that can sleep. It returns zero on 1830 * success, else a negative error code (dropping the master's refcount). 1831 * After a successful return, the caller is responsible for calling 1832 * spi_unregister_master(). 1833 * 1834 * Return: zero on success, else a negative error code. 1835 */ 1836 int spi_register_master(struct spi_master *master) 1837 { 1838 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1839 struct device *dev = master->dev.parent; 1840 struct boardinfo *bi; 1841 int status = -ENODEV; 1842 int dynamic = 0; 1843 1844 if (!dev) 1845 return -ENODEV; 1846 1847 status = of_spi_register_master(master); 1848 if (status) 1849 return status; 1850 1851 /* even if it's just one always-selected device, there must 1852 * be at least one chipselect 1853 */ 1854 if (master->num_chipselect == 0) 1855 return -EINVAL; 1856 1857 if ((master->bus_num < 0) && master->dev.of_node) 1858 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1859 1860 /* convention: dynamically assigned bus IDs count down from the max */ 1861 if (master->bus_num < 0) { 1862 /* FIXME switch to an IDR based scheme, something like 1863 * I2C now uses, so we can't run out of "dynamic" IDs 1864 */ 1865 master->bus_num = atomic_dec_return(&dyn_bus_id); 1866 dynamic = 1; 1867 } 1868 1869 INIT_LIST_HEAD(&master->queue); 1870 spin_lock_init(&master->queue_lock); 1871 spin_lock_init(&master->bus_lock_spinlock); 1872 mutex_init(&master->bus_lock_mutex); 1873 master->bus_lock_flag = 0; 1874 init_completion(&master->xfer_completion); 1875 if (!master->max_dma_len) 1876 master->max_dma_len = INT_MAX; 1877 1878 /* register the device, then userspace will see it. 1879 * registration fails if the bus ID is in use. 1880 */ 1881 dev_set_name(&master->dev, "spi%u", master->bus_num); 1882 status = device_add(&master->dev); 1883 if (status < 0) 1884 goto done; 1885 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1886 dynamic ? " (dynamic)" : ""); 1887 1888 /* If we're using a queued driver, start the queue */ 1889 if (master->transfer) 1890 dev_info(dev, "master is unqueued, this is deprecated\n"); 1891 else { 1892 status = spi_master_initialize_queue(master); 1893 if (status) { 1894 device_del(&master->dev); 1895 goto done; 1896 } 1897 } 1898 /* add statistics */ 1899 spin_lock_init(&master->statistics.lock); 1900 1901 mutex_lock(&board_lock); 1902 list_add_tail(&master->list, &spi_master_list); 1903 list_for_each_entry(bi, &board_list, list) 1904 spi_match_master_to_boardinfo(master, &bi->board_info); 1905 mutex_unlock(&board_lock); 1906 1907 /* Register devices from the device tree and ACPI */ 1908 of_register_spi_devices(master); 1909 acpi_register_spi_devices(master); 1910 done: 1911 return status; 1912 } 1913 EXPORT_SYMBOL_GPL(spi_register_master); 1914 1915 static void devm_spi_unregister(struct device *dev, void *res) 1916 { 1917 spi_unregister_master(*(struct spi_master **)res); 1918 } 1919 1920 /** 1921 * dev_spi_register_master - register managed SPI master controller 1922 * @dev: device managing SPI master 1923 * @master: initialized master, originally from spi_alloc_master() 1924 * Context: can sleep 1925 * 1926 * Register a SPI device as with spi_register_master() which will 1927 * automatically be unregister 1928 * 1929 * Return: zero on success, else a negative error code. 1930 */ 1931 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1932 { 1933 struct spi_master **ptr; 1934 int ret; 1935 1936 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1937 if (!ptr) 1938 return -ENOMEM; 1939 1940 ret = spi_register_master(master); 1941 if (!ret) { 1942 *ptr = master; 1943 devres_add(dev, ptr); 1944 } else { 1945 devres_free(ptr); 1946 } 1947 1948 return ret; 1949 } 1950 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1951 1952 static int __unregister(struct device *dev, void *null) 1953 { 1954 spi_unregister_device(to_spi_device(dev)); 1955 return 0; 1956 } 1957 1958 /** 1959 * spi_unregister_master - unregister SPI master controller 1960 * @master: the master being unregistered 1961 * Context: can sleep 1962 * 1963 * This call is used only by SPI master controller drivers, which are the 1964 * only ones directly touching chip registers. 1965 * 1966 * This must be called from context that can sleep. 1967 */ 1968 void spi_unregister_master(struct spi_master *master) 1969 { 1970 int dummy; 1971 1972 if (master->queued) { 1973 if (spi_destroy_queue(master)) 1974 dev_err(&master->dev, "queue remove failed\n"); 1975 } 1976 1977 mutex_lock(&board_lock); 1978 list_del(&master->list); 1979 mutex_unlock(&board_lock); 1980 1981 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1982 device_unregister(&master->dev); 1983 } 1984 EXPORT_SYMBOL_GPL(spi_unregister_master); 1985 1986 int spi_master_suspend(struct spi_master *master) 1987 { 1988 int ret; 1989 1990 /* Basically no-ops for non-queued masters */ 1991 if (!master->queued) 1992 return 0; 1993 1994 ret = spi_stop_queue(master); 1995 if (ret) 1996 dev_err(&master->dev, "queue stop failed\n"); 1997 1998 return ret; 1999 } 2000 EXPORT_SYMBOL_GPL(spi_master_suspend); 2001 2002 int spi_master_resume(struct spi_master *master) 2003 { 2004 int ret; 2005 2006 if (!master->queued) 2007 return 0; 2008 2009 ret = spi_start_queue(master); 2010 if (ret) 2011 dev_err(&master->dev, "queue restart failed\n"); 2012 2013 return ret; 2014 } 2015 EXPORT_SYMBOL_GPL(spi_master_resume); 2016 2017 static int __spi_master_match(struct device *dev, const void *data) 2018 { 2019 struct spi_master *m; 2020 const u16 *bus_num = data; 2021 2022 m = container_of(dev, struct spi_master, dev); 2023 return m->bus_num == *bus_num; 2024 } 2025 2026 /** 2027 * spi_busnum_to_master - look up master associated with bus_num 2028 * @bus_num: the master's bus number 2029 * Context: can sleep 2030 * 2031 * This call may be used with devices that are registered after 2032 * arch init time. It returns a refcounted pointer to the relevant 2033 * spi_master (which the caller must release), or NULL if there is 2034 * no such master registered. 