xref: /linux/drivers/spi/spi-bitbang.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Polling/bitbanging SPI host controller controller driver utilities
4  */
5 
6 #include <linux/spinlock.h>
7 #include <linux/workqueue.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/time64.h>
15 
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi_bitbang.h>
18 
19 #define SPI_BITBANG_CS_DELAY	100
20 
21 
22 /*----------------------------------------------------------------------*/
23 
24 /*
25  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
26  * Use this for GPIO or shift-register level hardware APIs.
27  *
28  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
29  * to glue code.  These bitbang setup() and cleanup() routines are always
30  * used, though maybe they're called from controller-aware code.
31  *
32  * chipselect() and friends may use spi_device->controller_data and
33  * controller registers as appropriate.
34  *
35  *
36  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
37  * which means you could use a bitbang driver either to get hardware
38  * working quickly, or testing for differences that aren't speed related.
39  */
40 
41 typedef unsigned int (*spi_bb_txrx_bufs_fn)(struct spi_device *, spi_bb_txrx_word_fn,
42 					    unsigned int, struct spi_transfer *,
43 					    unsigned int);
44 
45 struct spi_bitbang_cs {
46 	unsigned int nsecs;	/* (clock cycle time) / 2 */
47 	spi_bb_txrx_word_fn txrx_word;
48 	spi_bb_txrx_bufs_fn txrx_bufs;
49 };
50 
51 static unsigned int bitbang_txrx_8(struct spi_device *spi,
52 	spi_bb_txrx_word_fn txrx_word,
53 	unsigned int ns,
54 	struct spi_transfer	*t,
55 	unsigned int flags)
56 {
57 	struct spi_bitbang	*bitbang;
58 	unsigned int		bits = t->bits_per_word;
59 	unsigned int		count = t->len;
60 	const u8		*tx = t->tx_buf;
61 	u8			*rx = t->rx_buf;
62 
63 	bitbang = spi_controller_get_devdata(spi->controller);
64 	while (likely(count > 0)) {
65 		u8		word = 0;
66 
67 		if (tx)
68 			word = *tx++;
69 		else
70 			word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFF : 0;
71 		word = txrx_word(spi, ns, word, bits, flags);
72 		if (rx)
73 			*rx++ = word;
74 		count -= 1;
75 	}
76 	if (bitbang->set_mosi_idle)
77 		bitbang->set_mosi_idle(spi);
78 
79 	return t->len - count;
80 }
81 
82 static unsigned int bitbang_txrx_16(struct spi_device *spi,
83 	spi_bb_txrx_word_fn txrx_word,
84 	unsigned int ns,
85 	struct spi_transfer	*t,
86 	unsigned int flags)
87 {
88 	struct spi_bitbang	*bitbang;
89 	unsigned int		bits = t->bits_per_word;
90 	unsigned int		count = t->len;
91 	const u16		*tx = t->tx_buf;
92 	u16			*rx = t->rx_buf;
93 
94 	bitbang = spi_controller_get_devdata(spi->controller);
95 	while (likely(count > 1)) {
96 		u16		word = 0;
97 
98 		if (tx)
99 			word = *tx++;
100 		else
101 			word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFF : 0;
102 		word = txrx_word(spi, ns, word, bits, flags);
103 		if (rx)
104 			*rx++ = word;
105 		count -= 2;
106 	}
107 	if (bitbang->set_mosi_idle)
108 		bitbang->set_mosi_idle(spi);
109 
110 	return t->len - count;
111 }
112 
113 static unsigned int bitbang_txrx_32(struct spi_device *spi,
114 	spi_bb_txrx_word_fn txrx_word,
115 	unsigned int ns,
116 	struct spi_transfer	*t,
117 	unsigned int flags)
118 {
119 	struct spi_bitbang	*bitbang;
120 	unsigned int		bits = t->bits_per_word;
121 	unsigned int		count = t->len;
122 	const u32		*tx = t->tx_buf;
123 	u32			*rx = t->rx_buf;
124 
125 	bitbang = spi_controller_get_devdata(spi->controller);
126 	while (likely(count > 3)) {
127 		u32		word = 0;
128 
129 		if (tx)
130 			word = *tx++;
131 		else
132 			word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFFFFFF : 0;
133 		word = txrx_word(spi, ns, word, bits, flags);
134 		if (rx)
135 			*rx++ = word;
136 		count -= 4;
137 	}
138 	if (bitbang->set_mosi_idle)
139 		bitbang->set_mosi_idle(spi);
140 
141 	return t->len - count;
142 }
143 
144 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
145 {
146 	struct spi_bitbang_cs	*cs = spi->controller_state;
147 	u8			bits_per_word;
148 	u32			hz;
149 
150 	if (t) {
151 		bits_per_word = t->bits_per_word;
152 		hz = t->speed_hz;
153 	} else {
154 		bits_per_word = 0;
155 		hz = 0;
156 	}
157 
158 	/* spi_transfer level calls that work per-word */
159 	if (!bits_per_word)
160 		bits_per_word = spi->bits_per_word;
161 	if (bits_per_word <= 8)
162 		cs->txrx_bufs = bitbang_txrx_8;
163 	else if (bits_per_word <= 16)
164 		cs->txrx_bufs = bitbang_txrx_16;
165 	else if (bits_per_word <= 32)
166 		cs->txrx_bufs = bitbang_txrx_32;
167 	else
168 		return -EINVAL;
169 
170 	/* nsecs = (clock period)/2 */
171 	if (!hz)
172 		hz = spi->max_speed_hz;
173 	if (hz) {
174 		cs->nsecs = (NSEC_PER_SEC / 2) / hz;
175 		if (cs->nsecs > (MAX_UDELAY_MS * NSEC_PER_MSEC))
176 			return -EINVAL;
177 	}
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
