1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <linux/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include "lpfc_version.h" 40 #include "lpfc_hw4.h" 41 #include "lpfc_hw.h" 42 #include "lpfc_sli.h" 43 #include "lpfc_sli4.h" 44 #include "lpfc_nl.h" 45 #include "lpfc_disc.h" 46 #include "lpfc.h" 47 #include "lpfc_scsi.h" 48 #include "lpfc_nvme.h" 49 #include "lpfc_logmsg.h" 50 #include "lpfc_crtn.h" 51 #include "lpfc_vport.h" 52 #include "lpfc_debugfs.h" 53 54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 55 struct lpfc_async_xchg_ctx *, 56 dma_addr_t rspbuf, 57 uint16_t rspsize); 58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 59 struct lpfc_async_xchg_ctx *); 60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 61 struct lpfc_async_xchg_ctx *, 62 uint32_t, uint16_t); 63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 64 struct lpfc_async_xchg_ctx *, 65 uint32_t, uint16_t); 66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 67 struct lpfc_async_xchg_ctx *); 68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 69 70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 71 72 static union lpfc_wqe128 lpfc_tsend_cmd_template; 73 static union lpfc_wqe128 lpfc_treceive_cmd_template; 74 static union lpfc_wqe128 lpfc_trsp_cmd_template; 75 76 /* Setup WQE templates for NVME IOs */ 77 void 78 lpfc_nvmet_cmd_template(void) 79 { 80 union lpfc_wqe128 *wqe; 81 82 /* TSEND template */ 83 wqe = &lpfc_tsend_cmd_template; 84 memset(wqe, 0, sizeof(union lpfc_wqe128)); 85 86 /* Word 0, 1, 2 - BDE is variable */ 87 88 /* Word 3 - payload_offset_len is zero */ 89 90 /* Word 4 - relative_offset is variable */ 91 92 /* Word 5 - is zero */ 93 94 /* Word 6 - ctxt_tag, xri_tag is variable */ 95 96 /* Word 7 - wqe_ar is variable */ 97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 102 103 /* Word 8 - abort_tag is variable */ 104 105 /* Word 9 - reqtag, rcvoxid is variable */ 106 107 /* Word 10 - wqes, xc is variable */ 108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG); 109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 114 115 /* Word 11 - sup, irsp, irsplen is variable */ 116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 122 123 /* Word 12 - fcp_data_len is variable */ 124 125 /* Word 13, 14, 15 - PBDE is zero */ 126 127 /* TRECEIVE template */ 128 wqe = &lpfc_treceive_cmd_template; 129 memset(wqe, 0, sizeof(union lpfc_wqe128)); 130 131 /* Word 0, 1, 2 - BDE is variable */ 132 133 /* Word 3 */ 134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 135 136 /* Word 4 - relative_offset is variable */ 137 138 /* Word 5 - is zero */ 139 140 /* Word 6 - ctxt_tag, xri_tag is variable */ 141 142 /* Word 7 */ 143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 148 149 /* Word 8 - abort_tag is variable */ 150 151 /* Word 9 - reqtag, rcvoxid is variable */ 152 153 /* Word 10 - xc is variable */ 154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG); 157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 160 161 /* Word 11 - pbde is variable */ 162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 168 169 /* Word 12 - fcp_data_len is variable */ 170 171 /* Word 13, 14, 15 - PBDE is variable */ 172 173 /* TRSP template */ 174 wqe = &lpfc_trsp_cmd_template; 175 memset(wqe, 0, sizeof(union lpfc_wqe128)); 176 177 /* Word 0, 1, 2 - BDE is variable */ 178 179 /* Word 3 - response_len is variable */ 180 181 /* Word 4, 5 - is zero */ 182 183 /* Word 6 - ctxt_tag, xri_tag is variable */ 184 185 /* Word 7 */ 186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 191 192 /* Word 8 - abort_tag is variable */ 193 194 /* Word 9 - reqtag is variable */ 195 196 /* Word 10 wqes, xc is variable */ 197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG); 199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 203 204 /* Word 11 irsp, irsplen is variable */ 205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 211 212 /* Word 12, 13, 14, 15 - is zero */ 213 } 214 215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 216 static struct lpfc_async_xchg_ctx * 217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 218 { 219 struct lpfc_async_xchg_ctx *ctxp; 220 unsigned long iflag; 221 bool found = false; 222 223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 226 continue; 227 228 found = true; 229 break; 230 } 231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 232 if (found) 233 return ctxp; 234 235 return NULL; 236 } 237 238 static struct lpfc_async_xchg_ctx * 239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 240 { 241 struct lpfc_async_xchg_ctx *ctxp; 242 unsigned long iflag; 243 bool found = false; 244 245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 247 if (ctxp->oxid != oxid || ctxp->sid != sid) 248 continue; 249 250 found = true; 251 break; 252 } 253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 254 if (found) 255 return ctxp; 256 257 return NULL; 258 } 259 #endif 260 261 static void 262 lpfc_nvmet_defer_release(struct lpfc_hba *phba, 263 struct lpfc_async_xchg_ctx *ctxp) 264 { 265 lockdep_assert_held(&ctxp->ctxlock); 266 267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 269 ctxp->oxid, ctxp->flag); 270 271 if (ctxp->flag & LPFC_NVME_CTX_RLS) 272 return; 273 274 ctxp->flag |= LPFC_NVME_CTX_RLS; 275 spin_lock(&phba->sli4_hba.t_active_list_lock); 276 list_del(&ctxp->list); 277 spin_unlock(&phba->sli4_hba.t_active_list_lock); 278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 281 } 282 283 /** 284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the 285 * transmission of an NVME LS response. 286 * @phba: Pointer to HBA context object. 287 * @cmdwqe: Pointer to driver command WQE object. 288 * @rspwqe: Pointer to driver response WQE object. 289 * 290 * The function is called from SLI ring event handler with no 291 * lock held. The function frees memory resources used for the command 292 * used to send the NVME LS RSP. 293 **/ 294 void 295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 296 struct lpfc_iocbq *rspwqe) 297 { 298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context_un.axchg; 299 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 300 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp; 301 uint32_t status, result; 302 303 status = bf_get(lpfc_wcqe_c_status, wcqe); 304 result = wcqe->parameter; 305 306 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) { 307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 308 "6410 NVMEx LS cmpl state mismatch IO x%x: " 309 "%d %d\n", 310 axchg->oxid, axchg->state, axchg->entry_cnt); 311 } 312 313 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n", 314 axchg->oxid, status, result); 315 316 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 317 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n", 318 status, result, axchg->oxid); 319 320 lpfc_nlp_put(cmdwqe->ndlp); 321 cmdwqe->context_un.axchg = NULL; 322 cmdwqe->bpl_dmabuf = NULL; 323 lpfc_sli_release_iocbq(phba, cmdwqe); 324 ls_rsp->done(ls_rsp); 325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 326 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n", 327 status, axchg->oxid); 328 kfree(axchg); 329 } 330 331 /** 332 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 333 * @phba: Pointer to HBA context object. 334 * @cmdwqe: Pointer to driver command WQE object. 335 * @rspwqe: Pointer to driver response WQE object. 336 * 337 * The function is called from SLI ring event handler with no 338 * lock held. This function is the completion handler for NVME LS commands 339 * The function updates any states and statistics, then calls the 340 * generic completion handler to free resources. 341 **/ 342 static void 343 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 344 struct lpfc_iocbq *rspwqe) 345 { 346 struct lpfc_nvmet_tgtport *tgtp; 347 uint32_t status, result; 348 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 349 350 if (!phba->targetport) 351 goto finish; 352 353 status = bf_get(lpfc_wcqe_c_status, wcqe); 354 result = wcqe->parameter; 355 356 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 357 if (tgtp) { 358 if (status) { 359 atomic_inc(&tgtp->xmt_ls_rsp_error); 360 if (result == IOERR_ABORT_REQUESTED) 361 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 362 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 363 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 364 } else { 365 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 366 } 367 } 368 369 finish: 370 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, rspwqe); 371 } 372 373 /** 374 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 375 * @phba: HBA buffer is associated with 376 * @ctx_buf: ctx buffer context 377 * 378 * Description: Frees the given DMA buffer in the appropriate way given by 379 * reposting it to its associated RQ so it can be reused. 