1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->master = spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 601 602 if (adev) { 603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 604 return; 605 } 606 607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 608 spi_get_chipselect(spi, 0)); 609 } 610 611 static int spi_dev_check(struct device *dev, void *data) 612 { 613 struct spi_device *spi = to_spi_device(dev); 614 struct spi_device *new_spi = data; 615 616 if (spi->controller == new_spi->controller && 617 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0)) 618 return -EBUSY; 619 return 0; 620 } 621 622 static void spi_cleanup(struct spi_device *spi) 623 { 624 if (spi->controller->cleanup) 625 spi->controller->cleanup(spi); 626 } 627 628 static int __spi_add_device(struct spi_device *spi) 629 { 630 struct spi_controller *ctlr = spi->controller; 631 struct device *dev = ctlr->dev.parent; 632 int status; 633 634 /* Chipselects are numbered 0..max; validate. */ 635 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) { 636 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0), 637 ctlr->num_chipselect); 638 return -EINVAL; 639 } 640 641 /* Set the bus ID string */ 642 spi_dev_set_name(spi); 643 644 /* 645 * We need to make sure there's no other device with this 646 * chipselect **BEFORE** we call setup(), else we'll trash 647 * its configuration. 648 */ 649 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 650 if (status) { 651 dev_err(dev, "chipselect %d already in use\n", 652 spi_get_chipselect(spi, 0)); 653 return status; 654 } 655 656 /* Controller may unregister concurrently */ 657 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 658 !device_is_registered(&ctlr->dev)) { 659 return -ENODEV; 660 } 661 662 if (ctlr->cs_gpiods) 663 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]); 664 665 /* 666 * Drivers may modify this initial i/o setup, but will 667 * normally rely on the device being setup. Devices 668 * using SPI_CS_HIGH can't coexist well otherwise... 669 */ 670 status = spi_setup(spi); 671 if (status < 0) { 672 dev_err(dev, "can't setup %s, status %d\n", 673 dev_name(&spi->dev), status); 674 return status; 675 } 676 677 /* Device may be bound to an active driver when this returns */ 678 status = device_add(&spi->dev); 679 if (status < 0) { 680 dev_err(dev, "can't add %s, status %d\n", 681 dev_name(&spi->dev), status); 682 spi_cleanup(spi); 683 } else { 684 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 685 } 686 687 return status; 688 } 689 690 /** 691 * spi_add_device - Add spi_device allocated with spi_alloc_device 692 * @spi: spi_device to register 693 * 694 * Companion function to spi_alloc_device. Devices allocated with 695 * spi_alloc_device can be added onto the SPI bus with this function. 696 * 697 * Return: 0 on success; negative errno on failure 698 */ 699 int spi_add_device(struct spi_device *spi) 700 { 701 struct spi_controller *ctlr = spi->controller; 702 int status; 703 704 mutex_lock(&ctlr->add_lock); 705 status = __spi_add_device(spi); 706 mutex_unlock(&ctlr->add_lock); 707 return status; 708 } 709 EXPORT_SYMBOL_GPL(spi_add_device); 710 711 /** 712 * spi_new_device - instantiate one new SPI device 713 * @ctlr: Controller to which device is connected 714 * @chip: Describes the SPI device 715 * Context: can sleep 716 * 717 * On typical mainboards, this is purely internal; and it's not needed 718 * after board init creates the hard-wired devices. Some development 719 * platforms may not be able to use spi_register_board_info though, and 720 * this is exported so that for example a USB or parport based adapter 721 * driver could add devices (which it would learn about out-of-band). 722 * 723 * Return: the new device, or NULL. 724 */ 725 struct spi_device *spi_new_device(struct spi_controller *ctlr, 726 struct spi_board_info *chip) 727 { 728 struct spi_device *proxy; 729 int status; 730 731 /* 732 * NOTE: caller did any chip->bus_num checks necessary. 733 * 734 * Also, unless we change the return value convention to use 735 * error-or-pointer (not NULL-or-pointer), troubleshootability 736 * suggests syslogged diagnostics are best here (ugh). 737 */ 738 739 proxy = spi_alloc_device(ctlr); 740 if (!proxy) 741 return NULL; 742 743 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 744 745 spi_set_chipselect(proxy, 0, chip->chip_select); 746 proxy->max_speed_hz = chip->max_speed_hz; 747 proxy->mode = chip->mode; 748 proxy->irq = chip->irq; 749 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 750 proxy->dev.platform_data = (void *) chip->platform_data; 751 proxy->controller_data = chip->controller_data; 752 proxy->controller_state = NULL; 753 754 if (chip->swnode) { 755 status = device_add_software_node(&proxy->dev, chip->swnode); 756 if (status) { 757 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 758 chip->modalias, status); 759 goto err_dev_put; 760 } 761 } 762 763 status = spi_add_device(proxy); 764 if (status < 0) 765 goto err_dev_put; 766 767 return proxy; 768 769 err_dev_put: 770 device_remove_software_node(&proxy->dev); 771 spi_dev_put(proxy); 772 return NULL; 773 } 774 EXPORT_SYMBOL_GPL(spi_new_device); 775 776 /** 777 * spi_unregister_device - unregister a single SPI device 778 * @spi: spi_device to unregister 779 * 780 * Start making the passed SPI device vanish. Normally this would be handled 781 * by spi_unregister_controller(). 782 */ 783 void spi_unregister_device(struct spi_device *spi) 784 { 785 if (!spi) 786 return; 787 788 if (spi->dev.of_node) { 789 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 790 of_node_put(spi->dev.of_node); 791 } 792 if (ACPI_COMPANION(&spi->dev)) 793 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 794 device_remove_software_node(&spi->dev); 795 device_del(&spi->dev); 796 spi_cleanup(spi); 797 put_device(&spi->dev); 798 } 799 EXPORT_SYMBOL_GPL(spi_unregister_device); 800 801 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 802 struct spi_board_info *bi) 803 { 804 struct spi_device *dev; 805 806 if (ctlr->bus_num != bi->bus_num) 807 return; 808 809 dev = spi_new_device(ctlr, bi); 810 if (!dev) 811 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 812 bi->modalias); 813 } 814 815 /** 816 * spi_register_board_info - register SPI devices for a given board 817 * @info: array of chip descriptors 818 * @n: how many descriptors are provided 819 * Context: can sleep 820 * 821 * Board-specific early init code calls this (probably during arch_initcall) 822 * with segments of the SPI device table. Any device nodes are created later, 823 * after the relevant parent SPI controller (bus_num) is defined. We keep 824 * this table of devices forever, so that reloading a controller driver will 825 * not make Linux forget about these hard-wired devices. 826 * 827 * Other code can also call this, e.g. a particular add-on board might provide 828 * SPI devices through its expansion connector, so code initializing that board 829 * would naturally declare its SPI devices. 830 * 831 * The board info passed can safely be __initdata ... but be careful of 832 * any embedded pointers (platform_data, etc), they're copied as-is. 833 * 834 * Return: zero on success, else a negative error code. 835 */ 836 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 837 { 838 struct boardinfo *bi; 839 int i; 840 841 if (!n) 842 return 0; 843 844 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 845 if (!bi) 846 return -ENOMEM; 847 848 for (i = 0; i < n; i++, bi++, info++) { 849 struct spi_controller *ctlr; 850 851 memcpy(&bi->board_info, info, sizeof(*info)); 852 853 mutex_lock(&board_lock); 854 list_add_tail(&bi->list, &board_list); 855 list_for_each_entry(ctlr, &spi_controller_list, list) 856 spi_match_controller_to_boardinfo(ctlr, 857 &bi->board_info); 858 mutex_unlock(&board_lock); 859 } 860 861 return 0; 862 } 863 864 /*-------------------------------------------------------------------------*/ 865 866 /* Core methods for SPI resource management */ 867 868 /** 869 * spi_res_alloc - allocate a spi resource that is life-cycle managed 870 * during the processing of a spi_message while using 871 * spi_transfer_one 872 * @spi: the SPI device for which we allocate memory 873 * @release: the release code to execute for this resource 874 * @size: size to alloc and return 875 * @gfp: GFP allocation flags 876 * 877 * Return: the pointer to the allocated data 878 * 879 * This may get enhanced in the future to allocate from a memory pool 880 * of the @spi_device or @spi_controller to avoid repeated allocations. 881 */ 882 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 883 size_t size, gfp_t gfp) 884 { 885 struct spi_res *sres; 886 887 sres = kzalloc(sizeof(*sres) + size, gfp); 888 if (!sres) 889 return NULL; 890 891 INIT_LIST_HEAD(&sres->entry); 892 sres->release = release; 893 894 return sres->data; 895 } 896 897 /** 898 * spi_res_free - free an SPI resource 899 * @res: pointer to the custom data of a resource 900 */ 901 static void spi_res_free(void *res) 902 { 903 struct spi_res *sres = container_of(res, struct spi_res, data); 904 905 if (!res) 906 return; 907 908 WARN_ON(!list_empty(&sres->entry)); 909 kfree(sres); 910 } 911 912 /** 913 * spi_res_add - add a spi_res to the spi_message 914 * @message: the SPI message 915 * @res: the spi_resource 916 */ 917 static void spi_res_add(struct spi_message *message, void *res) 918 { 919 struct spi_res *sres = container_of(res, struct spi_res, data); 920 921 WARN_ON(!list_empty(&sres->entry)); 922 list_add_tail(&sres->entry, &message->resources); 923 } 924 925 /** 926 * spi_res_release - release all SPI resources for this message 927 * @ctlr: the @spi_controller 928 * @message: the @spi_message 929 */ 930 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 931 { 932 struct spi_res *res, *tmp; 933 934 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 935 if (res->release) 936 res->release(ctlr, message, res->data); 937 938 list_del(&res->entry); 939 940 kfree(res); 941 } 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 947 { 948 bool activate = enable; 949 950 /* 951 * Avoid calling into the driver (or doing delays) if the chip select 952 * isn't actually changing from the last time this was called. 953 */ 954 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) || 955 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) && 956 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 957 return; 958 959 trace_spi_set_cs(spi, activate); 960 961 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1; 962 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 963 964 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate) 965 spi_delay_exec(&spi->cs_hold, NULL); 966 967 if (spi->mode & SPI_CS_HIGH) 968 enable = !enable; 969 970 if (spi_get_csgpiod(spi, 0)) { 971 if (!(spi->mode & SPI_NO_CS)) { 972 /* 973 * Historically ACPI has no means of the GPIO polarity and 974 * thus the SPISerialBus() resource defines it on the per-chip 975 * basis. In order to avoid a chain of negations, the GPIO 976 * polarity is considered being Active High. Even for the cases 977 * when _DSD() is involved (in the updated versions of ACPI) 978 * the GPIO CS polarity must be defined Active High to avoid 979 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 980 * into account. 981 */ 982 if (has_acpi_companion(&spi->dev)) 983 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable); 984 else 985 /* Polarity handled by GPIO library */ 986 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate); 987 } 988 /* Some SPI masters need both GPIO CS & slave_select */ 989 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 990 spi->controller->set_cs) 991 spi->controller->set_cs(spi, !enable); 992 } else if (spi->controller->set_cs) { 993 spi->controller->set_cs(spi, !enable); 994 } 995 996 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) { 997 if (activate) 998 spi_delay_exec(&spi->cs_setup, NULL); 999 else 1000 spi_delay_exec(&spi->cs_inactive, NULL); 1001 } 1002 } 1003 1004 #ifdef CONFIG_HAS_DMA 1005 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1006 struct sg_table *sgt, void *buf, size_t len, 1007 enum dma_data_direction dir, unsigned long attrs) 1008 { 1009 const bool vmalloced_buf = is_vmalloc_addr(buf); 1010 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1011 #ifdef CONFIG_HIGHMEM 1012 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1013 (unsigned long)buf < (PKMAP_BASE + 1014 (LAST_PKMAP * PAGE_SIZE))); 1015 #else 1016 const bool kmap_buf = false; 1017 #endif 1018 int desc_len; 1019 int sgs; 1020 struct page *vm_page; 1021 struct scatterlist *sg; 1022 void *sg_buf; 1023 size_t min; 1024 int i, ret; 1025 1026 if (vmalloced_buf || kmap_buf) { 1027 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1028 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1029 } else if (virt_addr_valid(buf)) { 1030 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1031 sgs = DIV_ROUND_UP(len, desc_len); 1032 } else { 1033 return -EINVAL; 1034 } 1035 1036 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1037 if (ret != 0) 1038 return ret; 1039 1040 sg = &sgt->sgl[0]; 1041 for (i = 0; i < sgs; i++) { 1042 1043 if (vmalloced_buf || kmap_buf) { 1044 /* 1045 * Next scatterlist entry size is the minimum between 1046 * the desc_len and the remaining buffer length that 1047 * fits in a page. 1048 */ 1049 min = min_t(size_t, desc_len, 1050 min_t(size_t, len, 1051 PAGE_SIZE - offset_in_page(buf))); 1052 if (vmalloced_buf) 1053 vm_page = vmalloc_to_page(buf); 1054 else 1055 vm_page = kmap_to_page(buf); 1056 if (!vm_page) { 1057 sg_free_table(sgt); 1058 return -ENOMEM; 1059 } 1060 sg_set_page(sg, vm_page, 1061 min, offset_in_page(buf)); 1062 } else { 1063 min = min_t(size_t, len, desc_len); 1064 sg_buf = buf; 1065 sg_set_buf(sg, sg_buf, min); 1066 } 1067 1068 buf += min; 1069 len -= min; 1070 sg = sg_next(sg); 1071 } 1072 1073 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1074 if (ret < 0) { 1075 sg_free_table(sgt); 1076 return ret; 1077 } 1078 1079 return 0; 1080 } 1081 1082 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1083 struct sg_table *sgt, void *buf, size_t len, 1084 enum dma_data_direction dir) 1085 { 1086 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1087 } 1088 1089 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1090 struct device *dev, struct sg_table *sgt, 1091 enum dma_data_direction dir, 1092 unsigned long attrs) 1093 { 1094 if (sgt->orig_nents) { 1095 dma_unmap_sgtable(dev, sgt, dir, attrs); 1096 sg_free_table(sgt); 1097 sgt->orig_nents = 0; 1098 sgt->nents = 0; 1099 } 1100 } 1101 1102 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1103 struct sg_table *sgt, enum dma_data_direction dir) 1104 { 1105 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1106 } 1107 1108 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1109 { 1110 struct device *tx_dev, *rx_dev; 1111 struct spi_transfer *xfer; 1112 int ret; 1113 1114 if (!ctlr->can_dma) 