1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/offload/types.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi-mem.h> 37 #include <uapi/linux/sched/types.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/spi.h> 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 43 44 #include "internals.h" 45 46 static DEFINE_IDR(spi_controller_idr); 47 48 static void spidev_release(struct device *dev) 49 { 50 struct spi_device *spi = to_spi_device(dev); 51 52 spi_controller_put(spi->controller); 53 kfree(spi->driver_override); 54 free_percpu(spi->pcpu_statistics); 55 kfree(spi); 56 } 57 58 static ssize_t 59 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 60 { 61 const struct spi_device *spi = to_spi_device(dev); 62 int len; 63 64 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 65 if (len != -ENODEV) 66 return len; 67 68 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 69 } 70 static DEVICE_ATTR_RO(modalias); 71 72 static ssize_t driver_override_store(struct device *dev, 73 struct device_attribute *a, 74 const char *buf, size_t count) 75 { 76 struct spi_device *spi = to_spi_device(dev); 77 int ret; 78 79 ret = driver_set_override(dev, &spi->driver_override, buf, count); 80 if (ret) 81 return ret; 82 83 return count; 84 } 85 86 static ssize_t driver_override_show(struct device *dev, 87 struct device_attribute *a, char *buf) 88 { 89 const struct spi_device *spi = to_spi_device(dev); 90 ssize_t len; 91 92 device_lock(dev); 93 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 94 device_unlock(dev); 95 return len; 96 } 97 static DEVICE_ATTR_RW(driver_override); 98 99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 100 { 101 struct spi_statistics __percpu *pcpu_stats; 102 103 if (dev) 104 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 105 else 106 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 107 108 if (pcpu_stats) { 109 int cpu; 110 111 for_each_possible_cpu(cpu) { 112 struct spi_statistics *stat; 113 114 stat = per_cpu_ptr(pcpu_stats, cpu); 115 u64_stats_init(&stat->syncp); 116 } 117 } 118 return pcpu_stats; 119 } 120 121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 122 char *buf, size_t offset) 123 { 124 u64 val = 0; 125 int i; 126 127 for_each_possible_cpu(i) { 128 const struct spi_statistics *pcpu_stats; 129 u64_stats_t *field; 130 unsigned int start; 131 u64 inc; 132 133 pcpu_stats = per_cpu_ptr(stat, i); 134 field = (void *)pcpu_stats + offset; 135 do { 136 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 137 inc = u64_stats_read(field); 138 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 139 val += inc; 140 } 141 return sysfs_emit(buf, "%llu\n", val); 142 } 143 144 #define SPI_STATISTICS_ATTRS(field, file) \ 145 static ssize_t spi_controller_##field##_show(struct device *dev, \ 146 struct device_attribute *attr, \ 147 char *buf) \ 148 { \ 149 struct spi_controller *ctlr = container_of(dev, \ 150 struct spi_controller, dev); \ 151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 152 } \ 153 static struct device_attribute dev_attr_spi_controller_##field = { \ 154 .attr = { .name = file, .mode = 0444 }, \ 155 .show = spi_controller_##field##_show, \ 156 }; \ 157 static ssize_t spi_device_##field##_show(struct device *dev, \ 158 struct device_attribute *attr, \ 159 char *buf) \ 160 { \ 161 struct spi_device *spi = to_spi_device(dev); \ 162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 163 } \ 164 static struct device_attribute dev_attr_spi_device_##field = { \ 165 .attr = { .name = file, .mode = 0444 }, \ 166 .show = spi_device_##field##_show, \ 167 } 168 169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 171 char *buf) \ 172 { \ 173 return spi_emit_pcpu_stats(stat, buf, \ 174 offsetof(struct spi_statistics, field)); \ 175 } \ 176 SPI_STATISTICS_ATTRS(name, file) 177 178 #define SPI_STATISTICS_SHOW(field) \ 179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 180 field) 181 182 SPI_STATISTICS_SHOW(messages); 183 SPI_STATISTICS_SHOW(transfers); 184 SPI_STATISTICS_SHOW(errors); 185 SPI_STATISTICS_SHOW(timedout); 186 187 SPI_STATISTICS_SHOW(spi_sync); 188 SPI_STATISTICS_SHOW(spi_sync_immediate); 189 SPI_STATISTICS_SHOW(spi_async); 190 191 SPI_STATISTICS_SHOW(bytes); 192 SPI_STATISTICS_SHOW(bytes_rx); 193 SPI_STATISTICS_SHOW(bytes_tx); 194 195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 197 "transfer_bytes_histo_" number, \ 198 transfer_bytes_histo[index]) 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 216 217 SPI_STATISTICS_SHOW(transfers_split_maxsize); 218 219 static struct attribute *spi_dev_attrs[] = { 220 &dev_attr_modalias.attr, 221 &dev_attr_driver_override.attr, 222 NULL, 223 }; 224 225 static const struct attribute_group spi_dev_group = { 226 .attrs = spi_dev_attrs, 227 }; 228 229 static struct attribute *spi_device_statistics_attrs[] = { 230 &dev_attr_spi_device_messages.attr, 231 &dev_attr_spi_device_transfers.attr, 232 &dev_attr_spi_device_errors.attr, 233 &dev_attr_spi_device_timedout.attr, 234 &dev_attr_spi_device_spi_sync.attr, 235 &dev_attr_spi_device_spi_sync_immediate.attr, 236 &dev_attr_spi_device_spi_async.attr, 237 &dev_attr_spi_device_bytes.attr, 238 &dev_attr_spi_device_bytes_rx.attr, 239 &dev_attr_spi_device_bytes_tx.attr, 240 &dev_attr_spi_device_transfer_bytes_histo0.attr, 241 &dev_attr_spi_device_transfer_bytes_histo1.attr, 242 &dev_attr_spi_device_transfer_bytes_histo2.attr, 243 &dev_attr_spi_device_transfer_bytes_histo3.attr, 244 &dev_attr_spi_device_transfer_bytes_histo4.attr, 245 &dev_attr_spi_device_transfer_bytes_histo5.attr, 246 &dev_attr_spi_device_transfer_bytes_histo6.attr, 247 &dev_attr_spi_device_transfer_bytes_histo7.attr, 248 &dev_attr_spi_device_transfer_bytes_histo8.attr, 249 &dev_attr_spi_device_transfer_bytes_histo9.attr, 250 &dev_attr_spi_device_transfer_bytes_histo10.attr, 251 &dev_attr_spi_device_transfer_bytes_histo11.attr, 252 &dev_attr_spi_device_transfer_bytes_histo12.attr, 253 &dev_attr_spi_device_transfer_bytes_histo13.attr, 254 &dev_attr_spi_device_transfer_bytes_histo14.attr, 255 &dev_attr_spi_device_transfer_bytes_histo15.attr, 256 &dev_attr_spi_device_transfer_bytes_histo16.attr, 257 &dev_attr_spi_device_transfers_split_maxsize.attr, 258 NULL, 259 }; 260 261 static const struct attribute_group spi_device_statistics_group = { 262 .name = "statistics", 263 .attrs = spi_device_statistics_attrs, 264 }; 265 266 static const struct attribute_group *spi_dev_groups[] = { 267 &spi_dev_group, 268 &spi_device_statistics_group, 269 NULL, 270 }; 271 272 static struct attribute *spi_controller_statistics_attrs[] = { 273 &dev_attr_spi_controller_messages.attr, 274 &dev_attr_spi_controller_transfers.attr, 275 &dev_attr_spi_controller_errors.attr, 276 &dev_attr_spi_controller_timedout.attr, 277 &dev_attr_spi_controller_spi_sync.attr, 278 &dev_attr_spi_controller_spi_sync_immediate.attr, 279 &dev_attr_spi_controller_spi_async.attr, 280 &dev_attr_spi_controller_bytes.attr, 281 &dev_attr_spi_controller_bytes_rx.attr, 282 &dev_attr_spi_controller_bytes_tx.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 299 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 300 &dev_attr_spi_controller_transfers_split_maxsize.attr, 301 NULL, 302 }; 303 304 static const struct attribute_group spi_controller_statistics_group = { 305 .name = "statistics", 306 .attrs = spi_controller_statistics_attrs, 307 }; 308 309 static const struct attribute_group *spi_controller_groups[] = { 310 &spi_controller_statistics_group, 311 NULL, 312 }; 313 314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 315 struct spi_transfer *xfer, 316 struct spi_message *msg) 317 { 318 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 319 struct spi_statistics *stats; 320 321 if (l2len < 0) 322 l2len = 0; 323 324 get_cpu(); 325 stats = this_cpu_ptr(pcpu_stats); 326 u64_stats_update_begin(&stats->syncp); 327 328 u64_stats_inc(&stats->transfers); 329 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 330 331 u64_stats_add(&stats->bytes, xfer->len); 332 if (spi_valid_txbuf(msg, xfer)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if (spi_valid_rxbuf(msg, xfer)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, const struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 struct fwnode_handle *fwnode = dev_fwnode(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (is_of_node(fwnode)) 422 spi->irq = of_irq_get(dev->of_node, 0); 423 else if (is_acpi_device_node(fwnode) && spi->irq < 0) 424 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0); 425 if (spi->irq == -EPROBE_DEFER) 426 return dev_err_probe(dev, spi->irq, "Failed to get irq\n"); 427 if (spi->irq < 0) 428 spi->irq = 0; 429 430 ret = dev_pm_domain_attach(dev, true); 431 if (ret) 432 return ret; 433 434 if (sdrv->probe) { 435 ret = sdrv->probe(spi); 436 if (ret) 437 dev_pm_domain_detach(dev, true); 438 } 439 440 return ret; 441 } 442 443 static void spi_remove(struct device *dev) 444 { 445 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 446 447 if (sdrv->remove) 448 sdrv->remove(to_spi_device(dev)); 449 450 dev_pm_domain_detach(dev, true); 451 } 452 453 static void spi_shutdown(struct device *dev) 454 { 455 if (dev->driver) { 456 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 457 458 if (sdrv->shutdown) 459 sdrv->shutdown(to_spi_device(dev)); 460 } 461 } 462 463 const struct bus_type spi_bus_type = { 464 .name = "spi", 465 .dev_groups = spi_dev_groups, 466 .match = spi_match_device, 467 .uevent = spi_uevent, 468 .probe = spi_probe, 469 .remove = spi_remove, 470 .shutdown = spi_shutdown, 471 }; 472 EXPORT_SYMBOL_GPL(spi_bus_type); 473 474 /** 475 * __spi_register_driver - register a SPI driver 476 * @owner: owner module of the driver to register 477 * @sdrv: the driver to register 478 * Context: can sleep 479 * 480 * Return: zero on success, else a negative error code. 481 */ 482 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 483 { 484 sdrv->driver.owner = owner; 485 sdrv->driver.bus = &spi_bus_type; 486 487 /* 488 * For Really Good Reasons we use spi: modaliases not of: 489 * modaliases for DT so module autoloading won't work if we 490 * don't have a spi_device_id as well as a compatible string. 491 */ 492 if (sdrv->driver.of_match_table) { 493 const struct of_device_id *of_id; 494 495 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 496 of_id++) { 497 const char *of_name; 498 499 /* Strip off any vendor prefix */ 500 of_name = strnchr(of_id->compatible, 501 sizeof(of_id->compatible), ','); 502 if (of_name) 503 of_name++; 504 else 505 of_name = of_id->compatible; 506 507 if (sdrv->id_table) { 508 const struct spi_device_id *spi_id; 509 510 spi_id = spi_match_id(sdrv->id_table, of_name); 511 if (spi_id) 512 continue; 513 } else { 514 if (strcmp(sdrv->driver.name, of_name) == 0) 515 continue; 516 } 517 518 pr_warn("SPI driver %s has no spi_device_id for %s\n", 519 sdrv->driver.name, of_id->compatible); 520 } 521 } 522 523 return driver_register(&sdrv->driver); 524 } 525 EXPORT_SYMBOL_GPL(__spi_register_driver); 526 527 /*-------------------------------------------------------------------------*/ 528 529 /* 530 * SPI devices should normally not be created by SPI device drivers; that 531 * would make them board-specific. Similarly with SPI controller drivers. 532 * Device registration normally goes into like arch/.../mach.../board-YYY.c 533 * with other readonly (flashable) information about mainboard devices. 534 */ 535 536 struct boardinfo { 537 struct list_head list; 538 struct spi_board_info board_info; 539 }; 540 541 static LIST_HEAD(board_list); 542 static LIST_HEAD(spi_controller_list); 543 544 /* 545 * Used to protect add/del operation for board_info list and 546 * spi_controller list, and their matching process also used 547 * to protect object of type struct idr. 548 */ 549 static DEFINE_MUTEX(board_lock); 550 551 /** 552 * spi_alloc_device - Allocate a new SPI device 553 * @ctlr: Controller to which device is connected 554 * Context: can sleep 555 * 556 * Allows a driver to allocate and initialize a spi_device without 557 * registering it immediately. This allows a driver to directly 558 * fill the spi_device with device parameters before calling 559 * spi_add_device() on it. 560 * 561 * Caller is responsible to call spi_add_device() on the returned 562 * spi_device structure to add it to the SPI controller. If the caller 563 * needs to discard the spi_device without adding it, then it should 564 * call spi_dev_put() on it. 565 * 566 * Return: a pointer to the new device, or NULL. 567 */ 568 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 569 { 570 struct spi_device *spi; 571 572 if (!spi_controller_get(ctlr)) 573 return NULL; 574 575 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 576 if (!spi) { 577 spi_controller_put(ctlr); 578 return NULL; 579 } 580 581 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 582 if (!spi->pcpu_statistics) { 583 kfree(spi); 584 spi_controller_put(ctlr); 585 return NULL; 586 } 587 588 spi->controller = ctlr; 589 spi->dev.parent = &ctlr->dev; 590 spi->dev.bus = &spi_bus_type; 591 spi->dev.release = spidev_release; 592 spi->mode = ctlr->buswidth_override_bits; 593 594 device_initialize(&spi->dev); 595 return spi; 596 } 597 EXPORT_SYMBOL_GPL(spi_alloc_device); 598 599 static void spi_dev_set_name(struct spi_device *spi) 600 { 601 struct device *dev = &spi->dev; 602 struct fwnode_handle *fwnode = dev_fwnode(dev); 603 604 if (is_acpi_device_node(fwnode)) { 605 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 606 return; 607 } 608 609 if (is_software_node(fwnode)) { 610 dev_set_name(dev, "spi-%pfwP", fwnode); 611 return; 612 } 613 614 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 615 spi_get_chipselect(spi, 0)); 616 } 617 618 /* 619 * Zero(0) is a valid physical CS value and can be located at any 620 * logical CS in the spi->chip_select[]. If all the physical CS 621 * are initialized to 0 then It would be difficult to differentiate 622 * between a valid physical CS 0 & an unused logical CS whose physical 623 * CS can be 0. As a solution to this issue initialize all the CS to -1. 624 * Now all the unused logical CS will have -1 physical CS value & can be 625 * ignored while performing physical CS validity checks. 626 */ 627 #define SPI_INVALID_CS ((s8)-1) 628 629 static inline bool is_valid_cs(s8 chip_select) 630 { 631 return chip_select != SPI_INVALID_CS; 632 } 633 634 static inline int spi_dev_check_cs(struct device *dev, 635 struct spi_device *spi, u8 idx, 636 struct spi_device *new_spi, u8 new_idx) 637 { 638 u8 cs, cs_new; 639 u8 idx_new; 640 641 cs = spi_get_chipselect(spi, idx); 642 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 643 cs_new = spi_get_chipselect(new_spi, idx_new); 644 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 645 dev_err(dev, "chipselect %u already in use\n", cs_new); 646 return -EBUSY; 647 } 648 } 649 return 0; 650 } 651 652 static int spi_dev_check(struct device *dev, void *data) 653 { 654 struct spi_device *spi = to_spi_device(dev); 655 struct spi_device *new_spi = data; 656 int status, idx; 657 658 if (spi->controller == new_spi->controller) { 659 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 660 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 661 if (status) 662 return status; 663 } 664 } 665 return 0; 666 } 667 668 static void spi_cleanup(struct spi_device *spi) 669 { 670 if (spi->controller->cleanup) 671 spi->controller->cleanup(spi); 672 } 673 674 static int __spi_add_device(struct spi_device *spi) 675 { 676 struct spi_controller *ctlr = spi->controller; 677 struct device *dev = ctlr->dev.parent; 678 int status, idx; 679 u8 cs; 680 681 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 682 /* Chipselects are numbered 0..max; validate. */ 683 cs = spi_get_chipselect(spi, idx); 684 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 685 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 686 ctlr->num_chipselect); 687 return -EINVAL; 688 } 689 } 690 691 /* 692 * Make sure that multiple logical CS doesn't map to the same physical CS. 693 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 694 */ 695 if (!spi_controller_is_target(ctlr)) { 696 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 697 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 698 if (status) 699 return status; 700 } 701 } 702 703 /* Set the bus ID string */ 704 spi_dev_set_name(spi); 705 706 /* 707 * We need to make sure there's no other device with this 708 * chipselect **BEFORE** we call setup(), else we'll trash 709 * its configuration. 710 */ 711 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 712 if (status) 713 return status; 714 715 /* Controller may unregister concurrently */ 716 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 717 !device_is_registered(&ctlr->dev)) { 718 return -ENODEV; 719 } 720 721 if (ctlr->cs_gpiods) { 722 u8 cs; 723 724 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 725 cs = spi_get_chipselect(spi, idx); 726 if (is_valid_cs(cs)) 727 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 728 } 729 } 730 731 /* 732 * Drivers may modify this initial i/o setup, but will 733 * normally rely on the device being setup. Devices 734 * using SPI_CS_HIGH can't coexist well otherwise... 735 */ 736 status = spi_setup(spi); 737 if (status < 0) { 738 dev_err(dev, "can't setup %s, status %d\n", 739 dev_name(&spi->dev), status); 740 return status; 741 } 742 743 /* Device may be bound to an active driver when this returns */ 744 status = device_add(&spi->dev); 745 if (status < 0) { 746 dev_err(dev, "can't add %s, status %d\n", 747 dev_name(&spi->dev), status); 748 spi_cleanup(spi); 749 } else { 750 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 751 } 752 753 return status; 754 } 755 756 /** 757 * spi_add_device - Add spi_device allocated with spi_alloc_device 758 * @spi: spi_device to register 759 * 760 * Companion function to spi_alloc_device. Devices allocated with 761 * spi_alloc_device can be added onto the SPI bus with this function. 