380 * 381 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 382 * 383 * Returns: None 384 **/ 385 void 386 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 387 { 388 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 389 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 390 struct lpfc_nvmet_tgtport *tgtp; 391 struct fc_frame_header *fc_hdr; 392 struct rqb_dmabuf *nvmebuf; 393 struct lpfc_nvmet_ctx_info *infop; 394 uint32_t size, oxid, sid; 395 int cpu; 396 unsigned long iflag; 397 398 if (ctxp->state == LPFC_NVME_STE_FREE) { 399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 400 "6411 NVMET free, already free IO x%x: %d %d\n", 401 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 402 } 403 404 if (ctxp->rqb_buffer) { 405 spin_lock_irqsave(&ctxp->ctxlock, iflag); 406 nvmebuf = ctxp->rqb_buffer; 407 /* check if freed in another path whilst acquiring lock */ 408 if (nvmebuf) { 409 ctxp->rqb_buffer = NULL; 410 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 411 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ; 412 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 413 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 414 nvmebuf); 415 } else { 416 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 417 /* repost */ 418 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 419 } 420 } else { 421 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 422 } 423 } 424 ctxp->state = LPFC_NVME_STE_FREE; 425 426 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 427 if (phba->sli4_hba.nvmet_io_wait_cnt) { 428 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 429 nvmebuf, struct rqb_dmabuf, 430 hbuf.list); 431 phba->sli4_hba.nvmet_io_wait_cnt--; 432 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 433 iflag); 434 435 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 436 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 437 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 438 size = nvmebuf->bytes_recv; 439 sid = sli4_sid_from_fc_hdr(fc_hdr); 440 441 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 442 ctxp->wqeq = NULL; 443 ctxp->offset = 0; 444 ctxp->phba = phba; 445 ctxp->size = size; 446 ctxp->oxid = oxid; 447 ctxp->sid = sid; 448 ctxp->state = LPFC_NVME_STE_RCV; 449 ctxp->entry_cnt = 1; 450 ctxp->flag = 0; 451 ctxp->ctxbuf = ctx_buf; 452 ctxp->rqb_buffer = (void *)nvmebuf; 453 spin_lock_init(&ctxp->ctxlock); 454 455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 456 /* NOTE: isr time stamp is stale when context is re-assigned*/ 457 if (ctxp->ts_isr_cmd) { 458 ctxp->ts_cmd_nvme = 0; 459 ctxp->ts_nvme_data = 0; 460 ctxp->ts_data_wqput = 0; 461 ctxp->ts_isr_data = 0; 462 ctxp->ts_data_nvme = 0; 463 ctxp->ts_nvme_status = 0; 464 ctxp->ts_status_wqput = 0; 465 ctxp->ts_isr_status = 0; 466 ctxp->ts_status_nvme = 0; 467 } 468 #endif 469 atomic_inc(&tgtp->rcv_fcp_cmd_in); 470 471 /* Indicate that a replacement buffer has been posted */ 472 spin_lock_irqsave(&ctxp->ctxlock, iflag); 473 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ; 474 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 475 476 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 477 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 479 "6181 Unable to queue deferred work " 480 "for oxid x%x. " 481 "FCP Drop IO [x%x x%x x%x]\n", 482 ctxp->oxid, 483 atomic_read(&tgtp->rcv_fcp_cmd_in), 484 atomic_read(&tgtp->rcv_fcp_cmd_out), 485 atomic_read(&tgtp->xmt_fcp_release)); 486 487 spin_lock_irqsave(&ctxp->ctxlock, iflag); 488 lpfc_nvmet_defer_release(phba, ctxp); 489 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 490 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 491 } 492 return; 493 } 494 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 495 496 /* 497 * Use the CPU context list, from the MRQ the IO was received on 498 * (ctxp->idx), to save context structure. 499 */ 500 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 501 list_del_init(&ctxp->list); 502 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 503 cpu = raw_smp_processor_id(); 504 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 505 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 506 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 507 infop->nvmet_ctx_list_cnt++; 508 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 509 #endif 510 } 511 512 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 513 static void 514 lpfc_nvmet_ktime(struct lpfc_hba *phba, 515 struct lpfc_async_xchg_ctx *ctxp) 516 { 517 uint64_t seg1, seg2, seg3, seg4, seg5; 518 uint64_t seg6, seg7, seg8, seg9, seg10; 519 uint64_t segsum; 520 521 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 522 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 523 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 524 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 525 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 526 return; 527 528 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 529 return; 530 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 531 return; 532 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 533 return; 534 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 535 return; 536 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 537 return; 538 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 539 return; 540 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 541 return; 542 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 543 return; 544 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 545 return; 546 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 547 return; 548 /* 549 * Segment 1 - Time from FCP command received by MSI-X ISR 550 * to FCP command is passed to NVME Layer. 551 * Segment 2 - Time from FCP command payload handed 552 * off to NVME Layer to Driver receives a Command op 553 * from NVME Layer. 554 * Segment 3 - Time from Driver receives a Command op 555 * from NVME Layer to Command is put on WQ. 556 * Segment 4 - Time from Driver WQ put is done 557 * to MSI-X ISR for Command cmpl. 558 * Segment 5 - Time from MSI-X ISR for Command cmpl to 559 * Command cmpl is passed to NVME Layer. 560 * Segment 6 - Time from Command cmpl is passed to NVME 561 * Layer to Driver receives a RSP op from NVME Layer. 562 * Segment 7 - Time from Driver receives a RSP op from 563 * NVME Layer to WQ put is done on TRSP FCP Status. 564 * Segment 8 - Time from Driver WQ put is done on TRSP 565 * FCP Status to MSI-X ISR for TRSP cmpl. 566 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 567 * TRSP cmpl is passed to NVME Layer. 568 * Segment 10 - Time from FCP command received by 569 * MSI-X ISR to command is completed on wire. 570 * (Segments 1 thru 8) for READDATA / WRITEDATA 571 * (Segments 1 thru 4) for READDATA_RSP 572 */ 573 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 574 segsum = seg1; 575 576 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 577 if (segsum > seg2) 578 return; 579 seg2 -= segsum; 580 segsum += seg2; 581 582 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 583 if (segsum > seg3) 584 return; 585 seg3 -= segsum; 586 segsum += seg3; 587 588 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 589 if (segsum > seg4) 590 return; 591 seg4 -= segsum; 592 segsum += seg4; 593 594 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 595 if (segsum > seg5) 596 return; 597 seg5 -= segsum; 598 segsum += seg5; 599 600 601 /* For auto rsp commands seg6 thru seg10 will be 0 */ 602 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 603 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 604 if (segsum > seg6) 605 return; 606 seg6 -= segsum; 607 segsum += seg6; 608 609 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 610 if (segsum > seg7) 611 return; 612 seg7 -= segsum; 613 segsum += seg7; 614 615 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 616 if (segsum > seg8) 617 return; 618 seg8 -= segsum; 619 segsum += seg8; 620 621 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 622 if (segsum > seg9) 623 return; 624 seg9 -= segsum; 625 segsum += seg9; 626 627 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 628 return; 629 seg10 = (ctxp->ts_isr_status - 630 ctxp->ts_isr_cmd); 631 } else { 632 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 633 return; 634 seg6 = 0; 635 seg7 = 0; 636 seg8 = 0; 637 seg9 = 0; 638 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 639 } 640 641 phba->ktime_seg1_total += seg1; 642 if (seg1 < phba->ktime_seg1_min) 643 phba->ktime_seg1_min = seg1; 644 else if (seg1 > phba->ktime_seg1_max) 645 phba->ktime_seg1_max = seg1; 646 647 phba->ktime_seg2_total += seg2; 648 if (seg2 < phba->ktime_seg2_min) 649 phba->ktime_seg2_min = seg2; 650 else if (seg2 > phba->ktime_seg2_max) 651 phba->ktime_seg2_max = seg2; 652 653 phba->ktime_seg3_total += seg3; 654 if (seg3 < phba->ktime_seg3_min) 655 phba->ktime_seg3_min = seg3; 656 else if (seg3 > phba->ktime_seg3_max) 657 phba->ktime_seg3_max = seg3; 658 659 phba->ktime_seg4_total += seg4; 660 if (seg4 < phba->ktime_seg4_min) 661 phba->ktime_seg4_min = seg4; 662 else if (seg4 > phba->ktime_seg4_max) 663 phba->ktime_seg4_max = seg4; 664 665 phba->ktime_seg5_total += seg5; 666 if (seg5 < phba->ktime_seg5_min) 667 phba->ktime_seg5_min = seg5; 668 else if (seg5 > phba->ktime_seg5_max) 669 phba->ktime_seg5_max = seg5; 670 671 phba->ktime_data_samples++; 672 if (!seg6) 673 goto out; 674 675 phba->ktime_seg6_total += seg6; 676 if (seg6 < phba->ktime_seg6_min) 677 phba->ktime_seg6_min = seg6; 678 else if (seg6 > phba->ktime_seg6_max) 679 phba->ktime_seg6_max = seg6; 680 681 phba->ktime_seg7_total += seg7; 682 if (seg7 < phba->ktime_seg7_min) 683 phba->ktime_seg7_min = seg7; 684 else if (seg7 > phba->ktime_seg7_max) 685 phba->ktime_seg7_max = seg7; 686 687 phba->ktime_seg8_total += seg8; 688 if (seg8 < phba->ktime_seg8_min) 689 phba->ktime_seg8_min = seg8; 690 else if (seg8 > phba->ktime_seg8_max) 691 phba->ktime_seg8_max = seg8; 692 693 phba->ktime_seg9_total += seg9; 694 if (seg9 < phba->ktime_seg9_min) 695 phba->ktime_seg9_min = seg9; 696 else if (seg9 > phba->ktime_seg9_max) 697 phba->ktime_seg9_max = seg9; 698 out: 699 phba->ktime_seg10_total += seg10; 700 if (seg10 < phba->ktime_seg10_min) 701 phba->ktime_seg10_min = seg10; 702 else if (seg10 > phba->ktime_seg10_max) 703 phba->ktime_seg10_max = seg10; 704 phba->ktime_status_samples++; 705 } 706 #endif 707 708 /** 709 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 710 * @phba: Pointer to HBA context object. 711 * @cmdwqe: Pointer to driver command WQE object. 712 * @rspwqe: Pointer to driver response WQE object. 713 * 714 * The function is called from SLI ring event handler with no 715 * lock held. This function is the completion handler for NVME FCP commands 716 * The function frees memory resources used for the NVME commands. 