1115 return 0; 1116 1117 if (ctlr->dma_tx) 1118 tx_dev = ctlr->dma_tx->device->dev; 1119 else if (ctlr->dma_map_dev) 1120 tx_dev = ctlr->dma_map_dev; 1121 else 1122 tx_dev = ctlr->dev.parent; 1123 1124 if (ctlr->dma_rx) 1125 rx_dev = ctlr->dma_rx->device->dev; 1126 else if (ctlr->dma_map_dev) 1127 rx_dev = ctlr->dma_map_dev; 1128 else 1129 rx_dev = ctlr->dev.parent; 1130 1131 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1132 /* The sync is done before each transfer. */ 1133 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1134 1135 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1136 continue; 1137 1138 if (xfer->tx_buf != NULL) { 1139 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1140 (void *)xfer->tx_buf, 1141 xfer->len, DMA_TO_DEVICE, 1142 attrs); 1143 if (ret != 0) 1144 return ret; 1145 } 1146 1147 if (xfer->rx_buf != NULL) { 1148 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1149 xfer->rx_buf, xfer->len, 1150 DMA_FROM_DEVICE, attrs); 1151 if (ret != 0) { 1152 spi_unmap_buf_attrs(ctlr, tx_dev, 1153 &xfer->tx_sg, DMA_TO_DEVICE, 1154 attrs); 1155 1156 return ret; 1157 } 1158 } 1159 } 1160 1161 ctlr->cur_rx_dma_dev = rx_dev; 1162 ctlr->cur_tx_dma_dev = tx_dev; 1163 ctlr->cur_msg_mapped = true; 1164 1165 return 0; 1166 } 1167 1168 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1169 { 1170 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1171 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1172 struct spi_transfer *xfer; 1173 1174 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1175 return 0; 1176 1177 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1178 /* The sync has already been done after each transfer. */ 1179 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1180 1181 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1182 continue; 1183 1184 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1185 DMA_FROM_DEVICE, attrs); 1186 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1187 DMA_TO_DEVICE, attrs); 1188 } 1189 1190 ctlr->cur_msg_mapped = false; 1191 1192 return 0; 1193 } 1194 1195 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1196 struct spi_transfer *xfer) 1197 { 1198 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1199 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1200 1201 if (!ctlr->cur_msg_mapped) 1202 return; 1203 1204 if (xfer->tx_sg.orig_nents) 1205 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1206 if (xfer->rx_sg.orig_nents) 1207 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1208 } 1209 1210 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1211 struct spi_transfer *xfer) 1212 { 1213 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1214 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1215 1216 if (!ctlr->cur_msg_mapped) 1217 return; 1218 1219 if (xfer->rx_sg.orig_nents) 1220 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1221 if (xfer->tx_sg.orig_nents) 1222 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1223 } 1224 #else /* !CONFIG_HAS_DMA */ 1225 static inline int __spi_map_msg(struct spi_controller *ctlr, 1226 struct spi_message *msg) 1227 { 1228 return 0; 1229 } 1230 1231 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1232 struct spi_message *msg) 1233 { 1234 return 0; 1235 } 1236 1237 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1238 struct spi_transfer *xfer) 1239 { 1240 } 1241 1242 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1243 struct spi_transfer *xfer) 1244 { 1245 } 1246 #endif /* !CONFIG_HAS_DMA */ 1247 1248 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1249 struct spi_message *msg) 1250 { 1251 struct spi_transfer *xfer; 1252 1253 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1254 /* 1255 * Restore the original value of tx_buf or rx_buf if they are 1256 * NULL. 1257 */ 1258 if (xfer->tx_buf == ctlr->dummy_tx) 1259 xfer->tx_buf = NULL; 1260 if (xfer->rx_buf == ctlr->dummy_rx) 1261 xfer->rx_buf = NULL; 1262 } 1263 1264 return __spi_unmap_msg(ctlr, msg); 1265 } 1266 1267 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1268 { 1269 struct spi_transfer *xfer; 1270 void *tmp; 1271 unsigned int max_tx, max_rx; 1272 1273 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1274 && !(msg->spi->mode & SPI_3WIRE)) { 1275 max_tx = 0; 1276 max_rx = 0; 1277 1278 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1279 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1280 !xfer->tx_buf) 1281 max_tx = max(xfer->len, max_tx); 1282 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1283 !xfer->rx_buf) 1284 max_rx = max(xfer->len, max_rx); 1285 } 1286 1287 if (max_tx) { 1288 tmp = krealloc(ctlr->dummy_tx, max_tx, 1289 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1290 if (!tmp) 1291 return -ENOMEM; 1292 ctlr->dummy_tx = tmp; 1293 } 1294 1295 if (max_rx) { 1296 tmp = krealloc(ctlr->dummy_rx, max_rx, 1297 GFP_KERNEL | GFP_DMA); 1298 if (!tmp) 1299 return -ENOMEM; 1300 ctlr->dummy_rx = tmp; 1301 } 1302 1303 if (max_tx || max_rx) { 1304 list_for_each_entry(xfer, &msg->transfers, 1305 transfer_list) { 1306 if (!xfer->len) 1307 continue; 1308 if (!xfer->tx_buf) 1309 xfer->tx_buf = ctlr->dummy_tx; 1310 if (!xfer->rx_buf) 1311 xfer->rx_buf = ctlr->dummy_rx; 1312 } 1313 } 1314 } 1315 1316 return __spi_map_msg(ctlr, msg); 1317 } 1318 1319 static int spi_transfer_wait(struct spi_controller *ctlr, 1320 struct spi_message *msg, 1321 struct spi_transfer *xfer) 1322 { 1323 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1324 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1325 u32 speed_hz = xfer->speed_hz; 1326 unsigned long long ms; 1327 1328 if (spi_controller_is_slave(ctlr)) { 1329 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1330 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1331 return -EINTR; 1332 } 1333 } else { 1334 if (!speed_hz) 1335 speed_hz = 100000; 1336 1337 /* 1338 * For each byte we wait for 8 cycles of the SPI clock. 1339 * Since speed is defined in Hz and we want milliseconds, 1340 * use respective multiplier, but before the division, 1341 * otherwise we may get 0 for short transfers. 1342 */ 1343 ms = 8LL * MSEC_PER_SEC * xfer->len; 1344 do_div(ms, speed_hz); 1345 1346 /* 1347 * Increase it twice and add 200 ms tolerance, use 1348 * predefined maximum in case of overflow. 1349 */ 1350 ms += ms + 200; 1351 if (ms > UINT_MAX) 1352 ms = UINT_MAX; 1353 1354 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1355 msecs_to_jiffies(ms)); 1356 1357 if (ms == 0) { 1358 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1359 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1360 dev_err(&msg->spi->dev, 1361 "SPI transfer timed out\n"); 1362 return -ETIMEDOUT; 1363 } 1364 } 1365 1366 return 0; 1367 } 1368 1369 static void _spi_transfer_delay_ns(u32 ns) 1370 { 1371 if (!ns) 1372 return; 1373 if (ns <= NSEC_PER_USEC) { 1374 ndelay(ns); 1375 } else { 1376 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1377 1378 if (us <= 10) 1379 udelay(us); 1380 else 1381 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1382 } 1383 } 1384 1385 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1386 { 1387 u32 delay = _delay->value; 1388 u32 unit = _delay->unit; 1389 u32 hz; 1390 1391 if (!delay) 1392 return 0; 1393 1394 switch (unit) { 1395 case SPI_DELAY_UNIT_USECS: 1396 delay *= NSEC_PER_USEC; 1397 break; 1398 case SPI_DELAY_UNIT_NSECS: 1399 /* Nothing to do here */ 1400 break; 1401 case SPI_DELAY_UNIT_SCK: 1402 /* Clock cycles need to be obtained from spi_transfer */ 1403 if (!xfer) 1404 return -EINVAL; 1405 /* 1406 * If there is unknown effective speed, approximate it 1407 * by underestimating with half of the requested Hz. 1408 */ 1409 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1410 if (!hz) 1411 return -EINVAL; 1412 1413 /* Convert delay to nanoseconds */ 1414 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1415 break; 1416 default: 1417 return -EINVAL; 1418 } 1419 1420 return delay; 1421 } 1422 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1423 1424 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1425 { 1426 int delay; 1427 1428 might_sleep(); 1429 1430 if (!_delay) 1431 return -EINVAL; 1432 1433 delay = spi_delay_to_ns(_delay, xfer); 1434 if (delay < 0) 1435 return delay; 1436 1437 _spi_transfer_delay_ns(delay); 1438 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(spi_delay_exec); 1442 1443 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1444 struct spi_transfer *xfer) 1445 { 1446 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1447 u32 delay = xfer->cs_change_delay.value; 1448 u32 unit = xfer->cs_change_delay.unit; 1449 int ret; 1450 1451 /* Return early on "fast" mode - for everything but USECS */ 1452 if (!delay) { 1453 if (unit == SPI_DELAY_UNIT_USECS) 1454 _spi_transfer_delay_ns(default_delay_ns); 1455 return; 1456 } 1457 1458 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1459 if (ret) { 1460 dev_err_once(&msg->spi->dev, 1461 "Use of unsupported delay unit %i, using default of %luus\n", 1462 unit, default_delay_ns / NSEC_PER_USEC); 1463 _spi_transfer_delay_ns(default_delay_ns); 1464 } 1465 } 1466 1467 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1468 struct spi_transfer *xfer) 1469 { 1470 _spi_transfer_cs_change_delay(msg, xfer); 1471 } 1472 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1473 1474 /* 1475 * spi_transfer_one_message - Default implementation of transfer_one_message() 1476 * 1477 * This is a standard implementation of transfer_one_message() for 1478 * drivers which implement a transfer_one() operation. It provides 1479 * standard handling of delays and chip select management. 1480 */ 1481 static int spi_transfer_one_message(struct spi_controller *ctlr, 1482 struct spi_message *msg) 1483 { 1484 struct spi_transfer *xfer; 1485 bool keep_cs = false; 1486 int ret = 0; 1487 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1488 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1489 1490 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1491 spi_set_cs(msg->spi, !xfer->cs_off, false); 1492 1493 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1494 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1495 1496 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1497 trace_spi_transfer_start(msg, xfer); 1498 1499 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1500 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1501 1502 if (!ctlr->ptp_sts_supported) { 1503 xfer->ptp_sts_word_pre = 0; 1504 ptp_read_system_prets(xfer->ptp_sts); 1505 } 1506 1507 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1508 reinit_completion(&ctlr->xfer_completion); 1509 1510 fallback_pio: 1511 spi_dma_sync_for_device(ctlr, xfer); 1512 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1513 if (ret < 0) { 1514 spi_dma_sync_for_cpu(ctlr, xfer); 1515 1516 if (ctlr->cur_msg_mapped && 1517 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1518 __spi_unmap_msg(ctlr, msg); 1519 ctlr->fallback = true; 1520 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1521 goto fallback_pio; 1522 } 1523 1524 SPI_STATISTICS_INCREMENT_FIELD(statm, 1525 errors); 1526 SPI_STATISTICS_INCREMENT_FIELD(stats, 1527 errors); 1528 dev_err(&msg->spi->dev, 1529 "SPI transfer failed: %d\n", ret); 1530 goto out; 1531 } 1532 1533 if (ret > 0) { 1534 ret = spi_transfer_wait(ctlr, msg, xfer); 1535 if (ret < 0) 1536 msg->status = ret; 1537 } 1538 1539 spi_dma_sync_for_cpu(ctlr, xfer); 1540 } else { 1541 if (xfer->len) 1542 dev_err(&msg->spi->dev, 1543 "Bufferless transfer has length %u\n", 1544 xfer->len); 1545 } 1546 1547 if (!ctlr->ptp_sts_supported) { 1548 ptp_read_system_postts(xfer->ptp_sts); 1549 xfer->ptp_sts_word_post = xfer->len; 1550 } 1551 1552 trace_spi_transfer_stop(msg, xfer); 1553 1554 if (msg->status != -EINPROGRESS) 1555 goto out; 1556 1557 spi_transfer_delay_exec(xfer); 1558 1559 if (xfer->cs_change) { 1560 if (list_is_last(&xfer->transfer_list, 1561 &msg->transfers)) { 1562 keep_cs = true; 1563 } else { 1564 if (!xfer->cs_off) 1565 spi_set_cs(msg->spi, false, false); 1566 _spi_transfer_cs_change_delay(msg, xfer); 1567 if (!list_next_entry(xfer, transfer_list)->cs_off) 1568 spi_set_cs(msg->spi, true, false); 1569 } 1570 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1571 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1572 spi_set_cs(msg->spi, xfer->cs_off, false); 1573 } 1574 1575 msg->actual_length += xfer->len; 1576 } 1577 1578 out: 1579 if (ret != 0 || !keep_cs) 1580 spi_set_cs(msg->spi, false, false); 1581 1582 if (msg->status == -EINPROGRESS) 1583 msg->status = ret; 1584 1585 if (msg->status && ctlr->handle_err) 1586 ctlr->handle_err(ctlr, msg); 1587 1588 spi_finalize_current_message(ctlr); 1589 1590 return ret; 1591 } 1592 1593 /** 1594 * spi_finalize_current_transfer - report completion of a transfer 1595 * @ctlr: the controller reporting completion 1596 * 1597 * Called by SPI drivers using the core transfer_one_message() 1598 * implementation to notify it that the current interrupt driven 1599 * transfer has finished and the next one may be scheduled. 1600 */ 1601 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1602 { 1603 complete(&ctlr->xfer_completion); 1604 } 1605 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1606 1607 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1608 { 1609 if (ctlr->auto_runtime_pm) { 1610 pm_runtime_mark_last_busy(ctlr->dev.parent); 1611 pm_runtime_put_autosuspend(ctlr->dev.parent); 1612 } 1613 } 1614 1615 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1616 struct spi_message *msg, bool was_busy) 1617 { 1618 struct spi_transfer *xfer; 1619 int ret; 1620 1621 if (!was_busy && ctlr->auto_runtime_pm) { 1622 ret = pm_runtime_get_sync(ctlr->dev.parent); 1623 if (ret < 0) { 1624 pm_runtime_put_noidle(ctlr->dev.parent); 1625 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1626 ret); 1627 return ret; 1628 } 1629 } 1630 1631 if (!was_busy) 1632 trace_spi_controller_busy(ctlr); 1633 1634 if (!was_busy && ctlr->prepare_transfer_hardware) { 1635 ret = ctlr->prepare_transfer_hardware(ctlr); 1636 if (ret) { 1637 dev_err(&ctlr->dev, 1638 "failed to prepare transfer hardware: %d\n", 1639 ret); 1640 1641 if (ctlr->auto_runtime_pm) 1642 pm_runtime_put(ctlr->dev.parent); 1643 1644 msg->status = ret; 1645 spi_finalize_current_message(ctlr); 1646 1647 return ret; 1648 } 1649 } 1650 1651 trace_spi_message_start(msg); 1652 1653 ret = spi_split_transfers_maxsize(ctlr, msg, 1654 spi_max_transfer_size(msg->spi), 1655 GFP_KERNEL | GFP_DMA); 1656 if (ret) { 1657 msg->status = ret; 1658 spi_finalize_current_message(ctlr); 1659 return ret; 1660 } 1661 1662 if (ctlr->prepare_message) { 1663 ret = ctlr->prepare_message(ctlr, msg); 1664 if (ret) { 1665 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1666 ret); 1667 msg->status = ret; 1668 spi_finalize_current_message(ctlr); 1669 return ret; 1670 } 1671 msg->prepared = true; 1672 } 1673 1674 ret = spi_map_msg(ctlr, msg); 1675 if (ret) { 1676 msg->status = ret; 1677 spi_finalize_current_message(ctlr); 1678 return ret; 1679 } 1680 1681 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1682 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1683 xfer->ptp_sts_word_pre = 0; 1684 ptp_read_system_prets(xfer->ptp_sts); 1685 } 1686 } 1687 1688 /* 1689 * Drivers implementation of transfer_one_message() must arrange for 1690 * spi_finalize_current_message() to get called. Most drivers will do 1691 * this in the calling context, but some don't. For those cases, a 1692 * completion is used to guarantee that this function does not return 1693 * until spi_finalize_current_message() is done accessing 1694 * ctlr->cur_msg. 1695 * Use of the following two flags enable to opportunistically skip the 1696 * use of the completion since its use involves expensive spin locks. 