762 * 763 * Return: 0 on success; negative errno on failure 764 */ 765 int spi_add_device(struct spi_device *spi) 766 { 767 struct spi_controller *ctlr = spi->controller; 768 int status; 769 770 /* Set the bus ID string */ 771 spi_dev_set_name(spi); 772 773 mutex_lock(&ctlr->add_lock); 774 status = __spi_add_device(spi); 775 mutex_unlock(&ctlr->add_lock); 776 return status; 777 } 778 EXPORT_SYMBOL_GPL(spi_add_device); 779 780 static void spi_set_all_cs_unused(struct spi_device *spi) 781 { 782 u8 idx; 783 784 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 785 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 786 } 787 788 /** 789 * spi_new_device - instantiate one new SPI device 790 * @ctlr: Controller to which device is connected 791 * @chip: Describes the SPI device 792 * Context: can sleep 793 * 794 * On typical mainboards, this is purely internal; and it's not needed 795 * after board init creates the hard-wired devices. Some development 796 * platforms may not be able to use spi_register_board_info though, and 797 * this is exported so that for example a USB or parport based adapter 798 * driver could add devices (which it would learn about out-of-band). 799 * 800 * Return: the new device, or NULL. 801 */ 802 struct spi_device *spi_new_device(struct spi_controller *ctlr, 803 struct spi_board_info *chip) 804 { 805 struct spi_device *proxy; 806 int status; 807 808 /* 809 * NOTE: caller did any chip->bus_num checks necessary. 810 * 811 * Also, unless we change the return value convention to use 812 * error-or-pointer (not NULL-or-pointer), troubleshootability 813 * suggests syslogged diagnostics are best here (ugh). 814 */ 815 816 proxy = spi_alloc_device(ctlr); 817 if (!proxy) 818 return NULL; 819 820 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 821 822 /* Use provided chip-select for proxy device */ 823 spi_set_all_cs_unused(proxy); 824 spi_set_chipselect(proxy, 0, chip->chip_select); 825 826 proxy->max_speed_hz = chip->max_speed_hz; 827 proxy->mode = chip->mode; 828 proxy->irq = chip->irq; 829 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 830 proxy->dev.platform_data = (void *) chip->platform_data; 831 proxy->controller_data = chip->controller_data; 832 proxy->controller_state = NULL; 833 /* 834 * By default spi->chip_select[0] will hold the physical CS number, 835 * so set bit 0 in spi->cs_index_mask. 836 */ 837 proxy->cs_index_mask = BIT(0); 838 839 if (chip->swnode) { 840 status = device_add_software_node(&proxy->dev, chip->swnode); 841 if (status) { 842 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 843 chip->modalias, status); 844 goto err_dev_put; 845 } 846 } 847 848 status = spi_add_device(proxy); 849 if (status < 0) 850 goto err_dev_put; 851 852 return proxy; 853 854 err_dev_put: 855 device_remove_software_node(&proxy->dev); 856 spi_dev_put(proxy); 857 return NULL; 858 } 859 EXPORT_SYMBOL_GPL(spi_new_device); 860 861 /** 862 * spi_unregister_device - unregister a single SPI device 863 * @spi: spi_device to unregister 864 * 865 * Start making the passed SPI device vanish. Normally this would be handled 866 * by spi_unregister_controller(). 867 */ 868 void spi_unregister_device(struct spi_device *spi) 869 { 870 struct fwnode_handle *fwnode; 871 872 if (!spi) 873 return; 874 875 fwnode = dev_fwnode(&spi->dev); 876 if (is_of_node(fwnode)) { 877 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED); 878 of_node_put(to_of_node(fwnode)); 879 } else if (is_acpi_device_node(fwnode)) { 880 acpi_device_clear_enumerated(to_acpi_device_node(fwnode)); 881 } 882 device_remove_software_node(&spi->dev); 883 device_del(&spi->dev); 884 spi_cleanup(spi); 885 put_device(&spi->dev); 886 } 887 EXPORT_SYMBOL_GPL(spi_unregister_device); 888 889 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 890 struct spi_board_info *bi) 891 { 892 struct spi_device *dev; 893 894 if (ctlr->bus_num != bi->bus_num) 895 return; 896 897 dev = spi_new_device(ctlr, bi); 898 if (!dev) 899 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 900 bi->modalias); 901 } 902 903 /** 904 * spi_register_board_info - register SPI devices for a given board 905 * @info: array of chip descriptors 906 * @n: how many descriptors are provided 907 * Context: can sleep 908 * 909 * Board-specific early init code calls this (probably during arch_initcall) 910 * with segments of the SPI device table. Any device nodes are created later, 911 * after the relevant parent SPI controller (bus_num) is defined. We keep 912 * this table of devices forever, so that reloading a controller driver will 913 * not make Linux forget about these hard-wired devices. 914 * 915 * Other code can also call this, e.g. a particular add-on board might provide 916 * SPI devices through its expansion connector, so code initializing that board 917 * would naturally declare its SPI devices. 918 * 919 * The board info passed can safely be __initdata ... but be careful of 920 * any embedded pointers (platform_data, etc), they're copied as-is. 921 * 922 * Return: zero on success, else a negative error code. 923 */ 924 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 925 { 926 struct boardinfo *bi; 927 int i; 928 929 if (!n) 930 return 0; 931 932 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 933 if (!bi) 934 return -ENOMEM; 935 936 for (i = 0; i < n; i++, bi++, info++) { 937 struct spi_controller *ctlr; 938 939 memcpy(&bi->board_info, info, sizeof(*info)); 940 941 mutex_lock(&board_lock); 942 list_add_tail(&bi->list, &board_list); 943 list_for_each_entry(ctlr, &spi_controller_list, list) 944 spi_match_controller_to_boardinfo(ctlr, 945 &bi->board_info); 946 mutex_unlock(&board_lock); 947 } 948 949 return 0; 950 } 951 952 /*-------------------------------------------------------------------------*/ 953 954 /* Core methods for SPI resource management */ 955 956 /** 957 * spi_res_alloc - allocate a spi resource that is life-cycle managed 958 * during the processing of a spi_message while using 959 * spi_transfer_one 960 * @spi: the SPI device for which we allocate memory 961 * @release: the release code to execute for this resource 962 * @size: size to alloc and return 963 * @gfp: GFP allocation flags 964 * 965 * Return: the pointer to the allocated data 966 * 967 * This may get enhanced in the future to allocate from a memory pool 968 * of the @spi_device or @spi_controller to avoid repeated allocations. 969 */ 970 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 971 size_t size, gfp_t gfp) 972 { 973 struct spi_res *sres; 974 975 sres = kzalloc(sizeof(*sres) + size, gfp); 976 if (!sres) 977 return NULL; 978 979 INIT_LIST_HEAD(&sres->entry); 980 sres->release = release; 981 982 return sres->data; 983 } 984 985 /** 986 * spi_res_free - free an SPI resource 987 * @res: pointer to the custom data of a resource 988 */ 989 static void spi_res_free(void *res) 990 { 991 struct spi_res *sres = container_of(res, struct spi_res, data); 992 993 WARN_ON(!list_empty(&sres->entry)); 994 kfree(sres); 995 } 996 997 /** 998 * spi_res_add - add a spi_res to the spi_message 999 * @message: the SPI message 1000 * @res: the spi_resource 1001 */ 1002 static void spi_res_add(struct spi_message *message, void *res) 1003 { 1004 struct spi_res *sres = container_of(res, struct spi_res, data); 1005 1006 WARN_ON(!list_empty(&sres->entry)); 1007 list_add_tail(&sres->entry, &message->resources); 1008 } 1009 1010 /** 1011 * spi_res_release - release all SPI resources for this message 1012 * @ctlr: the @spi_controller 1013 * @message: the @spi_message 1014 */ 1015 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1016 { 1017 struct spi_res *res, *tmp; 1018 1019 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1020 if (res->release) 1021 res->release(ctlr, message, res->data); 1022 1023 list_del(&res->entry); 1024 1025 kfree(res); 1026 } 1027 } 1028 1029 /*-------------------------------------------------------------------------*/ 1030 #define spi_for_each_valid_cs(spi, idx) \ 1031 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1032 if (!(spi->cs_index_mask & BIT(idx))) {} else 1033 1034 static inline bool spi_is_last_cs(struct spi_device *spi) 1035 { 1036 u8 idx; 1037 bool last = false; 1038 1039 spi_for_each_valid_cs(spi, idx) { 1040 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1041 last = true; 1042 } 1043 return last; 1044 } 1045 1046 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1047 { 1048 /* 1049 * Historically ACPI has no means of the GPIO polarity and 1050 * thus the SPISerialBus() resource defines it on the per-chip 1051 * basis. In order to avoid a chain of negations, the GPIO 1052 * polarity is considered being Active High. Even for the cases 1053 * when _DSD() is involved (in the updated versions of ACPI) 1054 * the GPIO CS polarity must be defined Active High to avoid 1055 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1056 * into account. 1057 */ 1058 if (is_acpi_device_node(dev_fwnode(&spi->dev))) 1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1060 else 1061 /* Polarity handled by GPIO library */ 1062 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1063 1064 if (activate) 1065 spi_delay_exec(&spi->cs_setup, NULL); 1066 else 1067 spi_delay_exec(&spi->cs_inactive, NULL); 1068 } 1069 1070 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1071 { 1072 bool activate = enable; 1073 u8 idx; 1074 1075 /* 1076 * Avoid calling into the driver (or doing delays) if the chip select 1077 * isn't actually changing from the last time this was called. 1078 */ 1079 if (!force && (enable == spi_is_last_cs(spi)) && 1080 (spi->controller->last_cs_index_mask == spi->cs_index_mask) && 1081 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1082 return; 1083 1084 trace_spi_set_cs(spi, activate); 1085 1086 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1087 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1088 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1089 1090 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1091 if (spi->controller->last_cs_mode_high) 1092 enable = !enable; 1093 1094 /* 1095 * Handle chip select delays for GPIO based CS or controllers without 1096 * programmable chip select timing. 1097 */ 1098 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1099 spi_delay_exec(&spi->cs_hold, NULL); 1100 1101 if (spi_is_csgpiod(spi)) { 1102 if (!(spi->mode & SPI_NO_CS)) { 1103 spi_for_each_valid_cs(spi, idx) { 1104 if (spi_get_csgpiod(spi, idx)) 1105 spi_toggle_csgpiod(spi, idx, enable, activate); 1106 } 1107 } 1108 /* Some SPI controllers need both GPIO CS & ->set_cs() */ 1109 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1110 spi->controller->set_cs) 1111 spi->controller->set_cs(spi, !enable); 1112 } else if (spi->controller->set_cs) { 1113 spi->controller->set_cs(spi, !enable); 1114 } 1115 1116 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1117 if (activate) 1118 spi_delay_exec(&spi->cs_setup, NULL); 1119 else 1120 spi_delay_exec(&spi->cs_inactive, NULL); 1121 } 1122 } 1123 1124 #ifdef CONFIG_HAS_DMA 1125 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1126 struct sg_table *sgt, void *buf, size_t len, 1127 enum dma_data_direction dir, unsigned long attrs) 1128 { 1129 const bool vmalloced_buf = is_vmalloc_addr(buf); 1130 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1131 #ifdef CONFIG_HIGHMEM 1132 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1133 (unsigned long)buf < (PKMAP_BASE + 1134 (LAST_PKMAP * PAGE_SIZE))); 1135 #else 1136 const bool kmap_buf = false; 1137 #endif 1138 int desc_len; 1139 int sgs; 1140 struct page *vm_page; 1141 struct scatterlist *sg; 1142 void *sg_buf; 1143 size_t min; 1144 int i, ret; 1145 1146 if (vmalloced_buf || kmap_buf) { 1147 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1148 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1149 } else if (virt_addr_valid(buf)) { 1150 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1151 sgs = DIV_ROUND_UP(len, desc_len); 1152 } else { 1153 return -EINVAL; 1154 } 1155 1156 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1157 if (ret != 0) 1158 return ret; 1159 1160 sg = &sgt->sgl[0]; 1161 for (i = 0; i < sgs; i++) { 1162 1163 if (vmalloced_buf || kmap_buf) { 1164 /* 1165 * Next scatterlist entry size is the minimum between 1166 * the desc_len and the remaining buffer length that 1167 * fits in a page. 1168 */ 1169 min = min_t(size_t, desc_len, 1170 min_t(size_t, len, 1171 PAGE_SIZE - offset_in_page(buf))); 1172 if (vmalloced_buf) 1173 vm_page = vmalloc_to_page(buf); 1174 else 1175 vm_page = kmap_to_page(buf); 1176 if (!vm_page) { 1177 sg_free_table(sgt); 1178 return -ENOMEM; 1179 } 1180 sg_set_page(sg, vm_page, 1181 min, offset_in_page(buf)); 1182 } else { 1183 min = min_t(size_t, len, desc_len); 1184 sg_buf = buf; 1185 sg_set_buf(sg, sg_buf, min); 1186 } 1187 1188 buf += min; 1189 len -= min; 1190 sg = sg_next(sg); 1191 } 1192 1193 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1194 if (ret < 0) { 1195 sg_free_table(sgt); 1196 return ret; 1197 } 1198 1199 return 0; 1200 } 1201 1202 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1203 struct sg_table *sgt, void *buf, size_t len, 1204 enum dma_data_direction dir) 1205 { 1206 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1207 } 1208 1209 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1210 struct device *dev, struct sg_table *sgt, 1211 enum dma_data_direction dir, 1212 unsigned long attrs) 1213 { 1214 dma_unmap_sgtable(dev, sgt, dir, attrs); 1215 sg_free_table(sgt); 1216 sgt->orig_nents = 0; 1217 sgt->nents = 0; 1218 } 1219 1220 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1221 struct sg_table *sgt, enum dma_data_direction dir) 1222 { 1223 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1224 } 1225 1226 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1227 { 1228 struct device *tx_dev, *rx_dev; 1229 struct spi_transfer *xfer; 1230 int ret; 1231 1232 if (!ctlr->can_dma) 1233 return 0; 1234 1235 if (ctlr->dma_tx) 1236 tx_dev = ctlr->dma_tx->device->dev; 1237 else if (ctlr->dma_map_dev) 1238 tx_dev = ctlr->dma_map_dev; 1239 else 1240 tx_dev = ctlr->dev.parent; 1241 1242 if (ctlr->dma_rx) 1243 rx_dev = ctlr->dma_rx->device->dev; 1244 else if (ctlr->dma_map_dev) 1245 rx_dev = ctlr->dma_map_dev; 1246 else 1247 rx_dev = ctlr->dev.parent; 1248 1249 ret = -ENOMSG; 1250 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1251 /* The sync is done before each transfer. */ 1252 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1253 1254 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1255 continue; 1256 1257 if (xfer->tx_buf != NULL) { 1258 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1259 (void *)xfer->tx_buf, 1260 xfer->len, DMA_TO_DEVICE, 1261 attrs); 1262 if (ret != 0) 1263 return ret; 1264 1265 xfer->tx_sg_mapped = true; 1266 } 1267 1268 if (xfer->rx_buf != NULL) { 1269 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1270 xfer->rx_buf, xfer->len, 1271 DMA_FROM_DEVICE, attrs); 1272 if (ret != 0) { 1273 spi_unmap_buf_attrs(ctlr, tx_dev, 1274 &xfer->tx_sg, DMA_TO_DEVICE, 1275 attrs); 1276 1277 return ret; 1278 } 1279 1280 xfer->rx_sg_mapped = true; 1281 } 1282 } 1283 /* No transfer has been mapped, bail out with success */ 1284 if (ret) 1285 return 0; 1286 1287 ctlr->cur_rx_dma_dev = rx_dev; 1288 ctlr->cur_tx_dma_dev = tx_dev; 1289 1290 return 0; 1291 } 1292 1293 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1294 { 1295 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1296 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1297 struct spi_transfer *xfer; 1298 1299 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1300 /* The sync has already been done after each transfer. */ 1301 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1302 1303 if (xfer->rx_sg_mapped) 1304 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1305 DMA_FROM_DEVICE, attrs); 1306 xfer->rx_sg_mapped = false; 1307 1308 if (xfer->tx_sg_mapped) 1309 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1310 DMA_TO_DEVICE, attrs); 1311 xfer->tx_sg_mapped = false; 1312 } 1313 1314 return 0; 1315 } 1316 1317 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1318 struct spi_transfer *xfer) 1319 { 1320 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1321 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1322 1323 if (xfer->tx_sg_mapped) 1324 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1325 if (xfer->rx_sg_mapped) 1326 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1327 } 1328 1329 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1330 struct spi_transfer *xfer) 1331 { 1332 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1333 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1334 1335 if (xfer->rx_sg_mapped) 1336 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1337 if (xfer->tx_sg_mapped) 1338 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1339 } 1340 #else /* !CONFIG_HAS_DMA */ 1341 static inline int __spi_map_msg(struct spi_controller *ctlr, 1342 struct spi_message *msg) 1343 { 1344 return 0; 1345 } 1346 1347 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1348 struct spi_message *msg) 1349 { 1350 return 0; 1351 } 1352 1353 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1354 struct spi_transfer *xfer) 1355 { 1356 } 1357 1358 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1359 struct spi_transfer *xfer) 1360 { 1361 } 1362 #endif /* !CONFIG_HAS_DMA */ 1363 1364 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1365 struct spi_message *msg) 1366 { 1367 struct spi_transfer *xfer; 1368 1369 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1370 /* 1371 * Restore the original value of tx_buf or rx_buf if they are 1372 * NULL. 1373 */ 1374 if (xfer->tx_buf == ctlr->dummy_tx) 1375 xfer->tx_buf = NULL; 1376 if (xfer->rx_buf == ctlr->dummy_rx) 1377 xfer->rx_buf = NULL; 1378 } 1379 1380 return __spi_unmap_msg(ctlr, msg); 1381 } 1382 1383 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1384 { 1385 struct spi_transfer *xfer; 1386 void *tmp; 1387 unsigned int max_tx, max_rx; 1388 1389 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1390 && !