2035 * 2036 * Return: the SPI master structure on success, else NULL. 2037 */ 2038 struct spi_master *spi_busnum_to_master(u16 bus_num) 2039 { 2040 struct device *dev; 2041 struct spi_master *master = NULL; 2042 2043 dev = class_find_device(&spi_master_class, NULL, &bus_num, 2044 __spi_master_match); 2045 if (dev) 2046 master = container_of(dev, struct spi_master, dev); 2047 /* reference got in class_find_device */ 2048 return master; 2049 } 2050 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 2051 2052 /*-------------------------------------------------------------------------*/ 2053 2054 /* Core methods for SPI resource management */ 2055 2056 /** 2057 * spi_res_alloc - allocate a spi resource that is life-cycle managed 2058 * during the processing of a spi_message while using 2059 * spi_transfer_one 2060 * @spi: the spi device for which we allocate memory 2061 * @release: the release code to execute for this resource 2062 * @size: size to alloc and return 2063 * @gfp: GFP allocation flags 2064 * 2065 * Return: the pointer to the allocated data 2066 * 2067 * This may get enhanced in the future to allocate from a memory pool 2068 * of the @spi_device or @spi_master to avoid repeated allocations. 2069 */ 2070 void *spi_res_alloc(struct spi_device *spi, 2071 spi_res_release_t release, 2072 size_t size, gfp_t gfp) 2073 { 2074 struct spi_res *sres; 2075 2076 sres = kzalloc(sizeof(*sres) + size, gfp); 2077 if (!sres) 2078 return NULL; 2079 2080 INIT_LIST_HEAD(&sres->entry); 2081 sres->release = release; 2082 2083 return sres->data; 2084 } 2085 EXPORT_SYMBOL_GPL(spi_res_alloc); 2086 2087 /** 2088 * spi_res_free - free an spi resource 2089 * @res: pointer to the custom data of a resource 2090 * 2091 */ 2092 void spi_res_free(void *res) 2093 { 2094 struct spi_res *sres = container_of(res, struct spi_res, data); 2095 2096 if (!res) 2097 return; 2098 2099 WARN_ON(!list_empty(&sres->entry)); 2100 kfree(sres); 2101 } 2102 EXPORT_SYMBOL_GPL(spi_res_free); 2103 2104 /** 2105 * spi_res_add - add a spi_res to the spi_message 2106 * @message: the spi message 2107 * @res: the spi_resource 2108 */ 2109 void spi_res_add(struct spi_message *message, void *res) 2110 { 2111 struct spi_res *sres = container_of(res, struct spi_res, data); 2112 2113 WARN_ON(!list_empty(&sres->entry)); 2114 list_add_tail(&sres->entry, &message->resources); 2115 } 2116 EXPORT_SYMBOL_GPL(spi_res_add); 2117 2118 /** 2119 * spi_res_release - release all spi resources for this message 2120 * @master: the @spi_master 2121 * @message: the @spi_message 2122 */ 2123 void spi_res_release(struct spi_master *master, 2124 struct spi_message *message) 2125 { 2126 struct spi_res *res; 2127 2128 while (!list_empty(&message->resources)) { 2129 res = list_last_entry(&message->resources, 2130 struct spi_res, entry); 2131 2132 if (res->release) 2133 res->release(master, message, res->data); 2134 2135 list_del(&res->entry); 2136 2137 kfree(res); 2138 } 2139 } 2140 EXPORT_SYMBOL_GPL(spi_res_release); 2141 2142 /*-------------------------------------------------------------------------*/ 2143 2144 /* Core methods for spi_message alterations */ 2145 2146 static void __spi_replace_transfers_release(struct spi_master *master, 2147 struct spi_message *msg, 2148 void *res) 2149 { 2150 struct spi_replaced_transfers *rxfer = res; 2151 size_t i; 2152 2153 /* call extra callback if requested */ 2154 if (rxfer->release) 2155 rxfer->release(master, msg, res); 2156 2157 /* insert replaced transfers back into the message */ 2158 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 2159 2160 /* remove the formerly inserted entries */ 2161 for (i = 0; i < rxfer->inserted; i++) 2162 list_del(&rxfer->inserted_transfers[i].transfer_list); 2163 } 2164 2165 /** 2166 * spi_replace_transfers - replace transfers with several transfers 2167 * and register change with spi_message.resources 2168 * @msg: the spi_message we work upon 2169 * @xfer_first: the first spi_transfer we want to replace 2170 * @remove: number of transfers to remove 2171 * @insert: the number of transfers we want to insert instead 2172 * @release: extra release code necessary in some circumstances 2173 * @extradatasize: extra data to allocate (with alignment guarantees 2174 * of struct @spi_transfer) 2175 * @gfp: gfp flags 2176 * 2177 * Returns: pointer to @spi_replaced_transfers, 2178 * PTR_ERR(...) in case of errors. 