xref: /linux/drivers/spi/spi-bitbang.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * polling/bitbanging SPI master controller driver utilities
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
26 
27 
28 /*----------------------------------------------------------------------*/
29 
30 /*
31  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
32  * Use this for GPIO or shift-register level hardware APIs.
33  *
34  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
35  * to glue code.  These bitbang setup() and cleanup() routines are always
36  * used, though maybe they're called from controller-aware code.
37  *
38  * chipselect() and friends may use spi_device->controller_data and
39  * controller registers as appropriate.
40  *
41  *
42  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
43  * which means you could use a bitbang driver either to get hardware
44  * working quickly, or testing for differences that aren't speed related.
45  */
46 
47 struct spi_bitbang_cs {
48 	unsigned	nsecs;	/* (clock cycle time)/2 */
49 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
50 					u32 word, u8 bits);
51 	unsigned	(*txrx_bufs)(struct spi_device *,
52 					u32 (*txrx_word)(
53 						struct spi_device *spi,
54 						unsigned nsecs,
55 						u32 word, u8 bits),
56 					unsigned, struct spi_transfer *);
57 };
58 
59 static unsigned bitbang_txrx_8(
60 	struct spi_device	*spi,
61 	u32			(*txrx_word)(struct spi_device *spi,
62 					unsigned nsecs,
63 					u32 word, u8 bits),
64 	unsigned		ns,
65 	struct spi_transfer	*t
66 ) {
67 	unsigned		bits = t->bits_per_word;
68 	unsigned		count = t->len;
69 	const u8		*tx = t->tx_buf;
70 	u8			*rx = t->rx_buf;
71 
72 	while (likely(count > 0)) {
73 		u8		word = 0;
74 
75 		if (tx)
76 			word = *tx++;
77 		word = txrx_word(spi, ns, word, bits);
78 		if (rx)
79 			*rx++ = word;
80 		count -= 1;
81 	}
82 	return t->len - count;
83 }
84 
85 static unsigned bitbang_txrx_16(
86 	struct spi_device	*spi,
87 	u32			(*txrx_word)(struct spi_device *spi,
88 					unsigned nsecs,
89 					u32 word, u8 bits),
90 	unsigned		ns,
91 	struct spi_transfer	*t
92 ) {
93 	unsigned		bits = t->bits_per_word;
94 	unsigned		count = t->len;
95 	const u16		*tx = t->tx_buf;
96 	u16			*rx = t->rx_buf;
97 
98 	while (likely(count > 1)) {
99 		u16		word = 0;
100 
101 		if (tx)
102 			word = *tx++;
103 		word = txrx_word(spi, ns, word, bits);
104 		if (rx)
105 			*rx++ = word;
106 		count -= 2;
107 	}
108 	return t->len - count;
109 }
110 
111 static unsigned bitbang_txrx_32(
112 	struct spi_device	*spi,
113 	u32			(*txrx_word)(struct spi_device *spi,
114 					unsigned nsecs,
115 					u32 word, u8 bits),
116 	unsigned		ns,
117 	struct spi_transfer	*t
118 ) {
119 	unsigned		bits = t->bits_per_word;
120 	unsigned		count = t->len;
121 	const u32		*tx = t->tx_buf;
122 	u32			*rx = t->rx_buf;
123 
124 	while (likely(count > 3)) {
125 		u32		word = 0;
126 
127 		if (tx)
128 			word = *tx++;
129 		word = txrx_word(spi, ns, word, bits);
130 		if (rx)
131 			*rx++ = word;
132 		count -= 4;
133 	}
134 	return t->len - count;
135 }
136 
137 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
138 {
139 	struct spi_bitbang_cs	*cs = spi->controller_state;
140 	u8			bits_per_word;
141 	u32			hz;
142 
143 	if (t) {
144 		bits_per_word = t->bits_per_word;
145 		hz = t->speed_hz;
146 	} else {
147 		bits_per_word = 0;
148 		hz = 0;
149 	}
150 
151 	/* spi_transfer level calls that work per-word */
152 	if (!bits_per_word)
153 		bits_per_word = spi->bits_per_word;
154 	if (bits_per_word <= 8)
155 		cs->txrx_bufs = bitbang_txrx_8;
156 	else if (bits_per_word <= 16)
157 		cs->txrx_bufs = bitbang_txrx_16;
158 	else if (bits_per_word <= 32)
159 		cs->txrx_bufs = bitbang_txrx_32;
160 	else
161 		return -EINVAL;
162 
163 	/* nsecs = (clock period)/2 */
164 	if (!hz)
165 		hz = spi->max_speed_hz;
166 	if (hz) {
167 		cs->nsecs = (1000000000/2) / hz;
168 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
169 			return -EINVAL;
170 	}
171 
172 	return 0;
173 }
174 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
175 
176 /**
177  * spi_bitbang_setup - default setup for per-word I/O loops
178  */
179 int spi_bitbang_setup(struct spi_device *spi)
180 {
181 	struct spi_bitbang_cs	*cs = spi->controller_state;
182 	struct spi_bitbang	*bitbang;
183 	unsigned long		flags;
184 
185 	bitbang = spi_master_get_devdata(spi->master);
186 
187 	if (!cs) {
188 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
189 		if (!cs)
190 			return -ENOMEM;
191 		spi->controller_state = cs;
192 	}
193 
194 	/* per-word shift register access, in hardware or bitbanging */
195 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
196 	if (!cs->txrx_word)
197 		return -EINVAL;
198 
199 	if (bitbang->setup_transfer) {
200 		int retval = bitbang->setup_transfer(spi, NULL);
201 		if (retval < 0)
202 			return retval;
203 	}
204 
205 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
206 
207 	/* NOTE we _need_ to call chipselect() early, ideally with adapter
208 	 * setup, unless the hardware defaults cooperate to avoid confusion
209 	 * between normal (active low) and inverted chipselects.