1697 * In case of a race with the context that calls 1698 * spi_finalize_current_message() the completion will always be used, 1699 * due to strict ordering of these flags using barriers. 1700 */ 1701 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1702 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1703 reinit_completion(&ctlr->cur_msg_completion); 1704 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1705 1706 ret = ctlr->transfer_one_message(ctlr, msg); 1707 if (ret) { 1708 dev_err(&ctlr->dev, 1709 "failed to transfer one message from queue\n"); 1710 return ret; 1711 } 1712 1713 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1714 smp_mb(); /* See spi_finalize_current_message()... */ 1715 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1716 wait_for_completion(&ctlr->cur_msg_completion); 1717 1718 return 0; 1719 } 1720 1721 /** 1722 * __spi_pump_messages - function which processes SPI message queue 1723 * @ctlr: controller to process queue for 1724 * @in_kthread: true if we are in the context of the message pump thread 1725 * 1726 * This function checks if there is any SPI message in the queue that 1727 * needs processing and if so call out to the driver to initialize hardware 1728 * and transfer each message. 1729 * 1730 * Note that it is called both from the kthread itself and also from 1731 * inside spi_sync(); the queue extraction handling at the top of the 1732 * function should deal with this safely. 1733 */ 1734 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1735 { 1736 struct spi_message *msg; 1737 bool was_busy = false; 1738 unsigned long flags; 1739 int ret; 1740 1741 /* Take the I/O mutex */ 1742 mutex_lock(&ctlr->io_mutex); 1743 1744 /* Lock queue */ 1745 spin_lock_irqsave(&ctlr->queue_lock, flags); 1746 1747 /* Make sure we are not already running a message */ 1748 if (ctlr->cur_msg) 1749 goto out_unlock; 1750 1751 /* Check if the queue is idle */ 1752 if (list_empty(&ctlr->queue) || !ctlr->running) { 1753 if (!ctlr->busy) 1754 goto out_unlock; 1755 1756 /* Defer any non-atomic teardown to the thread */ 1757 if (!in_kthread) { 1758 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1759 !ctlr->unprepare_transfer_hardware) { 1760 spi_idle_runtime_pm(ctlr); 1761 ctlr->busy = false; 1762 ctlr->queue_empty = true; 1763 trace_spi_controller_idle(ctlr); 1764 } else { 1765 kthread_queue_work(ctlr->kworker, 1766 &ctlr->pump_messages); 1767 } 1768 goto out_unlock; 1769 } 1770 1771 ctlr->busy = false; 1772 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1773 1774 kfree(ctlr->dummy_rx); 1775 ctlr->dummy_rx = NULL; 1776 kfree(ctlr->dummy_tx); 1777 ctlr->dummy_tx = NULL; 1778 if (ctlr->unprepare_transfer_hardware && 1779 ctlr->unprepare_transfer_hardware(ctlr)) 1780 dev_err(&ctlr->dev, 1781 "failed to unprepare transfer hardware\n"); 1782 spi_idle_runtime_pm(ctlr); 1783 trace_spi_controller_idle(ctlr); 1784 1785 spin_lock_irqsave(&ctlr->queue_lock, flags); 1786 ctlr->queue_empty = true; 1787 goto out_unlock; 1788 } 1789 1790 /* Extract head of queue */ 1791 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1792 ctlr->cur_msg = msg; 1793 1794 list_del_init(&msg->queue); 1795 if (ctlr->busy) 1796 was_busy = true; 1797 else 1798 ctlr->busy = true; 1799 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1800 1801 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1802 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1803 1804 ctlr->cur_msg = NULL; 1805 ctlr->fallback = false; 1806 1807 mutex_unlock(&ctlr->io_mutex); 1808 1809 /* Prod the scheduler in case transfer_one() was busy waiting */ 1810 if (!ret) 1811 cond_resched(); 1812 return; 1813 1814 out_unlock: 1815 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1816 mutex_unlock(&ctlr->io_mutex); 1817 } 1818 1819 /** 1820 * spi_pump_messages - kthread work function which processes spi message queue 1821 * @work: pointer to kthread work struct contained in the controller struct 1822 */ 1823 static void spi_pump_messages(struct kthread_work *work) 1824 { 1825 struct spi_controller *ctlr = 1826 container_of(work, struct spi_controller, pump_messages); 1827 1828 __spi_pump_messages(ctlr, true); 1829 } 1830 1831 /** 1832 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1833 * @ctlr: Pointer to the spi_controller structure of the driver 1834 * @xfer: Pointer to the transfer being timestamped 1835 * @progress: How many words (not bytes) have been transferred so far 1836 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1837 * transfer, for less jitter in time measurement. Only compatible 1838 * with PIO drivers. If true, must follow up with 1839 * spi_take_timestamp_post or otherwise system will crash. 1840 * WARNING: for fully predictable results, the CPU frequency must 1841 * also be under control (governor). 1842 * 1843 * This is a helper for drivers to collect the beginning of the TX timestamp 1844 * for the requested byte from the SPI transfer. The frequency with which this 1845 * function must be called (once per word, once for the whole transfer, once 1846 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1847 * greater than or equal to the requested byte at the time of the call. The 1848 * timestamp is only taken once, at the first such call. It is assumed that 1849 * the driver advances its @tx buffer pointer monotonically. 1850 */ 1851 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1852 struct spi_transfer *xfer, 1853 size_t progress, bool irqs_off) 1854 { 1855 if (!xfer->ptp_sts) 1856 return; 1857 1858 if (xfer->timestamped) 1859 return; 1860 1861 if (progress > xfer->ptp_sts_word_pre) 1862 return; 1863 1864 /* Capture the resolution of the timestamp */ 1865 xfer->ptp_sts_word_pre = progress; 1866 1867 if (irqs_off) { 1868 local_irq_save(ctlr->irq_flags); 1869 preempt_disable(); 1870 } 1871 1872 ptp_read_system_prets(xfer->ptp_sts); 1873 } 1874 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1875 1876 /** 1877 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1878 * @ctlr: Pointer to the spi_controller structure of the driver 1879 * @xfer: Pointer to the transfer being timestamped 1880 * @progress: How many words (not bytes) have been transferred so far 1881 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1882 * 1883 * This is a helper for drivers to collect the end of the TX timestamp for 1884 * the requested byte from the SPI transfer. Can be called with an arbitrary 1885 * frequency: only the first call where @tx exceeds or is equal to the 1886 * requested word will be timestamped. 1887 */ 1888 void spi_take_timestamp_post(struct spi_controller *ctlr, 1889 struct spi_transfer *xfer, 1890 size_t progress, bool irqs_off) 1891 { 1892 if (!xfer->ptp_sts) 1893 return; 1894 1895 if (xfer->timestamped) 1896 return; 1897 1898 if (progress < xfer->ptp_sts_word_post) 1899 return; 1900 1901 ptp_read_system_postts(xfer->ptp_sts); 1902 1903 if (irqs_off) { 1904 local_irq_restore(ctlr->irq_flags); 1905 preempt_enable(); 1906 } 1907 1908 /* Capture the resolution of the timestamp */ 1909 xfer->ptp_sts_word_post = progress; 1910 1911 xfer->timestamped = 1; 1912 } 1913 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1914 1915 /** 1916 * spi_set_thread_rt - set the controller to pump at realtime priority 1917 * @ctlr: controller to boost priority of 1918 * 1919 * This can be called because the controller requested realtime priority 1920 * (by setting the ->rt value before calling spi_register_controller()) or 1921 * because a device on the bus said that its transfers needed realtime 1922 * priority. 1923 * 1924 * NOTE: at the moment if any device on a bus says it needs realtime then 1925 * the thread will be at realtime priority for all transfers on that 1926 * controller. If this eventually becomes a problem we may see if we can 1927 * find a way to boost the priority only temporarily during relevant 1928 * transfers. 1929 */ 1930 static void spi_set_thread_rt(struct spi_controller *ctlr) 1931 { 1932 dev_info(&ctlr->dev, 1933 "will run message pump with realtime priority\n"); 1934 sched_set_fifo(ctlr->kworker->task); 1935 } 1936 1937 static int spi_init_queue(struct spi_controller *ctlr) 1938 { 1939 ctlr->running = false; 1940 ctlr->busy = false; 1941 ctlr->queue_empty = true; 1942 1943 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1944 if (IS_ERR(ctlr->kworker)) { 1945 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1946 return PTR_ERR(ctlr->kworker); 1947 } 1948 1949 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1950 1951 /* 1952 * Controller config will indicate if this controller should run the 1953 * message pump with high (realtime) priority to reduce the transfer 1954 * latency on the bus by minimising the delay between a transfer 1955 * request and the scheduling of the message pump thread. Without this 1956 * setting the message pump thread will remain at default priority. 1957 */ 1958 if (ctlr->rt) 1959 spi_set_thread_rt(ctlr); 1960 1961 return 0; 1962 } 1963 1964 /** 1965 * spi_get_next_queued_message() - called by driver to check for queued 1966 * messages 1967 * @ctlr: the controller to check for queued messages 1968 * 1969 * If there are more messages in the queue, the next message is returned from 1970 * this call. 1971 * 1972 * Return: the next message in the queue, else NULL if the queue is empty. 1973 */ 1974 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1975 { 1976 struct spi_message *next; 1977 unsigned long flags; 1978 1979 /* Get a pointer to the next message, if any */ 1980 spin_lock_irqsave(&ctlr->queue_lock, flags); 1981 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1982 queue); 1983 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1984 1985 return next; 1986 } 1987 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1988 1989 /** 1990 * spi_finalize_current_message() - the current message is complete 1991 * @ctlr: the controller to return the message to 1992 * 1993 * Called by the driver to notify the core that the message in the front of the 1994 * queue is complete and can be removed from the queue. 1995 */ 1996 void spi_finalize_current_message(struct spi_controller *ctlr) 1997 { 1998 struct spi_transfer *xfer; 1999 struct spi_message *mesg; 2000 int ret; 2001 2002 mesg = ctlr->cur_msg; 2003 2004 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2005 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2006 ptp_read_system_postts(xfer->ptp_sts); 2007 xfer->ptp_sts_word_post = xfer->len; 2008 } 2009 } 2010 2011 if (unlikely(ctlr->ptp_sts_supported)) 2012 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2013 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2014 2015 spi_unmap_msg(ctlr, mesg); 2016 2017 /* 2018 * In the prepare_messages callback the SPI bus has the opportunity 2019 * to split a transfer to smaller chunks. 2020 * 2021 * Release the split transfers here since spi_map_msg() is done on 2022 * the split transfers. 2023 */ 2024 spi_res_release(ctlr, mesg); 2025 2026 if (mesg->prepared && ctlr->unprepare_message) { 2027 ret = ctlr->unprepare_message(ctlr, mesg); 2028 if (ret) { 2029 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2030 ret); 2031 } 2032 } 2033 2034 mesg->prepared = false; 2035 2036 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2037 smp_mb(); /* See __spi_pump_transfer_message()... */ 2038 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2039 complete(&ctlr->cur_msg_completion); 2040 2041 trace_spi_message_done(mesg); 2042 2043 mesg->state = NULL; 2044 if (mesg->complete) 2045 mesg->complete(mesg->context); 2046 } 2047 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2048 2049 static int spi_start_queue(struct spi_controller *ctlr) 2050 { 2051 unsigned long flags; 2052 2053 spin_lock_irqsave(&ctlr->queue_lock, flags); 2054 2055 if (ctlr->running || ctlr->busy) { 2056 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2057 return -EBUSY; 2058 } 2059 2060 ctlr->running = true; 2061 ctlr->cur_msg = NULL; 2062 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2063 2064 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2065 2066 return 0; 2067 } 2068 2069 static int spi_stop_queue(struct spi_controller *ctlr) 2070 { 2071 unsigned long flags; 2072 unsigned limit = 500; 2073 int ret = 0; 2074 2075 spin_lock_irqsave(&ctlr->queue_lock, flags); 2076 2077 /* 2078 * This is a bit lame, but is optimized for the common execution path. 2079 * A wait_queue on the ctlr->busy could be used, but then the common 2080 * execution path (pump_messages) would be required to call wake_up or 2081 * friends on every SPI message. Do this instead. 2082 */ 2083 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2084 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2085 usleep_range(10000, 11000); 2086 spin_lock_irqsave(&ctlr->queue_lock, flags); 2087 } 2088 2089 if (!list_empty(&ctlr->queue) || ctlr->busy) 2090 ret = -EBUSY; 2091 else 2092 ctlr->running = false; 2093 2094 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2095 2096 return ret; 2097 } 2098 2099 static int spi_destroy_queue(struct spi_controller *ctlr) 2100 { 2101 int ret; 2102 2103 ret = spi_stop_queue(ctlr); 2104 2105 /* 2106 * kthread_flush_worker will block until all work is done. 2107 * If the reason that stop_queue timed out is that the work will never 2108 * finish, then it does no good to call flush/stop thread, so 2109 * return anyway. 