2179 */ 2180 struct spi_replaced_transfers *spi_replace_transfers( 2181 struct spi_message *msg, 2182 struct spi_transfer *xfer_first, 2183 size_t remove, 2184 size_t insert, 2185 spi_replaced_release_t release, 2186 size_t extradatasize, 2187 gfp_t gfp) 2188 { 2189 struct spi_replaced_transfers *rxfer; 2190 struct spi_transfer *xfer; 2191 size_t i; 2192 2193 /* allocate the structure using spi_res */ 2194 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 2195 insert * sizeof(struct spi_transfer) 2196 + sizeof(struct spi_replaced_transfers) 2197 + extradatasize, 2198 gfp); 2199 if (!rxfer) 2200 return ERR_PTR(-ENOMEM); 2201 2202 /* the release code to invoke before running the generic release */ 2203 rxfer->release = release; 2204 2205 /* assign extradata */ 2206 if (extradatasize) 2207 rxfer->extradata = 2208 &rxfer->inserted_transfers[insert]; 2209 2210 /* init the replaced_transfers list */ 2211 INIT_LIST_HEAD(&rxfer->replaced_transfers); 2212 2213 /* assign the list_entry after which we should reinsert 2214 * the @replaced_transfers - it may be spi_message.messages! 2215 */ 2216 rxfer->replaced_after = xfer_first->transfer_list.prev; 2217 2218 /* remove the requested number of transfers */ 2219 for (i = 0; i < remove; i++) { 2220 /* if the entry after replaced_after it is msg->transfers 2221 * then we have been requested to remove more transfers 2222 * than are in the list 2223 */ 2224 if (rxfer->replaced_after->next == &msg->transfers) { 2225 dev_err(&msg->spi->dev, 2226 "requested to remove more spi_transfers than are available\n"); 2227 /* insert replaced transfers back into the message */ 2228 list_splice(&rxfer->replaced_transfers, 2229 rxfer->replaced_after); 2230 2231 /* free the spi_replace_transfer structure */ 2232 spi_res_free(rxfer); 2233 2234 /* and return with an error */ 2235 return ERR_PTR(-EINVAL); 2236 } 2237 2238 /* remove the entry after replaced_after from list of 2239 * transfers and add it to list of replaced_transfers 2240 */ 2241 list_move_tail(rxfer->replaced_after->next, 2242 &rxfer->replaced_transfers); 2243 } 2244 2245 /* create copy of the given xfer with identical settings 2246 * based on the first transfer to get removed 2247 */ 2248 for (i = 0; i < insert; i++) { 2249 /* we need to run in reverse order */ 2250 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 2251 2252 /* copy all spi_transfer data */ 2253 memcpy(xfer, xfer_first, sizeof(*xfer)); 2254 2255 /* add to list */ 2256 list_add(&xfer->transfer_list, rxfer->replaced_after); 2257 2258 /* clear cs_change and delay_usecs for all but the last */ 2259 if (i) { 2260 xfer->cs_change = false; 2261 xfer->delay_usecs = 0; 2262 } 2263 } 2264 2265 /* set up inserted */ 2266 rxfer->inserted = insert; 2267 2268 /* and register it with spi_res/spi_message */ 2269 spi_res_add(msg, rxfer); 2270 2271 return rxfer; 2272 } 2273 EXPORT_SYMBOL_GPL(spi_replace_transfers); 2274 2275 static int __spi_split_transfer_maxsize(struct spi_master *master, 2276 struct spi_message *msg, 2277 struct spi_transfer **xferp, 2278 size_t maxsize, 2279 gfp_t gfp) 2280 { 2281 struct spi_transfer *xfer = *xferp, *xfers; 2282 struct spi_replaced_transfers *srt; 2283 size_t offset; 2284 size_t count, i; 2285 2286 /* warn once about this fact that we are splitting a transfer */ 2287 dev_warn_once(&msg->spi->dev, 2288 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n", 2289 xfer->len, maxsize); 2290 2291 /* calculate how many we have to replace */ 2292 count = DIV_ROUND_UP(xfer->len, maxsize); 2293 2294 /* create replacement */ 2295 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 2296 if (IS_ERR(srt)) 2297 return PTR_ERR(srt); 2298 xfers = srt->inserted_transfers; 2299 2300 /* now handle each of those newly inserted spi_transfers 2301 * note that the replacements spi_transfers all are preset 2302 * to the same values as *xferp, so tx_buf, rx_buf and len 2303 * are all identical (as well as most others) 2304 * so we just have to fix up len and the pointers. 2305 * 2306 * this also includes support for the depreciated 2307 * spi_message.is_dma_mapped interface 2308 */ 2309 2310 /* the first transfer just needs the length modified, so we 2311 * run it outside the loop 2312 */ 2313 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 2314 2315 /* all the others need rx_buf/tx_buf also set */ 2316 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 2317 /* update rx_buf, tx_buf and dma */ 2318 if (xfers[i].rx_buf) 2319 xfers[i].rx_buf += offset; 2320 if (xfers[i].rx_dma) 2321 xfers[i].rx_dma += offset; 2322 if (xfers[i].tx_buf) 2323 xfers[i].tx_buf += offset; 2324 if (xfers[i].tx_dma) 2325 xfers[i].tx_dma += offset; 2326 2327 /* update length */ 2328 xfers[i].len = min(maxsize, xfers[i].len - offset); 2329 } 2330 2331 /* we set up xferp to the last entry we have inserted, 2332 * so that we skip those already split transfers 2333 */ 2334 *xferp = &xfers[count - 1]; 2335 2336 /* increment statistics counters */ 2337 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, 2338 transfers_split_maxsize); 2339 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 2340 transfers_split_maxsize); 2341 2342 return 0; 2343 } 2344 2345 /** 2346 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers 2347 * when an individual transfer exceeds a 2348 * certain size 2349 * @master: the @spi_master for this transfer 2350 * @msg: the @spi_message