1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_message *msg) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if (spi_valid_txbuf(msg, xfer)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if (spi_valid_rxbuf(msg, xfer)) 334 u64_stats_add(&stats->bytes_rx, xfer->len); 335 336 u64_stats_update_end(&stats->syncp); 337 put_cpu(); 338 } 339 340 /* 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 342 * and the sysfs version makes coldplug work too. 343 */ 344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 345 { 346 while (id->name[0]) { 347 if (!strcmp(name, id->name)) 348 return id; 349 id++; 350 } 351 return NULL; 352 } 353 354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 355 { 356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 357 358 return spi_match_id(sdrv->id_table, sdev->modalias); 359 } 360 EXPORT_SYMBOL_GPL(spi_get_device_id); 361 362 const void *spi_get_device_match_data(const struct spi_device *sdev) 363 { 364 const void *match; 365 366 match = device_get_match_data(&sdev->dev); 367 if (match) 368 return match; 369 370 return (const void *)spi_get_device_id(sdev)->driver_data; 371 } 372 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 373 374 static int spi_match_device(struct device *dev, const struct device_driver *drv) 375 { 376 const struct spi_device *spi = to_spi_device(dev); 377 const struct spi_driver *sdrv = to_spi_driver(drv); 378 379 /* Check override first, and if set, only use the named driver */ 380 if (spi->driver_override) 381 return strcmp(spi->driver_override, drv->name) == 0; 382 383 /* Attempt an OF style match */ 384 if (of_driver_match_device(dev, drv)) 385 return 1; 386 387 /* Then try ACPI */ 388 if (acpi_driver_match_device(dev, drv)) 389 return 1; 390 391 if (sdrv->id_table) 392 return !!spi_match_id(sdrv->id_table, spi->modalias); 393 394 return strcmp(spi->modalias, drv->name) == 0; 395 } 396 397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 398 { 399 const struct spi_device *spi = to_spi_device(dev); 400 int rc; 401 402 rc = acpi_device_uevent_modalias(dev, env); 403 if (rc != -ENODEV) 404 return rc; 405 406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 407 } 408 409 static int spi_probe(struct device *dev) 410 { 411 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 412 struct spi_device *spi = to_spi_device(dev); 413 struct fwnode_handle *fwnode = dev_fwnode(dev); 414 int ret; 415 416 ret = of_clk_set_defaults(dev->of_node, false); 417 if (ret) 418 return ret; 419 420 if (is_of_node(fwnode)) 421 spi->irq = of_irq_get(dev->of_node, 0); 422 else if (is_acpi_device_node(fwnode) && spi->irq < 0) 423 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0); 424 if (spi->irq == -EPROBE_DEFER) 425 return dev_err_probe(dev, spi->irq, "Failed to get irq\n"); 426 if (spi->irq < 0) 427 spi->irq = 0; 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 const struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct device *dev = &spi->dev; 601 struct fwnode_handle *fwnode = dev_fwnode(dev); 602 603 if (is_acpi_device_node(fwnode)) { 604 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 605 return; 606 } 607 608 if (is_software_node(fwnode)) { 609 dev_set_name(dev, "spi-%pfwP", fwnode); 610 return; 611 } 612 613 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 614 spi_get_chipselect(spi, 0)); 615 } 616 617 /* 618 * Zero(0) is a valid physical CS value and can be located at any 619 * logical CS in the spi->chip_select[]. If all the physical CS 620 * are initialized to 0 then It would be difficult to differentiate 621 * between a valid physical CS 0 & an unused logical CS whose physical 622 * CS can be 0. As a solution to this issue initialize all the CS to -1. 623 * Now all the unused logical CS will have -1 physical CS value & can be 624 * ignored while performing physical CS validity checks. 625 */ 626 #define SPI_INVALID_CS ((s8)-1) 627 628 static inline bool is_valid_cs(s8 chip_select) 629 { 630 return chip_select != SPI_INVALID_CS; 631 } 632 633 static inline int spi_dev_check_cs(struct device *dev, 634 struct spi_device *spi, u8 idx, 635 struct spi_device *new_spi, u8 new_idx) 636 { 637 u8 cs, cs_new; 638 u8 idx_new; 639 640 cs = spi_get_chipselect(spi, idx); 641 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 642 cs_new = spi_get_chipselect(new_spi, idx_new); 643 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 644 dev_err(dev, "chipselect %u already in use\n", cs_new); 645 return -EBUSY; 646 } 647 } 648 return 0; 649 } 650 651 static int spi_dev_check(struct device *dev, void *data) 652 { 653 struct spi_device *spi = to_spi_device(dev); 654 struct spi_device *new_spi = data; 655 int status, idx; 656 657 if (spi->controller == new_spi->controller) { 658 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 659 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 660 if (status) 661 return status; 662 } 663 } 664 return 0; 665 } 666 667 static void spi_cleanup(struct spi_device *spi) 668 { 669 if (spi->controller->cleanup) 670 spi->controller->cleanup(spi); 671 } 672 673 static int __spi_add_device(struct spi_device *spi) 674 { 675 struct spi_controller *ctlr = spi->controller; 676 struct device *dev = ctlr->dev.parent; 677 int status, idx; 678 u8 cs; 679 680 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 681 /* Chipselects are numbered 0..max; validate. */ 682 cs = spi_get_chipselect(spi, idx); 683 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 684 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 685 ctlr->num_chipselect); 686 return -EINVAL; 687 } 688 } 689 690 /* 691 * Make sure that multiple logical CS doesn't map to the same physical CS. 692 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 693 */ 694 if (!spi_controller_is_target(ctlr)) { 695 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 696 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 697 if (status) 698 return status; 699 } 700 } 701 702 /* Set the bus ID string */ 703 spi_dev_set_name(spi); 704 705 /* 706 * We need to make sure there's no other device with this 707 * chipselect **BEFORE** we call setup(), else we'll trash 708 * its configuration. 709 */ 710 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 711 if (status) 712 return status; 713 714 /* Controller may unregister concurrently */ 715 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 716 !device_is_registered(&ctlr->dev)) { 717 return -ENODEV; 718 } 719 720 if (ctlr->cs_gpiods) { 721 u8 cs; 722 723 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 724 cs = spi_get_chipselect(spi, idx); 725 if (is_valid_cs(cs)) 726 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 727 } 728 } 729 730 /* 731 * Drivers may modify this initial i/o setup, but will 732 * normally rely on the device being setup. Devices 733 * using SPI_CS_HIGH can't coexist well otherwise... 734 */ 735 status = spi_setup(spi); 736 if (status < 0) { 737 dev_err(dev, "can't setup %s, status %d\n", 738 dev_name(&spi->dev), status); 739 return status; 740 } 741 742 /* Device may be bound to an active driver when this returns */ 743 status = device_add(&spi->dev); 744 if (status < 0) { 745 dev_err(dev, "can't add %s, status %d\n", 746 dev_name(&spi->dev), status); 747 spi_cleanup(spi); 748 } else { 749 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 750 } 751 752 return status; 753 } 754 755 /** 756 * spi_add_device - Add spi_device allocated with spi_alloc_device 757 * @spi: spi_device to register 758 * 759 * Companion function to spi_alloc_device. Devices allocated with 760 * spi_alloc_device can be added onto the SPI bus with this function. 761 * 762 * Return: 0 on success; negative errno on failure 763 */ 764 int spi_add_device(struct spi_device *spi) 765 { 766 struct spi_controller *ctlr = spi->controller; 767 int status; 768 769 /* Set the bus ID string */ 770 spi_dev_set_name(spi); 771 772 mutex_lock(&ctlr->add_lock); 773 status = __spi_add_device(spi); 774 mutex_unlock(&ctlr->add_lock); 775 return status; 776 } 777 EXPORT_SYMBOL_GPL(spi_add_device); 778 779 static void spi_set_all_cs_unused(struct spi_device *spi) 780 { 781 u8 idx; 782 783 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 784 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 785 } 786 787 /** 788 * spi_new_device - instantiate one new SPI device 789 * @ctlr: Controller to which device is connected 790 * @chip: Describes the SPI device 791 * Context: can sleep 792 * 793 * On typical mainboards, this is purely internal; and it's not needed 794 * after board init creates the hard-wired devices. Some development 795 * platforms may not be able to use spi_register_board_info though, and 796 * this is exported so that for example a USB or parport based adapter 797 * driver could add devices (which it would learn about out-of-band). 798 * 799 * Return: the new device, or NULL. 800 */ 801 struct spi_device *spi_new_device(struct spi_controller *ctlr, 802 struct spi_board_info *chip) 803 { 804 struct spi_device *proxy; 805 int status; 806 807 /* 808 * NOTE: caller did any chip->bus_num checks necessary. 809 * 810 * Also, unless we change the return value convention to use 811 * error-or-pointer (not NULL-or-pointer), troubleshootability 812 * suggests syslogged diagnostics are best here (ugh). 813 */ 814 815 proxy = spi_alloc_device(ctlr); 816 if (!proxy) 817 return NULL; 818 819 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 820 821 /* Use provided chip-select for proxy device */ 822 spi_set_all_cs_unused(proxy); 823 spi_set_chipselect(proxy, 0, chip->chip_select); 824 825 proxy->max_speed_hz = chip->max_speed_hz; 826 proxy->mode = chip->mode; 827 proxy->irq = chip->irq; 828 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 829 proxy->dev.platform_data = (void *) chip->platform_data; 830 proxy->controller_data = chip->controller_data; 831 proxy->controller_state = NULL; 832 /* 833 * By default spi->chip_select[0] will hold the physical CS number, 834 * so set bit 0 in spi->cs_index_mask. 835 */ 836 proxy->cs_index_mask = BIT(0); 837 838 if (chip->swnode) { 839 status = device_add_software_node(&proxy->dev, chip->swnode); 840 if (status) { 841 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 842 chip->modalias, status); 843 goto err_dev_put; 844 } 845 } 846 847 status = spi_add_device(proxy); 848 if (status < 0) 849 goto err_dev_put; 850 851 return proxy; 852 853 err_dev_put: 854 device_remove_software_node(&proxy->dev); 855 spi_dev_put(proxy); 856 return NULL; 857 } 858 EXPORT_SYMBOL_GPL(spi_new_device); 859 860 /** 861 * spi_unregister_device - unregister a single SPI device 862 * @spi: spi_device to unregister 863 * 864 * Start making the passed SPI device vanish. Normally this would be handled 865 * by spi_unregister_controller(). 866 */ 867 void spi_unregister_device(struct spi_device *spi) 868 { 869 struct fwnode_handle *fwnode; 870 871 if (!spi) 872 return; 873 874 fwnode = dev_fwnode(&spi->dev); 875 if (is_of_node(fwnode)) { 876 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED); 877 of_node_put(to_of_node(fwnode)); 878 } else if (is_acpi_device_node(fwnode)) { 879 acpi_device_clear_enumerated(to_acpi_device_node(fwnode)); 880 } 881 device_remove_software_node(&spi->dev); 882 device_del(&spi->dev); 883 spi_cleanup(spi); 884 put_device(&spi->dev); 885 } 886 EXPORT_SYMBOL_GPL(spi_unregister_device); 887 888 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 889 struct spi_board_info *bi) 890 { 891 struct spi_device *dev; 892 893 if (ctlr->bus_num != bi->bus_num) 894 return; 895 896 dev = spi_new_device(ctlr, bi); 897 if (!dev) 898 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 899 bi->modalias); 900 } 901 902 /** 903 * spi_register_board_info - register SPI devices for a given board 904 * @info: array of chip descriptors 905 * @n: how many descriptors are provided 906 * Context: can sleep 907 * 908 * Board-specific early init code calls this (probably during arch_initcall) 909 * with segments of the SPI device table. Any device nodes are created later, 910 * after the relevant parent SPI controller (bus_num) is defined. We keep 911 * this table of devices forever, so that reloading a controller driver will 912 * not make Linux forget about these hard-wired devices. 913 * 914 * Other code can also call this, e.g. a particular add-on board might provide 915 * SPI devices through its expansion connector, so code initializing that board 916 * would naturally declare its SPI devices. 917 * 918 * The board info passed can safely be __initdata ... but be careful of 919 * any embedded pointers (platform_data, etc), they're copied as-is. 920 * 921 * Return: zero on success, else a negative error code. 922 */ 923 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 924 { 925 struct boardinfo *bi; 926 int i; 927 928 if (!n) 929 return 0; 930 931 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 932 if (!bi) 933 return -ENOMEM; 934 935 for (i = 0; i < n; i++, bi++, info++) { 936 struct spi_controller *ctlr; 937 938 memcpy(&bi->board_info, info, sizeof(*info)); 939 940 mutex_lock(&board_lock); 941 list_add_tail(&bi->list, &board_list); 942 list_for_each_entry(ctlr, &spi_controller_list, list) 943 spi_match_controller_to_boardinfo(ctlr, 944 &bi->board_info); 945 mutex_unlock(&board_lock); 946 } 947 948 return 0; 949 } 950 951 /*-------------------------------------------------------------------------*/ 952 953 /* Core methods for SPI resource management */ 954 955 /** 956 * spi_res_alloc - allocate a spi resource that is life-cycle managed 957 * during the processing of a spi_message while using 958 * spi_transfer_one 959 * @spi: the SPI device for which we allocate memory 960 * @release: the release code to execute for this resource 961 * @size: size to alloc and return 962 * @gfp: GFP allocation flags 963 * 964 * Return: the pointer to the allocated data 965 * 966 * This may get enhanced in the future to allocate from a memory pool 967 * of the @spi_device or @spi_controller to avoid repeated allocations. 968 */ 969 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 970 size_t size, gfp_t gfp) 971 { 972 struct spi_res *sres; 973 974 sres = kzalloc(sizeof(*sres) + size, gfp); 975 if (!sres) 976 return NULL; 977 978 INIT_LIST_HEAD(&sres->entry); 979 sres->release = release; 980 981 return sres->data; 982 } 983 984 /** 985 * spi_res_free - free an SPI resource 986 * @res: pointer to the custom data of a resource 987 */ 988 static void spi_res_free(void *res) 989 { 990 struct spi_res *sres = container_of(res, struct spi_res, data); 991 992 WARN_ON(!list_empty(&sres->entry)); 993 kfree(sres); 994 } 995 996 /** 997 * spi_res_add - add a spi_res to the spi_message 998 * @message: the SPI message 999 * @res: the spi_resource 1000 */ 1001 static void spi_res_add(struct spi_message *message, void *res) 1002 { 1003 struct spi_res *sres = container_of(res, struct spi_res, data); 1004 1005 WARN_ON(!list_empty(&sres->entry)); 1006 list_add_tail(&sres->entry, &message->resources); 1007 } 1008 1009 /** 1010 * spi_res_release - release all SPI resources for this message 1011 * @ctlr: the @spi_controller 1012 * @message: the @spi_message 1013 */ 1014 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1015 { 1016 struct spi_res *res, *tmp; 1017 1018 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1019 if (res->release) 1020 res->release(ctlr, message, res->data); 1021 1022 list_del(&res->entry); 1023 1024 kfree(res); 1025 } 1026 } 1027 1028 /*-------------------------------------------------------------------------*/ 1029 #define spi_for_each_valid_cs(spi, idx) \ 1030 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1031 if (!(spi->cs_index_mask & BIT(idx))) {} else 1032 1033 static inline bool spi_is_last_cs(struct spi_device *spi) 1034 { 1035 u8 idx; 1036 bool last = false; 1037 1038 spi_for_each_valid_cs(spi, idx) { 1039 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1040 last = true; 1041 } 1042 return last; 1043 } 1044 1045 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1046 { 1047 /* 1048 * Historically ACPI has no means of the GPIO polarity and 1049 * thus the SPISerialBus() resource defines it on the per-chip 1050 * basis. In order to avoid a chain of negations, the GPIO 1051 * polarity is considered being Active High. Even for the cases 1052 * when _DSD() is involved (in the updated versions of ACPI) 1053 * the GPIO CS polarity must be defined Active High to avoid 1054 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1055 * into account. 