2110 */ 2111 if (ret) { 2112 dev_err(&ctlr->dev, "problem destroying queue\n"); 2113 return ret; 2114 } 2115 2116 kthread_destroy_worker(ctlr->kworker); 2117 2118 return 0; 2119 } 2120 2121 static int __spi_queued_transfer(struct spi_device *spi, 2122 struct spi_message *msg, 2123 bool need_pump) 2124 { 2125 struct spi_controller *ctlr = spi->controller; 2126 unsigned long flags; 2127 2128 spin_lock_irqsave(&ctlr->queue_lock, flags); 2129 2130 if (!ctlr->running) { 2131 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2132 return -ESHUTDOWN; 2133 } 2134 msg->actual_length = 0; 2135 msg->status = -EINPROGRESS; 2136 2137 list_add_tail(&msg->queue, &ctlr->queue); 2138 ctlr->queue_empty = false; 2139 if (!ctlr->busy && need_pump) 2140 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2141 2142 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2143 return 0; 2144 } 2145 2146 /** 2147 * spi_queued_transfer - transfer function for queued transfers 2148 * @spi: SPI device which is requesting transfer 2149 * @msg: SPI message which is to handled is queued to driver queue 2150 * 2151 * Return: zero on success, else a negative error code. 2152 */ 2153 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2154 { 2155 return __spi_queued_transfer(spi, msg, true); 2156 } 2157 2158 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2159 { 2160 int ret; 2161 2162 ctlr->transfer = spi_queued_transfer; 2163 if (!ctlr->transfer_one_message) 2164 ctlr->transfer_one_message = spi_transfer_one_message; 2165 2166 /* Initialize and start queue */ 2167 ret = spi_init_queue(ctlr); 2168 if (ret) { 2169 dev_err(&ctlr->dev, "problem initializing queue\n"); 2170 goto err_init_queue; 2171 } 2172 ctlr->queued = true; 2173 ret = spi_start_queue(ctlr); 2174 if (ret) { 2175 dev_err(&ctlr->dev, "problem starting queue\n"); 2176 goto err_start_queue; 2177 } 2178 2179 return 0; 2180 2181 err_start_queue: 2182 spi_destroy_queue(ctlr); 2183 err_init_queue: 2184 return ret; 2185 } 2186 2187 /** 2188 * spi_flush_queue - Send all pending messages in the queue from the callers' 2189 * context 2190 * @ctlr: controller to process queue for 2191 * 2192 * This should be used when one wants to ensure all pending messages have been 2193 * sent before doing something. Is used by the spi-mem code to make sure SPI 2194 * memory operations do not preempt regular SPI transfers that have been queued 2195 * before the spi-mem operation. 2196 */ 2197 void spi_flush_queue(struct spi_controller *ctlr) 2198 { 2199 if (ctlr->transfer == spi_queued_transfer) 2200 __spi_pump_messages(ctlr, false); 2201 } 2202 2203 /*-------------------------------------------------------------------------*/ 2204 2205 #if defined(CONFIG_OF) 2206 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2207 struct spi_delay *delay, const char *prop) 2208 { 2209 u32 value; 2210 2211 if (!of_property_read_u32(nc, prop, &value)) { 2212 if (value > U16_MAX) { 2213 delay->value = DIV_ROUND_UP(value, 1000); 2214 delay->unit = SPI_DELAY_UNIT_USECS; 2215 } else { 2216 delay->value = value; 2217 delay->unit = SPI_DELAY_UNIT_NSECS; 2218 } 2219 } 2220 } 2221 2222 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2223 struct device_node *nc) 2224 { 2225 u32 value; 2226 int rc; 2227 2228 /* Mode (clock phase/polarity/etc.) */ 2229 if (of_property_read_bool(nc, "spi-cpha")) 2230 spi->mode |= SPI_CPHA; 2231 if (of_property_read_bool(nc, "spi-cpol")) 2232 spi->mode |= SPI_CPOL; 2233 if (of_property_read_bool(nc, "spi-3wire")) 2234 spi->mode |= SPI_3WIRE; 2235 if (of_property_read_bool(nc, "spi-lsb-first")) 2236 spi->mode |= SPI_LSB_FIRST; 2237 if (of_property_read_bool(nc, "spi-cs-high")) 2238 spi->mode |= SPI_CS_HIGH; 2239 2240 /* Device DUAL/QUAD mode */ 2241 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2242 switch (value) { 2243 case 0: 2244 spi->mode |= SPI_NO_TX; 2245 break; 2246 case 1: 2247 break; 2248 case 2: 2249 spi->mode |= SPI_TX_DUAL; 2250 break; 2251 case 4: 2252 spi->mode |= SPI_TX_QUAD; 2253 break; 2254 case 8: 2255 spi->mode |= SPI_TX_OCTAL; 2256 break; 2257 default: 2258 dev_warn(&ctlr->dev, 2259 "spi-tx-bus-width %d not supported\n", 2260 value); 2261 break; 2262 } 2263 } 2264 2265 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2266 switch (value) { 2267 case 0: 2268 spi->mode |= SPI_NO_RX; 2269 break; 2270 case 1: 2271 break; 2272 case 2: 2273 spi->mode |= SPI_RX_DUAL; 2274 break; 2275 case 4: 2276 spi->mode |= SPI_RX_QUAD; 2277 break; 2278 case 8: 2279 spi->mode |= SPI_RX_OCTAL; 2280 break; 2281 default: 2282 dev_warn(&ctlr->dev, 2283 "spi-rx-bus-width %d not supported\n", 2284 value); 2285 break; 2286 } 2287 } 2288 2289 if (spi_controller_is_slave(ctlr)) { 2290 if (!of_node_name_eq(nc, "slave")) { 2291 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2292 nc); 2293 return -EINVAL; 2294 } 2295 return 0; 2296 } 2297 2298 /* Device address */ 2299 rc = of_property_read_u32(nc, "reg", &value); 2300 if (rc) { 2301 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2302 nc, rc); 2303 return rc; 2304 } 2305 spi_set_chipselect(spi, 0, value); 2306 2307 /* Device speed */ 2308 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2309 spi->max_speed_hz = value; 2310 2311 /* Device CS delays */ 2312 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2313 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2314 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2315 2316 return 0; 2317 } 2318 2319 static struct spi_device * 2320 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2321 { 2322 struct spi_device *spi; 2323 int rc; 2324 2325 /* Alloc an spi_device */ 2326 spi = spi_alloc_device(ctlr); 2327 if (!spi) { 2328 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2329 rc = -ENOMEM; 2330 goto err_out; 2331 } 2332 2333 /* Select device driver */ 2334 rc = of_alias_from_compatible(nc, spi->modalias, 2335 sizeof(spi->modalias)); 2336 if (rc < 0) { 2337 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2338 goto err_out; 2339 } 2340 2341 rc = of_spi_parse_dt(ctlr, spi, nc); 2342 if (rc) 2343 goto err_out; 2344 2345 /* Store a pointer to the node in the device structure */ 2346 of_node_get(nc); 2347 2348 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2349 2350 /* Register the new device */ 2351 rc = spi_add_device(spi); 2352 if (rc) { 2353 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2354 goto err_of_node_put; 2355 } 2356 2357 return spi; 2358 2359 err_of_node_put: 2360 of_node_put(nc); 2361 err_out: 2362 spi_dev_put(spi); 2363 return ERR_PTR(rc); 2364 } 2365 2366 /** 2367 * of_register_spi_devices() - Register child devices onto the SPI bus 2368 * @ctlr: Pointer to spi_controller device 2369 * 2370 * Registers an spi_device for each child node of controller node which 2371 * represents a valid SPI slave. 2372 */ 2373 static void of_register_spi_devices(struct spi_controller *ctlr) 2374 { 2375 struct spi_device *spi; 2376 struct device_node *nc; 2377 2378 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2379 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2380 continue; 2381 spi = of_register_spi_device(ctlr, nc); 2382 if (IS_ERR(spi)) { 2383 dev_warn(&ctlr->dev, 2384 "Failed to create SPI device for %pOF\n", nc); 2385 of_node_clear_flag(nc, OF_POPULATED); 2386 } 2387 } 2388 } 2389 #else 2390 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2391 #endif 2392 2393 /** 2394 * spi_new_ancillary_device() - Register ancillary SPI device 2395 * @spi: Pointer to the main SPI device registering the ancillary device 2396 * @chip_select: Chip Select of the ancillary device 2397 * 2398 * Register an ancillary SPI device; for example some chips have a chip-select 2399 * for normal device usage and another one for setup/firmware upload. 2400 * 2401 * This may only be called from main SPI device's probe routine. 2402 * 2403 * Return: 0 on success; negative errno on failure 2404 */ 2405 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2406 u8 chip_select) 2407 { 2408 struct spi_controller *ctlr = spi->controller; 2409 struct spi_device *ancillary; 2410 int rc = 0; 2411 2412 /* Alloc an spi_device */ 2413 ancillary = spi_alloc_device(ctlr); 2414 if (!ancillary) { 2415 rc = -ENOMEM; 2416 goto err_out; 2417 } 2418 2419 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2420 2421 /* Use provided chip-select for ancillary device */ 2422 spi_set_chipselect(ancillary, 0, chip_select); 2423 2424 /* Take over SPI mode/speed from SPI main device */ 2425 ancillary->max_speed_hz = spi->max_speed_hz; 2426 ancillary->mode = spi->mode; 2427 2428 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2429 2430 /* Register the new device */ 2431 rc = __spi_add_device(ancillary); 2432 if (rc) { 2433 dev_err(&spi->dev, "failed to register ancillary device\n"); 2434 goto err_out; 2435 } 2436 2437 return ancillary; 2438 2439 err_out: 2440 spi_dev_put(ancillary); 2441 return ERR_PTR(rc); 2442 } 2443 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2444 2445 #ifdef CONFIG_ACPI 2446 struct acpi_spi_lookup { 2447 struct spi_controller *ctlr; 2448 u32 max_speed_hz; 2449 u32 mode; 2450 int irq; 2451 u8 bits_per_word; 2452 u8 chip_select; 2453 int n; 2454 int index; 2455 }; 2456 2457 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2458 { 2459 struct acpi_resource_spi_serialbus *sb; 2460 int *count = data; 2461 2462 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2463 return 1; 2464 2465 sb = &ares->data.spi_serial_bus; 2466 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2467 return 1; 2468 2469 *count = *count + 1; 2470 2471 return 1; 2472 } 2473 2474 /** 2475 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2476 * @adev: ACPI device 2477 * 2478 * Return: the number of SpiSerialBus resources in the ACPI-device's 2479 * resource-list; or a negative error code. 2480 */ 2481 int acpi_spi_count_resources(struct acpi_device *adev) 2482 { 2483 LIST_HEAD(r); 2484 int count = 0; 2485 int ret; 2486 2487 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2488 if (ret < 0) 2489 return ret; 2490 2491 acpi_dev_free_resource_list(&r); 2492 2493 return count; 2494 } 2495 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2496 2497 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2498 struct acpi_spi_lookup *lookup) 2499 { 2500 const union acpi_object *obj; 2501 2502 if (!x86_apple_machine) 2503 return; 2504 2505 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2506 && obj->buffer.length >= 4) 2507 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2508 2509 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2510 && obj->buffer.length == 8) 2511 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2512 2513 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2514 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2515 lookup->mode |= SPI_LSB_FIRST; 2516 2517 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2518 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2519 lookup->mode |= SPI_CPOL; 2520 2521 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2522 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2523 lookup->mode |= SPI_CPHA; 2524 } 2525 2526 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2527 { 2528 struct acpi_spi_lookup *lookup = data; 2529 struct spi_controller *ctlr = lookup->ctlr; 2530 2531 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2532 struct acpi_resource_spi_serialbus *sb; 2533 acpi_handle parent_handle; 2534 acpi_status status; 2535 2536 sb = &ares->data.spi_serial_bus; 2537 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2538 2539 if (lookup->index != -1 && lookup->n++ != lookup->index) 2540 return 1; 2541 2542 status = acpi_get_handle(NULL, 2543 sb->resource_source.string_ptr, 2544 &parent_handle); 2545 2546 if (ACPI_FAILURE(status)) 2547 return -ENODEV; 2548 2549 if (ctlr) { 2550 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2551 return -ENODEV; 2552 } else { 2553 struct acpi_device *adev; 2554 2555 adev = acpi_fetch_acpi_dev(parent_handle); 2556 if (!adev) 2557 return -ENODEV; 2558 2559 ctlr = acpi_spi_find_controller_by_adev(adev); 2560 if (!ctlr) 2561 return -EPROBE_DEFER; 2562 2563 lookup->ctlr = ctlr; 2564 } 2565 2566 /* 2567 * ACPI DeviceSelection numbering is handled by the 2568 * host controller driver in Windows and can vary 2569 * from driver to driver. In Linux we always expect 2570 * 0 .. max - 1 so we need to ask the driver to 2571 * translate between the two schemes. 2572 */ 2573 if (ctlr->fw_translate_cs) { 2574 int cs = ctlr->fw_translate_cs(ctlr, 2575 sb->device_selection); 2576 if (cs < 0) 2577 return cs; 2578 lookup->chip_select = cs; 2579 } else { 2580 lookup->chip_select = sb->device_selection; 2581 } 2582 2583 lookup->max_speed_hz = sb->connection_speed; 2584 lookup->bits_per_word = sb->data_bit_length; 2585 2586 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2587 lookup->mode |= SPI_CPHA; 2588 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2589 lookup->mode |= SPI_CPOL; 2590 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2591 lookup->mode |= SPI_CS_HIGH; 2592 } 2593 } else if (lookup->irq < 0) { 2594 struct resource r; 2595 2596 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2597 lookup->irq = r.start; 2598 } 2599 2600 /* Always tell the ACPI core to skip this resource */ 2601 return 1; 2602 } 2603 2604 /** 2605 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2606 * @ctlr: controller to which the spi device belongs 2607 * @adev: ACPI Device for the spi device 2608 * @index: Index of the spi resource inside the ACPI Node 2609 * 2610 * This should be used to allocate a new SPI device from and ACPI Device node. 2611 * The caller is responsible for calling spi_add_device to register the SPI device. 2612 * 2613 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2614 * using the resource. 2615 * If index is set to -1, index is not used. 2616 * Note: If index is -1, ctlr must be set. 2617 * 2618 * Return: a pointer to the new device, or ERR_PTR on error. 