(msg->spi->mode & SPI_3WIRE)) { 1391 max_tx = 0; 1392 max_rx = 0; 1393 1394 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1395 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1396 !xfer->tx_buf) 1397 max_tx = max(xfer->len, max_tx); 1398 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1399 !xfer->rx_buf) 1400 max_rx = max(xfer->len, max_rx); 1401 } 1402 1403 if (max_tx) { 1404 tmp = krealloc(ctlr->dummy_tx, max_tx, 1405 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1406 if (!tmp) 1407 return -ENOMEM; 1408 ctlr->dummy_tx = tmp; 1409 } 1410 1411 if (max_rx) { 1412 tmp = krealloc(ctlr->dummy_rx, max_rx, 1413 GFP_KERNEL | GFP_DMA); 1414 if (!tmp) 1415 return -ENOMEM; 1416 ctlr->dummy_rx = tmp; 1417 } 1418 1419 if (max_tx || max_rx) { 1420 list_for_each_entry(xfer, &msg->transfers, 1421 transfer_list) { 1422 if (!xfer->len) 1423 continue; 1424 if (!xfer->tx_buf) 1425 xfer->tx_buf = ctlr->dummy_tx; 1426 if (!xfer->rx_buf) 1427 xfer->rx_buf = ctlr->dummy_rx; 1428 } 1429 } 1430 } 1431 1432 return __spi_map_msg(ctlr, msg); 1433 } 1434 1435 static int spi_transfer_wait(struct spi_controller *ctlr, 1436 struct spi_message *msg, 1437 struct spi_transfer *xfer) 1438 { 1439 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1440 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1441 u32 speed_hz = xfer->speed_hz; 1442 unsigned long long ms; 1443 1444 if (spi_controller_is_target(ctlr)) { 1445 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1446 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1447 return -EINTR; 1448 } 1449 } else { 1450 if (!speed_hz) 1451 speed_hz = 100000; 1452 1453 /* 1454 * For each byte we wait for 8 cycles of the SPI clock. 1455 * Since speed is defined in Hz and we want milliseconds, 1456 * use respective multiplier, but before the division, 1457 * otherwise we may get 0 for short transfers. 1458 */ 1459 ms = 8LL * MSEC_PER_SEC * xfer->len; 1460 do_div(ms, speed_hz); 1461 1462 /* 1463 * Increase it twice and add 200 ms tolerance, use 1464 * predefined maximum in case of overflow. 1465 */ 1466 ms += ms + 200; 1467 if (ms > UINT_MAX) 1468 ms = UINT_MAX; 1469 1470 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1471 msecs_to_jiffies(ms)); 1472 1473 if (ms == 0) { 1474 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1475 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1476 dev_err(&msg->spi->dev, 1477 "SPI transfer timed out\n"); 1478 return -ETIMEDOUT; 1479 } 1480 1481 if (xfer->error & SPI_TRANS_FAIL_IO) 1482 return -EIO; 1483 } 1484 1485 return 0; 1486 } 1487 1488 static void _spi_transfer_delay_ns(u32 ns) 1489 { 1490 if (!ns) 1491 return; 1492 if (ns <= NSEC_PER_USEC) { 1493 ndelay(ns); 1494 } else { 1495 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1496 1497 fsleep(us); 1498 } 1499 } 1500 1501 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1502 { 1503 u32 delay = _delay->value; 1504 u32 unit = _delay->unit; 1505 u32 hz; 1506 1507 if (!delay) 1508 return 0; 1509 1510 switch (unit) { 1511 case SPI_DELAY_UNIT_USECS: 1512 delay *= NSEC_PER_USEC; 1513 break; 1514 case SPI_DELAY_UNIT_NSECS: 1515 /* Nothing to do here */ 1516 break; 1517 case SPI_DELAY_UNIT_SCK: 1518 /* Clock cycles need to be obtained from spi_transfer */ 1519 if (!xfer) 1520 return -EINVAL; 1521 /* 1522 * If there is unknown effective speed, approximate it 1523 * by underestimating with half of the requested Hz. 1524 */ 1525 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1526 if (!hz) 1527 return -EINVAL; 1528 1529 /* Convert delay to nanoseconds */ 1530 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1531 break; 1532 default: 1533 return -EINVAL; 1534 } 1535 1536 return delay; 1537 } 1538 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1539 1540 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1541 { 1542 int delay; 1543 1544 might_sleep(); 1545 1546 if (!_delay) 1547 return -EINVAL; 1548 1549 delay = spi_delay_to_ns(_delay, xfer); 1550 if (delay < 0) 1551 return delay; 1552 1553 _spi_transfer_delay_ns(delay); 1554 1555 return 0; 1556 } 1557 EXPORT_SYMBOL_GPL(spi_delay_exec); 1558 1559 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1560 struct spi_transfer *xfer) 1561 { 1562 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1563 u32 delay = xfer->cs_change_delay.value; 1564 u32 unit = xfer->cs_change_delay.unit; 1565 int ret; 1566 1567 /* Return early on "fast" mode - for everything but USECS */ 1568 if (!delay) { 1569 if (unit == SPI_DELAY_UNIT_USECS) 1570 _spi_transfer_delay_ns(default_delay_ns); 1571 return; 1572 } 1573 1574 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1575 if (ret) { 1576 dev_err_once(&msg->spi->dev, 1577 "Use of unsupported delay unit %i, using default of %luus\n", 1578 unit, default_delay_ns / NSEC_PER_USEC); 1579 _spi_transfer_delay_ns(default_delay_ns); 1580 } 1581 } 1582 1583 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1584 struct spi_transfer *xfer) 1585 { 1586 _spi_transfer_cs_change_delay(msg, xfer); 1587 } 1588 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1589 1590 /* 1591 * spi_transfer_one_message - Default implementation of transfer_one_message() 1592 * 1593 * This is a standard implementation of transfer_one_message() for 1594 * drivers which implement a transfer_one() operation. It provides 1595 * standard handling of delays and chip select management. 1596 */ 1597 static int spi_transfer_one_message(struct spi_controller *ctlr, 1598 struct spi_message *msg) 1599 { 1600 struct spi_transfer *xfer; 1601 bool keep_cs = false; 1602 int ret = 0; 1603 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1604 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1605 1606 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1607 spi_set_cs(msg->spi, !xfer->cs_off, false); 1608 1609 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1610 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1611 1612 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1613 trace_spi_transfer_start(msg, xfer); 1614 1615 spi_statistics_add_transfer_stats(statm, xfer, msg); 1616 spi_statistics_add_transfer_stats(stats, xfer, msg); 1617 1618 if (!ctlr->ptp_sts_supported) { 1619 xfer->ptp_sts_word_pre = 0; 1620 ptp_read_system_prets(xfer->ptp_sts); 1621 } 1622 1623 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1624 reinit_completion(&ctlr->xfer_completion); 1625 1626 fallback_pio: 1627 spi_dma_sync_for_device(ctlr, xfer); 1628 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1629 if (ret < 0) { 1630 spi_dma_sync_for_cpu(ctlr, xfer); 1631 1632 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1633 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1634 __spi_unmap_msg(ctlr, msg); 1635 ctlr->fallback = true; 1636 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1637 goto fallback_pio; 1638 } 1639 1640 SPI_STATISTICS_INCREMENT_FIELD(statm, 1641 errors); 1642 SPI_STATISTICS_INCREMENT_FIELD(stats, 1643 errors); 1644 dev_err(&msg->spi->dev, 1645 "SPI transfer failed: %d\n", ret); 1646 goto out; 1647 } 1648 1649 if (ret > 0) { 1650 ret = spi_transfer_wait(ctlr, msg, xfer); 1651 if (ret < 0) 1652 msg->status = ret; 1653 } 1654 1655 spi_dma_sync_for_cpu(ctlr, xfer); 1656 } else { 1657 if (xfer->len) 1658 dev_err(&msg->spi->dev, 1659 "Bufferless transfer has length %u\n", 1660 xfer->len); 1661 } 1662 1663 if (!ctlr->ptp_sts_supported) { 1664 ptp_read_system_postts(xfer->ptp_sts); 1665 xfer->ptp_sts_word_post = xfer->len; 1666 } 1667 1668 trace_spi_transfer_stop(msg, xfer); 1669 1670 if (msg->status != -EINPROGRESS) 1671 goto out; 1672 1673 spi_transfer_delay_exec(xfer); 1674 1675 if (xfer->cs_change) { 1676 if (list_is_last(&xfer->transfer_list, 1677 &msg->transfers)) { 1678 keep_cs = true; 1679 } else { 1680 if (!xfer->cs_off) 1681 spi_set_cs(msg->spi, false, false); 1682 _spi_transfer_cs_change_delay(msg, xfer); 1683 if (!list_next_entry(xfer, transfer_list)->cs_off) 1684 spi_set_cs(msg->spi, true, false); 1685 } 1686 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1687 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1688 spi_set_cs(msg->spi, xfer->cs_off, false); 1689 } 1690 1691 msg->actual_length += xfer->len; 1692 } 1693 1694 out: 1695 if (ret != 0 || !keep_cs) 1696 spi_set_cs(msg->spi, false, false); 1697 1698 if (msg->status == -EINPROGRESS) 1699 msg->status = ret; 1700 1701 if (msg->status && ctlr->handle_err) 1702 ctlr->handle_err(ctlr, msg); 1703 1704 spi_finalize_current_message(ctlr); 1705 1706 return ret; 1707 } 1708 1709 /** 1710 * spi_finalize_current_transfer - report completion of a transfer 1711 * @ctlr: the controller reporting completion 1712 * 1713 * Called by SPI drivers using the core transfer_one_message() 1714 * implementation to notify it that the current interrupt driven 1715 * transfer has finished and the next one may be scheduled. 1716 */ 1717 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1718 { 1719 complete(&ctlr->xfer_completion); 1720 } 1721 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1722 1723 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1724 { 1725 if (ctlr->auto_runtime_pm) { 1726 pm_runtime_mark_last_busy(ctlr->dev.parent); 1727 pm_runtime_put_autosuspend(ctlr->dev.parent); 1728 } 1729 } 1730 1731 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1732 struct spi_message *msg, bool was_busy) 1733 { 1734 struct spi_transfer *xfer; 1735 int ret; 1736 1737 if (!was_busy && ctlr->auto_runtime_pm) { 1738 ret = pm_runtime_get_sync(ctlr->dev.parent); 1739 if (ret < 0) { 1740 pm_runtime_put_noidle(ctlr->dev.parent); 1741 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1742 ret); 1743 1744 msg->status = ret; 1745 spi_finalize_current_message(ctlr); 1746 1747 return ret; 1748 } 1749 } 1750 1751 if (!was_busy) 1752 trace_spi_controller_busy(ctlr); 1753 1754 if (!was_busy && ctlr->prepare_transfer_hardware) { 1755 ret = ctlr->prepare_transfer_hardware(ctlr); 1756 if (ret) { 1757 dev_err(&ctlr->dev, 1758 "failed to prepare transfer hardware: %d\n", 1759 ret); 1760 1761 if (ctlr->auto_runtime_pm) 1762 pm_runtime_put(ctlr->dev.parent); 1763 1764 msg->status = ret; 1765 spi_finalize_current_message(ctlr); 1766 1767 return ret; 1768 } 1769 } 1770 1771 trace_spi_message_start(msg); 1772 1773 if (ctlr->prepare_message) { 1774 ret = ctlr->prepare_message(ctlr, msg); 1775 if (ret) { 1776 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1777 ret); 1778 msg->status = ret; 1779 spi_finalize_current_message(ctlr); 1780 return ret; 1781 } 1782 msg->prepared = true; 1783 } 1784 1785 ret = spi_map_msg(ctlr, msg); 1786 if (ret) { 1787 msg->status = ret; 1788 spi_finalize_current_message(ctlr); 1789 return ret; 1790 } 1791 1792 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1793 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1794 xfer->ptp_sts_word_pre = 0; 1795 ptp_read_system_prets(xfer->ptp_sts); 1796 } 1797 } 1798 1799 /* 1800 * Drivers implementation of transfer_one_message() must arrange for 1801 * spi_finalize_current_message() to get called. Most drivers will do 1802 * this in the calling context, but some don't. For those cases, a 1803 * completion is used to guarantee that this function does not return 1804 * until spi_finalize_current_message() is done accessing 1805 * ctlr->cur_msg. 1806 * Use of the following two flags enable to opportunistically skip the 1807 * use of the completion since its use involves expensive spin locks. 1808 * In case of a race with the context that calls 1809 * spi_finalize_current_message() the completion will always be used, 1810 * due to strict ordering of these flags using barriers. 1811 */ 1812 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1813 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1814 reinit_completion(&ctlr->cur_msg_completion); 1815 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1816 1817 ret = ctlr->transfer_one_message(ctlr, msg); 1818 if (ret) { 1819 dev_err(&ctlr->dev, 1820 "failed to transfer one message from queue\n"); 1821 return ret; 1822 } 1823 1824 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1825 smp_mb(); /* See spi_finalize_current_message()... */ 1826 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1827 wait_for_completion(&ctlr->cur_msg_completion); 1828 1829 return 0; 1830 } 1831 1832 /** 1833 * __spi_pump_messages - function which processes SPI message queue 1834 * @ctlr: controller to process queue for 1835 * @in_kthread: true if we are in the context of the message pump thread 1836 * 1837 * This function checks if there is any SPI message in the queue that 1838 * needs processing and if so call out to the driver to initialize hardware 1839 * and transfer each message. 1840 * 1841 * Note that it is called both from the kthread itself and also from 1842 * inside spi_sync(); the queue extraction handling at the top of the 1843 * function should deal with this safely. 1844 */ 1845 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1846 { 1847 struct spi_message *msg; 1848 bool was_busy = false; 1849 unsigned long flags; 1850 int ret; 1851 1852 /* Take the I/O mutex */ 1853 mutex_lock(&ctlr->io_mutex); 1854 1855 /* Lock queue */ 1856 spin_lock_irqsave(&ctlr->queue_lock, flags); 1857 1858 /* Make sure we are not already running a message */ 1859 if (ctlr->cur_msg) 1860 goto out_unlock; 1861 1862 /* Check if the queue is idle */ 1863 if (list_empty(&ctlr->queue) || !ctlr->running) { 1864 if (!ctlr->busy) 1865 goto out_unlock; 1866 1867 /* Defer any non-atomic teardown to the thread */ 1868 if (!in_kthread) { 1869 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1870 !ctlr->unprepare_transfer_hardware) { 1871 spi_idle_runtime_pm(ctlr); 1872 ctlr->busy = false; 1873 ctlr->queue_empty = true; 1874 trace_spi_controller_idle(ctlr); 1875 } else { 1876 kthread_queue_work(ctlr->kworker, 1877 &ctlr->pump_messages); 1878 } 1879 goto out_unlock; 1880 } 1881 1882 ctlr->busy = false; 1883 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1884 1885 kfree(ctlr->dummy_rx); 1886 ctlr->dummy_rx = NULL; 1887 kfree(ctlr->dummy_tx); 1888 ctlr->dummy_tx = NULL; 1889 if (ctlr->unprepare_transfer_hardware && 1890 ctlr->unprepare_transfer_hardware(ctlr)) 1891 dev_err(&ctlr->dev, 1892 "failed to unprepare transfer hardware\n"); 1893 spi_idle_runtime_pm(ctlr); 1894 trace_spi_controller_idle(ctlr); 1895 1896 spin_lock_irqsave(&ctlr->queue_lock, flags); 1897 ctlr->queue_empty = true; 1898 goto out_unlock; 1899 } 1900 1901 /* Extract head of queue */ 1902 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1903 ctlr->cur_msg = msg; 1904 1905 list_del_init(&msg->queue); 1906 if (ctlr->busy) 1907 was_busy = true; 1908 else 1909 ctlr->busy = true; 1910 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1911 1912 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1913 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1914 1915 ctlr->cur_msg = NULL; 1916 ctlr->fallback = false; 1917 1918 mutex_unlock(&ctlr->io_mutex); 1919 1920 /* Prod the scheduler in case transfer_one() was busy waiting */ 1921 if (!ret) 1922 cond_resched(); 1923 return; 1924 1925 out_unlock: 1926 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1927 mutex_unlock(&ctlr->io_mutex); 1928 } 1929 1930 /** 1931 * spi_pump_messages - kthread work function which processes spi message queue 1932 * @work: pointer to kthread work struct contained in the controller struct 1933 */ 1934 static void spi_pump_messages(struct kthread_work *work) 1935 { 1936 struct spi_controller *ctlr = 1937 container_of(work, struct spi_controller, pump_messages); 1938 1939 __spi_pump_messages(ctlr, true); 1940 } 1941 1942 /** 1943 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1944 * @ctlr: Pointer to the spi_controller structure of the driver 1945 * @xfer: Pointer to the transfer being timestamped 1946 * @progress: How many words (not bytes) have been transferred so far 1947 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1948 * transfer, for less jitter in time measurement. Only compatible 1949 * with PIO drivers. If true, must follow up with 1950 * spi_take_timestamp_post or otherwise system will crash. 1951 * WARNING: for fully predictable results, the CPU frequency must 1952 * also be under control (governor). 1953 * 1954 * This is a helper for drivers to collect the beginning of the TX timestamp 1955 * for the requested byte from the SPI transfer. The frequency with which this 1956 * function must be called (once per word, once for the whole transfer, once 1957 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1958 * greater than or equal to the requested byte at the time of the call. The 1959 * timestamp is only taken once, at the first such call. It is assumed that 1960 * the driver advances its @tx buffer pointer monotonically. 1961 */ 1962 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1963 struct spi_transfer *xfer, 1964 size_t progress, bool irqs_off) 1965 { 1966 if (!xfer->ptp_sts) 1967 return; 1968 1969 if (xfer->timestamped) 1970 return; 1971 1972 if (progress > xfer->ptp_sts_word_pre) 1973 return; 1974 1975 /* Capture the resolution of the timestamp */ 1976 xfer->ptp_sts_word_pre = progress; 1977 1978 if (irqs_off) { 1979 local_irq_save(ctlr->irq_flags); 1980 preempt_disable(); 1981 } 1982 1983 ptp_read_system_prets(xfer->ptp_sts); 1984 } 1985 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1986 1987 /** 1988 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1989 * @ctlr: Pointer to the spi_controller structure of the driver 1990 * @xfer: Pointer to the transfer being timestamped 1991 * @progress: How many words (not bytes) have been transferred so far 1992 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1993 * 1994 * This is a helper for drivers to collect the end of the TX timestamp for 1995 * the requested byte from the SPI transfer. Can be called with an arbitrary 1996 * frequency: only the first call where @tx exceeds or is equal to the 1997 * requested word will be timestamped. 