1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Polling/bitbanging SPI host controller controller driver utilities
4 */
5
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/time64.h>
15
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi_bitbang.h>
18
19 #define SPI_BITBANG_CS_DELAY 100
20
21
22 /*----------------------------------------------------------------------*/
23
24 /*
25 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
26 * Use this for GPIO or shift-register level hardware APIs.
27 *
28 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
29 * to glue code. These bitbang setup() and cleanup() routines are always
30 * used, though maybe they're called from controller-aware code.
31 *
32 * chipselect() and friends may use spi_device->controller_data and
33 * controller registers as appropriate.
34 *
35 *
36 * NOTE: SPI controller pins can often be used as GPIO pins instead,
37 * which means you could use a bitbang driver either to get hardware
38 * working quickly, or testing for differences that aren't speed related.
39 */
40
41 typedef unsigned int (*spi_bb_txrx_bufs_fn)(struct spi_device *, spi_bb_txrx_word_fn,
42 unsigned int, struct spi_transfer *,
43 unsigned int);
44
45 struct spi_bitbang_cs {
46 unsigned int nsecs; /* (clock cycle time) / 2 */
47 spi_bb_txrx_word_fn txrx_word;
48 spi_bb_txrx_bufs_fn txrx_bufs;
49 };
50
bitbang_txrx_8(struct spi_device * spi,spi_bb_txrx_word_fn txrx_word,unsigned int ns,struct spi_transfer * t,unsigned int flags)51 static unsigned int bitbang_txrx_8(struct spi_device *spi,
52 spi_bb_txrx_word_fn txrx_word,
53 unsigned int ns,
54 struct spi_transfer *t,
55 unsigned int flags)
56 {
57 struct spi_bitbang *bitbang;
58 unsigned int bits = t->bits_per_word;
59 unsigned int count = t->len;
60 const u8 *tx = t->tx_buf;
61 u8 *rx = t->rx_buf;
62
63 bitbang = spi_controller_get_devdata(spi->controller);
64 while (likely(count > 0)) {
65 u8 word = 0;
66
67 if (tx)
68 word = *tx++;
69 else
70 word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFF : 0;
71 word = txrx_word(spi, ns, word, bits, flags);
72 if (rx)
73 *rx++ = word;
74 count -= 1;
75 }
76 if (bitbang->set_mosi_idle)
77 bitbang->set_mosi_idle(spi);
78
79 return t->len - count;
80 }
81
bitbang_txrx_16(struct spi_device * spi,spi_bb_txrx_word_fn txrx_word,unsigned int ns,struct spi_transfer * t,unsigned int flags)82 static unsigned int bitbang_txrx_16(struct spi_device *spi,
83 spi_bb_txrx_word_fn txrx_word,
84 unsigned int ns,
85 struct spi_transfer *t,
86 unsigned int flags)
87 {
88 struct spi_bitbang *bitbang;
89 unsigned int bits = t->bits_per_word;
90 unsigned int count = t->len;
91 const u16 *tx = t->tx_buf;
92 u16 *rx = t->rx_buf;
93
94 bitbang = spi_controller_get_devdata(spi->controller);
95 while (likely(count > 1)) {
96 u16 word = 0;
97
98 if (tx)
99 word = *tx++;
100 else
101 word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFF : 0;
102 word = txrx_word(spi, ns, word, bits, flags);
103 if (rx)
104 *rx++ = word;
105 count -= 2;
106 }
107 if (bitbang->set_mosi_idle)
108 bitbang->set_mosi_idle(spi);
109
110 return t->len - count;
111 }
112
bitbang_txrx_32(struct spi_device * spi,spi_bb_txrx_word_fn txrx_word,unsigned int ns,struct spi_transfer * t,unsigned int flags)113 static unsigned int bitbang_txrx_32(struct spi_device *spi,
114 spi_bb_txrx_word_fn txrx_word,
115 unsigned int ns,
116 struct spi_transfer *t,
117 unsigned int flags)
118 {
119 struct spi_bitbang *bitbang;
120 unsigned int bits = t->bits_per_word;
121 unsigned int count = t->len;
122 const u32 *tx = t->tx_buf;
123 u32 *rx = t->rx_buf;
124
125 bitbang = spi_controller_get_devdata(spi->controller);
126 while (likely(count > 3)) {