to transform 2351 * @maxsize: the maximum when to apply this 2352 * @gfp: GFP allocation flags 2353 * 2354 * Return: status of transformation 2355 */ 2356 int spi_split_transfers_maxsize(struct spi_master *master, 2357 struct spi_message *msg, 2358 size_t maxsize, 2359 gfp_t gfp) 2360 { 2361 struct spi_transfer *xfer; 2362 int ret; 2363 2364 /* iterate over the transfer_list, 2365 * but note that xfer is advanced to the last transfer inserted 2366 * to avoid checking sizes again unnecessarily (also xfer does 2367 * potentiall belong to a different list by the time the 2368 * replacement has happened 2369 */ 2370 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 2371 if (xfer->len > maxsize) { 2372 ret = __spi_split_transfer_maxsize( 2373 master, msg, &xfer, maxsize, gfp); 2374 if (ret) 2375 return ret; 2376 } 2377 } 2378 2379 return 0; 2380 } 2381 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 2382 2383 /*-------------------------------------------------------------------------*/ 2384 2385 /* Core methods for SPI master protocol drivers. Some of the 2386 * other core methods are currently defined as inline functions. 2387 */ 2388 2389 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word) 2390 { 2391 if (master->bits_per_word_mask) { 2392 /* Only 32 bits fit in the mask */ 2393 if (bits_per_word > 32) 2394 return -EINVAL; 2395 if (!(master->bits_per_word_mask & 2396 SPI_BPW_MASK(bits_per_word))) 2397 return -EINVAL; 2398 } 2399 2400 return 0; 2401 } 2402 2403 /** 2404 * spi_setup - setup SPI mode and clock rate 2405 * @spi: the device whose settings are being modified 2406 * Context: can sleep, and no requests are queued to the device 2407 * 2408 * SPI protocol drivers may need to update the transfer mode if the 2409 * device doesn't work with its default. They may likewise need 2410 * to update clock rates or word sizes from initial values. This function 2411 * changes those settings, and must be called from a context that can sleep. 2412 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 2413 * effect the next time the device is selected and data is transferred to 2414 * or from it. When this function returns, the spi device is deselected. 2415 * 2416 * Note that this call will fail if the protocol driver specifies an option 2417 * that the underlying controller or its driver does not support. For 2418 * example, not all hardware supports wire transfers using nine bit words, 2419 * LSB-first wire encoding, or active-high chipselects. 2420 * 2421 * Return: zero on success, else a negative error code. 2422 */ 2423 int spi_setup(struct spi_device *spi) 2424 { 2425 unsigned bad_bits, ugly_bits; 2426 int status; 2427 2428 /* check mode to prevent that DUAL and QUAD set at the same time 2429 */ 2430 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 2431 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 2432 dev_err(&spi->dev, 2433 "setup: can not select dual and quad at the same time\n"); 2434 return -EINVAL; 2435 } 2436 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 2437 */ 2438 if ((spi->mode & SPI_3WIRE) && (spi->mode & 2439 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 2440 return -EINVAL; 2441 /* help drivers fail *cleanly* when they need options 2442 * that aren't supported with their current master 2443 */ 2444 bad_bits = spi->mode & ~spi->master->mode_bits; 2445 ugly_bits = bad_bits & 2446 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 2447 if (ugly_bits) { 2448 dev_warn(&spi->dev, 2449 "setup: ignoring unsupported mode bits %x\n", 2450 ugly_bits); 2451 spi->mode &= ~ugly_bits; 2452 bad_bits &= ~ugly_bits; 2453 } 2454 if (bad_bits) { 2455 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 2456 bad_bits); 2457 return -EINVAL; 2458 } 2459 2460 if (!spi->bits_per_word) 2461 spi->bits_per_word = 8; 2462 2463 status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word); 2464 if (status) 2465 return status; 2466 2467 if (!spi->max_speed_hz) 2468 spi->max_speed_hz = spi->master->max_speed_hz; 2469 2470 if (spi->master->setup) 2471 status = spi->master->setup(spi); 2472 2473 spi_set_cs(spi, false); 2474 2475 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 2476 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 2477 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 2478 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 2479 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 2480 (spi->mode & SPI_LOOP) ? "loopback, " : "", 2481 spi->bits_per_word, spi->max_speed_hz, 2482 status); 2483 2484 return status; 2485 } 2486 EXPORT_SYMBOL_GPL(spi_setup); 2487 2488 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 2489 { 2490 struct spi_master *master = spi->master; 2491 struct spi_transfer *xfer; 2492 int w_size; 2493 2494 if (list_empty(&message->transfers)) 2495 return -EINVAL; 2496 2497 /* Half-duplex links include original MicroWire, and ones with 2498 * only one data pin like SPI_3WIRE (switches direction) or where 2499 * either MOSI or MISO is missing. They can also be caused by 2500 * software limitations. 