xref: /linux/drivers/spi/spi.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = to_spi_device(dev);			\
88 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
89 }									\
90 static struct device_attribute dev_attr_spi_device_##field = {		\
91 	.attr = { .name = file, .mode = S_IRUGO },			\
92 	.show = spi_device_##field##_show,				\
93 }
94 
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 					    char *buf)			\
98 {									\
99 	unsigned long flags;						\
100 	ssize_t len;							\
101 	spin_lock_irqsave(&stat->lock, flags);				\
102 	len = sprintf(buf, format_string, stat->field);			\
103 	spin_unlock_irqrestore(&stat->lock, flags);			\
104 	return len;							\
105 }									\
106 SPI_STATISTICS_ATTRS(name, file)
107 
108 #define SPI_STATISTICS_SHOW(field, format_string)			\
109 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
110 				 field, format_string)
111 
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116 
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120 
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124 
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
126 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
127 				 "transfer_bytes_histo_" number,	\
128 				 transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146 
147 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
148 
149 static struct attribute *spi_dev_attrs[] = {
150 	&dev_attr_modalias.attr,
151 	NULL,
152 };
153 
154 static const struct attribute_group spi_dev_group = {
155 	.attrs  = spi_dev_attrs,
156 };
157 
158 static struct attribute *spi_device_statistics_attrs[] = {
159 	&dev_attr_spi_device_messages.attr,
160 	&dev_attr_spi_device_transfers.attr,
161 	&dev_attr_spi_device_errors.attr,
162 	&dev_attr_spi_device_timedout.attr,
163 	&dev_attr_spi_device_spi_sync.attr,
164 	&dev_attr_spi_device_spi_sync_immediate.attr,
165 	&dev_attr_spi_device_spi_async.attr,
166 	&dev_attr_spi_device_bytes.attr,
167 	&dev_attr_spi_device_bytes_rx.attr,
168 	&dev_attr_spi_device_bytes_tx.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
186 	&dev_attr_spi_device_transfers_split_maxsize.attr,
187 	NULL,
188 };
189 
190 static const struct attribute_group spi_device_statistics_group = {
191 	.name  = "statistics",
192 	.attrs  = spi_device_statistics_attrs,
193 };
194 
195 static const struct attribute_group *spi_dev_groups[] = {
196 	&spi_dev_group,
197 	&spi_device_statistics_group,
198 	NULL,
199 };
200 
201 static struct attribute *spi_master_statistics_attrs[] = {
202 	&dev_attr_spi_master_messages.attr,
203 	&dev_attr_spi_master_transfers.attr,
204 	&dev_attr_spi_master_errors.attr,
205 	&dev_attr_spi_master_timedout.attr,
206 	&dev_attr_spi_master_spi_sync.attr,
207 	&dev_attr_spi_master_spi_sync_immediate.attr,
208 	&dev_attr_spi_master_spi_async.attr,
209 	&dev_attr_spi_master_bytes.attr,
210 	&dev_attr_spi_master_bytes_rx.attr,
211 	&dev_attr_spi_master_bytes_tx.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
229 	&dev_attr_spi_master_transfers_split_maxsize.attr,
230 	NULL,
231 };
232 
233 static const struct attribute_group spi_master_statistics_group = {
234 	.name  = "statistics",
235 	.attrs  = spi_master_statistics_attrs,
236 };
237 
238 static const struct attribute_group *spi_master_groups[] = {
239 	&spi_master_statistics_group,
240 	NULL,
241 };
242 
243 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
244 				       struct spi_transfer *xfer,
245 				       struct spi_master *master)
246 {
247 	unsigned long flags;
248 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
249 
250 	if (l2len < 0)
251 		l2len = 0;
252 
253 	spin_lock_irqsave(&stats->lock, flags);
254 
255 	stats->transfers++;
256 	stats->transfer_bytes_histo[l2len]++;
257 
258 	stats->bytes += xfer->len;
259 	if ((xfer->tx_buf) &&
260 	    (xfer->tx_buf != master->dummy_tx))
261 		stats->bytes_tx += xfer->len;
262 	if ((xfer->rx_buf) &&
263 	    (xfer->rx_buf != master->dummy_rx))
264 		stats->bytes_rx += xfer->len;
265 
266 	spin_unlock_irqrestore(&stats->lock, flags);
267 }
268 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
269 
270 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
271  * and the sysfs version makes coldplug work too.
272  */
273 
274 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
275 						const struct spi_device *sdev)
276 {
277 	while (id->name[0]) {
278 		if (!strcmp(sdev->modalias, id->name))
279 			return id;
280 		id++;
281 	}
282 	return NULL;
283 }
284 
285 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
286 {
287 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
288 
289 	return spi_match_id(sdrv->id_table, sdev);
290 }
291 EXPORT_SYMBOL_GPL(spi_get_device_id);
292 
293 static int spi_match_device(struct device *dev, struct device_driver *drv)
294 {
295 	const struct spi_device	*spi = to_spi_device(dev);
296 	const struct spi_driver	*sdrv = to_spi_driver(drv);
297 
298 	/* Attempt an OF style match */
299 	if (of_driver_match_device(dev, drv))
300 		return 1;
301 
302 	/* Then try ACPI */
303 	if (acpi_driver_match_device(dev, drv))
304 		return 1;
305 
306 	if (sdrv->id_table)
307 		return !!spi_match_id(sdrv->id_table, spi);
308 
309 	return strcmp(spi->modalias, drv->name) == 0;
310 }
311 
312 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
313 {
314 	const struct spi_device		*spi = to_spi_device(dev);
315 	int rc;
316 
317 	rc = acpi_device_uevent_modalias(dev, env);
318 	if (rc != -ENODEV)
319 		return rc;
320 
321 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
322 	return 0;
323 }
324 
325 struct bus_type spi_bus_type = {
326 	.name		= "spi",
327 	.dev_groups	= spi_dev_groups,
328 	.match		= spi_match_device,
329 	.uevent		= spi_uevent,
330 };
331 EXPORT_SYMBOL_GPL(spi_bus_type);
332 
333 
334 static int spi_drv_probe(struct device *dev)
335 {
336 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
337 	struct spi_device		*spi = to_spi_device(dev);
338 	int ret;
339 
340 	ret = of_clk_set_defaults(dev->of_node, false);
341 	if (ret)
342 		return ret;
343 
344 	if (dev->of_node) {
345 		spi->irq = of_irq_get(dev->of_node, 0);
346 		if (spi->irq == -EPROBE_DEFER)
347 			return -EPROBE_DEFER;
348 		if (spi->irq < 0)
349 			spi->irq = 0;
350 	}
351 
352 	ret = dev_pm_domain_attach(dev, true);
353 	if (ret != -EPROBE_DEFER) {
354 		ret = sdrv->probe(spi);
355 		if (ret)
356 			dev_pm_domain_detach(dev, true);
357 	}
358 
359 	return ret;
360 }
361 
362 static int spi_drv_remove(struct device *dev)
363 {
364 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
365 	int ret;
366 
367 	ret = sdrv->remove(to_spi_device(dev));
368 	dev_pm_domain_detach(dev, true);
369 
370 	return ret;
371 }
372 
373 static void spi_drv_shutdown(struct device *dev)
374 {
375 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
376 
377 	sdrv->shutdown(to_spi_device(dev));
378 }
379 
380 /**
381  * __spi_register_driver - register a SPI driver
382  * @owner: owner module of the driver to register
383  * @sdrv: the driver to register
384  * Context: can sleep
385  *
386  * Return: zero on success, else a negative error code.
387  */
388 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
389 {
390 	sdrv->driver.owner = owner;
391 	sdrv->driver.bus = &spi_bus_type;
392 	if (sdrv->probe)
393 		sdrv->driver.probe = spi_drv_probe;
394 	if (sdrv->remove)
395 		sdrv->driver.remove = spi_drv_remove;
396 	if (sdrv->shutdown)
397 		sdrv->driver.shutdown = spi_drv_shutdown;
398 	return driver_register(&sdrv->driver);
399 }
400 EXPORT_SYMBOL_GPL(__spi_register_driver);
401 
402 /*-------------------------------------------------------------------------*/
403 
404 /* SPI devices should normally not be created by SPI device drivers; that
405  * would make them board-specific.  Similarly with SPI master drivers.
406  * Device registration normally goes into like arch/.../mach.../board-YYY.c
407  * with other readonly (flashable) information about mainboard devices.
408  */
409 
410 struct boardinfo {
411 	struct list_head	list;
412 	struct spi_board_info	board_info;
413 };
414 
415 static LIST_HEAD(board_list);
416 static LIST_HEAD(spi_master_list);
417 
418 /*
419  * Used to protect add/del opertion for board_info list and
420  * spi_master list, and their matching process
421  */
422 static DEFINE_MUTEX(board_lock);
423 
424 /**
425  * spi_alloc_device - Allocate a new SPI device
426  * @master: Controller to which device is connected
427  * Context: can sleep
428  *
429  * Allows a driver to allocate and initialize a spi_device without
430  * registering it immediately.  This allows a driver to directly
431  * fill the spi_device with device parameters before calling
432  * spi_add_device() on it.
433  *
434  * Caller is responsible to call spi_add_device() on the returned
435  * spi_device structure to add it to the SPI master.  If the caller
436  * needs to discard the spi_device without adding it, then it should
437  * call spi_dev_put() on it.
438  *
439  * Return: a pointer to the new device, or NULL.
440  */
441 struct spi_device *spi_alloc_device(struct spi_master *master)
442 {
443 	struct spi_device	*spi;
444 
445 	if (!spi_master_get(master))
446 		return NULL;
447 
448 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
449 	if (!spi) {
450 		spi_master_put(master);
451 		return NULL;
452 	}
453 
454 	spi->master = master;
455 	spi->dev.parent = &master->dev;
456 	spi->dev.bus = &spi_bus_type;
457 	spi->dev.release = spidev_release;
458 	spi->cs_gpio = -ENOENT;
459 
460 	spin_lock_init(&spi->statistics.lock);
461 
462 	device_initialize(&spi->dev);
463 	return spi;
464 }
465 EXPORT_SYMBOL_GPL(spi_alloc_device);
466 
467 static void spi_dev_set_name(struct spi_device *spi)
468 {
469 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
470 
471 	if (adev) {
472 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
473 		return;
474 	}
475 
476 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
477 		     spi->chip_select);
478 }
479 
480 static int spi_dev_check(struct device *dev, void *data)
481 {
482 	struct spi_device *spi = to_spi_device(dev);
483 	struct spi_device *new_spi = data;
484 
485 	if (spi->master == new_spi->master &&
486 	    spi->chip_select == new_spi->chip_select)
487 		return -EBUSY;
488 	return 0;
489 }
490 
491 /**
492  * spi_add_device - Add spi_device allocated with spi_alloc_device
493  * @spi: spi_device to register
494  *
495  * Companion function to spi_alloc_device.  Devices allocated with
496  * spi_alloc_device can be added onto the spi bus with this function.
497  *
498  * Return: 0 on success; negative errno on failure
499  */
500 int spi_add_device(struct spi_device *spi)
501 {
502 	static DEFINE_MUTEX(spi_add_lock);
503 	struct spi_master *master = spi->master;
504 	struct device *dev = master->dev.parent;
505 	int status;
506 
507 	/* Chipselects are numbered 0..max; validate. */
508 	if (spi->chip_select >= master->num_chipselect) {
509 		dev_err(dev, "cs%d >= max %d\n",
510 			spi->chip_select,
511 			master->num_chipselect);
512 		return -EINVAL;
513 	}
514 
515 	/* Set the bus ID string */
516 	spi_dev_set_name(spi);
517 
518 	/* We need to make sure there's no other device with this
519 	 * chipselect **BEFORE** we call setup(), else we'll trash
520 	 * its configuration.  Lock against concurrent add() calls.