1056 */ 1057 if (is_acpi_device_node(dev_fwnode(&spi->dev))) 1058 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1059 else 1060 /* Polarity handled by GPIO library */ 1061 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1062 1063 if (activate) 1064 spi_delay_exec(&spi->cs_setup, NULL); 1065 else 1066 spi_delay_exec(&spi->cs_inactive, NULL); 1067 } 1068 1069 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1070 { 1071 bool activate = enable; 1072 u8 idx; 1073 1074 /* 1075 * Avoid calling into the driver (or doing delays) if the chip select 1076 * isn't actually changing from the last time this was called. 1077 */ 1078 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1079 spi_is_last_cs(spi)) || 1080 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1081 !spi_is_last_cs(spi))) && 1082 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1083 return; 1084 1085 trace_spi_set_cs(spi, activate); 1086 1087 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1088 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1089 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1090 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1091 1092 if (spi->mode & SPI_CS_HIGH) 1093 enable = !enable; 1094 1095 /* 1096 * Handle chip select delays for GPIO based CS or controllers without 1097 * programmable chip select timing. 1098 */ 1099 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1100 spi_delay_exec(&spi->cs_hold, NULL); 1101 1102 if (spi_is_csgpiod(spi)) { 1103 if (!(spi->mode & SPI_NO_CS)) { 1104 spi_for_each_valid_cs(spi, idx) { 1105 if (spi_get_csgpiod(spi, idx)) 1106 spi_toggle_csgpiod(spi, idx, enable, activate); 1107 } 1108 } 1109 /* Some SPI masters need both GPIO CS & slave_select */ 1110 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1111 spi->controller->set_cs) 1112 spi->controller->set_cs(spi, !enable); 1113 } else if (spi->controller->set_cs) { 1114 spi->controller->set_cs(spi, !enable); 1115 } 1116 1117 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1118 if (activate) 1119 spi_delay_exec(&spi->cs_setup, NULL); 1120 else 1121 spi_delay_exec(&spi->cs_inactive, NULL); 1122 } 1123 } 1124 1125 #ifdef CONFIG_HAS_DMA 1126 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1127 struct sg_table *sgt, void *buf, size_t len, 1128 enum dma_data_direction dir, unsigned long attrs) 1129 { 1130 const bool vmalloced_buf = is_vmalloc_addr(buf); 1131 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1132 #ifdef CONFIG_HIGHMEM 1133 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1134 (unsigned long)buf < (PKMAP_BASE + 1135 (LAST_PKMAP * PAGE_SIZE))); 1136 #else 1137 const bool kmap_buf = false; 1138 #endif 1139 int desc_len; 1140 int sgs; 1141 struct page *vm_page; 1142 struct scatterlist *sg; 1143 void *sg_buf; 1144 size_t min; 1145 int i, ret; 1146 1147 if (vmalloced_buf || kmap_buf) { 1148 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1149 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1150 } else if (virt_addr_valid(buf)) { 1151 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1152 sgs = DIV_ROUND_UP(len, desc_len); 1153 } else { 1154 return -EINVAL; 1155 } 1156 1157 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1158 if (ret != 0) 1159 return ret; 1160 1161 sg = &sgt->sgl[0]; 1162 for (i = 0; i < sgs; i++) { 1163 1164 if (vmalloced_buf || kmap_buf) { 1165 /* 1166 * Next scatterlist entry size is the minimum between 1167 * the desc_len and the remaining buffer length that 1168 * fits in a page. 1169 */ 1170 min = min_t(size_t, desc_len, 1171 min_t(size_t, len, 1172 PAGE_SIZE - offset_in_page(buf))); 1173 if (vmalloced_buf) 1174 vm_page = vmalloc_to_page(buf); 1175 else 1176 vm_page = kmap_to_page(buf); 1177 if (!vm_page) { 1178 sg_free_table(sgt); 1179 return -ENOMEM; 1180 } 1181 sg_set_page(sg, vm_page, 1182 min, offset_in_page(buf)); 1183 } else { 1184 min = min_t(size_t, len, desc_len); 1185 sg_buf = buf; 1186 sg_set_buf(sg, sg_buf, min); 1187 } 1188 1189 buf += min; 1190 len -= min; 1191 sg = sg_next(sg); 1192 } 1193 1194 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1195 if (ret < 0) { 1196 sg_free_table(sgt); 1197 return ret; 1198 } 1199 1200 return 0; 1201 } 1202 1203 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1204 struct sg_table *sgt, void *buf, size_t len, 1205 enum dma_data_direction dir) 1206 { 1207 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1208 } 1209 1210 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1211 struct device *dev, struct sg_table *sgt, 1212 enum dma_data_direction dir, 1213 unsigned long attrs) 1214 { 1215 dma_unmap_sgtable(dev, sgt, dir, attrs); 1216 sg_free_table(sgt); 1217 sgt->orig_nents = 0; 1218 sgt->nents = 0; 1219 } 1220 1221 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1222 struct sg_table *sgt, enum dma_data_direction dir) 1223 { 1224 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1225 } 1226 1227 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1228 { 1229 struct device *tx_dev, *rx_dev; 1230 struct spi_transfer *xfer; 1231 int ret; 1232 1233 if (!ctlr->can_dma) 1234 return 0; 1235 1236 if (ctlr->dma_tx) 1237 tx_dev = ctlr->dma_tx->device->dev; 1238 else if (ctlr->dma_map_dev) 1239 tx_dev = ctlr->dma_map_dev; 1240 else 1241 tx_dev = ctlr->dev.parent; 1242 1243 if (ctlr->dma_rx) 1244 rx_dev = ctlr->dma_rx->device->dev; 1245 else if (ctlr->dma_map_dev) 1246 rx_dev = ctlr->dma_map_dev; 1247 else 1248 rx_dev = ctlr->dev.parent; 1249 1250 ret = -ENOMSG; 1251 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1252 /* The sync is done before each transfer. */ 1253 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1254 1255 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1256 continue; 1257 1258 if (xfer->tx_buf != NULL) { 1259 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1260 (void *)xfer->tx_buf, 1261 xfer->len, DMA_TO_DEVICE, 1262 attrs); 1263 if (ret != 0) 1264 return ret; 1265 1266 xfer->tx_sg_mapped = true; 1267 } 1268 1269 if (xfer->rx_buf != NULL) { 1270 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1271 xfer->rx_buf, xfer->len, 1272 DMA_FROM_DEVICE, attrs); 1273 if (ret != 0) { 1274 spi_unmap_buf_attrs(ctlr, tx_dev, 1275 &xfer->tx_sg, DMA_TO_DEVICE, 1276 attrs); 1277 1278 return ret; 1279 } 1280 1281 xfer->rx_sg_mapped = true; 1282 } 1283 } 1284 /* No transfer has been mapped, bail out with success */ 1285 if (ret) 1286 return 0; 1287 1288 ctlr->cur_rx_dma_dev = rx_dev; 1289 ctlr->cur_tx_dma_dev = tx_dev; 1290 1291 return 0; 1292 } 1293 1294 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1295 { 1296 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1297 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1298 struct spi_transfer *xfer; 1299 1300 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1301 /* The sync has already been done after each transfer. */ 1302 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1303 1304 if (xfer->rx_sg_mapped) 1305 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1306 DMA_FROM_DEVICE, attrs); 1307 xfer->rx_sg_mapped = false; 1308 1309 if (xfer->tx_sg_mapped) 1310 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1311 DMA_TO_DEVICE, attrs); 1312 xfer->tx_sg_mapped = false; 1313 } 1314 1315 return 0; 1316 } 1317 1318 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1319 struct spi_transfer *xfer) 1320 { 1321 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1322 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1323 1324 if (xfer->tx_sg_mapped) 1325 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1326 if (xfer->rx_sg_mapped) 1327 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1328 } 1329 1330 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1331 struct spi_transfer *xfer) 1332 { 1333 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1334 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1335 1336 if (xfer->rx_sg_mapped) 1337 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1338 if (xfer->tx_sg_mapped) 1339 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1340 } 1341 #else /* !CONFIG_HAS_DMA */ 1342 static inline int __spi_map_msg(struct spi_controller *ctlr, 1343 struct spi_message *msg) 1344 { 1345 return 0; 1346 } 1347 1348 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1349 struct spi_message *msg) 1350 { 1351 return 0; 1352 } 1353 1354 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1355 struct spi_transfer *xfer) 1356 { 1357 } 1358 1359 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1360 struct spi_transfer *xfer) 1361 { 1362 } 1363 #endif /* !CONFIG_HAS_DMA */ 1364 1365 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1366 struct spi_message *msg) 1367 { 1368 struct spi_transfer *xfer; 1369 1370 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1371 /* 1372 * Restore the original value of tx_buf or rx_buf if they are 1373 * NULL. 1374 */ 1375 if (xfer->tx_buf == ctlr->dummy_tx) 1376 xfer->tx_buf = NULL; 1377 if (xfer->rx_buf == ctlr->dummy_rx) 1378 xfer->rx_buf = NULL; 1379 } 1380 1381 return __spi_unmap_msg(ctlr, msg); 1382 } 1383 1384 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1385 { 1386 struct spi_transfer *xfer; 1387 void *tmp; 1388 unsigned int max_tx, max_rx; 1389 1390 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1391 && !(msg->spi->mode & SPI_3WIRE)) { 1392 max_tx = 0; 1393 max_rx = 0; 1394 1395 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1396 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1397 !xfer->tx_buf) 1398 max_tx = max(xfer->len, max_tx); 1399 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1400 !xfer->rx_buf) 1401 max_rx = max(xfer->len, max_rx); 1402 } 1403 1404 if (max_tx) { 1405 tmp = krealloc(ctlr->dummy_tx, max_tx, 1406 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1407 if (!tmp) 1408 return -ENOMEM; 1409 ctlr->dummy_tx = tmp; 1410 } 1411 1412 if (max_rx) { 1413 tmp = krealloc(ctlr->dummy_rx, max_rx, 1414 GFP_KERNEL | GFP_DMA); 1415 if (!tmp) 1416 return -ENOMEM; 1417 ctlr->dummy_rx = tmp; 1418 } 1419 1420 if (max_tx || max_rx) { 1421 list_for_each_entry(xfer, &msg->transfers, 1422 transfer_list) { 1423 if (!xfer->len) 1424 continue; 1425 if (!xfer->tx_buf) 1426 xfer->tx_buf = ctlr->dummy_tx; 1427 if (!xfer->rx_buf) 1428 xfer->rx_buf = ctlr->dummy_rx; 1429 } 1430 } 1431 } 1432 1433 return __spi_map_msg(ctlr, msg); 1434 } 1435 1436 static int spi_transfer_wait(struct spi_controller *ctlr, 1437 struct spi_message *msg, 1438 struct spi_transfer *xfer) 1439 { 1440 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1441 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1442 u32 speed_hz = xfer->speed_hz; 1443 unsigned long long ms; 1444 1445 if (spi_controller_is_target(ctlr)) { 1446 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1447 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1448 return -EINTR; 1449 } 1450 } else { 1451 if (!speed_hz) 1452 speed_hz = 100000; 1453 1454 /* 1455 * For each byte we wait for 8 cycles of the SPI clock. 1456 * Since speed is defined in Hz and we want milliseconds, 1457 * use respective multiplier, but before the division, 1458 * otherwise we may get 0 for short transfers. 1459 */ 1460 ms = 8LL * MSEC_PER_SEC * xfer->len; 1461 do_div(ms, speed_hz); 1462 1463 /* 1464 * Increase it twice and add 200 ms tolerance, use 1465 * predefined maximum in case of overflow. 1466 */ 1467 ms += ms + 200; 1468 if (ms > UINT_MAX) 1469 ms = UINT_MAX; 1470 1471 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1472 msecs_to_jiffies(ms)); 1473 1474 if (ms == 0) { 1475 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1476 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1477 dev_err(&msg->spi->dev, 1478 "SPI transfer timed out\n"); 1479 return -ETIMEDOUT; 1480 } 1481 1482 if (xfer->error & SPI_TRANS_FAIL_IO) 1483 return -EIO; 1484 } 1485 1486 return 0; 1487 } 1488 1489 static void _spi_transfer_delay_ns(u32 ns) 1490 { 1491 if (!ns) 1492 return; 1493 if (ns <= NSEC_PER_USEC) { 1494 ndelay(ns); 1495 } else { 1496 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1497 1498 if (us <= 10) 1499 udelay(us); 1500 else 1501 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1502 } 1503 } 1504 1505 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1506 { 1507 u32 delay = _delay->value; 1508 u32 unit = _delay->unit; 1509 u32 hz; 1510 1511 if (!delay) 1512 return 0; 1513 1514 switch (unit) { 1515 case SPI_DELAY_UNIT_USECS: 1516 delay *= NSEC_PER_USEC; 1517 break; 1518 case SPI_DELAY_UNIT_NSECS: 1519 /* Nothing to do here */ 1520 break; 1521 case SPI_DELAY_UNIT_SCK: 1522 /* Clock cycles need to be obtained from spi_transfer */ 1523 if (!xfer) 1524 return -EINVAL; 1525 /* 1526 * If there is unknown effective speed, approximate it 1527 * by underestimating with half of the requested Hz. 1528 */ 1529 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1530 if (!hz) 1531 return -EINVAL; 1532 1533 /* Convert delay to nanoseconds */ 1534 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1535 break; 1536 default: 1537 return -EINVAL; 1538 } 1539 1540 return delay; 1541 } 1542 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1543 1544 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1545 { 1546 int delay; 1547 1548 might_sleep(); 1549 1550 if (!_delay) 1551 return -EINVAL; 1552 1553 delay = spi_delay_to_ns(_delay, xfer); 1554 if (delay < 0) 1555 return delay; 1556 1557 _spi_transfer_delay_ns(delay); 1558 1559 return 0; 1560 } 1561 EXPORT_SYMBOL_GPL(spi_delay_exec); 1562 1563 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1564 struct spi_transfer *xfer) 1565 { 1566 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1567 u32 delay = xfer->cs_change_delay.value; 1568 u32 unit = xfer->cs_change_delay.unit; 1569 int ret; 1570 1571 /* Return early on "fast" mode - for everything but USECS */ 1572 if (!delay) { 1573 if (unit == SPI_DELAY_UNIT_USECS) 1574 _spi_transfer_delay_ns(default_delay_ns); 1575 return; 1576 } 1577 1578 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1579 if (ret) { 1580 dev_err_once(&msg->spi->dev, 1581 "Use of unsupported delay unit %i, using default of %luus\n", 1582 unit, default_delay_ns / NSEC_PER_USEC); 1583 _spi_transfer_delay_ns(default_delay_ns); 1584 } 1585 } 1586 1587 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1588 struct spi_transfer *xfer) 1589 { 1590 _spi_transfer_cs_change_delay(msg, xfer); 1591 } 1592 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1593 1594 /* 1595 * spi_transfer_one_message - Default implementation of transfer_one_message() 1596 * 1597 * This is a standard implementation of transfer_one_message() for 1598 * drivers which implement a transfer_one() operation. It provides 1599 * standard handling of delays and chip select management. 1600 */ 1601 static int spi_transfer_one_message(struct spi_controller *ctlr, 1602 struct spi_message *msg) 1603 { 1604 struct spi_transfer *xfer; 1605 bool keep_cs = false; 1606 int ret = 0; 1607 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1608 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1609 1610 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1611 spi_set_cs(msg->spi, !xfer->cs_off, false); 1612 1613 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1614 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1615 1616 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1617 trace_spi_transfer_start(msg, xfer); 1618 1619 spi_statistics_add_transfer_stats(statm, xfer, msg); 1620 spi_statistics_add_transfer_stats(stats, xfer, msg); 1621 1622 if (!ctlr->ptp_sts_supported) { 1623 xfer->ptp_sts_word_pre = 0; 1624 ptp_read_system_prets(xfer->ptp_sts); 1625 } 1626 1627 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1628 reinit_completion(&ctlr->xfer_completion); 1629 1630 fallback_pio: 1631 spi_dma_sync_for_device(ctlr, xfer); 1632 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1633 if (ret < 0) { 1634 spi_dma_sync_for_cpu(ctlr, xfer); 1635 1636 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1637 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1638 __spi_unmap_msg(ctlr, msg); 1639 ctlr->fallback = true; 1640 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1641 goto fallback_pio; 1642 } 1643 1644 SPI_STATISTICS_INCREMENT_FIELD(statm, 1645 errors); 1646 SPI_STATISTICS_INCREMENT_FIELD(stats, 1647 errors); 1648 dev_err(&msg->spi->dev, 1649 "SPI transfer failed: %d\n", ret); 1650 goto out; 1651 } 1652 1653 if (ret > 0) { 1654 ret = spi_transfer_wait(ctlr, msg, xfer); 1655 if (ret < 0) 1656 msg->status = ret; 1657 } 1658 1659 spi_dma_sync_for_cpu(ctlr, xfer); 1660 } else { 1661 if (xfer->len) 1662 dev_err(&msg->spi->dev, 1663 "Bufferless transfer has length %u\n", 1664 xfer->len); 1665 } 1666 1667 if (!ctlr->ptp_sts_supported) { 1668 ptp_read_system_postts(xfer->ptp_sts); 1669 xfer->ptp_sts_word_post = xfer->len; 1670 } 1671 1672 trace_spi_transfer_stop(msg, xfer); 1673 1674 if (msg->status != -EINPROGRESS) 1675 goto out; 1676 1677 spi_transfer_delay_exec(xfer); 1678 1679 if (xfer->cs_change) { 1680 if (list_is_last(&xfer->transfer_list, 1681 &msg->transfers)) { 1682 keep_cs = true; 1683 } else { 1684 if (!xfer->cs_off) 1685 spi_set_cs(msg->spi, false, false); 1686 _spi_transfer_cs_change_delay(msg, xfer); 1687 if (!list_next_entry(xfer, transfer_list)->cs_off) 1688 spi_set_cs(msg->spi, true, false); 1689 } 1690 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1691 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1692 spi_set_cs(msg->spi, xfer->cs_off, false); 1693 } 1694 1695 msg->actual_length += xfer->len; 1696 } 1697 1698 out: 1699 if (ret != 0 || !keep_cs) 1700 spi_set_cs(msg->spi, false, false); 1701 1702 if (msg->status == -EINPROGRESS) 1703 msg->status = ret; 1704 1705 if (msg->status && ctlr->handle_err) 1706 ctlr->handle_err(ctlr, msg); 1707 1708 spi_finalize_current_message(ctlr); 1709 1710 return ret; 1711 } 1712 1713 /** 1714 * spi_finalize_current_transfer - report completion of a transfer 1715 * @ctlr: the controller reporting completion 1716 * 1717 * Called by SPI drivers using the core transfer_one_message() 1718 * implementation to notify it that the current interrupt driven 1719 * transfer has finished and the next one may be scheduled. 