xref: /linux/drivers/spi/spi-bitbang.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * polling/bitbanging SPI master controller driver utilities
4  */
5 
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 
15 #include <linux/spi/spi.h>
16 #include <linux/spi/spi_bitbang.h>
17 
18 #define SPI_BITBANG_CS_DELAY	100
19 
20 
21 /*----------------------------------------------------------------------*/
22 
23 /*
24  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
25  * Use this for GPIO or shift-register level hardware APIs.
26  *
27  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
28  * to glue code.  These bitbang setup() and cleanup() routines are always
29  * used, though maybe they're called from controller-aware code.
30  *
31  * chipselect() and friends may use spi_device->controller_data and
32  * controller registers as appropriate.
33  *
34  *
35  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
36  * which means you could use a bitbang driver either to get hardware
37  * working quickly, or testing for differences that aren't speed related.
38  */
39 
40 struct spi_bitbang_cs {
41 	unsigned	nsecs;	/* (clock cycle time)/2 */
42 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
43 					u32 word, u8 bits, unsigned flags);
44 	unsigned	(*txrx_bufs)(struct spi_device *,
45 					u32 (*txrx_word)(
46 						struct spi_device *spi,
47 						unsigned nsecs,
48 						u32 word, u8 bits,
49 						unsigned flags),
50 					unsigned, struct spi_transfer *,
51 					unsigned);
52 };
53 
54 static unsigned bitbang_txrx_8(
55 	struct spi_device	*spi,
56 	u32			(*txrx_word)(struct spi_device *spi,
57 					unsigned nsecs,
58 					u32 word, u8 bits,
59 					unsigned flags),
60 	unsigned		ns,
61 	struct spi_transfer	*t,
62 	unsigned flags
63 )
64 {
65 	unsigned		bits = t->bits_per_word;
66 	unsigned		count = t->len;
67 	const u8		*tx = t->tx_buf;
68 	u8			*rx = t->rx_buf;
69 
70 	while (likely(count > 0)) {
71 		u8		word = 0;
72 
73 		if (tx)
74 			word = *tx++;
75 		word = txrx_word(spi, ns, word, bits, flags);
76 		if (rx)
77 			*rx++ = word;
78 		count -= 1;
79 	}
80 	return t->len - count;
81 }
82 
83 static unsigned bitbang_txrx_16(
84 	struct spi_device	*spi,
85 	u32			(*txrx_word)(struct spi_device *spi,
86 					unsigned nsecs,
87 					u32 word, u8 bits,
88 					unsigned flags),
89 	unsigned		ns,
90 	struct spi_transfer	*t,
91 	unsigned flags
92 )
93 {
94 	unsigned		bits = t->bits_per_word;
95 	unsigned		count = t->len;
96 	const u16		*tx = t->tx_buf;
97 	u16			*rx = t->rx_buf;
98 
99 	while (likely(count > 1)) {
100 		u16		word = 0;
101 
102 		if (tx)
103 			word = *tx++;
104 		word = txrx_word(spi, ns, word, bits, flags);
105 		if (rx)
106 			*rx++ = word;
107 		count -= 2;
108 	}
109 	return t->len - count;
110 }
111 
112 static unsigned bitbang_txrx_32(
113 	struct spi_device	*spi,
114 	u32			(*txrx_word)(struct spi_device *spi,
115 					unsigned nsecs,
116 					u32 word, u8 bits,
117 					unsigned flags),
118 	unsigned		ns,
119 	struct spi_transfer	*t,
120 	unsigned flags
121 )
122 {
123 	unsigned		bits = t->bits_per_word;
124 	unsigned		count = t->len;
125 	const u32		*tx = t->tx_buf;
126 	u32			*rx = t->rx_buf;
127 
128 	while (likely(count > 3)) {
129 		u32		word = 0;
130 
131 		if (tx)
132 			word = *tx++;
133 		word = txrx_word(spi, ns, word, bits, flags);
134 		if (rx)
135 			*rx++ = word;
136 		count -= 4;
137 	}
138 	return t->len - count;
139 }
140 
141 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142 {
143 	struct spi_bitbang_cs	*cs = spi->controller_state;
144 	u8			bits_per_word;
145 	u32			hz;
146 
147 	if (t) {
148 		bits_per_word = t->bits_per_word;
149 		hz = t->speed_hz;
150 	} else {
151 		bits_per_word = 0;
152 		hz = 0;
153 	}
154 
155 	/* spi_transfer level calls that work per-word */
156 	if (!bits_per_word)
157 		bits_per_word = spi->bits_per_word;
158 	if (bits_per_word <= 8)
159 		cs->txrx_bufs = bitbang_txrx_8;
160 	else if (bits_per_word <= 16)
161 		cs->txrx_bufs = bitbang_txrx_16;
162 	else if (bits_per_word <= 32)
163 		cs->txrx_bufs = bitbang_txrx_32;
164 	else
165 		return -EINVAL;
166 
167 	/* nsecs = (clock period)/2 */
168 	if (!hz)
169 		hz = spi->max_speed_hz;
170 	if (hz) {
171 		cs->nsecs = (1000000000/2) / hz;
172 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173 			return -EINVAL;
174 	}
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179 
180 /*
181  * spi_bitbang_setup - default setup for per-word I/O loops
182  */
183 int spi_bitbang_setup(struct spi_device *spi)
184 {