521 	 */
522 	mutex_lock(&spi_add_lock);
523 
524 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
525 	if (status) {
526 		dev_err(dev, "chipselect %d already in use\n",
527 				spi->chip_select);
528 		goto done;
529 	}
530 
531 	if (master->cs_gpios)
532 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
533 
534 	/* Drivers may modify this initial i/o setup, but will
535 	 * normally rely on the device being setup.  Devices
536 	 * using SPI_CS_HIGH can't coexist well otherwise...
537 	 */
538 	status = spi_setup(spi);
539 	if (status < 0) {
540 		dev_err(dev, "can't setup %s, status %d\n",
541 				dev_name(&spi->dev), status);
542 		goto done;
543 	}
544 
545 	/* Device may be bound to an active driver when this returns */
546 	status = device_add(&spi->dev);
547 	if (status < 0)
548 		dev_err(dev, "can't add %s, status %d\n",
549 				dev_name(&spi->dev), status);
550 	else
551 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
552 
553 done:
554 	mutex_unlock(&spi_add_lock);
555 	return status;
556 }
557 EXPORT_SYMBOL_GPL(spi_add_device);
558 
559 /**
560  * spi_new_device - instantiate one new SPI device
561  * @master: Controller to which device is connected
562  * @chip: Describes the SPI device
563  * Context: can sleep
564  *
565  * On typical mainboards, this is purely internal; and it's not needed
566  * after board init creates the hard-wired devices.  Some development
567  * platforms may not be able to use spi_register_board_info though, and
568  * this is exported so that for example a USB or parport based adapter
569  * driver could add devices (which it would learn about out-of-band).
570  *
571  * Return: the new device, or NULL.
572  */
573 struct spi_device *spi_new_device(struct spi_master *master,
574 				  struct spi_board_info *chip)
575 {
576 	struct spi_device	*proxy;
577 	int			status;
578 
579 	/* NOTE:  caller did any chip->bus_num checks necessary.
580 	 *
581 	 * Also, unless we change the return value convention to use
582 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
583 	 * suggests syslogged diagnostics are best here (ugh).
584 	 */
585 
586 	proxy = spi_alloc_device(master);
587 	if (!proxy)
588 		return NULL;
589 
590 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
591 
592 	proxy->chip_select = chip->chip_select;
593 	proxy->max_speed_hz = chip->max_speed_hz;
594 	proxy->mode = chip->mode;
595 	proxy->irq = chip->irq;
596 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
597 	proxy->dev.platform_data = (void *) chip->platform_data;
598 	proxy->controller_data = chip->controller_data;
599 	proxy->controller_state = NULL;
600 
601 	status = spi_add_device(proxy);
602 	if (status < 0) {
603 		spi_dev_put(proxy);
604 		return NULL;
605 	}
606 
607 	return proxy;
608 }
609 EXPORT_SYMBOL_GPL(spi_new_device);
610 
611 /**
612  * spi_unregister_device - unregister a single SPI device
613  * @spi: spi_device to unregister
614  *
615  * Start making the passed SPI device vanish. Normally this would be handled
616  * by spi_unregister_master().
617  */
618 void spi_unregister_device(struct spi_device *spi)
619 {
620 	if (!spi)
621 		return;
622 
623 	if (spi->dev.of_node)
624 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
625 	device_unregister(&spi->dev);
626 }
627 EXPORT_SYMBOL_GPL(spi_unregister_device);
628 
629 static void spi_match_master_to_boardinfo(struct spi_master *master,
630 				struct spi_board_info *bi)
631 {
632 	struct spi_device *dev;
633 
634 	if (master->bus_num != bi->bus_num)
635 		return;
636 
637 	dev = spi_new_device(master, bi);
638 	if (!dev)
639 		dev_err(master->dev.parent, "can't create new device for %s\n",
640 			bi->modalias);
641 }
642 
643 /**
644  * spi_register_board_info - register SPI devices for a given board
645  * @info: array of chip descriptors
646  * @n: how many descriptors are provided
647  * Context: can sleep
648  *
649  * Board-specific early init code calls this (probably during arch_initcall)
650  * with segments of the SPI device table.  Any device nodes are created later,
651  * after the relevant parent SPI controller (bus_num) is defined.  We keep
652  * this table of devices forever, so that reloading a controller driver will
653  * not make Linux forget about these hard-wired devices.
654  *
655  * Other code can also call this, e.g. a particular add-on board might provide
656  * SPI devices through its expansion connector, so code initializing that board
657  * would naturally declare its SPI devices.
658  *
659  * The board info passed can safely be __initdata ... but be careful of
660  * any embedded pointers (platform_data, etc), they're copied as-is.
661  *
662  * Return: zero on success, else a negative error code.
663  */
664 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
665 {
666 	struct boardinfo *bi;
667 	int i;
668 
669 	if (!n)
670 		return -EINVAL;
671 
672 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
673 	if (!bi)
674 		return -ENOMEM;
675 
676 	for (i = 0; i < n; i++, bi++, info++) {
677 		struct spi_master *master;
678 
679 		memcpy(&bi->board_info, info, sizeof(*info));
680 		mutex_lock(&board_lock);
681 		list_add_tail(&bi->list, &board_list);
682 		list_for_each_entry(master, &spi_master_list, list)
683 			spi_match_master_to_boardinfo(master, &bi->board_info);
684 		mutex_unlock(&board_lock);
685 	}
686 
687 	return 0;
688 }
689 
690 /*-------------------------------------------------------------------------*/
691 
692 static void spi_set_cs(struct spi_device *spi, bool enable)
693 {
694 	if (spi->mode & SPI_CS_HIGH)
695 		enable = !enable;
696 
697 	if (gpio_is_valid(spi->cs_gpio))
698 		gpio_set_value(spi->cs_gpio, !enable);
699 	else if (spi->master->set_cs)
700 		spi->master->set_cs(spi, !enable);
701 }
702 
703 #ifdef CONFIG_HAS_DMA
704 static int spi_map_buf(struct spi_master *master, struct device *dev,
705 		       struct sg_table *sgt, void *buf, size_t len,
706 		       enum dma_data_direction dir)
707 {
708 	const bool vmalloced_buf = is_vmalloc_addr(buf);
709 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
710 	int desc_len;
711 	int sgs;
712 	struct page *vm_page;
713 	void *sg_buf;
714 	size_t min;
715 	int i, ret;
716 
717 	if (vmalloced_buf) {
718 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
719 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
720 	} else {
721 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
722 		sgs = DIV_ROUND_UP(len, desc_len);
723 	}
724 
725 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
726 	if (ret != 0)
727 		return ret;
728 
729 	for (i = 0; i < sgs; i++) {
730 
731 		if (vmalloced_buf) {
732 			min = min_t(size_t,
733 				    len, desc_len - offset_in_page(buf));
734 			vm_page = vmalloc_to_page(buf);
735 			if (!vm_page) {
736 				sg_free_table(sgt);
737 				return -ENOMEM;
738 			}
739 			sg_set_page(&sgt->sgl[i], vm_page,
740 				    min, offset_in_page(buf));
741 		} else {
742 			min = min_t(size_t, len, desc_len);
743 			sg_buf = buf;
744 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
745 		}
746 
747 		buf += min;
748 		len -= min;
749 	}
750 
751 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
752 	if (!ret)
753 		ret = -ENOMEM;
754 	if (ret < 0) {
755 		sg_free_table(sgt);
756 		return ret;
757 	}
758 
759 	sgt->nents = ret;
760 
761 	return 0;
762 }
763 
764 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
765 			  struct sg_table *sgt, enum dma_data_direction dir)
766 {
767 	if (sgt->orig_nents) {
768 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
769 		sg_free_table(sgt);
770 	}
771 }
772 
773 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
774 {
775 	struct device *tx_dev, *rx_dev;
776 	struct spi_transfer *xfer;
777 	int ret;
778 
779 	if (!master->can_dma)
780 		return 0;
781 
782 	if (master->dma_tx)
783 		tx_dev = master->dma_tx->device->dev;
784 	else
785 		tx_dev = &master->dev;
786 
787 	if (master->dma_rx)
788 		rx_dev = master->dma_rx->device->dev;
789 	else
790 		rx_dev = &master->dev;
791 
792 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
793 		if (!master->can_dma(master, msg->spi, xfer))
794 			continue;
795 
796 		if (xfer->tx_buf != NULL) {
797 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
798 					  (void *)xfer->tx_buf, xfer->len,
799 					  DMA_TO_DEVICE);
800 			if (ret != 0)
801 				return ret;
802 		}
803 
804 		if (xfer->rx_buf != NULL) {
805 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
806 					  xfer->rx_buf, xfer->len,
807 					  DMA_FROM_DEVICE);
808 			if (ret != 0) {
809 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
810 					      DMA_TO_DEVICE);
811 				return ret;
812 			}
813 		}
814 	}
815 
816 	master->cur_msg_mapped = true;
817 
818 	return 0;
819 }
820 
821 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
822 {
823 	struct spi_transfer *xfer;
824 	struct device *tx_dev, *rx_dev;
825 
826 	if (!master->cur_msg_mapped || !master->can_dma)
827 		return 0;
828 
829 	if (master->dma_tx)
830 		tx_dev = master->dma_tx->device->dev;
831 	else
832 		tx_dev = &master->dev;
833 
834 	if (master->dma_rx)
835 		rx_dev = master->dma_rx->device->dev;
836 	else
837 		rx_dev = &master->dev;
838 
839 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
840 		if (!master->can_dma(master, msg->spi, xfer))
841 			continue;
842 
843 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
844 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
845 	}
846 
847 	return 0;
848 }
849 #else /* !CONFIG_HAS_DMA */
850 static inline int __spi_map_msg(struct spi_master *master,
851 				struct spi_message *msg)
852 {
853 	return 0;
854 }
855 
856 static inline int __spi_unmap_msg(struct spi_master *master,
857 				  struct spi_message *msg)
858 {
859 	return 0;
860 }
861 #endif /* !CONFIG_HAS_DMA */
862 
863 static inline int spi_unmap_msg(struct spi_master *master,
864 				struct spi_message *msg)
865 {
866 	struct spi_transfer *xfer;
867 
868 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
869 		/*
870 		 * Restore the original value of tx_buf or rx_buf if they are
871 		 * NULL.
872 		 */
873 		if (xfer->tx_buf == master->dummy_tx)
874 			xfer->tx_buf = NULL;
875 		if (xfer->rx_buf == master->dummy_rx)
876 			xfer->rx_buf = NULL;
877 	}
878 
879 	return __spi_unmap_msg(master, msg);
880 }
881 
882 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
883 {
884 	struct spi_transfer *xfer;
885 	void *tmp;
886 	unsigned int max_tx, max_rx;
887 
888 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
889 		max_tx = 0;
890 		max_rx = 0;
891 
892 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
893 			if ((master->flags & SPI_MASTER_MUST_TX) &&
894 			    !xfer->tx_buf)
895 				max_tx = max(xfer->len, max_tx);
896 			if ((master->flags & SPI_MASTER_MUST_RX) &&
897 			    !xfer->rx_buf)
898 				max_rx = max(xfer->len, max_rx);
899 		}
900 
901 		if (max_tx) {
902 			tmp = krealloc(master->dummy_tx, max_tx,
903 				       GFP_KERNEL | GFP_DMA);
904 			if (!tmp)
905 				return -ENOMEM;
906 			master->dummy_tx = tmp;
907 			memset(tmp, 0, max_tx);
908 		}
909 
910 		if (max_rx) {
911 			tmp = krealloc(master->dummy_rx, max_rx,
912 				       GFP_KERNEL | GFP_DMA);
913 			if (!tmp)
914 				return -ENOMEM;
915 			master->dummy_rx = tmp;
916 		}
917 
918 		if (max_tx || max_rx) {
919 			list_for_each_entry(xfer, &msg->transfers,
920 					    transfer_list) {
921 				if (!xfer->tx_buf)
922 					xfer->tx_buf = master->dummy_tx;
923 				if (!xfer->rx_buf)
924 					xfer->rx_buf = master->dummy_rx;
925 			}
926 		}
927 	}
928 
929 	return __spi_map_msg(master, msg);
930 }
931 
932 /*
933  * spi_transfer_one_message - Default implementation of transfer_one_message()
934  *
935  * This is a standard implementation of transfer_one_message() for
936  * drivers which impelment a transfer_one() operation.  It provides
937  * standard handling of delays and chip select management.
