1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/offload/types.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi-mem.h> 37 #include <uapi/linux/sched/types.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/spi.h> 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 43 44 #include "internals.h" 45 46 static DEFINE_IDR(spi_controller_idr); 47 48 static void spidev_release(struct device *dev) 49 { 50 struct spi_device *spi = to_spi_device(dev); 51 52 spi_controller_put(spi->controller); 53 kfree(spi->driver_override); 54 free_percpu(spi->pcpu_statistics); 55 kfree(spi); 56 } 57 58 static ssize_t 59 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 60 { 61 const struct spi_device *spi = to_spi_device(dev); 62 int len; 63 64 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 65 if (len != -ENODEV) 66 return len; 67 68 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 69 } 70 static DEVICE_ATTR_RO(modalias); 71 72 static ssize_t driver_override_store(struct device *dev, 73 struct device_attribute *a, 74 const char *buf, size_t count) 75 { 76 struct spi_device *spi = to_spi_device(dev); 77 int ret; 78 79 ret = driver_set_override(dev, &spi->driver_override, buf, count); 80 if (ret) 81 return ret; 82 83 return count; 84 } 85 86 static ssize_t driver_override_show(struct device *dev, 87 struct device_attribute *a, char *buf) 88 { 89 const struct spi_device *spi = to_spi_device(dev); 90 ssize_t len; 91 92 device_lock(dev); 93 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 94 device_unlock(dev); 95 return len; 96 } 97 static DEVICE_ATTR_RW(driver_override); 98 99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 100 { 101 struct spi_statistics __percpu *pcpu_stats; 102 103 if (dev) 104 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 105 else 106 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 107 108 if (pcpu_stats) { 109 int cpu; 110 111 for_each_possible_cpu(cpu) { 112 struct spi_statistics *stat; 113 114 stat = per_cpu_ptr(pcpu_stats, cpu); 115 u64_stats_init(&stat->syncp); 116 } 117 } 118 return pcpu_stats; 119 } 120 121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 122 char *buf, size_t offset) 123 { 124 u64 val = 0; 125 int i; 126 127 for_each_possible_cpu(i) { 128 const struct spi_statistics *pcpu_stats; 129 u64_stats_t *field; 130 unsigned int start; 131 u64 inc; 132 133 pcpu_stats = per_cpu_ptr(stat, i); 134 field = (void *)pcpu_stats + offset; 135 do { 136 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 137 inc = u64_stats_read(field); 138 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 139 val += inc; 140 } 141 return sysfs_emit(buf, "%llu\n", val); 142 } 143 144 #define SPI_STATISTICS_ATTRS(field, file) \ 145 static ssize_t spi_controller_##field##_show(struct device *dev, \ 146 struct device_attribute *attr, \ 147 char *buf) \ 148 { \ 149 struct spi_controller *ctlr = container_of(dev, \ 150 struct spi_controller, dev); \ 151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 152 } \ 153 static struct device_attribute dev_attr_spi_controller_##field = { \ 154 .attr = { .name = file, .mode = 0444 }, \ 155 .show = spi_controller_##field##_show, \ 156 }; \ 157 static ssize_t spi_device_##field##_show(struct device *dev, \ 158 struct device_attribute *attr, \ 159 char *buf) \ 160 { \ 161 struct spi_device *spi = to_spi_device(dev); \ 162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 163 } \ 164 static struct device_attribute dev_attr_spi_device_##field = { \ 165 .attr = { .name = file, .mode = 0444 }, \ 166 .show = spi_device_##field##_show, \ 167 } 168 169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 171 char *buf) \ 172 { \ 173 return spi_emit_pcpu_stats(stat, buf, \ 174 offsetof(struct spi_statistics, field)); \ 175 } \ 176 SPI_STATISTICS_ATTRS(name, file) 177 178 #define SPI_STATISTICS_SHOW(field) \ 179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 180 field) 181 182 SPI_STATISTICS_SHOW(messages); 183 SPI_STATISTICS_SHOW(transfers); 184 SPI_STATISTICS_SHOW(errors); 185 SPI_STATISTICS_SHOW(timedout); 186 187 SPI_STATISTICS_SHOW(spi_sync); 188 SPI_STATISTICS_SHOW(spi_sync_immediate); 189 SPI_STATISTICS_SHOW(spi_async); 190 191 SPI_STATISTICS_SHOW(bytes); 192 SPI_STATISTICS_SHOW(bytes_rx); 193 SPI_STATISTICS_SHOW(bytes_tx); 194 195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 197 "transfer_bytes_histo_" number, \ 198 transfer_bytes_histo[index]) 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 216 217 SPI_STATISTICS_SHOW(transfers_split_maxsize); 218 219 static struct attribute *spi_dev_attrs[] = { 220 &dev_attr_modalias.attr, 221 &dev_attr_driver_override.attr, 222 NULL, 223 }; 224 225 static const struct attribute_group spi_dev_group = { 226 .attrs = spi_dev_attrs, 227 }; 228 229 static struct attribute *spi_device_statistics_attrs[] = { 230 &dev_attr_spi_device_messages.attr, 231 &dev_attr_spi_device_transfers.attr, 232 &dev_attr_spi_device_errors.attr, 233 &dev_attr_spi_device_timedout.attr, 234 &dev_attr_spi_device_spi_sync.attr, 235 &dev_attr_spi_device_spi_sync_immediate.attr, 236 &dev_attr_spi_device_spi_async.attr, 237 &dev_attr_spi_device_bytes.attr, 238 &dev_attr_spi_device_bytes_rx.attr, 239 &dev_attr_spi_device_bytes_tx.attr, 240 &dev_attr_spi_device_transfer_bytes_histo0.attr, 241 &dev_attr_spi_device_transfer_bytes_histo1.attr, 242 &dev_attr_spi_device_transfer_bytes_histo2.attr, 243 &dev_attr_spi_device_transfer_bytes_histo3.attr, 244 &dev_attr_spi_device_transfer_bytes_histo4.attr, 245 &dev_attr_spi_device_transfer_bytes_histo5.attr, 246 &dev_attr_spi_device_transfer_bytes_histo6.attr, 247 &dev_attr_spi_device_transfer_bytes_histo7.attr, 248 &dev_attr_spi_device_transfer_bytes_histo8.attr, 249 &dev_attr_spi_device_transfer_bytes_histo9.attr, 250 &dev_attr_spi_device_transfer_bytes_histo10.attr, 251 &dev_attr_spi_device_transfer_bytes_histo11.attr, 252 &dev_attr_spi_device_transfer_bytes_histo12.attr, 253 &dev_attr_spi_device_transfer_bytes_histo13.attr, 254 &dev_attr_spi_device_transfer_bytes_histo14.attr, 255 &dev_attr_spi_device_transfer_bytes_histo15.attr, 256 &dev_attr_spi_device_transfer_bytes_histo16.attr, 257 &dev_attr_spi_device_transfers_split_maxsize.attr, 258 NULL, 259 }; 260 261 static const struct attribute_group spi_device_statistics_group = { 262 .name = "statistics", 263 .attrs = spi_device_statistics_attrs, 264 }; 265 266 static const struct attribute_group *spi_dev_groups[] = { 267 &spi_dev_group, 268 &spi_device_statistics_group, 269 NULL, 270 }; 271 272 static struct attribute *spi_controller_statistics_attrs[] = { 273 &dev_attr_spi_controller_messages.attr, 274 &dev_attr_spi_controller_transfers.attr, 275 &dev_attr_spi_controller_errors.attr, 276 &dev_attr_spi_controller_timedout.attr, 277 &dev_attr_spi_controller_spi_sync.attr, 278 &dev_attr_spi_controller_spi_sync_immediate.attr, 279 &dev_attr_spi_controller_spi_async.attr, 280 &dev_attr_spi_controller_bytes.attr, 281 &dev_attr_spi_controller_bytes_rx.attr, 282 &dev_attr_spi_controller_bytes_tx.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 299 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 300 &dev_attr_spi_controller_transfers_split_maxsize.attr, 301 NULL, 302 }; 303 304 static const struct attribute_group spi_controller_statistics_group = { 305 .name = "statistics", 306 .attrs = spi_controller_statistics_attrs, 307 }; 308 309 static const struct attribute_group *spi_controller_groups[] = { 310 &spi_controller_statistics_group, 311 NULL, 312 }; 313 314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 315 struct spi_transfer *xfer, 316 struct spi_message *msg) 317 { 318 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 319 struct spi_statistics *stats; 320 321 if (l2len < 0) 322 l2len = 0; 323 324 get_cpu(); 325 stats = this_cpu_ptr(pcpu_stats); 326 u64_stats_update_begin(&stats->syncp); 327 328 u64_stats_inc(&stats->transfers); 329 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 330 331 u64_stats_add(&stats->bytes, xfer->len); 332 if (spi_valid_txbuf(msg, xfer)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if (spi_valid_rxbuf(msg, xfer)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, const struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 struct fwnode_handle *fwnode = dev_fwnode(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (is_of_node(fwnode)) 422 spi->irq = of_irq_get(dev->of_node, 0); 423 else if (is_acpi_device_node(fwnode) && spi->irq < 0) 424 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0); 425 if (spi->irq == -EPROBE_DEFER) 426 return dev_err_probe(dev, spi->irq, "Failed to get irq\n"); 427 if (spi->irq < 0) 428 spi->irq = 0; 429 430 ret = dev_pm_domain_attach(dev, PD_FLAG_ATTACH_POWER_ON | 431 PD_FLAG_DETACH_POWER_OFF); 432 if (ret) 433 return ret; 434 435 if (sdrv->probe) 436 ret = sdrv->probe(spi); 437 438 return ret; 439 } 440 441 static void spi_remove(struct device *dev) 442 { 443 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 444 445 if (sdrv->remove) 446 sdrv->remove(to_spi_device(dev)); 447 } 448 449 static void spi_shutdown(struct device *dev) 450 { 451 if (dev->driver) { 452 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 453 454 if (sdrv->shutdown) 455 sdrv->shutdown(to_spi_device(dev)); 456 } 457 } 458 459 const struct bus_type spi_bus_type = { 460 .name = "spi", 461 .dev_groups = spi_dev_groups, 462 .match = spi_match_device, 463 .uevent = spi_uevent, 464 .probe = spi_probe, 465 .remove = spi_remove, 466 .shutdown = spi_shutdown, 467 }; 468 EXPORT_SYMBOL_GPL(spi_bus_type); 469 470 /** 471 * __spi_register_driver - register a SPI driver 472 * @owner: owner module of the driver to register 473 * @sdrv: the driver to register 474 * Context: can sleep 475 * 476 * Return: zero on success, else a negative error code. 477 */ 478 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 479 { 480 sdrv->driver.owner = owner; 481 sdrv->driver.bus = &spi_bus_type; 482 483 /* 484 * For Really Good Reasons we use spi: modaliases not of: 485 * modaliases for DT so module autoloading won't work if we 486 * don't have a spi_device_id as well as a compatible string. 487 */ 488 if (sdrv->driver.of_match_table) { 489 const struct of_device_id *of_id; 490 491 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 492 of_id++) { 493 const char *of_name; 494 495 /* Strip off any vendor prefix */ 496 of_name = strnchr(of_id->compatible, 497 sizeof(of_id->compatible), ','); 498 if (of_name) 499 of_name++; 500 else 501 of_name = of_id->compatible; 502 503 if (sdrv->id_table) { 504 const struct spi_device_id *spi_id; 505 506 spi_id = spi_match_id(sdrv->id_table, of_name); 507 if (spi_id) 508 continue; 509 } else { 510 if (strcmp(sdrv->driver.name, of_name) == 0) 511 continue; 512 } 513 514 pr_warn("SPI driver %s has no spi_device_id for %s\n", 515 sdrv->driver.name, of_id->compatible); 516 } 517 } 518 519 return driver_register(&sdrv->driver); 520 } 521 EXPORT_SYMBOL_GPL(__spi_register_driver); 522 523 /*-------------------------------------------------------------------------*/ 524 525 /* 526 * SPI devices should normally not be created by SPI device drivers; that 527 * would make them board-specific. Similarly with SPI controller drivers. 528 * Device registration normally goes into like arch/.../mach.../board-YYY.c 529 * with other readonly (flashable) information about mainboard devices. 530 */ 531 532 struct boardinfo { 533 struct list_head list; 534 struct spi_board_info board_info; 535 }; 536 537 static LIST_HEAD(board_list); 538 static LIST_HEAD(spi_controller_list); 539 540 /* 541 * Used to protect add/del operation for board_info list and 542 * spi_controller list, and their matching process also used 543 * to protect object of type struct idr. 544 */ 545 static DEFINE_MUTEX(board_lock); 546 547 /** 548 * spi_alloc_device - Allocate a new SPI device 549 * @ctlr: Controller to which device is connected 550 * Context: can sleep 551 * 552 * Allows a driver to allocate and initialize a spi_device without 553 * registering it immediately. This allows a driver to directly 554 * fill the spi_device with device parameters before calling 555 * spi_add_device() on it. 556 * 557 * Caller is responsible to call spi_add_device() on the returned 558 * spi_device structure to add it to the SPI controller. If the caller 559 * needs to discard the spi_device without adding it, then it should 560 * call spi_dev_put() on it. 561 * 562 * Return: a pointer to the new device, or NULL. 563 */ 564 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 565 { 566 struct spi_device *spi; 567 568 if (!spi_controller_get(ctlr)) 569 return NULL; 570 571 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 572 if (!spi) { 573 spi_controller_put(ctlr); 574 return NULL; 575 } 576 577 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 578 if (!spi->pcpu_statistics) { 579 kfree(spi); 580 spi_controller_put(ctlr); 581 return NULL; 582 } 583 584 spi->controller = ctlr; 585 spi->dev.parent = &ctlr->dev; 586 spi->dev.bus = &spi_bus_type; 587 spi->dev.release = spidev_release; 588 spi->mode = ctlr->buswidth_override_bits; 589 spi->num_chipselect = 1; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline int spi_dev_check_cs(struct device *dev, 627 struct spi_device *spi, u8 idx, 628 struct spi_device *new_spi, u8 new_idx) 629 { 630 u8 cs, cs_new; 631 u8 idx_new; 632 633 cs = spi_get_chipselect(spi, idx); 634 for (idx_new = new_idx; idx_new < new_spi->num_chipselect; idx_new++) { 635 cs_new = spi_get_chipselect(new_spi, idx_new); 636 if (cs == cs_new) { 637 dev_err(dev, "chipselect %u already in use\n", cs_new); 638 return -EBUSY; 639 } 640 } 641 return 0; 642 } 643 644 static int spi_dev_check(struct device *dev, void *data) 645 { 646 struct spi_device *spi = to_spi_device(dev); 647 struct spi_device *new_spi = data; 648 int status, idx; 649 650 if (spi->controller == new_spi->controller) { 651 for (idx = 0; idx < spi->num_chipselect; idx++) { 652 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 653 if (status) 654 return status; 655 } 656 } 657 return 0; 658 } 659 660 static void spi_cleanup(struct spi_device *spi) 661 { 662 if (spi->controller->cleanup) 663 spi->controller->cleanup(spi); 664 } 665 666 static int __spi_add_device(struct spi_device *spi) 667 { 668 struct spi_controller *ctlr = spi->controller; 669 struct device *dev = ctlr->dev.parent; 670 int status, idx; 671 u8 cs; 672 673 if (spi->num_chipselect > SPI_DEVICE_CS_CNT_MAX) { 674 dev_err(dev, "num_cs %d > max %d\n", spi->num_chipselect, 675 SPI_DEVICE_CS_CNT_MAX); 676 return -EOVERFLOW; 677 } 678 679 for (idx = 0; idx < spi->num_chipselect; idx++) { 680 /* Chipselects are numbered 0..max; validate. */ 681 cs = spi_get_chipselect(spi, idx); 682 if (cs >= ctlr->num_chipselect) { 683 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 684 ctlr->num_chipselect); 685 return -EINVAL; 686 } 687 } 688 689 /* 690 * Make sure that multiple logical CS doesn't map to the same physical CS. 691 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 692 */ 693 if (!spi_controller_is_target(ctlr)) { 694 for (idx = 0; idx < spi->num_chipselect; idx++) { 695 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 696 if (status) 697 return status; 698 } 699 } 700 701 /* Initialize unused logical CS as invalid */ 702 for (idx = spi->num_chipselect; idx < SPI_DEVICE_CS_CNT_MAX; idx++) 703 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 704 705 /* Set the bus ID string */ 706 spi_dev_set_name(spi); 707 708 /* 709 * We need to make sure there's no other device with this 710 * chipselect **BEFORE** we call setup(), else we'll trash 711 * its configuration. 712 */ 713 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 714 if (status) 715 return status; 716 717 /* Controller may unregister concurrently */ 718 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 719 !device_is_registered(&ctlr->dev)) { 720 return -ENODEV; 721 } 722 723 if (ctlr->cs_gpiods) { 724 u8 cs; 725 726 for (idx = 0; idx < spi->num_chipselect; idx++) { 727 cs = spi_get_chipselect(spi, idx); 728 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 729 } 730 } 731 732 /* 733 * Drivers may modify this initial i/o setup, but will 734 * normally rely on the device being setup. Devices 735 * using SPI_CS_HIGH can't coexist well otherwise... 736 */ 737 status = spi_setup(spi); 738 if (status < 0) { 739 dev_err(dev, "can't setup %s, status %d\n", 740 dev_name(&spi->dev), status); 741 return status; 742 } 743 744 /* Device may be bound to an active driver when this returns */ 745 status = device_add(&spi->dev); 746 if (status < 0) { 747 dev_err(dev, "can't add %s, status %d\n", 748 dev_name(&spi->dev), status); 749 spi_cleanup(spi); 750 } else { 751 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 752 } 753 754 return status; 755 } 756 757 /** 758 * spi_add_device - Add spi_device allocated with spi_alloc_device 759 * @spi: spi_device to register 760 * 761 * Companion function to spi_alloc_device. Devices allocated with 762 * spi_alloc_device can be added onto the SPI bus with this function. 763 * 764 * Return: 0 on success; negative errno on failure 765 */ 766 int spi_add_device(struct spi_device *spi) 767 { 768 struct spi_controller *ctlr = spi->controller; 769 int status; 770 771 /* Set the bus ID string */ 772 spi_dev_set_name(spi); 773 774 mutex_lock(&ctlr->add_lock); 775 status = __spi_add_device(spi); 776 mutex_unlock(&ctlr->add_lock); 777 return status; 778 } 779 EXPORT_SYMBOL_GPL(spi_add_device); 780 781 /** 782 * spi_new_device - instantiate one new SPI device 783 * @ctlr: Controller to which device is connected 784 * @chip: Describes the SPI device 785 * Context: can sleep 786 * 787 * On typical mainboards, this is purely internal; and it's not needed 788 * after board init creates the hard-wired devices. Some development 789 * platforms may not be able to use spi_register_board_info though, and 790 * this is exported so that for example a USB or parport based adapter 791 * driver could add devices (which it would learn about out-of-band). 