1998 */ 1999 void spi_take_timestamp_post(struct spi_controller *ctlr, 2000 struct spi_transfer *xfer, 2001 size_t progress, bool irqs_off) 2002 { 2003 if (!xfer->ptp_sts) 2004 return; 2005 2006 if (xfer->timestamped) 2007 return; 2008 2009 if (progress < xfer->ptp_sts_word_post) 2010 return; 2011 2012 ptp_read_system_postts(xfer->ptp_sts); 2013 2014 if (irqs_off) { 2015 local_irq_restore(ctlr->irq_flags); 2016 preempt_enable(); 2017 } 2018 2019 /* Capture the resolution of the timestamp */ 2020 xfer->ptp_sts_word_post = progress; 2021 2022 xfer->timestamped = 1; 2023 } 2024 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2025 2026 /** 2027 * spi_set_thread_rt - set the controller to pump at realtime priority 2028 * @ctlr: controller to boost priority of 2029 * 2030 * This can be called because the controller requested realtime priority 2031 * (by setting the ->rt value before calling spi_register_controller()) or 2032 * because a device on the bus said that its transfers needed realtime 2033 * priority. 2034 * 2035 * NOTE: at the moment if any device on a bus says it needs realtime then 2036 * the thread will be at realtime priority for all transfers on that 2037 * controller. If this eventually becomes a problem we may see if we can 2038 * find a way to boost the priority only temporarily during relevant 2039 * transfers. 2040 */ 2041 static void spi_set_thread_rt(struct spi_controller *ctlr) 2042 { 2043 dev_info(&ctlr->dev, 2044 "will run message pump with realtime priority\n"); 2045 sched_set_fifo(ctlr->kworker->task); 2046 } 2047 2048 static int spi_init_queue(struct spi_controller *ctlr) 2049 { 2050 ctlr->running = false; 2051 ctlr->busy = false; 2052 ctlr->queue_empty = true; 2053 2054 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev)); 2055 if (IS_ERR(ctlr->kworker)) { 2056 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2057 return PTR_ERR(ctlr->kworker); 2058 } 2059 2060 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2061 2062 /* 2063 * Controller config will indicate if this controller should run the 2064 * message pump with high (realtime) priority to reduce the transfer 2065 * latency on the bus by minimising the delay between a transfer 2066 * request and the scheduling of the message pump thread. Without this 2067 * setting the message pump thread will remain at default priority. 2068 */ 2069 if (ctlr->rt) 2070 spi_set_thread_rt(ctlr); 2071 2072 return 0; 2073 } 2074 2075 /** 2076 * spi_get_next_queued_message() - called by driver to check for queued 2077 * messages 2078 * @ctlr: the controller to check for queued messages 2079 * 2080 * If there are more messages in the queue, the next message is returned from 2081 * this call. 2082 * 2083 * Return: the next message in the queue, else NULL if the queue is empty. 2084 */ 2085 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2086 { 2087 struct spi_message *next; 2088 unsigned long flags; 2089 2090 /* Get a pointer to the next message, if any */ 2091 spin_lock_irqsave(&ctlr->queue_lock, flags); 2092 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2093 queue); 2094 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2095 2096 return next; 2097 } 2098 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2099 2100 /* 2101 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2102 * and spi_maybe_unoptimize_message() 2103 * @msg: the message to unoptimize 2104 * 2105 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2106 * core should use spi_maybe_unoptimize_message() rather than calling this 2107 * function directly. 2108 * 2109 * It is not valid to call this on a message that is not currently optimized. 2110 */ 2111 static void __spi_unoptimize_message(struct spi_message *msg) 2112 { 2113 struct spi_controller *ctlr = msg->spi->controller; 2114 2115 if (ctlr->unoptimize_message) 2116 ctlr->unoptimize_message(msg); 2117 2118 spi_res_release(ctlr, msg); 2119 2120 msg->optimized = false; 2121 msg->opt_state = NULL; 2122 } 2123 2124 /* 2125 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2126 * @msg: the message to unoptimize 2127 * 2128 * This function is used to unoptimize a message if and only if it was 2129 * optimized by the core (via spi_maybe_optimize_message()). 2130 */ 2131 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2132 { 2133 if (!msg->pre_optimized && msg->optimized && 2134 !msg->spi->controller->defer_optimize_message) 2135 __spi_unoptimize_message(msg); 2136 } 2137 2138 /** 2139 * spi_finalize_current_message() - the current message is complete 2140 * @ctlr: the controller to return the message to 2141 * 2142 * Called by the driver to notify the core that the message in the front of the 2143 * queue is complete and can be removed from the queue. 2144 */ 2145 void spi_finalize_current_message(struct spi_controller *ctlr) 2146 { 2147 struct spi_transfer *xfer; 2148 struct spi_message *mesg; 2149 int ret; 2150 2151 mesg = ctlr->cur_msg; 2152 2153 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2154 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2155 ptp_read_system_postts(xfer->ptp_sts); 2156 xfer->ptp_sts_word_post = xfer->len; 2157 } 2158 } 2159 2160 if (unlikely(ctlr->ptp_sts_supported)) 2161 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2162 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2163 2164 spi_unmap_msg(ctlr, mesg); 2165 2166 if (mesg->prepared && ctlr->unprepare_message) { 2167 ret = ctlr->unprepare_message(ctlr, mesg); 2168 if (ret) { 2169 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2170 ret); 2171 } 2172 } 2173 2174 mesg->prepared = false; 2175 2176 spi_maybe_unoptimize_message(mesg); 2177 2178 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2179 smp_mb(); /* See __spi_pump_transfer_message()... */ 2180 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2181 complete(&ctlr->cur_msg_completion); 2182 2183 trace_spi_message_done(mesg); 2184 2185 mesg->state = NULL; 2186 if (mesg->complete) 2187 mesg->complete(mesg->context); 2188 } 2189 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2190 2191 static int spi_start_queue(struct spi_controller *ctlr) 2192 { 2193 unsigned long flags; 2194 2195 spin_lock_irqsave(&ctlr->queue_lock, flags); 2196 2197 if (ctlr->running || ctlr->busy) { 2198 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2199 return -EBUSY; 2200 } 2201 2202 ctlr->running = true; 2203 ctlr->cur_msg = NULL; 2204 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2205 2206 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2207 2208 return 0; 2209 } 2210 2211 static int spi_stop_queue(struct spi_controller *ctlr) 2212 { 2213 unsigned int limit = 500; 2214 unsigned long flags; 2215 2216 /* 2217 * This is a bit lame, but is optimized for the common execution path. 2218 * A wait_queue on the ctlr->busy could be used, but then the common 2219 * execution path (pump_messages) would be required to call wake_up or 2220 * friends on every SPI message. Do this instead. 2221 */ 2222 do { 2223 spin_lock_irqsave(&ctlr->queue_lock, flags); 2224 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2225 ctlr->running = false; 2226 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2227 return 0; 2228 } 2229 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2230 usleep_range(10000, 11000); 2231 } while (--limit); 2232 2233 return -EBUSY; 2234 } 2235 2236 static int spi_destroy_queue(struct spi_controller *ctlr) 2237 { 2238 int ret; 2239 2240 ret = spi_stop_queue(ctlr); 2241 2242 /* 2243 * kthread_flush_worker will block until all work is done. 2244 * If the reason that stop_queue timed out is that the work will never 2245 * finish, then it does no good to call flush/stop thread, so 2246 * return anyway. 2247 */ 2248 if (ret) { 2249 dev_err(&ctlr->dev, "problem destroying queue\n"); 2250 return ret; 2251 } 2252 2253 kthread_destroy_worker(ctlr->kworker); 2254 2255 return 0; 2256 } 2257 2258 static int __spi_queued_transfer(struct spi_device *spi, 2259 struct spi_message *msg, 2260 bool need_pump) 2261 { 2262 struct spi_controller *ctlr = spi->controller; 2263 unsigned long flags; 2264 2265 spin_lock_irqsave(&ctlr->queue_lock, flags); 2266 2267 if (!ctlr->running) { 2268 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2269 return -ESHUTDOWN; 2270 } 2271 msg->actual_length = 0; 2272 msg->status = -EINPROGRESS; 2273 2274 list_add_tail(&msg->queue, &ctlr->queue); 2275 ctlr->queue_empty = false; 2276 if (!ctlr->busy && need_pump) 2277 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2278 2279 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2280 return 0; 2281 } 2282 2283 /** 2284 * spi_queued_transfer - transfer function for queued transfers 2285 * @spi: SPI device which is requesting transfer 2286 * @msg: SPI message which is to handled is queued to driver queue 2287 * 2288 * Return: zero on success, else a negative error code. 2289 */ 2290 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2291 { 2292 return __spi_queued_transfer(spi, msg, true); 2293 } 2294 2295 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2296 { 2297 int ret; 2298 2299 ctlr->transfer = spi_queued_transfer; 2300 if (!ctlr->transfer_one_message) 2301 ctlr->transfer_one_message = spi_transfer_one_message; 2302 2303 /* Initialize and start queue */ 2304 ret = spi_init_queue(ctlr); 2305 if (ret) { 2306 dev_err(&ctlr->dev, "problem initializing queue\n"); 2307 goto err_init_queue; 2308 } 2309 ctlr->queued = true; 2310 ret = spi_start_queue(ctlr); 2311 if (ret) { 2312 dev_err(&ctlr->dev, "problem starting queue\n"); 2313 goto err_start_queue; 2314 } 2315 2316 return 0; 2317 2318 err_start_queue: 2319 spi_destroy_queue(ctlr); 2320 err_init_queue: 2321 return ret; 2322 } 2323 2324 /** 2325 * spi_flush_queue - Send all pending messages in the queue from the callers' 2326 * context 2327 * @ctlr: controller to process queue for 2328 * 2329 * This should be used when one wants to ensure all pending messages have been 2330 * sent before doing something. Is used by the spi-mem code to make sure SPI 2331 * memory operations do not preempt regular SPI transfers that have been queued 2332 * before the spi-mem operation. 2333 */ 2334 void spi_flush_queue(struct spi_controller *ctlr) 2335 { 2336 if (ctlr->transfer == spi_queued_transfer) 2337 __spi_pump_messages(ctlr, false); 2338 } 2339 2340 /*-------------------------------------------------------------------------*/ 2341 2342 #if defined(CONFIG_OF) 2343 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2344 struct spi_delay *delay, const char *prop) 2345 { 2346 u32 value; 2347 2348 if (!of_property_read_u32(nc, prop, &value)) { 2349 if (value > U16_MAX) { 2350 delay->value = DIV_ROUND_UP(value, 1000); 2351 delay->unit = SPI_DELAY_UNIT_USECS; 2352 } else { 2353 delay->value = value; 2354 delay->unit = SPI_DELAY_UNIT_NSECS; 2355 } 2356 } 2357 } 2358 2359 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2360 struct device_node *nc) 2361 { 2362 u32 value, cs[SPI_CS_CNT_MAX]; 2363 int rc, idx; 2364 2365 /* Mode (clock phase/polarity/etc.) */ 2366 if (of_property_read_bool(nc, "spi-cpha")) 2367 spi->mode |= SPI_CPHA; 2368 if (of_property_read_bool(nc, "spi-cpol")) 2369 spi->mode |= SPI_CPOL; 2370 if (of_property_read_bool(nc, "spi-3wire")) 2371 spi->mode |= SPI_3WIRE; 2372 if (of_property_read_bool(nc, "spi-lsb-first")) 2373 spi->mode |= SPI_LSB_FIRST; 2374 if (of_property_read_bool(nc, "spi-cs-high")) 2375 spi->mode |= SPI_CS_HIGH; 2376 2377 /* Device DUAL/QUAD mode */ 2378 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2379 switch (value) { 2380 case 0: 2381 spi->mode |= SPI_NO_TX; 2382 break; 2383 case 1: 2384 break; 2385 case 2: 2386 spi->mode |= SPI_TX_DUAL; 2387 break; 2388 case 4: 2389 spi->mode |= SPI_TX_QUAD; 2390 break; 2391 case 8: 2392 spi->mode |= SPI_TX_OCTAL; 2393 break; 2394 default: 2395 dev_warn(&ctlr->dev, 2396 "spi-tx-bus-width %d not supported\n", 2397 value); 2398 break; 2399 } 2400 } 2401 2402 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2403 switch (value) { 2404 case 0: 2405 spi->mode |= SPI_NO_RX; 2406 break; 2407 case 1: 2408 break; 2409 case 2: 2410 spi->mode |= SPI_RX_DUAL; 2411 break; 2412 case 4: 2413 spi->mode |= SPI_RX_QUAD; 2414 break; 2415 case 8: 2416 spi->mode |= SPI_RX_OCTAL; 2417 break; 2418 default: 2419 dev_warn(&ctlr->dev, 2420 "spi-rx-bus-width %d not supported\n", 2421 value); 2422 break; 2423 } 2424 } 2425 2426 if (spi_controller_is_target(ctlr)) { 2427 if (!of_node_name_eq(nc, "slave")) { 2428 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2429 nc); 2430 return -EINVAL; 2431 } 2432 return 0; 2433 } 2434 2435 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2436 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2437 return -EINVAL; 2438 } 2439 2440 spi_set_all_cs_unused(spi); 2441 2442 /* Device address */ 2443 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2444 SPI_CS_CNT_MAX); 2445 if (rc < 0) { 2446 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2447 nc, rc); 2448 return rc; 2449 } 2450 if (rc > ctlr->num_chipselect) { 2451 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2452 nc, rc); 2453 return rc; 2454 } 2455 if ((of_property_present(nc, "parallel-memories")) && 2456 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2457 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2458 return -EINVAL; 2459 } 2460 for (idx = 0; idx < rc; idx++) 2461 spi_set_chipselect(spi, idx, cs[idx]); 2462 2463 /* 2464 * By default spi->chip_select[0] will hold the physical CS number, 2465 * so set bit 0 in spi->cs_index_mask. 2466 */ 2467 spi->cs_index_mask = BIT(0); 2468 2469 /* Device speed */ 2470 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2471 spi->max_speed_hz = value; 2472 2473 /* Device CS delays */ 2474 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2475 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2476 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2477 2478 return 0; 2479 } 2480 2481 static struct spi_device * 2482 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2483 { 2484 struct spi_device *spi; 2485 int rc; 2486 2487 /* Alloc an spi_device */ 2488 spi = spi_alloc_device(ctlr); 2489 if (!spi) { 2490 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2491 rc = -ENOMEM; 2492 goto err_out; 2493 } 2494 2495 /* Select device driver */ 2496 rc = of_alias_from_compatible(nc, spi->modalias, 2497 sizeof(spi->modalias)); 2498 if (rc < 0) { 2499 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2500 goto err_out; 2501 } 2502 2503 rc = of_spi_parse_dt(ctlr, spi, nc); 2504 if (rc) 2505 goto err_out; 2506 2507 /* Store a pointer to the node in the device structure */ 2508 of_node_get(nc); 2509 2510 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2511 2512 /* Register the new device */ 2513 rc = spi_add_device(spi); 2514 if (rc) { 2515 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2516 goto err_of_node_put; 2517 } 2518 2519 return spi; 2520 2521 err_of_node_put: 2522 of_node_put(nc); 2523 err_out: 2524 spi_dev_put(spi); 2525 return ERR_PTR(rc); 2526 } 2527 2528 /** 2529 * of_register_spi_devices() - Register child devices onto the SPI bus 2530 * @ctlr: Pointer to spi_controller device 2531 * 2532 * Registers an spi_device for each child node of controller node which 2533 * represents a valid SPI target device. 2534 */ 2535 static void of_register_spi_devices(struct spi_controller *ctlr) 2536 { 2537 struct spi_device *spi; 2538 struct device_node *nc; 2539 2540 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2541 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2542 continue; 2543 spi = of_register_spi_device(ctlr, nc); 2544 if (IS_ERR(spi)) { 2545 dev_warn(&ctlr->dev, 2546 "Failed to create SPI device for %pOF\n", nc); 2547 of_node_clear_flag(nc, OF_POPULATED); 2548 } 2549 } 2550 } 2551 #else 2552 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2553 #endif 2554 2555 /** 2556 * spi_new_ancillary_device() - Register ancillary SPI device 2557 * @spi: Pointer to the main SPI device registering the ancillary device 2558 * @chip_select: Chip Select of the ancillary device 2559 * 2560 * Register an ancillary SPI device; for example some chips have a chip-select 2561 * for normal device usage and another one for setup/firmware upload. 2562 * 2563 * This may only be called from main SPI device's probe routine. 