938  */
939 static int spi_transfer_one_message(struct spi_master *master,
940 				    struct spi_message *msg)
941 {
942 	struct spi_transfer *xfer;
943 	bool keep_cs = false;
944 	int ret = 0;
945 	unsigned long ms = 1;
946 	struct spi_statistics *statm = &master->statistics;
947 	struct spi_statistics *stats = &msg->spi->statistics;
948 
949 	spi_set_cs(msg->spi, true);
950 
951 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
952 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
953 
954 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
955 		trace_spi_transfer_start(msg, xfer);
956 
957 		spi_statistics_add_transfer_stats(statm, xfer, master);
958 		spi_statistics_add_transfer_stats(stats, xfer, master);
959 
960 		if (xfer->tx_buf || xfer->rx_buf) {
961 			reinit_completion(&master->xfer_completion);
962 
963 			ret = master->transfer_one(master, msg->spi, xfer);
964 			if (ret < 0) {
965 				SPI_STATISTICS_INCREMENT_FIELD(statm,
966 							       errors);
967 				SPI_STATISTICS_INCREMENT_FIELD(stats,
968 							       errors);
969 				dev_err(&msg->spi->dev,
970 					"SPI transfer failed: %d\n", ret);
971 				goto out;
972 			}
973 
974 			if (ret > 0) {
975 				ret = 0;
976 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
977 				ms += ms + 100; /* some tolerance */
978 
979 				ms = wait_for_completion_timeout(&master->xfer_completion,
980 								 msecs_to_jiffies(ms));
981 			}
982 
983 			if (ms == 0) {
984 				SPI_STATISTICS_INCREMENT_FIELD(statm,
985 							       timedout);
986 				SPI_STATISTICS_INCREMENT_FIELD(stats,
987 							       timedout);
988 				dev_err(&msg->spi->dev,
989 					"SPI transfer timed out\n");
990 				msg->status = -ETIMEDOUT;
991 			}
992 		} else {
993 			if (xfer->len)
994 				dev_err(&msg->spi->dev,
995 					"Bufferless transfer has length %u\n",
996 					xfer->len);
997 		}
998 
999 		trace_spi_transfer_stop(msg, xfer);
1000 
1001 		if (msg->status != -EINPROGRESS)
1002 			goto out;
1003 
1004 		if (xfer->delay_usecs)
1005 			udelay(xfer->delay_usecs);
1006 
1007 		if (xfer->cs_change) {
1008 			if (list_is_last(&xfer->transfer_list,
1009 					 &msg->transfers)) {
1010 				keep_cs = true;
1011 			} else {
1012 				spi_set_cs(msg->spi, false);
1013 				udelay(10);
1014 				spi_set_cs(msg->spi, true);
1015 			}
1016 		}
1017 
1018 		msg->actual_length += xfer->len;
1019 	}
1020 
1021 out:
1022 	if (ret != 0 || !keep_cs)
1023 		spi_set_cs(msg->spi, false);
1024 
1025 	if (msg->status == -EINPROGRESS)
1026 		msg->status = ret;
1027 
1028 	if (msg->status && master->handle_err)
1029 		master->handle_err(master, msg);
1030 
1031 	spi_res_release(master, msg);
1032 
1033 	spi_finalize_current_message(master);
1034 
1035 	return ret;
1036 }
1037 
1038 /**
1039  * spi_finalize_current_transfer - report completion of a transfer
1040  * @master: the master reporting completion
1041  *
1042  * Called by SPI drivers using the core transfer_one_message()
1043  * implementation to notify it that the current interrupt driven
1044  * transfer has finished and the next one may be scheduled.
1045  */
1046 void spi_finalize_current_transfer(struct spi_master *master)
1047 {
1048 	complete(&master->xfer_completion);
1049 }
1050 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1051 
1052 /**
1053  * __spi_pump_messages - function which processes spi message queue
1054  * @master: master to process queue for
1055  * @in_kthread: true if we are in the context of the message pump thread
1056  * @bus_locked: true if the bus mutex is held when calling this function
1057  *
1058  * This function checks if there is any spi message in the queue that
1059  * needs processing and if so call out to the driver to initialize hardware
1060  * and transfer each message.
1061  *
1062  * Note that it is called both from the kthread itself and also from
1063  * inside spi_sync(); the queue extraction handling at the top of the
1064  * function should deal with this safely.
1065  */
1066 static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1067 				bool bus_locked)
1068 {
1069 	unsigned long flags;
1070 	bool was_busy = false;
1071 	int ret;
1072 
1073 	/* Lock queue */
1074 	spin_lock_irqsave(&master->queue_lock, flags);
1075 
1076 	/* Make sure we are not already running a message */
1077 	if (master->cur_msg) {
1078 		spin_unlock_irqrestore(&master->queue_lock, flags);
1079 		return;
1080 	}
1081 
1082 	/* If another context is idling the device then defer */
1083 	if (master->idling) {
1084 		queue_kthread_work(&master->kworker, &master->pump_messages);
1085 		spin_unlock_irqrestore(&master->queue_lock, flags);
1086 		return;
1087 	}
1088 
1089 	/* Check if the queue is idle */
1090 	if (list_empty(&master->queue) || !master->running) {
1091 		if (!master->busy) {
1092 			spin_unlock_irqrestore(&master->queue_lock, flags);
1093 			return;
1094 		}
1095 
1096 		/* Only do teardown in the thread */
1097 		if (!in_kthread) {
1098 			queue_kthread_work(&master->kworker,
1099 					   &master->pump_messages);
1100 			spin_unlock_irqrestore(&master->queue_lock, flags);
1101 			return;
1102 		}
1103 
1104 		master->busy = false;
1105 		master->idling = true;
1106 		spin_unlock_irqrestore(&master->queue_lock, flags);
1107 
1108 		kfree(master->dummy_rx);
1109 		master->dummy_rx = NULL;
1110 		kfree(master->dummy_tx);
1111 		master->dummy_tx = NULL;
1112 		if (master->unprepare_transfer_hardware &&
1113 		    master->unprepare_transfer_hardware(master))
1114 			dev_err(&master->dev,
1115 				"failed to unprepare transfer hardware\n");
1116 		if (master->auto_runtime_pm) {
1117 			pm_runtime_mark_last_busy(master->dev.parent);
1118 			pm_runtime_put_autosuspend(master->dev.parent);
1119 		}
1120 		trace_spi_master_idle(master);
1121 
1122 		spin_lock_irqsave(&master->queue_lock, flags);
1123 		master->idling = false;
1124 		spin_unlock_irqrestore(&master->queue_lock, flags);
1125 		return;
1126 	}
1127 
1128 	/* Extract head of queue */
1129 	master->cur_msg =
1130 		list_first_entry(&master->queue, struct spi_message, queue);
1131 
1132 	list_del_init(&master->cur_msg->queue);
1133 	if (master->busy)
1134 		was_busy = true;
1135 	else
1136 		master->busy = true;
1137 	spin_unlock_irqrestore(&master->queue_lock, flags);
1138 
1139 	if (!was_busy && master->auto_runtime_pm) {
1140 		ret = pm_runtime_get_sync(master->dev.parent);
1141 		if (ret < 0) {
1142 			dev_err(&master->dev, "Failed to power device: %d\n",
1143 				ret);
1144 			return;
1145 		}
1146 	}
1147 
1148 	if (!was_busy)
1149 		trace_spi_master_busy(master);
1150 
1151 	if (!was_busy && master->prepare_transfer_hardware) {
1152 		ret = master->prepare_transfer_hardware(master);
1153 		if (ret) {
1154 			dev_err(&master->dev,
1155 				"failed to prepare transfer hardware\n");
1156 
1157 			if (master->auto_runtime_pm)
1158 				pm_runtime_put(master->dev.parent);
1159 			return;
1160 		}
1161 	}
1162 
1163 	if (!bus_locked)
1164 		mutex_lock(&master->bus_lock_mutex);
1165 
1166 	trace_spi_message_start(master->cur_msg);
1167 
1168 	if (master->prepare_message) {
1169 		ret = master->prepare_message(master, master->cur_msg);
1170 		if (ret) {
1171 			dev_err(&master->dev,
1172 				"failed to prepare message: %d\n", ret);
1173 			master->cur_msg->status = ret;
1174 			spi_finalize_current_message(master);
1175 			goto out;
1176 		}
1177 		master->cur_msg_prepared = true;
1178 	}
1179 
1180 	ret = spi_map_msg(master, master->cur_msg);
1181 	if (ret) {
1182 		master->cur_msg->status = ret;
1183 		spi_finalize_current_message(master);
1184 		goto out;
1185 	}
1186 
1187 	ret = master->transfer_one_message(master, master->cur_msg);
1188 	if (ret) {
1189 		dev_err(&master->dev,
1190 			"failed to transfer one message from queue\n");
1191 		goto out;
1192 	}
1193 
1194 out:
1195 	if (!bus_locked)
1196 		mutex_unlock(&master->bus_lock_mutex);
1197 
1198 	/* Prod the scheduler in case transfer_one() was busy waiting */
1199 	if (!ret)
1200 		cond_resched();
1201 }
1202 
1203 /**
1204  * spi_pump_messages - kthread work function which processes spi message queue
1205  * @work: pointer to kthread work struct contained in the master struct
1206  */
1207 static void spi_pump_messages(struct kthread_work *work)
1208 {
1209 	struct spi_master *master =
1210 		container_of(work, struct spi_master, pump_messages);
1211 
1212 	__spi_pump_messages(master, true, master->bus_lock_flag);
1213 }
1214 
1215 static int spi_init_queue(struct spi_master *master)
1216 {
1217 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1218 
1219 	master->running = false;
1220 	master->busy = false;
1221 
1222 	init_kthread_worker(&master->kworker);
1223 	master->kworker_task = kthread_run(kthread_worker_fn,
1224 					   &master->kworker, "%s",
1225 					   dev_name(&master->dev));
1226 	if (IS_ERR(master->kworker_task)) {
1227 		dev_err(&master->dev, "failed to create message pump task\n");
1228 		return PTR_ERR(master->kworker_task);
1229 	}
1230 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1231 
1232 	/*
1233 	 * Master config will indicate if this controller should run the
1234 	 * message pump with high (realtime) priority to reduce the transfer
1235 	 * latency on the bus by minimising the delay between a transfer
1236 	 * request and the scheduling of the message pump thread. Without this
1237 	 * setting the message pump thread will remain at default priority.
1238 	 */
1239 	if (master->rt) {
1240 		dev_info(&master->dev,
1241 			"will run message pump with realtime priority\n");
1242 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 /**
1249  * spi_get_next_queued_message() - called by driver to check for queued
1250  * messages
1251  * @master: the master to check for queued messages
1252  *
1253  * If there are more messages in the queue, the next message is returned from
1254  * this call.
1255  *
1256  * Return: the next message in the queue, else NULL if the queue is empty.
1257  */
1258 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1259 {
1260 	struct spi_message *next;
1261 	unsigned long flags;
1262 
1263 	/* get a pointer to the next message, if any */
1264 	spin_lock_irqsave(&master->queue_lock, flags);
1265 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1266 					queue);
1267 	spin_unlock_irqrestore(&master->queue_lock, flags);
1268 
1269 	return next;
1270 }
1271 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1272 
1273 /**
1274  * spi_finalize_current_message() - the current message is complete
1275  * @master: the master to return the message to
1276  *
1277  * Called by the driver to notify the core that the message in the front of the
1278  * queue is complete and can be removed from the queue.