717 **/ 718 static void 719 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 720 struct lpfc_iocbq *rspwqe) 721 { 722 struct lpfc_nvmet_tgtport *tgtp; 723 struct nvmefc_tgt_fcp_req *rsp; 724 struct lpfc_async_xchg_ctx *ctxp; 725 uint32_t status, result, op, logerr; 726 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 727 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 728 int id; 729 #endif 730 731 ctxp = cmdwqe->context_un.axchg; 732 ctxp->flag &= ~LPFC_NVME_IO_INP; 733 734 rsp = &ctxp->hdlrctx.fcp_req; 735 op = rsp->op; 736 737 status = bf_get(lpfc_wcqe_c_status, wcqe); 738 result = wcqe->parameter; 739 740 if (phba->targetport) 741 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 742 else 743 tgtp = NULL; 744 745 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 746 ctxp->oxid, op, status); 747 748 if (status) { 749 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 750 rsp->transferred_length = 0; 751 if (tgtp) { 752 atomic_inc(&tgtp->xmt_fcp_rsp_error); 753 if (result == IOERR_ABORT_REQUESTED) 754 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 755 } 756 757 logerr = LOG_NVME_IOERR; 758 759 /* pick up SLI4 exhange busy condition */ 760 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 761 ctxp->flag |= LPFC_NVME_XBUSY; 762 logerr |= LOG_NVME_ABTS; 763 if (tgtp) 764 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 765 766 } else { 767 ctxp->flag &= ~LPFC_NVME_XBUSY; 768 } 769 770 lpfc_printf_log(phba, KERN_INFO, logerr, 771 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 772 "XBUSY:x%x\n", 773 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 774 status, result, ctxp->flag); 775 776 } else { 777 rsp->fcp_error = NVME_SC_SUCCESS; 778 if (op == NVMET_FCOP_RSP) 779 rsp->transferred_length = rsp->rsplen; 780 else 781 rsp->transferred_length = rsp->transfer_length; 782 if (tgtp) 783 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 784 } 785 786 if ((op == NVMET_FCOP_READDATA_RSP) || 787 (op == NVMET_FCOP_RSP)) { 788 /* Sanity check */ 789 ctxp->state = LPFC_NVME_STE_DONE; 790 ctxp->entry_cnt++; 791 792 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 793 if (ctxp->ts_cmd_nvme) { 794 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 795 ctxp->ts_isr_data = 796 cmdwqe->isr_timestamp; 797 ctxp->ts_data_nvme = 798 ktime_get_ns(); 799 ctxp->ts_nvme_status = 800 ctxp->ts_data_nvme; 801 ctxp->ts_status_wqput = 802 ctxp->ts_data_nvme; 803 ctxp->ts_isr_status = 804 ctxp->ts_data_nvme; 805 ctxp->ts_status_nvme = 806 ctxp->ts_data_nvme; 807 } else { 808 ctxp->ts_isr_status = 809 cmdwqe->isr_timestamp; 810 ctxp->ts_status_nvme = 811 ktime_get_ns(); 812 } 813 } 814 #endif 815 rsp->done(rsp); 816 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 817 if (ctxp->ts_cmd_nvme) 818 lpfc_nvmet_ktime(phba, ctxp); 819 #endif 820 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 821 } else { 822 ctxp->entry_cnt++; 823 memset_startat(cmdwqe, 0, cmd_flag); 824 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 825 if (ctxp->ts_cmd_nvme) { 826 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 827 ctxp->ts_data_nvme = ktime_get_ns(); 828 } 829 #endif 830 rsp->done(rsp); 831 } 832 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 833 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 834 id = raw_smp_processor_id(); 835 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); 836 if (ctxp->cpu != id) 837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 838 "6704 CPU Check cmdcmpl: " 839 "cpu %d expect %d\n", 840 id, ctxp->cpu); 841 } 842 #endif 843 } 844 845 /** 846 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit 847 * an NVME LS rsp for a prior NVME LS request that was received. 848 * @axchg: pointer to exchange context for the NVME LS request the response 849 * is for. 850 * @ls_rsp: pointer to the transport LS RSP that is to be sent 851 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done 852 * 853 * This routine is used to format and send a WQE to transmit a NVME LS 854 * Response. The response is for a prior NVME LS request that was 855 * received and posted to the transport. 856 * 857 * Returns: 858 * 0 : if response successfully transmit 859 * non-zero : if response failed to transmit, of the form -Exxx. 860 **/ 861 int 862 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg, 863 struct nvmefc_ls_rsp *ls_rsp, 864 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba, 865 struct lpfc_iocbq *cmdwqe, 866 struct lpfc_iocbq *rspwqe)) 867 { 868 struct lpfc_hba *phba = axchg->phba; 869 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer; 870 struct lpfc_iocbq *nvmewqeq; 871 struct lpfc_dmabuf dmabuf; 872 struct ulp_bde64 bpl; 873 int rc; 874 875 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 876 return -ENODEV; 877 878 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 879 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid); 880 881 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) { 882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 883 "6412 NVMEx LS rsp state mismatch " 884 "oxid x%x: %d %d\n", 885 axchg->oxid, axchg->state, axchg->entry_cnt); 886 return -EALREADY; 887 } 888 axchg->state = LPFC_NVME_STE_LS_RSP; 889 axchg->entry_cnt++; 890 891 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma, 892 ls_rsp->rsplen); 893 if (nvmewqeq == NULL) { 894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 895 "6150 NVMEx LS Drop Rsp x%x: Prep\n", 896 axchg->oxid); 897 rc = -ENOMEM; 898 goto out_free_buf; 899 } 900 901 /* Save numBdes for bpl2sgl */ 902 nvmewqeq->num_bdes = 1; 903 nvmewqeq->hba_wqidx = 0; 904 nvmewqeq->bpl_dmabuf = &dmabuf; 905 dmabuf.virt = &bpl; 906 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 907 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 908 bpl.tus.f.bdeSize = ls_rsp->rsplen; 909 bpl.tus.f.bdeFlags = 0; 910 bpl.tus.w = le32_to_cpu(bpl.tus.w); 911 /* 912 * Note: although we're using stack space for the dmabuf, the 913 * call to lpfc_sli4_issue_wqe is synchronous, so it will not 914 * be referenced after it returns back to this routine. 915 */ 916 917 nvmewqeq->cmd_cmpl = xmt_ls_rsp_cmp; 918 nvmewqeq->context_un.axchg = axchg; 919 920 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n", 921 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen); 922 923 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq); 924 925 /* clear to be sure there's no reference */ 926 nvmewqeq->bpl_dmabuf = NULL; 927 928 if (rc == WQE_SUCCESS) { 929 /* 930 * Okay to repost buffer here, but wait till cmpl 931 * before freeing ctxp and iocbq. 932 */ 933 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 934 return 0; 935 } 936 937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 938 "6151 NVMEx LS RSP x%x: failed to transmit %d\n", 939 axchg->oxid, rc); 940 941 rc = -ENXIO; 942 943 lpfc_nlp_put(nvmewqeq->ndlp); 944 945 out_free_buf: 946 /* Give back resources */ 947 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 948 949 /* 950 * As transport doesn't track completions of responses, if the rsp 951 * fails to send, the transport will effectively ignore the rsp 952 * and consider the LS done. However, the driver has an active 953 * exchange open for the LS - so be sure to abort the exchange 954 * if the response isn't sent. 955 */ 956 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid); 957 return rc; 958 } 959 960 /** 961 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response 962 * @tgtport: pointer to target port that NVME LS is to be transmit from. 963 * @ls_rsp: pointer to the transport LS RSP that is to be sent 964 * 965 * Driver registers this routine to transmit responses for received NVME 966 * LS requests. 967 * 968 * This routine is used to format and send a WQE to transmit a NVME LS 969 * Response. The ls_rsp is used to reverse-map the LS to the original 970 * NVME LS request sequence, which provides addressing information for 971 * the remote port the LS to be sent to, as well as the exchange id 972 * that is the LS is bound to. 973 * 974 * Returns: 975 * 0 : if response successfully transmit 976 * non-zero : if response failed to transmit, of the form -Exxx. 977 **/ 978 static int 979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 980 struct nvmefc_ls_rsp *ls_rsp) 981 { 982 struct lpfc_async_xchg_ctx *axchg = 983 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); 984 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 985 int rc; 986 987 if (test_bit(FC_UNLOADING, &axchg->phba->pport->load_flag)) 988 return -ENODEV; 989 990 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp); 991 992 if (rc) { 993 atomic_inc(&nvmep->xmt_ls_drop); 994 /* 995 * unless the failure is due to having already sent 996 * the response, an abort will be generated for the 997 * exchange if the rsp can't be sent. 998 */ 999 if (rc != -EALREADY) 1000 atomic_inc(&nvmep->xmt_ls_abort); 1001 return rc; 1002 } 1003 1004 atomic_inc(&nvmep->xmt_ls_rsp); 1005 return 0; 1006 } 1007 1008 static int 1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 1010 struct nvmefc_tgt_fcp_req *rsp) 1011 { 1012 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1013 struct lpfc_async_xchg_ctx *ctxp = 1014 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1015 struct lpfc_hba *phba = ctxp->phba; 1016 struct lpfc_queue *wq; 1017 struct lpfc_iocbq *nvmewqeq; 1018 struct lpfc_sli_ring *pring; 1019 unsigned long iflags; 1020 int rc; 1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1022 int id; 1023 #endif 1024 1025 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1026 rc = -ENODEV; 1027 goto aerr; 1028 } 1029 1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1031 if (ctxp->ts_cmd_nvme) { 1032 if (rsp->op == NVMET_FCOP_RSP) 1033 ctxp->ts_nvme_status = ktime_get_ns(); 1034 else 1035 ctxp->ts_nvme_data = ktime_get_ns(); 1036 } 1037 1038 /* Setup the hdw queue if not already set */ 1039 if (!ctxp->hdwq) 1040 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 1041 1042 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 1043 id = raw_smp_processor_id(); 1044 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); 1045 if (rsp->hwqid != id) 1046 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1047 "6705 CPU Check OP: " 1048 "cpu %d expect %d\n", 1049 id, rsp->hwqid); 1050 ctxp->cpu = id; /* Setup cpu for cmpl check */ 1051 } 1052 #endif 1053 1054 /* Sanity check */ 1055 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) || 1056 (ctxp->state == LPFC_NVME_STE_ABORT)) { 1057 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1059 "6102 IO oxid x%x aborted\n", 1060 ctxp->oxid); 1061 rc = -ENXIO; 1062 goto aerr; 1063 } 1064 1065 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 1066 if (nvmewqeq == NULL) { 1067 