2564 * 2565 * Return: 0 on success; negative errno on failure 2566 */ 2567 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2568 u8 chip_select) 2569 { 2570 struct spi_controller *ctlr = spi->controller; 2571 struct spi_device *ancillary; 2572 int rc; 2573 2574 /* Alloc an spi_device */ 2575 ancillary = spi_alloc_device(ctlr); 2576 if (!ancillary) { 2577 rc = -ENOMEM; 2578 goto err_out; 2579 } 2580 2581 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2582 2583 /* Use provided chip-select for ancillary device */ 2584 spi_set_all_cs_unused(ancillary); 2585 spi_set_chipselect(ancillary, 0, chip_select); 2586 2587 /* Take over SPI mode/speed from SPI main device */ 2588 ancillary->max_speed_hz = spi->max_speed_hz; 2589 ancillary->mode = spi->mode; 2590 /* 2591 * By default spi->chip_select[0] will hold the physical CS number, 2592 * so set bit 0 in spi->cs_index_mask. 2593 */ 2594 ancillary->cs_index_mask = BIT(0); 2595 2596 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2597 2598 /* Register the new device */ 2599 rc = __spi_add_device(ancillary); 2600 if (rc) { 2601 dev_err(&spi->dev, "failed to register ancillary device\n"); 2602 goto err_out; 2603 } 2604 2605 return ancillary; 2606 2607 err_out: 2608 spi_dev_put(ancillary); 2609 return ERR_PTR(rc); 2610 } 2611 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2612 2613 #ifdef CONFIG_ACPI 2614 struct acpi_spi_lookup { 2615 struct spi_controller *ctlr; 2616 u32 max_speed_hz; 2617 u32 mode; 2618 int irq; 2619 u8 bits_per_word; 2620 u8 chip_select; 2621 int n; 2622 int index; 2623 }; 2624 2625 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2626 { 2627 struct acpi_resource_spi_serialbus *sb; 2628 int *count = data; 2629 2630 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2631 return 1; 2632 2633 sb = &ares->data.spi_serial_bus; 2634 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2635 return 1; 2636 2637 *count = *count + 1; 2638 2639 return 1; 2640 } 2641 2642 /** 2643 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2644 * @adev: ACPI device 2645 * 2646 * Return: the number of SpiSerialBus resources in the ACPI-device's 2647 * resource-list; or a negative error code. 2648 */ 2649 int acpi_spi_count_resources(struct acpi_device *adev) 2650 { 2651 LIST_HEAD(r); 2652 int count = 0; 2653 int ret; 2654 2655 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2656 if (ret < 0) 2657 return ret; 2658 2659 acpi_dev_free_resource_list(&r); 2660 2661 return count; 2662 } 2663 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2664 2665 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2666 struct acpi_spi_lookup *lookup) 2667 { 2668 const union acpi_object *obj; 2669 2670 if (!x86_apple_machine) 2671 return; 2672 2673 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2674 && obj->buffer.length >= 4) 2675 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2676 2677 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2678 && obj->buffer.length == 8) 2679 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2680 2681 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2682 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2683 lookup->mode |= SPI_LSB_FIRST; 2684 2685 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2686 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2687 lookup->mode |= SPI_CPOL; 2688 2689 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2690 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2691 lookup->mode |= SPI_CPHA; 2692 } 2693 2694 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2695 { 2696 struct acpi_spi_lookup *lookup = data; 2697 struct spi_controller *ctlr = lookup->ctlr; 2698 2699 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2700 struct acpi_resource_spi_serialbus *sb; 2701 acpi_handle parent_handle; 2702 acpi_status status; 2703 2704 sb = &ares->data.spi_serial_bus; 2705 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2706 2707 if (lookup->index != -1 && lookup->n++ != lookup->index) 2708 return 1; 2709 2710 status = acpi_get_handle(NULL, 2711 sb->resource_source.string_ptr, 2712 &parent_handle); 2713 2714 if (ACPI_FAILURE(status)) 2715 return -ENODEV; 2716 2717 if (ctlr) { 2718 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2719 return -ENODEV; 2720 } else { 2721 struct acpi_device *adev; 2722 2723 adev = acpi_fetch_acpi_dev(parent_handle); 2724 if (!adev) 2725 return -ENODEV; 2726 2727 ctlr = acpi_spi_find_controller_by_adev(adev); 2728 if (!ctlr) 2729 return -EPROBE_DEFER; 2730 2731 lookup->ctlr = ctlr; 2732 } 2733 2734 /* 2735 * ACPI DeviceSelection numbering is handled by the 2736 * host controller driver in Windows and can vary 2737 * from driver to driver. In Linux we always expect 2738 * 0 .. max - 1 so we need to ask the driver to 2739 * translate between the two schemes. 2740 */ 2741 if (ctlr->fw_translate_cs) { 2742 int cs = ctlr->fw_translate_cs(ctlr, 2743 sb->device_selection); 2744 if (cs < 0) 2745 return cs; 2746 lookup->chip_select = cs; 2747 } else { 2748 lookup->chip_select = sb->device_selection; 2749 } 2750 2751 lookup->max_speed_hz = sb->connection_speed; 2752 lookup->bits_per_word = sb->data_bit_length; 2753 2754 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2755 lookup->mode |= SPI_CPHA; 2756 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2757 lookup->mode |= SPI_CPOL; 2758 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2759 lookup->mode |= SPI_CS_HIGH; 2760 } 2761 } else if (lookup->irq < 0) { 2762 struct resource r; 2763 2764 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2765 lookup->irq = r.start; 2766 } 2767 2768 /* Always tell the ACPI core to skip this resource */ 2769 return 1; 2770 } 2771 2772 /** 2773 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2774 * @ctlr: controller to which the spi device belongs 2775 * @adev: ACPI Device for the spi device 2776 * @index: Index of the spi resource inside the ACPI Node 2777 * 2778 * This should be used to allocate a new SPI device from and ACPI Device node. 2779 * The caller is responsible for calling spi_add_device to register the SPI device. 2780 * 2781 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2782 * using the resource. 2783 * If index is set to -1, index is not used. 2784 * Note: If index is -1, ctlr must be set. 2785 * 2786 * Return: a pointer to the new device, or ERR_PTR on error. 2787 */ 2788 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2789 struct acpi_device *adev, 2790 int index) 2791 { 2792 acpi_handle parent_handle = NULL; 2793 struct list_head resource_list; 2794 struct acpi_spi_lookup lookup = {}; 2795 struct spi_device *spi; 2796 int ret; 2797 2798 if (!ctlr && index == -1) 2799 return ERR_PTR(-EINVAL); 2800 2801 lookup.ctlr = ctlr; 2802 lookup.irq = -1; 2803 lookup.index = index; 2804 lookup.n = 0; 2805 2806 INIT_LIST_HEAD(&resource_list); 2807 ret = acpi_dev_get_resources(adev, &resource_list, 2808 acpi_spi_add_resource, &lookup); 2809 acpi_dev_free_resource_list(&resource_list); 2810 2811 if (ret < 0) 2812 /* Found SPI in _CRS but it points to another controller */ 2813 return ERR_PTR(ret); 2814 2815 if (!lookup.max_speed_hz && 2816 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2817 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2818 /* Apple does not use _CRS but nested devices for SPI target devices */ 2819 acpi_spi_parse_apple_properties(adev, &lookup); 2820 } 2821 2822 if (!lookup.max_speed_hz) 2823 return ERR_PTR(-ENODEV); 2824 2825 spi = spi_alloc_device(lookup.ctlr); 2826 if (!spi) { 2827 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2828 dev_name(&adev->dev)); 2829 return ERR_PTR(-ENOMEM); 2830 } 2831 2832 spi_set_all_cs_unused(spi); 2833 spi_set_chipselect(spi, 0, lookup.chip_select); 2834 2835 ACPI_COMPANION_SET(&spi->dev, adev); 2836 spi->max_speed_hz = lookup.max_speed_hz; 2837 spi->mode |= lookup.mode; 2838 spi->irq = lookup.irq; 2839 spi->bits_per_word = lookup.bits_per_word; 2840 /* 2841 * By default spi->chip_select[0] will hold the physical CS number, 2842 * so set bit 0 in spi->cs_index_mask. 2843 */ 2844 spi->cs_index_mask = BIT(0); 2845 2846 return spi; 2847 } 2848 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2849 2850 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2851 struct acpi_device *adev) 2852 { 2853 struct spi_device *spi; 2854 2855 if (acpi_bus_get_status(adev) || !adev->status.present || 2856 acpi_device_enumerated(adev)) 2857 return AE_OK; 2858 2859 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2860 if (IS_ERR(spi)) { 2861 if (PTR_ERR(spi) == -ENOMEM) 2862 return AE_NO_MEMORY; 2863 else 2864 return AE_OK; 2865 } 2866 2867 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2868 sizeof(spi->modalias)); 2869 2870 acpi_device_set_enumerated(adev); 2871 2872 adev->power.flags.ignore_parent = true; 2873 if (spi_add_device(spi)) { 2874 adev->power.flags.ignore_parent = false; 2875 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2876 dev_name(&adev->dev)); 2877 spi_dev_put(spi); 2878 } 2879 2880 return AE_OK; 2881 } 2882 2883 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2884 void *data, void **return_value) 2885 { 2886 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2887 struct spi_controller *ctlr = data; 2888 2889 if (!adev) 2890 return AE_OK; 2891 2892 return acpi_register_spi_device(ctlr, adev); 2893 } 2894 2895 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2896 2897 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2898 { 2899 acpi_status status; 2900 acpi_handle handle; 2901 2902 handle = ACPI_HANDLE(ctlr->dev.parent); 2903 if (!handle) 2904 return; 2905 2906 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2907 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2908 acpi_spi_add_device, NULL, ctlr, NULL); 2909 if (ACPI_FAILURE(status)) 2910 dev_warn(&ctlr->dev, "failed to enumerate SPI target devices\n"); 2911 } 2912 #else 2913 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2914 #endif /* CONFIG_ACPI */ 2915 2916 static void spi_controller_release(struct device *dev) 2917 { 2918 struct spi_controller *ctlr; 2919 2920 ctlr = container_of(dev, struct spi_controller, dev); 2921 kfree(ctlr); 2922 } 2923 2924 static const struct class spi_controller_class = { 2925 .name = "spi_master", 2926 .dev_release = spi_controller_release, 2927 .dev_groups = spi_controller_groups, 2928 }; 2929 2930 #ifdef CONFIG_SPI_SLAVE 2931 /** 2932 * spi_target_abort - abort the ongoing transfer request on an SPI target controller 2933 * @spi: device used for the current transfer 2934 */ 2935 int spi_target_abort(struct spi_device *spi) 2936 { 2937 struct spi_controller *ctlr = spi->controller; 2938 2939 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2940 return ctlr->target_abort(ctlr); 2941 2942 return -ENOTSUPP; 2943 } 2944 EXPORT_SYMBOL_GPL(spi_target_abort); 2945 2946 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2947 char *buf) 2948 { 2949 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2950 dev); 2951 struct device *child; 2952 int ret; 2953 2954 child = device_find_any_child(&ctlr->dev); 2955 ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2956 put_device(child); 2957 2958 return ret; 2959 } 2960 2961 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2962 const char *buf, size_t count) 2963 { 2964 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2965 dev); 2966 struct spi_device *spi; 2967 struct device *child; 2968 char name[32]; 2969 int rc; 2970 2971 rc = sscanf(buf, "%31s", name); 2972 if (rc != 1 || !name[0]) 2973 return -EINVAL; 2974 2975 child = device_find_any_child(&ctlr->dev); 2976 if (child) { 2977 /* Remove registered target device */ 2978 device_unregister(child); 2979 put_device(child); 2980 } 2981 2982 if (strcmp(name, "(null)")) { 2983 /* Register new target device */ 2984 spi = spi_alloc_device(ctlr); 2985 if (!spi) 2986 return -ENOMEM; 2987 2988 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2989 2990 rc = spi_add_device(spi); 2991 if (rc) { 2992 spi_dev_put(spi); 2993 return rc; 2994 } 2995 } 2996 2997 return count; 2998 } 2999 3000 static DEVICE_ATTR_RW(slave); 3001 3002 static struct attribute *spi_target_attrs[] = { 3003 &dev_attr_slave.attr, 3004 NULL, 3005 }; 3006 3007 static const struct attribute_group spi_target_group = { 3008 .attrs = spi_target_attrs, 3009 }; 3010 3011 static const struct attribute_group *spi_target_groups[] = { 3012 &spi_controller_statistics_group, 3013 &spi_target_group, 3014 NULL, 3015 }; 3016 3017 static const struct class spi_target_class = { 3018 .name = "spi_slave", 3019 .dev_release = spi_controller_release, 3020 .dev_groups = spi_target_groups, 3021 }; 3022 #else 3023 extern struct class spi_target_class; /* dummy */ 3024 #endif 3025 3026 /** 3027 * __spi_alloc_controller - allocate an SPI host or target controller 3028 * @dev: the controller, possibly using the platform_bus 3029 * @size: how much zeroed driver-private data to allocate; the pointer to this 3030 * memory is in the driver_data field of the returned device, accessible 3031 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3032 * drivers granting DMA access to portions of their private data need to 3033 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3034 * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true) 3035 * controller 3036 * Context: can sleep 3037 * 3038 * This call is used only by SPI controller drivers, which are the 3039 * only ones directly touching chip registers. It's how they allocate 3040 * an spi_controller structure, prior to calling spi_register_controller(). 3041 * 3042 * This must be called from context that can sleep. 3043 * 3044 * The caller is responsible for assigning the bus number and initializing the 3045 * controller's methods before calling spi_register_controller(); and (after 3046 * errors adding the device) calling spi_controller_put() to prevent a memory 3047 * leak. 3048 * 3049 * Return: the SPI controller structure on success, else NULL. 3050 */ 3051 struct spi_controller *__spi_alloc_controller(struct device *dev, 3052 unsigned int size, bool target) 3053 { 3054 struct spi_controller *ctlr; 3055 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3056 3057 if (!dev) 3058 return NULL; 3059 3060 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3061 if (!ctlr) 3062 return NULL; 3063 3064 device_initialize(&ctlr->dev); 3065 INIT_LIST_HEAD(&ctlr->queue); 3066 spin_lock_init(&ctlr->queue_lock); 3067 spin_lock_init(&ctlr->bus_lock_spinlock); 3068 mutex_init(&ctlr->bus_lock_mutex); 3069 mutex_init(&ctlr->io_mutex); 3070 mutex_init(&ctlr->add_lock); 3071 ctlr->bus_num = -1; 3072 ctlr->num_chipselect = 1; 3073 ctlr->target = target; 3074 if (IS_ENABLED(CONFIG_SPI_SLAVE) && target) 3075 ctlr->dev.class = &spi_target_class; 3076 else 3077 ctlr->dev.class = &spi_controller_class; 3078 ctlr->dev.parent = dev; 3079 pm_suspend_ignore_children(&ctlr->dev, true); 3080 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3081 3082 return ctlr; 3083 } 3084 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3085 3086 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3087 { 3088 spi_controller_put(*(struct spi_controller **)ctlr); 3089 } 3090 3091 /** 3092 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3093 * @dev: physical device of SPI controller 3094 * @size: how much zeroed driver-private data to allocate 3095 * @target: whether to allocate an SPI host (false) or SPI target (true) controller 3096 * Context: can sleep 3097 * 3098 * Allocate an SPI controller and automatically release a reference on it 3099 * when @dev is unbound from its driver. Drivers are thus relieved from 3100 * having to call spi_controller_put(). 3101 * 3102 * The arguments to this function are identical to __spi_alloc_controller(). 3103 * 3104 * Return: the SPI controller structure on success, else NULL. 3105 */ 3106 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3107 unsigned int size, 3108 bool target) 3109 { 3110 struct spi_controller **ptr, *ctlr; 3111 3112 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3113 GFP_KERNEL); 3114 if (!ptr) 3115 return NULL; 3116 3117 ctlr = __spi_alloc_controller(dev, size, target); 3118 if (ctlr) { 3119 ctlr->devm_allocated = true; 3120 *ptr = ctlr; 3121 devres_add(dev, ptr); 3122 } else { 3123 devres_free(ptr); 3124 } 3125 3126 return ctlr; 3127 } 3128 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3129 3130 /** 3131 * spi_get_gpio_descs() - grab chip select GPIOs for the controller 3132 * @ctlr: The SPI controller to grab GPIO descriptors for 3133 */ 3134 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3135 { 3136 int nb, i; 3137 struct gpio_desc **cs; 3138 struct device *dev = &ctlr->dev; 3139 unsigned long native_cs_mask = 0; 3140 unsigned int num_cs_gpios = 0; 3141 3142 nb = gpiod_count(dev, "cs"); 3143 if (nb < 0) { 3144 /* No GPIOs at all is fine, else return the error */ 3145 if (nb == -ENOENT) 3146 return 0; 3147 return nb; 3148 } 3149 3150 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3151 3152 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3153 GFP_KERNEL); 3154 if (!cs) 3155 return -ENOMEM; 3156 ctlr->cs_gpiods = cs; 3157 3158 for (i = 0; i < nb; i++) { 3159 /* 3160 * Most chipselects are active low, the inverted 3161 * semantics are handled by special quirks in gpiolib, 3162 * so initializing them GPIOD_OUT_LOW here means 3163 * "unasserted", in most cases this will drive the physical 3164 * line high. 3165 */ 3166 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3167 GPIOD_OUT_LOW); 3168 if (IS_ERR(cs[i])) 3169 return PTR_ERR(cs[i]); 3170 3171 if (cs[i]) { 3172 /* 3173 * If we find a CS GPIO, name it after the device and 3174 * chip select line. 3175 */ 3176 char *gpioname; 3177 3178 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3179 dev_name(dev), i); 3180 if (!gpioname) 3181 return -ENOMEM; 3182 gpiod_set_consumer_name(cs[i], gpioname); 3183 num_cs_gpios++; 3184 continue; 3185 } 3186 3187 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3188 dev_err(dev, "Invalid native chip select %d\n", i); 3189 return -EINVAL; 3190 } 3191 native_cs_mask |= BIT(i); 3192 } 3193 3194 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3195 3196 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3197 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3198 dev_err(dev, "No unused native chip select available\n"); 3199 return -EINVAL; 3200 } 3201 3202 return 0; 3203 } 3204 3205 static int spi_controller_check_ops(struct spi_controller *ctlr) 3206 { 3207 /* 3208 * The controller may implement only the high-level SPI-memory like 3209 * operations if it does not support regular SPI transfers, and this is 3210 * valid use case. 3211 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3212 * one of the ->transfer_xxx() method be implemented. 