792 * 793 * Return: the new device, or NULL. 794 */ 795 struct spi_device *spi_new_device(struct spi_controller *ctlr, 796 struct spi_board_info *chip) 797 { 798 struct spi_device *proxy; 799 int status; 800 801 /* 802 * NOTE: caller did any chip->bus_num checks necessary. 803 * 804 * Also, unless we change the return value convention to use 805 * error-or-pointer (not NULL-or-pointer), troubleshootability 806 * suggests syslogged diagnostics are best here (ugh). 807 */ 808 809 proxy = spi_alloc_device(ctlr); 810 if (!proxy) 811 return NULL; 812 813 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 814 815 /* Use provided chip-select for proxy device */ 816 spi_set_chipselect(proxy, 0, chip->chip_select); 817 818 proxy->max_speed_hz = chip->max_speed_hz; 819 proxy->mode = chip->mode; 820 proxy->irq = chip->irq; 821 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 822 proxy->dev.platform_data = (void *) chip->platform_data; 823 proxy->controller_data = chip->controller_data; 824 proxy->controller_state = NULL; 825 /* 826 * By default spi->chip_select[0] will hold the physical CS number, 827 * so set bit 0 in spi->cs_index_mask. 828 */ 829 proxy->cs_index_mask = BIT(0); 830 831 if (chip->swnode) { 832 status = device_add_software_node(&proxy->dev, chip->swnode); 833 if (status) { 834 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 835 chip->modalias, status); 836 goto err_dev_put; 837 } 838 } 839 840 status = spi_add_device(proxy); 841 if (status < 0) 842 goto err_dev_put; 843 844 return proxy; 845 846 err_dev_put: 847 device_remove_software_node(&proxy->dev); 848 spi_dev_put(proxy); 849 return NULL; 850 } 851 EXPORT_SYMBOL_GPL(spi_new_device); 852 853 /** 854 * spi_unregister_device - unregister a single SPI device 855 * @spi: spi_device to unregister 856 * 857 * Start making the passed SPI device vanish. Normally this would be handled 858 * by spi_unregister_controller(). 859 */ 860 void spi_unregister_device(struct spi_device *spi) 861 { 862 struct fwnode_handle *fwnode; 863 864 if (!spi) 865 return; 866 867 fwnode = dev_fwnode(&spi->dev); 868 if (is_of_node(fwnode)) { 869 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED); 870 of_node_put(to_of_node(fwnode)); 871 } else if (is_acpi_device_node(fwnode)) { 872 acpi_device_clear_enumerated(to_acpi_device_node(fwnode)); 873 } 874 device_remove_software_node(&spi->dev); 875 device_del(&spi->dev); 876 spi_cleanup(spi); 877 put_device(&spi->dev); 878 } 879 EXPORT_SYMBOL_GPL(spi_unregister_device); 880 881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 882 struct spi_board_info *bi) 883 { 884 struct spi_device *dev; 885 886 if (ctlr->bus_num != bi->bus_num) 887 return; 888 889 dev = spi_new_device(ctlr, bi); 890 if (!dev) 891 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 892 bi->modalias); 893 } 894 895 /** 896 * spi_register_board_info - register SPI devices for a given board 897 * @info: array of chip descriptors 898 * @n: how many descriptors are provided 899 * Context: can sleep 900 * 901 * Board-specific early init code calls this (probably during arch_initcall) 902 * with segments of the SPI device table. Any device nodes are created later, 903 * after the relevant parent SPI controller (bus_num) is defined. We keep 904 * this table of devices forever, so that reloading a controller driver will 905 * not make Linux forget about these hard-wired devices. 906 * 907 * Other code can also call this, e.g. a particular add-on board might provide 908 * SPI devices through its expansion connector, so code initializing that board 909 * would naturally declare its SPI devices. 910 * 911 * The board info passed can safely be __initdata ... but be careful of 912 * any embedded pointers (platform_data, etc), they're copied as-is. 913 * 914 * Return: zero on success, else a negative error code. 915 */ 916 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 917 { 918 struct boardinfo *bi; 919 int i; 920 921 if (!n) 922 return 0; 923 924 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 925 if (!bi) 926 return -ENOMEM; 927 928 for (i = 0; i < n; i++, bi++, info++) { 929 struct spi_controller *ctlr; 930 931 memcpy(&bi->board_info, info, sizeof(*info)); 932 933 mutex_lock(&board_lock); 934 list_add_tail(&bi->list, &board_list); 935 list_for_each_entry(ctlr, &spi_controller_list, list) 936 spi_match_controller_to_boardinfo(ctlr, 937 &bi->board_info); 938 mutex_unlock(&board_lock); 939 } 940 941 return 0; 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 /* Core methods for SPI resource management */ 947 948 /** 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed 950 * during the processing of a spi_message while using 951 * spi_transfer_one 952 * @spi: the SPI device for which we allocate memory 953 * @release: the release code to execute for this resource 954 * @size: size to alloc and return 955 * @gfp: GFP allocation flags 956 * 957 * Return: the pointer to the allocated data 958 * 959 * This may get enhanced in the future to allocate from a memory pool 960 * of the @spi_device or @spi_controller to avoid repeated allocations. 961 */ 962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 963 size_t size, gfp_t gfp) 964 { 965 struct spi_res *sres; 966 967 sres = kzalloc(sizeof(*sres) + size, gfp); 968 if (!sres) 969 return NULL; 970 971 INIT_LIST_HEAD(&sres->entry); 972 sres->release = release; 973 974 return sres->data; 975 } 976 977 /** 978 * spi_res_free - free an SPI resource 979 * @res: pointer to the custom data of a resource 980 */ 981 static void spi_res_free(void *res) 982 { 983 struct spi_res *sres = container_of(res, struct spi_res, data); 984 985 WARN_ON(!list_empty(&sres->entry)); 986 kfree(sres); 987 } 988 989 /** 990 * spi_res_add - add a spi_res to the spi_message 991 * @message: the SPI message 992 * @res: the spi_resource 993 */ 994 static void spi_res_add(struct spi_message *message, void *res) 995 { 996 struct spi_res *sres = container_of(res, struct spi_res, data); 997 998 WARN_ON(!list_empty(&sres->entry)); 999 list_add_tail(&sres->entry, &message->resources); 1000 } 1001 1002 /** 1003 * spi_res_release - release all SPI resources for this message 1004 * @ctlr: the @spi_controller 1005 * @message: the @spi_message 1006 */ 1007 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1008 { 1009 struct spi_res *res, *tmp; 1010 1011 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1012 if (res->release) 1013 res->release(ctlr, message, res->data); 1014 1015 list_del(&res->entry); 1016 1017 kfree(res); 1018 } 1019 } 1020 1021 /*-------------------------------------------------------------------------*/ 1022 #define spi_for_each_valid_cs(spi, idx) \ 1023 for (idx = 0; idx < spi->num_chipselect; idx++) \ 1024 if (!(spi->cs_index_mask & BIT(idx))) {} else 1025 1026 static inline bool spi_is_last_cs(struct spi_device *spi) 1027 { 1028 u8 idx; 1029 bool last = false; 1030 1031 spi_for_each_valid_cs(spi, idx) { 1032 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1033 last = true; 1034 } 1035 return last; 1036 } 1037 1038 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1039 { 1040 /* 1041 * Historically ACPI has no means of the GPIO polarity and 1042 * thus the SPISerialBus() resource defines it on the per-chip 1043 * basis. In order to avoid a chain of negations, the GPIO 1044 * polarity is considered being Active High. Even for the cases 1045 * when _DSD() is involved (in the updated versions of ACPI) 1046 * the GPIO CS polarity must be defined Active High to avoid 1047 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1048 * into account. 1049 */ 1050 if (is_acpi_device_node(dev_fwnode(&spi->dev))) 1051 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1052 else 1053 /* Polarity handled by GPIO library */ 1054 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1055 1056 if (activate) 1057 spi_delay_exec(&spi->cs_setup, NULL); 1058 else 1059 spi_delay_exec(&spi->cs_inactive, NULL); 1060 } 1061 1062 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1063 { 1064 bool activate = enable; 1065 u8 idx; 1066 1067 /* 1068 * Avoid calling into the driver (or doing delays) if the chip select 1069 * isn't actually changing from the last time this was called. 1070 */ 1071 if (!force && (enable == spi_is_last_cs(spi)) && 1072 (spi->controller->last_cs_index_mask == spi->cs_index_mask) && 1073 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1074 return; 1075 1076 trace_spi_set_cs(spi, activate); 1077 1078 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1079 for (idx = 0; idx < SPI_DEVICE_CS_CNT_MAX; idx++) { 1080 if (enable && idx < spi->num_chipselect) 1081 spi->controller->last_cs[idx] = spi_get_chipselect(spi, 0); 1082 else 1083 spi->controller->last_cs[idx] = SPI_INVALID_CS; 1084 } 1085 1086 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1087 if (spi->controller->last_cs_mode_high) 1088 enable = !enable; 1089 1090 /* 1091 * Handle chip select delays for GPIO based CS or controllers without 1092 * programmable chip select timing. 1093 */ 1094 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1095 spi_delay_exec(&spi->cs_hold, NULL); 1096 1097 if (spi_is_csgpiod(spi)) { 1098 if (!(spi->mode & SPI_NO_CS)) { 1099 spi_for_each_valid_cs(spi, idx) { 1100 if (spi_get_csgpiod(spi, idx)) 1101 spi_toggle_csgpiod(spi, idx, enable, activate); 1102 } 1103 } 1104 /* Some SPI controllers need both GPIO CS & ->set_cs() */ 1105 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1106 spi->controller->set_cs) 1107 spi->controller->set_cs(spi, !enable); 1108 } else if (spi->controller->set_cs) { 1109 spi->controller->set_cs(spi, !enable); 1110 } 1111 1112 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1113 if (activate) 1114 spi_delay_exec(&spi->cs_setup, NULL); 1115 else 1116 spi_delay_exec(&spi->cs_inactive, NULL); 1117 } 1118 } 1119 1120 #ifdef CONFIG_HAS_DMA 1121 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1122 struct sg_table *sgt, void *buf, size_t len, 1123 enum dma_data_direction dir, unsigned long attrs) 1124 { 1125 const bool vmalloced_buf = is_vmalloc_addr(buf); 1126 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1127 #ifdef CONFIG_HIGHMEM 1128 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1129 (unsigned long)buf < (PKMAP_BASE + 1130 (LAST_PKMAP * PAGE_SIZE))); 1131 #else 1132 const bool kmap_buf = false; 1133 #endif 1134 int desc_len; 1135 int sgs; 1136 struct page *vm_page; 1137 struct scatterlist *sg; 1138 void *sg_buf; 1139 size_t min; 1140 int i, ret; 1141 1142 if (vmalloced_buf || kmap_buf) { 1143 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1144 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1145 } else if (virt_addr_valid(buf)) { 1146 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1147 sgs = DIV_ROUND_UP(len, desc_len); 1148 } else { 1149 return -EINVAL; 1150 } 1151 1152 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1153 if (ret != 0) 1154 return ret; 1155 1156 sg = &sgt->sgl[0]; 1157 for (i = 0; i < sgs; i++) { 1158 1159 if (vmalloced_buf || kmap_buf) { 1160 /* 1161 * Next scatterlist entry size is the minimum between 1162 * the desc_len and the remaining buffer length that 1163 * fits in a page. 1164 */ 1165 min = min_t(size_t, desc_len, 1166 min_t(size_t, len, 1167 PAGE_SIZE - offset_in_page(buf))); 1168 if (vmalloced_buf) 1169 vm_page = vmalloc_to_page(buf); 1170 else 1171 vm_page = kmap_to_page(buf); 1172 if (!vm_page) { 1173 sg_free_table(sgt); 1174 return -ENOMEM; 1175 } 1176 sg_set_page(sg, vm_page, 1177 min, offset_in_page(buf)); 1178 } else { 1179 min = min_t(size_t, len, desc_len); 1180 sg_buf = buf; 1181 sg_set_buf(sg, sg_buf, min); 1182 } 1183 1184 buf += min; 1185 len -= min; 1186 sg = sg_next(sg); 1187 } 1188 1189 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1190 if (ret < 0) { 1191 sg_free_table(sgt); 1192 return ret; 1193 } 1194 1195 return 0; 1196 } 1197 1198 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1199 struct sg_table *sgt, void *buf, size_t len, 1200 enum dma_data_direction dir) 1201 { 1202 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1203 } 1204 1205 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1206 struct device *dev, struct sg_table *sgt, 1207 enum dma_data_direction dir, 1208 unsigned long attrs) 1209 { 1210 dma_unmap_sgtable(dev, sgt, dir, attrs); 1211 sg_free_table(sgt); 1212 sgt->orig_nents = 0; 1213 sgt->nents = 0; 1214 } 1215 1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1217 struct sg_table *sgt, enum dma_data_direction dir) 1218 { 1219 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1220 } 1221 1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1223 { 1224 struct device *tx_dev, *rx_dev; 1225 struct spi_transfer *xfer; 1226 int ret; 1227 1228 if (!ctlr->can_dma) 1229 return 0; 1230 1231 if (ctlr->dma_tx) 1232 tx_dev = ctlr->dma_tx->device->dev; 1233 else if (ctlr->dma_map_dev) 1234 tx_dev = ctlr->dma_map_dev; 1235 else 1236 tx_dev = ctlr->dev.parent; 1237 1238 if (ctlr->dma_rx) 1239 rx_dev = ctlr->dma_rx->device->dev; 1240 else if (ctlr->dma_map_dev) 1241 rx_dev = ctlr->dma_map_dev; 1242 else 1243 rx_dev = ctlr->dev.parent; 1244 1245 ret = -ENOMSG; 1246 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1247 /* The sync is done before each transfer. */ 1248 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1249 1250 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1251 continue; 1252 1253 if (xfer->tx_buf != NULL) { 1254 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1255 (void *)xfer->tx_buf, 1256 xfer->len, DMA_TO_DEVICE, 1257 attrs); 1258 if (ret != 0) 1259 return ret; 1260 1261 xfer->tx_sg_mapped = true; 1262 } 1263 1264 if (xfer->rx_buf != NULL) { 1265 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1266 xfer->rx_buf, xfer->len, 1267 DMA_FROM_DEVICE, attrs); 1268 if (ret != 0) { 1269 spi_unmap_buf_attrs(ctlr, tx_dev, 1270 &xfer->tx_sg, DMA_TO_DEVICE, 1271 attrs); 1272 1273 return ret; 1274 } 1275 1276 xfer->rx_sg_mapped = true; 1277 } 1278 } 1279 /* No transfer has been mapped, bail out with success */ 1280 if (ret) 1281 return 0; 1282 1283 ctlr->cur_rx_dma_dev = rx_dev; 1284 ctlr->cur_tx_dma_dev = tx_dev; 1285 1286 return 0; 1287 } 1288 1289 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1290 { 1291 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1292 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1293 struct spi_transfer *xfer; 1294 1295 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1296 /* The sync has already been done after each transfer. */ 1297 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1298 1299 if (xfer->rx_sg_mapped) 1300 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1301 DMA_FROM_DEVICE, attrs); 1302 xfer->rx_sg_mapped = false; 1303 1304 if (xfer->tx_sg_mapped) 1305 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1306 DMA_TO_DEVICE, attrs); 1307 xfer->tx_sg_mapped = false; 1308 } 1309 1310 return 0; 1311 } 1312 1313 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1314 struct spi_transfer *xfer) 1315 { 1316 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1317 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1318 1319 if (xfer->tx_sg_mapped) 1320 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1321 if (xfer->rx_sg_mapped) 1322 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1323 } 1324 1325 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1326 struct spi_transfer *xfer) 1327 { 1328 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1329 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1330 1331 if (xfer->rx_sg_mapped) 1332 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1333 if (xfer->tx_sg_mapped) 1334 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1335 } 1336 #else /* !CONFIG_HAS_DMA */ 1337 static inline int __spi_map_msg(struct spi_controller *ctlr, 1338 struct spi_message *msg) 1339 { 1340 return 0; 1341 } 1342 1343 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1344 struct spi_message *msg) 1345 { 1346 return 0; 1347 } 1348 1349 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1350 struct spi_transfer *xfer) 1351 { 1352 } 1353 1354 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1355 struct spi_transfer *xfer) 1356 { 1357 } 1358 #endif /* !CONFIG_HAS_DMA */ 1359 1360 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1361 struct spi_message *msg) 1362 { 1363 struct spi_transfer *xfer; 1364 1365 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1366 /* 1367 * Restore the original value of tx_buf or rx_buf if they are 1368 * NULL. 1369 */ 1370 if (xfer->tx_buf == ctlr->dummy_tx) 1371 xfer->tx_buf = NULL; 1372 if (xfer->rx_buf == ctlr->dummy_rx) 1373 xfer->rx_buf = NULL; 1374 } 1375 1376 return __spi_unmap_msg(ctlr, msg); 1377 } 1378 1379 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1380 { 1381 struct spi_transfer *xfer; 1382 void *tmp; 1383 unsigned int max_tx, max_rx; 1384 1385 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1386 && !