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1069 "6152 FCP Drop IO x%x: Prep\n", 1070 ctxp->oxid); 1071 rc = -ENXIO; 1072 goto aerr; 1073 } 1074 1075 nvmewqeq->cmd_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1076 nvmewqeq->context_un.axchg = ctxp; 1077 nvmewqeq->cmd_flag |= LPFC_IO_NVMET; 1078 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1079 1080 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1081 ctxp->oxid, rsp->op, rsp->rsplen); 1082 1083 ctxp->flag |= LPFC_NVME_IO_INP; 1084 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1085 if (rc == WQE_SUCCESS) { 1086 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1087 if (!ctxp->ts_cmd_nvme) 1088 return 0; 1089 if (rsp->op == NVMET_FCOP_RSP) 1090 ctxp->ts_status_wqput = ktime_get_ns(); 1091 else 1092 ctxp->ts_data_wqput = ktime_get_ns(); 1093 #endif 1094 return 0; 1095 } 1096 1097 if (rc == -EBUSY) { 1098 /* 1099 * WQ was full, so queue nvmewqeq to be sent after 1100 * WQE release CQE 1101 */ 1102 ctxp->flag |= LPFC_NVME_DEFER_WQFULL; 1103 wq = ctxp->hdwq->io_wq; 1104 pring = wq->pring; 1105 spin_lock_irqsave(&pring->ring_lock, iflags); 1106 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1107 wq->q_flag |= HBA_NVMET_WQFULL; 1108 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1109 atomic_inc(&lpfc_nvmep->defer_wqfull); 1110 return 0; 1111 } 1112 1113 /* Give back resources */ 1114 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1116 "6153 FCP Drop IO x%x: Issue: %d\n", 1117 ctxp->oxid, rc); 1118 1119 ctxp->wqeq->hba_wqidx = 0; 1120 nvmewqeq->context_un.axchg = NULL; 1121 nvmewqeq->bpl_dmabuf = NULL; 1122 rc = -EBUSY; 1123 aerr: 1124 return rc; 1125 } 1126 1127 static void 1128 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1129 { 1130 struct lpfc_nvmet_tgtport *tport = targetport->private; 1131 1132 /* release any threads waiting for the unreg to complete */ 1133 if (tport->phba->targetport) 1134 complete(tport->tport_unreg_cmp); 1135 } 1136 1137 static void 1138 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1139 struct nvmefc_tgt_fcp_req *req) 1140 { 1141 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1142 struct lpfc_async_xchg_ctx *ctxp = 1143 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1144 struct lpfc_hba *phba = ctxp->phba; 1145 struct lpfc_queue *wq; 1146 unsigned long flags; 1147 1148 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1149 return; 1150 1151 if (!ctxp->hdwq) 1152 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1153 1154 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1155 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1156 ctxp->oxid, ctxp->flag, ctxp->state); 1157 1158 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1159 ctxp->oxid, ctxp->flag, ctxp->state); 1160 1161 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1162 1163 spin_lock_irqsave(&ctxp->ctxlock, flags); 1164 1165 /* Since iaab/iaar are NOT set, we need to check 1166 * if the firmware is in process of aborting IO 1167 */ 1168 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) { 1169 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1170 return; 1171 } 1172 ctxp->flag |= LPFC_NVME_ABORT_OP; 1173 1174 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) { 1175 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1176 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1177 ctxp->oxid); 1178 wq = ctxp->hdwq->io_wq; 1179 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1180 return; 1181 } 1182 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1183 1184 /* A state of LPFC_NVME_STE_RCV means we have just received 1185 * the NVME command and have not started processing it. 1186 * (by issuing any IO WQEs on this exchange yet) 1187 */ 1188 if (ctxp->state == LPFC_NVME_STE_RCV) 1189 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1190 ctxp->oxid); 1191 else 1192 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1193 ctxp->oxid); 1194 } 1195 1196 static void 1197 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1198 struct nvmefc_tgt_fcp_req *rsp) 1199 { 1200 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1201 struct lpfc_async_xchg_ctx *ctxp = 1202 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1203 struct lpfc_hba *phba = ctxp->phba; 1204 unsigned long flags; 1205 bool aborting = false; 1206 1207 spin_lock_irqsave(&ctxp->ctxlock, flags); 1208 if (ctxp->flag & LPFC_NVME_XBUSY) 1209 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1210 "6027 NVMET release with XBUSY flag x%x" 1211 " oxid x%x\n", 1212 ctxp->flag, ctxp->oxid); 1213 else if (ctxp->state != LPFC_NVME_STE_DONE && 1214 ctxp->state != LPFC_NVME_STE_ABORT) 1215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1216 "6413 NVMET release bad state %d %d oxid x%x\n", 1217 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1218 1219 if ((ctxp->flag & LPFC_NVME_ABORT_OP) || 1220 (ctxp->flag & LPFC_NVME_XBUSY)) { 1221 aborting = true; 1222 /* let the abort path do the real release */ 1223 lpfc_nvmet_defer_release(phba, ctxp); 1224 } 1225 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1226 1227 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1228 ctxp->state, aborting); 1229 1230 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1231 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 1232 1233 if (aborting) 1234 return; 1235 1236 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1237 } 1238 1239 static void 1240 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1241 struct nvmefc_tgt_fcp_req *rsp) 1242 { 1243 struct lpfc_nvmet_tgtport *tgtp; 1244 struct lpfc_async_xchg_ctx *ctxp = 1245 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1246 struct rqb_dmabuf *nvmebuf; 1247 struct lpfc_hba *phba = ctxp->phba; 1248 unsigned long iflag; 1249 1250 1251 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1252 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1253 1254 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1255 nvmebuf = ctxp->rqb_buffer; 1256 if (!nvmebuf) { 1257 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1258 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1259 "6425 Defer rcv: no buffer oxid x%x: " 1260 "flg %x ste %x\n", 1261 ctxp->oxid, ctxp->flag, ctxp->state); 1262 return; 1263 } 1264 ctxp->rqb_buffer = NULL; 1265 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1266 1267 tgtp = phba->targetport->private; 1268 if (tgtp) 1269 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1270 1271 /* Free the nvmebuf since a new buffer already replaced it */ 1272 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1273 } 1274 1275 /** 1276 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request 1277 * @phba: Pointer to HBA context object 1278 * @cmdwqe: Pointer to driver command WQE object. 1279 * @rspwqe: Pointer to driver response WQE object. 1280 * 1281 * This function is the completion handler for NVME LS requests. 1282 * The function updates any states and statistics, then calls the 1283 * generic completion handler to finish completion of the request. 1284 **/ 1285 static void 1286 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 1287 struct lpfc_iocbq *rspwqe) 1288 { 1289 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 1290 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe); 1291 } 1292 1293 /** 1294 * lpfc_nvmet_ls_req - Issue an Link Service request 1295 * @targetport: pointer to target instance registered with nvmet transport. 1296 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1297 * Driver sets this value to the ndlp pointer. 1298 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS 1299 * 1300 * Driver registers this routine to handle any link service request 1301 * from the nvme_fc transport to a remote nvme-aware port. 1302 * 1303 * Return value : 1304 * 0 - Success 1305 * non-zero: various error codes, in form of -Exxx 1306 **/ 1307 static int 1308 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport, 1309 void *hosthandle, 1310 struct nvmefc_ls_req *pnvme_lsreq) 1311 { 1312 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1313 struct lpfc_hba *phba; 1314 struct lpfc_nodelist *ndlp; 1315 int ret; 1316 u32 hstate; 1317 1318 if (!lpfc_nvmet) 1319 return -EINVAL; 1320 1321 phba = lpfc_nvmet->phba; 1322 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1323 return -EINVAL; 1324 1325 hstate = atomic_read(&lpfc_nvmet->state); 1326 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE) 1327 return -EACCES; 1328 1329 ndlp = (struct lpfc_nodelist *)hosthandle; 1330 1331 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq, 1332 lpfc_nvmet_ls_req_cmp); 1333 1334 return ret; 1335 } 1336 1337 /** 1338 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request 1339 * @targetport: Transport targetport, that LS was issued from. 1340 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1341 * Driver sets this value to the ndlp pointer. 1342 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted 1343 * 1344 * Driver registers this routine to abort an NVME LS request that is 1345 * in progress (from the transports perspective). 