3213 */ 3214 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3215 if (!ctlr->transfer && !ctlr->transfer_one && 3216 !ctlr->transfer_one_message) { 3217 return -EINVAL; 3218 } 3219 } 3220 3221 return 0; 3222 } 3223 3224 /* Allocate dynamic bus number using Linux idr */ 3225 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3226 { 3227 int id; 3228 3229 mutex_lock(&board_lock); 3230 id = idr_alloc(&spi_controller_idr, ctlr, start, end, GFP_KERNEL); 3231 mutex_unlock(&board_lock); 3232 if (WARN(id < 0, "couldn't get idr")) 3233 return id == -ENOSPC ? -EBUSY : id; 3234 ctlr->bus_num = id; 3235 return 0; 3236 } 3237 3238 /** 3239 * spi_register_controller - register SPI host or target controller 3240 * @ctlr: initialized controller, originally from spi_alloc_host() or 3241 * spi_alloc_target() 3242 * Context: can sleep 3243 * 3244 * SPI controllers connect to their drivers using some non-SPI bus, 3245 * such as the platform bus. The final stage of probe() in that code 3246 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3247 * 3248 * SPI controllers use board specific (often SOC specific) bus numbers, 3249 * and board-specific addressing for SPI devices combines those numbers 3250 * with chip select numbers. Since SPI does not directly support dynamic 3251 * device identification, boards need configuration tables telling which 3252 * chip is at which address. 3253 * 3254 * This must be called from context that can sleep. It returns zero on 3255 * success, else a negative error code (dropping the controller's refcount). 3256 * After a successful return, the caller is responsible for calling 3257 * spi_unregister_controller(). 3258 * 3259 * Return: zero on success, else a negative error code. 3260 */ 3261 int spi_register_controller(struct spi_controller *ctlr) 3262 { 3263 struct device *dev = ctlr->dev.parent; 3264 struct boardinfo *bi; 3265 int first_dynamic; 3266 int status; 3267 int idx; 3268 3269 if (!dev) 3270 return -ENODEV; 3271 3272 /* 3273 * Make sure all necessary hooks are implemented before registering 3274 * the SPI controller. 3275 */ 3276 status = spi_controller_check_ops(ctlr); 3277 if (status) 3278 return status; 3279 3280 if (ctlr->bus_num < 0) 3281 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3282 if (ctlr->bus_num >= 0) { 3283 /* Devices with a fixed bus num must check-in with the num */ 3284 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3285 if (status) 3286 return status; 3287 } 3288 if (ctlr->bus_num < 0) { 3289 first_dynamic = of_alias_get_highest_id("spi"); 3290 if (first_dynamic < 0) 3291 first_dynamic = 0; 3292 else 3293 first_dynamic++; 3294 3295 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3296 if (status) 3297 return status; 3298 } 3299 ctlr->bus_lock_flag = 0; 3300 init_completion(&ctlr->xfer_completion); 3301 init_completion(&ctlr->cur_msg_completion); 3302 if (!ctlr->max_dma_len) 3303 ctlr->max_dma_len = INT_MAX; 3304 3305 /* 3306 * Register the device, then userspace will see it. 3307 * Registration fails if the bus ID is in use. 3308 */ 3309 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3310 3311 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3312 status = spi_get_gpio_descs(ctlr); 3313 if (status) 3314 goto free_bus_id; 3315 /* 3316 * A controller using GPIO descriptors always 3317 * supports SPI_CS_HIGH if need be. 3318 */ 3319 ctlr->mode_bits |= SPI_CS_HIGH; 3320 } 3321 3322 /* 3323 * Even if it's just one always-selected device, there must 3324 * be at least one chipselect. 3325 */ 3326 if (!ctlr->num_chipselect) { 3327 status = -EINVAL; 3328 goto free_bus_id; 3329 } 3330 3331 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3332 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3333 ctlr->last_cs[idx] = SPI_INVALID_CS; 3334 3335 status = device_add(&ctlr->dev); 3336 if (status < 0) 3337 goto free_bus_id; 3338 dev_dbg(dev, "registered %s %s\n", 3339 spi_controller_is_target(ctlr) ? "target" : "host", 3340 dev_name(&ctlr->dev)); 3341 3342 /* 3343 * If we're using a queued driver, start the queue. Note that we don't 3344 * need the queueing logic if the driver is only supporting high-level 3345 * memory operations. 3346 */ 3347 if (ctlr->transfer) { 3348 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3349 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3350 status = spi_controller_initialize_queue(ctlr); 3351 if (status) { 3352 device_del(&ctlr->dev); 3353 goto free_bus_id; 3354 } 3355 } 3356 /* Add statistics */ 3357 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3358 if (!ctlr->pcpu_statistics) { 3359 dev_err(dev, "Error allocating per-cpu statistics\n"); 3360 status = -ENOMEM; 3361 goto destroy_queue; 3362 } 3363 3364 mutex_lock(&board_lock); 3365 list_add_tail(&ctlr->list, &spi_controller_list); 3366 list_for_each_entry(bi, &board_list, list) 3367 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3368 mutex_unlock(&board_lock); 3369 3370 /* Register devices from the device tree and ACPI */ 3371 of_register_spi_devices(ctlr); 3372 acpi_register_spi_devices(ctlr); 3373 return status; 3374 3375 destroy_queue: 3376 spi_destroy_queue(ctlr); 3377 free_bus_id: 3378 mutex_lock(&board_lock); 3379 idr_remove(&spi_controller_idr, ctlr->bus_num); 3380 mutex_unlock(&board_lock); 3381 return status; 3382 } 3383 EXPORT_SYMBOL_GPL(spi_register_controller); 3384 3385 static void devm_spi_unregister(struct device *dev, void *res) 3386 { 3387 spi_unregister_controller(*(struct spi_controller **)res); 3388 } 3389 3390 /** 3391 * devm_spi_register_controller - register managed SPI host or target controller 3392 * @dev: device managing SPI controller 3393 * @ctlr: initialized controller, originally from spi_alloc_host() or 3394 * spi_alloc_target() 3395 * Context: can sleep 3396 * 3397 * Register a SPI device as with spi_register_controller() which will 3398 * automatically be unregistered and freed. 3399 * 3400 * Return: zero on success, else a negative error code. 3401 */ 3402 int devm_spi_register_controller(struct device *dev, 3403 struct spi_controller *ctlr) 3404 { 3405 struct spi_controller **ptr; 3406 int ret; 3407 3408 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3409 if (!ptr) 3410 return -ENOMEM; 3411 3412 ret = spi_register_controller(ctlr); 3413 if (!ret) { 3414 *ptr = ctlr; 3415 devres_add(dev, ptr); 3416 } else { 3417 devres_free(ptr); 3418 } 3419 3420 return ret; 3421 } 3422 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3423 3424 static int __unregister(struct device *dev, void *null) 3425 { 3426 spi_unregister_device(to_spi_device(dev)); 3427 return 0; 3428 } 3429 3430 /** 3431 * spi_unregister_controller - unregister SPI host or target controller 3432 * @ctlr: the controller being unregistered 3433 * Context: can sleep 3434 * 3435 * This call is used only by SPI controller drivers, which are the 3436 * only ones directly touching chip registers. 3437 * 3438 * This must be called from context that can sleep. 3439 * 3440 * Note that this function also drops a reference to the controller. 3441 */ 3442 void spi_unregister_controller(struct spi_controller *ctlr) 3443 { 3444 struct spi_controller *found; 3445 int id = ctlr->bus_num; 3446 3447 /* Prevent addition of new devices, unregister existing ones */ 3448 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3449 mutex_lock(&ctlr->add_lock); 3450 3451 device_for_each_child(&ctlr->dev, NULL, __unregister); 3452 3453 /* First make sure that this controller was ever added */ 3454 mutex_lock(&board_lock); 3455 found = idr_find(&spi_controller_idr, id); 3456 mutex_unlock(&board_lock); 3457 if (ctlr->queued) { 3458 if (spi_destroy_queue(ctlr)) 3459 dev_err(&ctlr->dev, "queue remove failed\n"); 3460 } 3461 mutex_lock(&board_lock); 3462 list_del(&ctlr->list); 3463 mutex_unlock(&board_lock); 3464 3465 device_del(&ctlr->dev); 3466 3467 /* Free bus id */ 3468 mutex_lock(&board_lock); 3469 if (found == ctlr) 3470 idr_remove(&spi_controller_idr, id); 3471 mutex_unlock(&board_lock); 3472 3473 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3474 mutex_unlock(&ctlr->add_lock); 3475 3476 /* 3477 * Release the last reference on the controller if its driver 3478 * has not yet been converted to devm_spi_alloc_host/target(). 3479 */ 3480 if (!ctlr->devm_allocated) 3481 put_device(&ctlr->dev); 3482 } 3483 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3484 3485 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3486 { 3487 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3488 } 3489 3490 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3491 { 3492 mutex_lock(&ctlr->bus_lock_mutex); 3493 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3494 mutex_unlock(&ctlr->bus_lock_mutex); 3495 } 3496 3497 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3498 { 3499 mutex_lock(&ctlr->bus_lock_mutex); 3500 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3501 mutex_unlock(&ctlr->bus_lock_mutex); 3502 } 3503 3504 int spi_controller_suspend(struct spi_controller *ctlr) 3505 { 3506 int ret = 0; 3507 3508 /* Basically no-ops for non-queued controllers */ 3509 if (ctlr->queued) { 3510 ret = spi_stop_queue(ctlr); 3511 if (ret) 3512 dev_err(&ctlr->dev, "queue stop failed\n"); 3513 } 3514 3515 __spi_mark_suspended(ctlr); 3516 return ret; 3517 } 3518 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3519 3520 int spi_controller_resume(struct spi_controller *ctlr) 3521 { 3522 int ret = 0; 3523 3524 __spi_mark_resumed(ctlr); 3525 3526 if (ctlr->queued) { 3527 ret = spi_start_queue(ctlr); 3528 if (ret) 3529 dev_err(&ctlr->dev, "queue restart failed\n"); 3530 } 3531 return ret; 3532 } 3533 EXPORT_SYMBOL_GPL(spi_controller_resume); 3534 3535 /*-------------------------------------------------------------------------*/ 3536 3537 /* Core methods for spi_message alterations */ 3538 3539 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3540 struct spi_message *msg, 3541 void *res) 3542 { 3543 struct spi_replaced_transfers *rxfer = res; 3544 size_t i; 3545 3546 /* Call extra callback if requested */ 3547 if (rxfer->release) 3548 rxfer->release(ctlr, msg, res); 3549 3550 /* Insert replaced transfers back into the message */ 3551 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3552 3553 /* Remove the formerly inserted entries */ 3554 for (i = 0; i < rxfer->inserted; i++) 3555 list_del(&rxfer->inserted_transfers[i].transfer_list); 3556 } 3557 3558 /** 3559 * spi_replace_transfers - replace transfers with several transfers 3560 * and register change with spi_message.resources 3561 * @msg: the spi_message we work upon 3562 * @xfer_first: the first spi_transfer we want to replace 3563 * @remove: number of transfers to remove 3564 * @insert: the number of transfers we want to insert instead 3565 * @release: extra release code necessary in some circumstances 3566 * @extradatasize: extra data to allocate (with alignment guarantees 3567 * of struct @spi_transfer) 3568 * @gfp: gfp flags 3569 * 3570 * Returns: pointer to @spi_replaced_transfers, 3571 * PTR_ERR(...) in case of errors. 3572 */ 3573 static struct spi_replaced_transfers *spi_replace_transfers( 3574 struct spi_message *msg, 3575 struct spi_transfer *xfer_first, 3576 size_t remove, 3577 size_t insert, 3578 spi_replaced_release_t release, 3579 size_t extradatasize, 3580 gfp_t gfp) 3581 { 3582 struct spi_replaced_transfers *rxfer; 3583 struct spi_transfer *xfer; 3584 size_t i; 3585 3586 /* Allocate the structure using spi_res */ 3587 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3588 struct_size(rxfer, inserted_transfers, insert) 3589 + extradatasize, 3590 gfp); 3591 if (!rxfer) 3592 return ERR_PTR(-ENOMEM); 3593 3594 /* The release code to invoke before running the generic release */ 3595 rxfer->release = release; 3596 3597 /* Assign extradata */ 3598 if (extradatasize) 3599 rxfer->extradata = 3600 &rxfer->inserted_transfers[insert]; 3601 3602 /* Init the replaced_transfers list */ 3603 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3604 3605 /* 3606 * Assign the list_entry after which we should reinsert 3607 * the @replaced_transfers - it may be spi_message.messages! 3608 */ 3609 rxfer->replaced_after = xfer_first->transfer_list.prev; 3610 3611 /* Remove the requested number of transfers */ 3612 for (i = 0; i < remove; i++) { 3613 /* 3614 * If the entry after replaced_after it is msg->transfers 3615 * then we have been requested to remove more transfers 3616 * than are in the list. 3617 */ 3618 if (rxfer->replaced_after->next == &msg->transfers) { 3619 dev_err(&msg->spi->dev, 3620 "requested to remove more spi_transfers than are available\n"); 3621 /* Insert replaced transfers back into the message */ 3622 list_splice(&rxfer->replaced_transfers, 3623 rxfer->replaced_after); 3624 3625 /* Free the spi_replace_transfer structure... */ 3626 spi_res_free(rxfer); 3627 3628 /* ...and return with an error */ 3629 return ERR_PTR(-EINVAL); 3630 } 3631 3632 /* 3633 * Remove the entry after replaced_after from list of 3634 * transfers and add it to list of replaced_transfers. 3635 */ 3636 list_move_tail(rxfer->replaced_after->next, 3637 &rxfer->replaced_transfers); 3638 } 3639 3640 /* 3641 * Create copy of the given xfer with identical settings 3642 * based on the first transfer to get removed. 3643 */ 3644 for (i = 0; i < insert; i++) { 3645 /* We need to run in reverse order */ 3646 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3647 3648 /* Copy all spi_transfer data */ 3649 memcpy(xfer, xfer_first, sizeof(*xfer)); 3650 3651 /* Add to list */ 3652 list_add(&xfer->transfer_list, rxfer->replaced_after); 3653 3654 /* Clear cs_change and delay for all but the last */ 3655 if (i) { 3656 xfer->cs_change = false; 3657 xfer->delay.value = 0; 3658 } 3659 } 3660 3661 /* Set up inserted... */ 3662 rxfer->inserted = insert; 3663 3664 /* ...and register it with spi_res/spi_message */ 3665 spi_res_add(msg, rxfer); 3666 3667 return rxfer; 3668 } 3669 3670 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3671 struct spi_message *msg, 3672 struct spi_transfer **xferp, 3673 size_t maxsize) 3674 { 3675 struct spi_transfer *xfer = *xferp, *xfers; 3676 struct spi_replaced_transfers *srt; 3677 size_t offset; 3678 size_t count, i; 3679 3680 /* Calculate how many we have to replace */ 3681 count = DIV_ROUND_UP(xfer->len, maxsize); 3682 3683 /* Create replacement */ 3684 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3685 if (IS_ERR(srt)) 3686 return PTR_ERR(srt); 3687 xfers = srt->inserted_transfers; 3688 3689 /* 3690 * Now handle each of those newly inserted spi_transfers. 3691 * Note that the replacements spi_transfers all are preset 3692 * to the same values as *xferp, so tx_buf, rx_buf and len 3693 * are all identical (as well as most others) 3694 * so we just have to fix up len and the pointers. 3695 */ 3696 3697 /* 3698 * The first transfer just needs the length modified, so we 3699 * run it outside the loop. 3700 */ 3701 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3702 3703 /* All the others need rx_buf/tx_buf also set */ 3704 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3705 /* Update rx_buf, tx_buf and DMA */ 3706 if (xfers[i].rx_buf) 3707 xfers[i].rx_buf += offset; 3708 if (xfers[i].tx_buf) 3709 xfers[i].tx_buf += offset; 3710 3711 /* Update length */ 3712 xfers[i].len = min(maxsize, xfers[i].len - offset); 3713 } 3714 3715 /* 3716 * We set up xferp to the last entry we have inserted, 3717 * so that we skip those already split transfers. 3718 */ 3719 *xferp = &xfers[count - 1]; 3720 3721 /* Increment statistics counters */ 3722 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3723 transfers_split_maxsize); 3724 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3725 transfers_split_maxsize); 3726 3727 return 0; 3728 } 3729 3730 /** 3731 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3732 * when an individual transfer exceeds a 3733 * certain size 3734 * @ctlr: the @spi_controller for this transfer 3735 * @msg: the @spi_message to transform 3736 * @maxsize: the maximum when to apply this 3737 * 3738 * This function allocates resources that are automatically freed during the 3739 * spi message unoptimize phase so this function should only be called from 3740 * optimize_message callbacks. 3741 * 3742 * Return: status of transformation 3743 */ 3744 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3745 struct spi_message *msg, 3746 size_t maxsize) 3747 { 3748 struct spi_transfer *xfer; 3749 int ret; 3750 3751 /* 3752 * Iterate over the transfer_list, 3753 * but note that xfer is advanced to the last transfer inserted 3754 * to avoid checking sizes again unnecessarily (also xfer does 3755 * potentially belong to a different list by the time the 3756 * replacement has happened). 3757 */ 3758 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3759 if (xfer->len > maxsize) { 3760 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3761 maxsize); 3762 if (ret) 3763 return ret; 3764 } 3765 } 3766 3767 return 0; 3768 } 3769 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3770 3771 3772 /** 3773 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3774 * when an individual transfer exceeds a 3775 * certain number of SPI words 3776 * @ctlr: the @spi_controller for this transfer 3777 * @msg: the @spi_message to transform 3778 * @maxwords: the number of words to limit each transfer to 3779 * 3780 * This function allocates resources that are automatically freed during the 3781 * spi message unoptimize phase so this function should only be called from 3782 * optimize_message callbacks. 3783 * 3784 * Return: status of transformation 3785 */ 3786 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3787 struct spi_message *msg, 3788 size_t maxwords) 3789 { 3790 struct spi_transfer *xfer; 3791 3792 /* 3793 * Iterate over the transfer_list, 3794 * but note that xfer is advanced to the last transfer inserted 3795 * to avoid checking sizes again unnecessarily (also xfer does 3796 * potentially belong to a different list by the time the 3797 * replacement has happened). 3798 */ 3799 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3800 size_t maxsize; 3801 int ret; 3802 3803 maxsize = maxwords * spi_bpw_to_bytes(xfer->bits_per_word); 3804 if (xfer->len > maxsize) { 3805 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3806 maxsize); 3807 if (ret) 3808 return ret; 3809 } 3810 } 3811 3812 return 0; 3813 } 3814 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3815 3816 /*-------------------------------------------------------------------------*/ 3817 3818 /* 3819 * Core methods for SPI controller protocol drivers. Some of the 3820 * other core methods are currently defined as inline functions. 