127 u32 word = 0;
128
129 if (tx)
130 word = *tx++;
131 else
132 word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFFFFFF : 0;
133 word = txrx_word(spi, ns, word, bits, flags);
134 if (rx)
135 *rx++ = word;
136 count -= 4;
137 }
138 if (bitbang->set_mosi_idle)
139 bitbang->set_mosi_idle(spi);
140
141 return t->len - count;
142 }
143
spi_bitbang_setup_transfer(struct spi_device * spi,struct spi_transfer * t)144 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
145 {
146 struct spi_bitbang_cs *cs = spi->controller_state;
147 u8 bits_per_word;
148 u32 hz;
149
150 if (t) {
151 bits_per_word = t->bits_per_word;
152 hz = t->speed_hz;
153 } else {
154 bits_per_word = 0;
155 hz = 0;
156 }
157
158 /* spi_transfer level calls that work per-word */
159 if (!bits_per_word)
160 bits_per_word = spi->bits_per_word;
161 if (bits_per_word <= 8)
162 cs->txrx_bufs = bitbang_txrx_8;
163 else if (bits_per_word <= 16)
164 cs->txrx_bufs = bitbang_txrx_16;
165 else if (bits_per_word <= 32)
166 cs->txrx_bufs = bitbang_txrx_32;
167 else
168 return -EINVAL;
169
170 /* nsecs = (clock period)/2 */
171 if (!hz)
172 hz = spi->max_speed_hz;
173 if (hz) {
174 cs->nsecs = (NSEC_PER_SEC / 2) / hz;
175 if (cs->nsecs > (MAX_UDELAY_MS * NSEC_PER_MSEC))
176 return -EINVAL;
177 }
178
179 return 0;
180 }
181 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
182
183 /*
184 * spi_bitbang_setup - default setup for per-word I/O loops
185 */
spi_bitbang_setup(struct spi_device * spi)186 int spi_bitbang_setup(struct spi_device *spi)
187 {
188 struct spi_bitbang_cs *cs = spi->controller_state;
189 struct spi_bitbang *bitbang;
190 bool initial_setup = false;
191 int retval;
192
193 bitbang = spi_controller_get_devdata(spi->controller);
194
195 if (!cs) {
196 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
197 if (!cs)
198 return -ENOMEM;
199 spi->controller_state = cs;
200 initial_setup = true;
201 }
202
203 /* per-word shift register access, in hardware or bitbanging */
204 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
205 if (!cs->txrx_word) {
206 retval = -EINVAL;
207 goto err_free;
208 }
209
210 if (bitbang->setup_transfer) {
211 retval = bitbang->setup_transfer(spi, NULL);
212 if (retval < 0)
213 goto err_free;
214 }
215
216 if (bitbang->set_mosi_idle)
217 bitbang->set_mosi_idle(spi);
218
219 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
220
221 return 0;
222
223 err_free:
224 if (initial_setup)
225 kfree(cs);
226 return retval;
227 }
228 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
229
230 /*
231 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
232 */
spi_bitbang_cleanup(struct spi_device * spi)233 void spi_bitbang_cleanup(struct spi_device *spi)
234 {
235 kfree(spi->controller_state);
236 }
237 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
238
spi_bitbang_bufs(struct spi_device * spi,struct spi_transfer * t)239 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
240 {
241 struct spi_bitbang_cs *cs = spi->controller_state;
242 unsigned int nsecs = cs->nsecs;
243 struct spi_bitbang *bitbang;
244
245 bitbang = spi_controller_get_devdata(spi->controller);
246 if (bitbang->set_line_direction) {
247 int err;
248
249 err = bitbang->set_line_direction(spi, !!(t->tx_buf));
250 if (err < 0)
251 return err;
252 }
253
254 if (spi->mode & SPI_3WIRE) {
255 unsigned int flags;
256
257 flags = t->tx_buf ? SPI_CONTROLLER_NO_RX : SPI_CONTROLLER_NO_TX;
258 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
259 }
260 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
261 }
262
263 /*----------------------------------------------------------------------*/
264
265 /*
266 * SECOND PART ... simple transfer queue runner.
