xref: /linux/drivers/spi/spi-bitbang.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * polling/bitbanging SPI master controller driver utilities
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/spinlock.h>
16 #include <linux/workqueue.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spi_bitbang.h>
26 
27 #define SPI_BITBANG_CS_DELAY	100
28 
29 
30 /*----------------------------------------------------------------------*/
31 
32 /*
33  * FIRST PART (OPTIONAL):  word-at-a-time spi_transfer support.
34  * Use this for GPIO or shift-register level hardware APIs.
35  *
36  * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
37  * to glue code.  These bitbang setup() and cleanup() routines are always
38  * used, though maybe they're called from controller-aware code.
39  *
40  * chipselect() and friends may use spi_device->controller_data and
41  * controller registers as appropriate.
42  *
43  *
44  * NOTE:  SPI controller pins can often be used as GPIO pins instead,
45  * which means you could use a bitbang driver either to get hardware
46  * working quickly, or testing for differences that aren't speed related.
47  */
48 
49 struct spi_bitbang_cs {
50 	unsigned	nsecs;	/* (clock cycle time)/2 */
51 	u32		(*txrx_word)(struct spi_device *spi, unsigned nsecs,
52 					u32 word, u8 bits);
53 	unsigned	(*txrx_bufs)(struct spi_device *,
54 					u32 (*txrx_word)(
55 						struct spi_device *spi,
56 						unsigned nsecs,
57 						u32 word, u8 bits),
58 					unsigned, struct spi_transfer *);
59 };
60 
61 static unsigned bitbang_txrx_8(
62 	struct spi_device	*spi,
63 	u32			(*txrx_word)(struct spi_device *spi,
64 					unsigned nsecs,
65 					u32 word, u8 bits),
66 	unsigned		ns,
67 	struct spi_transfer	*t
68 ) {
69 	unsigned		bits = t->bits_per_word;
70 	unsigned		count = t->len;
71 	const u8		*tx = t->tx_buf;
72 	u8			*rx = t->rx_buf;
73 
74 	while (likely(count > 0)) {
75 		u8		word = 0;
76 
77 		if (tx)
78 			word = *tx++;
79 		word = txrx_word(spi, ns, word, bits);
80 		if (rx)
81 			*rx++ = word;
82 		count -= 1;
83 	}
84 	return t->len - count;
85 }
86 
87 static unsigned bitbang_txrx_16(
88 	struct spi_device	*spi,
89 	u32			(*txrx_word)(struct spi_device *spi,
90 					unsigned nsecs,
91 					u32 word, u8 bits),
92 	unsigned		ns,
93 	struct spi_transfer	*t
94 ) {
95 	unsigned		bits = t->bits_per_word;
96 	unsigned		count = t->len;
97 	const u16		*tx = t->tx_buf;
98 	u16			*rx = t->rx_buf;
99 
100 	while (likely(count > 1)) {
101 		u16		word = 0;
102 
103 		if (tx)
104 			word = *tx++;
105 		word = txrx_word(spi, ns, word, bits);
106 		if (rx)
107 			*rx++ = word;
108 		count -= 2;
109 	}
110 	return t->len - count;
111 }
112 
113 static unsigned bitbang_txrx_32(
114 	struct spi_device	*spi,
115 	u32			(*txrx_word)(struct spi_device *spi,
116 					unsigned nsecs,
117 					u32 word, u8 bits),
118 	unsigned		ns,
119 	struct spi_transfer	*t
120 ) {
121 	unsigned		bits = t->bits_per_word;
122 	unsigned		count = t->len;
123 	const u32		*tx = t->tx_buf;
124 	u32			*rx = t->rx_buf;
125 
126 	while (likely(count > 3)) {
127 		u32		word = 0;
128 
129 		if (tx)
130 			word = *tx++;
131 		word = txrx_word(spi, ns, word, bits);
132 		if (rx)
133 			*rx++ = word;
134 		count -= 4;
135 	}
136 	return t->len - count;
137 }
138 
139 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
140 {