2619 */ 2620 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2621 struct acpi_device *adev, 2622 int index) 2623 { 2624 acpi_handle parent_handle = NULL; 2625 struct list_head resource_list; 2626 struct acpi_spi_lookup lookup = {}; 2627 struct spi_device *spi; 2628 int ret; 2629 2630 if (!ctlr && index == -1) 2631 return ERR_PTR(-EINVAL); 2632 2633 lookup.ctlr = ctlr; 2634 lookup.irq = -1; 2635 lookup.index = index; 2636 lookup.n = 0; 2637 2638 INIT_LIST_HEAD(&resource_list); 2639 ret = acpi_dev_get_resources(adev, &resource_list, 2640 acpi_spi_add_resource, &lookup); 2641 acpi_dev_free_resource_list(&resource_list); 2642 2643 if (ret < 0) 2644 /* Found SPI in _CRS but it points to another controller */ 2645 return ERR_PTR(ret); 2646 2647 if (!lookup.max_speed_hz && 2648 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2649 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2650 /* Apple does not use _CRS but nested devices for SPI slaves */ 2651 acpi_spi_parse_apple_properties(adev, &lookup); 2652 } 2653 2654 if (!lookup.max_speed_hz) 2655 return ERR_PTR(-ENODEV); 2656 2657 spi = spi_alloc_device(lookup.ctlr); 2658 if (!spi) { 2659 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2660 dev_name(&adev->dev)); 2661 return ERR_PTR(-ENOMEM); 2662 } 2663 2664 ACPI_COMPANION_SET(&spi->dev, adev); 2665 spi->max_speed_hz = lookup.max_speed_hz; 2666 spi->mode |= lookup.mode; 2667 spi->irq = lookup.irq; 2668 spi->bits_per_word = lookup.bits_per_word; 2669 spi_set_chipselect(spi, 0, lookup.chip_select); 2670 2671 return spi; 2672 } 2673 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2674 2675 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2676 struct acpi_device *adev) 2677 { 2678 struct spi_device *spi; 2679 2680 if (acpi_bus_get_status(adev) || !adev->status.present || 2681 acpi_device_enumerated(adev)) 2682 return AE_OK; 2683 2684 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2685 if (IS_ERR(spi)) { 2686 if (PTR_ERR(spi) == -ENOMEM) 2687 return AE_NO_MEMORY; 2688 else 2689 return AE_OK; 2690 } 2691 2692 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2693 sizeof(spi->modalias)); 2694 2695 if (spi->irq < 0) 2696 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2697 2698 acpi_device_set_enumerated(adev); 2699 2700 adev->power.flags.ignore_parent = true; 2701 if (spi_add_device(spi)) { 2702 adev->power.flags.ignore_parent = false; 2703 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2704 dev_name(&adev->dev)); 2705 spi_dev_put(spi); 2706 } 2707 2708 return AE_OK; 2709 } 2710 2711 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2712 void *data, void **return_value) 2713 { 2714 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2715 struct spi_controller *ctlr = data; 2716 2717 if (!adev) 2718 return AE_OK; 2719 2720 return acpi_register_spi_device(ctlr, adev); 2721 } 2722 2723 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2724 2725 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2726 { 2727 acpi_status status; 2728 acpi_handle handle; 2729 2730 handle = ACPI_HANDLE(ctlr->dev.parent); 2731 if (!handle) 2732 return; 2733 2734 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2735 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2736 acpi_spi_add_device, NULL, ctlr, NULL); 2737 if (ACPI_FAILURE(status)) 2738 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2739 } 2740 #else 2741 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2742 #endif /* CONFIG_ACPI */ 2743 2744 static void spi_controller_release(struct device *dev) 2745 { 2746 struct spi_controller *ctlr; 2747 2748 ctlr = container_of(dev, struct spi_controller, dev); 2749 kfree(ctlr); 2750 } 2751 2752 static struct class spi_master_class = { 2753 .name = "spi_master", 2754 .dev_release = spi_controller_release, 2755 .dev_groups = spi_master_groups, 2756 }; 2757 2758 #ifdef CONFIG_SPI_SLAVE 2759 /** 2760 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2761 * controller 2762 * @spi: device used for the current transfer 2763 */ 2764 int spi_slave_abort(struct spi_device *spi) 2765 { 2766 struct spi_controller *ctlr = spi->controller; 2767 2768 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2769 return ctlr->slave_abort(ctlr); 2770 2771 return -ENOTSUPP; 2772 } 2773 EXPORT_SYMBOL_GPL(spi_slave_abort); 2774 2775 int spi_target_abort(struct spi_device *spi) 2776 { 2777 struct spi_controller *ctlr = spi->controller; 2778 2779 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2780 return ctlr->target_abort(ctlr); 2781 2782 return -ENOTSUPP; 2783 } 2784 EXPORT_SYMBOL_GPL(spi_target_abort); 2785 2786 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2787 char *buf) 2788 { 2789 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2790 dev); 2791 struct device *child; 2792 2793 child = device_find_any_child(&ctlr->dev); 2794 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2795 } 2796 2797 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2798 const char *buf, size_t count) 2799 { 2800 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2801 dev); 2802 struct spi_device *spi; 2803 struct device *child; 2804 char name[32]; 2805 int rc; 2806 2807 rc = sscanf(buf, "%31s", name); 2808 if (rc != 1 || !name[0]) 2809 return -EINVAL; 2810 2811 child = device_find_any_child(&ctlr->dev); 2812 if (child) { 2813 /* Remove registered slave */ 2814 device_unregister(child); 2815 put_device(child); 2816 } 2817 2818 if (strcmp(name, "(null)")) { 2819 /* Register new slave */ 2820 spi = spi_alloc_device(ctlr); 2821 if (!spi) 2822 return -ENOMEM; 2823 2824 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2825 2826 rc = spi_add_device(spi); 2827 if (rc) { 2828 spi_dev_put(spi); 2829 return rc; 2830 } 2831 } 2832 2833 return count; 2834 } 2835 2836 static DEVICE_ATTR_RW(slave); 2837 2838 static struct attribute *spi_slave_attrs[] = { 2839 &dev_attr_slave.attr, 2840 NULL, 2841 }; 2842 2843 static const struct attribute_group spi_slave_group = { 2844 .attrs = spi_slave_attrs, 2845 }; 2846 2847 static const struct attribute_group *spi_slave_groups[] = { 2848 &spi_controller_statistics_group, 2849 &spi_slave_group, 2850 NULL, 2851 }; 2852 2853 static struct class spi_slave_class = { 2854 .name = "spi_slave", 2855 .dev_release = spi_controller_release, 2856 .dev_groups = spi_slave_groups, 2857 }; 2858 #else 2859 extern struct class spi_slave_class; /* dummy */ 2860 #endif 2861 2862 /** 2863 * __spi_alloc_controller - allocate an SPI master or slave controller 2864 * @dev: the controller, possibly using the platform_bus 2865 * @size: how much zeroed driver-private data to allocate; the pointer to this 2866 * memory is in the driver_data field of the returned device, accessible 2867 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2868 * drivers granting DMA access to portions of their private data need to 2869 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2870 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2871 * slave (true) controller 2872 * Context: can sleep 2873 * 2874 * This call is used only by SPI controller drivers, which are the 2875 * only ones directly touching chip registers. It's how they allocate 2876 * an spi_controller structure, prior to calling spi_register_controller(). 2877 * 2878 * This must be called from context that can sleep. 2879 * 2880 * The caller is responsible for assigning the bus number and initializing the 2881 * controller's methods before calling spi_register_controller(); and (after 2882 * errors adding the device) calling spi_controller_put() to prevent a memory 2883 * leak. 2884 * 2885 * Return: the SPI controller structure on success, else NULL. 2886 */ 2887 struct spi_controller *__spi_alloc_controller(struct device *dev, 2888 unsigned int size, bool slave) 2889 { 2890 struct spi_controller *ctlr; 2891 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2892 2893 if (!dev) 2894 return NULL; 2895 2896 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2897 if (!ctlr) 2898 return NULL; 2899 2900 device_initialize(&ctlr->dev); 2901 INIT_LIST_HEAD(&ctlr->queue); 2902 spin_lock_init(&ctlr->queue_lock); 2903 spin_lock_init(&ctlr->bus_lock_spinlock); 2904 mutex_init(&ctlr->bus_lock_mutex); 2905 mutex_init(&ctlr->io_mutex); 2906 mutex_init(&ctlr->add_lock); 2907 ctlr->bus_num = -1; 2908 ctlr->num_chipselect = 1; 2909 ctlr->slave = slave; 2910 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2911 ctlr->dev.class = &spi_slave_class; 2912 else 2913 ctlr->dev.class = &spi_master_class; 2914 ctlr->dev.parent = dev; 2915 pm_suspend_ignore_children(&ctlr->dev, true); 2916 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2917 2918 return ctlr; 2919 } 2920 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2921 2922 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2923 { 2924 spi_controller_put(*(struct spi_controller **)ctlr); 2925 } 2926 2927 /** 2928 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2929 * @dev: physical device of SPI controller 2930 * @size: how much zeroed driver-private data to allocate 2931 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2932 * Context: can sleep 2933 * 2934 * Allocate an SPI controller and automatically release a reference on it 2935 * when @dev is unbound from its driver. Drivers are thus relieved from 2936 * having to call spi_controller_put(). 2937 * 2938 * The arguments to this function are identical to __spi_alloc_controller(). 2939 * 2940 * Return: the SPI controller structure on success, else NULL. 2941 */ 2942 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2943 unsigned int size, 2944 bool slave) 2945 { 2946 struct spi_controller **ptr, *ctlr; 2947 2948 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2949 GFP_KERNEL); 2950 if (!ptr) 2951 return NULL; 2952 2953 ctlr = __spi_alloc_controller(dev, size, slave); 2954 if (ctlr) { 2955 ctlr->devm_allocated = true; 2956 *ptr = ctlr; 2957 devres_add(dev, ptr); 2958 } else { 2959 devres_free(ptr); 2960 } 2961 2962 return ctlr; 2963 } 2964 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2965 2966 /** 2967 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2968 * @ctlr: The SPI master to grab GPIO descriptors for 2969 */ 2970 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2971 { 2972 int nb, i; 2973 struct gpio_desc **cs; 2974 struct device *dev = &ctlr->dev; 2975 unsigned long native_cs_mask = 0; 2976 unsigned int num_cs_gpios = 0; 2977 2978 nb = gpiod_count(dev, "cs"); 2979 if (nb < 0) { 2980 /* No GPIOs at all is fine, else return the error */ 2981 if (nb == -ENOENT) 2982 return 0; 2983 return nb; 2984 } 2985 2986 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2987 2988 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2989 GFP_KERNEL); 2990 if (!cs) 2991 return -ENOMEM; 2992 ctlr->cs_gpiods = cs; 2993 2994 for (i = 0; i < nb; i++) { 2995 /* 2996 * Most chipselects are active low, the inverted 2997 * semantics are handled by special quirks in gpiolib, 2998 * so initializing them GPIOD_OUT_LOW here means 2999 * "unasserted", in most cases this will drive the physical 3000 * line high. 3001 */ 3002 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3003 GPIOD_OUT_LOW); 3004 if (IS_ERR(cs[i])) 3005 return PTR_ERR(cs[i]); 3006 3007 if (cs[i]) { 3008 /* 3009 * If we find a CS GPIO, name it after the device and 3010 * chip select line. 3011 */ 3012 char *gpioname; 3013 3014 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3015 dev_name(dev), i); 3016 if (!gpioname) 3017 return -ENOMEM; 3018 gpiod_set_consumer_name(cs[i], gpioname); 3019 num_cs_gpios++; 3020 continue; 3021 } 3022 3023 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3024 dev_err(dev, "Invalid native chip select %d\n", i); 3025 return -EINVAL; 3026 } 3027 native_cs_mask |= BIT(i); 3028 } 3029 3030 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3031 3032 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3033 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3034 dev_err(dev, "No unused native chip select available\n"); 3035 return -EINVAL; 3036 } 3037 3038 return 0; 3039 } 3040 3041 static int spi_controller_check_ops(struct spi_controller *ctlr) 3042 { 3043 /* 3044 * The controller may implement only the high-level SPI-memory like 3045 * operations if it does not support regular SPI transfers, and this is 3046 * valid use case. 3047 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3048 * one of the ->transfer_xxx() method be implemented. 3049 */ 3050 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3051 if (!ctlr->transfer && !ctlr->transfer_one && 3052 !ctlr->transfer_one_message) { 3053 return -EINVAL; 3054 } 3055 } 3056 3057 return 0; 3058 } 3059 3060 /* Allocate dynamic bus number using Linux idr */ 3061 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3062 { 3063 int id; 3064 3065 mutex_lock(&board_lock); 3066 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3067 mutex_unlock(&board_lock); 3068 if (WARN(id < 0, "couldn't get idr")) 3069 return id == -ENOSPC ? -EBUSY : id; 3070 ctlr->bus_num = id; 3071 return 0; 3072 } 3073 3074 /** 3075 * spi_register_controller - register SPI master or slave controller 3076 * @ctlr: initialized master, originally from spi_alloc_master() or 3077 * spi_alloc_slave() 3078 * Context: can sleep 3079 * 3080 * SPI controllers connect to their drivers using some non-SPI bus, 3081 * such as the platform bus. The final stage of probe() in that code 3082 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3083 * 3084 * SPI controllers use board specific (often SOC specific) bus numbers, 3085 * and board-specific addressing for SPI devices combines those numbers 3086 * with chip select numbers. Since SPI does not directly support dynamic 3087 * device identification, boards need configuration tables telling which 3088 * chip is at which address. 3089 * 3090 * This must be called from context that can sleep. It returns zero on 3091 * success, else a negative error code (dropping the controller's refcount). 3092 * After a successful return, the caller is responsible for calling 3093 * spi_unregister_controller(). 3094 * 3095 * Return: zero on success, else a negative error code. 3096 */ 3097 int spi_register_controller(struct spi_controller *ctlr) 3098 { 3099 struct device *dev = ctlr->dev.parent; 3100 struct boardinfo *bi; 3101 int first_dynamic; 3102 int status; 3103 3104 if (!dev) 3105 return -ENODEV; 3106 3107 /* 3108 * Make sure all necessary hooks are implemented before registering 3109 * the SPI controller. 3110 */ 3111 status = spi_controller_check_ops(ctlr); 3112 if (status) 3113 return status; 3114 3115 if (ctlr->bus_num < 0) 3116 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3117 if (ctlr->bus_num >= 0) { 3118 /* Devices with a fixed bus num must check-in with the num */ 3119 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3120 if (status) 3121 return status; 3122 } 3123 if (ctlr->bus_num < 0) { 3124 first_dynamic = of_alias_get_highest_id("spi"); 3125 if (first_dynamic < 0) 3126 first_dynamic = 0; 3127 else 3128 first_dynamic++; 3129 3130 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3131 if (status) 3132 return status; 3133 } 3134 ctlr->bus_lock_flag = 0; 3135 init_completion(&ctlr->xfer_completion); 3136 init_completion(&ctlr->cur_msg_completion); 3137 if (!ctlr->max_dma_len) 3138 ctlr->max_dma_len = INT_MAX; 3139 3140 /* 3141 * Register the device, then userspace will see it. 3142 * Registration fails if the bus ID is in use. 3143 */ 3144 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3145 3146 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3147 status = spi_get_gpio_descs(ctlr); 3148 if (status) 3149 goto free_bus_id; 3150 /* 3151 * A controller using GPIO descriptors always 3152 * supports SPI_CS_HIGH if need be. 3153 */ 3154 ctlr->mode_bits |= SPI_CS_HIGH; 3155 } 3156 3157 /* 3158 * Even if it's just one always-selected device, there must 3159 * be at least one chipselect. 3160 */ 3161 if (!ctlr->num_chipselect) { 3162 status = -EINVAL; 3163 goto free_bus_id; 3164 } 3165 3166 /* Setting last_cs to -1 means no chip selected */ 3167 ctlr->last_cs = -1; 3168 3169 status = device_add(&ctlr->dev); 3170 if (status < 0) 3171 goto free_bus_id; 3172 dev_dbg(dev, "registered %s %s\n", 3173 spi_controller_is_slave(ctlr) ? "slave" : "master", 3174 dev_name(&ctlr->dev)); 3175 3176 /* 3177 * If we're using a queued driver, start the queue. Note that we don't 3178 * need the queueing logic if the driver is only supporting high-level 3179 * memory operations. 