1720 */ 1721 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1722 { 1723 complete(&ctlr->xfer_completion); 1724 } 1725 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1726 1727 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1728 { 1729 if (ctlr->auto_runtime_pm) { 1730 pm_runtime_mark_last_busy(ctlr->dev.parent); 1731 pm_runtime_put_autosuspend(ctlr->dev.parent); 1732 } 1733 } 1734 1735 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1736 struct spi_message *msg, bool was_busy) 1737 { 1738 struct spi_transfer *xfer; 1739 int ret; 1740 1741 if (!was_busy && ctlr->auto_runtime_pm) { 1742 ret = pm_runtime_get_sync(ctlr->dev.parent); 1743 if (ret < 0) { 1744 pm_runtime_put_noidle(ctlr->dev.parent); 1745 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1746 ret); 1747 1748 msg->status = ret; 1749 spi_finalize_current_message(ctlr); 1750 1751 return ret; 1752 } 1753 } 1754 1755 if (!was_busy) 1756 trace_spi_controller_busy(ctlr); 1757 1758 if (!was_busy && ctlr->prepare_transfer_hardware) { 1759 ret = ctlr->prepare_transfer_hardware(ctlr); 1760 if (ret) { 1761 dev_err(&ctlr->dev, 1762 "failed to prepare transfer hardware: %d\n", 1763 ret); 1764 1765 if (ctlr->auto_runtime_pm) 1766 pm_runtime_put(ctlr->dev.parent); 1767 1768 msg->status = ret; 1769 spi_finalize_current_message(ctlr); 1770 1771 return ret; 1772 } 1773 } 1774 1775 trace_spi_message_start(msg); 1776 1777 if (ctlr->prepare_message) { 1778 ret = ctlr->prepare_message(ctlr, msg); 1779 if (ret) { 1780 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1781 ret); 1782 msg->status = ret; 1783 spi_finalize_current_message(ctlr); 1784 return ret; 1785 } 1786 msg->prepared = true; 1787 } 1788 1789 ret = spi_map_msg(ctlr, msg); 1790 if (ret) { 1791 msg->status = ret; 1792 spi_finalize_current_message(ctlr); 1793 return ret; 1794 } 1795 1796 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1797 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1798 xfer->ptp_sts_word_pre = 0; 1799 ptp_read_system_prets(xfer->ptp_sts); 1800 } 1801 } 1802 1803 /* 1804 * Drivers implementation of transfer_one_message() must arrange for 1805 * spi_finalize_current_message() to get called. Most drivers will do 1806 * this in the calling context, but some don't. For those cases, a 1807 * completion is used to guarantee that this function does not return 1808 * until spi_finalize_current_message() is done accessing 1809 * ctlr->cur_msg. 1810 * Use of the following two flags enable to opportunistically skip the 1811 * use of the completion since its use involves expensive spin locks. 1812 * In case of a race with the context that calls 1813 * spi_finalize_current_message() the completion will always be used, 1814 * due to strict ordering of these flags using barriers. 1815 */ 1816 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1817 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1818 reinit_completion(&ctlr->cur_msg_completion); 1819 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1820 1821 ret = ctlr->transfer_one_message(ctlr, msg); 1822 if (ret) { 1823 dev_err(&ctlr->dev, 1824 "failed to transfer one message from queue\n"); 1825 return ret; 1826 } 1827 1828 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1829 smp_mb(); /* See spi_finalize_current_message()... */ 1830 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1831 wait_for_completion(&ctlr->cur_msg_completion); 1832 1833 return 0; 1834 } 1835 1836 /** 1837 * __spi_pump_messages - function which processes SPI message queue 1838 * @ctlr: controller to process queue for 1839 * @in_kthread: true if we are in the context of the message pump thread 1840 * 1841 * This function checks if there is any SPI message in the queue that 1842 * needs processing and if so call out to the driver to initialize hardware 1843 * and transfer each message. 1844 * 1845 * Note that it is called both from the kthread itself and also from 1846 * inside spi_sync(); the queue extraction handling at the top of the 1847 * function should deal with this safely. 1848 */ 1849 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1850 { 1851 struct spi_message *msg; 1852 bool was_busy = false; 1853 unsigned long flags; 1854 int ret; 1855 1856 /* Take the I/O mutex */ 1857 mutex_lock(&ctlr->io_mutex); 1858 1859 /* Lock queue */ 1860 spin_lock_irqsave(&ctlr->queue_lock, flags); 1861 1862 /* Make sure we are not already running a message */ 1863 if (ctlr->cur_msg) 1864 goto out_unlock; 1865 1866 /* Check if the queue is idle */ 1867 if (list_empty(&ctlr->queue) || !ctlr->running) { 1868 if (!ctlr->busy) 1869 goto out_unlock; 1870 1871 /* Defer any non-atomic teardown to the thread */ 1872 if (!in_kthread) { 1873 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1874 !ctlr->unprepare_transfer_hardware) { 1875 spi_idle_runtime_pm(ctlr); 1876 ctlr->busy = false; 1877 ctlr->queue_empty = true; 1878 trace_spi_controller_idle(ctlr); 1879 } else { 1880 kthread_queue_work(ctlr->kworker, 1881 &ctlr->pump_messages); 1882 } 1883 goto out_unlock; 1884 } 1885 1886 ctlr->busy = false; 1887 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1888 1889 kfree(ctlr->dummy_rx); 1890 ctlr->dummy_rx = NULL; 1891 kfree(ctlr->dummy_tx); 1892 ctlr->dummy_tx = NULL; 1893 if (ctlr->unprepare_transfer_hardware && 1894 ctlr->unprepare_transfer_hardware(ctlr)) 1895 dev_err(&ctlr->dev, 1896 "failed to unprepare transfer hardware\n"); 1897 spi_idle_runtime_pm(ctlr); 1898 trace_spi_controller_idle(ctlr); 1899 1900 spin_lock_irqsave(&ctlr->queue_lock, flags); 1901 ctlr->queue_empty = true; 1902 goto out_unlock; 1903 } 1904 1905 /* Extract head of queue */ 1906 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1907 ctlr->cur_msg = msg; 1908 1909 list_del_init(&msg->queue); 1910 if (ctlr->busy) 1911 was_busy = true; 1912 else 1913 ctlr->busy = true; 1914 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1915 1916 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1917 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1918 1919 ctlr->cur_msg = NULL; 1920 ctlr->fallback = false; 1921 1922 mutex_unlock(&ctlr->io_mutex); 1923 1924 /* Prod the scheduler in case transfer_one() was busy waiting */ 1925 if (!ret) 1926 cond_resched(); 1927 return; 1928 1929 out_unlock: 1930 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1931 mutex_unlock(&ctlr->io_mutex); 1932 } 1933 1934 /** 1935 * spi_pump_messages - kthread work function which processes spi message queue 1936 * @work: pointer to kthread work struct contained in the controller struct 1937 */ 1938 static void spi_pump_messages(struct kthread_work *work) 1939 { 1940 struct spi_controller *ctlr = 1941 container_of(work, struct spi_controller, pump_messages); 1942 1943 __spi_pump_messages(ctlr, true); 1944 } 1945 1946 /** 1947 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1948 * @ctlr: Pointer to the spi_controller structure of the driver 1949 * @xfer: Pointer to the transfer being timestamped 1950 * @progress: How many words (not bytes) have been transferred so far 1951 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1952 * transfer, for less jitter in time measurement. Only compatible 1953 * with PIO drivers. If true, must follow up with 1954 * spi_take_timestamp_post or otherwise system will crash. 1955 * WARNING: for fully predictable results, the CPU frequency must 1956 * also be under control (governor). 1957 * 1958 * This is a helper for drivers to collect the beginning of the TX timestamp 1959 * for the requested byte from the SPI transfer. The frequency with which this 1960 * function must be called (once per word, once for the whole transfer, once 1961 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1962 * greater than or equal to the requested byte at the time of the call. The 1963 * timestamp is only taken once, at the first such call. It is assumed that 1964 * the driver advances its @tx buffer pointer monotonically. 1965 */ 1966 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1967 struct spi_transfer *xfer, 1968 size_t progress, bool irqs_off) 1969 { 1970 if (!xfer->ptp_sts) 1971 return; 1972 1973 if (xfer->timestamped) 1974 return; 1975 1976 if (progress > xfer->ptp_sts_word_pre) 1977 return; 1978 1979 /* Capture the resolution of the timestamp */ 1980 xfer->ptp_sts_word_pre = progress; 1981 1982 if (irqs_off) { 1983 local_irq_save(ctlr->irq_flags); 1984 preempt_disable(); 1985 } 1986 1987 ptp_read_system_prets(xfer->ptp_sts); 1988 } 1989 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1990 1991 /** 1992 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1993 * @ctlr: Pointer to the spi_controller structure of the driver 1994 * @xfer: Pointer to the transfer being timestamped 1995 * @progress: How many words (not bytes) have been transferred so far 1996 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1997 * 1998 * This is a helper for drivers to collect the end of the TX timestamp for 1999 * the requested byte from the SPI transfer. Can be called with an arbitrary 2000 * frequency: only the first call where @tx exceeds or is equal to the 2001 * requested word will be timestamped. 2002 */ 2003 void spi_take_timestamp_post(struct spi_controller *ctlr, 2004 struct spi_transfer *xfer, 2005 size_t progress, bool irqs_off) 2006 { 2007 if (!xfer->ptp_sts) 2008 return; 2009 2010 if (xfer->timestamped) 2011 return; 2012 2013 if (progress < xfer->ptp_sts_word_post) 2014 return; 2015 2016 ptp_read_system_postts(xfer->ptp_sts); 2017 2018 if (irqs_off) { 2019 local_irq_restore(ctlr->irq_flags); 2020 preempt_enable(); 2021 } 2022 2023 /* Capture the resolution of the timestamp */ 2024 xfer->ptp_sts_word_post = progress; 2025 2026 xfer->timestamped = 1; 2027 } 2028 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2029 2030 /** 2031 * spi_set_thread_rt - set the controller to pump at realtime priority 2032 * @ctlr: controller to boost priority of 2033 * 2034 * This can be called because the controller requested realtime priority 2035 * (by setting the ->rt value before calling spi_register_controller()) or 2036 * because a device on the bus said that its transfers needed realtime 2037 * priority. 2038 * 2039 * NOTE: at the moment if any device on a bus says it needs realtime then 2040 * the thread will be at realtime priority for all transfers on that 2041 * controller. If this eventually becomes a problem we may see if we can 2042 * find a way to boost the priority only temporarily during relevant 2043 * transfers. 2044 */ 2045 static void spi_set_thread_rt(struct spi_controller *ctlr) 2046 { 2047 dev_info(&ctlr->dev, 2048 "will run message pump with realtime priority\n"); 2049 sched_set_fifo(ctlr->kworker->task); 2050 } 2051 2052 static int spi_init_queue(struct spi_controller *ctlr) 2053 { 2054 ctlr->running = false; 2055 ctlr->busy = false; 2056 ctlr->queue_empty = true; 2057 2058 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev)); 2059 if (IS_ERR(ctlr->kworker)) { 2060 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2061 return PTR_ERR(ctlr->kworker); 2062 } 2063 2064 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2065 2066 /* 2067 * Controller config will indicate if this controller should run the 2068 * message pump with high (realtime) priority to reduce the transfer 2069 * latency on the bus by minimising the delay between a transfer 2070 * request and the scheduling of the message pump thread. Without this 2071 * setting the message pump thread will remain at default priority. 2072 */ 2073 if (ctlr->rt) 2074 spi_set_thread_rt(ctlr); 2075 2076 return 0; 2077 } 2078 2079 /** 2080 * spi_get_next_queued_message() - called by driver to check for queued 2081 * messages 2082 * @ctlr: the controller to check for queued messages 2083 * 2084 * If there are more messages in the queue, the next message is returned from 2085 * this call. 2086 * 2087 * Return: the next message in the queue, else NULL if the queue is empty. 2088 */ 2089 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2090 { 2091 struct spi_message *next; 2092 unsigned long flags; 2093 2094 /* Get a pointer to the next message, if any */ 2095 spin_lock_irqsave(&ctlr->queue_lock, flags); 2096 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2097 queue); 2098 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2099 2100 return next; 2101 } 2102 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2103 2104 /* 2105 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2106 * and spi_maybe_unoptimize_message() 2107 * @msg: the message to unoptimize 2108 * 2109 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2110 * core should use spi_maybe_unoptimize_message() rather than calling this 2111 * function directly. 2112 * 2113 * It is not valid to call this on a message that is not currently optimized. 2114 */ 2115 static void __spi_unoptimize_message(struct spi_message *msg) 2116 { 2117 struct spi_controller *ctlr = msg->spi->controller; 2118 2119 if (ctlr->unoptimize_message) 2120 ctlr->unoptimize_message(msg); 2121 2122 spi_res_release(ctlr, msg); 2123 2124 msg->optimized = false; 2125 msg->opt_state = NULL; 2126 } 2127 2128 /* 2129 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2130 * @msg: the message to unoptimize 2131 * 2132 * This function is used to unoptimize a message if and only if it was 2133 * optimized by the core (via spi_maybe_optimize_message()). 2134 */ 2135 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2136 { 2137 if (!msg->pre_optimized && msg->optimized && 2138 !msg->spi->controller->defer_optimize_message) 2139 __spi_unoptimize_message(msg); 2140 } 2141 2142 /** 2143 * spi_finalize_current_message() - the current message is complete 2144 * @ctlr: the controller to return the message to 2145 * 2146 * Called by the driver to notify the core that the message in the front of the 2147 * queue is complete and can be removed from the queue. 2148 */ 2149 void spi_finalize_current_message(struct spi_controller *ctlr) 2150 { 2151 struct spi_transfer *xfer; 2152 struct spi_message *mesg; 2153 int ret; 2154 2155 mesg = ctlr->cur_msg; 2156 2157 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2158 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2159 ptp_read_system_postts(xfer->ptp_sts); 2160 xfer->ptp_sts_word_post = xfer->len; 2161 } 2162 } 2163 2164 if (unlikely(ctlr->ptp_sts_supported)) 2165 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2166 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2167 2168 spi_unmap_msg(ctlr, mesg); 2169 2170 if (mesg->prepared && ctlr->unprepare_message) { 2171 ret = ctlr->unprepare_message(ctlr, mesg); 2172 if (ret) { 2173 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2174 ret); 2175 } 2176 } 2177 2178 mesg->prepared = false; 2179 2180 spi_maybe_unoptimize_message(mesg); 2181 2182 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2183 smp_mb(); /* See __spi_pump_transfer_message()... */ 2184 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2185 complete(&ctlr->cur_msg_completion); 2186 2187 trace_spi_message_done(mesg); 2188 2189 mesg->state = NULL; 2190 if (mesg->complete) 2191 mesg->complete(mesg->context); 2192 } 2193 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2194 2195 static int spi_start_queue(struct spi_controller *ctlr) 2196 { 2197 unsigned long flags; 2198 2199 spin_lock_irqsave(&ctlr->queue_lock, flags); 2200 2201 if (ctlr->running || ctlr->busy) { 2202 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2203 return -EBUSY; 2204 } 2205 2206 ctlr->running = true; 2207 ctlr->cur_msg = NULL; 2208 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2209 2210 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2211 2212 return 0; 2213 } 2214 2215 static int spi_stop_queue(struct spi_controller *ctlr) 2216 { 2217 unsigned int limit = 500; 2218 unsigned long flags; 2219 2220 /* 2221 * This is a bit lame, but is optimized for the common execution path. 2222 * A wait_queue on the ctlr->busy could be used, but then the common 2223 * execution path (pump_messages) would be required to call wake_up or 2224 * friends on every SPI message. Do this instead. 