(msg->spi->mode & SPI_3WIRE)) { 1387 max_tx = 0; 1388 max_rx = 0; 1389 1390 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1391 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1392 !xfer->tx_buf) 1393 max_tx = max(xfer->len, max_tx); 1394 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1395 !xfer->rx_buf) 1396 max_rx = max(xfer->len, max_rx); 1397 } 1398 1399 if (max_tx) { 1400 tmp = krealloc(ctlr->dummy_tx, max_tx, 1401 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1402 if (!tmp) 1403 return -ENOMEM; 1404 ctlr->dummy_tx = tmp; 1405 } 1406 1407 if (max_rx) { 1408 tmp = krealloc(ctlr->dummy_rx, max_rx, 1409 GFP_KERNEL | GFP_DMA); 1410 if (!tmp) 1411 return -ENOMEM; 1412 ctlr->dummy_rx = tmp; 1413 } 1414 1415 if (max_tx || max_rx) { 1416 list_for_each_entry(xfer, &msg->transfers, 1417 transfer_list) { 1418 if (!xfer->len) 1419 continue; 1420 if (!xfer->tx_buf) 1421 xfer->tx_buf = ctlr->dummy_tx; 1422 if (!xfer->rx_buf) 1423 xfer->rx_buf = ctlr->dummy_rx; 1424 } 1425 } 1426 } 1427 1428 return __spi_map_msg(ctlr, msg); 1429 } 1430 1431 static int spi_transfer_wait(struct spi_controller *ctlr, 1432 struct spi_message *msg, 1433 struct spi_transfer *xfer) 1434 { 1435 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1436 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1437 u32 speed_hz = xfer->speed_hz; 1438 unsigned long long ms; 1439 1440 if (spi_controller_is_target(ctlr)) { 1441 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1442 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1443 return -EINTR; 1444 } 1445 } else { 1446 if (!speed_hz) 1447 speed_hz = 100000; 1448 1449 /* 1450 * For each byte we wait for 8 cycles of the SPI clock. 1451 * Since speed is defined in Hz and we want milliseconds, 1452 * use respective multiplier, but before the division, 1453 * otherwise we may get 0 for short transfers. 1454 */ 1455 ms = 8LL * MSEC_PER_SEC * xfer->len; 1456 do_div(ms, speed_hz); 1457 1458 /* 1459 * Increase it twice and add 200 ms tolerance, use 1460 * predefined maximum in case of overflow. 1461 */ 1462 ms += ms + 200; 1463 if (ms > UINT_MAX) 1464 ms = UINT_MAX; 1465 1466 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1467 msecs_to_jiffies(ms)); 1468 1469 if (ms == 0) { 1470 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1471 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1472 dev_err(&msg->spi->dev, 1473 "SPI transfer timed out\n"); 1474 return -ETIMEDOUT; 1475 } 1476 1477 if (xfer->error & SPI_TRANS_FAIL_IO) 1478 return -EIO; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static void _spi_transfer_delay_ns(u32 ns) 1485 { 1486 if (!ns) 1487 return; 1488 if (ns <= NSEC_PER_USEC) { 1489 ndelay(ns); 1490 } else { 1491 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1492 1493 fsleep(us); 1494 } 1495 } 1496 1497 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1498 { 1499 u32 delay = _delay->value; 1500 u32 unit = _delay->unit; 1501 u32 hz; 1502 1503 if (!delay) 1504 return 0; 1505 1506 switch (unit) { 1507 case SPI_DELAY_UNIT_USECS: 1508 delay *= NSEC_PER_USEC; 1509 break; 1510 case SPI_DELAY_UNIT_NSECS: 1511 /* Nothing to do here */ 1512 break; 1513 case SPI_DELAY_UNIT_SCK: 1514 /* Clock cycles need to be obtained from spi_transfer */ 1515 if (!xfer) 1516 return -EINVAL; 1517 /* 1518 * If there is unknown effective speed, approximate it 1519 * by underestimating with half of the requested Hz. 1520 */ 1521 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1522 if (!hz) 1523 return -EINVAL; 1524 1525 /* Convert delay to nanoseconds */ 1526 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1527 break; 1528 default: 1529 return -EINVAL; 1530 } 1531 1532 return delay; 1533 } 1534 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1535 1536 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1537 { 1538 int delay; 1539 1540 might_sleep(); 1541 1542 if (!_delay) 1543 return -EINVAL; 1544 1545 delay = spi_delay_to_ns(_delay, xfer); 1546 if (delay < 0) 1547 return delay; 1548 1549 _spi_transfer_delay_ns(delay); 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(spi_delay_exec); 1554 1555 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1556 struct spi_transfer *xfer) 1557 { 1558 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1559 u32 delay = xfer->cs_change_delay.value; 1560 u32 unit = xfer->cs_change_delay.unit; 1561 int ret; 1562 1563 /* Return early on "fast" mode - for everything but USECS */ 1564 if (!delay) { 1565 if (unit == SPI_DELAY_UNIT_USECS) 1566 _spi_transfer_delay_ns(default_delay_ns); 1567 return; 1568 } 1569 1570 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1571 if (ret) { 1572 dev_err_once(&msg->spi->dev, 1573 "Use of unsupported delay unit %i, using default of %luus\n", 1574 unit, default_delay_ns / NSEC_PER_USEC); 1575 _spi_transfer_delay_ns(default_delay_ns); 1576 } 1577 } 1578 1579 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1580 struct spi_transfer *xfer) 1581 { 1582 _spi_transfer_cs_change_delay(msg, xfer); 1583 } 1584 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1585 1586 /* 1587 * spi_transfer_one_message - Default implementation of transfer_one_message() 1588 * 1589 * This is a standard implementation of transfer_one_message() for 1590 * drivers which implement a transfer_one() operation. It provides 1591 * standard handling of delays and chip select management. 1592 */ 1593 static int spi_transfer_one_message(struct spi_controller *ctlr, 1594 struct spi_message *msg) 1595 { 1596 struct spi_transfer *xfer; 1597 bool keep_cs = false; 1598 int ret = 0; 1599 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1600 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1601 1602 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1603 spi_set_cs(msg->spi, !xfer->cs_off, false); 1604 1605 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1606 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1607 1608 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1609 trace_spi_transfer_start(msg, xfer); 1610 1611 spi_statistics_add_transfer_stats(statm, xfer, msg); 1612 spi_statistics_add_transfer_stats(stats, xfer, msg); 1613 1614 if (!ctlr->ptp_sts_supported) { 1615 xfer->ptp_sts_word_pre = 0; 1616 ptp_read_system_prets(xfer->ptp_sts); 1617 } 1618 1619 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1620 reinit_completion(&ctlr->xfer_completion); 1621 1622 fallback_pio: 1623 spi_dma_sync_for_device(ctlr, xfer); 1624 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1625 if (ret < 0) { 1626 spi_dma_sync_for_cpu(ctlr, xfer); 1627 1628 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1629 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1630 __spi_unmap_msg(ctlr, msg); 1631 ctlr->fallback = true; 1632 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1633 goto fallback_pio; 1634 } 1635 1636 SPI_STATISTICS_INCREMENT_FIELD(statm, 1637 errors); 1638 SPI_STATISTICS_INCREMENT_FIELD(stats, 1639 errors); 1640 dev_err(&msg->spi->dev, 1641 "SPI transfer failed: %d\n", ret); 1642 goto out; 1643 } 1644 1645 if (ret > 0) { 1646 ret = spi_transfer_wait(ctlr, msg, xfer); 1647 if (ret < 0) 1648 msg->status = ret; 1649 } 1650 1651 spi_dma_sync_for_cpu(ctlr, xfer); 1652 } else { 1653 if (xfer->len) 1654 dev_err(&msg->spi->dev, 1655 "Bufferless transfer has length %u\n", 1656 xfer->len); 1657 } 1658 1659 if (!ctlr->ptp_sts_supported) { 1660 ptp_read_system_postts(xfer->ptp_sts); 1661 xfer->ptp_sts_word_post = xfer->len; 1662 } 1663 1664 trace_spi_transfer_stop(msg, xfer); 1665 1666 if (msg->status != -EINPROGRESS) 1667 goto out; 1668 1669 spi_transfer_delay_exec(xfer); 1670 1671 if (xfer->cs_change) { 1672 if (list_is_last(&xfer->transfer_list, 1673 &msg->transfers)) { 1674 keep_cs = true; 1675 } else { 1676 if (!xfer->cs_off) 1677 spi_set_cs(msg->spi, false, false); 1678 _spi_transfer_cs_change_delay(msg, xfer); 1679 if (!list_next_entry(xfer, transfer_list)->cs_off) 1680 spi_set_cs(msg->spi, true, false); 1681 } 1682 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1683 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1684 spi_set_cs(msg->spi, xfer->cs_off, false); 1685 } 1686 1687 msg->actual_length += xfer->len; 1688 } 1689 1690 out: 1691 if (ret != 0 || !keep_cs) 1692 spi_set_cs(msg->spi, false, false); 1693 1694 if (msg->status == -EINPROGRESS) 1695 msg->status = ret; 1696 1697 if (msg->status && ctlr->handle_err) 1698 ctlr->handle_err(ctlr, msg); 1699 1700 spi_finalize_current_message(ctlr); 1701 1702 return ret; 1703 } 1704 1705 /** 1706 * spi_finalize_current_transfer - report completion of a transfer 1707 * @ctlr: the controller reporting completion 1708 * 1709 * Called by SPI drivers using the core transfer_one_message() 1710 * implementation to notify it that the current interrupt driven 1711 * transfer has finished and the next one may be scheduled. 1712 */ 1713 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1714 { 1715 complete(&ctlr->xfer_completion); 1716 } 1717 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1718 1719 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1720 { 1721 if (ctlr->auto_runtime_pm) { 1722 pm_runtime_put_autosuspend(ctlr->dev.parent); 1723 } 1724 } 1725 1726 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1727 struct spi_message *msg, bool was_busy) 1728 { 1729 struct spi_transfer *xfer; 1730 int ret; 1731 1732 if (!was_busy && ctlr->auto_runtime_pm) { 1733 ret = pm_runtime_get_sync(ctlr->dev.parent); 1734 if (ret < 0) { 1735 pm_runtime_put_noidle(ctlr->dev.parent); 1736 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1737 ret); 1738 1739 msg->status = ret; 1740 spi_finalize_current_message(ctlr); 1741 1742 return ret; 1743 } 1744 } 1745 1746 if (!was_busy) 1747 trace_spi_controller_busy(ctlr); 1748 1749 if (!was_busy && ctlr->prepare_transfer_hardware) { 1750 ret = ctlr->prepare_transfer_hardware(ctlr); 1751 if (ret) { 1752 dev_err(&ctlr->dev, 1753 "failed to prepare transfer hardware: %d\n", 1754 ret); 1755 1756 if (ctlr->auto_runtime_pm) 1757 pm_runtime_put(ctlr->dev.parent); 1758 1759 msg->status = ret; 1760 spi_finalize_current_message(ctlr); 1761 1762 return ret; 1763 } 1764 } 1765 1766 trace_spi_message_start(msg); 1767 1768 if (ctlr->prepare_message) { 1769 ret = ctlr->prepare_message(ctlr, msg); 1770 if (ret) { 1771 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1772 ret); 1773 msg->status = ret; 1774 spi_finalize_current_message(ctlr); 1775 return ret; 1776 } 1777 msg->prepared = true; 1778 } 1779 1780 ret = spi_map_msg(ctlr, msg); 1781 if (ret) { 1782 msg->status = ret; 1783 spi_finalize_current_message(ctlr); 1784 return ret; 1785 } 1786 1787 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1788 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1789 xfer->ptp_sts_word_pre = 0; 1790 ptp_read_system_prets(xfer->ptp_sts); 1791 } 1792 } 1793 1794 /* 1795 * Drivers implementation of transfer_one_message() must arrange for 1796 * spi_finalize_current_message() to get called. Most drivers will do 1797 * this in the calling context, but some don't. For those cases, a 1798 * completion is used to guarantee that this function does not return 1799 * until spi_finalize_current_message() is done accessing 1800 * ctlr->cur_msg. 1801 * Use of the following two flags enable to opportunistically skip the 1802 * use of the completion since its use involves expensive spin locks. 1803 * In case of a race with the context that calls 1804 * spi_finalize_current_message() the completion will always be used, 1805 * due to strict ordering of these flags using barriers. 1806 */ 1807 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1808 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1809 reinit_completion(&ctlr->cur_msg_completion); 1810 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1811 1812 ret = ctlr->transfer_one_message(ctlr, msg); 1813 if (ret) { 1814 dev_err(&ctlr->dev, 1815 "failed to transfer one message from queue\n"); 1816 return ret; 1817 } 1818 1819 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1820 smp_mb(); /* See spi_finalize_current_message()... */ 1821 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1822 wait_for_completion(&ctlr->cur_msg_completion); 1823 1824 return 0; 1825 } 1826 1827 /** 1828 * __spi_pump_messages - function which processes SPI message queue 1829 * @ctlr: controller to process queue for 1830 * @in_kthread: true if we are in the context of the message pump thread 1831 * 1832 * This function checks if there is any SPI message in the queue that 1833 * needs processing and if so call out to the driver to initialize hardware 1834 * and transfer each message. 1835 * 1836 * Note that it is called both from the kthread itself and also from 1837 * inside spi_sync(); the queue extraction handling at the top of the 1838 * function should deal with this safely. 1839 */ 1840 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1841 { 1842 struct spi_message *msg; 1843 bool was_busy = false; 1844 unsigned long flags; 1845 int ret; 1846 1847 /* Take the I/O mutex */ 1848 mutex_lock(&ctlr->io_mutex); 1849 1850 /* Lock queue */ 1851 spin_lock_irqsave(&ctlr->queue_lock, flags); 1852 1853 /* Make sure we are not already running a message */ 1854 if (ctlr->cur_msg) 1855 goto out_unlock; 1856 1857 /* Check if the queue is idle */ 1858 if (list_empty(&ctlr->queue) || !ctlr->running) { 1859 if (!ctlr->busy) 1860 goto out_unlock; 1861 1862 /* Defer any non-atomic teardown to the thread */ 1863 if (!in_kthread) { 1864 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1865 !ctlr->unprepare_transfer_hardware) { 1866 spi_idle_runtime_pm(ctlr); 1867 ctlr->busy = false; 1868 ctlr->queue_empty = true; 1869 trace_spi_controller_idle(ctlr); 1870 } else { 1871 kthread_queue_work(ctlr->kworker, 1872 &ctlr->pump_messages); 1873 } 1874 goto out_unlock; 1875 } 1876 1877 ctlr->busy = false; 1878 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1879 1880 kfree(ctlr->dummy_rx); 1881 ctlr->dummy_rx = NULL; 1882 kfree(ctlr->dummy_tx); 1883 ctlr->dummy_tx = NULL; 1884 if (ctlr->unprepare_transfer_hardware && 1885 ctlr->unprepare_transfer_hardware(ctlr)) 1886 dev_err(&ctlr->dev, 1887 "failed to unprepare transfer hardware\n"); 1888 spi_idle_runtime_pm(ctlr); 1889 trace_spi_controller_idle(ctlr); 1890 1891 spin_lock_irqsave(&ctlr->queue_lock, flags); 1892 ctlr->queue_empty = true; 1893 goto out_unlock; 1894 } 1895 1896 /* Extract head of queue */ 1897 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1898 ctlr->cur_msg = msg; 1899 1900 list_del_init(&msg->queue); 1901 if (ctlr->busy) 1902 was_busy = true; 1903 else 1904 ctlr->busy = true; 1905 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1906 1907 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1908 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1909 1910 ctlr->cur_msg = NULL; 1911 ctlr->fallback = false; 1912 1913 mutex_unlock(&ctlr->io_mutex); 1914 1915 /* Prod the scheduler in case transfer_one() was busy waiting */ 1916 if (!ret) 1917 cond_resched(); 1918 return; 1919 1920 out_unlock: 1921 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1922 mutex_unlock(&ctlr->io_mutex); 1923 } 1924 1925 /** 1926 * spi_pump_messages - kthread work function which processes spi message queue 1927 * @work: pointer to kthread work struct contained in the controller struct 1928 */ 1929 static void spi_pump_messages(struct kthread_work *work) 1930 { 1931 struct spi_controller *ctlr = 1932 container_of(work, struct spi_controller, pump_messages); 1933 1934 __spi_pump_messages(ctlr, true); 1935 } 1936 1937 /** 1938 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1939 * @ctlr: Pointer to the spi_controller structure of the driver 1940 * @xfer: Pointer to the transfer being timestamped 1941 * @progress: How many words (not bytes) have been transferred so far 1942 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1943 * transfer, for less jitter in time measurement. Only compatible 1944 * with PIO drivers. If true, must follow up with 1945 * spi_take_timestamp_post or otherwise system will crash. 1946 * WARNING: for fully predictable results, the CPU frequency must 1947 * also be under control (governor). 1948 * 1949 * This is a helper for drivers to collect the beginning of the TX timestamp 1950 * for the requested byte from the SPI transfer. The frequency with which this 1951 * function must be called (once per word, once for the whole transfer, once 1952 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1953 * greater than or equal to the requested byte at the time of the call. The 1954 * timestamp is only taken once, at the first such call. It is assumed that 1955 * the driver advances its @tx buffer pointer monotonically. 1956 */ 1957 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1958 struct spi_transfer *xfer, 1959 size_t progress, bool irqs_off) 1960 { 1961 if (!xfer->ptp_sts) 1962 return; 1963 1964 if (xfer->timestamped) 1965 return; 1966 1967 if (progress > xfer->ptp_sts_word_pre) 1968 return; 1969 1970 /* Capture the resolution of the timestamp */ 1971 xfer->ptp_sts_word_pre = progress; 1972 1973 if (irqs_off) { 1974 local_irq_save(ctlr->irq_flags); 1975 preempt_disable(); 1976 } 1977 1978 ptp_read_system_prets(xfer->ptp_sts); 1979 } 1980 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1981 1982 /** 1983 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1984 * @ctlr: Pointer to the spi_controller structure of the driver 1985 * @xfer: Pointer to the transfer being timestamped 1986 * @progress: How many words (not bytes) have been transferred so far 1987 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1988 * 1989 * This is a helper for drivers to collect the end of the TX timestamp for 1990 * the requested byte from the SPI transfer. Can be called with an arbitrary 1991 * frequency: only the first call where @tx exceeds or is equal to the 1992 * requested word will be timestamped. 1993 */ 1994 void spi_take_timestamp_post(struct spi_controller *ctlr, 1995 struct spi_transfer *xfer, 1996 size_t progress, bool irqs_off) 1997 { 1998 if (!xfer->ptp_sts) 1999 return; 2000 2001 if (xfer->timestamped) 2002 return; 2003 2004 if (progress < xfer->ptp_sts_word_post) 2005 return; 2006 2007 ptp_read_system_postts(xfer->ptp_sts); 2008 2009 if (irqs_off) { 2010 local_irq_restore(ctlr->irq_flags); 2011 preempt_enable(); 2012 } 2013 2014 /* Capture the resolution of the timestamp */ 2015 xfer->ptp_sts_word_post = progress; 2016 2017 xfer->timestamped = 1; 2018 } 2019 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2020 2021 /** 2022 * spi_set_thread_rt - set the controller to pump at realtime priority 2023 * @ctlr: controller to boost priority of 2024 * 2025 * This can be called because the controller requested realtime priority 2026 * (by setting the ->rt value before calling spi_register_controller()) or 2027 * because a device on the bus said that its transfers needed realtime 2028 * priority. 