1346 **/ 1347 static void 1348 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport, 1349 void *hosthandle, 1350 struct nvmefc_ls_req *pnvme_lsreq) 1351 { 1352 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1353 struct lpfc_hba *phba; 1354 struct lpfc_nodelist *ndlp; 1355 int ret; 1356 1357 phba = lpfc_nvmet->phba; 1358 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1359 return; 1360 1361 ndlp = (struct lpfc_nodelist *)hosthandle; 1362 1363 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq); 1364 if (!ret) 1365 atomic_inc(&lpfc_nvmet->xmt_ls_abort); 1366 } 1367 1368 static int 1369 lpfc_nvmet_host_traddr(void *hosthandle, u64 *wwnn, u64 *wwpn) 1370 { 1371 struct lpfc_nodelist *ndlp = hosthandle; 1372 1373 *wwnn = wwn_to_u64(ndlp->nlp_nodename.u.wwn); 1374 *wwpn = wwn_to_u64(ndlp->nlp_portname.u.wwn); 1375 return 0; 1376 } 1377 1378 static void 1379 lpfc_nvmet_host_release(void *hosthandle) 1380 { 1381 struct lpfc_nodelist *ndlp = hosthandle; 1382 struct lpfc_hba *phba = ndlp->phba; 1383 struct lpfc_nvmet_tgtport *tgtp; 1384 1385 if (!phba->targetport || !phba->targetport->private) 1386 return; 1387 1388 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1389 "6202 NVMET XPT releasing hosthandle x%px " 1390 "DID x%x xflags x%x refcnt %d\n", 1391 hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags, 1392 kref_read(&ndlp->kref)); 1393 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1394 spin_lock_irq(&ndlp->lock); 1395 ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH; 1396 spin_unlock_irq(&ndlp->lock); 1397 lpfc_nlp_put(ndlp); 1398 atomic_set(&tgtp->state, 0); 1399 } 1400 1401 static void 1402 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1403 { 1404 struct lpfc_nvmet_tgtport *tgtp; 1405 struct lpfc_hba *phba; 1406 uint32_t rc; 1407 1408 tgtp = tgtport->private; 1409 phba = tgtp->phba; 1410 1411 rc = lpfc_issue_els_rscn(phba->pport, 0); 1412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1413 "6420 NVMET subsystem change: Notification %s\n", 1414 (rc) ? "Failed" : "Sent"); 1415 } 1416 1417 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1418 .targetport_delete = lpfc_nvmet_targetport_delete, 1419 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1420 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1421 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1422 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1423 .defer_rcv = lpfc_nvmet_defer_rcv, 1424 .discovery_event = lpfc_nvmet_discovery_event, 1425 .ls_req = lpfc_nvmet_ls_req, 1426 .ls_abort = lpfc_nvmet_ls_abort, 1427 .host_release = lpfc_nvmet_host_release, 1428 .host_traddr = lpfc_nvmet_host_traddr, 1429 1430 .max_hw_queues = 1, 1431 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1432 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1433 .dma_boundary = 0xFFFFFFFF, 1434 1435 /* optional features */ 1436 .target_features = 0, 1437 /* sizes of additional private data for data structures */ 1438 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1439 .lsrqst_priv_sz = 0, 1440 }; 1441 1442 static void 1443 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1444 struct lpfc_nvmet_ctx_info *infop) 1445 { 1446 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1447 unsigned long flags; 1448 1449 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1450 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1451 &infop->nvmet_ctx_list, list) { 1452 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1453 list_del_init(&ctx_buf->list); 1454 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1455 1456 spin_lock(&phba->hbalock); 1457 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1458 spin_unlock(&phba->hbalock); 1459 1460 ctx_buf->sglq->state = SGL_FREED; 1461 ctx_buf->sglq->ndlp = NULL; 1462 1463 spin_lock(&phba->sli4_hba.sgl_list_lock); 1464 list_add_tail(&ctx_buf->sglq->list, 1465 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1466 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1467 1468 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1469 kfree(ctx_buf->context); 1470 } 1471 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1472 } 1473 1474 static void 1475 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1476 { 1477 struct lpfc_nvmet_ctx_info *infop; 1478 int i, j; 1479 1480 /* The first context list, MRQ 0 CPU 0 */ 1481 infop = phba->sli4_hba.nvmet_ctx_info; 1482 if (!infop) 1483 return; 1484 1485 /* Cycle the entire CPU context list for every MRQ */ 1486 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1487 for_each_present_cpu(j) { 1488 infop = lpfc_get_ctx_list(phba, j, i); 1489 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1490 } 1491 } 1492 kfree(phba->sli4_hba.nvmet_ctx_info); 1493 phba->sli4_hba.nvmet_ctx_info = NULL; 1494 } 1495 1496 static int 1497 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1498 { 1499 struct lpfc_nvmet_ctxbuf *ctx_buf; 1500 struct lpfc_iocbq *nvmewqe; 1501 union lpfc_wqe128 *wqe; 1502 struct lpfc_nvmet_ctx_info *last_infop; 1503 struct lpfc_nvmet_ctx_info *infop; 1504 int i, j, idx, cpu; 1505 1506 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1507 "6403 Allocate NVMET resources for %d XRIs\n", 1508 phba->sli4_hba.nvmet_xri_cnt); 1509 1510 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1511 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1512 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1513 if (!phba->sli4_hba.nvmet_ctx_info) { 1514 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1515 "6419 Failed allocate memory for " 1516 "nvmet context lists\n"); 1517 return -ENOMEM; 1518 } 1519 1520 /* 1521 * Assuming X CPUs in the system, and Y MRQs, allocate some 1522 * lpfc_nvmet_ctx_info structures as follows: 1523 * 1524 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1525 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1526 * ... 1527 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1528 * 1529 * Each line represents a MRQ "silo" containing an entry for 1530 * every CPU. 1531 * 1532 * MRQ X is initially assumed to be associated with CPU X, thus 1533 * contexts are initially distributed across all MRQs using 1534 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1535 * freed, the are freed to the MRQ silo based on the CPU number 1536 * of the IO completion. Thus a context that was allocated for MRQ A 1537 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1538 */ 1539 for_each_possible_cpu(i) { 1540 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1541 infop = lpfc_get_ctx_list(phba, i, j); 1542 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1543 spin_lock_init(&infop->nvmet_ctx_list_lock); 1544 infop->nvmet_ctx_list_cnt = 0; 1545 } 1546 } 1547 1548 /* 1549 * Setup the next CPU context info ptr for each MRQ. 1550 * MRQ 0 will cycle thru CPUs 0 - X separately from 1551 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1552 */ 1553 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1554 last_infop = lpfc_get_ctx_list(phba, 1555 cpumask_first(cpu_present_mask), 1556 j); 1557 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1558 infop = lpfc_get_ctx_list(phba, i, j); 1559 infop->nvmet_ctx_next_cpu = last_infop; 1560 last_infop = infop; 1561 } 1562 } 1563 1564 /* For all nvmet xris, allocate resources needed to process a 1565 * received command on a per xri basis. 1566 */ 1567 idx = 0; 1568 cpu = cpumask_first(cpu_present_mask); 1569 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1570 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1571 if (!ctx_buf) { 1572 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1573 "6404 Ran out of memory for NVMET\n"); 1574 return -ENOMEM; 1575 } 1576 1577 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1578 GFP_KERNEL); 1579 if (!ctx_buf->context) { 1580 kfree(ctx_buf); 1581 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1582 "6405 Ran out of NVMET " 1583 "context memory\n"); 1584 return -ENOMEM; 1585 } 1586 ctx_buf->context->ctxbuf = ctx_buf; 1587 ctx_buf->context->state = LPFC_NVME_STE_FREE; 1588 1589 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1590 if (!ctx_buf->iocbq) { 1591 kfree(ctx_buf->context); 1592 kfree(ctx_buf); 1593 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1594 "6406 Ran out of NVMET iocb/WQEs\n"); 1595 return -ENOMEM; 1596 } 1597 ctx_buf->iocbq->cmd_flag = LPFC_IO_NVMET; 1598 nvmewqe = ctx_buf->iocbq; 1599 wqe = &nvmewqe->wqe; 1600 1601 /* Initialize WQE */ 1602 memset(wqe, 0, sizeof(*wqe)); 1603 1604 ctx_buf->iocbq->cmd_dmabuf = NULL; 1605 spin_lock(&phba->sli4_hba.sgl_list_lock); 1606 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1607 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1608 if (!ctx_buf->sglq) { 1609 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1610 kfree(ctx_buf->context); 1611 kfree(ctx_buf); 1612 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1613 "6407 Ran out of NVMET XRIs\n"); 1614 return -ENOMEM; 1615 } 1616 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1617 1618 /* 1619 * Add ctx to MRQidx context list. Our initial assumption 1620 * is MRQidx will be associated with CPUidx. This association 1621 * can change on the fly. 1622 */ 1623 infop = lpfc_get_ctx_list(phba, cpu, idx); 1624 spin_lock(&infop->nvmet_ctx_list_lock); 1625 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1626 infop->nvmet_ctx_list_cnt++; 1627 spin_unlock(&infop->nvmet_ctx_list_lock); 1628 1629 /* Spread ctx structures evenly across all MRQs */ 1630 idx++; 1631 if (idx >= phba->cfg_nvmet_mrq) { 1632 idx = 0; 1633 cpu = cpumask_first(cpu_present_mask); 1634 continue; 1635 } 1636 cpu = lpfc_next_present_cpu(cpu); 1637 } 1638 1639 for_each_present_cpu(i) { 1640 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1641 infop = lpfc_get_ctx_list(phba, i, j); 1642 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1643 "6408 TOTAL NVMET ctx for CPU %d " 1644 "MRQ %d: cnt %d nextcpu x%px\n", 1645 i, j, infop->nvmet_ctx_list_cnt, 1646 infop->nvmet_ctx_next_cpu); 1647 } 1648 } 1649 return 0; 1650 } 1651 1652 int 1653 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1654 { 1655 struct lpfc_vport *vport = phba->pport; 1656 struct lpfc_nvmet_tgtport *tgtp; 1657 struct nvmet_fc_port_info pinfo; 1658 int error; 1659 1660 if (phba->targetport) 1661 return 0; 1662 1663 error = lpfc_nvmet_setup_io_context(phba); 1664 if (error) 1665 return error; 1666 1667 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1668 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1669 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1670 pinfo.port_id = vport->fc_myDID; 1671 1672 /* We need to tell the transport layer + 1 because it takes page 1673 * alignment into account. When space for the SGL is allocated we 1674 * allocate + 3, one for cmd, one for rsp and one for this alignment 1675 */ 1676 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1677 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1678 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1679 1680 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1681 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1682 &phba->pcidev->dev, 1683 &phba->targetport); 1684 #else 1685 error = -ENOENT; 1686 #endif 1687 if (error) { 1688 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1689 "6025 Cannot register NVME targetport x%x: " 1690 "portnm %llx nodenm %llx segs %d qs %d\n", 1691 error, 1692 pinfo.port_name, pinfo.node_name, 1693 lpfc_tgttemplate.max_sgl_segments, 1694 lpfc_tgttemplate.max_hw_queues); 1695 phba->targetport = NULL; 1696 phba->nvmet_support = 0; 1697 1698 lpfc_nvmet_cleanup_io_context(phba); 1699 1700 } else { 1701 tgtp = (struct lpfc_nvmet_tgtport *) 1702 phba->targetport->private; 1703 tgtp->phba = phba; 1704 1705 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1706 "6026 Registered NVME " 1707 "targetport: x%px, private x%px " 1708 "portnm %llx nodenm %llx segs %d qs %d\n", 1709 phba->targetport, tgtp, 1710 pinfo.port_name, pinfo.node_name, 1711 lpfc_tgttemplate.max_sgl_segments, 1712 lpfc_tgttemplate.max_hw_queues); 1713 1714 atomic_set(&tgtp->rcv_ls_req_in, 0); 1715 atomic_set(&tgtp->rcv_ls_req_out, 0); 1716 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1717 atomic_set(&tgtp->xmt_ls_abort, 0); 1718 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1719 atomic_set(&tgtp->xmt_ls_rsp, 0); 1720 atomic_set(&tgtp->xmt_ls_drop, 0); 1721 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1722 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1723 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1724 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1725 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1726 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1727 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1728 atomic_set(&tgtp->xmt_fcp_drop, 0); 1729 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1730 atomic_set(&tgtp->xmt_fcp_read, 0); 1731 atomic_set(&tgtp->xmt_fcp_write, 0); 1732 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1733 atomic_set(&tgtp->xmt_fcp_release, 0); 1734 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1735 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1736 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1737 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1738 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1739 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1740 atomic_set(&tgtp->xmt_fcp_abort, 0); 1741 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1742 atomic_set(&tgtp->xmt_abort_unsol, 0); 1743 atomic_set(&tgtp->xmt_abort_sol, 0); 1744 atomic_set(&tgtp->xmt_abort_rsp, 0); 1745 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1746 atomic_set(&tgtp->defer_ctx, 0); 1747 atomic_set(&tgtp->defer_fod, 0); 1748 atomic_set(&tgtp->defer_wqfull, 0); 1749 } 1750 return error; 1751 } 1752 1753 int 1754 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1755 { 1756 struct lpfc_vport *vport = phba->pport; 1757 1758 if (!phba->targetport) 1759 return 0; 1760 1761 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1762 "6007 Update NVMET port x%px did x%x\n", 1763 phba->targetport, vport->fc_myDID); 1764 1765 phba->targetport->port_id = vport->fc_myDID; 1766 return 0; 1767 } 1768 1769 /** 1770 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1771 * @phba: pointer to lpfc hba data structure. 1772 * @axri: pointer to the nvmet xri abort wcqe structure. 1773 * 1774 * This routine is invoked by the worker thread to process a SLI4 fast-path 1775 * NVMET aborted xri. 1776 **/ 1777 void 1778 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1779 struct sli4_wcqe_xri_aborted *axri) 1780 { 1781 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1782 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1783 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1784 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1785 struct lpfc_nvmet_tgtport *tgtp; 1786 struct nvmefc_tgt_fcp_req *req = NULL; 1787 struct lpfc_nodelist *ndlp; 1788 unsigned long iflag = 0; 1789 int rrq_empty = 0; 1790 bool released = false; 1791 1792 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1793 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1794 1795 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1796 return; 1797 1798 if (phba->targetport) { 1799 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1800 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1801 } 1802 1803 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1804 list_for_each_entry_safe(ctxp, next_ctxp, 1805 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1806 list) { 1807 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1808 continue; 1809 1810 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1811 iflag); 1812 1813 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1814 /* Check if we already received a free context call 1815 * and we have completed processing an abort situation. 1816 */ 1817 if (ctxp->flag & LPFC_NVME_CTX_RLS && 1818 !(ctxp->flag & LPFC_NVME_ABORT_OP)) { 1819 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1820 list_del_init(&ctxp->list); 1821 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1822 released = true; 1823 } 1824 ctxp->flag &= ~LPFC_NVME_XBUSY; 1825 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1826 1827 spin_lock_irqsave(&phba->rrq_list_lock, iflag); 1828 rrq_empty = list_empty(&phba->active_rrq_list); 1829 spin_unlock_irqrestore(&phba->rrq_list_lock, iflag); 1830 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1831 if (ndlp && 1832 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1833 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1834 lpfc_set_rrq_active(phba, ndlp, 1835 ctxp->ctxbuf->sglq->sli4_lxritag, 1836 rxid, 1); 1837 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1838 } 1839 1840 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1841 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1842 ctxp->oxid, ctxp->flag, released); 1843 if (released) 1844 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1845 1846 if (rrq_empty) 1847 lpfc_worker_wake_up(phba); 1848 return; 1849 } 1850 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1851 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1852 if (ctxp) { 1853 /* 1854 * Abort already done by FW, so BA_ACC sent. 1855 * However, the transport may be unaware. 1856 */ 1857 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1858 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1859 "flag x%x oxid x%x rxid x%x\n", 1860 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1861 rxid); 1862 1863 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1864 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1865 ctxp->state = LPFC_NVME_STE_ABORT; 1866 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1867 1868 lpfc_nvmeio_data(phba, 1869 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1870 xri, raw_smp_processor_id(), 0); 1871 1872 req = &ctxp->hdlrctx.fcp_req; 1873 if (req) 1874 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1875 } 1876 #endif 1877 } 1878 1879 int 1880 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1881 struct fc_frame_header *fc_hdr) 1882 { 1883 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1884 struct lpfc_hba *phba = vport->phba; 1885 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1886 struct nvmefc_tgt_fcp_req *rsp; 1887 uint32_t sid; 1888 uint16_t oxid, xri; 1889 unsigned long iflag = 0; 1890 1891 sid = sli4_sid_from_fc_hdr(fc_hdr); 1892 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1893 1894 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1895 list_for_each_entry_safe(ctxp, next_ctxp, 1896 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1897 list) { 1898 if (ctxp->oxid != oxid || ctxp->sid != sid) 1899 continue; 1900 1901 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1902 1903 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1904 iflag); 1905 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1906 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1907 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1908 1909 lpfc_nvmeio_data(phba, 1910 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1911 xri, raw_smp_processor_id(), 0); 1912 1913 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1914 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1915 1916 rsp = &ctxp->hdlrctx.fcp_req; 1917 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1918 1919 /* Respond with BA_ACC accordingly */ 1920 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1921 return 0; 1922 } 1923 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1924 /* check the wait list */ 1925 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1926 struct rqb_dmabuf *nvmebuf; 1927 struct fc_frame_header *fc_hdr_tmp; 1928 u32 sid_tmp; 1929 u16 oxid_tmp; 1930 bool found = false; 1931 1932 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1933 1934 /* match by oxid and s_id */ 1935 list_for_each_entry(nvmebuf, 1936 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1937 hbuf.list) { 1938 fc_hdr_tmp = (struct fc_frame_header *) 1939 (nvmebuf->hbuf.virt); 1940 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1941 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1942 if (oxid_tmp != oxid || sid_tmp != sid) 1943 continue; 1944 1945 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1946 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1947 "is waiting for a ctxp\n", 1948 oxid, sid); 1949 1950 list_del_init(&nvmebuf->hbuf.list); 1951 phba->sli4_hba.nvmet_io_wait_cnt--; 1952 found = true; 1953 break; 1954 } 1955 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1956 iflag); 1957 1958 /* free buffer since already posted a new DMA buffer to RQ */ 1959 if (found) { 1960 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1961 /* Respond with BA_ACC accordingly */ 1962 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1963 return 0; 1964 } 1965 } 1966 1967 /* check active list */ 1968 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1969 if (ctxp) { 1970 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1971 1972 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1973 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP); 