210 	 */
211 
212 	/* deselect chip (low or high) */
213 	spin_lock_irqsave(&bitbang->lock, flags);
214 	if (!bitbang->busy) {
215 		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
216 		ndelay(cs->nsecs);
217 	}
218 	spin_unlock_irqrestore(&bitbang->lock, flags);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
223 
224 /**
225  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
226  */
227 void spi_bitbang_cleanup(struct spi_device *spi)
228 {
229 	kfree(spi->controller_state);
230 }
231 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
232 
233 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
234 {
235 	struct spi_bitbang_cs	*cs = spi->controller_state;
236 	unsigned		nsecs = cs->nsecs;
237 
238 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
239 }
240 
241 /*----------------------------------------------------------------------*/
242 
243 /*
244  * SECOND PART ... simple transfer queue runner.
245  *
246  * This costs a task context per controller, running the queue by
247  * performing each transfer in sequence.  Smarter hardware can queue
248  * several DMA transfers at once, and process several controller queues
249  * in parallel; this driver doesn't match such hardware very well.
250  *
251  * Drivers can provide word-at-a-time i/o primitives, or provide
252  * transfer-at-a-time ones to leverage dma or fifo hardware.
253  */
254 
255 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
256 {
257 	struct spi_bitbang	*bitbang;
258 	unsigned long		flags;
259 
260 	bitbang = spi_master_get_devdata(spi);
261 
262 	spin_lock_irqsave(&bitbang->lock, flags);
263 	bitbang->busy = 1;
264 	spin_unlock_irqrestore(&bitbang->lock, flags);
265 
266 	return 0;
267 }
268 
269 static int spi_bitbang_transfer_one(struct spi_master *master,
270 				    struct spi_message *m)
271 {
272 	struct spi_bitbang	*bitbang;
273 	unsigned		nsecs;
274 	struct spi_transfer	*t = NULL;
275 	unsigned		cs_change;
276 	int			status;
277 	int			do_setup = -1;
278 	struct spi_device	*spi = m->spi;
279 
280 	bitbang = spi_master_get_devdata(master);
281 
282 	/* FIXME this is made-up ... the correct value is known to
283 	 * word-at-a-time bitbang code, and presumably chipselect()
284 	 * should enforce these requirements too?
285 	 */
286 	nsecs = 100;
287 
288 	cs_change = 1;
289 	status = 0;
290 
291 	list_for_each_entry(t, &m->transfers, transfer_list) {
292 
293 		/* override speed or wordsize? */
294 		if (t->speed_hz || t->bits_per_word)
295 			do_setup = 1;
296 
297 		/* init (-1) or override (1) transfer params */
298 		if (do_setup != 0) {
299 			if (bitbang->setup_transfer) {
300 				status = bitbang->setup_transfer(spi, t);
301 				if (status < 0)
302 					break;
303 			}
304 			if (do_setup == -1)
305 				do_setup = 0;
306 		}
307 
308 		/* set up default clock polarity, and activate chip;
309 		 * this implicitly updates clock and spi modes as
310 		 * previously recorded for this device via setup().
311 		 * (and also deselects any other chip that might be
312 		 * selected ...)
313 		 */
314 		if (cs_change) {
315 			bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
316 			ndelay(nsecs);
317 		}
318 		cs_change = t->cs_change;
319 		if (!t->tx_buf && !t->rx_buf && t->len) {
320 			status = -EINVAL;
321 			break;
322 		}
323 
324 		/* transfer data.  the lower level code handles any
325 		 * new dma mappings it needs. our caller always gave
326 		 * us dma-safe buffers.