2029 * 2030 * NOTE: at the moment if any device on a bus says it needs realtime then 2031 * the thread will be at realtime priority for all transfers on that 2032 * controller. If this eventually becomes a problem we may see if we can 2033 * find a way to boost the priority only temporarily during relevant 2034 * transfers. 2035 */ 2036 static void spi_set_thread_rt(struct spi_controller *ctlr) 2037 { 2038 dev_info(&ctlr->dev, 2039 "will run message pump with realtime priority\n"); 2040 sched_set_fifo(ctlr->kworker->task); 2041 } 2042 2043 static int spi_init_queue(struct spi_controller *ctlr) 2044 { 2045 ctlr->running = false; 2046 ctlr->busy = false; 2047 ctlr->queue_empty = true; 2048 2049 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev)); 2050 if (IS_ERR(ctlr->kworker)) { 2051 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2052 return PTR_ERR(ctlr->kworker); 2053 } 2054 2055 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2056 2057 /* 2058 * Controller config will indicate if this controller should run the 2059 * message pump with high (realtime) priority to reduce the transfer 2060 * latency on the bus by minimising the delay between a transfer 2061 * request and the scheduling of the message pump thread. Without this 2062 * setting the message pump thread will remain at default priority. 2063 */ 2064 if (ctlr->rt) 2065 spi_set_thread_rt(ctlr); 2066 2067 return 0; 2068 } 2069 2070 /** 2071 * spi_get_next_queued_message() - called by driver to check for queued 2072 * messages 2073 * @ctlr: the controller to check for queued messages 2074 * 2075 * If there are more messages in the queue, the next message is returned from 2076 * this call. 2077 * 2078 * Return: the next message in the queue, else NULL if the queue is empty. 2079 */ 2080 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2081 { 2082 struct spi_message *next; 2083 unsigned long flags; 2084 2085 /* Get a pointer to the next message, if any */ 2086 spin_lock_irqsave(&ctlr->queue_lock, flags); 2087 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2088 queue); 2089 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2090 2091 return next; 2092 } 2093 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2094 2095 /* 2096 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2097 * and spi_maybe_unoptimize_message() 2098 * @msg: the message to unoptimize 2099 * 2100 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2101 * core should use spi_maybe_unoptimize_message() rather than calling this 2102 * function directly. 2103 * 2104 * It is not valid to call this on a message that is not currently optimized. 2105 */ 2106 static void __spi_unoptimize_message(struct spi_message *msg) 2107 { 2108 struct spi_controller *ctlr = msg->spi->controller; 2109 2110 if (ctlr->unoptimize_message) 2111 ctlr->unoptimize_message(msg); 2112 2113 spi_res_release(ctlr, msg); 2114 2115 msg->optimized = false; 2116 msg->opt_state = NULL; 2117 } 2118 2119 /* 2120 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2121 * @msg: the message to unoptimize 2122 * 2123 * This function is used to unoptimize a message if and only if it was 2124 * optimized by the core (via spi_maybe_optimize_message()). 2125 */ 2126 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2127 { 2128 if (!msg->pre_optimized && msg->optimized && 2129 !msg->spi->controller->defer_optimize_message) 2130 __spi_unoptimize_message(msg); 2131 } 2132 2133 /** 2134 * spi_finalize_current_message() - the current message is complete 2135 * @ctlr: the controller to return the message to 2136 * 2137 * Called by the driver to notify the core that the message in the front of the 2138 * queue is complete and can be removed from the queue. 2139 */ 2140 void spi_finalize_current_message(struct spi_controller *ctlr) 2141 { 2142 struct spi_transfer *xfer; 2143 struct spi_message *mesg; 2144 int ret; 2145 2146 mesg = ctlr->cur_msg; 2147 2148 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2149 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2150 ptp_read_system_postts(xfer->ptp_sts); 2151 xfer->ptp_sts_word_post = xfer->len; 2152 } 2153 } 2154 2155 if (unlikely(ctlr->ptp_sts_supported)) 2156 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2157 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2158 2159 spi_unmap_msg(ctlr, mesg); 2160 2161 if (mesg->prepared && ctlr->unprepare_message) { 2162 ret = ctlr->unprepare_message(ctlr, mesg); 2163 if (ret) { 2164 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2165 ret); 2166 } 2167 } 2168 2169 mesg->prepared = false; 2170 2171 spi_maybe_unoptimize_message(mesg); 2172 2173 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2174 smp_mb(); /* See __spi_pump_transfer_message()... */ 2175 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2176 complete(&ctlr->cur_msg_completion); 2177 2178 trace_spi_message_done(mesg); 2179 2180 mesg->state = NULL; 2181 if (mesg->complete) 2182 mesg->complete(mesg->context); 2183 } 2184 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2185 2186 static int spi_start_queue(struct spi_controller *ctlr) 2187 { 2188 unsigned long flags; 2189 2190 spin_lock_irqsave(&ctlr->queue_lock, flags); 2191 2192 if (ctlr->running || ctlr->busy) { 2193 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2194 return -EBUSY; 2195 } 2196 2197 ctlr->running = true; 2198 ctlr->cur_msg = NULL; 2199 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2200 2201 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2202 2203 return 0; 2204 } 2205 2206 static int spi_stop_queue(struct spi_controller *ctlr) 2207 { 2208 unsigned int limit = 500; 2209 unsigned long flags; 2210 2211 /* 2212 * This is a bit lame, but is optimized for the common execution path. 2213 * A wait_queue on the ctlr->busy could be used, but then the common 2214 * execution path (pump_messages) would be required to call wake_up or 2215 * friends on every SPI message. Do this instead. 2216 */ 2217 do { 2218 spin_lock_irqsave(&ctlr->queue_lock, flags); 2219 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2220 ctlr->running = false; 2221 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2222 return 0; 2223 } 2224 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2225 usleep_range(10000, 11000); 2226 } while (--limit); 2227 2228 return -EBUSY; 2229 } 2230 2231 static int spi_destroy_queue(struct spi_controller *ctlr) 2232 { 2233 int ret; 2234 2235 ret = spi_stop_queue(ctlr); 2236 2237 /* 2238 * kthread_flush_worker will block until all work is done. 2239 * If the reason that stop_queue timed out is that the work will never 2240 * finish, then it does no good to call flush/stop thread, so 2241 * return anyway. 2242 */ 2243 if (ret) { 2244 dev_err(&ctlr->dev, "problem destroying queue\n"); 2245 return ret; 2246 } 2247 2248 kthread_destroy_worker(ctlr->kworker); 2249 2250 return 0; 2251 } 2252 2253 static int __spi_queued_transfer(struct spi_device *spi, 2254 struct spi_message *msg, 2255 bool need_pump) 2256 { 2257 struct spi_controller *ctlr = spi->controller; 2258 unsigned long flags; 2259 2260 spin_lock_irqsave(&ctlr->queue_lock, flags); 2261 2262 if (!ctlr->running) { 2263 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2264 return -ESHUTDOWN; 2265 } 2266 msg->actual_length = 0; 2267 msg->status = -EINPROGRESS; 2268 2269 list_add_tail(&msg->queue, &ctlr->queue); 2270 ctlr->queue_empty = false; 2271 if (!ctlr->busy && need_pump) 2272 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2273 2274 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2275 return 0; 2276 } 2277 2278 /** 2279 * spi_queued_transfer - transfer function for queued transfers 2280 * @spi: SPI device which is requesting transfer 2281 * @msg: SPI message which is to handled is queued to driver queue 2282 * 2283 * Return: zero on success, else a negative error code. 2284 */ 2285 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2286 { 2287 return __spi_queued_transfer(spi, msg, true); 2288 } 2289 2290 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2291 { 2292 int ret; 2293 2294 ctlr->transfer = spi_queued_transfer; 2295 if (!ctlr->transfer_one_message) 2296 ctlr->transfer_one_message = spi_transfer_one_message; 2297 2298 /* Initialize and start queue */ 2299 ret = spi_init_queue(ctlr); 2300 if (ret) { 2301 dev_err(&ctlr->dev, "problem initializing queue\n"); 2302 goto err_init_queue; 2303 } 2304 ctlr->queued = true; 2305 ret = spi_start_queue(ctlr); 2306 if (ret) { 2307 dev_err(&ctlr->dev, "problem starting queue\n"); 2308 goto err_start_queue; 2309 } 2310 2311 return 0; 2312 2313 err_start_queue: 2314 spi_destroy_queue(ctlr); 2315 err_init_queue: 2316 return ret; 2317 } 2318 2319 /** 2320 * spi_flush_queue - Send all pending messages in the queue from the callers' 2321 * context 2322 * @ctlr: controller to process queue for 2323 * 2324 * This should be used when one wants to ensure all pending messages have been 2325 * sent before doing something. Is used by the spi-mem code to make sure SPI 2326 * memory operations do not preempt regular SPI transfers that have been queued 2327 * before the spi-mem operation. 2328 */ 2329 void spi_flush_queue(struct spi_controller *ctlr) 2330 { 2331 if (ctlr->transfer == spi_queued_transfer) 2332 __spi_pump_messages(ctlr, false); 2333 } 2334 2335 /*-------------------------------------------------------------------------*/ 2336 2337 #if defined(CONFIG_OF) 2338 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2339 struct spi_delay *delay, const char *prop) 2340 { 2341 u32 value; 2342 2343 if (!of_property_read_u32(nc, prop, &value)) { 2344 if (value > U16_MAX) { 2345 delay->value = DIV_ROUND_UP(value, 1000); 2346 delay->unit = SPI_DELAY_UNIT_USECS; 2347 } else { 2348 delay->value = value; 2349 delay->unit = SPI_DELAY_UNIT_NSECS; 2350 } 2351 } 2352 } 2353 2354 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2355 struct device_node *nc) 2356 { 2357 u32 value, cs[SPI_DEVICE_CS_CNT_MAX]; 2358 int rc, idx; 2359 2360 /* Mode (clock phase/polarity/etc.) */ 2361 if (of_property_read_bool(nc, "spi-cpha")) 2362 spi->mode |= SPI_CPHA; 2363 if (of_property_read_bool(nc, "spi-cpol")) 2364 spi->mode |= SPI_CPOL; 2365 if (of_property_read_bool(nc, "spi-3wire")) 2366 spi->mode |= SPI_3WIRE; 2367 if (of_property_read_bool(nc, "spi-lsb-first")) 2368 spi->mode |= SPI_LSB_FIRST; 2369 if (of_property_read_bool(nc, "spi-cs-high")) 2370 spi->mode |= SPI_CS_HIGH; 2371 2372 /* Device DUAL/QUAD mode */ 2373 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2374 switch (value) { 2375 case 0: 2376 spi->mode |= SPI_NO_TX; 2377 break; 2378 case 1: 2379 break; 2380 case 2: 2381 spi->mode |= SPI_TX_DUAL; 2382 break; 2383 case 4: 2384 spi->mode |= SPI_TX_QUAD; 2385 break; 2386 case 8: 2387 spi->mode |= SPI_TX_OCTAL; 2388 break; 2389 default: 2390 dev_warn(&ctlr->dev, 2391 "spi-tx-bus-width %d not supported\n", 2392 value); 2393 break; 2394 } 2395 } 2396 2397 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2398 switch (value) { 2399 case 0: 2400 spi->mode |= SPI_NO_RX; 2401 break; 2402 case 1: 2403 break; 2404 case 2: 2405 spi->mode |= SPI_RX_DUAL; 2406 break; 2407 case 4: 2408 spi->mode |= SPI_RX_QUAD; 2409 break; 2410 case 8: 2411 spi->mode |= SPI_RX_OCTAL; 2412 break; 2413 default: 2414 dev_warn(&ctlr->dev, 2415 "spi-rx-bus-width %d not supported\n", 2416 value); 2417 break; 2418 } 2419 } 2420 2421 if (spi_controller_is_target(ctlr)) { 2422 if (!of_node_name_eq(nc, "slave")) { 2423 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2424 nc); 2425 return -EINVAL; 2426 } 2427 return 0; 2428 } 2429 2430 /* Device address */ 2431 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2432 SPI_DEVICE_CS_CNT_MAX); 2433 if (rc < 0) { 2434 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2435 nc, rc); 2436 return rc; 2437 } 2438 2439 if ((of_property_present(nc, "parallel-memories")) && 2440 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2441 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2442 return -EINVAL; 2443 } 2444 2445 spi->num_chipselect = rc; 2446 for (idx = 0; idx < rc; idx++) 2447 spi_set_chipselect(spi, idx, cs[idx]); 2448 2449 /* 2450 * By default spi->chip_select[0] will hold the physical CS number, 2451 * so set bit 0 in spi->cs_index_mask. 2452 */ 2453 spi->cs_index_mask = BIT(0); 2454 2455 /* Device speed */ 2456 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2457 spi->max_speed_hz = value; 2458 2459 /* Device CS delays */ 2460 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2461 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2462 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2463 2464 return 0; 2465 } 2466 2467 static struct spi_device * 2468 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2469 { 2470 struct spi_device *spi; 2471 int rc; 2472 2473 /* Alloc an spi_device */ 2474 spi = spi_alloc_device(ctlr); 2475 if (!spi) { 2476 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2477 rc = -ENOMEM; 2478 goto err_out; 2479 } 2480 2481 /* Select device driver */ 2482 rc = of_alias_from_compatible(nc, spi->modalias, 2483 sizeof(spi->modalias)); 2484 if (rc < 0) { 2485 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2486 goto err_out; 2487 } 2488 2489 rc = of_spi_parse_dt(ctlr, spi, nc); 2490 if (rc) 2491 goto err_out; 2492 2493 /* Store a pointer to the node in the device structure */ 2494 of_node_get(nc); 2495 2496 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2497 2498 /* Register the new device */ 2499 rc = spi_add_device(spi); 2500 if (rc) { 2501 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2502 goto err_of_node_put; 2503 } 2504 2505 return spi; 2506 2507 err_of_node_put: 2508 of_node_put(nc); 2509 err_out: 2510 spi_dev_put(spi); 2511 return ERR_PTR(rc); 2512 } 2513 2514 /** 2515 * of_register_spi_devices() - Register child devices onto the SPI bus 2516 * @ctlr: Pointer to spi_controller device 2517 * 2518 * Registers an spi_device for each child node of controller node which 2519 * represents a valid SPI target device. 2520 */ 2521 static void of_register_spi_devices(struct spi_controller *ctlr) 2522 { 2523 struct spi_device *spi; 2524 struct device_node *nc; 2525 2526 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2527 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2528 continue; 2529 spi = of_register_spi_device(ctlr, nc); 2530 if (IS_ERR(spi)) { 2531 dev_warn(&ctlr->dev, 2532 "Failed to create SPI device for %pOF\n", nc); 2533 of_node_clear_flag(nc, OF_POPULATED); 2534 } 2535 } 2536 } 2537 #else 2538 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2539 #endif 2540 2541 /** 2542 * spi_new_ancillary_device() - Register ancillary SPI device 2543 * @spi: Pointer to the main SPI device registering the ancillary device 2544 * @chip_select: Chip Select of the ancillary device 2545 * 2546 * Register an ancillary SPI device; for example some chips have a chip-select 2547 * for normal device usage and another one for setup/firmware upload. 2548 * 2549 * This may only be called from main SPI device's probe routine. 