2501 */ 2502 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 2503 || (spi->mode & SPI_3WIRE)) { 2504 unsigned flags = master->flags; 2505 2506 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2507 if (xfer->rx_buf && xfer->tx_buf) 2508 return -EINVAL; 2509 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 2510 return -EINVAL; 2511 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 2512 return -EINVAL; 2513 } 2514 } 2515 2516 /** 2517 * Set transfer bits_per_word and max speed as spi device default if 2518 * it is not set for this transfer. 2519 * Set transfer tx_nbits and rx_nbits as single transfer default 2520 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 2521 */ 2522 message->frame_length = 0; 2523 list_for_each_entry(xfer, &message->transfers, transfer_list) { 2524 message->frame_length += xfer->len; 2525 if (!xfer->bits_per_word) 2526 xfer->bits_per_word = spi->bits_per_word; 2527 2528 if (!xfer->speed_hz) 2529 xfer->speed_hz = spi->max_speed_hz; 2530 if (!xfer->speed_hz) 2531 xfer->speed_hz = master->max_speed_hz; 2532 2533 if (master->max_speed_hz && 2534 xfer->speed_hz > master->max_speed_hz) 2535 xfer->speed_hz = master->max_speed_hz; 2536 2537 if (__spi_validate_bits_per_word(master, xfer->bits_per_word)) 2538 return -EINVAL; 2539 2540 /* 2541 * SPI transfer length should be multiple of SPI word size 2542 * where SPI word size should be power-of-two multiple 2543 */ 2544 if (xfer->bits_per_word <= 8) 2545 w_size = 1; 2546 else if (xfer->bits_per_word <= 16) 2547 w_size = 2; 2548 else 2549 w_size = 4; 2550 2551 /* No partial transfers accepted */ 2552 if (xfer->len % w_size) 2553 return -EINVAL; 2554 2555 if (xfer->speed_hz && master->min_speed_hz && 2556 xfer->speed_hz < master->min_speed_hz) 2557 return -EINVAL; 2558 2559 if (xfer->tx_buf && !xfer->tx_nbits) 2560 xfer->tx_nbits = SPI_NBITS_SINGLE; 2561 if (xfer->rx_buf && !xfer->rx_nbits) 2562 xfer->rx_nbits = SPI_NBITS_SINGLE; 2563 /* check transfer tx/rx_nbits: 2564 * 1. check the value matches one of single, dual and quad 2565 * 2. check tx/rx_nbits match the mode in spi_device 2566 */ 2567 if (xfer->tx_buf) { 2568 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 2569 xfer->tx_nbits != SPI_NBITS_DUAL && 2570 xfer->tx_nbits != SPI_NBITS_QUAD) 2571 return -EINVAL; 2572 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 2573 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2574 return -EINVAL; 2575 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 2576 !(spi->mode & SPI_TX_QUAD)) 2577 return -EINVAL; 2578 } 2579 /* check transfer rx_nbits */ 2580 if (xfer->rx_buf) { 2581 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 2582 xfer->rx_nbits != SPI_NBITS_DUAL && 2583 xfer->rx_nbits != SPI_NBITS_QUAD) 2584 return -EINVAL; 2585 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 2586 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2587 return -EINVAL; 2588 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 2589 !(spi->mode & SPI_RX_QUAD)) 2590 return -EINVAL; 2591 } 2592 } 2593 2594 message->status = -EINPROGRESS; 2595 2596 return 0; 2597 } 2598 2599 static int __spi_async(struct spi_device *spi, struct spi_message *message) 2600 { 2601 struct spi_master *master = spi->master; 2602 2603 message->spi = spi; 2604 2605 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async); 2606 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 2607 2608 trace_spi_message_submit(message); 2609 2610 return master->transfer(spi, message); 2611 } 2612 2613 /** 2614 * spi_async - asynchronous SPI transfer 2615 * @spi: device with which data will be exchanged 2616 * @message: describes the data transfers, including completion callback 2617 * Context: any (irqs may be blocked, etc) 2618 * 2619 * This call may be used in_irq and other contexts which can't sleep, 2620 * as well as from task contexts which can sleep. 2621 * 2622 * The completion callback is invoked in a context which can't sleep. 2623 * Before that invocation, the value of message->status is undefined. 2624 * When the callback is issued, message->status holds either zero (to 2625 * indicate complete success) or a negative error code. After that 2626 * callback returns, the driver which issued the transfer request may 2627 * deallocate the associated memory; it's no longer in use by any SPI 2628 * core or controller driver code. 2629 * 2630 * Note that although all messages to a spi_device are handled in 2631 * FIFO order, messages may go to different devices in other orders. 2632 * Some device might be higher priority, or have various "hard" access 2633 * time requirements, for example. 2634 * 2635 * On detection of any fault during the transfer, processing of 2636 * the entire message is aborted, and the device is deselected. 2637 * Until returning from the associated message completion callback, 2638 * no other spi_message queued to that device will be processed. 2639 * (This rule applies equally to all the synchronous transfer calls, 2640 * which are wrappers around this core asynchronous primitive.) 