2225 */ 2226 do { 2227 spin_lock_irqsave(&ctlr->queue_lock, flags); 2228 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2229 ctlr->running = false; 2230 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2231 return 0; 2232 } 2233 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2234 usleep_range(10000, 11000); 2235 } while (--limit); 2236 2237 return -EBUSY; 2238 } 2239 2240 static int spi_destroy_queue(struct spi_controller *ctlr) 2241 { 2242 int ret; 2243 2244 ret = spi_stop_queue(ctlr); 2245 2246 /* 2247 * kthread_flush_worker will block until all work is done. 2248 * If the reason that stop_queue timed out is that the work will never 2249 * finish, then it does no good to call flush/stop thread, so 2250 * return anyway. 2251 */ 2252 if (ret) { 2253 dev_err(&ctlr->dev, "problem destroying queue\n"); 2254 return ret; 2255 } 2256 2257 kthread_destroy_worker(ctlr->kworker); 2258 2259 return 0; 2260 } 2261 2262 static int __spi_queued_transfer(struct spi_device *spi, 2263 struct spi_message *msg, 2264 bool need_pump) 2265 { 2266 struct spi_controller *ctlr = spi->controller; 2267 unsigned long flags; 2268 2269 spin_lock_irqsave(&ctlr->queue_lock, flags); 2270 2271 if (!ctlr->running) { 2272 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2273 return -ESHUTDOWN; 2274 } 2275 msg->actual_length = 0; 2276 msg->status = -EINPROGRESS; 2277 2278 list_add_tail(&msg->queue, &ctlr->queue); 2279 ctlr->queue_empty = false; 2280 if (!ctlr->busy && need_pump) 2281 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2282 2283 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2284 return 0; 2285 } 2286 2287 /** 2288 * spi_queued_transfer - transfer function for queued transfers 2289 * @spi: SPI device which is requesting transfer 2290 * @msg: SPI message which is to handled is queued to driver queue 2291 * 2292 * Return: zero on success, else a negative error code. 2293 */ 2294 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2295 { 2296 return __spi_queued_transfer(spi, msg, true); 2297 } 2298 2299 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2300 { 2301 int ret; 2302 2303 ctlr->transfer = spi_queued_transfer; 2304 if (!ctlr->transfer_one_message) 2305 ctlr->transfer_one_message = spi_transfer_one_message; 2306 2307 /* Initialize and start queue */ 2308 ret = spi_init_queue(ctlr); 2309 if (ret) { 2310 dev_err(&ctlr->dev, "problem initializing queue\n"); 2311 goto err_init_queue; 2312 } 2313 ctlr->queued = true; 2314 ret = spi_start_queue(ctlr); 2315 if (ret) { 2316 dev_err(&ctlr->dev, "problem starting queue\n"); 2317 goto err_start_queue; 2318 } 2319 2320 return 0; 2321 2322 err_start_queue: 2323 spi_destroy_queue(ctlr); 2324 err_init_queue: 2325 return ret; 2326 } 2327 2328 /** 2329 * spi_flush_queue - Send all pending messages in the queue from the callers' 2330 * context 2331 * @ctlr: controller to process queue for 2332 * 2333 * This should be used when one wants to ensure all pending messages have been 2334 * sent before doing something. Is used by the spi-mem code to make sure SPI 2335 * memory operations do not preempt regular SPI transfers that have been queued 2336 * before the spi-mem operation. 2337 */ 2338 void spi_flush_queue(struct spi_controller *ctlr) 2339 { 2340 if (ctlr->transfer == spi_queued_transfer) 2341 __spi_pump_messages(ctlr, false); 2342 } 2343 2344 /*-------------------------------------------------------------------------*/ 2345 2346 #if defined(CONFIG_OF) 2347 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2348 struct spi_delay *delay, const char *prop) 2349 { 2350 u32 value; 2351 2352 if (!of_property_read_u32(nc, prop, &value)) { 2353 if (value > U16_MAX) { 2354 delay->value = DIV_ROUND_UP(value, 1000); 2355 delay->unit = SPI_DELAY_UNIT_USECS; 2356 } else { 2357 delay->value = value; 2358 delay->unit = SPI_DELAY_UNIT_NSECS; 2359 } 2360 } 2361 } 2362 2363 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2364 struct device_node *nc) 2365 { 2366 u32 value, cs[SPI_CS_CNT_MAX]; 2367 int rc, idx; 2368 2369 /* Mode (clock phase/polarity/etc.) */ 2370 if (of_property_read_bool(nc, "spi-cpha")) 2371 spi->mode |= SPI_CPHA; 2372 if (of_property_read_bool(nc, "spi-cpol")) 2373 spi->mode |= SPI_CPOL; 2374 if (of_property_read_bool(nc, "spi-3wire")) 2375 spi->mode |= SPI_3WIRE; 2376 if (of_property_read_bool(nc, "spi-lsb-first")) 2377 spi->mode |= SPI_LSB_FIRST; 2378 if (of_property_read_bool(nc, "spi-cs-high")) 2379 spi->mode |= SPI_CS_HIGH; 2380 2381 /* Device DUAL/QUAD mode */ 2382 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2383 switch (value) { 2384 case 0: 2385 spi->mode |= SPI_NO_TX; 2386 break; 2387 case 1: 2388 break; 2389 case 2: 2390 spi->mode |= SPI_TX_DUAL; 2391 break; 2392 case 4: 2393 spi->mode |= SPI_TX_QUAD; 2394 break; 2395 case 8: 2396 spi->mode |= SPI_TX_OCTAL; 2397 break; 2398 default: 2399 dev_warn(&ctlr->dev, 2400 "spi-tx-bus-width %d not supported\n", 2401 value); 2402 break; 2403 } 2404 } 2405 2406 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2407 switch (value) { 2408 case 0: 2409 spi->mode |= SPI_NO_RX; 2410 break; 2411 case 1: 2412 break; 2413 case 2: 2414 spi->mode |= SPI_RX_DUAL; 2415 break; 2416 case 4: 2417 spi->mode |= SPI_RX_QUAD; 2418 break; 2419 case 8: 2420 spi->mode |= SPI_RX_OCTAL; 2421 break; 2422 default: 2423 dev_warn(&ctlr->dev, 2424 "spi-rx-bus-width %d not supported\n", 2425 value); 2426 break; 2427 } 2428 } 2429 2430 if (spi_controller_is_target(ctlr)) { 2431 if (!of_node_name_eq(nc, "slave")) { 2432 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2433 nc); 2434 return -EINVAL; 2435 } 2436 return 0; 2437 } 2438 2439 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2440 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2441 return -EINVAL; 2442 } 2443 2444 spi_set_all_cs_unused(spi); 2445 2446 /* Device address */ 2447 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2448 SPI_CS_CNT_MAX); 2449 if (rc < 0) { 2450 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2451 nc, rc); 2452 return rc; 2453 } 2454 if (rc > ctlr->num_chipselect) { 2455 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2456 nc, rc); 2457 return rc; 2458 } 2459 if ((of_property_present(nc, "parallel-memories")) && 2460 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2461 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2462 return -EINVAL; 2463 } 2464 for (idx = 0; idx < rc; idx++) 2465 spi_set_chipselect(spi, idx, cs[idx]); 2466 2467 /* 2468 * By default spi->chip_select[0] will hold the physical CS number, 2469 * so set bit 0 in spi->cs_index_mask. 2470 */ 2471 spi->cs_index_mask = BIT(0); 2472 2473 /* Device speed */ 2474 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2475 spi->max_speed_hz = value; 2476 2477 /* Device CS delays */ 2478 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2479 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2480 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2481 2482 return 0; 2483 } 2484 2485 static struct spi_device * 2486 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2487 { 2488 struct spi_device *spi; 2489 int rc; 2490 2491 /* Alloc an spi_device */ 2492 spi = spi_alloc_device(ctlr); 2493 if (!spi) { 2494 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2495 rc = -ENOMEM; 2496 goto err_out; 2497 } 2498 2499 /* Select device driver */ 2500 rc = of_alias_from_compatible(nc, spi->modalias, 2501 sizeof(spi->modalias)); 2502 if (rc < 0) { 2503 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2504 goto err_out; 2505 } 2506 2507 rc = of_spi_parse_dt(ctlr, spi, nc); 2508 if (rc) 2509 goto err_out; 2510 2511 /* Store a pointer to the node in the device structure */ 2512 of_node_get(nc); 2513 2514 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2515 2516 /* Register the new device */ 2517 rc = spi_add_device(spi); 2518 if (rc) { 2519 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2520 goto err_of_node_put; 2521 } 2522 2523 return spi; 2524 2525 err_of_node_put: 2526 of_node_put(nc); 2527 err_out: 2528 spi_dev_put(spi); 2529 return ERR_PTR(rc); 2530 } 2531 2532 /** 2533 * of_register_spi_devices() - Register child devices onto the SPI bus 2534 * @ctlr: Pointer to spi_controller device 2535 * 2536 * Registers an spi_device for each child node of controller node which 2537 * represents a valid SPI slave. 2538 */ 2539 static void of_register_spi_devices(struct spi_controller *ctlr) 2540 { 2541 struct spi_device *spi; 2542 struct device_node *nc; 2543 2544 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2545 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2546 continue; 2547 spi = of_register_spi_device(ctlr, nc); 2548 if (IS_ERR(spi)) { 2549 dev_warn(&ctlr->dev, 2550 "Failed to create SPI device for %pOF\n", nc); 2551 of_node_clear_flag(nc, OF_POPULATED); 2552 } 2553 } 2554 } 2555 #else 2556 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2557 #endif 2558 2559 /** 2560 * spi_new_ancillary_device() - Register ancillary SPI device 2561 * @spi: Pointer to the main SPI device registering the ancillary device 2562 * @chip_select: Chip Select of the ancillary device 2563 * 2564 * Register an ancillary SPI device; for example some chips have a chip-select 2565 * for normal device usage and another one for setup/firmware upload. 2566 * 2567 * This may only be called from main SPI device's probe routine. 2568 * 2569 * Return: 0 on success; negative errno on failure 2570 */ 2571 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2572 u8 chip_select) 2573 { 2574 struct spi_controller *ctlr = spi->controller; 2575 struct spi_device *ancillary; 2576 int rc; 2577 2578 /* Alloc an spi_device */ 2579 ancillary = spi_alloc_device(ctlr); 2580 if (!ancillary) { 2581 rc = -ENOMEM; 2582 goto err_out; 2583 } 2584 2585 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2586 2587 /* Use provided chip-select for ancillary device */ 2588 spi_set_all_cs_unused(ancillary); 2589 spi_set_chipselect(ancillary, 0, chip_select); 2590 2591 /* Take over SPI mode/speed from SPI main device */ 2592 ancillary->max_speed_hz = spi->max_speed_hz; 2593 ancillary->mode = spi->mode; 2594 /* 2595 * By default spi->chip_select[0] will hold the physical CS number, 2596 * so set bit 0 in spi->cs_index_mask. 2597 */ 2598 ancillary->cs_index_mask = BIT(0); 2599 2600 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2601 2602 /* Register the new device */ 2603 rc = __spi_add_device(ancillary); 2604 if (rc) { 2605 dev_err(&spi->dev, "failed to register ancillary device\n"); 2606 goto err_out; 2607 } 2608 2609 return ancillary; 2610 2611 err_out: 2612 spi_dev_put(ancillary); 2613 return ERR_PTR(rc); 2614 } 2615 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2616 2617 #ifdef CONFIG_ACPI 2618 struct acpi_spi_lookup { 2619 struct spi_controller *ctlr; 2620 u32 max_speed_hz; 2621 u32 mode; 2622 int irq; 2623 u8 bits_per_word; 2624 u8 chip_select; 2625 int n; 2626 int index; 2627 }; 2628 2629 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2630 { 2631 struct acpi_resource_spi_serialbus *sb; 2632 int *count = data; 2633 2634 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2635 return 1; 2636 2637 sb = &ares->data.spi_serial_bus; 2638 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2639 return 1; 2640 2641 *count = *count + 1; 2642 2643 return 1; 2644 } 2645 2646 /** 2647 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2648 * @adev: ACPI device 2649 * 2650 * Return: the number of SpiSerialBus resources in the ACPI-device's 2651 * resource-list; or a negative error code. 2652 */ 2653 int acpi_spi_count_resources(struct acpi_device *adev) 2654 { 2655 LIST_HEAD(r); 2656 int count = 0; 2657 int ret; 2658 2659 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2660 if (ret < 0) 2661 return ret; 2662 2663 acpi_dev_free_resource_list(&r); 2664 2665 return count; 2666 } 2667 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2668 2669 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2670 struct acpi_spi_lookup *lookup) 2671 { 2672 const union acpi_object *obj; 2673 2674 if (!x86_apple_machine) 2675 return; 2676 2677 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2678 && obj->buffer.length >= 4) 2679 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2680 2681 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2682 && obj->buffer.length == 8) 2683 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2684 2685 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2686 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2687 lookup->mode |= SPI_LSB_FIRST; 2688 2689 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2690 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2691 lookup->mode |= SPI_CPOL; 2692 2693 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2694 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2695 lookup->mode |= SPI_CPHA; 2696 } 2697 2698 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2699 { 2700 struct acpi_spi_lookup *lookup = data; 2701 struct spi_controller *ctlr = lookup->ctlr; 2702 2703 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2704 struct acpi_resource_spi_serialbus *sb; 2705 acpi_handle parent_handle; 2706 acpi_status status; 2707 2708 sb = &ares->data.spi_serial_bus; 2709 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2710 2711 if (lookup->index != -1 && lookup->n++ != lookup->index) 2712 return 1; 2713 2714 status = acpi_get_handle(NULL, 2715 sb->resource_source.string_ptr, 2716 &parent_handle); 2717 2718 if (ACPI_FAILURE(status)) 2719 return -ENODEV; 2720 2721 if (ctlr) { 2722 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2723 return -ENODEV; 2724 } else { 2725 struct acpi_device *adev; 2726 2727 adev = acpi_fetch_acpi_dev(parent_handle); 2728 if (!adev) 2729 return -ENODEV; 2730 2731 ctlr = acpi_spi_find_controller_by_adev(adev); 2732 if (!ctlr) 2733 return -EPROBE_DEFER; 2734 2735 lookup->ctlr = ctlr; 2736 } 2737 2738 /* 2739 * ACPI DeviceSelection numbering is handled by the 2740 * host controller driver in Windows and can vary 2741 * from driver to driver. In Linux we always expect 2742 * 0 .. max - 1 so we need to ask the driver to 2743 * translate between the two schemes. 2744 */ 2745 if (ctlr->fw_translate_cs) { 2746 int cs = ctlr->fw_translate_cs(ctlr, 2747 sb->device_selection); 2748 if (cs < 0) 2749 return cs; 2750 lookup->chip_select = cs; 2751 } else { 2752 lookup->chip_select = sb->device_selection; 2753 } 2754 2755 lookup->max_speed_hz = sb->connection_speed; 2756 lookup->bits_per_word = sb->data_bit_length; 2757 2758 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2759 lookup->mode |= SPI_CPHA; 2760 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2761 lookup->mode |= SPI_CPOL; 2762 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2763 lookup->mode |= SPI_CS_HIGH; 2764 } 2765 } else if (lookup->irq < 0) { 2766 struct resource r; 2767 2768 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2769 lookup->irq = r.start; 2770 } 2771 2772 /* Always tell the ACPI core to skip this resource */ 2773 return 1; 2774 } 2775 2776 /** 2777 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2778 * @ctlr: controller to which the spi device belongs 2779 * @adev: ACPI Device for the spi device 2780 * @index: Index of the spi resource inside the ACPI Node 2781 * 2782 * This should be used to allocate a new SPI device from and ACPI Device node. 2783 * The caller is responsible for calling spi_add_device to register the SPI device. 2784 * 2785 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2786 * using the resource. 2787 * If index is set to -1, index is not used. 2788 * Note: If index is -1, ctlr must be set. 2789 * 2790 * Return: a pointer to the new device, or ERR_PTR on error. 