3180 */ 3181 if (ctlr->transfer) { 3182 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3183 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3184 status = spi_controller_initialize_queue(ctlr); 3185 if (status) { 3186 device_del(&ctlr->dev); 3187 goto free_bus_id; 3188 } 3189 } 3190 /* Add statistics */ 3191 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3192 if (!ctlr->pcpu_statistics) { 3193 dev_err(dev, "Error allocating per-cpu statistics\n"); 3194 status = -ENOMEM; 3195 goto destroy_queue; 3196 } 3197 3198 mutex_lock(&board_lock); 3199 list_add_tail(&ctlr->list, &spi_controller_list); 3200 list_for_each_entry(bi, &board_list, list) 3201 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3202 mutex_unlock(&board_lock); 3203 3204 /* Register devices from the device tree and ACPI */ 3205 of_register_spi_devices(ctlr); 3206 acpi_register_spi_devices(ctlr); 3207 return status; 3208 3209 destroy_queue: 3210 spi_destroy_queue(ctlr); 3211 free_bus_id: 3212 mutex_lock(&board_lock); 3213 idr_remove(&spi_master_idr, ctlr->bus_num); 3214 mutex_unlock(&board_lock); 3215 return status; 3216 } 3217 EXPORT_SYMBOL_GPL(spi_register_controller); 3218 3219 static void devm_spi_unregister(struct device *dev, void *res) 3220 { 3221 spi_unregister_controller(*(struct spi_controller **)res); 3222 } 3223 3224 /** 3225 * devm_spi_register_controller - register managed SPI master or slave 3226 * controller 3227 * @dev: device managing SPI controller 3228 * @ctlr: initialized controller, originally from spi_alloc_master() or 3229 * spi_alloc_slave() 3230 * Context: can sleep 3231 * 3232 * Register a SPI device as with spi_register_controller() which will 3233 * automatically be unregistered and freed. 3234 * 3235 * Return: zero on success, else a negative error code. 3236 */ 3237 int devm_spi_register_controller(struct device *dev, 3238 struct spi_controller *ctlr) 3239 { 3240 struct spi_controller **ptr; 3241 int ret; 3242 3243 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3244 if (!ptr) 3245 return -ENOMEM; 3246 3247 ret = spi_register_controller(ctlr); 3248 if (!ret) { 3249 *ptr = ctlr; 3250 devres_add(dev, ptr); 3251 } else { 3252 devres_free(ptr); 3253 } 3254 3255 return ret; 3256 } 3257 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3258 3259 static int __unregister(struct device *dev, void *null) 3260 { 3261 spi_unregister_device(to_spi_device(dev)); 3262 return 0; 3263 } 3264 3265 /** 3266 * spi_unregister_controller - unregister SPI master or slave controller 3267 * @ctlr: the controller being unregistered 3268 * Context: can sleep 3269 * 3270 * This call is used only by SPI controller drivers, which are the 3271 * only ones directly touching chip registers. 3272 * 3273 * This must be called from context that can sleep. 3274 * 3275 * Note that this function also drops a reference to the controller. 3276 */ 3277 void spi_unregister_controller(struct spi_controller *ctlr) 3278 { 3279 struct spi_controller *found; 3280 int id = ctlr->bus_num; 3281 3282 /* Prevent addition of new devices, unregister existing ones */ 3283 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3284 mutex_lock(&ctlr->add_lock); 3285 3286 device_for_each_child(&ctlr->dev, NULL, __unregister); 3287 3288 /* First make sure that this controller was ever added */ 3289 mutex_lock(&board_lock); 3290 found = idr_find(&spi_master_idr, id); 3291 mutex_unlock(&board_lock); 3292 if (ctlr->queued) { 3293 if (spi_destroy_queue(ctlr)) 3294 dev_err(&ctlr->dev, "queue remove failed\n"); 3295 } 3296 mutex_lock(&board_lock); 3297 list_del(&ctlr->list); 3298 mutex_unlock(&board_lock); 3299 3300 device_del(&ctlr->dev); 3301 3302 /* Free bus id */ 3303 mutex_lock(&board_lock); 3304 if (found == ctlr) 3305 idr_remove(&spi_master_idr, id); 3306 mutex_unlock(&board_lock); 3307 3308 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3309 mutex_unlock(&ctlr->add_lock); 3310 3311 /* 3312 * Release the last reference on the controller if its driver 3313 * has not yet been converted to devm_spi_alloc_master/slave(). 3314 */ 3315 if (!ctlr->devm_allocated) 3316 put_device(&ctlr->dev); 3317 } 3318 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3319 3320 int spi_controller_suspend(struct spi_controller *ctlr) 3321 { 3322 int ret; 3323 3324 /* Basically no-ops for non-queued controllers */ 3325 if (!ctlr->queued) 3326 return 0; 3327 3328 ret = spi_stop_queue(ctlr); 3329 if (ret) 3330 dev_err(&ctlr->dev, "queue stop failed\n"); 3331 3332 return ret; 3333 } 3334 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3335 3336 int spi_controller_resume(struct spi_controller *ctlr) 3337 { 3338 int ret; 3339 3340 if (!ctlr->queued) 3341 return 0; 3342 3343 ret = spi_start_queue(ctlr); 3344 if (ret) 3345 dev_err(&ctlr->dev, "queue restart failed\n"); 3346 3347 return ret; 3348 } 3349 EXPORT_SYMBOL_GPL(spi_controller_resume); 3350 3351 /*-------------------------------------------------------------------------*/ 3352 3353 /* Core methods for spi_message alterations */ 3354 3355 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3356 struct spi_message *msg, 3357 void *res) 3358 { 3359 struct spi_replaced_transfers *rxfer = res; 3360 size_t i; 3361 3362 /* Call extra callback if requested */ 3363 if (rxfer->release) 3364 rxfer->release(ctlr, msg, res); 3365 3366 /* Insert replaced transfers back into the message */ 3367 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3368 3369 /* Remove the formerly inserted entries */ 3370 for (i = 0; i < rxfer->inserted; i++) 3371 list_del(&rxfer->inserted_transfers[i].transfer_list); 3372 } 3373 3374 /** 3375 * spi_replace_transfers - replace transfers with several transfers 3376 * and register change with spi_message.resources 3377 * @msg: the spi_message we work upon 3378 * @xfer_first: the first spi_transfer we want to replace 3379 * @remove: number of transfers to remove 3380 * @insert: the number of transfers we want to insert instead 3381 * @release: extra release code necessary in some circumstances 3382 * @extradatasize: extra data to allocate (with alignment guarantees 3383 * of struct @spi_transfer) 3384 * @gfp: gfp flags 3385 * 3386 * Returns: pointer to @spi_replaced_transfers, 3387 * PTR_ERR(...) in case of errors. 3388 */ 3389 static struct spi_replaced_transfers *spi_replace_transfers( 3390 struct spi_message *msg, 3391 struct spi_transfer *xfer_first, 3392 size_t remove, 3393 size_t insert, 3394 spi_replaced_release_t release, 3395 size_t extradatasize, 3396 gfp_t gfp) 3397 { 3398 struct spi_replaced_transfers *rxfer; 3399 struct spi_transfer *xfer; 3400 size_t i; 3401 3402 /* Allocate the structure using spi_res */ 3403 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3404 struct_size(rxfer, inserted_transfers, insert) 3405 + extradatasize, 3406 gfp); 3407 if (!rxfer) 3408 return ERR_PTR(-ENOMEM); 3409 3410 /* The release code to invoke before running the generic release */ 3411 rxfer->release = release; 3412 3413 /* Assign extradata */ 3414 if (extradatasize) 3415 rxfer->extradata = 3416 &rxfer->inserted_transfers[insert]; 3417 3418 /* Init the replaced_transfers list */ 3419 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3420 3421 /* 3422 * Assign the list_entry after which we should reinsert 3423 * the @replaced_transfers - it may be spi_message.messages! 3424 */ 3425 rxfer->replaced_after = xfer_first->transfer_list.prev; 3426 3427 /* Remove the requested number of transfers */ 3428 for (i = 0; i < remove; i++) { 3429 /* 3430 * If the entry after replaced_after it is msg->transfers 3431 * then we have been requested to remove more transfers 3432 * than are in the list. 3433 */ 3434 if (rxfer->replaced_after->next == &msg->transfers) { 3435 dev_err(&msg->spi->dev, 3436 "requested to remove more spi_transfers than are available\n"); 3437 /* Insert replaced transfers back into the message */ 3438 list_splice(&rxfer->replaced_transfers, 3439 rxfer->replaced_after); 3440 3441 /* Free the spi_replace_transfer structure... */ 3442 spi_res_free(rxfer); 3443 3444 /* ...and return with an error */ 3445 return ERR_PTR(-EINVAL); 3446 } 3447 3448 /* 3449 * Remove the entry after replaced_after from list of 3450 * transfers and add it to list of replaced_transfers. 3451 */ 3452 list_move_tail(rxfer->replaced_after->next, 3453 &rxfer->replaced_transfers); 3454 } 3455 3456 /* 3457 * Create copy of the given xfer with identical settings 3458 * based on the first transfer to get removed. 3459 */ 3460 for (i = 0; i < insert; i++) { 3461 /* We need to run in reverse order */ 3462 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3463 3464 /* Copy all spi_transfer data */ 3465 memcpy(xfer, xfer_first, sizeof(*xfer)); 3466 3467 /* Add to list */ 3468 list_add(&xfer->transfer_list, rxfer->replaced_after); 3469 3470 /* Clear cs_change and delay for all but the last */ 3471 if (i) { 3472 xfer->cs_change = false; 3473 xfer->delay.value = 0; 3474 } 3475 } 3476 3477 /* Set up inserted... */ 3478 rxfer->inserted = insert; 3479 3480 /* ...and register it with spi_res/spi_message */ 3481 spi_res_add(msg, rxfer); 3482 3483 return rxfer; 3484 } 3485 3486 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3487 struct spi_message *msg, 3488 struct spi_transfer **xferp, 3489 size_t maxsize, 3490 gfp_t gfp) 3491 { 3492 struct spi_transfer *xfer = *xferp, *xfers; 3493 struct spi_replaced_transfers *srt; 3494 size_t offset; 3495 size_t count, i; 3496 3497 /* Calculate how many we have to replace */ 3498 count = DIV_ROUND_UP(xfer->len, maxsize); 3499 3500 /* Create replacement */ 3501 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3502 if (IS_ERR(srt)) 3503 return PTR_ERR(srt); 3504 xfers = srt->inserted_transfers; 3505 3506 /* 3507 * Now handle each of those newly inserted spi_transfers. 3508 * Note that the replacements spi_transfers all are preset 3509 * to the same values as *xferp, so tx_buf, rx_buf and len 3510 * are all identical (as well as most others) 3511 * so we just have to fix up len and the pointers. 3512 * 3513 * This also includes support for the depreciated 3514 * spi_message.is_dma_mapped interface. 3515 */ 3516 3517 /* 3518 * The first transfer just needs the length modified, so we 3519 * run it outside the loop. 3520 */ 3521 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3522 3523 /* All the others need rx_buf/tx_buf also set */ 3524 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3525 /* Update rx_buf, tx_buf and DMA */ 3526 if (xfers[i].rx_buf) 3527 xfers[i].rx_buf += offset; 3528 if (xfers[i].rx_dma) 3529 xfers[i].rx_dma += offset; 3530 if (xfers[i].tx_buf) 3531 xfers[i].tx_buf += offset; 3532 if (xfers[i].tx_dma) 3533 xfers[i].tx_dma += offset; 3534 3535 /* Update length */ 3536 xfers[i].len = min(maxsize, xfers[i].len - offset); 3537 } 3538 3539 /* 3540 * We set up xferp to the last entry we have inserted, 3541 * so that we skip those already split transfers. 3542 */ 3543 *xferp = &xfers[count - 1]; 3544 3545 /* Increment statistics counters */ 3546 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3547 transfers_split_maxsize); 3548 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3549 transfers_split_maxsize); 3550 3551 return 0; 3552 } 3553 3554 /** 3555 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3556 * when an individual transfer exceeds a 3557 * certain size 3558 * @ctlr: the @spi_controller for this transfer 3559 * @msg: the @spi_message to transform 3560 * @maxsize: the maximum when to apply this 3561 * @gfp: GFP allocation flags 3562 * 3563 * Return: status of transformation 3564 */ 3565 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3566 struct spi_message *msg, 3567 size_t maxsize, 3568 gfp_t gfp) 3569 { 3570 struct spi_transfer *xfer; 3571 int ret; 3572 3573 /* 3574 * Iterate over the transfer_list, 3575 * but note that xfer is advanced to the last transfer inserted 3576 * to avoid checking sizes again unnecessarily (also xfer does 3577 * potentially belong to a different list by the time the 3578 * replacement has happened). 3579 */ 3580 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3581 if (xfer->len > maxsize) { 3582 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3583 maxsize, gfp); 3584 if (ret) 3585 return ret; 3586 } 3587 } 3588 3589 return 0; 3590 } 3591 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3592 3593 3594 /** 3595 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3596 * when an individual transfer exceeds a 3597 * certain number of SPI words 3598 * @ctlr: the @spi_controller for this transfer 3599 * @msg: the @spi_message to transform 3600 * @maxwords: the number of words to limit each transfer to 3601 * @gfp: GFP allocation flags 3602 * 3603 * Return: status of transformation 3604 */ 3605 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3606 struct spi_message *msg, 3607 size_t maxwords, 3608 gfp_t gfp) 3609 { 3610 struct spi_transfer *xfer; 3611 3612 /* 3613 * Iterate over the transfer_list, 3614 * but note that xfer is advanced to the last transfer inserted 3615 * to avoid checking sizes again unnecessarily (also xfer does 3616 * potentially belong to a different list by the time the 3617 * replacement has happened). 3618 */ 3619 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3620 size_t maxsize; 3621 int ret; 3622 3623 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3624 if (xfer->len > maxsize) { 3625 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3626 maxsize, gfp); 3627 if (ret) 3628 return ret; 3629 } 3630 } 3631 3632 return 0; 3633 } 3634 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3635 3636 /*-------------------------------------------------------------------------*/ 3637 3638 /* 3639 * Core methods for SPI controller protocol drivers. Some of the 3640 * other core methods are currently defined as inline functions. 3641 */ 3642 3643 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3644 u8 bits_per_word) 3645 { 3646 if (ctlr->bits_per_word_mask) { 3647 /* Only 32 bits fit in the mask */ 3648 if (bits_per_word > 32) 3649 return -EINVAL; 3650 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3651 return -EINVAL; 3652 } 3653 3654 return 0; 3655 } 3656 3657 /** 3658 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3659 * @spi: the device that requires specific CS timing configuration 3660 * 3661 * Return: zero on success, else a negative error code. 3662 */ 3663 static int spi_set_cs_timing(struct spi_device *spi) 3664 { 3665 struct device *parent = spi->controller->dev.parent; 3666 int status = 0; 3667 3668 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3669 if (spi->controller->auto_runtime_pm) { 3670 status = pm_runtime_get_sync(parent); 3671 if (status < 0) { 3672 pm_runtime_put_noidle(parent); 3673 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3674 status); 3675 return status; 3676 } 3677 3678 status = spi->controller->set_cs_timing(spi); 3679 pm_runtime_mark_last_busy(parent); 3680 pm_runtime_put_autosuspend(parent); 3681 } else { 3682 status = spi->controller->set_cs_timing(spi); 3683 } 3684 } 3685 return status; 3686 } 3687 3688 /** 3689 * spi_setup - setup SPI mode and clock rate 3690 * @spi: the device whose settings are being modified 3691 * Context: can sleep, and no requests are queued to the device 3692 * 3693 * SPI protocol drivers may need to update the transfer mode if the 3694 * device doesn't work with its default. They may likewise need 3695 * to update clock rates or word sizes from initial values. This function 3696 * changes those settings, and must be called from a context that can sleep. 