141 	struct spi_bitbang_cs	*cs = spi->controller_state;
142 	u8			bits_per_word;
143 	u32			hz;
144 
145 	if (t) {
146 		bits_per_word = t->bits_per_word;
147 		hz = t->speed_hz;
148 	} else {
149 		bits_per_word = 0;
150 		hz = 0;
151 	}
152 
153 	/* spi_transfer level calls that work per-word */
154 	if (!bits_per_word)
155 		bits_per_word = spi->bits_per_word;
156 	if (bits_per_word <= 8)
157 		cs->txrx_bufs = bitbang_txrx_8;
158 	else if (bits_per_word <= 16)
159 		cs->txrx_bufs = bitbang_txrx_16;
160 	else if (bits_per_word <= 32)
161 		cs->txrx_bufs = bitbang_txrx_32;
162 	else
163 		return -EINVAL;
164 
165 	/* nsecs = (clock period)/2 */
166 	if (!hz)
167 		hz = spi->max_speed_hz;
168 	if (hz) {
169 		cs->nsecs = (1000000000/2) / hz;
170 		if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
171 			return -EINVAL;
172 	}
173 
174 	return 0;
175 }
176 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
177 
178 /**
179  * spi_bitbang_setup - default setup for per-word I/O loops
180  */
181 int spi_bitbang_setup(struct spi_device *spi)
182 {
183 	struct spi_bitbang_cs	*cs = spi->controller_state;
184 	struct spi_bitbang	*bitbang;
185 
186 	bitbang = spi_master_get_devdata(spi->master);
187 
188 	if (!cs) {
189 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
190 		if (!cs)
191 			return -ENOMEM;
192 		spi->controller_state = cs;
193 	}
194 
195 	/* per-word shift register access, in hardware or bitbanging */
196 	cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
197 	if (!cs->txrx_word)
198 		return -EINVAL;
199 
200 	if (bitbang->setup_transfer) {
201 		int retval = bitbang->setup_transfer(spi, NULL);
202 		if (retval < 0)
203 			return retval;
204 	}
205 
206 	dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
207 
208 	/* NOTE we _need_ to call chipselect() early, ideally with adapter
209 	 * setup, unless the hardware defaults cooperate to avoid confusion
210 	 * between normal (active low) and inverted chipselects.
211 	 */
212 
213 	/* deselect chip (low or high) */
214 	mutex_lock(&bitbang->lock);
215 	if (!bitbang->busy) {
216 		bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
217 		ndelay(cs->nsecs);
218 	}
219 	mutex_unlock(&bitbang->lock);
220 
221 	return 0;
222 }
223 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
224 
225 /**
226  * spi_bitbang_cleanup - default cleanup for per-word I/O loops
227  */
228 void spi_bitbang_cleanup(struct spi_device *spi)
229 {
230 	kfree(spi->controller_state);
231 }
232 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
233 
234 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
235 {
236 	struct spi_bitbang_cs	*cs = spi->controller_state;
237 	unsigned		nsecs = cs->nsecs;
238 
239 	return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
240 }
241 
242 /*----------------------------------------------------------------------*/
243 
244 /*
245  * SECOND PART ... simple transfer queue runner.
246  *
247  * This costs a task context per controller, running the queue by
248  * performing each transfer in sequence.  Smarter hardware can queue
249  * several DMA transfers at once, and process several controller queues
250  * in parallel; this driver doesn't match such hardware very well.
251  *
252  * Drivers can provide word-at-a-time i/o primitives, or provide
253  * transfer-at-a-time ones to leverage dma or fifo hardware.