185 	struct spi_bitbang_cs	*cs = spi->controller_state;
186 	struct spi_bitbang	*bitbang;
187 	bool			initial_setup = false;
188 	int			retval;
189 
190 	bitbang = spi_master_get_devdata(spi->master);
191 
192 	if (!cs) {
193 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
194 		if (!cs)
195 			return -ENOMEM;
196 		spi->controller_state = cs;
197 		initial_setup = true;
198 	}
199 
200 	/* per-word shift register access, in hardware or bitbanging */
201 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202 	if (!cs->txrx_word) {
203 		retval = -EINVAL;
204 		goto err_free;
205 	}
206 
207 	if (bitbang->setup_transfer) {
208 		retval = bitbang->setup_transfer(spi, NULL);
209 		if (retval < 0)
210 			goto err_free;
211 	}
212 
213 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
214 
215 	return 0;
216 
217 err_free:
218 	if (initial_setup)
219 		kfree(cs);
220 	return retval;
221 }
222 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
223 
224 /*
225  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
226  */
227 void spi_bitbang_cleanup(struct spi_device *spi)
228 {
229 	kfree(spi->controller_state);
230 }
231 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
232 
233 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
234 {
235 	struct spi_bitbang_cs	*cs = spi->controller_state;
236 	unsigned		nsecs = cs->nsecs;
237 	struct spi_bitbang	*bitbang;
238 
239 	bitbang = spi_master_get_devdata(spi->master);
240 	if (bitbang->set_line_direction) {
241 		int err;
242 
243 		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
244 		if (err < 0)
245 			return err;
246 	}
247 
248 	if (spi->mode & SPI_3WIRE) {
249 		unsigned flags;
250 
251 		flags = t->tx_buf ? SPI_MASTER_NO_RX : SPI_MASTER_NO_TX;
252 		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
253 	}
254 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
255 }
256 
257 /*----------------------------------------------------------------------*/
258 
259 /*
260  * SECOND PART ... simple transfer queue runner.
261  *
262  * This costs a task context per controller, running the queue by
263  * performing each transfer in sequence.  Smarter hardware can queue
264  * several DMA transfers at once, and process several controller queues
265  * in parallel; this driver doesn't match such hardware very well.
266  *
267  * Drivers can provide word-at-a-time i/o primitives, or provide
268  * transfer-at-a-time ones to leverage dma or fifo hardware.
269  */
270 
271 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
272 {
273 	struct spi_bitbang	*bitbang;
274 
275 	bitbang = spi_master_get_devdata(spi);
276 
277 	mutex_lock(&bitbang->lock);
278 	bitbang->busy = 1;
279 	mutex_unlock(&bitbang->lock);
280 
281 	return 0;
282 }
283 
284 static int spi_bitbang_transfer_one(struct spi_master *master,
285 				    struct spi_device *spi,
286 				    struct spi_transfer *transfer)
287 {
288 	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
289 	int status = 0;
290 
291 	if (bitbang->setup_transfer) {
292 		status = bitbang->setup_transfer(spi, transfer);
293 		if (status < 0)
294 			goto out;
295 	}
296 
297 	if (transfer->len)
298 		status = bitbang->txrx_bufs(spi, transfer);
299 
300 	if (status == transfer->len)
301 		status = 0;
302 	else if (status >= 0)
303 		status = -EREMOTEIO;
304 
305 out:
306 	spi_finalize_current_transfer(master);
307 
308 	return status;
309 }
310 
311 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
312 {
313 	struct spi_bitbang	*bitbang;
314 
315 	bitbang = spi_master_get_devdata(spi);
316 
317 	mutex_lock(&bitbang->lock);
318 	bitbang->busy = 0;
319 	mutex_unlock(&bitbang->lock);
320 
321 	return 0;
322 }
323 
324 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
325 {
326 	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
327 
328 	/* SPI core provides CS high / low, but bitbang driver
329 	 * expects CS active
330 	 * spi device driver takes care of handling SPI_CS_HIGH
331 	 */
332 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
333 
334 	ndelay(SPI_BITBANG_CS_DELAY);
335 	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
336 			    BITBANG_CS_INACTIVE);
337 	ndelay(SPI_BITBANG_CS_DELAY);
338 }
339 
340 /*----------------------------------------------------------------------*/
341 
342 int spi_bitbang_init(struct spi_bitbang *bitbang)
343 {
344 	struct spi_master *master = bitbang->master;
345 	bool custom_cs;
346 
347 	if (!master)
348 		return -EINVAL;
349 	/*
350 	 * We only need the chipselect callback if we are actually using it.