3697 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3698 * effect the next time the device is selected and data is transferred to 3699 * or from it. When this function returns, the SPI device is deselected. 3700 * 3701 * Note that this call will fail if the protocol driver specifies an option 3702 * that the underlying controller or its driver does not support. For 3703 * example, not all hardware supports wire transfers using nine bit words, 3704 * LSB-first wire encoding, or active-high chipselects. 3705 * 3706 * Return: zero on success, else a negative error code. 3707 */ 3708 int spi_setup(struct spi_device *spi) 3709 { 3710 unsigned bad_bits, ugly_bits; 3711 int status = 0; 3712 3713 /* 3714 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3715 * are set at the same time. 3716 */ 3717 if ((hweight_long(spi->mode & 3718 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3719 (hweight_long(spi->mode & 3720 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3721 dev_err(&spi->dev, 3722 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3723 return -EINVAL; 3724 } 3725 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3726 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3727 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3728 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3729 return -EINVAL; 3730 /* 3731 * Help drivers fail *cleanly* when they need options 3732 * that aren't supported with their current controller. 3733 * SPI_CS_WORD has a fallback software implementation, 3734 * so it is ignored here. 3735 */ 3736 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3737 SPI_NO_TX | SPI_NO_RX); 3738 ugly_bits = bad_bits & 3739 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3740 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3741 if (ugly_bits) { 3742 dev_warn(&spi->dev, 3743 "setup: ignoring unsupported mode bits %x\n", 3744 ugly_bits); 3745 spi->mode &= ~ugly_bits; 3746 bad_bits &= ~ugly_bits; 3747 } 3748 if (bad_bits) { 3749 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3750 bad_bits); 3751 return -EINVAL; 3752 } 3753 3754 if (!spi->bits_per_word) { 3755 spi->bits_per_word = 8; 3756 } else { 3757 /* 3758 * Some controllers may not support the default 8 bits-per-word 3759 * so only perform the check when this is explicitly provided. 3760 */ 3761 status = __spi_validate_bits_per_word(spi->controller, 3762 spi->bits_per_word); 3763 if (status) 3764 return status; 3765 } 3766 3767 if (spi->controller->max_speed_hz && 3768 (!spi->max_speed_hz || 3769 spi->max_speed_hz > spi->controller->max_speed_hz)) 3770 spi->max_speed_hz = spi->controller->max_speed_hz; 3771 3772 mutex_lock(&spi->controller->io_mutex); 3773 3774 if (spi->controller->setup) { 3775 status = spi->controller->setup(spi); 3776 if (status) { 3777 mutex_unlock(&spi->controller->io_mutex); 3778 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3779 status); 3780 return status; 3781 } 3782 } 3783 3784 status = spi_set_cs_timing(spi); 3785 if (status) { 3786 mutex_unlock(&spi->controller->io_mutex); 3787 return status; 3788 } 3789 3790 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3791 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3792 if (status < 0) { 3793 mutex_unlock(&spi->controller->io_mutex); 3794 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3795 status); 3796 return status; 3797 } 3798 3799 /* 3800 * We do not want to return positive value from pm_runtime_get, 3801 * there are many instances of devices calling spi_setup() and 3802 * checking for a non-zero return value instead of a negative 3803 * return value. 3804 */ 3805 status = 0; 3806 3807 spi_set_cs(spi, false, true); 3808 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3809 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3810 } else { 3811 spi_set_cs(spi, false, true); 3812 } 3813 3814 mutex_unlock(&spi->controller->io_mutex); 3815 3816 if (spi->rt && !spi->controller->rt) { 3817 spi->controller->rt = true; 3818 spi_set_thread_rt(spi->controller); 3819 } 3820 3821 trace_spi_setup(spi, status); 3822 3823 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3824 spi->mode & SPI_MODE_X_MASK, 3825 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3826 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3827 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3828 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3829 spi->bits_per_word, spi->max_speed_hz, 3830 status); 3831 3832 return status; 3833 } 3834 EXPORT_SYMBOL_GPL(spi_setup); 3835 3836 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3837 struct spi_device *spi) 3838 { 3839 int delay1, delay2; 3840 3841 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3842 if (delay1 < 0) 3843 return delay1; 3844 3845 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3846 if (delay2 < 0) 3847 return delay2; 3848 3849 if (delay1 < delay2) 3850 memcpy(&xfer->word_delay, &spi->word_delay, 3851 sizeof(xfer->word_delay)); 3852 3853 return 0; 3854 } 3855 3856 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3857 { 3858 struct spi_controller *ctlr = spi->controller; 3859 struct spi_transfer *xfer; 3860 int w_size; 3861 3862 if (list_empty(&message->transfers)) 3863 return -EINVAL; 3864 3865 /* 3866 * If an SPI controller does not support toggling the CS line on each 3867 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3868 * for the CS line, we can emulate the CS-per-word hardware function by 3869 * splitting transfers into one-word transfers and ensuring that 3870 * cs_change is set for each transfer. 3871 */ 3872 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3873 spi_get_csgpiod(spi, 0))) { 3874 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word); 3875 int ret; 3876 3877 /* spi_split_transfers_maxsize() requires message->spi */ 3878 message->spi = spi; 3879 3880 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3881 GFP_KERNEL); 3882 if (ret) 3883 return ret; 3884 3885 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3886 /* Don't change cs_change on the last entry in the list */ 3887 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3888 break; 3889 xfer->cs_change = 1; 3890 } 3891 } 3892 3893 /* 3894 * Half-duplex links include original MicroWire, and ones with 3895 * only one data pin like SPI_3WIRE (switches direction) or where 3896 * either MOSI or MISO is missing. They can also be caused by 3897 * software limitations. 3898 */ 3899 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3900 (spi->mode & SPI_3WIRE)) { 3901 unsigned flags = ctlr->flags; 3902 3903 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3904 if (xfer->rx_buf && xfer->tx_buf) 3905 return -EINVAL; 3906 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3907 return -EINVAL; 3908 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3909 return -EINVAL; 3910 } 3911 } 3912 3913 /* 3914 * Set transfer bits_per_word and max speed as spi device default if 3915 * it is not set for this transfer. 3916 * Set transfer tx_nbits and rx_nbits as single transfer default 3917 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3918 * Ensure transfer word_delay is at least as long as that required by 3919 * device itself. 3920 */ 3921 message->frame_length = 0; 3922 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3923 xfer->effective_speed_hz = 0; 3924 message->frame_length += xfer->len; 3925 if (!xfer->bits_per_word) 3926 xfer->bits_per_word = spi->bits_per_word; 3927 3928 if (!xfer->speed_hz) 3929 xfer->speed_hz = spi->max_speed_hz; 3930 3931 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3932 xfer->speed_hz = ctlr->max_speed_hz; 3933 3934 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3935 return -EINVAL; 3936 3937 /* 3938 * SPI transfer length should be multiple of SPI word size 3939 * where SPI word size should be power-of-two multiple. 3940 */ 3941 if (xfer->bits_per_word <= 8) 3942 w_size = 1; 3943 else if (xfer->bits_per_word <= 16) 3944 w_size = 2; 3945 else 3946 w_size = 4; 3947 3948 /* No partial transfers accepted */ 3949 if (xfer->len % w_size) 3950 return -EINVAL; 3951 3952 if (xfer->speed_hz && ctlr->min_speed_hz && 3953 xfer->speed_hz < ctlr->min_speed_hz) 3954 return -EINVAL; 3955 3956 if (xfer->tx_buf && !xfer->tx_nbits) 3957 xfer->tx_nbits = SPI_NBITS_SINGLE; 3958 if (xfer->rx_buf && !xfer->rx_nbits) 3959 xfer->rx_nbits = SPI_NBITS_SINGLE; 3960 /* 3961 * Check transfer tx/rx_nbits: 3962 * 1. check the value matches one of single, dual and quad 3963 * 2. check tx/rx_nbits match the mode in spi_device 3964 */ 3965 if (xfer->tx_buf) { 3966 if (spi->mode & SPI_NO_TX) 3967 return -EINVAL; 3968 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3969 xfer->tx_nbits != SPI_NBITS_DUAL && 3970 xfer->tx_nbits != SPI_NBITS_QUAD) 3971 return -EINVAL; 3972 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3973 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3974 return -EINVAL; 3975 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3976 !(spi->mode & SPI_TX_QUAD)) 3977 return -EINVAL; 3978 } 3979 /* Check transfer rx_nbits */ 3980 if (xfer->rx_buf) { 3981 if (spi->mode & SPI_NO_RX) 3982 return -EINVAL; 3983 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3984 xfer->rx_nbits != SPI_NBITS_DUAL && 3985 xfer->rx_nbits != SPI_NBITS_QUAD) 3986 return -EINVAL; 3987 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3988 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3989 return -EINVAL; 3990 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3991 !(spi->mode & SPI_RX_QUAD)) 3992 return -EINVAL; 3993 } 3994 3995 if (_spi_xfer_word_delay_update(xfer, spi)) 3996 return -EINVAL; 3997 } 3998 3999 message->status = -EINPROGRESS; 4000 4001 return 0; 4002 } 4003 4004 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4005 { 4006 struct spi_controller *ctlr = spi->controller; 4007 struct spi_transfer *xfer; 4008 4009 /* 4010 * Some controllers do not support doing regular SPI transfers. Return 4011 * ENOTSUPP when this is the case. 4012 */ 4013 if (!ctlr->transfer) 4014 return -ENOTSUPP; 4015 4016 message->spi = spi; 4017 4018 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4019 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4020 4021 trace_spi_message_submit(message); 4022 4023 if (!ctlr->ptp_sts_supported) { 4024 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4025 xfer->ptp_sts_word_pre = 0; 4026 ptp_read_system_prets(xfer->ptp_sts); 4027 } 4028 } 4029 4030 return ctlr->transfer(spi, message); 4031 } 4032 4033 /** 4034 * spi_async - asynchronous SPI transfer 4035 * @spi: device with which data will be exchanged 4036 * @message: describes the data transfers, including completion callback 4037 * Context: any (IRQs may be blocked, etc) 4038 * 4039 * This call may be used in_irq and other contexts which can't sleep, 4040 * as well as from task contexts which can sleep. 4041 * 4042 * The completion callback is invoked in a context which can't sleep. 4043 * Before that invocation, the value of message->status is undefined. 4044 * When the callback is issued, message->status holds either zero (to 4045 * indicate complete success) or a negative error code. After that 4046 * callback returns, the driver which issued the transfer request may 4047 * deallocate the associated memory; it's no longer in use by any SPI 4048 * core or controller driver code. 4049 * 4050 * Note that although all messages to a spi_device are handled in 4051 * FIFO order, messages may go to different devices in other orders. 4052 * Some device might be higher priority, or have various "hard" access 4053 * time requirements, for example. 4054 * 4055 * On detection of any fault during the transfer, processing of 4056 * the entire message is aborted, and the device is deselected. 4057 * Until returning from the associated message completion callback, 4058 * no other spi_message queued to that device will be processed. 4059 * (This rule applies equally to all the synchronous transfer calls, 4060 * which are wrappers around this core asynchronous primitive.) 4061 * 4062 * Return: zero on success, else a negative error code. 4063 */ 4064 int spi_async(struct spi_device *spi, struct spi_message *message) 4065 { 4066 struct spi_controller *ctlr = spi->controller; 4067 int ret; 4068 unsigned long flags; 4069 4070 ret = __spi_validate(spi, message); 4071 if (ret != 0) 4072 return ret; 4073 4074 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4075 4076 if (ctlr->bus_lock_flag) 4077 ret = -EBUSY; 4078 else 4079 ret = __spi_async(spi, message); 4080 4081 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4082 4083 return ret; 4084 } 4085 EXPORT_SYMBOL_GPL(spi_async); 4086 4087 /** 4088 * spi_async_locked - version of spi_async with exclusive bus usage 4089 * @spi: device with which data will be exchanged 4090 * @message: describes the data transfers, including completion callback 4091 * Context: any (IRQs may be blocked, etc) 4092 * 4093 * This call may be used in_irq and other contexts which can't sleep, 4094 * as well as from task contexts which can sleep. 4095 * 4096 * The completion callback is invoked in a context which can't sleep. 4097 * Before that invocation, the value of message->status is undefined. 4098 * When the callback is issued, message->status holds either zero (to 4099 * indicate complete success) or a negative error code. After that 4100 * callback returns, the driver which issued the transfer request may 4101 * deallocate the associated memory; it's no longer in use by any SPI 4102 * core or controller driver code. 4103 * 4104 * Note that although all messages to a spi_device are handled in 4105 * FIFO order, messages may go to different devices in other orders. 4106 * Some device might be higher priority, or have various "hard" access 4107 * time requirements, for example. 4108 * 4109 * On detection of any fault during the transfer, processing of 4110 * the entire message is aborted, and the device is deselected. 4111 * Until returning from the associated message completion callback, 4112 * no other spi_message queued to that device will be processed. 4113 * (This rule applies equally to all the synchronous transfer calls, 4114 * which are wrappers around this core asynchronous primitive.) 