3821 */ 3822 3823 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3824 u8 bits_per_word) 3825 { 3826 if (ctlr->bits_per_word_mask) { 3827 /* Only 32 bits fit in the mask */ 3828 if (bits_per_word > 32) 3829 return -EINVAL; 3830 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3831 return -EINVAL; 3832 } 3833 3834 return 0; 3835 } 3836 3837 /** 3838 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3839 * @spi: the device that requires specific CS timing configuration 3840 * 3841 * Return: zero on success, else a negative error code. 3842 */ 3843 static int spi_set_cs_timing(struct spi_device *spi) 3844 { 3845 struct device *parent = spi->controller->dev.parent; 3846 int status = 0; 3847 3848 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3849 if (spi->controller->auto_runtime_pm) { 3850 status = pm_runtime_get_sync(parent); 3851 if (status < 0) { 3852 pm_runtime_put_noidle(parent); 3853 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3854 status); 3855 return status; 3856 } 3857 3858 status = spi->controller->set_cs_timing(spi); 3859 pm_runtime_mark_last_busy(parent); 3860 pm_runtime_put_autosuspend(parent); 3861 } else { 3862 status = spi->controller->set_cs_timing(spi); 3863 } 3864 } 3865 return status; 3866 } 3867 3868 /** 3869 * spi_setup - setup SPI mode and clock rate 3870 * @spi: the device whose settings are being modified 3871 * Context: can sleep, and no requests are queued to the device 3872 * 3873 * SPI protocol drivers may need to update the transfer mode if the 3874 * device doesn't work with its default. They may likewise need 3875 * to update clock rates or word sizes from initial values. This function 3876 * changes those settings, and must be called from a context that can sleep. 3877 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3878 * effect the next time the device is selected and data is transferred to 3879 * or from it. When this function returns, the SPI device is deselected. 3880 * 3881 * Note that this call will fail if the protocol driver specifies an option 3882 * that the underlying controller or its driver does not support. For 3883 * example, not all hardware supports wire transfers using nine bit words, 3884 * LSB-first wire encoding, or active-high chipselects. 3885 * 3886 * Return: zero on success, else a negative error code. 3887 */ 3888 int spi_setup(struct spi_device *spi) 3889 { 3890 unsigned bad_bits, ugly_bits; 3891 int status; 3892 3893 /* 3894 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3895 * are set at the same time. 3896 */ 3897 if ((hweight_long(spi->mode & 3898 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3899 (hweight_long(spi->mode & 3900 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3901 dev_err(&spi->dev, 3902 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3903 return -EINVAL; 3904 } 3905 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3906 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3907 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3908 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3909 return -EINVAL; 3910 /* Check against conflicting MOSI idle configuration */ 3911 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 3912 dev_err(&spi->dev, 3913 "setup: MOSI configured to idle low and high at the same time.\n"); 3914 return -EINVAL; 3915 } 3916 /* 3917 * Help drivers fail *cleanly* when they need options 3918 * that aren't supported with their current controller. 3919 * SPI_CS_WORD has a fallback software implementation, 3920 * so it is ignored here. 3921 */ 3922 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3923 SPI_NO_TX | SPI_NO_RX); 3924 ugly_bits = bad_bits & 3925 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3926 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3927 if (ugly_bits) { 3928 dev_warn(&spi->dev, 3929 "setup: ignoring unsupported mode bits %x\n", 3930 ugly_bits); 3931 spi->mode &= ~ugly_bits; 3932 bad_bits &= ~ugly_bits; 3933 } 3934 if (bad_bits) { 3935 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3936 bad_bits); 3937 return -EINVAL; 3938 } 3939 3940 if (!spi->bits_per_word) { 3941 spi->bits_per_word = 8; 3942 } else { 3943 /* 3944 * Some controllers may not support the default 8 bits-per-word 3945 * so only perform the check when this is explicitly provided. 3946 */ 3947 status = __spi_validate_bits_per_word(spi->controller, 3948 spi->bits_per_word); 3949 if (status) 3950 return status; 3951 } 3952 3953 if (spi->controller->max_speed_hz && 3954 (!spi->max_speed_hz || 3955 spi->max_speed_hz > spi->controller->max_speed_hz)) 3956 spi->max_speed_hz = spi->controller->max_speed_hz; 3957 3958 mutex_lock(&spi->controller->io_mutex); 3959 3960 if (spi->controller->setup) { 3961 status = spi->controller->setup(spi); 3962 if (status) { 3963 mutex_unlock(&spi->controller->io_mutex); 3964 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3965 status); 3966 return status; 3967 } 3968 } 3969 3970 status = spi_set_cs_timing(spi); 3971 if (status) { 3972 mutex_unlock(&spi->controller->io_mutex); 3973 return status; 3974 } 3975 3976 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3977 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3978 if (status < 0) { 3979 mutex_unlock(&spi->controller->io_mutex); 3980 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3981 status); 3982 return status; 3983 } 3984 3985 /* 3986 * We do not want to return positive value from pm_runtime_get, 3987 * there are many instances of devices calling spi_setup() and 3988 * checking for a non-zero return value instead of a negative 3989 * return value. 3990 */ 3991 status = 0; 3992 3993 spi_set_cs(spi, false, true); 3994 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3995 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3996 } else { 3997 spi_set_cs(spi, false, true); 3998 } 3999 4000 mutex_unlock(&spi->controller->io_mutex); 4001 4002 if (spi->rt && !spi->controller->rt) { 4003 spi->controller->rt = true; 4004 spi_set_thread_rt(spi->controller); 4005 } 4006 4007 trace_spi_setup(spi, status); 4008 4009 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4010 spi->mode & SPI_MODE_X_MASK, 4011 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4012 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4013 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4014 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4015 spi->bits_per_word, spi->max_speed_hz, 4016 status); 4017 4018 return status; 4019 } 4020 EXPORT_SYMBOL_GPL(spi_setup); 4021 4022 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4023 struct spi_device *spi) 4024 { 4025 int delay1, delay2; 4026 4027 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4028 if (delay1 < 0) 4029 return delay1; 4030 4031 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4032 if (delay2 < 0) 4033 return delay2; 4034 4035 if (delay1 < delay2) 4036 memcpy(&xfer->word_delay, &spi->word_delay, 4037 sizeof(xfer->word_delay)); 4038 4039 return 0; 4040 } 4041 4042 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4043 { 4044 struct spi_controller *ctlr = spi->controller; 4045 struct spi_transfer *xfer; 4046 int w_size; 4047 4048 if (list_empty(&message->transfers)) 4049 return -EINVAL; 4050 4051 message->spi = spi; 4052 4053 /* 4054 * Half-duplex links include original MicroWire, and ones with 4055 * only one data pin like SPI_3WIRE (switches direction) or where 4056 * either MOSI or MISO is missing. They can also be caused by 4057 * software limitations. 4058 */ 4059 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4060 (spi->mode & SPI_3WIRE)) { 4061 unsigned flags = ctlr->flags; 4062 4063 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4064 if (xfer->rx_buf && xfer->tx_buf) 4065 return -EINVAL; 4066 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4067 return -EINVAL; 4068 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4069 return -EINVAL; 4070 } 4071 } 4072 4073 /* 4074 * Set transfer bits_per_word and max speed as spi device default if 4075 * it is not set for this transfer. 4076 * Set transfer tx_nbits and rx_nbits as single transfer default 4077 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4078 * Ensure transfer word_delay is at least as long as that required by 4079 * device itself. 4080 */ 4081 message->frame_length = 0; 4082 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4083 xfer->effective_speed_hz = 0; 4084 message->frame_length += xfer->len; 4085 if (!xfer->bits_per_word) 4086 xfer->bits_per_word = spi->bits_per_word; 4087 4088 if (!xfer->speed_hz) 4089 xfer->speed_hz = spi->max_speed_hz; 4090 4091 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4092 xfer->speed_hz = ctlr->max_speed_hz; 4093 4094 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4095 return -EINVAL; 4096 4097 /* DDR mode is supported only if controller has dtr_caps=true. 4098 * default considered as SDR mode for SPI and QSPI controller. 4099 * Note: This is applicable only to QSPI controller. 4100 */ 4101 if (xfer->dtr_mode && !ctlr->dtr_caps) 4102 return -EINVAL; 4103 4104 /* 4105 * SPI transfer length should be multiple of SPI word size 4106 * where SPI word size should be power-of-two multiple. 4107 */ 4108 if (xfer->bits_per_word <= 8) 4109 w_size = 1; 4110 else if (xfer->bits_per_word <= 16) 4111 w_size = 2; 4112 else 4113 w_size = 4; 4114 4115 /* No partial transfers accepted */ 4116 if (xfer->len % w_size) 4117 return -EINVAL; 4118 4119 if (xfer->speed_hz && ctlr->min_speed_hz && 4120 xfer->speed_hz < ctlr->min_speed_hz) 4121 return -EINVAL; 4122 4123 if (xfer->tx_buf && !xfer->tx_nbits) 4124 xfer->tx_nbits = SPI_NBITS_SINGLE; 4125 if (xfer->rx_buf && !xfer->rx_nbits) 4126 xfer->rx_nbits = SPI_NBITS_SINGLE; 4127 /* 4128 * Check transfer tx/rx_nbits: 4129 * 1. check the value matches one of single, dual and quad 4130 * 2. check tx/rx_nbits match the mode in spi_device 4131 */ 4132 if (xfer->tx_buf) { 4133 if (spi->mode & SPI_NO_TX) 4134 return -EINVAL; 4135 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4136 xfer->tx_nbits != SPI_NBITS_DUAL && 4137 xfer->tx_nbits != SPI_NBITS_QUAD && 4138 xfer->tx_nbits != SPI_NBITS_OCTAL) 4139 return -EINVAL; 4140 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4141 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4142 return -EINVAL; 4143 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4144 !(spi->mode & SPI_TX_QUAD)) 4145 return -EINVAL; 4146 } 4147 /* Check transfer rx_nbits */ 4148 if (xfer->rx_buf) { 4149 if (spi->mode & SPI_NO_RX) 4150 return -EINVAL; 4151 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4152 xfer->rx_nbits != SPI_NBITS_DUAL && 4153 xfer->rx_nbits != SPI_NBITS_QUAD && 4154 xfer->rx_nbits != SPI_NBITS_OCTAL) 4155 return -EINVAL; 4156 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4157 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4158 return -EINVAL; 4159 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4160 !(spi->mode & SPI_RX_QUAD)) 4161 return -EINVAL; 4162 } 4163 4164 if (_spi_xfer_word_delay_update(xfer, spi)) 4165 return -EINVAL; 4166 4167 /* Make sure controller supports required offload features. */ 4168 if (xfer->offload_flags) { 4169 if (!message->offload) 4170 return -EINVAL; 4171 4172 if (xfer->offload_flags & ~message->offload->xfer_flags) 4173 return -EINVAL; 4174 } 4175 } 4176 4177 message->status = -EINPROGRESS; 4178 4179 return 0; 4180 } 4181 4182 /* 4183 * spi_split_transfers - generic handling of transfer splitting 4184 * @msg: the message to split 4185 * 4186 * Under certain conditions, a SPI controller may not support arbitrary 4187 * transfer sizes or other features required by a peripheral. This function 4188 * will split the transfers in the message into smaller transfers that are 4189 * supported by the controller. 4190 * 4191 * Controllers with special requirements not covered here can also split 4192 * transfers in the optimize_message() callback. 4193 * 4194 * Context: can sleep 4195 * Return: zero on success, else a negative error code 4196 */ 4197 static int spi_split_transfers(struct spi_message *msg) 4198 { 4199 struct spi_controller *ctlr = msg->spi->controller; 4200 struct spi_transfer *xfer; 4201 int ret; 4202 4203 /* 4204 * If an SPI controller does not support toggling the CS line on each 4205 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4206 * for the CS line, we can emulate the CS-per-word hardware function by 4207 * splitting transfers into one-word transfers and ensuring that 4208 * cs_change is set for each transfer. 4209 */ 4210 if ((msg->spi->mode & SPI_CS_WORD) && 4211 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4212 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4213 if (ret) 4214 return ret; 4215 4216 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4217 /* Don't change cs_change on the last entry in the list */ 4218 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4219 break; 4220 4221 xfer->cs_change = 1; 4222 } 4223 } else { 4224 ret = spi_split_transfers_maxsize(ctlr, msg, 4225 spi_max_transfer_size(msg->spi)); 4226 if (ret) 4227 return ret; 4228 } 4229 4230 return 0; 4231 } 4232 4233 /* 4234 * __spi_optimize_message - shared implementation for spi_optimize_message() 4235 * and spi_maybe_optimize_message() 4236 * @spi: the device that will be used for the message 4237 * @msg: the message to optimize 4238 * 4239 * Peripheral drivers will call spi_optimize_message() and the spi core will 4240 * call spi_maybe_optimize_message() instead of calling this directly. 4241 * 4242 * It is not valid to call this on a message that has already been optimized. 4243 * 4244 * Return: zero on success, else a negative error code 4245 */ 4246 static int __spi_optimize_message(struct spi_device *spi, 4247 struct spi_message *msg) 4248 { 4249 struct spi_controller *ctlr = spi->controller; 4250 int ret; 4251 4252 ret = __spi_validate(spi, msg); 4253 if (ret) 4254 return ret; 4255 4256 ret = spi_split_transfers(msg); 4257 if (ret) 4258 return ret; 4259 4260 if (ctlr->optimize_message) { 4261 ret = ctlr->optimize_message(msg); 4262 if (ret) { 4263 spi_res_release(ctlr, msg); 4264 return ret; 4265 } 4266 } 4267 4268 msg->optimized = true; 4269 4270 return 0; 4271 } 4272 4273 /* 4274 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4275 * @spi: the device that will be used for the message 4276 * @msg: the message to optimize 4277 * Return: zero on success, else a negative error code 4278 */ 4279 static int spi_maybe_optimize_message(struct spi_device *spi, 4280 struct spi_message *msg) 4281 { 4282 if (spi->controller->defer_optimize_message) { 4283 msg->spi = spi; 4284 return 0; 4285 } 4286 4287 if (msg->pre_optimized) 4288 return 0; 4289 4290 return __spi_optimize_message(spi, msg); 4291 } 4292 4293 /** 4294 * spi_optimize_message - do any one-time validation and setup for a SPI message 4295 * @spi: the device that will be used for the message 4296 * @msg: the message to optimize 4297 * 4298 * Peripheral drivers that reuse the same message repeatedly may call this to 4299 * perform as much message prep as possible once, rather than repeating it each 4300 * time a message transfer is performed to improve throughput and reduce CPU 4301 * usage. 4302 * 4303 * Once a message has been optimized, it cannot be modified with the exception 4304 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4305 * only the data in the memory it points to). 4306 * 4307 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4308 * to avoid leaking resources. 4309 * 4310 * Context: can sleep 4311 * Return: zero on success, else a negative error code 4312 */ 4313 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4314 { 4315 int ret; 4316 4317 /* 4318 * Pre-optimization is not supported and optimization is deferred e.g. 4319 * when using spi-mux. 4320 */ 4321 if (spi->controller->defer_optimize_message) 4322 return 0; 4323 4324 ret = __spi_optimize_message(spi, msg); 4325 if (ret) 4326 return ret; 4327 4328 /* 4329 * This flag indicates that the peripheral driver called spi_optimize_message() 4330 * and therefore we shouldn't unoptimize message automatically when finalizing 4331 * the message but rather wait until spi_unoptimize_message() is called 4332 * by the peripheral driver. 4333 */ 4334 msg->pre_optimized = true; 4335 4336 return 0; 4337 } 4338 EXPORT_SYMBOL_GPL(spi_optimize_message); 4339 4340 /** 4341 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4342 * @msg: the message to unoptimize 4343 * 4344 * Calls to this function must be balanced with calls to spi_optimize_message(). 4345 * 4346 * Context: can sleep 4347 */ 4348 void spi_unoptimize_message(struct spi_message *msg) 4349 { 4350 if (msg->spi->controller->defer_optimize_message) 4351 return; 4352 4353 __spi_unoptimize_message(msg); 4354 msg->pre_optimized = false; 4355 } 4356 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4357 4358 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4359 { 4360 struct spi_controller *ctlr = spi->controller; 4361 struct spi_transfer *xfer; 4362 4363 /* 4364 * Some controllers do not support doing regular SPI transfers. Return 4365 * ENOTSUPP when this is the case. 4366 */ 4367 if (!ctlr->transfer) 4368 return -ENOTSUPP; 4369 4370 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4371 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4372 4373 trace_spi_message_submit(message); 4374 4375 if (!ctlr->ptp_sts_supported) { 4376 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4377 xfer->ptp_sts_word_pre = 0; 4378 ptp_read_system_prets(xfer->ptp_sts); 4379 } 4380 } 4381 4382 return ctlr->transfer(spi, message); 4383 } 4384 4385 static void devm_spi_unoptimize_message(void *msg) 4386 { 4387 spi_unoptimize_message(msg); 4388 } 4389 4390 /** 4391 * devm_spi_optimize_message - managed version of spi_optimize_message() 4392 * @dev: the device that manages @msg (usually @spi->dev) 4393 * @spi: the device that will be used for the message 4394 * @msg: the message to optimize 4395 * Return: zero on success, else a negative error code 4396 * 4397 * spi_unoptimize_message() will automatically be called when the device is 4398 * removed. 