351 	 * If we just use GPIO descriptors, it is surplus. If the
352 	 * SPI_MASTER_GPIO_SS flag is set, we always need to call the
353 	 * driver-specific chipselect routine.
354 	 */
355 	custom_cs = (!master->use_gpio_descriptors ||
356 		     (master->flags & SPI_MASTER_GPIO_SS));
357 
358 	if (custom_cs && !bitbang->chipselect)
359 		return -EINVAL;
360 
361 	mutex_init(&bitbang->lock);
362 
363 	if (!master->mode_bits)
364 		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
365 
366 	if (master->transfer || master->transfer_one_message)
367 		return -EINVAL;
368 
369 	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
370 	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
371 	master->transfer_one = spi_bitbang_transfer_one;
372 	/*
373 	 * When using GPIO descriptors, the ->set_cs() callback doesn't even
374 	 * get called unless SPI_MASTER_GPIO_SS is set.
375 	 */
376 	if (custom_cs)
377 		master->set_cs = spi_bitbang_set_cs;
378 
379 	if (!bitbang->txrx_bufs) {
380 		bitbang->use_dma = 0;
381 		bitbang->txrx_bufs = spi_bitbang_bufs;
382 		if (!master->setup) {
383 			if (!bitbang->setup_transfer)
384 				bitbang->setup_transfer =
385 					 spi_bitbang_setup_transfer;
386 			master->setup = spi_bitbang_setup;
387 			master->cleanup = spi_bitbang_cleanup;
388 		}
389 	}
390 
391 	return 0;
392 }
393 EXPORT_SYMBOL_GPL(spi_bitbang_init);
394 
395 /**
396  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
397  * @bitbang: driver handle
398  *
399  * Caller should have zero-initialized all parts of the structure, and then
400  * provided callbacks for chip selection and I/O loops.  If the master has
401  * a transfer method, its final step should call spi_bitbang_transfer; or,
402  * that's the default if the transfer routine is not initialized.  It should
403  * also set up the bus number and number of chipselects.
404  *
405  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
406  * hardware that basically exposes a shift register) or per-spi_transfer
407  * (which takes better advantage of hardware like fifos or DMA engines).
408  *
409  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
410  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
411  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
412  * routine isn't initialized.
413  *
414  * This routine registers the spi_master, which will process requests in a
415  * dedicated task, keeping IRQs unblocked most of the time.  To stop
416  * processing those requests, call spi_bitbang_stop().
417  *
418  * On success, this routine will take a reference to master. The caller is
419  * responsible for calling spi_bitbang_stop() to decrement the reference and
420  * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
421  * leak.
422  */
423 int spi_bitbang_start(struct spi_bitbang *bitbang)
424 {
425 	struct spi_master *master = bitbang->master;
426 	int ret;
427 
428 	ret = spi_bitbang_init(bitbang);
429 	if (ret)
430 		return ret;
431 
432 	/* driver may get busy before register() returns, especially
433 	 * if someone registered boardinfo for devices
434 	 */
435 	ret = spi_register_master(spi_master_get(master));
436 	if (ret)
437 		spi_master_put(master);
438 
439 	return ret;
440 }
441 EXPORT_SYMBOL_GPL(spi_bitbang_start);
442 
443 /*
444  * spi_bitbang_stop - stops the task providing spi communication
445  */
446 void spi_bitbang_stop(struct spi_bitbang *bitbang)
447 {
448 	spi_unregister_master(bitbang->master);
449 }
450 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
451 
452 MODULE_LICENSE("GPL");
453 
454