267 *
268 * This costs a task context per controller, running the queue by
269 * performing each transfer in sequence. Smarter hardware can queue
270 * several DMA transfers at once, and process several controller queues
271 * in parallel; this driver doesn't match such hardware very well.
272 *
273 * Drivers can provide word-at-a-time i/o primitives, or provide
274 * transfer-at-a-time ones to leverage dma or fifo hardware.
275 */
276
spi_bitbang_prepare_hardware(struct spi_controller * spi)277 static int spi_bitbang_prepare_hardware(struct spi_controller *spi)
278 {
279 struct spi_bitbang *bitbang;
280
281 bitbang = spi_controller_get_devdata(spi);
282
283 mutex_lock(&bitbang->lock);
284 bitbang->busy = 1;
285 mutex_unlock(&bitbang->lock);
286
287 return 0;
288 }
289
spi_bitbang_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * transfer)290 static int spi_bitbang_transfer_one(struct spi_controller *ctlr,
291 struct spi_device *spi,
292 struct spi_transfer *transfer)
293 {
294 struct spi_bitbang *bitbang = spi_controller_get_devdata(ctlr);
295 int status = 0;
296
297 if (bitbang->setup_transfer) {
298 status = bitbang->setup_transfer(spi, transfer);
299 if (status < 0)
300 goto out;
301 }
302
303 if (transfer->len)
304 status = bitbang->txrx_bufs(spi, transfer);
305
306 if (status == transfer->len)
307 status = 0;
308 else if (status >= 0)
309 status = -EREMOTEIO;
310
311 out:
312 spi_finalize_current_transfer(ctlr);
313
314 return status;
315 }
316
spi_bitbang_unprepare_hardware(struct spi_controller * spi)317 static int spi_bitbang_unprepare_hardware(struct spi_controller *spi)
318 {
319 struct spi_bitbang *bitbang;
320
321 bitbang = spi_controller_get_devdata(spi);
322
323 mutex_lock(&bitbang->lock);
324 bitbang->busy = 0;
325 mutex_unlock(&bitbang->lock);
326
327 return 0;
328 }
329
spi_bitbang_set_cs(struct spi_device * spi,bool enable)330 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
331 {
332 struct spi_bitbang *bitbang = spi_controller_get_devdata(spi->controller);
333
334 /* SPI core provides CS high / low, but bitbang driver
335 * expects CS active
336 * spi device driver takes care of handling SPI_CS_HIGH
337 */
338 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
339
340 ndelay(SPI_BITBANG_CS_DELAY);
341 bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
342 BITBANG_CS_INACTIVE);
343 ndelay(SPI_BITBANG_CS_DELAY);
344 }
345
346 /*----------------------------------------------------------------------*/
347
spi_bitbang_init(struct spi_bitbang * bitbang)348 int spi_bitbang_init(struct spi_bitbang *bitbang)
349 {
350 struct spi_controller *ctlr = bitbang->ctlr;
351 bool custom_cs;
352
353 if (!ctlr)
354 return -EINVAL;
355 /*
356 * We only need the chipselect callback if we are actually using it.
357 * If we just use GPIO descriptors, it is surplus. If the
358 * SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the
359 * driver-specific chipselect routine.