4115 * 4116 * Return: zero on success, else a negative error code. 4117 */ 4118 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 4119 { 4120 struct spi_controller *ctlr = spi->controller; 4121 int ret; 4122 unsigned long flags; 4123 4124 ret = __spi_validate(spi, message); 4125 if (ret != 0) 4126 return ret; 4127 4128 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4129 4130 ret = __spi_async(spi, message); 4131 4132 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4133 4134 return ret; 4135 4136 } 4137 4138 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4139 { 4140 bool was_busy; 4141 int ret; 4142 4143 mutex_lock(&ctlr->io_mutex); 4144 4145 was_busy = ctlr->busy; 4146 4147 ctlr->cur_msg = msg; 4148 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4149 if (ret) 4150 goto out; 4151 4152 ctlr->cur_msg = NULL; 4153 ctlr->fallback = false; 4154 4155 if (!was_busy) { 4156 kfree(ctlr->dummy_rx); 4157 ctlr->dummy_rx = NULL; 4158 kfree(ctlr->dummy_tx); 4159 ctlr->dummy_tx = NULL; 4160 if (ctlr->unprepare_transfer_hardware && 4161 ctlr->unprepare_transfer_hardware(ctlr)) 4162 dev_err(&ctlr->dev, 4163 "failed to unprepare transfer hardware\n"); 4164 spi_idle_runtime_pm(ctlr); 4165 } 4166 4167 out: 4168 mutex_unlock(&ctlr->io_mutex); 4169 } 4170 4171 /*-------------------------------------------------------------------------*/ 4172 4173 /* 4174 * Utility methods for SPI protocol drivers, layered on 4175 * top of the core. Some other utility methods are defined as 4176 * inline functions. 4177 */ 4178 4179 static void spi_complete(void *arg) 4180 { 4181 complete(arg); 4182 } 4183 4184 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4185 { 4186 DECLARE_COMPLETION_ONSTACK(done); 4187 int status; 4188 struct spi_controller *ctlr = spi->controller; 4189 4190 status = __spi_validate(spi, message); 4191 if (status != 0) 4192 return status; 4193 4194 message->spi = spi; 4195 4196 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4197 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4198 4199 /* 4200 * Checking queue_empty here only guarantees async/sync message 4201 * ordering when coming from the same context. It does not need to 4202 * guard against reentrancy from a different context. The io_mutex 4203 * will catch those cases. 4204 */ 4205 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4206 message->actual_length = 0; 4207 message->status = -EINPROGRESS; 4208 4209 trace_spi_message_submit(message); 4210 4211 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4212 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4213 4214 __spi_transfer_message_noqueue(ctlr, message); 4215 4216 return message->status; 4217 } 4218 4219 /* 4220 * There are messages in the async queue that could have originated 4221 * from the same context, so we need to preserve ordering. 4222 * Therefor we send the message to the async queue and wait until they 4223 * are completed. 4224 */ 4225 message->complete = spi_complete; 4226 message->context = &done; 4227 status = spi_async_locked(spi, message); 4228 if (status == 0) { 4229 wait_for_completion(&done); 4230 status = message->status; 4231 } 4232 message->context = NULL; 4233 4234 return status; 4235 } 4236 4237 /** 4238 * spi_sync - blocking/synchronous SPI data transfers 4239 * @spi: device with which data will be exchanged 4240 * @message: describes the data transfers 4241 * Context: can sleep 4242 * 4243 * This call may only be used from a context that may sleep. The sleep 4244 * is non-interruptible, and has no timeout. Low-overhead controller 4245 * drivers may DMA directly into and out of the message buffers. 4246 * 4247 * Note that the SPI device's chip select is active during the message, 4248 * and then is normally disabled between messages. Drivers for some 4249 * frequently-used devices may want to minimize costs of selecting a chip, 4250 * by leaving it selected in anticipation that the next message will go 4251 * to the same chip. (That may increase power usage.) 4252 * 4253 * Also, the caller is guaranteeing that the memory associated with the 4254 * message will not be freed before this call returns. 4255 * 4256 * Return: zero on success, else a negative error code. 4257 */ 4258 int spi_sync(struct spi_device *spi, struct spi_message *message) 4259 { 4260 int ret; 4261 4262 mutex_lock(&spi->controller->bus_lock_mutex); 4263 ret = __spi_sync(spi, message); 4264 mutex_unlock(&spi->controller->bus_lock_mutex); 4265 4266 return ret; 4267 } 4268 EXPORT_SYMBOL_GPL(spi_sync); 4269 4270 /** 4271 * spi_sync_locked - version of spi_sync with exclusive bus usage 4272 * @spi: device with which data will be exchanged 4273 * @message: describes the data transfers 4274 * Context: can sleep 4275 * 4276 * This call may only be used from a context that may sleep. The sleep 4277 * is non-interruptible, and has no timeout. Low-overhead controller 4278 * drivers may DMA directly into and out of the message buffers. 4279 * 4280 * This call should be used by drivers that require exclusive access to the 4281 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4282 * be released by a spi_bus_unlock call when the exclusive access is over. 4283 * 4284 * Return: zero on success, else a negative error code. 4285 */ 4286 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4287 { 4288 return __spi_sync(spi, message); 4289 } 4290 EXPORT_SYMBOL_GPL(spi_sync_locked); 4291 4292 /** 4293 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4294 * @ctlr: SPI bus master that should be locked for exclusive bus access 4295 * Context: can sleep 4296 * 4297 * This call may only be used from a context that may sleep. The sleep 4298 * is non-interruptible, and has no timeout. 4299 * 4300 * This call should be used by drivers that require exclusive access to the 4301 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4302 * exclusive access is over. Data transfer must be done by spi_sync_locked 4303 * and spi_async_locked calls when the SPI bus lock is held. 4304 * 4305 * Return: always zero. 4306 */ 4307 int spi_bus_lock(struct spi_controller *ctlr) 4308 { 4309 unsigned long flags; 4310 4311 mutex_lock(&ctlr->bus_lock_mutex); 4312 4313 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4314 ctlr->bus_lock_flag = 1; 4315 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4316 4317 /* Mutex remains locked until spi_bus_unlock() is called */ 4318 4319 return 0; 4320 } 4321 EXPORT_SYMBOL_GPL(spi_bus_lock); 4322 4323 /** 4324 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4325 * @ctlr: SPI bus master that was locked for exclusive bus access 4326 * Context: can sleep 4327 * 4328 * This call may only be used from a context that may sleep. The sleep 4329 * is non-interruptible, and has no timeout. 4330 * 4331 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4332 * call. 4333 * 4334 * Return: always zero. 4335 */ 4336 int spi_bus_unlock(struct spi_controller *ctlr) 4337 { 4338 ctlr->bus_lock_flag = 0; 4339 4340 mutex_unlock(&ctlr->bus_lock_mutex); 4341 4342 return 0; 4343 } 4344 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4345 4346 /* Portable code must never pass more than 32 bytes */ 4347 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4348 4349 static u8 *buf; 4350 4351 /** 4352 * spi_write_then_read - SPI synchronous write followed by read 4353 * @spi: device with which data will be exchanged 4354 * @txbuf: data to be written (need not be DMA-safe) 4355 * @n_tx: size of txbuf, in bytes 4356 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4357 * @n_rx: size of rxbuf, in bytes 4358 * Context: can sleep 4359 * 4360 * This performs a half duplex MicroWire style transaction with the 4361 * device, sending txbuf and then reading rxbuf. The return value 4362 * is zero for success, else a negative errno status code. 4363 * This call may only be used from a context that may sleep. 4364 * 4365 * Parameters to this routine are always copied using a small buffer. 4366 * Performance-sensitive or bulk transfer code should instead use 4367 * spi_{async,sync}() calls with DMA-safe buffers. 4368 * 4369 * Return: zero on success, else a negative error code. 4370 */ 4371 int spi_write_then_read(struct spi_device *spi, 4372 const void *txbuf, unsigned n_tx, 4373 void *rxbuf, unsigned n_rx) 4374 { 4375 static DEFINE_MUTEX(lock); 4376 4377 int status; 4378 struct spi_message message; 4379 struct spi_transfer x[2]; 4380 u8 *local_buf; 4381 4382 /* 4383 * Use preallocated DMA-safe buffer if we can. We can't avoid 4384 * copying here, (as a pure convenience thing), but we can 4385 * keep heap costs out of the hot path unless someone else is 4386 * using the pre-allocated buffer or the transfer is too large. 4387 */ 4388 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4389 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4390 GFP_KERNEL | GFP_DMA); 4391 if (!local_buf) 4392 return -ENOMEM; 4393 } else { 4394 local_buf = buf; 4395 } 4396 4397 spi_message_init(&message); 4398 memset(x, 0, sizeof(x)); 4399 if (n_tx) { 4400 x[0].len = n_tx; 4401 spi_message_add_tail(&x[0], &message); 4402 } 4403 if (n_rx) { 4404 x[1].len = n_rx; 4405 spi_message_add_tail(&x[1], &message); 4406 } 4407 4408 memcpy(local_buf, txbuf, n_tx); 4409 x[0].tx_buf = local_buf; 4410 x[1].rx_buf = local_buf + n_tx; 4411 4412 /* Do the I/O */ 4413 status = spi_sync(spi, &message); 4414 if (status == 0) 4415 memcpy(rxbuf, x[1].rx_buf, n_rx); 4416 4417 if (x[0].tx_buf == buf) 4418 mutex_unlock(&lock); 4419 else 4420 kfree(local_buf); 4421 4422 return status; 4423 } 4424 EXPORT_SYMBOL_GPL(spi_write_then_read); 4425 4426 /*-------------------------------------------------------------------------*/ 4427 4428 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4429 /* Must call put_device() when done with returned spi_device device */ 4430 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4431 { 4432 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4433 4434 return dev ? to_spi_device(dev) : NULL; 4435 } 4436 4437 /* The spi controllers are not using spi_bus, so we find it with another way */ 4438 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4439 { 4440 struct device *dev; 4441 4442 dev = class_find_device_by_of_node(&spi_master_class, node); 4443 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4444 dev = class_find_device_by_of_node(&spi_slave_class, node); 4445 if (!dev) 4446 return NULL; 4447 4448 /* Reference got in class_find_device */ 4449 return container_of(dev, struct spi_controller, dev); 4450 } 4451 4452 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4453 void *arg) 4454 { 4455 struct of_reconfig_data *rd = arg; 4456 struct spi_controller *ctlr; 4457 struct spi_device *spi; 4458 4459 switch (of_reconfig_get_state_change(action, arg)) { 4460 case OF_RECONFIG_CHANGE_ADD: 4461 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4462 if (ctlr == NULL) 4463 return NOTIFY_OK; /* Not for us */ 4464 4465 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4466 put_device(&ctlr->dev); 4467 return NOTIFY_OK; 4468 } 4469 4470 /* 4471 * Clear the flag before adding the device so that fw_devlink 4472 * doesn't skip adding consumers to this device. 4473 */ 4474 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4475 spi = of_register_spi_device(ctlr, rd->dn); 4476 put_device(&ctlr->dev); 4477 4478 if (IS_ERR(spi)) { 4479 pr_err("%s: failed to create for '%pOF'\n", 4480 __func__, rd->dn); 4481 of_node_clear_flag(rd->dn, OF_POPULATED); 4482 return notifier_from_errno(PTR_ERR(spi)); 4483 } 4484 break; 4485 4486 case OF_RECONFIG_CHANGE_REMOVE: 4487 /* Already depopulated? */ 4488 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4489 return NOTIFY_OK; 4490 4491 /* Find our device by node */ 4492 spi = of_find_spi_device_by_node(rd->dn); 4493 if (spi == NULL) 4494 return NOTIFY_OK; /* No? not meant for us */ 4495 4496 /* Unregister takes one ref away */ 4497 spi_unregister_device(spi); 4498 4499 /* And put the reference of the find */ 4500 put_device(&spi->dev); 4501 break; 4502 } 4503 4504 return NOTIFY_OK; 4505 } 4506 4507 static struct notifier_block spi_of_notifier = { 4508 .notifier_call = of_spi_notify, 4509 }; 4510 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4511 extern struct notifier_block spi_of_notifier; 4512 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4513 4514 #if IS_ENABLED(CONFIG_ACPI) 4515 static int spi_acpi_controller_match(struct device *dev, const void *data) 4516 { 4517 return ACPI_COMPANION(dev->parent) == data; 4518 } 4519 4520 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4521 { 4522 struct device *dev; 4523 4524 dev = class_find_device(&spi_master_class, NULL, adev, 4525 spi_acpi_controller_match); 4526 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4527 dev = class_find_device(&spi_slave_class, NULL, adev, 4528 spi_acpi_controller_match); 4529 if (!dev) 4530 return NULL; 4531 4532 return container_of(dev, struct spi_controller, dev); 4533 } 4534 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4535 4536 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4537 { 4538 struct device *dev; 4539 4540 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4541 return to_spi_device(dev); 4542 } 4543 4544 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4545 void *arg) 4546 { 4547 struct acpi_device *adev = arg; 4548 struct spi_controller *ctlr; 4549 struct spi_device *spi; 4550 4551 switch (value) { 4552 case ACPI_RECONFIG_DEVICE_ADD: 4553 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4554 if (!ctlr) 4555 break; 4556 4557 acpi_register_spi_device(ctlr, adev); 4558 put_device(&ctlr->dev); 4559 break; 4560 case ACPI_RECONFIG_DEVICE_REMOVE: 4561 if (!acpi_device_enumerated(adev)) 4562 break; 4563 4564 spi = acpi_spi_find_device_by_adev(adev); 4565 if (!spi) 4566 break; 4567 4568 spi_unregister_device(spi); 4569 put_device(&spi->dev); 4570 break; 4571 } 4572 4573 return NOTIFY_OK; 4574 } 4575 4576 static struct notifier_block spi_acpi_notifier = { 4577 .notifier_call = acpi_spi_notify, 4578 }; 4579 #else 4580 extern struct notifier_block spi_acpi_notifier; 4581 #endif 4582 4583 static int __init spi_init(void) 4584 { 4585 int status; 4586 4587 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4588 if (!buf) { 4589 status = -ENOMEM; 4590 goto err0; 4591 } 4592 4593 status = bus_register(&spi_bus_type); 4594 if (status < 0) 4595 goto err1; 4596 4597 status = class_register(&spi_master_class); 4598 if (status < 0) 4599 goto err2; 4600 4601 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4602 status = class_register(&spi_slave_class); 4603 if (status < 0) 4604 goto err3; 4605 } 4606 4607 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4608 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4609 if (IS_ENABLED(CONFIG_ACPI)) 4610 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4611 4612 return 0; 4613 4614 err3: 4615 class_unregister(&spi_master_class); 4616 err2: 4617 bus_unregister(&spi_bus_type); 4618 err1: 4619 kfree(buf); 4620 buf = NULL; 4621 err0: 4622 return status; 4623 } 4624 4625 /* 4626 * A board_info is normally registered in arch_initcall(), 4627 * but even essential drivers wait till later. 4628 * 4629 * REVISIT only boardinfo really needs static linking. The rest (device and 4630 * driver registration) _could_ be dynamically linked (modular) ... Costs 4631 * include needing to have boardinfo data structures be much more public. 4632 */ 4633 postcore_initcall(spi_init); 4634