2550 * 2551 * Return: 0 on success; negative errno on failure 2552 */ 2553 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2554 u8 chip_select) 2555 { 2556 struct spi_controller *ctlr = spi->controller; 2557 struct spi_device *ancillary; 2558 int rc; 2559 2560 /* Alloc an spi_device */ 2561 ancillary = spi_alloc_device(ctlr); 2562 if (!ancillary) { 2563 rc = -ENOMEM; 2564 goto err_out; 2565 } 2566 2567 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2568 2569 /* Use provided chip-select for ancillary device */ 2570 spi_set_chipselect(ancillary, 0, chip_select); 2571 2572 /* Take over SPI mode/speed from SPI main device */ 2573 ancillary->max_speed_hz = spi->max_speed_hz; 2574 ancillary->mode = spi->mode; 2575 /* 2576 * By default spi->chip_select[0] will hold the physical CS number, 2577 * so set bit 0 in spi->cs_index_mask. 2578 */ 2579 ancillary->cs_index_mask = BIT(0); 2580 2581 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2582 2583 /* Register the new device */ 2584 rc = __spi_add_device(ancillary); 2585 if (rc) { 2586 dev_err(&spi->dev, "failed to register ancillary device\n"); 2587 goto err_out; 2588 } 2589 2590 return ancillary; 2591 2592 err_out: 2593 spi_dev_put(ancillary); 2594 return ERR_PTR(rc); 2595 } 2596 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2597 2598 #ifdef CONFIG_ACPI 2599 struct acpi_spi_lookup { 2600 struct spi_controller *ctlr; 2601 u32 max_speed_hz; 2602 u32 mode; 2603 int irq; 2604 u8 bits_per_word; 2605 u8 chip_select; 2606 int n; 2607 int index; 2608 }; 2609 2610 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2611 { 2612 struct acpi_resource_spi_serialbus *sb; 2613 int *count = data; 2614 2615 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2616 return 1; 2617 2618 sb = &ares->data.spi_serial_bus; 2619 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2620 return 1; 2621 2622 *count = *count + 1; 2623 2624 return 1; 2625 } 2626 2627 /** 2628 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2629 * @adev: ACPI device 2630 * 2631 * Return: the number of SpiSerialBus resources in the ACPI-device's 2632 * resource-list; or a negative error code. 2633 */ 2634 int acpi_spi_count_resources(struct acpi_device *adev) 2635 { 2636 LIST_HEAD(r); 2637 int count = 0; 2638 int ret; 2639 2640 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2641 if (ret < 0) 2642 return ret; 2643 2644 acpi_dev_free_resource_list(&r); 2645 2646 return count; 2647 } 2648 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2649 2650 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2651 struct acpi_spi_lookup *lookup) 2652 { 2653 const union acpi_object *obj; 2654 2655 if (!x86_apple_machine) 2656 return; 2657 2658 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2659 && obj->buffer.length >= 4) 2660 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2661 2662 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2663 && obj->buffer.length == 8) 2664 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2665 2666 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2667 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2668 lookup->mode |= SPI_LSB_FIRST; 2669 2670 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2671 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2672 lookup->mode |= SPI_CPOL; 2673 2674 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2675 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2676 lookup->mode |= SPI_CPHA; 2677 } 2678 2679 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2680 { 2681 struct acpi_spi_lookup *lookup = data; 2682 struct spi_controller *ctlr = lookup->ctlr; 2683 2684 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2685 struct acpi_resource_spi_serialbus *sb; 2686 acpi_handle parent_handle; 2687 acpi_status status; 2688 2689 sb = &ares->data.spi_serial_bus; 2690 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2691 2692 if (lookup->index != -1 && lookup->n++ != lookup->index) 2693 return 1; 2694 2695 status = acpi_get_handle(NULL, 2696 sb->resource_source.string_ptr, 2697 &parent_handle); 2698 2699 if (ACPI_FAILURE(status)) 2700 return -ENODEV; 2701 2702 if (ctlr) { 2703 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2704 return -ENODEV; 2705 } else { 2706 struct acpi_device *adev; 2707 2708 adev = acpi_fetch_acpi_dev(parent_handle); 2709 if (!adev) 2710 return -ENODEV; 2711 2712 ctlr = acpi_spi_find_controller_by_adev(adev); 2713 if (!ctlr) 2714 return -EPROBE_DEFER; 2715 2716 lookup->ctlr = ctlr; 2717 } 2718 2719 /* 2720 * ACPI DeviceSelection numbering is handled by the 2721 * host controller driver in Windows and can vary 2722 * from driver to driver. In Linux we always expect 2723 * 0 .. max - 1 so we need to ask the driver to 2724 * translate between the two schemes. 2725 */ 2726 if (ctlr->fw_translate_cs) { 2727 int cs = ctlr->fw_translate_cs(ctlr, 2728 sb->device_selection); 2729 if (cs < 0) 2730 return cs; 2731 lookup->chip_select = cs; 2732 } else { 2733 lookup->chip_select = sb->device_selection; 2734 } 2735 2736 lookup->max_speed_hz = sb->connection_speed; 2737 lookup->bits_per_word = sb->data_bit_length; 2738 2739 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2740 lookup->mode |= SPI_CPHA; 2741 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2742 lookup->mode |= SPI_CPOL; 2743 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2744 lookup->mode |= SPI_CS_HIGH; 2745 } 2746 } else if (lookup->irq < 0) { 2747 struct resource r; 2748 2749 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2750 lookup->irq = r.start; 2751 } 2752 2753 /* Always tell the ACPI core to skip this resource */ 2754 return 1; 2755 } 2756 2757 /** 2758 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2759 * @ctlr: controller to which the spi device belongs 2760 * @adev: ACPI Device for the spi device 2761 * @index: Index of the spi resource inside the ACPI Node 2762 * 2763 * This should be used to allocate a new SPI device from and ACPI Device node. 2764 * The caller is responsible for calling spi_add_device to register the SPI device. 2765 * 2766 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2767 * using the resource. 2768 * If index is set to -1, index is not used. 2769 * Note: If index is -1, ctlr must be set. 2770 * 2771 * Return: a pointer to the new device, or ERR_PTR on error. 2772 */ 2773 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2774 struct acpi_device *adev, 2775 int index) 2776 { 2777 acpi_handle parent_handle = NULL; 2778 struct list_head resource_list; 2779 struct acpi_spi_lookup lookup = {}; 2780 struct spi_device *spi; 2781 int ret; 2782 2783 if (!ctlr && index == -1) 2784 return ERR_PTR(-EINVAL); 2785 2786 lookup.ctlr = ctlr; 2787 lookup.irq = -1; 2788 lookup.index = index; 2789 lookup.n = 0; 2790 2791 INIT_LIST_HEAD(&resource_list); 2792 ret = acpi_dev_get_resources(adev, &resource_list, 2793 acpi_spi_add_resource, &lookup); 2794 acpi_dev_free_resource_list(&resource_list); 2795 2796 if (ret < 0) 2797 /* Found SPI in _CRS but it points to another controller */ 2798 return ERR_PTR(ret); 2799 2800 if (!lookup.max_speed_hz && 2801 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2802 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2803 /* Apple does not use _CRS but nested devices for SPI target devices */ 2804 acpi_spi_parse_apple_properties(adev, &lookup); 2805 } 2806 2807 if (!lookup.max_speed_hz) 2808 return ERR_PTR(-ENODEV); 2809 2810 spi = spi_alloc_device(lookup.ctlr); 2811 if (!spi) { 2812 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2813 dev_name(&adev->dev)); 2814 return ERR_PTR(-ENOMEM); 2815 } 2816 2817 spi_set_chipselect(spi, 0, lookup.chip_select); 2818 2819 ACPI_COMPANION_SET(&spi->dev, adev); 2820 spi->max_speed_hz = lookup.max_speed_hz; 2821 spi->mode |= lookup.mode; 2822 spi->irq = lookup.irq; 2823 spi->bits_per_word = lookup.bits_per_word; 2824 /* 2825 * By default spi->chip_select[0] will hold the physical CS number, 2826 * so set bit 0 in spi->cs_index_mask. 2827 */ 2828 spi->cs_index_mask = BIT(0); 2829 2830 return spi; 2831 } 2832 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2833 2834 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2835 struct acpi_device *adev) 2836 { 2837 struct spi_device *spi; 2838 2839 if (acpi_bus_get_status(adev) || !adev->status.present || 2840 acpi_device_enumerated(adev)) 2841 return AE_OK; 2842 2843 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2844 if (IS_ERR(spi)) { 2845 if (PTR_ERR(spi) == -ENOMEM) 2846 return AE_NO_MEMORY; 2847 else 2848 return AE_OK; 2849 } 2850 2851 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2852 sizeof(spi->modalias)); 2853 2854 acpi_device_set_enumerated(adev); 2855 2856 adev->power.flags.ignore_parent = true; 2857 if (spi_add_device(spi)) { 2858 adev->power.flags.ignore_parent = false; 2859 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2860 dev_name(&adev->dev)); 2861 spi_dev_put(spi); 2862 } 2863 2864 return AE_OK; 2865 } 2866 2867 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2868 void *data, void **return_value) 2869 { 2870 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2871 struct spi_controller *ctlr = data; 2872 2873 if (!adev) 2874 return AE_OK; 2875 2876 return acpi_register_spi_device(ctlr, adev); 2877 } 2878 2879 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2880 2881 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2882 { 2883 acpi_status status; 2884 acpi_handle handle; 2885 2886 handle = ACPI_HANDLE(ctlr->dev.parent); 2887 if (!handle) 2888 return; 2889 2890 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2891 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2892 acpi_spi_add_device, NULL, ctlr, NULL); 2893 if (ACPI_FAILURE(status)) 2894 dev_warn(&ctlr->dev, "failed to enumerate SPI target devices\n"); 2895 } 2896 #else 2897 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2898 #endif /* CONFIG_ACPI */ 2899 2900 static void spi_controller_release(struct device *dev) 2901 { 2902 struct spi_controller *ctlr; 2903 2904 ctlr = container_of(dev, struct spi_controller, dev); 2905 kfree(ctlr); 2906 } 2907 2908 static const struct class spi_controller_class = { 2909 .name = "spi_master", 2910 .dev_release = spi_controller_release, 2911 .dev_groups = spi_controller_groups, 2912 }; 2913 2914 #ifdef CONFIG_SPI_SLAVE 2915 /** 2916 * spi_target_abort - abort the ongoing transfer request on an SPI target controller 2917 * @spi: device used for the current transfer 2918 */ 2919 int spi_target_abort(struct spi_device *spi) 2920 { 2921 struct spi_controller *ctlr = spi->controller; 2922 2923 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2924 return ctlr->target_abort(ctlr); 2925 2926 return -ENOTSUPP; 2927 } 2928 EXPORT_SYMBOL_GPL(spi_target_abort); 2929 2930 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2931 char *buf) 2932 { 2933 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2934 dev); 2935 struct device *child; 2936 int ret; 2937 2938 child = device_find_any_child(&ctlr->dev); 2939 ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2940 put_device(child); 2941 2942 return ret; 2943 } 2944 2945 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2946 const char *buf, size_t count) 2947 { 2948 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2949 dev); 2950 struct spi_device *spi; 2951 struct device *child; 2952 char name[32]; 2953 int rc; 2954 2955 rc = sscanf(buf, "%31s", name); 2956 if (rc != 1 || !name[0]) 2957 return -EINVAL; 2958 2959 child = device_find_any_child(&ctlr->dev); 2960 if (child) { 2961 /* Remove registered target device */ 2962 device_unregister(child); 2963 put_device(child); 2964 } 2965 2966 if (strcmp(name, "(null)")) { 2967 /* Register new target device */ 2968 spi = spi_alloc_device(ctlr); 2969 if (!spi) 2970 return -ENOMEM; 2971 2972 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2973 2974 rc = spi_add_device(spi); 2975 if (rc) { 2976 spi_dev_put(spi); 2977 return rc; 2978 } 2979 } 2980 2981 return count; 2982 } 2983 2984 static DEVICE_ATTR_RW(slave); 2985 2986 static struct attribute *spi_target_attrs[] = { 2987 &dev_attr_slave.attr, 2988 NULL, 2989 }; 2990 2991 static const struct attribute_group spi_target_group = { 2992 .attrs = spi_target_attrs, 2993 }; 2994 2995 static const struct attribute_group *spi_target_groups[] = { 2996 &spi_controller_statistics_group, 2997 &spi_target_group, 2998 NULL, 2999 }; 3000 3001 static const struct class spi_target_class = { 3002 .name = "spi_slave", 3003 .dev_release = spi_controller_release, 3004 .dev_groups = spi_target_groups, 3005 }; 3006 #else 3007 extern struct class spi_target_class; /* dummy */ 3008 #endif 3009 3010 /** 3011 * __spi_alloc_controller - allocate an SPI host or target controller 3012 * @dev: the controller, possibly using the platform_bus 3013 * @size: how much zeroed driver-private data to allocate; the pointer to this 3014 * memory is in the driver_data field of the returned device, accessible 3015 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3016 * drivers granting DMA access to portions of their private data need to 3017 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3018 * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true) 3019 * controller 3020 * Context: can sleep 3021 * 3022 * This call is used only by SPI controller drivers, which are the 3023 * only ones directly touching chip registers. It's how they allocate 3024 * an spi_controller structure, prior to calling spi_register_controller(). 3025 * 3026 * This must be called from context that can sleep. 3027 * 3028 * The caller is responsible for assigning the bus number and initializing the 3029 * controller's methods before calling spi_register_controller(); and (after 3030 * errors adding the device) calling spi_controller_put() to prevent a memory 3031 * leak. 3032 * 3033 * Return: the SPI controller structure on success, else NULL. 3034 */ 3035 struct spi_controller *__spi_alloc_controller(struct device *dev, 3036 unsigned int size, bool target) 3037 { 3038 struct spi_controller *ctlr; 3039 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3040 3041 if (!dev) 3042 return NULL; 3043 3044 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3045 if (!ctlr) 3046 return NULL; 3047 3048 device_initialize(&ctlr->dev); 3049 INIT_LIST_HEAD(&ctlr->queue); 3050 spin_lock_init(&ctlr->queue_lock); 3051 spin_lock_init(&ctlr->bus_lock_spinlock); 3052 mutex_init(&ctlr->bus_lock_mutex); 3053 mutex_init(&ctlr->io_mutex); 3054 mutex_init(&ctlr->add_lock); 3055 ctlr->bus_num = -1; 3056 ctlr->num_chipselect = 1; 3057 ctlr->target = target; 3058 if (IS_ENABLED(CONFIG_SPI_SLAVE) && target) 3059 ctlr->dev.class = &spi_target_class; 3060 else 3061 ctlr->dev.class = &spi_controller_class; 3062 ctlr->dev.parent = dev; 3063 pm_suspend_ignore_children(&ctlr->dev, true); 3064 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3065 3066 return ctlr; 3067 } 3068 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3069 3070 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3071 { 3072 spi_controller_put(*(struct spi_controller **)ctlr); 3073 } 3074 3075 /** 3076 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3077 * @dev: physical device of SPI controller 3078 * @size: how much zeroed driver-private data to allocate 3079 * @target: whether to allocate an SPI host (false) or SPI target (true) controller 3080 * Context: can sleep 3081 * 3082 * Allocate an SPI controller and automatically release a reference on it 3083 * when @dev is unbound from its driver. Drivers are thus relieved from 3084 * having to call spi_controller_put(). 3085 * 3086 * The arguments to this function are identical to __spi_alloc_controller(). 3087 * 3088 * Return: the SPI controller structure on success, else NULL. 3089 */ 3090 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3091 unsigned int size, 3092 bool target) 3093 { 3094 struct spi_controller **ptr, *ctlr; 3095 3096 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3097 GFP_KERNEL); 3098 if (!ptr) 3099 return NULL; 3100 3101 ctlr = __spi_alloc_controller(dev, size, target); 3102 if (ctlr) { 3103 ctlr->devm_allocated = true; 3104 *ptr = ctlr; 3105 devres_add(dev, ptr); 3106 } else { 3107 devres_free(ptr); 3108 } 3109 3110 return ctlr; 3111 } 3112 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3113 3114 /** 3115 * spi_get_gpio_descs() - grab chip select GPIOs for the controller 3116 * @ctlr: The SPI controller to grab GPIO descriptors for 3117 */ 3118 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3119 { 3120 int nb, i; 3121 struct gpio_desc **cs; 3122 struct device *dev = &ctlr->dev; 3123 unsigned long native_cs_mask = 0; 3124 unsigned int num_cs_gpios = 0; 3125 3126 nb = gpiod_count(dev, "cs"); 3127 if (nb < 0) { 3128 /* No GPIOs at all is fine, else return the error */ 3129 if (nb == -ENOENT) 3130 return 0; 3131 return nb; 3132 } 3133 3134 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3135 3136 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3137 GFP_KERNEL); 3138 if (!cs) 3139 return -ENOMEM; 3140 ctlr->cs_gpiods = cs; 3141 3142 for (i = 0; i < nb; i++) { 3143 /* 3144 * Most chipselects are active low, the inverted 3145 * semantics are handled by special quirks in gpiolib, 3146 * so initializing them GPIOD_OUT_LOW here means 3147 * "unasserted", in most cases this will drive the physical 3148 * line high. 3149 */ 3150 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3151 GPIOD_OUT_LOW); 3152 if (IS_ERR(cs[i])) 3153 return PTR_ERR(cs[i]); 3154 3155 if (cs[i]) { 3156 /* 3157 * If we find a CS GPIO, name it after the device and 3158 * chip select line. 3159 */ 3160 char *gpioname; 3161 3162 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3163 dev_name(dev), i); 3164 if (!gpioname) 3165 return -ENOMEM; 3166 gpiod_set_consumer_name(cs[i], gpioname); 3167 num_cs_gpios++; 3168 continue; 3169 } 3170 3171 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3172 dev_err(dev, "Invalid native chip select %d\n", i); 3173 return -EINVAL; 3174 } 3175 native_cs_mask |= BIT(i); 3176 } 3177 3178 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3179 3180 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3181 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3182 dev_err(dev, "No unused native chip select available\n"); 3183 return -EINVAL; 3184 } 3185 3186 return 0; 3187 } 3188 3189 static int spi_controller_check_ops(struct spi_controller *ctlr) 3190 { 3191 /* 3192 * The controller may implement only the high-level SPI-memory like 3193 * operations if it does not support regular SPI transfers, and this is 3194 * valid use case. 3195 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3196 * one of the ->transfer_xxx() method be implemented. 3197 */ 3198 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3199 if (!ctlr->transfer && !ctlr->transfer_one && 3200 !ctlr->transfer_one_message) { 3201 return -EINVAL; 3202 } 3203 } 3204 3205 return 0; 3206 } 3207 3208 /* Allocate dynamic bus number using Linux idr */ 3209 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3210 { 3211 int id; 3212 3213 mutex_lock(&board_lock); 3214 id = idr_alloc(&spi_controller_idr, ctlr, start, end, GFP_KERNEL); 3215 mutex_unlock(&board_lock); 3216 if (WARN(id < 0, "couldn't get idr")) 3217 return id == -ENOSPC ? -EBUSY : id; 3218 ctlr->bus_num = id; 3219 return 0; 3220 } 3221 3222 /** 3223 * spi_register_controller - register SPI host or target controller 3224 * @ctlr: initialized controller, originally from spi_alloc_host() or 3225 * spi_alloc_target() 3226 * Context: can sleep 3227 * 3228 * SPI controllers connect to their drivers using some non-SPI bus, 3229 * such as the platform bus. The final stage of probe() in that code 3230 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3231 * 3232 * SPI controllers use board specific (often SOC specific) bus numbers, 3233 * and board-specific addressing for SPI devices combines those numbers 3234 * with chip select numbers. Since SPI does not directly support dynamic 3235 * device identification, boards need configuration tables telling which 3236 * chip is at which address. 