327 		 */
328 		if (t->len) {
329 			/* REVISIT dma API still needs a designated
330 			 * DMA_ADDR_INVALID; ~0 might be better.
331 			 */
332 			if (!m->is_dma_mapped)
333 				t->rx_dma = t->tx_dma = 0;
334 			status = bitbang->txrx_bufs(spi, t);
335 		}
336 		if (status > 0)
337 			m->actual_length += status;
338 		if (status != t->len) {
339 			/* always report some kind of error */
340 			if (status >= 0)
341 				status = -EREMOTEIO;
342 			break;
343 		}
344 		status = 0;
345 
346 		/* protocol tweaks before next transfer */
347 		if (t->delay_usecs)
348 			udelay(t->delay_usecs);
349 
350 		if (cs_change &&
351 		    !list_is_last(&t->transfer_list, &m->transfers)) {
352 			/* sometimes a short mid-message deselect of the chip
353 			 * may be needed to terminate a mode or command
354 			 */
355 			ndelay(nsecs);
356 			bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
357 			ndelay(nsecs);
358 		}
359 	}
360 
361 	m->status = status;
362 
363 	/* normally deactivate chipselect ... unless no error and
364 	 * cs_change has hinted that the next message will probably
365 	 * be for this chip too.
366 	 */
367 	if (!(status == 0 && cs_change)) {
368 		ndelay(nsecs);
369 		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
370 		ndelay(nsecs);
371 	}
372 
373 	spi_finalize_current_message(master);
374 
375 	return status;
376 }
377 
378 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
379 {
380 	struct spi_bitbang	*bitbang;
381 	unsigned long		flags;
382 
383 	bitbang = spi_master_get_devdata(spi);
384 
385 	spin_lock_irqsave(&bitbang->lock, flags);
386 	bitbang->busy = 0;
387 	spin_unlock_irqrestore(&bitbang->lock, flags);
388 
389 	return 0;
390 }
391 
392 /*----------------------------------------------------------------------*/
393 
394 /**
395  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
396  * @bitbang: driver handle
397  *
398  * Caller should have zero-initialized all parts of the structure, and then
399  * provided callbacks for chip selection and I/O loops.  If the master has
400  * a transfer method, its final step should call spi_bitbang_transfer; or,
401  * that's the default if the transfer routine is not initialized.  It should
402  * also set up the bus number and number of chipselects.
403  *
404  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
405  * hardware that basically exposes a shift register) or per-spi_transfer
406  * (which takes better advantage of hardware like fifos or DMA engines).
407  *
408  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
409  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
410  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
411  * routine isn't initialized.
412  *
413  * This routine registers the spi_master, which will process requests in a
414  * dedicated task, keeping IRQs unblocked most of the time.  To stop
415  * processing those requests, call spi_bitbang_stop().
416  *
417  * On success, this routine will take a reference to master. The caller is
418  * responsible for calling spi_bitbang_stop() to decrement the reference and
419  * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
420  * leak.
421  */
422 int spi_bitbang_start(struct spi_bitbang *bitbang)
423 {
424 	struct spi_master *master = bitbang->master;
425 	int ret;
426 
427 	if (!master || !bitbang->chipselect)
428 		return -EINVAL;
429 
430 	spin_lock_init(&bitbang->lock);
431 
432 	if (!master->mode_bits)
433 		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
434 
435 	if (master->transfer || master->transfer_one_message)
436 		return -EINVAL;
437 
438 	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
439 	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
440 	master->transfer_one_message = spi_bitbang_transfer_one;
441 
442 	if (!bitbang->txrx_bufs) {
443 		bitbang->use_dma = 0;
444 		bitbang->txrx_bufs = spi_bitbang_bufs;
445 		if (!master->setup) {
446 			if (!bitbang->setup_transfer)
447 				bitbang->setup_transfer =
448 					 spi_bitbang_setup_transfer;
449 			master->setup = spi_bitbang_setup;
450 			master->cleanup = spi_bitbang_cleanup;
451 		}
452 	}
453 
454 	/* driver may get busy before register() returns, especially
455 	 * if someone registered boardinfo for devices
456 	 */
457 	ret = spi_register_master(spi_master_get(master));
458 	if (ret)
459 		spi_master_put(master);
460 
461 	return 0;
462 }
463 EXPORT_SYMBOL_GPL(spi_bitbang_start);
464 
465 /**
466  * spi_bitbang_stop - stops the task providing spi communication
467  */
468 void spi_bitbang_stop(struct spi_bitbang *bitbang)
469 {
470 	spi_unregister_master(bitbang->master);
471 }
472 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
473 
474 MODULE_LICENSE("GPL");
475 
476