2641 * 2642 * Return: zero on success, else a negative error code. 2643 */ 2644 int spi_async(struct spi_device *spi, struct spi_message *message) 2645 { 2646 struct spi_master *master = spi->master; 2647 int ret; 2648 unsigned long flags; 2649 2650 ret = __spi_validate(spi, message); 2651 if (ret != 0) 2652 return ret; 2653 2654 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2655 2656 if (master->bus_lock_flag) 2657 ret = -EBUSY; 2658 else 2659 ret = __spi_async(spi, message); 2660 2661 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2662 2663 return ret; 2664 } 2665 EXPORT_SYMBOL_GPL(spi_async); 2666 2667 /** 2668 * spi_async_locked - version of spi_async with exclusive bus usage 2669 * @spi: device with which data will be exchanged 2670 * @message: describes the data transfers, including completion callback 2671 * Context: any (irqs may be blocked, etc) 2672 * 2673 * This call may be used in_irq and other contexts which can't sleep, 2674 * as well as from task contexts which can sleep. 2675 * 2676 * The completion callback is invoked in a context which can't sleep. 2677 * Before that invocation, the value of message->status is undefined. 2678 * When the callback is issued, message->status holds either zero (to 2679 * indicate complete success) or a negative error code. After that 2680 * callback returns, the driver which issued the transfer request may 2681 * deallocate the associated memory; it's no longer in use by any SPI 2682 * core or controller driver code. 2683 * 2684 * Note that although all messages to a spi_device are handled in 2685 * FIFO order, messages may go to different devices in other orders. 2686 * Some device might be higher priority, or have various "hard" access 2687 * time requirements, for example. 2688 * 2689 * On detection of any fault during the transfer, processing of 2690 * the entire message is aborted, and the device is deselected. 2691 * Until returning from the associated message completion callback, 2692 * no other spi_message queued to that device will be processed. 2693 * (This rule applies equally to all the synchronous transfer calls, 2694 * which are wrappers around this core asynchronous primitive.) 2695 * 2696 * Return: zero on success, else a negative error code. 2697 */ 2698 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2699 { 2700 struct spi_master *master = spi->master; 2701 int ret; 2702 unsigned long flags; 2703 2704 ret = __spi_validate(spi, message); 2705 if (ret != 0) 2706 return ret; 2707 2708 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2709 2710 ret = __spi_async(spi, message); 2711 2712 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2713 2714 return ret; 2715 2716 } 2717 EXPORT_SYMBOL_GPL(spi_async_locked); 2718 2719 2720 int spi_flash_read(struct spi_device *spi, 2721 struct spi_flash_read_message *msg) 2722 2723 { 2724 struct spi_master *master = spi->master; 2725 int ret; 2726 2727 if ((msg->opcode_nbits == SPI_NBITS_DUAL || 2728 msg->addr_nbits == SPI_NBITS_DUAL) && 2729 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2730 return -EINVAL; 2731 if ((msg->opcode_nbits == SPI_NBITS_QUAD || 2732 msg->addr_nbits == SPI_NBITS_QUAD) && 2733 !(spi->mode & SPI_TX_QUAD)) 2734 return -EINVAL; 2735 if (msg->data_nbits == SPI_NBITS_DUAL && 2736 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2737 return -EINVAL; 2738 if (msg->data_nbits == SPI_NBITS_QUAD && 2739 !(spi->mode & SPI_RX_QUAD)) 2740 return -EINVAL; 2741 2742 if (master->auto_runtime_pm) { 2743 ret = pm_runtime_get_sync(master->dev.parent); 2744 if (ret < 0) { 2745 dev_err(&master->dev, "Failed to power device: %d\n", 2746 ret); 2747 return ret; 2748 } 2749 } 2750 mutex_lock(&master->bus_lock_mutex); 2751 ret = master->spi_flash_read(spi, msg); 2752 mutex_unlock(&master->bus_lock_mutex); 2753 if (master->auto_runtime_pm) 2754 pm_runtime_put(master->dev.parent); 2755 2756 return ret; 2757 } 2758 EXPORT_SYMBOL_GPL(spi_flash_read); 2759 2760 /*-------------------------------------------------------------------------*/ 2761 2762 /* Utility methods for SPI master protocol drivers, layered on 2763 * top of the core. Some other utility methods are defined as 2764 * inline functions. 2765 */ 2766 2767 static void spi_complete(void *arg) 2768 { 2769 complete(arg); 2770 } 2771 2772 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 2773 int bus_locked) 2774 { 2775 DECLARE_COMPLETION_ONSTACK(done); 2776 int status; 2777 struct spi_master *master = spi->master; 2778 unsigned long flags; 2779 2780 status = __spi_validate(spi, message); 2781 if (status != 0) 2782 return status; 2783 2784 message->complete = spi_complete; 2785 message->context = &done; 2786 message->spi = spi; 2787 2788 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync); 2789 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 2790 2791 if (!bus_locked) 2792 mutex_lock(&master->bus_lock_mutex); 2793 2794 /* If we're not using the legacy transfer method then we will 2795 * try to transfer in the calling context so special case. 2796 * This code would be less tricky if we could remove the 2797 * support for driver implemented message queues. 