1279  */
1280 void spi_finalize_current_message(struct spi_master *master)
1281 {
1282 	struct spi_message *mesg;
1283 	unsigned long flags;
1284 	int ret;
1285 
1286 	spin_lock_irqsave(&master->queue_lock, flags);
1287 	mesg = master->cur_msg;
1288 	spin_unlock_irqrestore(&master->queue_lock, flags);
1289 
1290 	spi_unmap_msg(master, mesg);
1291 
1292 	if (master->cur_msg_prepared && master->unprepare_message) {
1293 		ret = master->unprepare_message(master, mesg);
1294 		if (ret) {
1295 			dev_err(&master->dev,
1296 				"failed to unprepare message: %d\n", ret);
1297 		}
1298 	}
1299 
1300 	spin_lock_irqsave(&master->queue_lock, flags);
1301 	master->cur_msg = NULL;
1302 	master->cur_msg_prepared = false;
1303 	queue_kthread_work(&master->kworker, &master->pump_messages);
1304 	spin_unlock_irqrestore(&master->queue_lock, flags);
1305 
1306 	trace_spi_message_done(mesg);
1307 
1308 	mesg->state = NULL;
1309 	if (mesg->complete)
1310 		mesg->complete(mesg->context);
1311 }
1312 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1313 
1314 static int spi_start_queue(struct spi_master *master)
1315 {
1316 	unsigned long flags;
1317 
1318 	spin_lock_irqsave(&master->queue_lock, flags);
1319 
1320 	if (master->running || master->busy) {
1321 		spin_unlock_irqrestore(&master->queue_lock, flags);
1322 		return -EBUSY;
1323 	}
1324 
1325 	master->running = true;
1326 	master->cur_msg = NULL;
1327 	spin_unlock_irqrestore(&master->queue_lock, flags);
1328 
1329 	queue_kthread_work(&master->kworker, &master->pump_messages);
1330 
1331 	return 0;
1332 }
1333 
1334 static int spi_stop_queue(struct spi_master *master)
1335 {
1336 	unsigned long flags;
1337 	unsigned limit = 500;
1338 	int ret = 0;
1339 
1340 	spin_lock_irqsave(&master->queue_lock, flags);
1341 
1342 	/*
1343 	 * This is a bit lame, but is optimized for the common execution path.
1344 	 * A wait_queue on the master->busy could be used, but then the common
1345 	 * execution path (pump_messages) would be required to call wake_up or
1346 	 * friends on every SPI message. Do this instead.
1347 	 */
1348 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1349 		spin_unlock_irqrestore(&master->queue_lock, flags);
1350 		usleep_range(10000, 11000);
1351 		spin_lock_irqsave(&master->queue_lock, flags);
1352 	}
1353 
1354 	if (!list_empty(&master->queue) || master->busy)
1355 		ret = -EBUSY;
1356 	else
1357 		master->running = false;
1358 
1359 	spin_unlock_irqrestore(&master->queue_lock, flags);
1360 
1361 	if (ret) {
1362 		dev_warn(&master->dev,
1363 			 "could not stop message queue\n");
1364 		return ret;
1365 	}
1366 	return ret;
1367 }
1368 
1369 static int spi_destroy_queue(struct spi_master *master)
1370 {
1371 	int ret;
1372 
1373 	ret = spi_stop_queue(master);
1374 
1375 	/*
1376 	 * flush_kthread_worker will block until all work is done.
1377 	 * If the reason that stop_queue timed out is that the work will never
1378 	 * finish, then it does no good to call flush/stop thread, so
1379 	 * return anyway.
1380 	 */
1381 	if (ret) {
1382 		dev_err(&master->dev, "problem destroying queue\n");
1383 		return ret;
1384 	}
1385 
1386 	flush_kthread_worker(&master->kworker);
1387 	kthread_stop(master->kworker_task);
1388 
1389 	return 0;
1390 }
1391 
1392 static int __spi_queued_transfer(struct spi_device *spi,
1393 				 struct spi_message *msg,
1394 				 bool need_pump)
1395 {
1396 	struct spi_master *master = spi->master;
1397 	unsigned long flags;
1398 
1399 	spin_lock_irqsave(&master->queue_lock, flags);
1400 
1401 	if (!master->running) {
1402 		spin_unlock_irqrestore(&master->queue_lock, flags);
1403 		return -ESHUTDOWN;
1404 	}
1405 	msg->actual_length = 0;
1406 	msg->status = -EINPROGRESS;
1407 
1408 	list_add_tail(&msg->queue, &master->queue);
1409 	if (!master->busy && need_pump)
1410 		queue_kthread_work(&master->kworker, &master->pump_messages);
1411 
1412 	spin_unlock_irqrestore(&master->queue_lock, flags);
1413 	return 0;
1414 }
1415 
1416 /**
1417  * spi_queued_transfer - transfer function for queued transfers
1418  * @spi: spi device which is requesting transfer
1419  * @msg: spi message which is to handled is queued to driver queue
1420  *
1421  * Return: zero on success, else a negative error code.
1422  */
1423 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1424 {
1425 	return __spi_queued_transfer(spi, msg, true);
1426 }
1427 
1428 static int spi_master_initialize_queue(struct spi_master *master)
1429 {
1430 	int ret;
1431 
1432 	master->transfer = spi_queued_transfer;
1433 	if (!master->transfer_one_message)
1434 		master->transfer_one_message = spi_transfer_one_message;
1435 
1436 	/* Initialize and start queue */
1437 	ret = spi_init_queue(master);
1438 	if (ret) {
1439 		dev_err(&master->dev, "problem initializing queue\n");
1440 		goto err_init_queue;
1441 	}
1442 	master->queued = true;
1443 	ret = spi_start_queue(master);
1444 	if (ret) {
1445 		dev_err(&master->dev, "problem starting queue\n");
1446 		goto err_start_queue;
1447 	}
1448 
1449 	return 0;
1450 
1451 err_start_queue:
1452 	spi_destroy_queue(master);
1453 err_init_queue:
1454 	return ret;
1455 }
1456 
1457 /*-------------------------------------------------------------------------*/
1458 
1459 #if defined(CONFIG_OF)
1460 static struct spi_device *
1461 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1462 {
1463 	struct spi_device *spi;
1464 	int rc;
1465 	u32 value;
1466 
1467 	/* Alloc an spi_device */
1468 	spi = spi_alloc_device(master);
1469 	if (!spi) {
1470 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1471 			nc->full_name);
1472 		rc = -ENOMEM;
1473 		goto err_out;
1474 	}
1475 
1476 	/* Select device driver */
1477 	rc = of_modalias_node(nc, spi->modalias,
1478 				sizeof(spi->modalias));
1479 	if (rc < 0) {
1480 		dev_err(&master->dev, "cannot find modalias for %s\n",
1481 			nc->full_name);
1482 		goto err_out;
1483 	}
1484 
1485 	/* Device address */
1486 	rc = of_property_read_u32(nc, "reg", &value);
1487 	if (rc) {
1488 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1489 			nc->full_name, rc);
1490 		goto err_out;
1491 	}
1492 	spi->chip_select = value;
1493 
1494 	/* Mode (clock phase/polarity/etc.) */
1495 	if (of_find_property(nc, "spi-cpha", NULL))
1496 		spi->mode |= SPI_CPHA;
1497 	if (of_find_property(nc, "spi-cpol", NULL))
1498 		spi->mode |= SPI_CPOL;
1499 	if (of_find_property(nc, "spi-cs-high", NULL))
1500 		spi->mode |= SPI_CS_HIGH;
1501 	if (of_find_property(nc, "spi-3wire", NULL))
1502 		spi->mode |= SPI_3WIRE;
1503 	if (of_find_property(nc, "spi-lsb-first", NULL))
1504 		spi->mode |= SPI_LSB_FIRST;
1505 
1506 	/* Device DUAL/QUAD mode */
1507 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1508 		switch (value) {
1509 		case 1:
1510 			break;
1511 		case 2:
1512 			spi->mode |= SPI_TX_DUAL;
1513 			break;
1514 		case 4:
1515 			spi->mode |= SPI_TX_QUAD;
1516 			break;
1517 		default:
1518 			dev_warn(&master->dev,
1519 				"spi-tx-bus-width %d not supported\n",
1520 				value);
1521 			break;
1522 		}
1523 	}
1524 
1525 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1526 		switch (value) {
1527 		case 1:
1528 			break;
1529 		case 2:
1530 			spi->mode |= SPI_RX_DUAL;
1531 			break;
1532 		case 4:
1533 			spi->mode |= SPI_RX_QUAD;
1534 			break;
1535 		default:
1536 			dev_warn(&master->dev,
1537 				"spi-rx-bus-width %d not supported\n",
1538 				value);
1539 			break;
1540 		}
1541 	}
1542 
1543 	/* Device speed */
1544 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1545 	if (rc) {
1546 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1547 			nc->full_name, rc);
1548 		goto err_out;
1549 	}
1550 	spi->max_speed_hz = value;
1551 
1552 	/* Store a pointer to the node in the device structure */
1553 	of_node_get(nc);
1554 	spi->dev.of_node = nc;
1555 
1556 	/* Register the new device */
1557 	rc = spi_add_device(spi);
1558 	if (rc) {
1559 		dev_err(&master->dev, "spi_device register error %s\n",
1560 			nc->full_name);
1561 		goto err_out;
1562 	}
1563 
1564 	return spi;
1565 
1566 err_out:
1567 	spi_dev_put(spi);
1568 	return ERR_PTR(rc);
1569 }
1570 
1571 /**
1572  * of_register_spi_devices() - Register child devices onto the SPI bus
1573  * @master:	Pointer to spi_master device
1574  *
1575  * Registers an spi_device for each child node of master node which has a 'reg'
1576  * property.
1577  */
1578 static void of_register_spi_devices(struct spi_master *master)
1579 {
1580 	struct spi_device *spi;
1581 	struct device_node *nc;
1582 
1583 	if (!master->dev.of_node)
1584 		return;
1585 
1586 	for_each_available_child_of_node(master->dev.of_node, nc) {
1587 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1588 			continue;
1589 		spi = of_register_spi_device(master, nc);
1590 		if (IS_ERR(spi))
1591 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1592 				nc->full_name);
1593 	}
1594 }
1595 #else
1596 static void of_register_spi_devices(struct spi_master *master) { }
1597 #endif
1598 
1599 #ifdef CONFIG_ACPI
1600 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1601 {
1602 	struct spi_device *spi = data;
1603 	struct spi_master *master = spi->master;
1604 
1605 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1606 		struct acpi_resource_spi_serialbus *sb;
1607 
1608 		sb = &ares->data.spi_serial_bus;
1609 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1610 			/*
1611 			 * ACPI DeviceSelection numbering is handled by the
1612 			 * host controller driver in Windows and can vary
1613 			 * from driver to driver. In Linux we always expect
1614 			 * 0 .. max - 1 so we need to ask the driver to
1615 			 * translate between the two schemes.