360 */
361 custom_cs = (!ctlr->use_gpio_descriptors ||
362 (ctlr->flags & SPI_CONTROLLER_GPIO_SS));
363
364 if (custom_cs && !bitbang->chipselect)
365 return -EINVAL;
366
367 mutex_init(&bitbang->lock);
368
369 if (!ctlr->mode_bits)
370 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
371
372 if (ctlr->transfer || ctlr->transfer_one_message)
373 return -EINVAL;
374
375 ctlr->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
376 ctlr->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
377 ctlr->transfer_one = spi_bitbang_transfer_one;
378 /*
379 * When using GPIO descriptors, the ->set_cs() callback doesn't even
380 * get called unless SPI_CONTROLLER_GPIO_SS is set.
381 */
382 if (custom_cs)
383 ctlr->set_cs = spi_bitbang_set_cs;
384
385 if (!bitbang->txrx_bufs) {
386 bitbang->use_dma = 0;
387 bitbang->txrx_bufs = spi_bitbang_bufs;
388 if (!ctlr->setup) {
389 if (!bitbang->setup_transfer)
390 bitbang->setup_transfer =
391 spi_bitbang_setup_transfer;
392 ctlr->setup = spi_bitbang_setup;
393 ctlr->cleanup = spi_bitbang_cleanup;
394 }
395 }
396
397 return 0;
398 }
399 EXPORT_SYMBOL_GPL(spi_bitbang_init);
400
401 /**
402 * spi_bitbang_start - start up a polled/bitbanging SPI host controller driver
403 * @bitbang: driver handle
404 *
405 * Caller should have zero-initialized all parts of the structure, and then
406 * provided callbacks for chip selection and I/O loops. If the host controller has
407 * a transfer method, its final step should call spi_bitbang_transfer(); or,
408 * that's the default if the transfer routine is not initialized. It should
409 * also set up the bus number and number of chipselects.
410 *
411 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
412 * hardware that basically exposes a shift register) or per-spi_transfer
413 * (which takes better advantage of hardware like fifos or DMA engines).
414 *
415 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup(),
416 * spi_bitbang_cleanup() and spi_bitbang_setup_transfer() to handle those SPI
417 * host controller methods. Those methods are the defaults if the bitbang->txrx_bufs
418 * routine isn't initialized.
419 *
420 * This routine registers the spi_controller, which will process requests in a
421 * dedicated task, keeping IRQs unblocked most of the time. To stop
422 * processing those requests, call spi_bitbang_stop().
423 *
424 * On success, this routine will take a reference to the controller. The caller
425 * is responsible for calling spi_bitbang_stop() to decrement the reference and
426 * spi_controller_put() as counterpart of spi_alloc_host() to prevent a memory
427 * leak.
428 */
spi_bitbang_start(struct spi_bitbang * bitbang)429 int spi_bitbang_start(struct spi_bitbang *bitbang)
430 {
431 struct spi_controller *ctlr = bitbang->ctlr;
432 int ret;
433
434 ret = spi_bitbang_init(bitbang);
435 if (ret)
436 return ret;
437
438 /* driver may get busy before register() returns, especially
439 * if someone registered boardinfo for devices
440 */
441 ret = spi_register_controller(spi_controller_get(ctlr));
442 if (ret)
443 spi_controller_put(ctlr);
444
445 return ret;
446 }
447 EXPORT_SYMBOL_GPL(spi_bitbang_start);
448
449 /*
450 * spi_bitbang_stop - stops the task providing spi communication
451 */
spi_bitbang_stop(struct spi_bitbang * bitbang)452 void spi_bitbang_stop(struct spi_bitbang *bitbang)
453 {
454 spi_unregister_controller(bitbang->ctlr);
455 }
456 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
457
458 MODULE_LICENSE("GPL");
459 MODULE_DESCRIPTION("Utilities for Bitbanging SPI host controllers");
460