182 
183 /*
184  * spi_bitbang_setup - default setup for per-word I/O loops
185  */
186 int spi_bitbang_setup(struct spi_device *spi)
187 {
188 	struct spi_bitbang_cs	*cs = spi->controller_state;
189 	struct spi_bitbang	*bitbang;
190 	bool			initial_setup = false;
191 	int			retval;
192 
193 	bitbang = spi_controller_get_devdata(spi->controller);
194 
195 	if (!cs) {
196 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
197 		if (!cs)
198 			return -ENOMEM;
199 		spi->controller_state = cs;
200 		initial_setup = true;
201 	}
202 
203 	/* per-word shift register access, in hardware or bitbanging */
204 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
205 	if (!cs->txrx_word) {
206 		retval = -EINVAL;
207 		goto err_free;
208 	}
209 
210 	if (bitbang->setup_transfer) {
211 		retval = bitbang->setup_transfer(spi, NULL);
212 		if (retval < 0)
213 			goto err_free;
214 	}
215 
216 	if (bitbang->set_mosi_idle)
217 		bitbang->set_mosi_idle(spi);
218 
219 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
220 
221 	return 0;
222 
223 err_free:
224 	if (initial_setup)
225 		kfree(cs);
226 	return retval;
227 }
228 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
229 
230 /*
231  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
232  */
233 void spi_bitbang_cleanup(struct spi_device *spi)
234 {
235 	kfree(spi->controller_state);
236 }
237 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
238 
239 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
240 {
241 	struct spi_bitbang_cs	*cs = spi->controller_state;
242 	unsigned int		nsecs = cs->nsecs;
243 	struct spi_bitbang	*bitbang;
244 
245 	bitbang = spi_controller_get_devdata(spi->controller);
246 	if (bitbang->set_line_direction) {
247 		int err;
248 
249 		err = bitbang->set_line_direction(spi, !!(t->tx_buf));
250 		if (err < 0)
251 			return err;
252 	}
253 
254 	if (spi->mode & SPI_3WIRE) {
255 		unsigned int flags;
256 
257 		flags = t->tx_buf ? SPI_CONTROLLER_NO_RX : SPI_CONTROLLER_NO_TX;
258 		return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
259 	}
260 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
261 }
262 
263 /*----------------------------------------------------------------------*/
264 
265 /*
266  * SECOND PART ... simple transfer queue runner.
267  *
268  * This costs a task context per controller, running the queue by
269  * performing each transfer in sequence.  Smarter hardware can queue
270  * several DMA transfers at once, and process several controller queues
271  * in parallel; this driver doesn't match such hardware very well.
272  *
273  * Drivers can provide word-at-a-time i/o primitives, or provide
274  * transfer-at-a-time ones to leverage dma or fifo hardware.
275  */
276 
277 static int spi_bitbang_prepare_hardware(struct spi_controller *spi)
278 {
279 	struct spi_bitbang	*bitbang;
280 
281 	bitbang = spi_controller_get_devdata(spi);
282 
283 	mutex_lock(&bitbang->lock);
284 	bitbang->busy = 1;
285 	mutex_unlock(&bitbang->lock);
286 
287 	return 0;
288 }
289 
290 static int spi_bitbang_transfer_one(struct spi_controller *ctlr,
291 				    struct spi_device *spi,
292 				    struct spi_transfer *transfer)
293 {
294 	struct spi_bitbang *bitbang = spi_controller_get_devdata(ctlr);
295 	int status = 0;
296 
297 	if (bitbang->setup_transfer) {
298 		status = bitbang->setup_transfer(spi, transfer);
299 		if (status < 0)
300 			goto out;
301 	}
302 
303 	if (transfer->len)
304 		status = bitbang->txrx_bufs(spi, transfer);
305 
306 	if (status == transfer->len)
307 		status = 0;
308 	else if (status >= 0)
309 		status = -EREMOTEIO;
310 
311 out:
312 	spi_finalize_current_transfer(ctlr);
313 
314 	return status;
315 }
316 
317 static int spi_bitbang_unprepare_hardware(struct spi_controller *spi)
318 {
319 	struct spi_bitbang	*bitbang;
320 
321 	bitbang = spi_controller_get_devdata(spi);
322 
323 	mutex_lock(&bitbang->lock);
324 	bitbang->busy = 0;
325 	mutex_unlock(&bitbang->lock);
326 
327 	return 0;
328 }
329 
330 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
331 {
332 	struct spi_bitbang *bitbang = spi_controller_get_devdata(spi->controller);
333 
334 	/* SPI core provides CS high / low, but bitbang driver
335 	 * expects CS active
336 	 * spi device driver takes care of handling SPI_CS_HIGH
337 	 */
338 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
339 
340 	ndelay(SPI_BITBANG_CS_DELAY);
341 	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
342 			    BITBANG_CS_INACTIVE);
343 	ndelay(SPI_BITBANG_CS_DELAY);
344 }
345 
346 /*----------------------------------------------------------------------*/
347 
348 int spi_bitbang_init(struct spi_bitbang *bitbang)
349 {
350 	struct spi_controller *ctlr = bitbang->ctlr;
351 	bool custom_cs;
352 
353 	if (!ctlr)
354 		return -EINVAL;
355 	/*
356 	 * We only need the chipselect callback if we are actually using it.