1616 			 */
1617 			if (master->fw_translate_cs) {
1618 				int cs = master->fw_translate_cs(master,
1619 						sb->device_selection);
1620 				if (cs < 0)
1621 					return cs;
1622 				spi->chip_select = cs;
1623 			} else {
1624 				spi->chip_select = sb->device_selection;
1625 			}
1626 
1627 			spi->max_speed_hz = sb->connection_speed;
1628 
1629 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1630 				spi->mode |= SPI_CPHA;
1631 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1632 				spi->mode |= SPI_CPOL;
1633 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1634 				spi->mode |= SPI_CS_HIGH;
1635 		}
1636 	} else if (spi->irq < 0) {
1637 		struct resource r;
1638 
1639 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1640 			spi->irq = r.start;
1641 	}
1642 
1643 	/* Always tell the ACPI core to skip this resource */
1644 	return 1;
1645 }
1646 
1647 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1648 				       void *data, void **return_value)
1649 {
1650 	struct spi_master *master = data;
1651 	struct list_head resource_list;
1652 	struct acpi_device *adev;
1653 	struct spi_device *spi;
1654 	int ret;
1655 
1656 	if (acpi_bus_get_device(handle, &adev))
1657 		return AE_OK;
1658 	if (acpi_bus_get_status(adev) || !adev->status.present)
1659 		return AE_OK;
1660 
1661 	spi = spi_alloc_device(master);
1662 	if (!spi) {
1663 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1664 			dev_name(&adev->dev));
1665 		return AE_NO_MEMORY;
1666 	}
1667 
1668 	ACPI_COMPANION_SET(&spi->dev, adev);
1669 	spi->irq = -1;
1670 
1671 	INIT_LIST_HEAD(&resource_list);
1672 	ret = acpi_dev_get_resources(adev, &resource_list,
1673 				     acpi_spi_add_resource, spi);
1674 	acpi_dev_free_resource_list(&resource_list);
1675 
1676 	if (ret < 0 || !spi->max_speed_hz) {
1677 		spi_dev_put(spi);
1678 		return AE_OK;
1679 	}
1680 
1681 	if (spi->irq < 0)
1682 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1683 
1684 	adev->power.flags.ignore_parent = true;
1685 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1686 	if (spi_add_device(spi)) {
1687 		adev->power.flags.ignore_parent = false;
1688 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1689 			dev_name(&adev->dev));
1690 		spi_dev_put(spi);
1691 	}
1692 
1693 	return AE_OK;
1694 }
1695 
1696 static void acpi_register_spi_devices(struct spi_master *master)
1697 {
1698 	acpi_status status;
1699 	acpi_handle handle;
1700 
1701 	handle = ACPI_HANDLE(master->dev.parent);
1702 	if (!handle)
1703 		return;
1704 
1705 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1706 				     acpi_spi_add_device, NULL,
1707 				     master, NULL);
1708 	if (ACPI_FAILURE(status))
1709 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1710 }
1711 #else
1712 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1713 #endif /* CONFIG_ACPI */
1714 
1715 static void spi_master_release(struct device *dev)
1716 {
1717 	struct spi_master *master;
1718 
1719 	master = container_of(dev, struct spi_master, dev);
1720 	kfree(master);
1721 }
1722 
1723 static struct class spi_master_class = {
1724 	.name		= "spi_master",
1725 	.owner		= THIS_MODULE,
1726 	.dev_release	= spi_master_release,
1727 	.dev_groups	= spi_master_groups,
1728 };
1729 
1730 
1731 /**
1732  * spi_alloc_master - allocate SPI master controller
1733  * @dev: the controller, possibly using the platform_bus
1734  * @size: how much zeroed driver-private data to allocate; the pointer to this
1735  *	memory is in the driver_data field of the returned device,
1736  *	accessible with spi_master_get_devdata().
1737  * Context: can sleep
1738  *
1739  * This call is used only by SPI master controller drivers, which are the
1740  * only ones directly touching chip registers.  It's how they allocate
1741  * an spi_master structure, prior to calling spi_register_master().
1742  *
1743  * This must be called from context that can sleep.
1744  *
1745  * The caller is responsible for assigning the bus number and initializing
1746  * the master's methods before calling spi_register_master(); and (after errors
1747  * adding the device) calling spi_master_put() to prevent a memory leak.
1748  *
1749  * Return: the SPI master structure on success, else NULL.
1750  */
1751 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1752 {
1753 	struct spi_master	*master;
1754 
1755 	if (!dev)
1756 		return NULL;
1757 
1758 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1759 	if (!master)
1760 		return NULL;
1761 
1762 	device_initialize(&master->dev);
1763 	master->bus_num = -1;
1764 	master->num_chipselect = 1;
1765 	master->dev.class = &spi_master_class;
1766 	master->dev.parent = dev;
1767 	spi_master_set_devdata(master, &master[1]);
1768 
1769 	return master;
1770 }
1771 EXPORT_SYMBOL_GPL(spi_alloc_master);
1772 
1773 #ifdef CONFIG_OF
1774 static int of_spi_register_master(struct spi_master *master)
1775 {
1776 	int nb, i, *cs;
1777 	struct device_node *np = master->dev.of_node;
1778 
1779 	if (!np)
1780 		return 0;
1781 
1782 	nb = of_gpio_named_count(np, "cs-gpios");
1783 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1784 
1785 	/* Return error only for an incorrectly formed cs-gpios property */
1786 	if (nb == 0 || nb == -ENOENT)
1787 		return 0;
1788 	else if (nb < 0)
1789 		return nb;
1790 
1791 	cs = devm_kzalloc(&master->dev,
1792 			  sizeof(int) * master->num_chipselect,
1793 			  GFP_KERNEL);
1794 	master->cs_gpios = cs;
1795 
1796 	if (!master->cs_gpios)
1797 		return -ENOMEM;
1798 
1799 	for (i = 0; i < master->num_chipselect; i++)
1800 		cs[i] = -ENOENT;
1801 
1802 	for (i = 0; i < nb; i++)
1803 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1804 
1805 	return 0;
1806 }
1807 #else
1808 static int of_spi_register_master(struct spi_master *master)
1809 {
1810 	return 0;
1811 }
1812 #endif
1813 
1814 /**
1815  * spi_register_master - register SPI master controller
1816  * @master: initialized master, originally from spi_alloc_master()
1817  * Context: can sleep
1818  *
1819  * SPI master controllers connect to their drivers using some non-SPI bus,
1820  * such as the platform bus.  The final stage of probe() in that code
1821  * includes calling spi_register_master() to hook up to this SPI bus glue.
1822  *
1823  * SPI controllers use board specific (often SOC specific) bus numbers,
1824  * and board-specific addressing for SPI devices combines those numbers
1825  * with chip select numbers.  Since SPI does not directly support dynamic
1826  * device identification, boards need configuration tables telling which
1827  * chip is at which address.
1828  *
1829  * This must be called from context that can sleep.  It returns zero on
1830  * success, else a negative error code (dropping the master's refcount).
1831  * After a successful return, the caller is responsible for calling
1832  * spi_unregister_master().
1833  *
1834  * Return: zero on success, else a negative error code.
1835  */
1836 int spi_register_master(struct spi_master *master)
1837 {
1838 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1839 	struct device		*dev = master->dev.parent;
1840 	struct boardinfo	*bi;
1841 	int			status = -ENODEV;
1842 	int			dynamic = 0;
1843 
1844 	if (!dev)
1845 		return -ENODEV;
1846 
1847 	status = of_spi_register_master(master);
1848 	if (status)
1849 		return status;
1850 
1851 	/* even if it's just one always-selected device, there must
1852 	 * be at least one chipselect
1853 	 */
1854 	if (master->num_chipselect == 0)
1855 		return -EINVAL;
1856 
1857 	if ((master->bus_num < 0) && master->dev.of_node)
1858 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1859 
1860 	/* convention:  dynamically assigned bus IDs count down from the max */
1861 	if (master->bus_num < 0) {
1862 		/* FIXME switch to an IDR based scheme, something like
1863 		 * I2C now uses, so we can't run out of "dynamic" IDs
1864 		 */
1865 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1866 		dynamic = 1;
1867 	}
1868 
1869 	INIT_LIST_HEAD(&master->queue);
1870 	spin_lock_init(&master->queue_lock);
1871 	spin_lock_init(&master->bus_lock_spinlock);
1872 	mutex_init(&master->bus_lock_mutex);
1873 	master->bus_lock_flag = 0;
1874 	init_completion(&master->xfer_completion);
1875 	if (!master->max_dma_len)
1876 		master->max_dma_len = INT_MAX;
1877 
1878 	/* register the device, then userspace will see it.
1879 	 * registration fails if the bus ID is in use.
1880 	 */
1881 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1882 	status = device_add(&master->dev);
1883 	if (status < 0)
1884 		goto done;
1885 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1886 			dynamic ? " (dynamic)" : "");
1887 
1888 	/* If we're using a queued driver, start the queue */
1889 	if (master->transfer)
1890 		dev_info(dev, "master is unqueued, this is deprecated\n");
1891 	else {
1892 		status = spi_master_initialize_queue(master);
1893 		if (status) {
1894 			device_del(&master->dev);
1895 			goto done;
1896 		}
1897 	}
1898 	/* add statistics */
1899 	spin_lock_init(&master->statistics.lock);
1900 
1901 	mutex_lock(&board_lock);
1902 	list_add_tail(&master->list, &spi_master_list);
1903 	list_for_each_entry(bi, &board_list, list)
1904 		spi_match_master_to_boardinfo(master, &bi->board_info);
1905 	mutex_unlock(&board_lock);
1906 
1907 	/* Register devices from the device tree and ACPI */
1908 	of_register_spi_devices(master);
1909 	acpi_register_spi_devices(master);
1910 done:
1911 	return status;
1912 }
1913 EXPORT_SYMBOL_GPL(spi_register_master);
1914 
1915 static void devm_spi_unregister(struct device *dev, void *res)
1916 {
1917 	spi_unregister_master(*(struct spi_master **)res);
1918 }
1919 
1920 /**
1921  * dev_spi_register_master - register managed SPI master controller
1922  * @dev:    device managing SPI master
1923  * @master: initialized master, originally from spi_alloc_master()
1924  * Context: can sleep
1925  *
1926  * Register a SPI device as with spi_register_master() which will
1927  * automatically be unregister
1928  *
1929  * Return: zero on success, else a negative error code.
1930  */
1931 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1932 {
1933 	struct spi_master **ptr;
1934 	int ret;
1935 
1936 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1937 	if (!ptr)
1938 		return -ENOMEM;
1939 
1940 	ret = spi_register_master(master);
1941 	if (!ret) {
1942 		*ptr = master;
1943 		devres_add(dev, ptr);
1944 	} else {
1945 		devres_free(ptr);
1946 	}
1947 
1948 	return ret;
1949 }
1950 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1951 
1952 static int __unregister(struct device *dev, void *null)
1953 {
1954 	spi_unregister_device(to_spi_device(dev));
1955 	return 0;
1956 }
1957 
1958 /**
1959  * spi_unregister_master - unregister SPI master controller
1960  * @master: the master being unregistered
1961  * Context: can sleep
1962  *
1963  * This call is used only by SPI master controller drivers, which are the
1964  * only ones directly touching chip registers.
1965  *
1966  * This must be called from context that can sleep.
1967  */
1968 void spi_unregister_master(struct spi_master *master)
1969 {
1970 	int dummy;
1971 
1972 	if (master->queued) {
1973 		if (spi_destroy_queue(master))
1974 			dev_err(&master->dev, "queue remove failed\n");
1975 	}
1976 
1977 	mutex_lock(&board_lock);
1978 	list_del(&master->list);
1979 	mutex_unlock(&board_lock);
1980 
1981 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1982 	device_unregister(&master->dev);
1983 }
1984 EXPORT_SYMBOL_GPL(spi_unregister_master);
1985 
1986 int spi_master_suspend(struct spi_master *master)
1987 {
1988 	int ret;
1989 
1990 	/* Basically no-ops for non-queued masters */
1991 	if (!master->queued)
1992 		return 0;
1993 
1994 	ret = spi_stop_queue(master);
1995 	if (ret)
1996 		dev_err(&master->dev, "queue stop failed\n");
1997 
1998 	return ret;
1999 }
2000 EXPORT_SYMBOL_GPL(spi_master_suspend);
2001 
2002 int spi_master_resume(struct spi_master *master)
2003 {
2004 	int ret;
2005 
2006 	if (!master->queued)
2007 		return 0;
2008 
2009 	ret = spi_start_queue(master);
2010 	if (ret)
2011 		dev_err(&master->dev, "queue restart failed\n");
2012 
2013 	return ret;
2014 }
2015 EXPORT_SYMBOL_GPL(spi_master_resume);
2016 
2017 static int __spi_master_match(struct device *dev, const void *data)
2018 {
2019 	struct spi_master *m;
2020 	const u16 *bus_num = data;
2021 
2022 	m = container_of(dev, struct spi_master, dev);
2023 	return m->bus_num == *bus_num;
2024 }
2025 
2026 /**
2027  * spi_busnum_to_master - look up master associated with bus_num
2028  * @bus_num: the master's bus number
2029  * Context: can sleep
2030  *
2031  * This call may be used with devices that are registered after
2032  * arch init time.  It returns a refcounted pointer to the relevant
2033  * spi_master (which the caller must release), or NULL if there is
2034  * no such master registered.