2791 */ 2792 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2793 struct acpi_device *adev, 2794 int index) 2795 { 2796 acpi_handle parent_handle = NULL; 2797 struct list_head resource_list; 2798 struct acpi_spi_lookup lookup = {}; 2799 struct spi_device *spi; 2800 int ret; 2801 2802 if (!ctlr && index == -1) 2803 return ERR_PTR(-EINVAL); 2804 2805 lookup.ctlr = ctlr; 2806 lookup.irq = -1; 2807 lookup.index = index; 2808 lookup.n = 0; 2809 2810 INIT_LIST_HEAD(&resource_list); 2811 ret = acpi_dev_get_resources(adev, &resource_list, 2812 acpi_spi_add_resource, &lookup); 2813 acpi_dev_free_resource_list(&resource_list); 2814 2815 if (ret < 0) 2816 /* Found SPI in _CRS but it points to another controller */ 2817 return ERR_PTR(ret); 2818 2819 if (!lookup.max_speed_hz && 2820 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2821 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2822 /* Apple does not use _CRS but nested devices for SPI slaves */ 2823 acpi_spi_parse_apple_properties(adev, &lookup); 2824 } 2825 2826 if (!lookup.max_speed_hz) 2827 return ERR_PTR(-ENODEV); 2828 2829 spi = spi_alloc_device(lookup.ctlr); 2830 if (!spi) { 2831 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2832 dev_name(&adev->dev)); 2833 return ERR_PTR(-ENOMEM); 2834 } 2835 2836 spi_set_all_cs_unused(spi); 2837 spi_set_chipselect(spi, 0, lookup.chip_select); 2838 2839 ACPI_COMPANION_SET(&spi->dev, adev); 2840 spi->max_speed_hz = lookup.max_speed_hz; 2841 spi->mode |= lookup.mode; 2842 spi->irq = lookup.irq; 2843 spi->bits_per_word = lookup.bits_per_word; 2844 /* 2845 * By default spi->chip_select[0] will hold the physical CS number, 2846 * so set bit 0 in spi->cs_index_mask. 2847 */ 2848 spi->cs_index_mask = BIT(0); 2849 2850 return spi; 2851 } 2852 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2853 2854 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2855 struct acpi_device *adev) 2856 { 2857 struct spi_device *spi; 2858 2859 if (acpi_bus_get_status(adev) || !adev->status.present || 2860 acpi_device_enumerated(adev)) 2861 return AE_OK; 2862 2863 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2864 if (IS_ERR(spi)) { 2865 if (PTR_ERR(spi) == -ENOMEM) 2866 return AE_NO_MEMORY; 2867 else 2868 return AE_OK; 2869 } 2870 2871 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2872 sizeof(spi->modalias)); 2873 2874 acpi_device_set_enumerated(adev); 2875 2876 adev->power.flags.ignore_parent = true; 2877 if (spi_add_device(spi)) { 2878 adev->power.flags.ignore_parent = false; 2879 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2880 dev_name(&adev->dev)); 2881 spi_dev_put(spi); 2882 } 2883 2884 return AE_OK; 2885 } 2886 2887 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2888 void *data, void **return_value) 2889 { 2890 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2891 struct spi_controller *ctlr = data; 2892 2893 if (!adev) 2894 return AE_OK; 2895 2896 return acpi_register_spi_device(ctlr, adev); 2897 } 2898 2899 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2900 2901 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2902 { 2903 acpi_status status; 2904 acpi_handle handle; 2905 2906 handle = ACPI_HANDLE(ctlr->dev.parent); 2907 if (!handle) 2908 return; 2909 2910 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2911 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2912 acpi_spi_add_device, NULL, ctlr, NULL); 2913 if (ACPI_FAILURE(status)) 2914 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2915 } 2916 #else 2917 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2918 #endif /* CONFIG_ACPI */ 2919 2920 static void spi_controller_release(struct device *dev) 2921 { 2922 struct spi_controller *ctlr; 2923 2924 ctlr = container_of(dev, struct spi_controller, dev); 2925 kfree(ctlr); 2926 } 2927 2928 static const struct class spi_master_class = { 2929 .name = "spi_master", 2930 .dev_release = spi_controller_release, 2931 .dev_groups = spi_master_groups, 2932 }; 2933 2934 #ifdef CONFIG_SPI_SLAVE 2935 /** 2936 * spi_target_abort - abort the ongoing transfer request on an SPI slave 2937 * controller 2938 * @spi: device used for the current transfer 2939 */ 2940 int spi_target_abort(struct spi_device *spi) 2941 { 2942 struct spi_controller *ctlr = spi->controller; 2943 2944 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2945 return ctlr->target_abort(ctlr); 2946 2947 return -ENOTSUPP; 2948 } 2949 EXPORT_SYMBOL_GPL(spi_target_abort); 2950 2951 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2952 char *buf) 2953 { 2954 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2955 dev); 2956 struct device *child; 2957 int ret; 2958 2959 child = device_find_any_child(&ctlr->dev); 2960 ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2961 put_device(child); 2962 2963 return ret; 2964 } 2965 2966 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2967 const char *buf, size_t count) 2968 { 2969 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2970 dev); 2971 struct spi_device *spi; 2972 struct device *child; 2973 char name[32]; 2974 int rc; 2975 2976 rc = sscanf(buf, "%31s", name); 2977 if (rc != 1 || !name[0]) 2978 return -EINVAL; 2979 2980 child = device_find_any_child(&ctlr->dev); 2981 if (child) { 2982 /* Remove registered slave */ 2983 device_unregister(child); 2984 put_device(child); 2985 } 2986 2987 if (strcmp(name, "(null)")) { 2988 /* Register new slave */ 2989 spi = spi_alloc_device(ctlr); 2990 if (!spi) 2991 return -ENOMEM; 2992 2993 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2994 2995 rc = spi_add_device(spi); 2996 if (rc) { 2997 spi_dev_put(spi); 2998 return rc; 2999 } 3000 } 3001 3002 return count; 3003 } 3004 3005 static DEVICE_ATTR_RW(slave); 3006 3007 static struct attribute *spi_slave_attrs[] = { 3008 &dev_attr_slave.attr, 3009 NULL, 3010 }; 3011 3012 static const struct attribute_group spi_slave_group = { 3013 .attrs = spi_slave_attrs, 3014 }; 3015 3016 static const struct attribute_group *spi_slave_groups[] = { 3017 &spi_controller_statistics_group, 3018 &spi_slave_group, 3019 NULL, 3020 }; 3021 3022 static const struct class spi_slave_class = { 3023 .name = "spi_slave", 3024 .dev_release = spi_controller_release, 3025 .dev_groups = spi_slave_groups, 3026 }; 3027 #else 3028 extern struct class spi_slave_class; /* dummy */ 3029 #endif 3030 3031 /** 3032 * __spi_alloc_controller - allocate an SPI master or slave controller 3033 * @dev: the controller, possibly using the platform_bus 3034 * @size: how much zeroed driver-private data to allocate; the pointer to this 3035 * memory is in the driver_data field of the returned device, accessible 3036 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3037 * drivers granting DMA access to portions of their private data need to 3038 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3039 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3040 * slave (true) controller 3041 * Context: can sleep 3042 * 3043 * This call is used only by SPI controller drivers, which are the 3044 * only ones directly touching chip registers. It's how they allocate 3045 * an spi_controller structure, prior to calling spi_register_controller(). 3046 * 3047 * This must be called from context that can sleep. 3048 * 3049 * The caller is responsible for assigning the bus number and initializing the 3050 * controller's methods before calling spi_register_controller(); and (after 3051 * errors adding the device) calling spi_controller_put() to prevent a memory 3052 * leak. 3053 * 3054 * Return: the SPI controller structure on success, else NULL. 3055 */ 3056 struct spi_controller *__spi_alloc_controller(struct device *dev, 3057 unsigned int size, bool slave) 3058 { 3059 struct spi_controller *ctlr; 3060 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3061 3062 if (!dev) 3063 return NULL; 3064 3065 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3066 if (!ctlr) 3067 return NULL; 3068 3069 device_initialize(&ctlr->dev); 3070 INIT_LIST_HEAD(&ctlr->queue); 3071 spin_lock_init(&ctlr->queue_lock); 3072 spin_lock_init(&ctlr->bus_lock_spinlock); 3073 mutex_init(&ctlr->bus_lock_mutex); 3074 mutex_init(&ctlr->io_mutex); 3075 mutex_init(&ctlr->add_lock); 3076 ctlr->bus_num = -1; 3077 ctlr->num_chipselect = 1; 3078 ctlr->slave = slave; 3079 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3080 ctlr->dev.class = &spi_slave_class; 3081 else 3082 ctlr->dev.class = &spi_master_class; 3083 ctlr->dev.parent = dev; 3084 pm_suspend_ignore_children(&ctlr->dev, true); 3085 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3086 3087 return ctlr; 3088 } 3089 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3090 3091 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3092 { 3093 spi_controller_put(*(struct spi_controller **)ctlr); 3094 } 3095 3096 /** 3097 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3098 * @dev: physical device of SPI controller 3099 * @size: how much zeroed driver-private data to allocate 3100 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3101 * Context: can sleep 3102 * 3103 * Allocate an SPI controller and automatically release a reference on it 3104 * when @dev is unbound from its driver. Drivers are thus relieved from 3105 * having to call spi_controller_put(). 3106 * 3107 * The arguments to this function are identical to __spi_alloc_controller(). 3108 * 3109 * Return: the SPI controller structure on success, else NULL. 3110 */ 3111 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3112 unsigned int size, 3113 bool slave) 3114 { 3115 struct spi_controller **ptr, *ctlr; 3116 3117 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3118 GFP_KERNEL); 3119 if (!ptr) 3120 return NULL; 3121 3122 ctlr = __spi_alloc_controller(dev, size, slave); 3123 if (ctlr) { 3124 ctlr->devm_allocated = true; 3125 *ptr = ctlr; 3126 devres_add(dev, ptr); 3127 } else { 3128 devres_free(ptr); 3129 } 3130 3131 return ctlr; 3132 } 3133 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3134 3135 /** 3136 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3137 * @ctlr: The SPI master to grab GPIO descriptors for 3138 */ 3139 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3140 { 3141 int nb, i; 3142 struct gpio_desc **cs; 3143 struct device *dev = &ctlr->dev; 3144 unsigned long native_cs_mask = 0; 3145 unsigned int num_cs_gpios = 0; 3146 3147 nb = gpiod_count(dev, "cs"); 3148 if (nb < 0) { 3149 /* No GPIOs at all is fine, else return the error */ 3150 if (nb == -ENOENT) 3151 return 0; 3152 return nb; 3153 } 3154 3155 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3156 3157 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3158 GFP_KERNEL); 3159 if (!cs) 3160 return -ENOMEM; 3161 ctlr->cs_gpiods = cs; 3162 3163 for (i = 0; i < nb; i++) { 3164 /* 3165 * Most chipselects are active low, the inverted 3166 * semantics are handled by special quirks in gpiolib, 3167 * so initializing them GPIOD_OUT_LOW here means 3168 * "unasserted", in most cases this will drive the physical 3169 * line high. 3170 */ 3171 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3172 GPIOD_OUT_LOW); 3173 if (IS_ERR(cs[i])) 3174 return PTR_ERR(cs[i]); 3175 3176 if (cs[i]) { 3177 /* 3178 * If we find a CS GPIO, name it after the device and 3179 * chip select line. 3180 */ 3181 char *gpioname; 3182 3183 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3184 dev_name(dev), i); 3185 if (!gpioname) 3186 return -ENOMEM; 3187 gpiod_set_consumer_name(cs[i], gpioname); 3188 num_cs_gpios++; 3189 continue; 3190 } 3191 3192 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3193 dev_err(dev, "Invalid native chip select %d\n", i); 3194 return -EINVAL; 3195 } 3196 native_cs_mask |= BIT(i); 3197 } 3198 3199 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3200 3201 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3202 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3203 dev_err(dev, "No unused native chip select available\n"); 3204 return -EINVAL; 3205 } 3206 3207 return 0; 3208 } 3209 3210 static int spi_controller_check_ops(struct spi_controller *ctlr) 3211 { 3212 /* 3213 * The controller may implement only the high-level SPI-memory like 3214 * operations if it does not support regular SPI transfers, and this is 3215 * valid use case. 3216 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3217 * one of the ->transfer_xxx() method be implemented. 3218 */ 3219 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3220 if (!ctlr->transfer && !ctlr->transfer_one && 3221 !ctlr->transfer_one_message) { 3222 return -EINVAL; 3223 } 3224 } 3225 3226 return 0; 3227 } 3228 3229 /* Allocate dynamic bus number using Linux idr */ 3230 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3231 { 3232 int id; 3233 3234 mutex_lock(&board_lock); 3235 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3236 mutex_unlock(&board_lock); 3237 if (WARN(id < 0, "couldn't get idr")) 3238 return id == -ENOSPC ? -EBUSY : id; 3239 ctlr->bus_num = id; 3240 return 0; 3241 } 3242 3243 /** 3244 * spi_register_controller - register SPI host or target controller 3245 * @ctlr: initialized controller, originally from spi_alloc_host() or 3246 * spi_alloc_target() 3247 * Context: can sleep 3248 * 3249 * SPI controllers connect to their drivers using some non-SPI bus, 3250 * such as the platform bus. The final stage of probe() in that code 3251 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3252 * 3253 * SPI controllers use board specific (often SOC specific) bus numbers, 3254 * and board-specific addressing for SPI devices combines those numbers 3255 * with chip select numbers. Since SPI does not directly support dynamic 3256 * device identification, boards need configuration tables telling which 3257 * chip is at which address. 3258 * 3259 * This must be called from context that can sleep. It returns zero on 3260 * success, else a negative error code (dropping the controller's refcount). 3261 * After a successful return, the caller is responsible for calling 3262 * spi_unregister_controller(). 3263 * 3264 * Return: zero on success, else a negative error code. 3265 */ 3266 int spi_register_controller(struct spi_controller *ctlr) 3267 { 3268 struct device *dev = ctlr->dev.parent; 3269 struct boardinfo *bi; 3270 int first_dynamic; 3271 int status; 3272 int idx; 3273 3274 if (!dev) 3275 return -ENODEV; 3276 3277 /* 3278 * Make sure all necessary hooks are implemented before registering 3279 * the SPI controller. 3280 */ 3281 status = spi_controller_check_ops(ctlr); 3282 if (status) 3283 return status; 3284 3285 if (ctlr->bus_num < 0) 3286 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3287 if (ctlr->bus_num >= 0) { 3288 /* Devices with a fixed bus num must check-in with the num */ 3289 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3290 if (status) 3291 return status; 3292 } 3293 if (ctlr->bus_num < 0) { 3294 first_dynamic = of_alias_get_highest_id("spi"); 3295 if (first_dynamic < 0) 3296 first_dynamic = 0; 3297 else 3298 first_dynamic++; 3299 3300 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3301 if (status) 3302 return status; 3303 } 3304 ctlr->bus_lock_flag = 0; 3305 init_completion(&ctlr->xfer_completion); 3306 init_completion(&ctlr->cur_msg_completion); 3307 if (!ctlr->max_dma_len) 3308 ctlr->max_dma_len = INT_MAX; 3309 3310 /* 3311 * Register the device, then userspace will see it. 3312 * Registration fails if the bus ID is in use. 3313 */ 3314 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3315 3316 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3317 status = spi_get_gpio_descs(ctlr); 3318 if (status) 3319 goto free_bus_id; 3320 /* 3321 * A controller using GPIO descriptors always 3322 * supports SPI_CS_HIGH if need be. 3323 */ 3324 ctlr->mode_bits |= SPI_CS_HIGH; 3325 } 3326 3327 /* 3328 * Even if it's just one always-selected device, there must 3329 * be at least one chipselect. 3330 */ 3331 if (!ctlr->num_chipselect) { 3332 status = -EINVAL; 3333 goto free_bus_id; 3334 } 3335 3336 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3337 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3338 ctlr->last_cs[idx] = SPI_INVALID_CS; 3339 3340 status = device_add(&ctlr->dev); 3341 if (status < 0) 3342 goto free_bus_id; 3343 dev_dbg(dev, "registered %s %s\n", 3344 spi_controller_is_target(ctlr) ? "target" : "host", 3345 dev_name(&ctlr->dev)); 3346 3347 /* 3348 * If we're using a queued driver, start the queue. Note that we don't 3349 * need the queueing logic if the driver is only supporting high-level 3350 * memory operations. 