357 	 * If we just use GPIO descriptors, it is surplus. If the
358 	 * SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the
359 	 * driver-specific chipselect routine.
360 	 */
361 	custom_cs = (!ctlr->use_gpio_descriptors ||
362 		     (ctlr->flags & SPI_CONTROLLER_GPIO_SS));
363 
364 	if (custom_cs && !bitbang->chipselect)
365 		return -EINVAL;
366 
367 	mutex_init(&bitbang->lock);
368 
369 	if (!ctlr->mode_bits)
370 		ctlr->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
371 
372 	if (ctlr->transfer || ctlr->transfer_one_message)
373 		return -EINVAL;
374 
375 	ctlr->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
376 	ctlr->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
377 	ctlr->transfer_one = spi_bitbang_transfer_one;
378 	/*
379 	 * When using GPIO descriptors, the ->set_cs() callback doesn't even
380 	 * get called unless SPI_CONTROLLER_GPIO_SS is set.
381 	 */
382 	if (custom_cs)
383 		ctlr->set_cs = spi_bitbang_set_cs;
384 
385 	if (!bitbang->txrx_bufs) {
386 		bitbang->use_dma = 0;
387 		bitbang->txrx_bufs = spi_bitbang_bufs;
388 		if (!ctlr->setup) {
389 			if (!bitbang->setup_transfer)
390 				bitbang->setup_transfer =
391 					 spi_bitbang_setup_transfer;
392 			ctlr->setup = spi_bitbang_setup;
393 			ctlr->cleanup = spi_bitbang_cleanup;
394 		}
395 	}
396 
397 	return 0;
398 }
399 EXPORT_SYMBOL_GPL(spi_bitbang_init);
400 
401 /**
402  * spi_bitbang_start - start up a polled/bitbanging SPI host controller driver
403  * @bitbang: driver handle
404  *
405  * Caller should have zero-initialized all parts of the structure, and then
406  * provided callbacks for chip selection and I/O loops.  If the host controller has
407  * a transfer method, its final step should call spi_bitbang_transfer(); or,
408  * that's the default if the transfer routine is not initialized.  It should
409  * also set up the bus number and number of chipselects.
410  *
411  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
412  * hardware that basically exposes a shift register) or per-spi_transfer
413  * (which takes better advantage of hardware like fifos or DMA engines).
414  *
415  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup(),
416  * spi_bitbang_cleanup() and spi_bitbang_setup_transfer() to handle those SPI
417  * host controller methods.  Those methods are the defaults if the bitbang->txrx_bufs
418  * routine isn't initialized.
419  *
420  * This routine registers the spi_controller, which will process requests in a
421  * dedicated task, keeping IRQs unblocked most of the time.  To stop
422  * processing those requests, call spi_bitbang_stop().
423  *
424  * On success, this routine will take a reference to the controller. The caller
425  * is responsible for calling spi_bitbang_stop() to decrement the reference and
426  * spi_controller_put() as counterpart of spi_alloc_host() to prevent a memory
427  * leak.
428  */
429 int spi_bitbang_start(struct spi_bitbang *bitbang)
430 {
431 	struct spi_controller *ctlr = bitbang->ctlr;
432 	int ret;
433 
434 	ret = spi_bitbang_init(bitbang);
435 	if (ret)
436 		return ret;
437 
438 	/* driver may get busy before register() returns, especially
439 	 * if someone registered boardinfo for devices
440 	 */
441 	ret = spi_register_controller(spi_controller_get(ctlr));
442 	if (ret)
443 		spi_controller_put(ctlr);
444 
445 	return ret;
446 }
447 EXPORT_SYMBOL_GPL(spi_bitbang_start);
448 
449 /*
450  * spi_bitbang_stop - stops the task providing spi communication
451  */
452 void spi_bitbang_stop(struct spi_bitbang *bitbang)
453 {
454 	spi_unregister_controller(bitbang->ctlr);
455 }
456 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
457 
458 MODULE_LICENSE("GPL");
459 MODULE_DESCRIPTION("Utilities for Bitbanging SPI host controllers");
460