2035  *
2036  * Return: the SPI master structure on success, else NULL.
2037  */
2038 struct spi_master *spi_busnum_to_master(u16 bus_num)
2039 {
2040 	struct device		*dev;
2041 	struct spi_master	*master = NULL;
2042 
2043 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2044 				__spi_master_match);
2045 	if (dev)
2046 		master = container_of(dev, struct spi_master, dev);
2047 	/* reference got in class_find_device */
2048 	return master;
2049 }
2050 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2051 
2052 /*-------------------------------------------------------------------------*/
2053 
2054 /* Core methods for SPI resource management */
2055 
2056 /**
2057  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2058  *                 during the processing of a spi_message while using
2059  *                 spi_transfer_one
2060  * @spi:     the spi device for which we allocate memory
2061  * @release: the release code to execute for this resource
2062  * @size:    size to alloc and return
2063  * @gfp:     GFP allocation flags
2064  *
2065  * Return: the pointer to the allocated data
2066  *
2067  * This may get enhanced in the future to allocate from a memory pool
2068  * of the @spi_device or @spi_master to avoid repeated allocations.
2069  */
2070 void *spi_res_alloc(struct spi_device *spi,
2071 		    spi_res_release_t release,
2072 		    size_t size, gfp_t gfp)
2073 {
2074 	struct spi_res *sres;
2075 
2076 	sres = kzalloc(sizeof(*sres) + size, gfp);
2077 	if (!sres)
2078 		return NULL;
2079 
2080 	INIT_LIST_HEAD(&sres->entry);
2081 	sres->release = release;
2082 
2083 	return sres->data;
2084 }
2085 EXPORT_SYMBOL_GPL(spi_res_alloc);
2086 
2087 /**
2088  * spi_res_free - free an spi resource
2089  * @res: pointer to the custom data of a resource
2090  *
2091  */
2092 void spi_res_free(void *res)
2093 {
2094 	struct spi_res *sres = container_of(res, struct spi_res, data);
2095 
2096 	if (!res)
2097 		return;
2098 
2099 	WARN_ON(!list_empty(&sres->entry));
2100 	kfree(sres);
2101 }
2102 EXPORT_SYMBOL_GPL(spi_res_free);
2103 
2104 /**
2105  * spi_res_add - add a spi_res to the spi_message
2106  * @message: the spi message
2107  * @res:     the spi_resource
2108  */
2109 void spi_res_add(struct spi_message *message, void *res)
2110 {
2111 	struct spi_res *sres = container_of(res, struct spi_res, data);
2112 
2113 	WARN_ON(!list_empty(&sres->entry));
2114 	list_add_tail(&sres->entry, &message->resources);
2115 }
2116 EXPORT_SYMBOL_GPL(spi_res_add);
2117 
2118 /**
2119  * spi_res_release - release all spi resources for this message
2120  * @master:  the @spi_master
2121  * @message: the @spi_message
2122  */
2123 void spi_res_release(struct spi_master *master,
2124 		     struct spi_message *message)
2125 {
2126 	struct spi_res *res;
2127 
2128 	while (!list_empty(&message->resources)) {
2129 		res = list_last_entry(&message->resources,
2130 				      struct spi_res, entry);
2131 
2132 		if (res->release)
2133 			res->release(master, message, res->data);
2134 
2135 		list_del(&res->entry);
2136 
2137 		kfree(res);
2138 	}
2139 }
2140 EXPORT_SYMBOL_GPL(spi_res_release);
2141 
2142 /*-------------------------------------------------------------------------*/
2143 
2144 /* Core methods for spi_message alterations */
2145 
2146 static void __spi_replace_transfers_release(struct spi_master *master,
2147 					    struct spi_message *msg,
2148 					    void *res)
2149 {
2150 	struct spi_replaced_transfers *rxfer = res;
2151 	size_t i;
2152 
2153 	/* call extra callback if requested */
2154 	if (rxfer->release)
2155 		rxfer->release(master, msg, res);
2156 
2157 	/* insert replaced transfers back into the message */
2158 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2159 
2160 	/* remove the formerly inserted entries */
2161 	for (i = 0; i < rxfer->inserted; i++)
2162 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2163 }
2164 
2165 /**
2166  * spi_replace_transfers - replace transfers with several transfers
2167  *                         and register change with spi_message.resources
2168  * @msg:           the spi_message we work upon
2169  * @xfer_first:    the first spi_transfer we want to replace
2170  * @remove:        number of transfers to remove
2171  * @insert:        the number of transfers we want to insert instead
2172  * @release:       extra release code necessary in some circumstances
2173  * @extradatasize: extra data to allocate (with alignment guarantees
2174  *                 of struct @spi_transfer)
2175  * @gfp:           gfp flags
2176  *
2177  * Returns: pointer to @spi_replaced_transfers,
2178  *          PTR_ERR(...) in case of errors.
2179  */
2180 struct spi_replaced_transfers *spi_replace_transfers(
2181 	struct spi_message *msg,
2182 	struct spi_transfer *xfer_first,
2183 	size_t remove,
2184 	size_t insert,
2185 	spi_replaced_release_t release,
2186 	size_t extradatasize,
2187 	gfp_t gfp)
2188 {
2189 	struct spi_replaced_transfers *rxfer;
2190 	struct spi_transfer *xfer;
2191 	size_t i;
2192 
2193 	/* allocate the structure using spi_res */
2194 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2195 			      insert * sizeof(struct spi_transfer)
2196 			      + sizeof(struct spi_replaced_transfers)
2197 			      + extradatasize,
2198 			      gfp);
2199 	if (!rxfer)
2200 		return ERR_PTR(-ENOMEM);
2201 
2202 	/* the release code to invoke before running the generic release */
2203 	rxfer->release = release;
2204 
2205 	/* assign extradata */
2206 	if (extradatasize)
2207 		rxfer->extradata =
2208 			&rxfer->inserted_transfers[insert];
2209 
2210 	/* init the replaced_transfers list */
2211 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2212 
2213 	/* assign the list_entry after which we should reinsert
2214 	 * the @replaced_transfers - it may be spi_message.messages!
2215 	 */
2216 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2217 
2218 	/* remove the requested number of transfers */
2219 	for (i = 0; i < remove; i++) {
2220 		/* if the entry after replaced_after it is msg->transfers
2221 		 * then we have been requested to remove more transfers
2222 		 * than are in the list
2223 		 */
2224 		if (rxfer->replaced_after->next == &msg->transfers) {
2225 			dev_err(&msg->spi->dev,
2226 				"requested to remove more spi_transfers than are available\n");
2227 			/* insert replaced transfers back into the message */
2228 			list_splice(&rxfer->replaced_transfers,
2229 				    rxfer->replaced_after);
2230 
2231 			/* free the spi_replace_transfer structure */
2232 			spi_res_free(rxfer);
2233 
2234 			/* and return with an error */
2235 			return ERR_PTR(-EINVAL);
2236 		}
2237 
2238 		/* remove the entry after replaced_after from list of
2239 		 * transfers and add it to list of replaced_transfers
2240 		 */
2241 		list_move_tail(rxfer->replaced_after->next,
2242 			       &rxfer->replaced_transfers);
2243 	}
2244 
2245 	/* create copy of the given xfer with identical settings
2246 	 * based on the first transfer to get removed
2247 	 */
2248 	for (i = 0; i < insert; i++) {
2249 		/* we need to run in reverse order */
2250 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2251 
2252 		/* copy all spi_transfer data */
2253 		memcpy(xfer, xfer_first, sizeof(*xfer));
2254 
2255 		/* add to list */
2256 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2257 
2258 		/* clear cs_change and delay_usecs for all but the last */
2259 		if (i) {
2260 			xfer->cs_change = false;
2261 			xfer->delay_usecs = 0;
2262 		}
2263 	}
2264 
2265 	/* set up inserted */
2266 	rxfer->inserted = insert;
2267 
2268 	/* and register it with spi_res/spi_message */
2269 	spi_res_add(msg, rxfer);
2270 
2271 	return rxfer;
2272 }
2273 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2274 
2275 static int __spi_split_transfer_maxsize(struct spi_master *master,
2276 					struct spi_message *msg,
2277 					struct spi_transfer **xferp,
2278 					size_t maxsize,
2279 					gfp_t gfp)
2280 {
2281 	struct spi_transfer *xfer = *xferp, *xfers;
2282 	struct spi_replaced_transfers *srt;
2283 	size_t offset;
2284 	size_t count, i;
2285 
2286 	/* warn once about this fact that we are splitting a transfer */
2287 	dev_warn_once(&msg->spi->dev,
2288 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2289 		      xfer->len, maxsize);
2290 
2291 	/* calculate how many we have to replace */
2292 	count = DIV_ROUND_UP(xfer->len, maxsize);
2293 
2294 	/* create replacement */
2295 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2296 	if (IS_ERR(srt))
2297 		return PTR_ERR(srt);
2298 	xfers = srt->inserted_transfers;
2299 
2300 	/* now handle each of those newly inserted spi_transfers
2301 	 * note that the replacements spi_transfers all are preset
2302 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2303 	 * are all identical (as well as most others)
2304 	 * so we just have to fix up len and the pointers.
2305 	 *
2306 	 * this also includes support for the depreciated
2307 	 * spi_message.is_dma_mapped interface
2308 	 */
2309 
2310 	/* the first transfer just needs the length modified, so we
2311 	 * run it outside the loop
2312 	 */
2313 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2314 
2315 	/* all the others need rx_buf/tx_buf also set */
2316 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2317 		/* update rx_buf, tx_buf and dma */
2318 		if (xfers[i].rx_buf)
2319 			xfers[i].rx_buf += offset;
2320 		if (xfers[i].rx_dma)
2321 			xfers[i].rx_dma += offset;
2322 		if (xfers[i].tx_buf)
2323 			xfers[i].tx_buf += offset;
2324 		if (xfers[i].tx_dma)
2325 			xfers[i].tx_dma += offset;
2326 
2327 		/* update length */
2328 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2329 	}
2330 
2331 	/* we set up xferp to the last entry we have inserted,
2332 	 * so that we skip those already split transfers
2333 	 */
2334 	*xferp = &xfers[count - 1];
2335 
2336 	/* increment statistics counters */
2337 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2338 				       transfers_split_maxsize);
2339 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2340 				       transfers_split_maxsize);
2341 
2342 	return 0;
2343 }
2344 
2345 /**
2346  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2347  *                              when an individual transfer exceeds a
2348  *                              certain size
2349  * @master:    the @spi_master for this transfer
2350  * @msg:   the @spi_message to transform
2351  * @maxsize:  the maximum when to apply this
2352  * @gfp: GFP allocation flags
2353  *
2354  * Return: status of transformation
2355  */
2356 int spi_split_transfers_maxsize(struct spi_master *master,
2357 				struct spi_message *msg,
2358 				size_t maxsize,
2359 				gfp_t gfp)
2360 {
2361 	struct spi_transfer *xfer;
2362 	int ret;
2363 
2364 	/* iterate over the transfer_list,
2365 	 * but note that xfer is advanced to the last transfer inserted
2366 	 * to avoid checking sizes again unnecessarily (also xfer does
2367 	 * potentiall belong to a different list by the time the
2368 	 * replacement has happened
2369 	 */
2370 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2371 		if (xfer->len > maxsize) {
2372 			ret = __spi_split_transfer_maxsize(
2373 				master, msg, &xfer, maxsize, gfp);
2374 			if (ret)
2375 				return ret;
2376 		}
2377 	}
2378 
2379 	return 0;
2380 }
2381 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2382 
2383 /*-------------------------------------------------------------------------*/
2384 
2385 /* Core methods for SPI master protocol drivers.  Some of the
2386  * other core methods are currently defined as inline functions.