2798 */ 2799 if (master->transfer == spi_queued_transfer) { 2800 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2801 2802 trace_spi_message_submit(message); 2803 2804 status = __spi_queued_transfer(spi, message, false); 2805 2806 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2807 } else { 2808 status = spi_async_locked(spi, message); 2809 } 2810 2811 if (!bus_locked) 2812 mutex_unlock(&master->bus_lock_mutex); 2813 2814 if (status == 0) { 2815 /* Push out the messages in the calling context if we 2816 * can. 2817 */ 2818 if (master->transfer == spi_queued_transfer) { 2819 SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, 2820 spi_sync_immediate); 2821 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 2822 spi_sync_immediate); 2823 __spi_pump_messages(master, false, bus_locked); 2824 } 2825 2826 wait_for_completion(&done); 2827 status = message->status; 2828 } 2829 message->context = NULL; 2830 return status; 2831 } 2832 2833 /** 2834 * spi_sync - blocking/synchronous SPI data transfers 2835 * @spi: device with which data will be exchanged 2836 * @message: describes the data transfers 2837 * Context: can sleep 2838 * 2839 * This call may only be used from a context that may sleep. The sleep 2840 * is non-interruptible, and has no timeout. Low-overhead controller 2841 * drivers may DMA directly into and out of the message buffers. 2842 * 2843 * Note that the SPI device's chip select is active during the message, 2844 * and then is normally disabled between messages. Drivers for some 2845 * frequently-used devices may want to minimize costs of selecting a chip, 2846 * by leaving it selected in anticipation that the next message will go 2847 * to the same chip. (That may increase power usage.) 2848 * 2849 * Also, the caller is guaranteeing that the memory associated with the 2850 * message will not be freed before this call returns. 2851 * 2852 * Return: zero on success, else a negative error code. 2853 */ 2854 int spi_sync(struct spi_device *spi, struct spi_message *message) 2855 { 2856 return __spi_sync(spi, message, spi->master->bus_lock_flag); 2857 } 2858 EXPORT_SYMBOL_GPL(spi_sync); 2859 2860 /** 2861 * spi_sync_locked - version of spi_sync with exclusive bus usage 2862 * @spi: device with which data will be exchanged 2863 * @message: describes the data transfers 2864 * Context: can sleep 2865 * 2866 * This call may only be used from a context that may sleep. The sleep 2867 * is non-interruptible, and has no timeout. Low-overhead controller 2868 * drivers may DMA directly into and out of the message buffers. 2869 * 2870 * This call should be used by drivers that require exclusive access to the 2871 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 2872 * be released by a spi_bus_unlock call when the exclusive access is over. 2873 * 2874 * Return: zero on success, else a negative error code. 2875 */ 2876 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 2877 { 2878 return __spi_sync(spi, message, 1); 2879 } 2880 EXPORT_SYMBOL_GPL(spi_sync_locked); 2881 2882 /** 2883 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 2884 * @master: SPI bus master that should be locked for exclusive bus access 2885 * Context: can sleep 2886 * 2887 * This call may only be used from a context that may sleep. The sleep 2888 * is non-interruptible, and has no timeout. 2889 * 2890 * This call should be used by drivers that require exclusive access to the 2891 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 2892 * exclusive access is over. Data transfer must be done by spi_sync_locked 2893 * and spi_async_locked calls when the SPI bus lock is held. 2894 * 2895 * Return: always zero. 2896 */ 2897 int spi_bus_lock(struct spi_master *master) 2898 { 2899 unsigned long flags; 2900 2901 mutex_lock(&master->bus_lock_mutex); 2902 2903 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2904 master->bus_lock_flag = 1; 2905 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2906 2907 /* mutex remains locked until spi_bus_unlock is called */ 2908 2909 return 0; 2910 } 2911 EXPORT_SYMBOL_GPL(spi_bus_lock); 2912 2913 /** 2914 * spi_bus_unlock - release the lock for exclusive SPI bus usage 2915 * @master: SPI bus master that was locked for exclusive bus access 2916 * Context: can sleep 2917 * 2918 * This call may only be used from a context that may sleep. The sleep 2919 * is non-interruptible, and has no timeout. 2920 * 2921 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 2922 * call. 2923 * 2924 * Return: always zero. 2925 */ 2926 int spi_bus_unlock(struct spi_master *master) 2927 { 2928 master->bus_lock_flag = 0; 2929 2930 mutex_unlock(&master->bus_lock_mutex); 2931 2932 return 0; 2933 } 2934 EXPORT_SYMBOL_GPL(spi_bus_unlock); 2935 2936 /* portable code must never pass more than 32 bytes */ 2937 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 2938 2939 static u8 *buf; 2940 2941 /** 2942 * spi_write_then_read - SPI synchronous write followed by read 2943 * @spi: device with which data will be exchanged 2944 * @txbuf: data to be written (need not be dma-safe) 2945 * @n_tx: size of txbuf, in bytes 2946 * @rxbuf: buffer into which data will be read (need not be dma-safe) 2947 * @n_rx: size of rxbuf, in bytes 2948 * Context: can sleep 2949 * 2950 * This performs a half duplex MicroWire style transaction with the 2951 * device, sending txbuf and then reading rxbuf. The return value 2952 * is zero for success, else a negative errno status code. 2953 * This call may only be used from a context that may sleep. 2954 * 2955 * Parameters to this routine are always copied using a small buffer; 2956 * portable code should never use this for more than 32 bytes. 2957 * Performance-sensitive or bulk transfer code should instead use 2958 * spi_{async,sync}() calls with dma-safe buffers. 