3351 */ 3352 if (ctlr->transfer) { 3353 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3354 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3355 status = spi_controller_initialize_queue(ctlr); 3356 if (status) { 3357 device_del(&ctlr->dev); 3358 goto free_bus_id; 3359 } 3360 } 3361 /* Add statistics */ 3362 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3363 if (!ctlr->pcpu_statistics) { 3364 dev_err(dev, "Error allocating per-cpu statistics\n"); 3365 status = -ENOMEM; 3366 goto destroy_queue; 3367 } 3368 3369 mutex_lock(&board_lock); 3370 list_add_tail(&ctlr->list, &spi_controller_list); 3371 list_for_each_entry(bi, &board_list, list) 3372 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3373 mutex_unlock(&board_lock); 3374 3375 /* Register devices from the device tree and ACPI */ 3376 of_register_spi_devices(ctlr); 3377 acpi_register_spi_devices(ctlr); 3378 return status; 3379 3380 destroy_queue: 3381 spi_destroy_queue(ctlr); 3382 free_bus_id: 3383 mutex_lock(&board_lock); 3384 idr_remove(&spi_master_idr, ctlr->bus_num); 3385 mutex_unlock(&board_lock); 3386 return status; 3387 } 3388 EXPORT_SYMBOL_GPL(spi_register_controller); 3389 3390 static void devm_spi_unregister(struct device *dev, void *res) 3391 { 3392 spi_unregister_controller(*(struct spi_controller **)res); 3393 } 3394 3395 /** 3396 * devm_spi_register_controller - register managed SPI host or target 3397 * controller 3398 * @dev: device managing SPI controller 3399 * @ctlr: initialized controller, originally from spi_alloc_host() or 3400 * spi_alloc_target() 3401 * Context: can sleep 3402 * 3403 * Register a SPI device as with spi_register_controller() which will 3404 * automatically be unregistered and freed. 3405 * 3406 * Return: zero on success, else a negative error code. 3407 */ 3408 int devm_spi_register_controller(struct device *dev, 3409 struct spi_controller *ctlr) 3410 { 3411 struct spi_controller **ptr; 3412 int ret; 3413 3414 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3415 if (!ptr) 3416 return -ENOMEM; 3417 3418 ret = spi_register_controller(ctlr); 3419 if (!ret) { 3420 *ptr = ctlr; 3421 devres_add(dev, ptr); 3422 } else { 3423 devres_free(ptr); 3424 } 3425 3426 return ret; 3427 } 3428 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3429 3430 static int __unregister(struct device *dev, void *null) 3431 { 3432 spi_unregister_device(to_spi_device(dev)); 3433 return 0; 3434 } 3435 3436 /** 3437 * spi_unregister_controller - unregister SPI master or slave controller 3438 * @ctlr: the controller being unregistered 3439 * Context: can sleep 3440 * 3441 * This call is used only by SPI controller drivers, which are the 3442 * only ones directly touching chip registers. 3443 * 3444 * This must be called from context that can sleep. 3445 * 3446 * Note that this function also drops a reference to the controller. 3447 */ 3448 void spi_unregister_controller(struct spi_controller *ctlr) 3449 { 3450 struct spi_controller *found; 3451 int id = ctlr->bus_num; 3452 3453 /* Prevent addition of new devices, unregister existing ones */ 3454 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3455 mutex_lock(&ctlr->add_lock); 3456 3457 device_for_each_child(&ctlr->dev, NULL, __unregister); 3458 3459 /* First make sure that this controller was ever added */ 3460 mutex_lock(&board_lock); 3461 found = idr_find(&spi_master_idr, id); 3462 mutex_unlock(&board_lock); 3463 if (ctlr->queued) { 3464 if (spi_destroy_queue(ctlr)) 3465 dev_err(&ctlr->dev, "queue remove failed\n"); 3466 } 3467 mutex_lock(&board_lock); 3468 list_del(&ctlr->list); 3469 mutex_unlock(&board_lock); 3470 3471 device_del(&ctlr->dev); 3472 3473 /* Free bus id */ 3474 mutex_lock(&board_lock); 3475 if (found == ctlr) 3476 idr_remove(&spi_master_idr, id); 3477 mutex_unlock(&board_lock); 3478 3479 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3480 mutex_unlock(&ctlr->add_lock); 3481 3482 /* 3483 * Release the last reference on the controller if its driver 3484 * has not yet been converted to devm_spi_alloc_host/target(). 3485 */ 3486 if (!ctlr->devm_allocated) 3487 put_device(&ctlr->dev); 3488 } 3489 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3490 3491 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3492 { 3493 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3494 } 3495 3496 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3497 { 3498 mutex_lock(&ctlr->bus_lock_mutex); 3499 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3500 mutex_unlock(&ctlr->bus_lock_mutex); 3501 } 3502 3503 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3504 { 3505 mutex_lock(&ctlr->bus_lock_mutex); 3506 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3507 mutex_unlock(&ctlr->bus_lock_mutex); 3508 } 3509 3510 int spi_controller_suspend(struct spi_controller *ctlr) 3511 { 3512 int ret = 0; 3513 3514 /* Basically no-ops for non-queued controllers */ 3515 if (ctlr->queued) { 3516 ret = spi_stop_queue(ctlr); 3517 if (ret) 3518 dev_err(&ctlr->dev, "queue stop failed\n"); 3519 } 3520 3521 __spi_mark_suspended(ctlr); 3522 return ret; 3523 } 3524 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3525 3526 int spi_controller_resume(struct spi_controller *ctlr) 3527 { 3528 int ret = 0; 3529 3530 __spi_mark_resumed(ctlr); 3531 3532 if (ctlr->queued) { 3533 ret = spi_start_queue(ctlr); 3534 if (ret) 3535 dev_err(&ctlr->dev, "queue restart failed\n"); 3536 } 3537 return ret; 3538 } 3539 EXPORT_SYMBOL_GPL(spi_controller_resume); 3540 3541 /*-------------------------------------------------------------------------*/ 3542 3543 /* Core methods for spi_message alterations */ 3544 3545 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3546 struct spi_message *msg, 3547 void *res) 3548 { 3549 struct spi_replaced_transfers *rxfer = res; 3550 size_t i; 3551 3552 /* Call extra callback if requested */ 3553 if (rxfer->release) 3554 rxfer->release(ctlr, msg, res); 3555 3556 /* Insert replaced transfers back into the message */ 3557 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3558 3559 /* Remove the formerly inserted entries */ 3560 for (i = 0; i < rxfer->inserted; i++) 3561 list_del(&rxfer->inserted_transfers[i].transfer_list); 3562 } 3563 3564 /** 3565 * spi_replace_transfers - replace transfers with several transfers 3566 * and register change with spi_message.resources 3567 * @msg: the spi_message we work upon 3568 * @xfer_first: the first spi_transfer we want to replace 3569 * @remove: number of transfers to remove 3570 * @insert: the number of transfers we want to insert instead 3571 * @release: extra release code necessary in some circumstances 3572 * @extradatasize: extra data to allocate (with alignment guarantees 3573 * of struct @spi_transfer) 3574 * @gfp: gfp flags 3575 * 3576 * Returns: pointer to @spi_replaced_transfers, 3577 * PTR_ERR(...) in case of errors. 3578 */ 3579 static struct spi_replaced_transfers *spi_replace_transfers( 3580 struct spi_message *msg, 3581 struct spi_transfer *xfer_first, 3582 size_t remove, 3583 size_t insert, 3584 spi_replaced_release_t release, 3585 size_t extradatasize, 3586 gfp_t gfp) 3587 { 3588 struct spi_replaced_transfers *rxfer; 3589 struct spi_transfer *xfer; 3590 size_t i; 3591 3592 /* Allocate the structure using spi_res */ 3593 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3594 struct_size(rxfer, inserted_transfers, insert) 3595 + extradatasize, 3596 gfp); 3597 if (!rxfer) 3598 return ERR_PTR(-ENOMEM); 3599 3600 /* The release code to invoke before running the generic release */ 3601 rxfer->release = release; 3602 3603 /* Assign extradata */ 3604 if (extradatasize) 3605 rxfer->extradata = 3606 &rxfer->inserted_transfers[insert]; 3607 3608 /* Init the replaced_transfers list */ 3609 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3610 3611 /* 3612 * Assign the list_entry after which we should reinsert 3613 * the @replaced_transfers - it may be spi_message.messages! 3614 */ 3615 rxfer->replaced_after = xfer_first->transfer_list.prev; 3616 3617 /* Remove the requested number of transfers */ 3618 for (i = 0; i < remove; i++) { 3619 /* 3620 * If the entry after replaced_after it is msg->transfers 3621 * then we have been requested to remove more transfers 3622 * than are in the list. 3623 */ 3624 if (rxfer->replaced_after->next == &msg->transfers) { 3625 dev_err(&msg->spi->dev, 3626 "requested to remove more spi_transfers than are available\n"); 3627 /* Insert replaced transfers back into the message */ 3628 list_splice(&rxfer->replaced_transfers, 3629 rxfer->replaced_after); 3630 3631 /* Free the spi_replace_transfer structure... */ 3632 spi_res_free(rxfer); 3633 3634 /* ...and return with an error */ 3635 return ERR_PTR(-EINVAL); 3636 } 3637 3638 /* 3639 * Remove the entry after replaced_after from list of 3640 * transfers and add it to list of replaced_transfers. 3641 */ 3642 list_move_tail(rxfer->replaced_after->next, 3643 &rxfer->replaced_transfers); 3644 } 3645 3646 /* 3647 * Create copy of the given xfer with identical settings 3648 * based on the first transfer to get removed. 3649 */ 3650 for (i = 0; i < insert; i++) { 3651 /* We need to run in reverse order */ 3652 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3653 3654 /* Copy all spi_transfer data */ 3655 memcpy(xfer, xfer_first, sizeof(*xfer)); 3656 3657 /* Add to list */ 3658 list_add(&xfer->transfer_list, rxfer->replaced_after); 3659 3660 /* Clear cs_change and delay for all but the last */ 3661 if (i) { 3662 xfer->cs_change = false; 3663 xfer->delay.value = 0; 3664 } 3665 } 3666 3667 /* Set up inserted... */ 3668 rxfer->inserted = insert; 3669 3670 /* ...and register it with spi_res/spi_message */ 3671 spi_res_add(msg, rxfer); 3672 3673 return rxfer; 3674 } 3675 3676 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3677 struct spi_message *msg, 3678 struct spi_transfer **xferp, 3679 size_t maxsize) 3680 { 3681 struct spi_transfer *xfer = *xferp, *xfers; 3682 struct spi_replaced_transfers *srt; 3683 size_t offset; 3684 size_t count, i; 3685 3686 /* Calculate how many we have to replace */ 3687 count = DIV_ROUND_UP(xfer->len, maxsize); 3688 3689 /* Create replacement */ 3690 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3691 if (IS_ERR(srt)) 3692 return PTR_ERR(srt); 3693 xfers = srt->inserted_transfers; 3694 3695 /* 3696 * Now handle each of those newly inserted spi_transfers. 3697 * Note that the replacements spi_transfers all are preset 3698 * to the same values as *xferp, so tx_buf, rx_buf and len 3699 * are all identical (as well as most others) 3700 * so we just have to fix up len and the pointers. 3701 */ 3702 3703 /* 3704 * The first transfer just needs the length modified, so we 3705 * run it outside the loop. 3706 */ 3707 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3708 3709 /* All the others need rx_buf/tx_buf also set */ 3710 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3711 /* Update rx_buf, tx_buf and DMA */ 3712 if (xfers[i].rx_buf) 3713 xfers[i].rx_buf += offset; 3714 if (xfers[i].tx_buf) 3715 xfers[i].tx_buf += offset; 3716 3717 /* Update length */ 3718 xfers[i].len = min(maxsize, xfers[i].len - offset); 3719 } 3720 3721 /* 3722 * We set up xferp to the last entry we have inserted, 3723 * so that we skip those already split transfers. 3724 */ 3725 *xferp = &xfers[count - 1]; 3726 3727 /* Increment statistics counters */ 3728 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3729 transfers_split_maxsize); 3730 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3731 transfers_split_maxsize); 3732 3733 return 0; 3734 } 3735 3736 /** 3737 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3738 * when an individual transfer exceeds a 3739 * certain size 3740 * @ctlr: the @spi_controller for this transfer 3741 * @msg: the @spi_message to transform 3742 * @maxsize: the maximum when to apply this 3743 * 3744 * This function allocates resources that are automatically freed during the 3745 * spi message unoptimize phase so this function should only be called from 3746 * optimize_message callbacks. 3747 * 3748 * Return: status of transformation 3749 */ 3750 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3751 struct spi_message *msg, 3752 size_t maxsize) 3753 { 3754 struct spi_transfer *xfer; 3755 int ret; 3756 3757 /* 3758 * Iterate over the transfer_list, 3759 * but note that xfer is advanced to the last transfer inserted 3760 * to avoid checking sizes again unnecessarily (also xfer does 3761 * potentially belong to a different list by the time the 3762 * replacement has happened). 3763 */ 3764 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3765 if (xfer->len > maxsize) { 3766 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3767 maxsize); 3768 if (ret) 3769 return ret; 3770 } 3771 } 3772 3773 return 0; 3774 } 3775 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3776 3777 3778 /** 3779 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3780 * when an individual transfer exceeds a 3781 * certain number of SPI words 3782 * @ctlr: the @spi_controller for this transfer 3783 * @msg: the @spi_message to transform 3784 * @maxwords: the number of words to limit each transfer to 3785 * 3786 * This function allocates resources that are automatically freed during the 3787 * spi message unoptimize phase so this function should only be called from 3788 * optimize_message callbacks. 3789 * 3790 * Return: status of transformation 3791 */ 3792 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3793 struct spi_message *msg, 3794 size_t maxwords) 3795 { 3796 struct spi_transfer *xfer; 3797 3798 /* 3799 * Iterate over the transfer_list, 3800 * but note that xfer is advanced to the last transfer inserted 3801 * to avoid checking sizes again unnecessarily (also xfer does 3802 * potentially belong to a different list by the time the 3803 * replacement has happened). 3804 */ 3805 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3806 size_t maxsize; 3807 int ret; 3808 3809 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3810 if (xfer->len > maxsize) { 3811 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3812 maxsize); 3813 if (ret) 3814 return ret; 3815 } 3816 } 3817 3818 return 0; 3819 } 3820 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3821 3822 /*-------------------------------------------------------------------------*/ 3823 3824 /* 3825 * Core methods for SPI controller protocol drivers. Some of the 3826 * other core methods are currently defined as inline functions. 3827 */ 3828 3829 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3830 u8 bits_per_word) 3831 { 3832 if (ctlr->bits_per_word_mask) { 3833 /* Only 32 bits fit in the mask */ 3834 if (bits_per_word > 32) 3835 return -EINVAL; 3836 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3837 return -EINVAL; 3838 } 3839 3840 return 0; 3841 } 3842 3843 /** 3844 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3845 * @spi: the device that requires specific CS timing configuration 3846 * 3847 * Return: zero on success, else a negative error code. 3848 */ 3849 static int spi_set_cs_timing(struct spi_device *spi) 3850 { 3851 struct device *parent = spi->controller->dev.parent; 3852 int status = 0; 3853 3854 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3855 if (spi->controller->auto_runtime_pm) { 3856 status = pm_runtime_get_sync(parent); 3857 if (status < 0) { 3858 pm_runtime_put_noidle(parent); 3859 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3860 status); 3861 return status; 3862 } 3863 3864 status = spi->controller->set_cs_timing(spi); 3865 pm_runtime_mark_last_busy(parent); 3866 pm_runtime_put_autosuspend(parent); 3867 } else { 3868 status = spi->controller->set_cs_timing(spi); 3869 } 3870 } 3871 return status; 3872 } 3873 3874 /** 3875 * spi_setup - setup SPI mode and clock rate 3876 * @spi: the device whose settings are being modified 3877 * Context: can sleep, and no requests are queued to the device 3878 * 3879 * SPI protocol drivers may need to update the transfer mode if the 3880 * device doesn't work with its default. They may likewise need 3881 * to update clock rates or word sizes from initial values. This function 3882 * changes those settings, and must be called from a context that can sleep. 3883 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3884 * effect the next time the device is selected and data is transferred to 3885 * or from it. When this function returns, the SPI device is deselected. 3886 * 3887 * Note that this call will fail if the protocol driver specifies an option 3888 * that the underlying controller or its driver does not support. For 3889 * example, not all hardware supports wire transfers using nine bit words, 3890 * LSB-first wire encoding, or active-high chipselects. 