2387  */
2388 
2389 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2390 {
2391 	if (master->bits_per_word_mask) {
2392 		/* Only 32 bits fit in the mask */
2393 		if (bits_per_word > 32)
2394 			return -EINVAL;
2395 		if (!(master->bits_per_word_mask &
2396 				SPI_BPW_MASK(bits_per_word)))
2397 			return -EINVAL;
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 /**
2404  * spi_setup - setup SPI mode and clock rate
2405  * @spi: the device whose settings are being modified
2406  * Context: can sleep, and no requests are queued to the device
2407  *
2408  * SPI protocol drivers may need to update the transfer mode if the
2409  * device doesn't work with its default.  They may likewise need
2410  * to update clock rates or word sizes from initial values.  This function
2411  * changes those settings, and must be called from a context that can sleep.
2412  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2413  * effect the next time the device is selected and data is transferred to
2414  * or from it.  When this function returns, the spi device is deselected.
2415  *
2416  * Note that this call will fail if the protocol driver specifies an option
2417  * that the underlying controller or its driver does not support.  For
2418  * example, not all hardware supports wire transfers using nine bit words,
2419  * LSB-first wire encoding, or active-high chipselects.
2420  *
2421  * Return: zero on success, else a negative error code.
2422  */
2423 int spi_setup(struct spi_device *spi)
2424 {
2425 	unsigned	bad_bits, ugly_bits;
2426 	int		status;
2427 
2428 	/* check mode to prevent that DUAL and QUAD set at the same time
2429 	 */
2430 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2431 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2432 		dev_err(&spi->dev,
2433 		"setup: can not select dual and quad at the same time\n");
2434 		return -EINVAL;
2435 	}
2436 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2437 	 */
2438 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2439 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2440 		return -EINVAL;
2441 	/* help drivers fail *cleanly* when they need options
2442 	 * that aren't supported with their current master
2443 	 */
2444 	bad_bits = spi->mode & ~spi->master->mode_bits;
2445 	ugly_bits = bad_bits &
2446 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2447 	if (ugly_bits) {
2448 		dev_warn(&spi->dev,
2449 			 "setup: ignoring unsupported mode bits %x\n",
2450 			 ugly_bits);
2451 		spi->mode &= ~ugly_bits;
2452 		bad_bits &= ~ugly_bits;
2453 	}
2454 	if (bad_bits) {
2455 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2456 			bad_bits);
2457 		return -EINVAL;
2458 	}
2459 
2460 	if (!spi->bits_per_word)
2461 		spi->bits_per_word = 8;
2462 
2463 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2464 	if (status)
2465 		return status;
2466 
2467 	if (!spi->max_speed_hz)
2468 		spi->max_speed_hz = spi->master->max_speed_hz;
2469 
2470 	if (spi->master->setup)
2471 		status = spi->master->setup(spi);
2472 
2473 	spi_set_cs(spi, false);
2474 
2475 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2476 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2477 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2478 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2479 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2480 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2481 			spi->bits_per_word, spi->max_speed_hz,
2482 			status);
2483 
2484 	return status;
2485 }
2486 EXPORT_SYMBOL_GPL(spi_setup);
2487 
2488 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2489 {
2490 	struct spi_master *master = spi->master;
2491 	struct spi_transfer *xfer;
2492 	int w_size;
2493 
2494 	if (list_empty(&message->transfers))
2495 		return -EINVAL;
2496 
2497 	/* Half-duplex links include original MicroWire, and ones with
2498 	 * only one data pin like SPI_3WIRE (switches direction) or where
2499 	 * either MOSI or MISO is missing.  They can also be caused by
2500 	 * software limitations.
2501 	 */
2502 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2503 			|| (spi->mode & SPI_3WIRE)) {
2504 		unsigned flags = master->flags;
2505 
2506 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2507 			if (xfer->rx_buf && xfer->tx_buf)
2508 				return -EINVAL;
2509 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2510 				return -EINVAL;
2511 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2512 				return -EINVAL;
2513 		}
2514 	}
2515 
2516 	/**
2517 	 * Set transfer bits_per_word and max speed as spi device default if
2518 	 * it is not set for this transfer.
2519 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2520 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2521 	 */
2522 	message->frame_length = 0;
2523 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2524 		message->frame_length += xfer->len;
2525 		if (!xfer->bits_per_word)
2526 			xfer->bits_per_word = spi->bits_per_word;
2527 
2528 		if (!xfer->speed_hz)
2529 			xfer->speed_hz = spi->max_speed_hz;
2530 		if (!xfer->speed_hz)
2531 			xfer->speed_hz = master->max_speed_hz;
2532 
2533 		if (master->max_speed_hz &&
2534 		    xfer->speed_hz > master->max_speed_hz)
2535 			xfer->speed_hz = master->max_speed_hz;
2536 
2537 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2538 			return -EINVAL;
2539 
2540 		/*
2541 		 * SPI transfer length should be multiple of SPI word size
2542 		 * where SPI word size should be power-of-two multiple
2543 		 */
2544 		if (xfer->bits_per_word <= 8)
2545 			w_size = 1;
2546 		else if (xfer->bits_per_word <= 16)
2547 			w_size = 2;
2548 		else
2549 			w_size = 4;
2550 
2551 		/* No partial transfers accepted */
2552 		if (xfer->len % w_size)
2553 			return -EINVAL;
2554 
2555 		if (xfer->speed_hz && master->min_speed_hz &&
2556 		    xfer->speed_hz < master->min_speed_hz)
2557 			return -EINVAL;
2558 
2559 		if (xfer->tx_buf && !xfer->tx_nbits)
2560 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2561 		if (xfer->rx_buf && !xfer->rx_nbits)
2562 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2563 		/* check transfer tx/rx_nbits:
2564 		 * 1. check the value matches one of single, dual and quad
2565 		 * 2. check tx/rx_nbits match the mode in spi_device
2566 		 */
2567 		if (xfer->tx_buf) {
2568 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2569 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2570 				xfer->tx_nbits != SPI_NBITS_QUAD)
2571 				return -EINVAL;
2572 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2573 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2574 				return -EINVAL;
2575 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2576 				!(spi->mode & SPI_TX_QUAD))
2577 				return -EINVAL;
2578 		}
2579 		/* check transfer rx_nbits */
2580 		if (xfer->rx_buf) {
2581 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2582 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2583 				xfer->rx_nbits != SPI_NBITS_QUAD)
2584 				return -EINVAL;
2585 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2586 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2587 				return -EINVAL;
2588 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2589 				!(spi->mode & SPI_RX_QUAD))
2590 				return -EINVAL;
2591 		}
2592 	}
2593 
2594 	message->status = -EINPROGRESS;
2595 
2596 	return 0;
2597 }
2598 
2599 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2600 {
2601 	struct spi_master *master = spi->master;
2602 
2603 	message->spi = spi;
2604 
2605 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2606 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2607 
2608 	trace_spi_message_submit(message);
2609 
2610 	return master->transfer(spi, message);
2611 }
2612 
2613 /**
2614  * spi_async - asynchronous SPI transfer
2615  * @spi: device with which data will be exchanged
2616  * @message: describes the data transfers, including completion callback
2617  * Context: any (irqs may be blocked, etc)
2618  *
2619  * This call may be used in_irq and other contexts which can't sleep,
2620  * as well as from task contexts which can sleep.
2621  *
2622  * The completion callback is invoked in a context which can't sleep.
2623  * Before that invocation, the value of message->status is undefined.
2624  * When the callback is issued, message->status holds either zero (to
2625  * indicate complete success) or a negative error code.  After that
2626  * callback returns, the driver which issued the transfer request may
2627  * deallocate the associated memory; it's no longer in use by any SPI
2628  * core or controller driver code.
2629  *
2630  * Note that although all messages to a spi_device are handled in
2631  * FIFO order, messages may go to different devices in other orders.
2632  * Some device might be higher priority, or have various "hard" access
2633  * time requirements, for example.
2634  *
2635  * On detection of any fault during the transfer, processing of
2636  * the entire message is aborted, and the device is deselected.
2637  * Until returning from the associated message completion callback,
2638  * no other spi_message queued to that device will be processed.
2639  * (This rule applies equally to all the synchronous transfer calls,
2640  * which are wrappers around this core asynchronous primitive.)
2641  *
2642  * Return: zero on success, else a negative error code.
2643  */
2644 int spi_async(struct spi_device *spi, struct spi_message *message)
2645 {
2646 	struct spi_master *master = spi->master;
2647 	int ret;
2648 	unsigned long flags;
2649 
2650 	ret = __spi_validate(spi, message);
2651 	if (ret != 0)
2652 		return ret;
2653 
2654 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2655 
2656 	if (master->bus_lock_flag)
2657 		ret = -EBUSY;
2658 	else
2659 		ret = __spi_async(spi, message);
2660 
2661 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2662 
2663 	return ret;
2664 }
2665 EXPORT_SYMBOL_GPL(spi_async);
2666 
2667 /**
2668  * spi_async_locked - version of spi_async with exclusive bus usage
2669  * @spi: device with which data will be exchanged
2670  * @message: describes the data transfers, including completion callback
2671  * Context: any (irqs may be blocked, etc)
2672  *
2673  * This call may be used in_irq and other contexts which can't sleep,
2674  * as well as from task contexts which can sleep.
2675  *
2676  * The completion callback is invoked in a context which can't sleep.
2677  * Before that invocation, the value of message->status is undefined.
2678  * When the callback is issued, message->status holds either zero (to
2679  * indicate complete success) or a negative error code.  After that
2680  * callback returns, the driver which issued the transfer request may
2681  * deallocate the associated memory; it's no longer in use by any SPI
2682  * core or controller driver code.
2683  *
2684  * Note that although all messages to a spi_device are handled in
2685  * FIFO order, messages may go to different devices in other orders.
2686  * Some device might be higher priority, or have various "hard" access
2687  * time requirements, for example.
2688  *
2689  * On detection of any fault during the transfer, processing of
2690  * the entire message is aborted, and the device is deselected.
2691  * Until returning from the associated message completion callback,
2692  * no other spi_message queued to that device will be processed.
2693  * (This rule applies equally to all the synchronous transfer calls,
2694  * which are wrappers around this core asynchronous primitive.)
2695  *
2696  * Return: zero on success, else a negative error code.
2697  */
2698 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2699 {
2700 	struct spi_master *master = spi->master;
2701 	int ret;
2702 	unsigned long flags;
2703 
2704 	ret = __spi_validate(spi, message);
2705 	if (ret != 0)
2706 		return ret;
2707 
2708 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2709 
2710 	ret = __spi_async(spi, message);
2711 
2712 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2713 
2714 	return ret;
2715 
2716 }
2717 EXPORT_SYMBOL_GPL(spi_async_locked);
2718 
2719 
2720 int spi_flash_read(struct spi_device *spi,
2721 		   struct spi_flash_read_message *msg)
2722 
2723 {
2724 	struct spi_master *master = spi->master;
2725 	int ret;
2726 
2727 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2728 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2729 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2730 		return -EINVAL;
2731 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2732 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2733 	    !(spi->mode & SPI_TX_QUAD))
2734 		return -EINVAL;
2735 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2736 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2737 		return -EINVAL;
2738 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2739 	    !(spi->mode &  SPI_RX_QUAD))
2740 		return -EINVAL;
2741 
2742 	if (master->auto_runtime_pm) {
2743 		ret = pm_runtime_get_sync(master->dev.parent);
2744 		if (ret < 0) {
2745 			dev_err(&master->dev, "Failed to power device: %d\n",
2746 				ret);
2747 			return ret;
2748 		}
2749 	}
2750 	mutex_lock(&master->bus_lock_mutex);
2751 	ret = master->spi_flash_read(spi, msg);
2752 	mutex_unlock(&master->bus_lock_mutex);
2753 	if (master->auto_runtime_pm)
2754 		pm_runtime_put(master->dev.parent);
2755 
2756 	return ret;
2757 }
2758 EXPORT_SYMBOL_GPL(spi_flash_read);
2759 
2760 /*-------------------------------------------------------------------------*/
2761 
2762 /* Utility methods for SPI master protocol drivers, layered on
2763  * top of the core.  Some other utility methods are defined as
2764  * inline functions.