1974 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1975 1976 lpfc_nvmeio_data(phba, 1977 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1978 xri, raw_smp_processor_id(), 0); 1979 1980 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1981 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1982 "flag x%x state x%x\n", 1983 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1984 1985 if (ctxp->flag & LPFC_NVME_TNOTIFY) { 1986 /* Notify the transport */ 1987 nvmet_fc_rcv_fcp_abort(phba->targetport, 1988 &ctxp->hdlrctx.fcp_req); 1989 } else { 1990 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1991 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1992 lpfc_nvmet_defer_release(phba, ctxp); 1993 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1994 } 1995 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1996 ctxp->oxid); 1997 1998 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1999 return 0; 2000 } 2001 2002 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 2003 oxid, raw_smp_processor_id(), 1); 2004 2005 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2006 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 2007 2008 /* Respond with BA_RJT accordingly */ 2009 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 2010 #endif 2011 return 0; 2012 } 2013 2014 static void 2015 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 2016 struct lpfc_async_xchg_ctx *ctxp) 2017 { 2018 struct lpfc_sli_ring *pring; 2019 struct lpfc_iocbq *nvmewqeq; 2020 struct lpfc_iocbq *next_nvmewqeq; 2021 unsigned long iflags; 2022 struct lpfc_wcqe_complete wcqe; 2023 struct lpfc_wcqe_complete *wcqep; 2024 2025 pring = wq->pring; 2026 wcqep = &wcqe; 2027 2028 /* Fake an ABORT error code back to cmpl routine */ 2029 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 2030 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 2031 wcqep->parameter = IOERR_ABORT_REQUESTED; 2032 2033 spin_lock_irqsave(&pring->ring_lock, iflags); 2034 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 2035 &wq->wqfull_list, list) { 2036 if (ctxp) { 2037 /* Checking for a specific IO to flush */ 2038 if (nvmewqeq->context_un.axchg == ctxp) { 2039 list_del(&nvmewqeq->list); 2040 spin_unlock_irqrestore(&pring->ring_lock, 2041 iflags); 2042 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, 2043 sizeof(*wcqep)); 2044 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 2045 nvmewqeq); 2046 return; 2047 } 2048 continue; 2049 } else { 2050 /* Flush all IOs */ 2051 list_del(&nvmewqeq->list); 2052 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2053 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, sizeof(*wcqep)); 2054 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, nvmewqeq); 2055 spin_lock_irqsave(&pring->ring_lock, iflags); 2056 } 2057 } 2058 if (!ctxp) 2059 wq->q_flag &= ~HBA_NVMET_WQFULL; 2060 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2061 } 2062 2063 void 2064 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 2065 struct lpfc_queue *wq) 2066 { 2067 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2068 struct lpfc_sli_ring *pring; 2069 struct lpfc_iocbq *nvmewqeq; 2070 struct lpfc_async_xchg_ctx *ctxp; 2071 unsigned long iflags; 2072 int rc; 2073 2074 /* 2075 * Some WQE slots are available, so try to re-issue anything 2076 * on the WQ wqfull_list. 2077 */ 2078 pring = wq->pring; 2079 spin_lock_irqsave(&pring->ring_lock, iflags); 2080 while (!list_empty(&wq->wqfull_list)) { 2081 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 2082 list); 2083 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2084 ctxp = nvmewqeq->context_un.axchg; 2085 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 2086 spin_lock_irqsave(&pring->ring_lock, iflags); 2087 if (rc == -EBUSY) { 2088 /* WQ was full again, so put it back on the list */ 2089 list_add(&nvmewqeq->list, &wq->wqfull_list); 2090 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2091 return; 2092 } 2093 if (rc == WQE_SUCCESS) { 2094 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2095 if (ctxp->ts_cmd_nvme) { 2096 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP) 2097 ctxp->ts_status_wqput = ktime_get_ns(); 2098 else 2099 ctxp->ts_data_wqput = ktime_get_ns(); 2100 } 2101 #endif 2102 } else { 2103 WARN_ON(rc); 2104 } 2105 } 2106 wq->q_flag &= ~HBA_NVMET_WQFULL; 2107 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2108 2109 #endif 2110 } 2111 2112 void 2113 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 2114 { 2115 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2116 struct lpfc_nvmet_tgtport *tgtp; 2117 struct lpfc_queue *wq; 2118 uint32_t qidx; 2119 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 2120 2121 if (phba->nvmet_support == 0) 2122 return; 2123 if (phba->targetport) { 2124 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2125 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 2126 wq = phba->sli4_hba.hdwq[qidx].io_wq; 2127 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 2128 } 2129 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 2130 nvmet_fc_unregister_targetport(phba->targetport); 2131 if (!wait_for_completion_timeout(&tport_unreg_cmp, 2132 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 2133 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2134 "6179 Unreg targetport x%px timeout " 2135 "reached.\n", phba->targetport); 2136 lpfc_nvmet_cleanup_io_context(phba); 2137 } 2138 phba->targetport = NULL; 2139 #endif 2140 } 2141 2142 /** 2143 * lpfc_nvmet_handle_lsreq - Process an NVME LS request 2144 * @phba: pointer to lpfc hba data structure. 2145 * @axchg: pointer to exchange context for the NVME LS request 2146 * 2147 * This routine is used for processing an asynchronously received NVME LS 2148 * request. Any remaining validation is done and the LS is then forwarded 2149 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req(). 2150 * 2151 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing) 2152 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done. 2153 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. 2154 * 2155 * Returns 0 if LS was handled and delivered to the transport 2156 * Returns 1 if LS failed to be handled and should be dropped 2157 */ 2158 int 2159 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba, 2160 struct lpfc_async_xchg_ctx *axchg) 2161 { 2162 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2163 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private; 2164 uint32_t *payload = axchg->payload; 2165 int rc; 2166 2167 atomic_inc(&tgtp->rcv_ls_req_in); 2168 2169 /* 2170 * Driver passes the ndlp as the hosthandle argument allowing 2171 * the transport to generate LS requests for any associateions 2172 * that are created. 2173 */ 2174 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp, 2175 axchg->payload, axchg->size); 2176 2177 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2178 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2179 "%08x %08x %08x\n", axchg->size, rc, 2180 *payload, *(payload+1), *(payload+2), 2181 *(payload+3), *(payload+4), *(payload+5)); 2182 2183 if (!rc) { 2184 atomic_inc(&tgtp->rcv_ls_req_out); 2185 return 0; 2186 } 2187 2188 atomic_inc(&tgtp->rcv_ls_req_drop); 2189 #endif 2190 return 1; 2191 } 2192 2193 static void 2194 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2195 { 2196 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2197 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 2198 struct lpfc_hba *phba = ctxp->phba; 2199 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2200 struct lpfc_nvmet_tgtport *tgtp; 2201 uint32_t *payload, qno; 2202 uint32_t rc; 2203 unsigned long iflags; 2204 2205 if (!nvmebuf) { 2206 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2207 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2208 "oxid: x%x flg: x%x state: x%x\n", 2209 ctxp->oxid, ctxp->flag, ctxp->state); 2210 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2211 lpfc_nvmet_defer_release(phba, ctxp); 2212 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2213 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2214 ctxp->oxid); 2215 return; 2216 } 2217 2218 if (ctxp->flag & LPFC_NVME_ABTS_RCV) { 2219 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2220 "6324 IO oxid x%x aborted\n", 2221 ctxp->oxid); 2222 return; 2223 } 2224 2225 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2226 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2227 ctxp->flag |= LPFC_NVME_TNOTIFY; 2228 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2229 if (ctxp->ts_isr_cmd) 2230 ctxp->ts_cmd_nvme = ktime_get_ns(); 2231 #endif 2232 /* 2233 * The calling sequence should be: 2234 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2235 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2236 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2237 * the NVME command / FC header is stored. 2238 * A buffer has already been reposted for this IO, so just free 2239 * the nvmebuf. 