4399 */ 4400 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4401 struct spi_message *msg) 4402 { 4403 int ret; 4404 4405 ret = spi_optimize_message(spi, msg); 4406 if (ret) 4407 return ret; 4408 4409 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4410 } 4411 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4412 4413 /** 4414 * spi_async - asynchronous SPI transfer 4415 * @spi: device with which data will be exchanged 4416 * @message: describes the data transfers, including completion callback 4417 * Context: any (IRQs may be blocked, etc) 4418 * 4419 * This call may be used in_irq and other contexts which can't sleep, 4420 * as well as from task contexts which can sleep. 4421 * 4422 * The completion callback is invoked in a context which can't sleep. 4423 * Before that invocation, the value of message->status is undefined. 4424 * When the callback is issued, message->status holds either zero (to 4425 * indicate complete success) or a negative error code. After that 4426 * callback returns, the driver which issued the transfer request may 4427 * deallocate the associated memory; it's no longer in use by any SPI 4428 * core or controller driver code. 4429 * 4430 * Note that although all messages to a spi_device are handled in 4431 * FIFO order, messages may go to different devices in other orders. 4432 * Some device might be higher priority, or have various "hard" access 4433 * time requirements, for example. 4434 * 4435 * On detection of any fault during the transfer, processing of 4436 * the entire message is aborted, and the device is deselected. 4437 * Until returning from the associated message completion callback, 4438 * no other spi_message queued to that device will be processed. 4439 * (This rule applies equally to all the synchronous transfer calls, 4440 * which are wrappers around this core asynchronous primitive.) 4441 * 4442 * Return: zero on success, else a negative error code. 4443 */ 4444 int spi_async(struct spi_device *spi, struct spi_message *message) 4445 { 4446 struct spi_controller *ctlr = spi->controller; 4447 int ret; 4448 unsigned long flags; 4449 4450 ret = spi_maybe_optimize_message(spi, message); 4451 if (ret) 4452 return ret; 4453 4454 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4455 4456 if (ctlr->bus_lock_flag) 4457 ret = -EBUSY; 4458 else 4459 ret = __spi_async(spi, message); 4460 4461 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4462 4463 return ret; 4464 } 4465 EXPORT_SYMBOL_GPL(spi_async); 4466 4467 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4468 { 4469 bool was_busy; 4470 int ret; 4471 4472 mutex_lock(&ctlr->io_mutex); 4473 4474 was_busy = ctlr->busy; 4475 4476 ctlr->cur_msg = msg; 4477 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4478 if (ret) 4479 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4480 ctlr->cur_msg = NULL; 4481 ctlr->fallback = false; 4482 4483 if (!was_busy) { 4484 kfree(ctlr->dummy_rx); 4485 ctlr->dummy_rx = NULL; 4486 kfree(ctlr->dummy_tx); 4487 ctlr->dummy_tx = NULL; 4488 if (ctlr->unprepare_transfer_hardware && 4489 ctlr->unprepare_transfer_hardware(ctlr)) 4490 dev_err(&ctlr->dev, 4491 "failed to unprepare transfer hardware\n"); 4492 spi_idle_runtime_pm(ctlr); 4493 } 4494 4495 mutex_unlock(&ctlr->io_mutex); 4496 } 4497 4498 /*-------------------------------------------------------------------------*/ 4499 4500 /* 4501 * Utility methods for SPI protocol drivers, layered on 4502 * top of the core. Some other utility methods are defined as 4503 * inline functions. 4504 */ 4505 4506 static void spi_complete(void *arg) 4507 { 4508 complete(arg); 4509 } 4510 4511 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4512 { 4513 DECLARE_COMPLETION_ONSTACK(done); 4514 unsigned long flags; 4515 int status; 4516 struct spi_controller *ctlr = spi->controller; 4517 4518 if (__spi_check_suspended(ctlr)) { 4519 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4520 return -ESHUTDOWN; 4521 } 4522 4523 status = spi_maybe_optimize_message(spi, message); 4524 if (status) 4525 return status; 4526 4527 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4528 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4529 4530 /* 4531 * Checking queue_empty here only guarantees async/sync message 4532 * ordering when coming from the same context. It does not need to 4533 * guard against reentrancy from a different context. The io_mutex 4534 * will catch those cases. 4535 */ 4536 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4537 message->actual_length = 0; 4538 message->status = -EINPROGRESS; 4539 4540 trace_spi_message_submit(message); 4541 4542 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4543 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4544 4545 __spi_transfer_message_noqueue(ctlr, message); 4546 4547 return message->status; 4548 } 4549 4550 /* 4551 * There are messages in the async queue that could have originated 4552 * from the same context, so we need to preserve ordering. 4553 * Therefor we send the message to the async queue and wait until they 4554 * are completed. 4555 */ 4556 message->complete = spi_complete; 4557 message->context = &done; 4558 4559 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4560 status = __spi_async(spi, message); 4561 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4562 4563 if (status == 0) { 4564 wait_for_completion(&done); 4565 status = message->status; 4566 } 4567 message->complete = NULL; 4568 message->context = NULL; 4569 4570 return status; 4571 } 4572 4573 /** 4574 * spi_sync - blocking/synchronous SPI data transfers 4575 * @spi: device with which data will be exchanged 4576 * @message: describes the data transfers 4577 * Context: can sleep 4578 * 4579 * This call may only be used from a context that may sleep. The sleep 4580 * is non-interruptible, and has no timeout. Low-overhead controller 4581 * drivers may DMA directly into and out of the message buffers. 4582 * 4583 * Note that the SPI device's chip select is active during the message, 4584 * and then is normally disabled between messages. Drivers for some 4585 * frequently-used devices may want to minimize costs of selecting a chip, 4586 * by leaving it selected in anticipation that the next message will go 4587 * to the same chip. (That may increase power usage.) 4588 * 4589 * Also, the caller is guaranteeing that the memory associated with the 4590 * message will not be freed before this call returns. 4591 * 4592 * Return: zero on success, else a negative error code. 4593 */ 4594 int spi_sync(struct spi_device *spi, struct spi_message *message) 4595 { 4596 int ret; 4597 4598 mutex_lock(&spi->controller->bus_lock_mutex); 4599 ret = __spi_sync(spi, message); 4600 mutex_unlock(&spi->controller->bus_lock_mutex); 4601 4602 return ret; 4603 } 4604 EXPORT_SYMBOL_GPL(spi_sync); 4605 4606 /** 4607 * spi_sync_locked - version of spi_sync with exclusive bus usage 4608 * @spi: device with which data will be exchanged 4609 * @message: describes the data transfers 4610 * Context: can sleep 4611 * 4612 * This call may only be used from a context that may sleep. The sleep 4613 * is non-interruptible, and has no timeout. Low-overhead controller 4614 * drivers may DMA directly into and out of the message buffers. 4615 * 4616 * This call should be used by drivers that require exclusive access to the 4617 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4618 * be released by a spi_bus_unlock call when the exclusive access is over. 4619 * 4620 * Return: zero on success, else a negative error code. 4621 */ 4622 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4623 { 4624 return __spi_sync(spi, message); 4625 } 4626 EXPORT_SYMBOL_GPL(spi_sync_locked); 4627 4628 /** 4629 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4630 * @ctlr: SPI bus controller that should be locked for exclusive bus access 4631 * Context: can sleep 4632 * 4633 * This call may only be used from a context that may sleep. The sleep 4634 * is non-interruptible, and has no timeout. 4635 * 4636 * This call should be used by drivers that require exclusive access to the 4637 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4638 * exclusive access is over. Data transfer must be done by spi_sync_locked 4639 * and spi_async_locked calls when the SPI bus lock is held. 4640 * 4641 * Return: always zero. 4642 */ 4643 int spi_bus_lock(struct spi_controller *ctlr) 4644 { 4645 unsigned long flags; 4646 4647 mutex_lock(&ctlr->bus_lock_mutex); 4648 4649 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4650 ctlr->bus_lock_flag = 1; 4651 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4652 4653 /* Mutex remains locked until spi_bus_unlock() is called */ 4654 4655 return 0; 4656 } 4657 EXPORT_SYMBOL_GPL(spi_bus_lock); 4658 4659 /** 4660 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4661 * @ctlr: SPI bus controller that was locked for exclusive bus access 4662 * Context: can sleep 4663 * 4664 * This call may only be used from a context that may sleep. The sleep 4665 * is non-interruptible, and has no timeout. 4666 * 4667 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4668 * call. 4669 * 4670 * Return: always zero. 4671 */ 4672 int spi_bus_unlock(struct spi_controller *ctlr) 4673 { 4674 ctlr->bus_lock_flag = 0; 4675 4676 mutex_unlock(&ctlr->bus_lock_mutex); 4677 4678 return 0; 4679 } 4680 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4681 4682 /* Portable code must never pass more than 32 bytes */ 4683 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4684 4685 static u8 *buf; 4686 4687 /** 4688 * spi_write_then_read - SPI synchronous write followed by read 4689 * @spi: device with which data will be exchanged 4690 * @txbuf: data to be written (need not be DMA-safe) 4691 * @n_tx: size of txbuf, in bytes 4692 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4693 * @n_rx: size of rxbuf, in bytes 4694 * Context: can sleep 4695 * 4696 * This performs a half duplex MicroWire style transaction with the 4697 * device, sending txbuf and then reading rxbuf. The return value 4698 * is zero for success, else a negative errno status code. 4699 * This call may only be used from a context that may sleep. 4700 * 4701 * Parameters to this routine are always copied using a small buffer. 4702 * Performance-sensitive or bulk transfer code should instead use 4703 * spi_{async,sync}() calls with DMA-safe buffers. 4704 * 4705 * Return: zero on success, else a negative error code. 4706 */ 4707 int spi_write_then_read(struct spi_device *spi, 4708 const void *txbuf, unsigned n_tx, 4709 void *rxbuf, unsigned n_rx) 4710 { 4711 static DEFINE_MUTEX(lock); 4712 4713 int status; 4714 struct spi_message message; 4715 struct spi_transfer x[2]; 4716 u8 *local_buf; 4717 4718 /* 4719 * Use preallocated DMA-safe buffer if we can. We can't avoid 4720 * copying here, (as a pure convenience thing), but we can 4721 * keep heap costs out of the hot path unless someone else is 4722 * using the pre-allocated buffer or the transfer is too large. 4723 */ 4724 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4725 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4726 GFP_KERNEL | GFP_DMA); 4727 if (!local_buf) 4728 return -ENOMEM; 4729 } else { 4730 local_buf = buf; 4731 } 4732 4733 spi_message_init(&message); 4734 memset(x, 0, sizeof(x)); 4735 if (n_tx) { 4736 x[0].len = n_tx; 4737 spi_message_add_tail(&x[0], &message); 4738 } 4739 if (n_rx) { 4740 x[1].len = n_rx; 4741 spi_message_add_tail(&x[1], &message); 4742 } 4743 4744 memcpy(local_buf, txbuf, n_tx); 4745 x[0].tx_buf = local_buf; 4746 x[1].rx_buf = local_buf + n_tx; 4747 4748 /* Do the I/O */ 4749 status = spi_sync(spi, &message); 4750 if (status == 0) 4751 memcpy(rxbuf, x[1].rx_buf, n_rx); 4752 4753 if (x[0].tx_buf == buf) 4754 mutex_unlock(&lock); 4755 else 4756 kfree(local_buf); 4757 4758 return status; 4759 } 4760 EXPORT_SYMBOL_GPL(spi_write_then_read); 4761 4762 /*-------------------------------------------------------------------------*/ 4763 4764 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4765 /* Must call put_device() when done with returned spi_device device */ 4766 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4767 { 4768 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4769 4770 return dev ? to_spi_device(dev) : NULL; 4771 } 4772 4773 /* The spi controllers are not using spi_bus, so we find it with another way */ 4774 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4775 { 4776 struct device *dev; 4777 4778 dev = class_find_device_by_of_node(&spi_controller_class, node); 4779 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4780 dev = class_find_device_by_of_node(&spi_target_class, node); 4781 if (!dev) 4782 return NULL; 4783 4784 /* Reference got in class_find_device */ 4785 return container_of(dev, struct spi_controller, dev); 4786 } 4787 4788 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4789 void *arg) 4790 { 4791 struct of_reconfig_data *rd = arg; 4792 struct spi_controller *ctlr; 4793 struct spi_device *spi; 4794 4795 switch (of_reconfig_get_state_change(action, arg)) { 4796 case OF_RECONFIG_CHANGE_ADD: 4797 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4798 if (ctlr == NULL) 4799 return NOTIFY_OK; /* Not for us */ 4800 4801 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4802 put_device(&ctlr->dev); 4803 return NOTIFY_OK; 4804 } 4805 4806 /* 4807 * Clear the flag before adding the device so that fw_devlink 4808 * doesn't skip adding consumers to this device. 4809 */ 4810 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4811 spi = of_register_spi_device(ctlr, rd->dn); 4812 put_device(&ctlr->dev); 4813 4814 if (IS_ERR(spi)) { 4815 pr_err("%s: failed to create for '%pOF'\n", 4816 __func__, rd->dn); 4817 of_node_clear_flag(rd->dn, OF_POPULATED); 4818 return notifier_from_errno(PTR_ERR(spi)); 4819 } 4820 break; 4821 4822 case OF_RECONFIG_CHANGE_REMOVE: 4823 /* Already depopulated? */ 4824 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4825 return NOTIFY_OK; 4826 4827 /* Find our device by node */ 4828 spi = of_find_spi_device_by_node(rd->dn); 4829 if (spi == NULL) 4830 return NOTIFY_OK; /* No? not meant for us */ 4831 4832 /* Unregister takes one ref away */ 4833 spi_unregister_device(spi); 4834 4835 /* And put the reference of the find */ 4836 put_device(&spi->dev); 4837 break; 4838 } 4839 4840 return NOTIFY_OK; 4841 } 4842 4843 static struct notifier_block spi_of_notifier = { 4844 .notifier_call = of_spi_notify, 4845 }; 4846 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4847 extern struct notifier_block spi_of_notifier; 4848 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4849 4850 #if IS_ENABLED(CONFIG_ACPI) 4851 static int spi_acpi_controller_match(struct device *dev, const void *data) 4852 { 4853 return device_match_acpi_dev(dev->parent, data); 4854 } 4855 4856 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4857 { 4858 struct device *dev; 4859 4860 dev = class_find_device(&spi_controller_class, NULL, adev, 4861 spi_acpi_controller_match); 4862 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4863 dev = class_find_device(&spi_target_class, NULL, adev, 4864 spi_acpi_controller_match); 4865 if (!dev) 4866 return NULL; 4867 4868 return container_of(dev, struct spi_controller, dev); 4869 } 4870 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4871 4872 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4873 { 4874 struct device *dev; 4875 4876 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4877 return to_spi_device(dev); 4878 } 4879 4880 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4881 void *arg) 4882 { 4883 struct acpi_device *adev = arg; 4884 struct spi_controller *ctlr; 4885 struct spi_device *spi; 4886 4887 switch (value) { 4888 case ACPI_RECONFIG_DEVICE_ADD: 4889 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4890 if (!ctlr) 4891 break; 4892 4893 acpi_register_spi_device(ctlr, adev); 4894 put_device(&ctlr->dev); 4895 break; 4896 case ACPI_RECONFIG_DEVICE_REMOVE: 4897 if (!acpi_device_enumerated(adev)) 4898 break; 4899 4900 spi = acpi_spi_find_device_by_adev(adev); 4901 if (!spi) 4902 break; 4903 4904 spi_unregister_device(spi); 4905 put_device(&spi->dev); 4906 break; 4907 } 4908 4909 return NOTIFY_OK; 4910 } 4911 4912 static struct notifier_block spi_acpi_notifier = { 4913 .notifier_call = acpi_spi_notify, 4914 }; 4915 #else 4916 extern struct notifier_block spi_acpi_notifier; 4917 #endif 4918 4919 static int __init spi_init(void) 4920 { 4921 int status; 4922 4923 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4924 if (!buf) { 4925 status = -ENOMEM; 4926 goto err0; 4927 } 4928 4929 status = bus_register(&spi_bus_type); 4930 if (status < 0) 4931 goto err1; 4932 4933 status = class_register(&spi_controller_class); 4934 if (status < 0) 4935 goto err2; 4936 4937 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4938 status = class_register(&spi_target_class); 4939 if (status < 0) 4940 goto err3; 4941 } 4942 4943 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4944 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4945 if (IS_ENABLED(CONFIG_ACPI)) 4946 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4947 4948 return 0; 4949 4950 err3: 4951 class_unregister(&spi_controller_class); 4952 err2: 4953 bus_unregister(&spi_bus_type); 4954 err1: 4955 kfree(buf); 4956 buf = NULL; 4957 err0: 4958 return status; 4959 } 4960 4961 /* 4962 * A board_info is normally registered in arch_initcall(), 4963 * but even essential drivers wait till later. 4964 * 4965 * REVISIT only boardinfo really needs static linking. The rest (device and 4966 * driver registration) _could_ be dynamically linked (modular) ... Costs 4967 * include needing to have boardinfo data structures be much more public. 4968 */ 4969 postcore_initcall(spi_init); 4970