2765  */
2766 
2767 static void spi_complete(void *arg)
2768 {
2769 	complete(arg);
2770 }
2771 
2772 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2773 		      int bus_locked)
2774 {
2775 	DECLARE_COMPLETION_ONSTACK(done);
2776 	int status;
2777 	struct spi_master *master = spi->master;
2778 	unsigned long flags;
2779 
2780 	status = __spi_validate(spi, message);
2781 	if (status != 0)
2782 		return status;
2783 
2784 	message->complete = spi_complete;
2785 	message->context = &done;
2786 	message->spi = spi;
2787 
2788 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2789 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2790 
2791 	if (!bus_locked)
2792 		mutex_lock(&master->bus_lock_mutex);
2793 
2794 	/* If we're not using the legacy transfer method then we will
2795 	 * try to transfer in the calling context so special case.
2796 	 * This code would be less tricky if we could remove the
2797 	 * support for driver implemented message queues.
2798 	 */
2799 	if (master->transfer == spi_queued_transfer) {
2800 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2801 
2802 		trace_spi_message_submit(message);
2803 
2804 		status = __spi_queued_transfer(spi, message, false);
2805 
2806 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2807 	} else {
2808 		status = spi_async_locked(spi, message);
2809 	}
2810 
2811 	if (!bus_locked)
2812 		mutex_unlock(&master->bus_lock_mutex);
2813 
2814 	if (status == 0) {
2815 		/* Push out the messages in the calling context if we
2816 		 * can.
2817 		 */
2818 		if (master->transfer == spi_queued_transfer) {
2819 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2820 						       spi_sync_immediate);
2821 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2822 						       spi_sync_immediate);
2823 			__spi_pump_messages(master, false, bus_locked);
2824 		}
2825 
2826 		wait_for_completion(&done);
2827 		status = message->status;
2828 	}
2829 	message->context = NULL;
2830 	return status;
2831 }
2832 
2833 /**
2834  * spi_sync - blocking/synchronous SPI data transfers
2835  * @spi: device with which data will be exchanged
2836  * @message: describes the data transfers
2837  * Context: can sleep
2838  *
2839  * This call may only be used from a context that may sleep.  The sleep
2840  * is non-interruptible, and has no timeout.  Low-overhead controller
2841  * drivers may DMA directly into and out of the message buffers.
2842  *
2843  * Note that the SPI device's chip select is active during the message,
2844  * and then is normally disabled between messages.  Drivers for some
2845  * frequently-used devices may want to minimize costs of selecting a chip,
2846  * by leaving it selected in anticipation that the next message will go
2847  * to the same chip.  (That may increase power usage.)
2848  *
2849  * Also, the caller is guaranteeing that the memory associated with the
2850  * message will not be freed before this call returns.
2851  *
2852  * Return: zero on success, else a negative error code.
2853  */
2854 int spi_sync(struct spi_device *spi, struct spi_message *message)
2855 {
2856 	return __spi_sync(spi, message, spi->master->bus_lock_flag);
2857 }
2858 EXPORT_SYMBOL_GPL(spi_sync);
2859 
2860 /**
2861  * spi_sync_locked - version of spi_sync with exclusive bus usage
2862  * @spi: device with which data will be exchanged
2863  * @message: describes the data transfers
2864  * Context: can sleep
2865  *
2866  * This call may only be used from a context that may sleep.  The sleep
2867  * is non-interruptible, and has no timeout.  Low-overhead controller
2868  * drivers may DMA directly into and out of the message buffers.
2869  *
2870  * This call should be used by drivers that require exclusive access to the
2871  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2872  * be released by a spi_bus_unlock call when the exclusive access is over.
2873  *
2874  * Return: zero on success, else a negative error code.
2875  */
2876 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2877 {
2878 	return __spi_sync(spi, message, 1);
2879 }
2880 EXPORT_SYMBOL_GPL(spi_sync_locked);
2881 
2882 /**
2883  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2884  * @master: SPI bus master that should be locked for exclusive bus access
2885  * Context: can sleep
2886  *
2887  * This call may only be used from a context that may sleep.  The sleep
2888  * is non-interruptible, and has no timeout.
2889  *
2890  * This call should be used by drivers that require exclusive access to the
2891  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2892  * exclusive access is over. Data transfer must be done by spi_sync_locked
2893  * and spi_async_locked calls when the SPI bus lock is held.
2894  *
2895  * Return: always zero.
2896  */
2897 int spi_bus_lock(struct spi_master *master)
2898 {
2899 	unsigned long flags;
2900 
2901 	mutex_lock(&master->bus_lock_mutex);
2902 
2903 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2904 	master->bus_lock_flag = 1;
2905 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2906 
2907 	/* mutex remains locked until spi_bus_unlock is called */
2908 
2909 	return 0;
2910 }
2911 EXPORT_SYMBOL_GPL(spi_bus_lock);
2912 
2913 /**
2914  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2915  * @master: SPI bus master that was locked for exclusive bus access
2916  * Context: can sleep
2917  *
2918  * This call may only be used from a context that may sleep.  The sleep
2919  * is non-interruptible, and has no timeout.
2920  *
2921  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2922  * call.
2923  *
2924  * Return: always zero.
2925  */
2926 int spi_bus_unlock(struct spi_master *master)
2927 {
2928 	master->bus_lock_flag = 0;
2929 
2930 	mutex_unlock(&master->bus_lock_mutex);
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2935 
2936 /* portable code must never pass more than 32 bytes */
2937 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2938 
2939 static u8	*buf;
2940 
2941 /**
2942  * spi_write_then_read - SPI synchronous write followed by read
2943  * @spi: device with which data will be exchanged
2944  * @txbuf: data to be written (need not be dma-safe)
2945  * @n_tx: size of txbuf, in bytes
2946  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2947  * @n_rx: size of rxbuf, in bytes
2948  * Context: can sleep
2949  *
2950  * This performs a half duplex MicroWire style transaction with the
2951  * device, sending txbuf and then reading rxbuf.  The return value
2952  * is zero for success, else a negative errno status code.
2953  * This call may only be used from a context that may sleep.
2954  *
2955  * Parameters to this routine are always copied using a small buffer;
2956  * portable code should never use this for more than 32 bytes.
2957  * Performance-sensitive or bulk transfer code should instead use
2958  * spi_{async,sync}() calls with dma-safe buffers.
2959  *
2960  * Return: zero on success, else a negative error code.
2961  */
2962 int spi_write_then_read(struct spi_device *spi,
2963 		const void *txbuf, unsigned n_tx,
2964 		void *rxbuf, unsigned n_rx)
2965 {
2966 	static DEFINE_MUTEX(lock);
2967 
2968 	int			status;
2969 	struct spi_message	message;
2970 	struct spi_transfer	x[2];
2971 	u8			*local_buf;
2972 
2973 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2974 	 * copying here, (as a pure convenience thing), but we can
2975 	 * keep heap costs out of the hot path unless someone else is
2976 	 * using the pre-allocated buffer or the transfer is too large.
2977 	 */
2978 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2979 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2980 				    GFP_KERNEL | GFP_DMA);
2981 		if (!local_buf)
2982 			return -ENOMEM;
2983 	} else {
2984 		local_buf = buf;
2985 	}
2986 
2987 	spi_message_init(&message);
2988 	memset(x, 0, sizeof(x));
2989 	if (n_tx) {
2990 		x[0].len = n_tx;
2991 		spi_message_add_tail(&x[0], &message);
2992 	}
2993 	if (n_rx) {
2994 		x[1].len = n_rx;
2995 		spi_message_add_tail(&x[1], &message);
2996 	}
2997 
2998 	memcpy(local_buf, txbuf, n_tx);
2999 	x[0].tx_buf = local_buf;
3000 	x[1].rx_buf = local_buf + n_tx;
3001 
3002 	/* do the i/o */
3003 	status = spi_sync(spi, &message);
3004 	if (status == 0)
3005 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3006 
3007 	if (x[0].tx_buf == buf)
3008 		mutex_unlock(&lock);
3009 	else
3010 		kfree(local_buf);
3011 
3012 	return status;
3013 }
3014 EXPORT_SYMBOL_GPL(spi_write_then_read);
3015 
3016 /*-------------------------------------------------------------------------*/
3017 
3018 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3019 static int __spi_of_device_match(struct device *dev, void *data)
3020 {
3021 	return dev->of_node == data;
3022 }
3023 
3024 /* must call put_device() when done with returned spi_device device */
3025 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3026 {
3027 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3028 						__spi_of_device_match);
3029 	return dev ? to_spi_device(dev) : NULL;
3030 }
3031 
3032 static int __spi_of_master_match(struct device *dev, const void *data)
3033 {
3034 	return dev->of_node == data;
3035 }
3036 
3037 /* the spi masters are not using spi_bus, so we find it with another way */
3038 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3039 {
3040 	struct device *dev;
3041 
3042 	dev = class_find_device(&spi_master_class, NULL, node,
3043 				__spi_of_master_match);
3044 	if (!dev)
3045 		return NULL;
3046 
3047 	/* reference got in class_find_device */
3048 	return container_of(dev, struct spi_master, dev);
3049 }
3050 
3051 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3052 			 void *arg)
3053 {
3054 	struct of_reconfig_data *rd = arg;
3055 	struct spi_master *master;
3056 	struct spi_device *spi;
3057 
3058 	switch (of_reconfig_get_state_change(action, arg)) {
3059 	case OF_RECONFIG_CHANGE_ADD:
3060 		master = of_find_spi_master_by_node(rd->dn->parent);
3061 		if (master == NULL)
3062 			return NOTIFY_OK;	/* not for us */
3063 
3064 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3065 			put_device(&master->dev);
3066 			return NOTIFY_OK;
3067 		}
3068 
3069 		spi = of_register_spi_device(master, rd->dn);
3070 		put_device(&master->dev);
3071 
3072 		if (IS_ERR(spi)) {
3073 			pr_err("%s: failed to create for '%s'\n",
3074 					__func__, rd->dn->full_name);
3075 			return notifier_from_errno(PTR_ERR(spi));
3076 		}
3077 		break;
3078 
3079 	case OF_RECONFIG_CHANGE_REMOVE:
3080 		/* already depopulated? */
3081 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3082 			return NOTIFY_OK;
3083 
3084 		/* find our device by node */
3085 		spi = of_find_spi_device_by_node(rd->dn);
3086 		if (spi == NULL)
3087 			return NOTIFY_OK;	/* no? not meant for us */
3088 
3089 		/* unregister takes one ref away */
3090 		spi_unregister_device(spi);
3091 
3092 		/* and put the reference of the find */
3093 		put_device(&spi->dev);
3094 		break;
3095 	}
3096 
3097 	return NOTIFY_OK;
3098 }
3099 
3100 static struct notifier_block spi_of_notifier = {
3101 	.notifier_call = of_spi_notify,
3102 };
3103 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3104 extern struct notifier_block spi_of_notifier;
3105 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3106 
3107 static int __init spi_init(void)
3108 {
3109 	int	status;
3110 
3111 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3112 	if (!buf) {
3113 		status = -ENOMEM;
3114 		goto err0;
3115 	}
3116 
3117 	status = bus_register(&spi_bus_type);
3118 	if (status < 0)
3119 		goto err1;
3120 
3121 	status = class_register(&spi_master_class);
3122 	if (status < 0)
3123 		goto err2;
3124 
3125 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3126 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3127 
3128 	return 0;
3129 
3130 err2:
3131 	bus_unregister(&spi_bus_type);
3132 err1:
3133 	kfree(buf);
3134 	buf = NULL;
3135 err0:
3136 	return status;
3137 }
3138 
3139 /* board_info is normally registered in arch_initcall(),
3140  * but even essential drivers wait till later
3141  *
3142  * REVISIT only boardinfo really needs static linking. the rest (device and
3143  * driver registration) _could_ be dynamically linked (modular) ... costs
3144  * include needing to have boardinfo data structures be much more public.
3145  */
3146 postcore_initcall(spi_init);
3147 
3148