3237 * 3238 * This must be called from context that can sleep. It returns zero on 3239 * success, else a negative error code (dropping the controller's refcount). 3240 * After a successful return, the caller is responsible for calling 3241 * spi_unregister_controller(). 3242 * 3243 * Return: zero on success, else a negative error code. 3244 */ 3245 int spi_register_controller(struct spi_controller *ctlr) 3246 { 3247 struct device *dev = ctlr->dev.parent; 3248 struct boardinfo *bi; 3249 int first_dynamic; 3250 int status; 3251 int idx; 3252 3253 if (!dev) 3254 return -ENODEV; 3255 3256 /* 3257 * Make sure all necessary hooks are implemented before registering 3258 * the SPI controller. 3259 */ 3260 status = spi_controller_check_ops(ctlr); 3261 if (status) 3262 return status; 3263 3264 if (ctlr->bus_num < 0) 3265 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3266 if (ctlr->bus_num >= 0) { 3267 /* Devices with a fixed bus num must check-in with the num */ 3268 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3269 if (status) 3270 return status; 3271 } 3272 if (ctlr->bus_num < 0) { 3273 first_dynamic = of_alias_get_highest_id("spi"); 3274 if (first_dynamic < 0) 3275 first_dynamic = 0; 3276 else 3277 first_dynamic++; 3278 3279 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3280 if (status) 3281 return status; 3282 } 3283 ctlr->bus_lock_flag = 0; 3284 init_completion(&ctlr->xfer_completion); 3285 init_completion(&ctlr->cur_msg_completion); 3286 if (!ctlr->max_dma_len) 3287 ctlr->max_dma_len = INT_MAX; 3288 3289 /* 3290 * Register the device, then userspace will see it. 3291 * Registration fails if the bus ID is in use. 3292 */ 3293 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3294 3295 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3296 status = spi_get_gpio_descs(ctlr); 3297 if (status) 3298 goto free_bus_id; 3299 /* 3300 * A controller using GPIO descriptors always 3301 * supports SPI_CS_HIGH if need be. 3302 */ 3303 ctlr->mode_bits |= SPI_CS_HIGH; 3304 } 3305 3306 /* 3307 * Even if it's just one always-selected device, there must 3308 * be at least one chipselect. 3309 */ 3310 if (!ctlr->num_chipselect) { 3311 status = -EINVAL; 3312 goto free_bus_id; 3313 } 3314 3315 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3316 for (idx = 0; idx < SPI_DEVICE_CS_CNT_MAX; idx++) 3317 ctlr->last_cs[idx] = SPI_INVALID_CS; 3318 3319 status = device_add(&ctlr->dev); 3320 if (status < 0) 3321 goto free_bus_id; 3322 dev_dbg(dev, "registered %s %s\n", 3323 spi_controller_is_target(ctlr) ? "target" : "host", 3324 dev_name(&ctlr->dev)); 3325 3326 /* 3327 * If we're using a queued driver, start the queue. Note that we don't 3328 * need the queueing logic if the driver is only supporting high-level 3329 * memory operations. 3330 */ 3331 if (ctlr->transfer) { 3332 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3333 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3334 status = spi_controller_initialize_queue(ctlr); 3335 if (status) { 3336 device_del(&ctlr->dev); 3337 goto free_bus_id; 3338 } 3339 } 3340 /* Add statistics */ 3341 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3342 if (!ctlr->pcpu_statistics) { 3343 dev_err(dev, "Error allocating per-cpu statistics\n"); 3344 status = -ENOMEM; 3345 goto destroy_queue; 3346 } 3347 3348 mutex_lock(&board_lock); 3349 list_add_tail(&ctlr->list, &spi_controller_list); 3350 list_for_each_entry(bi, &board_list, list) 3351 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3352 mutex_unlock(&board_lock); 3353 3354 /* Register devices from the device tree and ACPI */ 3355 of_register_spi_devices(ctlr); 3356 acpi_register_spi_devices(ctlr); 3357 return status; 3358 3359 destroy_queue: 3360 spi_destroy_queue(ctlr); 3361 free_bus_id: 3362 mutex_lock(&board_lock); 3363 idr_remove(&spi_controller_idr, ctlr->bus_num); 3364 mutex_unlock(&board_lock); 3365 return status; 3366 } 3367 EXPORT_SYMBOL_GPL(spi_register_controller); 3368 3369 static void devm_spi_unregister(struct device *dev, void *res) 3370 { 3371 spi_unregister_controller(*(struct spi_controller **)res); 3372 } 3373 3374 /** 3375 * devm_spi_register_controller - register managed SPI host or target controller 3376 * @dev: device managing SPI controller 3377 * @ctlr: initialized controller, originally from spi_alloc_host() or 3378 * spi_alloc_target() 3379 * Context: can sleep 3380 * 3381 * Register a SPI device as with spi_register_controller() which will 3382 * automatically be unregistered and freed. 3383 * 3384 * Return: zero on success, else a negative error code. 3385 */ 3386 int devm_spi_register_controller(struct device *dev, 3387 struct spi_controller *ctlr) 3388 { 3389 struct spi_controller **ptr; 3390 int ret; 3391 3392 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3393 if (!ptr) 3394 return -ENOMEM; 3395 3396 ret = spi_register_controller(ctlr); 3397 if (!ret) { 3398 *ptr = ctlr; 3399 devres_add(dev, ptr); 3400 } else { 3401 devres_free(ptr); 3402 } 3403 3404 return ret; 3405 } 3406 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3407 3408 static int __unregister(struct device *dev, void *null) 3409 { 3410 spi_unregister_device(to_spi_device(dev)); 3411 return 0; 3412 } 3413 3414 /** 3415 * spi_unregister_controller - unregister SPI host or target controller 3416 * @ctlr: the controller being unregistered 3417 * Context: can sleep 3418 * 3419 * This call is used only by SPI controller drivers, which are the 3420 * only ones directly touching chip registers. 3421 * 3422 * This must be called from context that can sleep. 3423 * 3424 * Note that this function also drops a reference to the controller. 3425 */ 3426 void spi_unregister_controller(struct spi_controller *ctlr) 3427 { 3428 struct spi_controller *found; 3429 int id = ctlr->bus_num; 3430 3431 /* Prevent addition of new devices, unregister existing ones */ 3432 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3433 mutex_lock(&ctlr->add_lock); 3434 3435 device_for_each_child(&ctlr->dev, NULL, __unregister); 3436 3437 /* First make sure that this controller was ever added */ 3438 mutex_lock(&board_lock); 3439 found = idr_find(&spi_controller_idr, id); 3440 mutex_unlock(&board_lock); 3441 if (ctlr->queued) { 3442 if (spi_destroy_queue(ctlr)) 3443 dev_err(&ctlr->dev, "queue remove failed\n"); 3444 } 3445 mutex_lock(&board_lock); 3446 list_del(&ctlr->list); 3447 mutex_unlock(&board_lock); 3448 3449 device_del(&ctlr->dev); 3450 3451 /* Free bus id */ 3452 mutex_lock(&board_lock); 3453 if (found == ctlr) 3454 idr_remove(&spi_controller_idr, id); 3455 mutex_unlock(&board_lock); 3456 3457 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3458 mutex_unlock(&ctlr->add_lock); 3459 3460 /* 3461 * Release the last reference on the controller if its driver 3462 * has not yet been converted to devm_spi_alloc_host/target(). 3463 */ 3464 if (!ctlr->devm_allocated) 3465 put_device(&ctlr->dev); 3466 } 3467 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3468 3469 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3470 { 3471 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3472 } 3473 3474 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3475 { 3476 mutex_lock(&ctlr->bus_lock_mutex); 3477 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3478 mutex_unlock(&ctlr->bus_lock_mutex); 3479 } 3480 3481 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3482 { 3483 mutex_lock(&ctlr->bus_lock_mutex); 3484 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3485 mutex_unlock(&ctlr->bus_lock_mutex); 3486 } 3487 3488 int spi_controller_suspend(struct spi_controller *ctlr) 3489 { 3490 int ret = 0; 3491 3492 /* Basically no-ops for non-queued controllers */ 3493 if (ctlr->queued) { 3494 ret = spi_stop_queue(ctlr); 3495 if (ret) 3496 dev_err(&ctlr->dev, "queue stop failed\n"); 3497 } 3498 3499 __spi_mark_suspended(ctlr); 3500 return ret; 3501 } 3502 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3503 3504 int spi_controller_resume(struct spi_controller *ctlr) 3505 { 3506 int ret = 0; 3507 3508 __spi_mark_resumed(ctlr); 3509 3510 if (ctlr->queued) { 3511 ret = spi_start_queue(ctlr); 3512 if (ret) 3513 dev_err(&ctlr->dev, "queue restart failed\n"); 3514 } 3515 return ret; 3516 } 3517 EXPORT_SYMBOL_GPL(spi_controller_resume); 3518 3519 /*-------------------------------------------------------------------------*/ 3520 3521 /* Core methods for spi_message alterations */ 3522 3523 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3524 struct spi_message *msg, 3525 void *res) 3526 { 3527 struct spi_replaced_transfers *rxfer = res; 3528 size_t i; 3529 3530 /* Call extra callback if requested */ 3531 if (rxfer->release) 3532 rxfer->release(ctlr, msg, res); 3533 3534 /* Insert replaced transfers back into the message */ 3535 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3536 3537 /* Remove the formerly inserted entries */ 3538 for (i = 0; i < rxfer->inserted; i++) 3539 list_del(&rxfer->inserted_transfers[i].transfer_list); 3540 } 3541 3542 /** 3543 * spi_replace_transfers - replace transfers with several transfers 3544 * and register change with spi_message.resources 3545 * @msg: the spi_message we work upon 3546 * @xfer_first: the first spi_transfer we want to replace 3547 * @remove: number of transfers to remove 3548 * @insert: the number of transfers we want to insert instead 3549 * @release: extra release code necessary in some circumstances 3550 * @extradatasize: extra data to allocate (with alignment guarantees 3551 * of struct @spi_transfer) 3552 * @gfp: gfp flags 3553 * 3554 * Returns: pointer to @spi_replaced_transfers, 3555 * PTR_ERR(...) in case of errors. 3556 */ 3557 static struct spi_replaced_transfers *spi_replace_transfers( 3558 struct spi_message *msg, 3559 struct spi_transfer *xfer_first, 3560 size_t remove, 3561 size_t insert, 3562 spi_replaced_release_t release, 3563 size_t extradatasize, 3564 gfp_t gfp) 3565 { 3566 struct spi_replaced_transfers *rxfer; 3567 struct spi_transfer *xfer; 3568 size_t i; 3569 3570 /* Allocate the structure using spi_res */ 3571 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3572 struct_size(rxfer, inserted_transfers, insert) 3573 + extradatasize, 3574 gfp); 3575 if (!rxfer) 3576 return ERR_PTR(-ENOMEM); 3577 3578 /* The release code to invoke before running the generic release */ 3579 rxfer->release = release; 3580 3581 /* Assign extradata */ 3582 if (extradatasize) 3583 rxfer->extradata = 3584 &rxfer->inserted_transfers[insert]; 3585 3586 /* Init the replaced_transfers list */ 3587 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3588 3589 /* 3590 * Assign the list_entry after which we should reinsert 3591 * the @replaced_transfers - it may be spi_message.messages! 3592 */ 3593 rxfer->replaced_after = xfer_first->transfer_list.prev; 3594 3595 /* Remove the requested number of transfers */ 3596 for (i = 0; i < remove; i++) { 3597 /* 3598 * If the entry after replaced_after it is msg->transfers 3599 * then we have been requested to remove more transfers 3600 * than are in the list. 3601 */ 3602 if (rxfer->replaced_after->next == &msg->transfers) { 3603 dev_err(&msg->spi->dev, 3604 "requested to remove more spi_transfers than are available\n"); 3605 /* Insert replaced transfers back into the message */ 3606 list_splice(&rxfer->replaced_transfers, 3607 rxfer->replaced_after); 3608 3609 /* Free the spi_replace_transfer structure... */ 3610 spi_res_free(rxfer); 3611 3612 /* ...and return with an error */ 3613 return ERR_PTR(-EINVAL); 3614 } 3615 3616 /* 3617 * Remove the entry after replaced_after from list of 3618 * transfers and add it to list of replaced_transfers. 3619 */ 3620 list_move_tail(rxfer->replaced_after->next, 3621 &rxfer->replaced_transfers); 3622 } 3623 3624 /* 3625 * Create copy of the given xfer with identical settings 3626 * based on the first transfer to get removed. 3627 */ 3628 for (i = 0; i < insert; i++) { 3629 /* We need to run in reverse order */ 3630 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3631 3632 /* Copy all spi_transfer data */ 3633 memcpy(xfer, xfer_first, sizeof(*xfer)); 3634 3635 /* Add to list */ 3636 list_add(&xfer->transfer_list, rxfer->replaced_after); 3637 3638 /* Clear cs_change and delay for all but the last */ 3639 if (i) { 3640 xfer->cs_change = false; 3641 xfer->delay.value = 0; 3642 } 3643 } 3644 3645 /* Set up inserted... */ 3646 rxfer->inserted = insert; 3647 3648 /* ...and register it with spi_res/spi_message */ 3649 spi_res_add(msg, rxfer); 3650 3651 return rxfer; 3652 } 3653 3654 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3655 struct spi_message *msg, 3656 struct spi_transfer **xferp, 3657 size_t maxsize) 3658 { 3659 struct spi_transfer *xfer = *xferp, *xfers; 3660 struct spi_replaced_transfers *srt; 3661 size_t offset; 3662 size_t count, i; 3663 3664 /* Calculate how many we have to replace */ 3665 count = DIV_ROUND_UP(xfer->len, maxsize); 3666 3667 /* Create replacement */ 3668 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3669 if (IS_ERR(srt)) 3670 return PTR_ERR(srt); 3671 xfers = srt->inserted_transfers; 3672 3673 /* 3674 * Now handle each of those newly inserted spi_transfers. 3675 * Note that the replacements spi_transfers all are preset 3676 * to the same values as *xferp, so tx_buf, rx_buf and len 3677 * are all identical (as well as most others) 3678 * so we just have to fix up len and the pointers. 3679 */ 3680 3681 /* 3682 * The first transfer just needs the length modified, so we 3683 * run it outside the loop. 3684 */ 3685 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3686 3687 /* All the others need rx_buf/tx_buf also set */ 3688 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3689 /* Update rx_buf, tx_buf and DMA */ 3690 if (xfers[i].rx_buf) 3691 xfers[i].rx_buf += offset; 3692 if (xfers[i].tx_buf) 3693 xfers[i].tx_buf += offset; 3694 3695 /* Update length */ 3696 xfers[i].len = min(maxsize, xfers[i].len - offset); 3697 } 3698 3699 /* 3700 * We set up xferp to the last entry we have inserted, 3701 * so that we skip those already split transfers. 3702 */ 3703 *xferp = &xfers[count - 1]; 3704 3705 /* Increment statistics counters */ 3706 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3707 transfers_split_maxsize); 3708 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3709 transfers_split_maxsize); 3710 3711 return 0; 3712 } 3713 3714 /** 3715 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3716 * when an individual transfer exceeds a 3717 * certain size 3718 * @ctlr: the @spi_controller for this transfer 3719 * @msg: the @spi_message to transform 3720 * @maxsize: the maximum when to apply this 3721 * 3722 * This function allocates resources that are automatically freed during the 3723 * spi message unoptimize phase so this function should only be called from 3724 * optimize_message callbacks. 3725 * 3726 * Return: status of transformation 3727 */ 3728 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3729 struct spi_message *msg, 3730 size_t maxsize) 3731 { 3732 struct spi_transfer *xfer; 3733 int ret; 3734 3735 /* 3736 * Iterate over the transfer_list, 3737 * but note that xfer is advanced to the last transfer inserted 3738 * to avoid checking sizes again unnecessarily (also xfer does 3739 * potentially belong to a different list by the time the 3740 * replacement has happened). 3741 */ 3742 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3743 if (xfer->len > maxsize) { 3744 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3745 maxsize); 3746 if (ret) 3747 return ret; 3748 } 3749 } 3750 3751 return 0; 3752 } 3753 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3754 3755 3756 /** 3757 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3758 * when an individual transfer exceeds a 3759 * certain number of SPI words 3760 * @ctlr: the @spi_controller for this transfer 3761 * @msg: the @spi_message to transform 3762 * @maxwords: the number of words to limit each transfer to 3763 * 3764 * This function allocates resources that are automatically freed during the 3765 * spi message unoptimize phase so this function should only be called from 3766 * optimize_message callbacks. 3767 * 3768 * Return: status of transformation 3769 */ 3770 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3771 struct spi_message *msg, 3772 size_t maxwords) 3773 { 3774 struct spi_transfer *xfer; 3775 3776 /* 3777 * Iterate over the transfer_list, 3778 * but note that xfer is advanced to the last transfer inserted 3779 * to avoid checking sizes again unnecessarily (also xfer does 3780 * potentially belong to a different list by the time the 3781 * replacement has happened). 3782 */ 3783 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3784 size_t maxsize; 3785 int ret; 3786 3787 maxsize = maxwords * spi_bpw_to_bytes(xfer->bits_per_word); 3788 if (xfer->len > maxsize) { 3789 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3790 maxsize); 3791 if (ret) 3792 return ret; 3793 } 3794 } 3795 3796 return 0; 3797 } 3798 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3799 3800 /*-------------------------------------------------------------------------*/ 3801 3802 /* 3803 * Core methods for SPI controller protocol drivers. Some of the 3804 * other core methods are currently defined as inline functions. 