254  */
255 
256 static int spi_bitbang_prepare_hardware(struct spi_master *spi)
257 {
258 	struct spi_bitbang	*bitbang;
259 
260 	bitbang = spi_master_get_devdata(spi);
261 
262 	mutex_lock(&bitbang->lock);
263 	bitbang->busy = 1;
264 	mutex_unlock(&bitbang->lock);
265 
266 	return 0;
267 }
268 
269 static int spi_bitbang_transfer_one(struct spi_master *master,
270 				    struct spi_device *spi,
271 				    struct spi_transfer *transfer)
272 {
273 	struct spi_bitbang *bitbang = spi_master_get_devdata(master);
274 	int status = 0;
275 
276 	if (bitbang->setup_transfer) {
277 		status = bitbang->setup_transfer(spi, transfer);
278 		if (status < 0)
279 			goto out;
280 	}
281 
282 	if (transfer->len)
283 		status = bitbang->txrx_bufs(spi, transfer);
284 
285 	if (status == transfer->len)
286 		status = 0;
287 	else if (status >= 0)
288 		status = -EREMOTEIO;
289 
290 out:
291 	spi_finalize_current_transfer(master);
292 
293 	return status;
294 }
295 
296 static int spi_bitbang_unprepare_hardware(struct spi_master *spi)
297 {
298 	struct spi_bitbang	*bitbang;
299 
300 	bitbang = spi_master_get_devdata(spi);
301 
302 	mutex_lock(&bitbang->lock);
303 	bitbang->busy = 0;
304 	mutex_unlock(&bitbang->lock);
305 
306 	return 0;
307 }
308 
309 static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
310 {
311 	struct spi_bitbang *bitbang = spi_master_get_devdata(spi->master);
312 
313 	/* SPI core provides CS high / low, but bitbang driver
314 	 * expects CS active
315 	 * spi device driver takes care of handling SPI_CS_HIGH
316 	 */
317 	enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
318 
319 	ndelay(SPI_BITBANG_CS_DELAY);
320 	bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
321 			    BITBANG_CS_INACTIVE);
322 	ndelay(SPI_BITBANG_CS_DELAY);
323 }
324 
325 /*----------------------------------------------------------------------*/
326 
327 /**
328  * spi_bitbang_start - start up a polled/bitbanging SPI master driver
329  * @bitbang: driver handle
330  *
331  * Caller should have zero-initialized all parts of the structure, and then
332  * provided callbacks for chip selection and I/O loops.  If the master has
333  * a transfer method, its final step should call spi_bitbang_transfer; or,
334  * that's the default if the transfer routine is not initialized.  It should
335  * also set up the bus number and number of chipselects.
336  *
337  * For i/o loops, provide callbacks either per-word (for bitbanging, or for
338  * hardware that basically exposes a shift register) or per-spi_transfer
339  * (which takes better advantage of hardware like fifos or DMA engines).
340  *
341  * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
342  * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
343  * master methods.  Those methods are the defaults if the bitbang->txrx_bufs
344  * routine isn't initialized.
345  *
346  * This routine registers the spi_master, which will process requests in a
347  * dedicated task, keeping IRQs unblocked most of the time.  To stop
348  * processing those requests, call spi_bitbang_stop().
349  *
350  * On success, this routine will take a reference to master. The caller is
351  * responsible for calling spi_bitbang_stop() to decrement the reference and
352  * spi_master_put() as counterpart of spi_alloc_master() to prevent a memory
353  * leak.
354  */
355 int spi_bitbang_start(struct spi_bitbang *bitbang)
356 {
357 	struct spi_master *master = bitbang->master;
358 	int ret;
359 
360 	if (!master || !bitbang->chipselect)
361 		return -EINVAL;
362 
363 	mutex_init(&bitbang->lock);
364 
365 	if (!master->mode_bits)
366 		master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
367 
368 	if (master->transfer || master->transfer_one_message)
369 		return -EINVAL;
370 
371 	master->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
372 	master->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
373 	master->transfer_one = spi_bitbang_transfer_one;
374 	master->set_cs = spi_bitbang_set_cs;
375 
376 	if (!bitbang->txrx_bufs) {
377 		bitbang->use_dma = 0;
378 		bitbang->txrx_bufs = spi_bitbang_bufs;
379 		if (!master->setup) {
380 			if (!bitbang->setup_transfer)
381 				bitbang->setup_transfer =
382 					 spi_bitbang_setup_transfer;
383 			master->setup = spi_bitbang_setup;
384 			master->cleanup = spi_bitbang_cleanup;
385 		}
386 	}
387 
388 	/* driver may get busy before register() returns, especially
389 	 * if someone registered boardinfo for devices
390 	 */
391 	ret = spi_register_master(spi_master_get(master));
392 	if (ret)
393 		spi_master_put(master);
394 
395 	return 0;
396 }
397 EXPORT_SYMBOL_GPL(spi_bitbang_start);
398 
399 /**
400  * spi_bitbang_stop - stops the task providing spi communication
401  */
402 void spi_bitbang_stop(struct spi_bitbang *bitbang)
403 {
404 	spi_unregister_master(bitbang->master);
405 }
406 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
407 
408 MODULE_LICENSE("GPL");
409 
410