3891 * 3892 * Return: zero on success, else a negative error code. 3893 */ 3894 int spi_setup(struct spi_device *spi) 3895 { 3896 unsigned bad_bits, ugly_bits; 3897 int status; 3898 3899 /* 3900 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3901 * are set at the same time. 3902 */ 3903 if ((hweight_long(spi->mode & 3904 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3905 (hweight_long(spi->mode & 3906 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3907 dev_err(&spi->dev, 3908 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3909 return -EINVAL; 3910 } 3911 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3912 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3913 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3914 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3915 return -EINVAL; 3916 /* Check against conflicting MOSI idle configuration */ 3917 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 3918 dev_err(&spi->dev, 3919 "setup: MOSI configured to idle low and high at the same time.\n"); 3920 return -EINVAL; 3921 } 3922 /* 3923 * Help drivers fail *cleanly* when they need options 3924 * that aren't supported with their current controller. 3925 * SPI_CS_WORD has a fallback software implementation, 3926 * so it is ignored here. 3927 */ 3928 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3929 SPI_NO_TX | SPI_NO_RX); 3930 ugly_bits = bad_bits & 3931 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3932 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3933 if (ugly_bits) { 3934 dev_warn(&spi->dev, 3935 "setup: ignoring unsupported mode bits %x\n", 3936 ugly_bits); 3937 spi->mode &= ~ugly_bits; 3938 bad_bits &= ~ugly_bits; 3939 } 3940 if (bad_bits) { 3941 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3942 bad_bits); 3943 return -EINVAL; 3944 } 3945 3946 if (!spi->bits_per_word) { 3947 spi->bits_per_word = 8; 3948 } else { 3949 /* 3950 * Some controllers may not support the default 8 bits-per-word 3951 * so only perform the check when this is explicitly provided. 3952 */ 3953 status = __spi_validate_bits_per_word(spi->controller, 3954 spi->bits_per_word); 3955 if (status) 3956 return status; 3957 } 3958 3959 if (spi->controller->max_speed_hz && 3960 (!spi->max_speed_hz || 3961 spi->max_speed_hz > spi->controller->max_speed_hz)) 3962 spi->max_speed_hz = spi->controller->max_speed_hz; 3963 3964 mutex_lock(&spi->controller->io_mutex); 3965 3966 if (spi->controller->setup) { 3967 status = spi->controller->setup(spi); 3968 if (status) { 3969 mutex_unlock(&spi->controller->io_mutex); 3970 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3971 status); 3972 return status; 3973 } 3974 } 3975 3976 status = spi_set_cs_timing(spi); 3977 if (status) { 3978 mutex_unlock(&spi->controller->io_mutex); 3979 return status; 3980 } 3981 3982 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3983 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3984 if (status < 0) { 3985 mutex_unlock(&spi->controller->io_mutex); 3986 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3987 status); 3988 return status; 3989 } 3990 3991 /* 3992 * We do not want to return positive value from pm_runtime_get, 3993 * there are many instances of devices calling spi_setup() and 3994 * checking for a non-zero return value instead of a negative 3995 * return value. 3996 */ 3997 status = 0; 3998 3999 spi_set_cs(spi, false, true); 4000 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4001 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4002 } else { 4003 spi_set_cs(spi, false, true); 4004 } 4005 4006 mutex_unlock(&spi->controller->io_mutex); 4007 4008 if (spi->rt && !spi->controller->rt) { 4009 spi->controller->rt = true; 4010 spi_set_thread_rt(spi->controller); 4011 } 4012 4013 trace_spi_setup(spi, status); 4014 4015 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4016 spi->mode & SPI_MODE_X_MASK, 4017 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4018 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4019 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4020 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4021 spi->bits_per_word, spi->max_speed_hz, 4022 status); 4023 4024 return status; 4025 } 4026 EXPORT_SYMBOL_GPL(spi_setup); 4027 4028 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4029 struct spi_device *spi) 4030 { 4031 int delay1, delay2; 4032 4033 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4034 if (delay1 < 0) 4035 return delay1; 4036 4037 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4038 if (delay2 < 0) 4039 return delay2; 4040 4041 if (delay1 < delay2) 4042 memcpy(&xfer->word_delay, &spi->word_delay, 4043 sizeof(xfer->word_delay)); 4044 4045 return 0; 4046 } 4047 4048 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4049 { 4050 struct spi_controller *ctlr = spi->controller; 4051 struct spi_transfer *xfer; 4052 int w_size; 4053 4054 if (list_empty(&message->transfers)) 4055 return -EINVAL; 4056 4057 message->spi = spi; 4058 4059 /* 4060 * Half-duplex links include original MicroWire, and ones with 4061 * only one data pin like SPI_3WIRE (switches direction) or where 4062 * either MOSI or MISO is missing. They can also be caused by 4063 * software limitations. 4064 */ 4065 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4066 (spi->mode & SPI_3WIRE)) { 4067 unsigned flags = ctlr->flags; 4068 4069 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4070 if (xfer->rx_buf && xfer->tx_buf) 4071 return -EINVAL; 4072 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4073 return -EINVAL; 4074 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4075 return -EINVAL; 4076 } 4077 } 4078 4079 /* 4080 * Set transfer bits_per_word and max speed as spi device default if 4081 * it is not set for this transfer. 4082 * Set transfer tx_nbits and rx_nbits as single transfer default 4083 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4084 * Ensure transfer word_delay is at least as long as that required by 4085 * device itself. 4086 */ 4087 message->frame_length = 0; 4088 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4089 xfer->effective_speed_hz = 0; 4090 message->frame_length += xfer->len; 4091 if (!xfer->bits_per_word) 4092 xfer->bits_per_word = spi->bits_per_word; 4093 4094 if (!xfer->speed_hz) 4095 xfer->speed_hz = spi->max_speed_hz; 4096 4097 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4098 xfer->speed_hz = ctlr->max_speed_hz; 4099 4100 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4101 return -EINVAL; 4102 4103 /* 4104 * SPI transfer length should be multiple of SPI word size 4105 * where SPI word size should be power-of-two multiple. 4106 */ 4107 if (xfer->bits_per_word <= 8) 4108 w_size = 1; 4109 else if (xfer->bits_per_word <= 16) 4110 w_size = 2; 4111 else 4112 w_size = 4; 4113 4114 /* No partial transfers accepted */ 4115 if (xfer->len % w_size) 4116 return -EINVAL; 4117 4118 if (xfer->speed_hz && ctlr->min_speed_hz && 4119 xfer->speed_hz < ctlr->min_speed_hz) 4120 return -EINVAL; 4121 4122 if (xfer->tx_buf && !xfer->tx_nbits) 4123 xfer->tx_nbits = SPI_NBITS_SINGLE; 4124 if (xfer->rx_buf && !xfer->rx_nbits) 4125 xfer->rx_nbits = SPI_NBITS_SINGLE; 4126 /* 4127 * Check transfer tx/rx_nbits: 4128 * 1. check the value matches one of single, dual and quad 4129 * 2. check tx/rx_nbits match the mode in spi_device 4130 */ 4131 if (xfer->tx_buf) { 4132 if (spi->mode & SPI_NO_TX) 4133 return -EINVAL; 4134 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4135 xfer->tx_nbits != SPI_NBITS_DUAL && 4136 xfer->tx_nbits != SPI_NBITS_QUAD && 4137 xfer->tx_nbits != SPI_NBITS_OCTAL) 4138 return -EINVAL; 4139 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4140 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4141 return -EINVAL; 4142 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4143 !(spi->mode & SPI_TX_QUAD)) 4144 return -EINVAL; 4145 } 4146 /* Check transfer rx_nbits */ 4147 if (xfer->rx_buf) { 4148 if (spi->mode & SPI_NO_RX) 4149 return -EINVAL; 4150 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4151 xfer->rx_nbits != SPI_NBITS_DUAL && 4152 xfer->rx_nbits != SPI_NBITS_QUAD && 4153 xfer->rx_nbits != SPI_NBITS_OCTAL) 4154 return -EINVAL; 4155 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4156 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4157 return -EINVAL; 4158 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4159 !(spi->mode & SPI_RX_QUAD)) 4160 return -EINVAL; 4161 } 4162 4163 if (_spi_xfer_word_delay_update(xfer, spi)) 4164 return -EINVAL; 4165 } 4166 4167 message->status = -EINPROGRESS; 4168 4169 return 0; 4170 } 4171 4172 /* 4173 * spi_split_transfers - generic handling of transfer splitting 4174 * @msg: the message to split 4175 * 4176 * Under certain conditions, a SPI controller may not support arbitrary 4177 * transfer sizes or other features required by a peripheral. This function 4178 * will split the transfers in the message into smaller transfers that are 4179 * supported by the controller. 4180 * 4181 * Controllers with special requirements not covered here can also split 4182 * transfers in the optimize_message() callback. 4183 * 4184 * Context: can sleep 4185 * Return: zero on success, else a negative error code 4186 */ 4187 static int spi_split_transfers(struct spi_message *msg) 4188 { 4189 struct spi_controller *ctlr = msg->spi->controller; 4190 struct spi_transfer *xfer; 4191 int ret; 4192 4193 /* 4194 * If an SPI controller does not support toggling the CS line on each 4195 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4196 * for the CS line, we can emulate the CS-per-word hardware function by 4197 * splitting transfers into one-word transfers and ensuring that 4198 * cs_change is set for each transfer. 4199 */ 4200 if ((msg->spi->mode & SPI_CS_WORD) && 4201 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4202 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4203 if (ret) 4204 return ret; 4205 4206 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4207 /* Don't change cs_change on the last entry in the list */ 4208 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4209 break; 4210 4211 xfer->cs_change = 1; 4212 } 4213 } else { 4214 ret = spi_split_transfers_maxsize(ctlr, msg, 4215 spi_max_transfer_size(msg->spi)); 4216 if (ret) 4217 return ret; 4218 } 4219 4220 return 0; 4221 } 4222 4223 /* 4224 * __spi_optimize_message - shared implementation for spi_optimize_message() 4225 * and spi_maybe_optimize_message() 4226 * @spi: the device that will be used for the message 4227 * @msg: the message to optimize 4228 * 4229 * Peripheral drivers will call spi_optimize_message() and the spi core will 4230 * call spi_maybe_optimize_message() instead of calling this directly. 4231 * 4232 * It is not valid to call this on a message that has already been optimized. 4233 * 4234 * Return: zero on success, else a negative error code 4235 */ 4236 static int __spi_optimize_message(struct spi_device *spi, 4237 struct spi_message *msg) 4238 { 4239 struct spi_controller *ctlr = spi->controller; 4240 int ret; 4241 4242 ret = __spi_validate(spi, msg); 4243 if (ret) 4244 return ret; 4245 4246 ret = spi_split_transfers(msg); 4247 if (ret) 4248 return ret; 4249 4250 if (ctlr->optimize_message) { 4251 ret = ctlr->optimize_message(msg); 4252 if (ret) { 4253 spi_res_release(ctlr, msg); 4254 return ret; 4255 } 4256 } 4257 4258 msg->optimized = true; 4259 4260 return 0; 4261 } 4262 4263 /* 4264 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4265 * @spi: the device that will be used for the message 4266 * @msg: the message to optimize 4267 * Return: zero on success, else a negative error code 4268 */ 4269 static int spi_maybe_optimize_message(struct spi_device *spi, 4270 struct spi_message *msg) 4271 { 4272 if (spi->controller->defer_optimize_message) { 4273 msg->spi = spi; 4274 return 0; 4275 } 4276 4277 if (msg->pre_optimized) 4278 return 0; 4279 4280 return __spi_optimize_message(spi, msg); 4281 } 4282 4283 /** 4284 * spi_optimize_message - do any one-time validation and setup for a SPI message 4285 * @spi: the device that will be used for the message 4286 * @msg: the message to optimize 4287 * 4288 * Peripheral drivers that reuse the same message repeatedly may call this to 4289 * perform as much message prep as possible once, rather than repeating it each 4290 * time a message transfer is performed to improve throughput and reduce CPU 4291 * usage. 4292 * 4293 * Once a message has been optimized, it cannot be modified with the exception 4294 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4295 * only the data in the memory it points to). 4296 * 4297 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4298 * to avoid leaking resources. 4299 * 4300 * Context: can sleep 4301 * Return: zero on success, else a negative error code 4302 */ 4303 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4304 { 4305 int ret; 4306 4307 /* 4308 * Pre-optimization is not supported and optimization is deferred e.g. 4309 * when using spi-mux. 4310 */ 4311 if (spi->controller->defer_optimize_message) 4312 return 0; 4313 4314 ret = __spi_optimize_message(spi, msg); 4315 if (ret) 4316 return ret; 4317 4318 /* 4319 * This flag indicates that the peripheral driver called spi_optimize_message() 4320 * and therefore we shouldn't unoptimize message automatically when finalizing 4321 * the message but rather wait until spi_unoptimize_message() is called 4322 * by the peripheral driver. 4323 */ 4324 msg->pre_optimized = true; 4325 4326 return 0; 4327 } 4328 EXPORT_SYMBOL_GPL(spi_optimize_message); 4329 4330 /** 4331 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4332 * @msg: the message to unoptimize 4333 * 4334 * Calls to this function must be balanced with calls to spi_optimize_message(). 4335 * 4336 * Context: can sleep 4337 */ 4338 void spi_unoptimize_message(struct spi_message *msg) 4339 { 4340 if (msg->spi->controller->defer_optimize_message) 4341 return; 4342 4343 __spi_unoptimize_message(msg); 4344 msg->pre_optimized = false; 4345 } 4346 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4347 4348 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4349 { 4350 struct spi_controller *ctlr = spi->controller; 4351 struct spi_transfer *xfer; 4352 4353 /* 4354 * Some controllers do not support doing regular SPI transfers. Return 4355 * ENOTSUPP when this is the case. 4356 */ 4357 if (!ctlr->transfer) 4358 return -ENOTSUPP; 4359 4360 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4361 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4362 4363 trace_spi_message_submit(message); 4364 4365 if (!ctlr->ptp_sts_supported) { 4366 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4367 xfer->ptp_sts_word_pre = 0; 4368 ptp_read_system_prets(xfer->ptp_sts); 4369 } 4370 } 4371 4372 return ctlr->transfer(spi, message); 4373 } 4374 4375 static void devm_spi_unoptimize_message(void *msg) 4376 { 4377 spi_unoptimize_message(msg); 4378 } 4379 4380 /** 4381 * devm_spi_optimize_message - managed version of spi_optimize_message() 4382 * @dev: the device that manages @msg (usually @spi->dev) 4383 * @spi: the device that will be used for the message 4384 * @msg: the message to optimize 4385 * Return: zero on success, else a negative error code 4386 * 4387 * spi_unoptimize_message() will automatically be called when the device is 4388 * removed. 4389 */ 4390 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4391 struct spi_message *msg) 4392 { 4393 int ret; 4394 4395 ret = spi_optimize_message(spi, msg); 4396 if (ret) 4397 return ret; 4398 4399 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4400 } 4401 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4402 4403 /** 4404 * spi_async - asynchronous SPI transfer 4405 * @spi: device with which data will be exchanged 4406 * @message: describes the data transfers, including completion callback 4407 * Context: any (IRQs may be blocked, etc) 4408 * 4409 * This call may be used in_irq and other contexts which can't sleep, 4410 * as well as from task contexts which can sleep. 4411 * 4412 * The completion callback is invoked in a context which can't sleep. 4413 * Before that invocation, the value of message->status is undefined. 4414 * When the callback is issued, message->status holds either zero (to 4415 * indicate complete success) or a negative error code. After that 4416 * callback returns, the driver which issued the transfer request may 4417 * deallocate the associated memory; it's no longer in use by any SPI 4418 * core or controller driver code. 4419 * 4420 * Note that although all messages to a spi_device are handled in 4421 * FIFO order, messages may go to different devices in other orders. 