3805 */ 3806 3807 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3808 u8 bits_per_word) 3809 { 3810 if (ctlr->bits_per_word_mask) { 3811 /* Only 32 bits fit in the mask */ 3812 if (bits_per_word > 32) 3813 return -EINVAL; 3814 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3815 return -EINVAL; 3816 } 3817 3818 return 0; 3819 } 3820 3821 /** 3822 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3823 * @spi: the device that requires specific CS timing configuration 3824 * 3825 * Return: zero on success, else a negative error code. 3826 */ 3827 static int spi_set_cs_timing(struct spi_device *spi) 3828 { 3829 struct device *parent = spi->controller->dev.parent; 3830 int status = 0; 3831 3832 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3833 if (spi->controller->auto_runtime_pm) { 3834 status = pm_runtime_get_sync(parent); 3835 if (status < 0) { 3836 pm_runtime_put_noidle(parent); 3837 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3838 status); 3839 return status; 3840 } 3841 3842 status = spi->controller->set_cs_timing(spi); 3843 pm_runtime_put_autosuspend(parent); 3844 } else { 3845 status = spi->controller->set_cs_timing(spi); 3846 } 3847 } 3848 return status; 3849 } 3850 3851 /** 3852 * spi_setup - setup SPI mode and clock rate 3853 * @spi: the device whose settings are being modified 3854 * Context: can sleep, and no requests are queued to the device 3855 * 3856 * SPI protocol drivers may need to update the transfer mode if the 3857 * device doesn't work with its default. They may likewise need 3858 * to update clock rates or word sizes from initial values. This function 3859 * changes those settings, and must be called from a context that can sleep. 3860 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3861 * effect the next time the device is selected and data is transferred to 3862 * or from it. When this function returns, the SPI device is deselected. 3863 * 3864 * Note that this call will fail if the protocol driver specifies an option 3865 * that the underlying controller or its driver does not support. For 3866 * example, not all hardware supports wire transfers using nine bit words, 3867 * LSB-first wire encoding, or active-high chipselects. 3868 * 3869 * Return: zero on success, else a negative error code. 3870 */ 3871 int spi_setup(struct spi_device *spi) 3872 { 3873 unsigned bad_bits, ugly_bits; 3874 int status; 3875 3876 /* 3877 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3878 * are set at the same time. 3879 */ 3880 if ((hweight_long(spi->mode & 3881 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3882 (hweight_long(spi->mode & 3883 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3884 dev_err(&spi->dev, 3885 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3886 return -EINVAL; 3887 } 3888 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3889 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3890 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3891 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3892 return -EINVAL; 3893 /* Check against conflicting MOSI idle configuration */ 3894 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 3895 dev_err(&spi->dev, 3896 "setup: MOSI configured to idle low and high at the same time.\n"); 3897 return -EINVAL; 3898 } 3899 /* 3900 * Help drivers fail *cleanly* when they need options 3901 * that aren't supported with their current controller. 3902 * SPI_CS_WORD has a fallback software implementation, 3903 * so it is ignored here. 3904 */ 3905 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3906 SPI_NO_TX | SPI_NO_RX); 3907 ugly_bits = bad_bits & 3908 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3909 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3910 if (ugly_bits) { 3911 dev_warn(&spi->dev, 3912 "setup: ignoring unsupported mode bits %x\n", 3913 ugly_bits); 3914 spi->mode &= ~ugly_bits; 3915 bad_bits &= ~ugly_bits; 3916 } 3917 if (bad_bits) { 3918 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3919 bad_bits); 3920 return -EINVAL; 3921 } 3922 3923 if (!spi->bits_per_word) { 3924 spi->bits_per_word = 8; 3925 } else { 3926 /* 3927 * Some controllers may not support the default 8 bits-per-word 3928 * so only perform the check when this is explicitly provided. 3929 */ 3930 status = __spi_validate_bits_per_word(spi->controller, 3931 spi->bits_per_word); 3932 if (status) 3933 return status; 3934 } 3935 3936 if (spi->controller->max_speed_hz && 3937 (!spi->max_speed_hz || 3938 spi->max_speed_hz > spi->controller->max_speed_hz)) 3939 spi->max_speed_hz = spi->controller->max_speed_hz; 3940 3941 mutex_lock(&spi->controller->io_mutex); 3942 3943 if (spi->controller->setup) { 3944 status = spi->controller->setup(spi); 3945 if (status) { 3946 mutex_unlock(&spi->controller->io_mutex); 3947 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3948 status); 3949 return status; 3950 } 3951 } 3952 3953 status = spi_set_cs_timing(spi); 3954 if (status) { 3955 mutex_unlock(&spi->controller->io_mutex); 3956 return status; 3957 } 3958 3959 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3960 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3961 if (status < 0) { 3962 mutex_unlock(&spi->controller->io_mutex); 3963 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3964 status); 3965 return status; 3966 } 3967 3968 /* 3969 * We do not want to return positive value from pm_runtime_get, 3970 * there are many instances of devices calling spi_setup() and 3971 * checking for a non-zero return value instead of a negative 3972 * return value. 3973 */ 3974 status = 0; 3975 3976 spi_set_cs(spi, false, true); 3977 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3978 } else { 3979 spi_set_cs(spi, false, true); 3980 } 3981 3982 mutex_unlock(&spi->controller->io_mutex); 3983 3984 if (spi->rt && !spi->controller->rt) { 3985 spi->controller->rt = true; 3986 spi_set_thread_rt(spi->controller); 3987 } 3988 3989 trace_spi_setup(spi, status); 3990 3991 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3992 spi->mode & SPI_MODE_X_MASK, 3993 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3994 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3995 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3996 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3997 spi->bits_per_word, spi->max_speed_hz, 3998 status); 3999 4000 return status; 4001 } 4002 EXPORT_SYMBOL_GPL(spi_setup); 4003 4004 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4005 struct spi_device *spi) 4006 { 4007 int delay1, delay2; 4008 4009 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4010 if (delay1 < 0) 4011 return delay1; 4012 4013 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4014 if (delay2 < 0) 4015 return delay2; 4016 4017 if (delay1 < delay2) 4018 memcpy(&xfer->word_delay, &spi->word_delay, 4019 sizeof(xfer->word_delay)); 4020 4021 return 0; 4022 } 4023 4024 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4025 { 4026 struct spi_controller *ctlr = spi->controller; 4027 struct spi_transfer *xfer; 4028 int w_size; 4029 4030 if (list_empty(&message->transfers)) 4031 return -EINVAL; 4032 4033 message->spi = spi; 4034 4035 /* 4036 * Half-duplex links include original MicroWire, and ones with 4037 * only one data pin like SPI_3WIRE (switches direction) or where 4038 * either MOSI or MISO is missing. They can also be caused by 4039 * software limitations. 4040 */ 4041 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4042 (spi->mode & SPI_3WIRE)) { 4043 unsigned flags = ctlr->flags; 4044 4045 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4046 if (xfer->rx_buf && xfer->tx_buf) 4047 return -EINVAL; 4048 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4049 return -EINVAL; 4050 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4051 return -EINVAL; 4052 } 4053 } 4054 4055 /* 4056 * Set transfer bits_per_word and max speed as spi device default if 4057 * it is not set for this transfer. 4058 * Set transfer tx_nbits and rx_nbits as single transfer default 4059 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4060 * Ensure transfer word_delay is at least as long as that required by 4061 * device itself. 4062 */ 4063 message->frame_length = 0; 4064 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4065 xfer->effective_speed_hz = 0; 4066 message->frame_length += xfer->len; 4067 if (!xfer->bits_per_word) 4068 xfer->bits_per_word = spi->bits_per_word; 4069 4070 if (!xfer->speed_hz) 4071 xfer->speed_hz = spi->max_speed_hz; 4072 4073 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4074 xfer->speed_hz = ctlr->max_speed_hz; 4075 4076 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4077 return -EINVAL; 4078 4079 /* DDR mode is supported only if controller has dtr_caps=true. 4080 * default considered as SDR mode for SPI and QSPI controller. 4081 * Note: This is applicable only to QSPI controller. 4082 */ 4083 if (xfer->dtr_mode && !ctlr->dtr_caps) 4084 return -EINVAL; 4085 4086 /* 4087 * SPI transfer length should be multiple of SPI word size 4088 * where SPI word size should be power-of-two multiple. 4089 */ 4090 if (xfer->bits_per_word <= 8) 4091 w_size = 1; 4092 else if (xfer->bits_per_word <= 16) 4093 w_size = 2; 4094 else 4095 w_size = 4; 4096 4097 /* No partial transfers accepted */ 4098 if (xfer->len % w_size) 4099 return -EINVAL; 4100 4101 if (xfer->speed_hz && ctlr->min_speed_hz && 4102 xfer->speed_hz < ctlr->min_speed_hz) 4103 return -EINVAL; 4104 4105 if (xfer->tx_buf && !xfer->tx_nbits) 4106 xfer->tx_nbits = SPI_NBITS_SINGLE; 4107 if (xfer->rx_buf && !xfer->rx_nbits) 4108 xfer->rx_nbits = SPI_NBITS_SINGLE; 4109 /* 4110 * Check transfer tx/rx_nbits: 4111 * 1. check the value matches one of single, dual and quad 4112 * 2. check tx/rx_nbits match the mode in spi_device 4113 */ 4114 if (xfer->tx_buf) { 4115 if (spi->mode & SPI_NO_TX) 4116 return -EINVAL; 4117 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4118 xfer->tx_nbits != SPI_NBITS_DUAL && 4119 xfer->tx_nbits != SPI_NBITS_QUAD && 4120 xfer->tx_nbits != SPI_NBITS_OCTAL) 4121 return -EINVAL; 4122 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4123 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) 4124 return -EINVAL; 4125 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4126 !(spi->mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) 4127 return -EINVAL; 4128 if ((xfer->tx_nbits == SPI_NBITS_OCTAL) && 4129 !(spi->mode & SPI_TX_OCTAL)) 4130 return -EINVAL; 4131 } 4132 /* Check transfer rx_nbits */ 4133 if (xfer->rx_buf) { 4134 if (spi->mode & SPI_NO_RX) 4135 return -EINVAL; 4136 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4137 xfer->rx_nbits != SPI_NBITS_DUAL && 4138 xfer->rx_nbits != SPI_NBITS_QUAD && 4139 xfer->rx_nbits != SPI_NBITS_OCTAL) 4140 return -EINVAL; 4141 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4142 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 4143 return -EINVAL; 4144 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4145 !(spi->mode & (SPI_RX_QUAD | SPI_RX_OCTAL))) 4146 return -EINVAL; 4147 if ((xfer->rx_nbits == SPI_NBITS_OCTAL) && 4148 !(spi->mode & SPI_RX_OCTAL)) 4149 return -EINVAL; 4150 } 4151 4152 if (_spi_xfer_word_delay_update(xfer, spi)) 4153 return -EINVAL; 4154 4155 /* Make sure controller supports required offload features. */ 4156 if (xfer->offload_flags) { 4157 if (!message->offload) 4158 return -EINVAL; 4159 4160 if (xfer->offload_flags & ~message->offload->xfer_flags) 4161 return -EINVAL; 4162 } 4163 } 4164 4165 message->status = -EINPROGRESS; 4166 4167 return 0; 4168 } 4169 4170 /* 4171 * spi_split_transfers - generic handling of transfer splitting 4172 * @msg: the message to split 4173 * 4174 * Under certain conditions, a SPI controller may not support arbitrary 4175 * transfer sizes or other features required by a peripheral. This function 4176 * will split the transfers in the message into smaller transfers that are 4177 * supported by the controller. 4178 * 4179 * Controllers with special requirements not covered here can also split 4180 * transfers in the optimize_message() callback. 4181 * 4182 * Context: can sleep 4183 * Return: zero on success, else a negative error code 4184 */ 4185 static int spi_split_transfers(struct spi_message *msg) 4186 { 4187 struct spi_controller *ctlr = msg->spi->controller; 4188 struct spi_transfer *xfer; 4189 int ret; 4190 4191 /* 4192 * If an SPI controller does not support toggling the CS line on each 4193 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4194 * for the CS line, we can emulate the CS-per-word hardware function by 4195 * splitting transfers into one-word transfers and ensuring that 4196 * cs_change is set for each transfer. 4197 */ 4198 if ((msg->spi->mode & SPI_CS_WORD) && 4199 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4200 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4201 if (ret) 4202 return ret; 4203 4204 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4205 /* Don't change cs_change on the last entry in the list */ 4206 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4207 break; 4208 4209 xfer->cs_change = 1; 4210 } 4211 } else { 4212 ret = spi_split_transfers_maxsize(ctlr, msg, 4213 spi_max_transfer_size(msg->spi)); 4214 if (ret) 4215 return ret; 4216 } 4217 4218 return 0; 4219 } 4220 4221 /* 4222 * __spi_optimize_message - shared implementation for spi_optimize_message() 4223 * and spi_maybe_optimize_message() 4224 * @spi: the device that will be used for the message 4225 * @msg: the message to optimize 4226 * 4227 * Peripheral drivers will call spi_optimize_message() and the spi core will 4228 * call spi_maybe_optimize_message() instead of calling this directly. 4229 * 4230 * It is not valid to call this on a message that has already been optimized. 4231 * 4232 * Return: zero on success, else a negative error code 4233 */ 4234 static int __spi_optimize_message(struct spi_device *spi, 4235 struct spi_message *msg) 4236 { 4237 struct spi_controller *ctlr = spi->controller; 4238 int ret; 4239 4240 ret = __spi_validate(spi, msg); 4241 if (ret) 4242 return ret; 4243 4244 ret = spi_split_transfers(msg); 4245 if (ret) 4246 return ret; 4247 4248 if (ctlr->optimize_message) { 4249 ret = ctlr->optimize_message(msg); 4250 if (ret) { 4251 spi_res_release(ctlr, msg); 4252 return ret; 4253 } 4254 } 4255 4256 msg->optimized = true; 4257 4258 return 0; 4259 } 4260 4261 /* 4262 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4263 * @spi: the device that will be used for the message 4264 * @msg: the message to optimize 4265 * Return: zero on success, else a negative error code 4266 */ 4267 static int spi_maybe_optimize_message(struct spi_device *spi, 4268 struct spi_message *msg) 4269 { 4270 if (spi->controller->defer_optimize_message) { 4271 msg->spi = spi; 4272 return 0; 4273 } 4274 4275 if (msg->pre_optimized) 4276 return 0; 4277 4278 return __spi_optimize_message(spi, msg); 4279 } 4280 4281 /** 4282 * spi_optimize_message - do any one-time validation and setup for a SPI message 4283 * @spi: the device that will be used for the message 4284 * @msg: the message to optimize 4285 * 4286 * Peripheral drivers that reuse the same message repeatedly may call this to 4287 * perform as much message prep as possible once, rather than repeating it each 4288 * time a message transfer is performed to improve throughput and reduce CPU 4289 * usage. 4290 * 4291 * Once a message has been optimized, it cannot be modified with the exception 4292 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4293 * only the data in the memory it points to). 4294 * 4295 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4296 * to avoid leaking resources. 4297 * 4298 * Context: can sleep 4299 * Return: zero on success, else a negative error code 4300 */ 4301 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4302 { 4303 int ret; 4304 4305 /* 4306 * Pre-optimization is not supported and optimization is deferred e.g. 4307 * when using spi-mux. 4308 */ 4309 if (spi->controller->defer_optimize_message) 4310 return 0; 4311 4312 ret = __spi_optimize_message(spi, msg); 4313 if (ret) 4314 return ret; 4315 4316 /* 4317 * This flag indicates that the peripheral driver called spi_optimize_message() 4318 * and therefore we shouldn't unoptimize message automatically when finalizing 4319 * the message but rather wait until spi_unoptimize_message() is called 4320 * by the peripheral driver. 4321 */ 4322 msg->pre_optimized = true; 4323 4324 return 0; 4325 } 4326 EXPORT_SYMBOL_GPL(spi_optimize_message); 4327 4328 /** 4329 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4330 * @msg: the message to unoptimize 4331 * 4332 * Calls to this function must be balanced with calls to spi_optimize_message(). 4333 * 4334 * Context: can sleep 4335 */ 4336 void spi_unoptimize_message(struct spi_message *msg) 4337 { 4338 if (msg->spi->controller->defer_optimize_message) 4339 return; 4340 4341 __spi_unoptimize_message(msg); 4342 msg->pre_optimized = false; 4343 } 4344 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4345 4346 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4347 { 4348 struct spi_controller *ctlr = spi->controller; 4349 struct spi_transfer *xfer; 4350 4351 /* 4352 * Some controllers do not support doing regular SPI transfers. Return 4353 * ENOTSUPP when this is the case. 4354 */ 4355 if (!ctlr->transfer) 4356 return -ENOTSUPP; 4357 4358 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4359 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4360 4361 trace_spi_message_submit(message); 4362 4363 if (!ctlr->ptp_sts_supported) { 4364 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4365 xfer->ptp_sts_word_pre = 0; 4366 ptp_read_system_prets(xfer->ptp_sts); 4367 } 4368 } 4369 4370 return ctlr->transfer(spi, message); 4371 } 4372 4373 static void devm_spi_unoptimize_message(void *msg) 4374 { 4375 spi_unoptimize_message(msg); 4376 } 4377 4378 /** 4379 * devm_spi_optimize_message - managed version of spi_optimize_message() 4380 * @dev: the device that manages @msg (usually @spi->dev) 4381 * @spi: the device that will be used for the message 4382 * @msg: the message to optimize 4383 * Return: zero on success, else a negative error code 4384 * 4385 * spi_unoptimize_message() will automatically be called when the device is 4386 * removed. 