2959 * 2960 * Return: zero on success, else a negative error code. 2961 */ 2962 int spi_write_then_read(struct spi_device *spi, 2963 const void *txbuf, unsigned n_tx, 2964 void *rxbuf, unsigned n_rx) 2965 { 2966 static DEFINE_MUTEX(lock); 2967 2968 int status; 2969 struct spi_message message; 2970 struct spi_transfer x[2]; 2971 u8 *local_buf; 2972 2973 /* Use preallocated DMA-safe buffer if we can. We can't avoid 2974 * copying here, (as a pure convenience thing), but we can 2975 * keep heap costs out of the hot path unless someone else is 2976 * using the pre-allocated buffer or the transfer is too large. 2977 */ 2978 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 2979 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 2980 GFP_KERNEL | GFP_DMA); 2981 if (!local_buf) 2982 return -ENOMEM; 2983 } else { 2984 local_buf = buf; 2985 } 2986 2987 spi_message_init(&message); 2988 memset(x, 0, sizeof(x)); 2989 if (n_tx) { 2990 x[0].len = n_tx; 2991 spi_message_add_tail(&x[0], &message); 2992 } 2993 if (n_rx) { 2994 x[1].len = n_rx; 2995 spi_message_add_tail(&x[1], &message); 2996 } 2997 2998 memcpy(local_buf, txbuf, n_tx); 2999 x[0].tx_buf = local_buf; 3000 x[1].rx_buf = local_buf + n_tx; 3001 3002 /* do the i/o */ 3003 status = spi_sync(spi, &message); 3004 if (status == 0) 3005 memcpy(rxbuf, x[1].rx_buf, n_rx); 3006 3007 if (x[0].tx_buf == buf) 3008 mutex_unlock(&lock); 3009 else 3010 kfree(local_buf); 3011 3012 return status; 3013 } 3014 EXPORT_SYMBOL_GPL(spi_write_then_read); 3015 3016 /*-------------------------------------------------------------------------*/ 3017 3018 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 3019 static int __spi_of_device_match(struct device *dev, void *data) 3020 { 3021 return dev->of_node == data; 3022 } 3023 3024 /* must call put_device() when done with returned spi_device device */ 3025 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 3026 { 3027 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 3028 __spi_of_device_match); 3029 return dev ? to_spi_device(dev) : NULL; 3030 } 3031 3032 static int __spi_of_master_match(struct device *dev, const void *data) 3033 { 3034 return dev->of_node == data; 3035 } 3036 3037 /* the spi masters are not using spi_bus, so we find it with another way */ 3038 static struct spi_master *of_find_spi_master_by_node(struct device_node *node) 3039 { 3040 struct device *dev; 3041 3042 dev = class_find_device(&spi_master_class, NULL, node, 3043 __spi_of_master_match); 3044 if (!dev) 3045 return NULL; 3046 3047 /* reference got in class_find_device */ 3048 return container_of(dev, struct spi_master, dev); 3049 } 3050 3051 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 3052 void *arg) 3053 { 3054 struct of_reconfig_data *rd = arg; 3055 struct spi_master *master; 3056 struct spi_device *spi; 3057 3058 switch (of_reconfig_get_state_change(action, arg)) { 3059 case OF_RECONFIG_CHANGE_ADD: 3060 master = of_find_spi_master_by_node(rd->dn->parent); 3061 if (master == NULL) 3062 return NOTIFY_OK; /* not for us */ 3063 3064 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 3065 put_device(&master->dev); 3066 return NOTIFY_OK; 3067 } 3068 3069 spi = of_register_spi_device(master, rd->dn); 3070 put_device(&master->dev); 3071 3072 if (IS_ERR(spi)) { 3073 pr_err("%s: failed to create for '%s'\n", 3074 __func__, rd->dn->full_name); 3075 return notifier_from_errno(PTR_ERR(spi)); 3076 } 3077 break; 3078 3079 case OF_RECONFIG_CHANGE_REMOVE: 3080 /* already depopulated? */ 3081 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 3082 return NOTIFY_OK; 3083 3084 /* find our device by node */ 3085 spi = of_find_spi_device_by_node(rd->dn); 3086 if (spi == NULL) 3087 return NOTIFY_OK; /* no? not meant for us */ 3088 3089 /* unregister takes one ref away */ 3090 spi_unregister_device(spi); 3091 3092 /* and put the reference of the find */ 3093 put_device(&spi->dev); 3094 break; 3095 } 3096 3097 return NOTIFY_OK; 3098 } 3099 3100 static struct notifier_block spi_of_notifier = { 3101 .notifier_call = of_spi_notify, 3102 }; 3103 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3104 extern struct notifier_block spi_of_notifier; 3105 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 3106 3107 static int __init spi_init(void) 3108 { 3109 int status; 3110 3111 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 3112 if (!buf) { 3113 status = -ENOMEM; 3114 goto err0; 3115 } 3116 3117 status = bus_register(&spi_bus_type); 3118 if (status < 0) 3119 goto err1; 3120 3121 status = class_register(&spi_master_class); 3122 if (status < 0) 3123 goto err2; 3124 3125 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 3126 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 3127 3128 return 0; 3129 3130 err2: 3131 bus_unregister(&spi_bus_type); 3132 err1: 3133 kfree(buf); 3134 buf = NULL; 3135 err0: 3136 return status; 3137 } 3138 3139 /* board_info is normally registered in arch_initcall(), 3140 * but even essential drivers wait till later 3141 * 3142 * REVISIT only boardinfo really needs static linking. the rest (device and 3143 * driver registration) _could_ be dynamically linked (modular) ... costs 3144 * include needing to have boardinfo data structures be much more public. 3145 */ 3146 postcore_initcall(spi_init); 3147 3148