4422 * Some device might be higher priority, or have various "hard" access 4423 * time requirements, for example. 4424 * 4425 * On detection of any fault during the transfer, processing of 4426 * the entire message is aborted, and the device is deselected. 4427 * Until returning from the associated message completion callback, 4428 * no other spi_message queued to that device will be processed. 4429 * (This rule applies equally to all the synchronous transfer calls, 4430 * which are wrappers around this core asynchronous primitive.) 4431 * 4432 * Return: zero on success, else a negative error code. 4433 */ 4434 int spi_async(struct spi_device *spi, struct spi_message *message) 4435 { 4436 struct spi_controller *ctlr = spi->controller; 4437 int ret; 4438 unsigned long flags; 4439 4440 ret = spi_maybe_optimize_message(spi, message); 4441 if (ret) 4442 return ret; 4443 4444 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4445 4446 if (ctlr->bus_lock_flag) 4447 ret = -EBUSY; 4448 else 4449 ret = __spi_async(spi, message); 4450 4451 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4452 4453 return ret; 4454 } 4455 EXPORT_SYMBOL_GPL(spi_async); 4456 4457 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4458 { 4459 bool was_busy; 4460 int ret; 4461 4462 mutex_lock(&ctlr->io_mutex); 4463 4464 was_busy = ctlr->busy; 4465 4466 ctlr->cur_msg = msg; 4467 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4468 if (ret) 4469 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4470 ctlr->cur_msg = NULL; 4471 ctlr->fallback = false; 4472 4473 if (!was_busy) { 4474 kfree(ctlr->dummy_rx); 4475 ctlr->dummy_rx = NULL; 4476 kfree(ctlr->dummy_tx); 4477 ctlr->dummy_tx = NULL; 4478 if (ctlr->unprepare_transfer_hardware && 4479 ctlr->unprepare_transfer_hardware(ctlr)) 4480 dev_err(&ctlr->dev, 4481 "failed to unprepare transfer hardware\n"); 4482 spi_idle_runtime_pm(ctlr); 4483 } 4484 4485 mutex_unlock(&ctlr->io_mutex); 4486 } 4487 4488 /*-------------------------------------------------------------------------*/ 4489 4490 /* 4491 * Utility methods for SPI protocol drivers, layered on 4492 * top of the core. Some other utility methods are defined as 4493 * inline functions. 4494 */ 4495 4496 static void spi_complete(void *arg) 4497 { 4498 complete(arg); 4499 } 4500 4501 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4502 { 4503 DECLARE_COMPLETION_ONSTACK(done); 4504 unsigned long flags; 4505 int status; 4506 struct spi_controller *ctlr = spi->controller; 4507 4508 if (__spi_check_suspended(ctlr)) { 4509 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4510 return -ESHUTDOWN; 4511 } 4512 4513 status = spi_maybe_optimize_message(spi, message); 4514 if (status) 4515 return status; 4516 4517 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4518 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4519 4520 /* 4521 * Checking queue_empty here only guarantees async/sync message 4522 * ordering when coming from the same context. It does not need to 4523 * guard against reentrancy from a different context. The io_mutex 4524 * will catch those cases. 4525 */ 4526 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4527 message->actual_length = 0; 4528 message->status = -EINPROGRESS; 4529 4530 trace_spi_message_submit(message); 4531 4532 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4533 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4534 4535 __spi_transfer_message_noqueue(ctlr, message); 4536 4537 return message->status; 4538 } 4539 4540 /* 4541 * There are messages in the async queue that could have originated 4542 * from the same context, so we need to preserve ordering. 4543 * Therefor we send the message to the async queue and wait until they 4544 * are completed. 4545 */ 4546 message->complete = spi_complete; 4547 message->context = &done; 4548 4549 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4550 status = __spi_async(spi, message); 4551 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4552 4553 if (status == 0) { 4554 wait_for_completion(&done); 4555 status = message->status; 4556 } 4557 message->complete = NULL; 4558 message->context = NULL; 4559 4560 return status; 4561 } 4562 4563 /** 4564 * spi_sync - blocking/synchronous SPI data transfers 4565 * @spi: device with which data will be exchanged 4566 * @message: describes the data transfers 4567 * Context: can sleep 4568 * 4569 * This call may only be used from a context that may sleep. The sleep 4570 * is non-interruptible, and has no timeout. Low-overhead controller 4571 * drivers may DMA directly into and out of the message buffers. 4572 * 4573 * Note that the SPI device's chip select is active during the message, 4574 * and then is normally disabled between messages. Drivers for some 4575 * frequently-used devices may want to minimize costs of selecting a chip, 4576 * by leaving it selected in anticipation that the next message will go 4577 * to the same chip. (That may increase power usage.) 4578 * 4579 * Also, the caller is guaranteeing that the memory associated with the 4580 * message will not be freed before this call returns. 4581 * 4582 * Return: zero on success, else a negative error code. 4583 */ 4584 int spi_sync(struct spi_device *spi, struct spi_message *message) 4585 { 4586 int ret; 4587 4588 mutex_lock(&spi->controller->bus_lock_mutex); 4589 ret = __spi_sync(spi, message); 4590 mutex_unlock(&spi->controller->bus_lock_mutex); 4591 4592 return ret; 4593 } 4594 EXPORT_SYMBOL_GPL(spi_sync); 4595 4596 /** 4597 * spi_sync_locked - version of spi_sync with exclusive bus usage 4598 * @spi: device with which data will be exchanged 4599 * @message: describes the data transfers 4600 * Context: can sleep 4601 * 4602 * This call may only be used from a context that may sleep. The sleep 4603 * is non-interruptible, and has no timeout. Low-overhead controller 4604 * drivers may DMA directly into and out of the message buffers. 4605 * 4606 * This call should be used by drivers that require exclusive access to the 4607 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4608 * be released by a spi_bus_unlock call when the exclusive access is over. 4609 * 4610 * Return: zero on success, else a negative error code. 4611 */ 4612 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4613 { 4614 return __spi_sync(spi, message); 4615 } 4616 EXPORT_SYMBOL_GPL(spi_sync_locked); 4617 4618 /** 4619 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4620 * @ctlr: SPI bus master that should be locked for exclusive bus access 4621 * Context: can sleep 4622 * 4623 * This call may only be used from a context that may sleep. The sleep 4624 * is non-interruptible, and has no timeout. 4625 * 4626 * This call should be used by drivers that require exclusive access to the 4627 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4628 * exclusive access is over. Data transfer must be done by spi_sync_locked 4629 * and spi_async_locked calls when the SPI bus lock is held. 4630 * 4631 * Return: always zero. 4632 */ 4633 int spi_bus_lock(struct spi_controller *ctlr) 4634 { 4635 unsigned long flags; 4636 4637 mutex_lock(&ctlr->bus_lock_mutex); 4638 4639 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4640 ctlr->bus_lock_flag = 1; 4641 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4642 4643 /* Mutex remains locked until spi_bus_unlock() is called */ 4644 4645 return 0; 4646 } 4647 EXPORT_SYMBOL_GPL(spi_bus_lock); 4648 4649 /** 4650 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4651 * @ctlr: SPI bus master that was locked for exclusive bus access 4652 * Context: can sleep 4653 * 4654 * This call may only be used from a context that may sleep. The sleep 4655 * is non-interruptible, and has no timeout. 4656 * 4657 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4658 * call. 4659 * 4660 * Return: always zero. 4661 */ 4662 int spi_bus_unlock(struct spi_controller *ctlr) 4663 { 4664 ctlr->bus_lock_flag = 0; 4665 4666 mutex_unlock(&ctlr->bus_lock_mutex); 4667 4668 return 0; 4669 } 4670 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4671 4672 /* Portable code must never pass more than 32 bytes */ 4673 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4674 4675 static u8 *buf; 4676 4677 /** 4678 * spi_write_then_read - SPI synchronous write followed by read 4679 * @spi: device with which data will be exchanged 4680 * @txbuf: data to be written (need not be DMA-safe) 4681 * @n_tx: size of txbuf, in bytes 4682 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4683 * @n_rx: size of rxbuf, in bytes 4684 * Context: can sleep 4685 * 4686 * This performs a half duplex MicroWire style transaction with the 4687 * device, sending txbuf and then reading rxbuf. The return value 4688 * is zero for success, else a negative errno status code. 4689 * This call may only be used from a context that may sleep. 4690 * 4691 * Parameters to this routine are always copied using a small buffer. 4692 * Performance-sensitive or bulk transfer code should instead use 4693 * spi_{async,sync}() calls with DMA-safe buffers. 4694 * 4695 * Return: zero on success, else a negative error code. 4696 */ 4697 int spi_write_then_read(struct spi_device *spi, 4698 const void *txbuf, unsigned n_tx, 4699 void *rxbuf, unsigned n_rx) 4700 { 4701 static DEFINE_MUTEX(lock); 4702 4703 int status; 4704 struct spi_message message; 4705 struct spi_transfer x[2]; 4706 u8 *local_buf; 4707 4708 /* 4709 * Use preallocated DMA-safe buffer if we can. We can't avoid 4710 * copying here, (as a pure convenience thing), but we can 4711 * keep heap costs out of the hot path unless someone else is 4712 * using the pre-allocated buffer or the transfer is too large. 4713 */ 4714 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4715 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4716 GFP_KERNEL | GFP_DMA); 4717 if (!local_buf) 4718 return -ENOMEM; 4719 } else { 4720 local_buf = buf; 4721 } 4722 4723 spi_message_init(&message); 4724 memset(x, 0, sizeof(x)); 4725 if (n_tx) { 4726 x[0].len = n_tx; 4727 spi_message_add_tail(&x[0], &message); 4728 } 4729 if (n_rx) { 4730 x[1].len = n_rx; 4731 spi_message_add_tail(&x[1], &message); 4732 } 4733 4734 memcpy(local_buf, txbuf, n_tx); 4735 x[0].tx_buf = local_buf; 4736 x[1].rx_buf = local_buf + n_tx; 4737 4738 /* Do the I/O */ 4739 status = spi_sync(spi, &message); 4740 if (status == 0) 4741 memcpy(rxbuf, x[1].rx_buf, n_rx); 4742 4743 if (x[0].tx_buf == buf) 4744 mutex_unlock(&lock); 4745 else 4746 kfree(local_buf); 4747 4748 return status; 4749 } 4750 EXPORT_SYMBOL_GPL(spi_write_then_read); 4751 4752 /*-------------------------------------------------------------------------*/ 4753 4754 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4755 /* Must call put_device() when done with returned spi_device device */ 4756 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4757 { 4758 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4759 4760 return dev ? to_spi_device(dev) : NULL; 4761 } 4762 4763 /* The spi controllers are not using spi_bus, so we find it with another way */ 4764 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4765 { 4766 struct device *dev; 4767 4768 dev = class_find_device_by_of_node(&spi_master_class, node); 4769 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4770 dev = class_find_device_by_of_node(&spi_slave_class, node); 4771 if (!dev) 4772 return NULL; 4773 4774 /* Reference got in class_find_device */ 4775 return container_of(dev, struct spi_controller, dev); 4776 } 4777 4778 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4779 void *arg) 4780 { 4781 struct of_reconfig_data *rd = arg; 4782 struct spi_controller *ctlr; 4783 struct spi_device *spi; 4784 4785 switch (of_reconfig_get_state_change(action, arg)) { 4786 case OF_RECONFIG_CHANGE_ADD: 4787 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4788 if (ctlr == NULL) 4789 return NOTIFY_OK; /* Not for us */ 4790 4791 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4792 put_device(&ctlr->dev); 4793 return NOTIFY_OK; 4794 } 4795 4796 /* 4797 * Clear the flag before adding the device so that fw_devlink 4798 * doesn't skip adding consumers to this device. 4799 */ 4800 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4801 spi = of_register_spi_device(ctlr, rd->dn); 4802 put_device(&ctlr->dev); 4803 4804 if (IS_ERR(spi)) { 4805 pr_err("%s: failed to create for '%pOF'\n", 4806 __func__, rd->dn); 4807 of_node_clear_flag(rd->dn, OF_POPULATED); 4808 return notifier_from_errno(PTR_ERR(spi)); 4809 } 4810 break; 4811 4812 case OF_RECONFIG_CHANGE_REMOVE: 4813 /* Already depopulated? */ 4814 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4815 return NOTIFY_OK; 4816 4817 /* Find our device by node */ 4818 spi = of_find_spi_device_by_node(rd->dn); 4819 if (spi == NULL) 4820 return NOTIFY_OK; /* No? not meant for us */ 4821 4822 /* Unregister takes one ref away */ 4823 spi_unregister_device(spi); 4824 4825 /* And put the reference of the find */ 4826 put_device(&spi->dev); 4827 break; 4828 } 4829 4830 return NOTIFY_OK; 4831 } 4832 4833 static struct notifier_block spi_of_notifier = { 4834 .notifier_call = of_spi_notify, 4835 }; 4836 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4837 extern struct notifier_block spi_of_notifier; 4838 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4839 4840 #if IS_ENABLED(CONFIG_ACPI) 4841 static int spi_acpi_controller_match(struct device *dev, const void *data) 4842 { 4843 return device_match_acpi_dev(dev->parent, data); 4844 } 4845 4846 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4847 { 4848 struct device *dev; 4849 4850 dev = class_find_device(&spi_master_class, NULL, adev, 4851 spi_acpi_controller_match); 4852 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4853 dev = class_find_device(&spi_slave_class, NULL, adev, 4854 spi_acpi_controller_match); 4855 if (!dev) 4856 return NULL; 4857 4858 return container_of(dev, struct spi_controller, dev); 4859 } 4860 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4861 4862 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4863 { 4864 struct device *dev; 4865 4866 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4867 return to_spi_device(dev); 4868 } 4869 4870 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4871 void *arg) 4872 { 4873 struct acpi_device *adev = arg; 4874 struct spi_controller *ctlr; 4875 struct spi_device *spi; 4876 4877 switch (value) { 4878 case ACPI_RECONFIG_DEVICE_ADD: 4879 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4880 if (!ctlr) 4881 break; 4882 4883 acpi_register_spi_device(ctlr, adev); 4884 put_device(&ctlr->dev); 4885 break; 4886 case ACPI_RECONFIG_DEVICE_REMOVE: 4887 if (!acpi_device_enumerated(adev)) 4888 break; 4889 4890 spi = acpi_spi_find_device_by_adev(adev); 4891 if (!spi) 4892 break; 4893 4894 spi_unregister_device(spi); 4895 put_device(&spi->dev); 4896 break; 4897 } 4898 4899 return NOTIFY_OK; 4900 } 4901 4902 static struct notifier_block spi_acpi_notifier = { 4903 .notifier_call = acpi_spi_notify, 4904 }; 4905 #else 4906 extern struct notifier_block spi_acpi_notifier; 4907 #endif 4908 4909 static int __init spi_init(void) 4910 { 4911 int status; 4912 4913 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4914 if (!buf) { 4915 status = -ENOMEM; 4916 goto err0; 4917 } 4918 4919 status = bus_register(&spi_bus_type); 4920 if (status < 0) 4921 goto err1; 4922 4923 status = class_register(&spi_master_class); 4924 if (status < 0) 4925 goto err2; 4926 4927 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4928 status = class_register(&spi_slave_class); 4929 if (status < 0) 4930 goto err3; 4931 } 4932 4933 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4934 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4935 if (IS_ENABLED(CONFIG_ACPI)) 4936 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4937 4938 return 0; 4939 4940 err3: 4941 class_unregister(&spi_master_class); 4942 err2: 4943 bus_unregister(&spi_bus_type); 4944 err1: 4945 kfree(buf); 4946 buf = NULL; 4947 err0: 4948 return status; 4949 } 4950 4951 /* 4952 * A board_info is normally registered in arch_initcall(), 4953 * but even essential drivers wait till later. 4954 * 4955 * REVISIT only boardinfo really needs static linking. The rest (device and 4956 * driver registration) _could_ be dynamically linked (modular) ... Costs 4957 * include needing to have boardinfo data structures be much more public. 4958 */ 4959 postcore_initcall(spi_init); 4960