4387 */ 4388 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4389 struct spi_message *msg) 4390 { 4391 int ret; 4392 4393 ret = spi_optimize_message(spi, msg); 4394 if (ret) 4395 return ret; 4396 4397 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4398 } 4399 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4400 4401 /** 4402 * spi_async - asynchronous SPI transfer 4403 * @spi: device with which data will be exchanged 4404 * @message: describes the data transfers, including completion callback 4405 * Context: any (IRQs may be blocked, etc) 4406 * 4407 * This call may be used in_irq and other contexts which can't sleep, 4408 * as well as from task contexts which can sleep. 4409 * 4410 * The completion callback is invoked in a context which can't sleep. 4411 * Before that invocation, the value of message->status is undefined. 4412 * When the callback is issued, message->status holds either zero (to 4413 * indicate complete success) or a negative error code. After that 4414 * callback returns, the driver which issued the transfer request may 4415 * deallocate the associated memory; it's no longer in use by any SPI 4416 * core or controller driver code. 4417 * 4418 * Note that although all messages to a spi_device are handled in 4419 * FIFO order, messages may go to different devices in other orders. 4420 * Some device might be higher priority, or have various "hard" access 4421 * time requirements, for example. 4422 * 4423 * On detection of any fault during the transfer, processing of 4424 * the entire message is aborted, and the device is deselected. 4425 * Until returning from the associated message completion callback, 4426 * no other spi_message queued to that device will be processed. 4427 * (This rule applies equally to all the synchronous transfer calls, 4428 * which are wrappers around this core asynchronous primitive.) 4429 * 4430 * Return: zero on success, else a negative error code. 4431 */ 4432 int spi_async(struct spi_device *spi, struct spi_message *message) 4433 { 4434 struct spi_controller *ctlr = spi->controller; 4435 int ret; 4436 unsigned long flags; 4437 4438 ret = spi_maybe_optimize_message(spi, message); 4439 if (ret) 4440 return ret; 4441 4442 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4443 4444 if (ctlr->bus_lock_flag) 4445 ret = -EBUSY; 4446 else 4447 ret = __spi_async(spi, message); 4448 4449 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4450 4451 return ret; 4452 } 4453 EXPORT_SYMBOL_GPL(spi_async); 4454 4455 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4456 { 4457 bool was_busy; 4458 int ret; 4459 4460 mutex_lock(&ctlr->io_mutex); 4461 4462 was_busy = ctlr->busy; 4463 4464 ctlr->cur_msg = msg; 4465 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4466 if (ret) 4467 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4468 ctlr->cur_msg = NULL; 4469 ctlr->fallback = false; 4470 4471 if (!was_busy) { 4472 kfree(ctlr->dummy_rx); 4473 ctlr->dummy_rx = NULL; 4474 kfree(ctlr->dummy_tx); 4475 ctlr->dummy_tx = NULL; 4476 if (ctlr->unprepare_transfer_hardware && 4477 ctlr->unprepare_transfer_hardware(ctlr)) 4478 dev_err(&ctlr->dev, 4479 "failed to unprepare transfer hardware\n"); 4480 spi_idle_runtime_pm(ctlr); 4481 } 4482 4483 mutex_unlock(&ctlr->io_mutex); 4484 } 4485 4486 /*-------------------------------------------------------------------------*/ 4487 4488 /* 4489 * Utility methods for SPI protocol drivers, layered on 4490 * top of the core. Some other utility methods are defined as 4491 * inline functions. 4492 */ 4493 4494 static void spi_complete(void *arg) 4495 { 4496 complete(arg); 4497 } 4498 4499 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4500 { 4501 DECLARE_COMPLETION_ONSTACK(done); 4502 unsigned long flags; 4503 int status; 4504 struct spi_controller *ctlr = spi->controller; 4505 4506 if (__spi_check_suspended(ctlr)) { 4507 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4508 return -ESHUTDOWN; 4509 } 4510 4511 status = spi_maybe_optimize_message(spi, message); 4512 if (status) 4513 return status; 4514 4515 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4516 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4517 4518 /* 4519 * Checking queue_empty here only guarantees async/sync message 4520 * ordering when coming from the same context. It does not need to 4521 * guard against reentrancy from a different context. The io_mutex 4522 * will catch those cases. 4523 */ 4524 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4525 message->actual_length = 0; 4526 message->status = -EINPROGRESS; 4527 4528 trace_spi_message_submit(message); 4529 4530 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4531 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4532 4533 __spi_transfer_message_noqueue(ctlr, message); 4534 4535 return message->status; 4536 } 4537 4538 /* 4539 * There are messages in the async queue that could have originated 4540 * from the same context, so we need to preserve ordering. 4541 * Therefor we send the message to the async queue and wait until they 4542 * are completed. 4543 */ 4544 message->complete = spi_complete; 4545 message->context = &done; 4546 4547 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4548 status = __spi_async(spi, message); 4549 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4550 4551 if (status == 0) { 4552 wait_for_completion(&done); 4553 status = message->status; 4554 } 4555 message->complete = NULL; 4556 message->context = NULL; 4557 4558 return status; 4559 } 4560 4561 /** 4562 * spi_sync - blocking/synchronous SPI data transfers 4563 * @spi: device with which data will be exchanged 4564 * @message: describes the data transfers 4565 * Context: can sleep 4566 * 4567 * This call may only be used from a context that may sleep. The sleep 4568 * is non-interruptible, and has no timeout. Low-overhead controller 4569 * drivers may DMA directly into and out of the message buffers. 4570 * 4571 * Note that the SPI device's chip select is active during the message, 4572 * and then is normally disabled between messages. Drivers for some 4573 * frequently-used devices may want to minimize costs of selecting a chip, 4574 * by leaving it selected in anticipation that the next message will go 4575 * to the same chip. (That may increase power usage.) 4576 * 4577 * Also, the caller is guaranteeing that the memory associated with the 4578 * message will not be freed before this call returns. 4579 * 4580 * Return: zero on success, else a negative error code. 4581 */ 4582 int spi_sync(struct spi_device *spi, struct spi_message *message) 4583 { 4584 int ret; 4585 4586 mutex_lock(&spi->controller->bus_lock_mutex); 4587 ret = __spi_sync(spi, message); 4588 mutex_unlock(&spi->controller->bus_lock_mutex); 4589 4590 return ret; 4591 } 4592 EXPORT_SYMBOL_GPL(spi_sync); 4593 4594 /** 4595 * spi_sync_locked - version of spi_sync with exclusive bus usage 4596 * @spi: device with which data will be exchanged 4597 * @message: describes the data transfers 4598 * Context: can sleep 4599 * 4600 * This call may only be used from a context that may sleep. The sleep 4601 * is non-interruptible, and has no timeout. Low-overhead controller 4602 * drivers may DMA directly into and out of the message buffers. 4603 * 4604 * This call should be used by drivers that require exclusive access to the 4605 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4606 * be released by a spi_bus_unlock call when the exclusive access is over. 4607 * 4608 * Return: zero on success, else a negative error code. 4609 */ 4610 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4611 { 4612 return __spi_sync(spi, message); 4613 } 4614 EXPORT_SYMBOL_GPL(spi_sync_locked); 4615 4616 /** 4617 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4618 * @ctlr: SPI bus controller that should be locked for exclusive bus access 4619 * Context: can sleep 4620 * 4621 * This call may only be used from a context that may sleep. The sleep 4622 * is non-interruptible, and has no timeout. 4623 * 4624 * This call should be used by drivers that require exclusive access to the 4625 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4626 * exclusive access is over. Data transfer must be done by spi_sync_locked 4627 * and spi_async_locked calls when the SPI bus lock is held. 4628 * 4629 * Return: always zero. 4630 */ 4631 int spi_bus_lock(struct spi_controller *ctlr) 4632 { 4633 unsigned long flags; 4634 4635 mutex_lock(&ctlr->bus_lock_mutex); 4636 4637 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4638 ctlr->bus_lock_flag = 1; 4639 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4640 4641 /* Mutex remains locked until spi_bus_unlock() is called */ 4642 4643 return 0; 4644 } 4645 EXPORT_SYMBOL_GPL(spi_bus_lock); 4646 4647 /** 4648 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4649 * @ctlr: SPI bus controller that was locked for exclusive bus access 4650 * Context: can sleep 4651 * 4652 * This call may only be used from a context that may sleep. The sleep 4653 * is non-interruptible, and has no timeout. 4654 * 4655 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4656 * call. 4657 * 4658 * Return: always zero. 4659 */ 4660 int spi_bus_unlock(struct spi_controller *ctlr) 4661 { 4662 ctlr->bus_lock_flag = 0; 4663 4664 mutex_unlock(&ctlr->bus_lock_mutex); 4665 4666 return 0; 4667 } 4668 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4669 4670 /* Portable code must never pass more than 32 bytes */ 4671 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4672 4673 static u8 *buf; 4674 4675 /** 4676 * spi_write_then_read - SPI synchronous write followed by read 4677 * @spi: device with which data will be exchanged 4678 * @txbuf: data to be written (need not be DMA-safe) 4679 * @n_tx: size of txbuf, in bytes 4680 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4681 * @n_rx: size of rxbuf, in bytes 4682 * Context: can sleep 4683 * 4684 * This performs a half duplex MicroWire style transaction with the 4685 * device, sending txbuf and then reading rxbuf. The return value 4686 * is zero for success, else a negative errno status code. 4687 * This call may only be used from a context that may sleep. 4688 * 4689 * Parameters to this routine are always copied using a small buffer. 4690 * Performance-sensitive or bulk transfer code should instead use 4691 * spi_{async,sync}() calls with DMA-safe buffers. 4692 * 4693 * Return: zero on success, else a negative error code. 4694 */ 4695 int spi_write_then_read(struct spi_device *spi, 4696 const void *txbuf, unsigned n_tx, 4697 void *rxbuf, unsigned n_rx) 4698 { 4699 static DEFINE_MUTEX(lock); 4700 4701 int status; 4702 struct spi_message message; 4703 struct spi_transfer x[2]; 4704 u8 *local_buf; 4705 4706 /* 4707 * Use preallocated DMA-safe buffer if we can. We can't avoid 4708 * copying here, (as a pure convenience thing), but we can 4709 * keep heap costs out of the hot path unless someone else is 4710 * using the pre-allocated buffer or the transfer is too large. 4711 */ 4712 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4713 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4714 GFP_KERNEL | GFP_DMA); 4715 if (!local_buf) 4716 return -ENOMEM; 4717 } else { 4718 local_buf = buf; 4719 } 4720 4721 spi_message_init(&message); 4722 memset(x, 0, sizeof(x)); 4723 if (n_tx) { 4724 x[0].len = n_tx; 4725 spi_message_add_tail(&x[0], &message); 4726 } 4727 if (n_rx) { 4728 x[1].len = n_rx; 4729 spi_message_add_tail(&x[1], &message); 4730 } 4731 4732 memcpy(local_buf, txbuf, n_tx); 4733 x[0].tx_buf = local_buf; 4734 x[1].rx_buf = local_buf + n_tx; 4735 4736 /* Do the I/O */ 4737 status = spi_sync(spi, &message); 4738 if (status == 0) 4739 memcpy(rxbuf, x[1].rx_buf, n_rx); 4740 4741 if (x[0].tx_buf == buf) 4742 mutex_unlock(&lock); 4743 else 4744 kfree(local_buf); 4745 4746 return status; 4747 } 4748 EXPORT_SYMBOL_GPL(spi_write_then_read); 4749 4750 /*-------------------------------------------------------------------------*/ 4751 4752 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4753 /* Must call put_device() when done with returned spi_device device */ 4754 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4755 { 4756 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4757 4758 return dev ? to_spi_device(dev) : NULL; 4759 } 4760 4761 /* The spi controllers are not using spi_bus, so we find it with another way */ 4762 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4763 { 4764 struct device *dev; 4765 4766 dev = class_find_device_by_of_node(&spi_controller_class, node); 4767 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4768 dev = class_find_device_by_of_node(&spi_target_class, node); 4769 if (!dev) 4770 return NULL; 4771 4772 /* Reference got in class_find_device */ 4773 return container_of(dev, struct spi_controller, dev); 4774 } 4775 4776 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4777 void *arg) 4778 { 4779 struct of_reconfig_data *rd = arg; 4780 struct spi_controller *ctlr; 4781 struct spi_device *spi; 4782 4783 switch (of_reconfig_get_state_change(action, arg)) { 4784 case OF_RECONFIG_CHANGE_ADD: 4785 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4786 if (ctlr == NULL) 4787 return NOTIFY_OK; /* Not for us */ 4788 4789 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4790 put_device(&ctlr->dev); 4791 return NOTIFY_OK; 4792 } 4793 4794 /* 4795 * Clear the flag before adding the device so that fw_devlink 4796 * doesn't skip adding consumers to this device. 4797 */ 4798 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4799 spi = of_register_spi_device(ctlr, rd->dn); 4800 put_device(&ctlr->dev); 4801 4802 if (IS_ERR(spi)) { 4803 pr_err("%s: failed to create for '%pOF'\n", 4804 __func__, rd->dn); 4805 of_node_clear_flag(rd->dn, OF_POPULATED); 4806 return notifier_from_errno(PTR_ERR(spi)); 4807 } 4808 break; 4809 4810 case OF_RECONFIG_CHANGE_REMOVE: 4811 /* Already depopulated? */ 4812 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4813 return NOTIFY_OK; 4814 4815 /* Find our device by node */ 4816 spi = of_find_spi_device_by_node(rd->dn); 4817 if (spi == NULL) 4818 return NOTIFY_OK; /* No? not meant for us */ 4819 4820 /* Unregister takes one ref away */ 4821 spi_unregister_device(spi); 4822 4823 /* And put the reference of the find */ 4824 put_device(&spi->dev); 4825 break; 4826 } 4827 4828 return NOTIFY_OK; 4829 } 4830 4831 static struct notifier_block spi_of_notifier = { 4832 .notifier_call = of_spi_notify, 4833 }; 4834 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4835 extern struct notifier_block spi_of_notifier; 4836 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4837 4838 #if IS_ENABLED(CONFIG_ACPI) 4839 static int spi_acpi_controller_match(struct device *dev, const void *data) 4840 { 4841 return device_match_acpi_dev(dev->parent, data); 4842 } 4843 4844 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4845 { 4846 struct device *dev; 4847 4848 dev = class_find_device(&spi_controller_class, NULL, adev, 4849 spi_acpi_controller_match); 4850 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4851 dev = class_find_device(&spi_target_class, NULL, adev, 4852 spi_acpi_controller_match); 4853 if (!dev) 4854 return NULL; 4855 4856 return container_of(dev, struct spi_controller, dev); 4857 } 4858 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4859 4860 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4861 { 4862 struct device *dev; 4863 4864 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4865 return to_spi_device(dev); 4866 } 4867 4868 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4869 void *arg) 4870 { 4871 struct acpi_device *adev = arg; 4872 struct spi_controller *ctlr; 4873 struct spi_device *spi; 4874 4875 switch (value) { 4876 case ACPI_RECONFIG_DEVICE_ADD: 4877 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4878 if (!ctlr) 4879 break; 4880 4881 acpi_register_spi_device(ctlr, adev); 4882 put_device(&ctlr->dev); 4883 break; 4884 case ACPI_RECONFIG_DEVICE_REMOVE: 4885 if (!acpi_device_enumerated(adev)) 4886 break; 4887 4888 spi = acpi_spi_find_device_by_adev(adev); 4889 if (!spi) 4890 break; 4891 4892 spi_unregister_device(spi); 4893 put_device(&spi->dev); 4894 break; 4895 } 4896 4897 return NOTIFY_OK; 4898 } 4899 4900 static struct notifier_block spi_acpi_notifier = { 4901 .notifier_call = acpi_spi_notify, 4902 }; 4903 #else 4904 extern struct notifier_block spi_acpi_notifier; 4905 #endif 4906 4907 static int __init spi_init(void) 4908 { 4909 int status; 4910 4911 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4912 if (!buf) { 4913 status = -ENOMEM; 4914 goto err0; 4915 } 4916 4917 status = bus_register(&spi_bus_type); 4918 if (status < 0) 4919 goto err1; 4920 4921 status = class_register(&spi_controller_class); 4922 if (status < 0) 4923 goto err2; 4924 4925 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4926 status = class_register(&spi_target_class); 4927 if (status < 0) 4928 goto err3; 4929 } 4930 4931 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4932 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4933 if (IS_ENABLED(CONFIG_ACPI)) 4934 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4935 4936 return 0; 4937 4938 err3: 4939 class_unregister(&spi_controller_class); 4940 err2: 4941 bus_unregister(&spi_bus_type); 4942 err1: 4943 kfree(buf); 4944 buf = NULL; 4945 err0: 4946 return status; 4947 } 4948 4949 /* 4950 * A board_info is normally registered in arch_initcall(), 4951 * but even essential drivers wait till later. 4952 * 4953 * REVISIT only boardinfo really needs static linking. The rest (device and 4954 * driver registration) _could_ be dynamically linked (modular) ... Costs 4955 * include needing to have boardinfo data structures be much more public. 4956 */ 4957 postcore_initcall(spi_init); 4958