2240 */ 2241 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req, 2242 payload, ctxp->size); 2243 /* Process FCP command */ 2244 if (rc == 0) { 2245 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2246 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2247 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) || 2248 (nvmebuf != ctxp->rqb_buffer)) { 2249 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2250 return; 2251 } 2252 ctxp->rqb_buffer = NULL; 2253 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2254 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2255 return; 2256 } 2257 2258 /* Processing of FCP command is deferred */ 2259 if (rc == -EOVERFLOW) { 2260 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2261 "from %06x\n", 2262 ctxp->oxid, ctxp->size, ctxp->sid); 2263 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2264 atomic_inc(&tgtp->defer_fod); 2265 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2266 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 2267 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2268 return; 2269 } 2270 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2271 /* 2272 * Post a replacement DMA buffer to RQ and defer 2273 * freeing rcv buffer till .defer_rcv callback 2274 */ 2275 qno = nvmebuf->idx; 2276 lpfc_post_rq_buffer( 2277 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2278 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2279 return; 2280 } 2281 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 2282 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2283 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2284 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2285 ctxp->oxid, rc, 2286 atomic_read(&tgtp->rcv_fcp_cmd_in), 2287 atomic_read(&tgtp->rcv_fcp_cmd_out), 2288 atomic_read(&tgtp->xmt_fcp_release)); 2289 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2290 ctxp->oxid, ctxp->size, ctxp->sid); 2291 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2292 lpfc_nvmet_defer_release(phba, ctxp); 2293 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2294 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2295 #endif 2296 } 2297 2298 static void 2299 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2300 { 2301 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2302 struct lpfc_nvmet_ctxbuf *ctx_buf = 2303 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2304 2305 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2306 #endif 2307 } 2308 2309 static struct lpfc_nvmet_ctxbuf * 2310 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2311 struct lpfc_nvmet_ctx_info *current_infop) 2312 { 2313 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2314 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2315 struct lpfc_nvmet_ctx_info *get_infop; 2316 int i; 2317 2318 /* 2319 * The current_infop for the MRQ a NVME command IU was received 2320 * on is empty. Our goal is to replenish this MRQs context 2321 * list from a another CPUs. 2322 * 2323 * First we need to pick a context list to start looking on. 2324 * nvmet_ctx_start_cpu has available context the last time 2325 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2326 * is just the next sequential CPU for this MRQ. 2327 */ 2328 if (current_infop->nvmet_ctx_start_cpu) 2329 get_infop = current_infop->nvmet_ctx_start_cpu; 2330 else 2331 get_infop = current_infop->nvmet_ctx_next_cpu; 2332 2333 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2334 if (get_infop == current_infop) { 2335 get_infop = get_infop->nvmet_ctx_next_cpu; 2336 continue; 2337 } 2338 spin_lock(&get_infop->nvmet_ctx_list_lock); 2339 2340 /* Just take the entire context list, if there are any */ 2341 if (get_infop->nvmet_ctx_list_cnt) { 2342 list_splice_init(&get_infop->nvmet_ctx_list, 2343 ¤t_infop->nvmet_ctx_list); 2344 current_infop->nvmet_ctx_list_cnt = 2345 get_infop->nvmet_ctx_list_cnt - 1; 2346 get_infop->nvmet_ctx_list_cnt = 0; 2347 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2348 2349 current_infop->nvmet_ctx_start_cpu = get_infop; 2350 list_remove_head(¤t_infop->nvmet_ctx_list, 2351 ctx_buf, struct lpfc_nvmet_ctxbuf, 2352 list); 2353 return ctx_buf; 2354 } 2355 2356 /* Otherwise, move on to the next CPU for this MRQ */ 2357 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2358 get_infop = get_infop->nvmet_ctx_next_cpu; 2359 } 2360 2361 #endif 2362 /* Nothing found, all contexts for the MRQ are in-flight */ 2363 return NULL; 2364 } 2365 2366 /** 2367 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2368 * @phba: pointer to lpfc hba data structure. 2369 * @idx: relative index of MRQ vector 2370 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2371 * @isr_timestamp: in jiffies. 2372 * @cqflag: cq processing information regarding workload. 2373 * 2374 * This routine is used for processing the WQE associated with a unsolicited 2375 * event. It first determines whether there is an existing ndlp that matches 2376 * the DID from the unsolicited WQE. If not, it will create a new one with 2377 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2378 * WQE is then used to invoke the proper routine and to set up proper state 2379 * of the discovery state machine. 2380 **/ 2381 static void 2382 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2383 uint32_t idx, 2384 struct rqb_dmabuf *nvmebuf, 2385 uint64_t isr_timestamp, 2386 uint8_t cqflag) 2387 { 2388 struct lpfc_async_xchg_ctx *ctxp; 2389 struct lpfc_nvmet_tgtport *tgtp; 2390 struct fc_frame_header *fc_hdr; 2391 struct lpfc_nvmet_ctxbuf *ctx_buf; 2392 struct lpfc_nvmet_ctx_info *current_infop; 2393 uint32_t size, oxid, sid, qno; 2394 unsigned long iflag; 2395 int current_cpu; 2396 2397 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2398 return; 2399 2400 ctx_buf = NULL; 2401 if (!nvmebuf || !phba->targetport) { 2402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2403 "6157 NVMET FCP Drop IO\n"); 2404 if (nvmebuf) 2405 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2406 return; 2407 } 2408 2409 /* 2410 * Get a pointer to the context list for this MRQ based on 2411 * the CPU this MRQ IRQ is associated with. If the CPU association 2412 * changes from our initial assumption, the context list could 2413 * be empty, thus it would need to be replenished with the 2414 * context list from another CPU for this MRQ. 2415 */ 2416 current_cpu = raw_smp_processor_id(); 2417 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2418 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2419 if (current_infop->nvmet_ctx_list_cnt) { 2420 list_remove_head(¤t_infop->nvmet_ctx_list, 2421 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2422 current_infop->nvmet_ctx_list_cnt--; 2423 } else { 2424 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2425 } 2426 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2427 2428 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2429 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2430 size = nvmebuf->bytes_recv; 2431 2432 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2433 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 2434 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io); 2435 if (idx != current_cpu) 2436 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2437 "6703 CPU Check rcv: " 2438 "cpu %d expect %d\n", 2439 current_cpu, idx); 2440 } 2441 #endif 2442 2443 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2444 oxid, size, raw_smp_processor_id()); 2445 2446 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2447 2448 if (!ctx_buf) { 2449 /* Queue this NVME IO to process later */ 2450 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2451 list_add_tail(&nvmebuf->hbuf.list, 2452 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2453 phba->sli4_hba.nvmet_io_wait_cnt++; 2454 phba->sli4_hba.nvmet_io_wait_total++; 2455 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2456 iflag); 2457 2458 /* Post a brand new DMA buffer to RQ */ 2459 qno = nvmebuf->idx; 2460 lpfc_post_rq_buffer( 2461 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2462 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2463 2464 atomic_inc(&tgtp->defer_ctx); 2465 return; 2466 } 2467 2468 sid = sli4_sid_from_fc_hdr(fc_hdr); 2469 2470 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 2471 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2472 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2473 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2474 if (ctxp->state != LPFC_NVME_STE_FREE) { 2475 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2476 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2477 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2478 } 2479 ctxp->wqeq = NULL; 2480 ctxp->offset = 0; 2481 ctxp->phba = phba; 2482 ctxp->size = size; 2483 ctxp->oxid = oxid; 2484 ctxp->sid = sid; 2485 ctxp->idx = idx; 2486 ctxp->state = LPFC_NVME_STE_RCV; 2487 ctxp->entry_cnt = 1; 2488 ctxp->flag = 0; 2489 ctxp->ctxbuf = ctx_buf; 2490 ctxp->rqb_buffer = (void *)nvmebuf; 2491 ctxp->hdwq = NULL; 2492 spin_lock_init(&ctxp->ctxlock); 2493 2494 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2495 if (isr_timestamp) 2496 ctxp->ts_isr_cmd = isr_timestamp; 2497 ctxp->ts_cmd_nvme = 0; 2498 ctxp->ts_nvme_data = 0; 2499 ctxp->ts_data_wqput = 0; 2500 ctxp->ts_isr_data = 0; 2501 ctxp->ts_data_nvme = 0; 2502 ctxp->ts_nvme_status = 0; 2503 ctxp->ts_status_wqput = 0; 2504 ctxp->ts_isr_status = 0; 2505 ctxp->ts_status_nvme = 0; 2506 #endif 2507 2508 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2509 /* check for cq processing load */ 2510 if (!cqflag) { 2511 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2512 return; 2513 } 2514 2515 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2516 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2517 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2518 "6325 Unable to queue work for oxid x%x. " 2519 "FCP Drop IO [x%x x%x x%x]\n", 2520 ctxp->oxid, 2521 atomic_read(&tgtp->rcv_fcp_cmd_in), 2522 atomic_read(&tgtp->rcv_fcp_cmd_out), 2523 atomic_read(&tgtp->xmt_fcp_release)); 2524 2525 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2526 lpfc_nvmet_defer_release(phba, ctxp); 2527 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2528 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2529 } 2530 } 2531 2532 /** 2533 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2534 * @phba: pointer to lpfc hba data structure. 2535 * @idx: relative index of MRQ vector 2536 * @nvmebuf: pointer to received nvme data structure. 2537 * @isr_timestamp: in jiffies. 2538 * @cqflag: cq processing information regarding workload. 2539 * 2540 * This routine is used to process an unsolicited event received from a SLI 2541 * (Service Level Interface) ring. The actual processing of the data buffer 2542 * associated with the unsolicited event is done by invoking the routine 2543 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2544 * SLI RQ on which the unsolicited event was received. 2545 **/ 2546 void 2547 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2548 uint32_t idx, 2549 struct rqb_dmabuf *nvmebuf, 2550 uint64_t isr_timestamp, 2551 uint8_t cqflag) 2552 { 2553 if (!nvmebuf) { 2554 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2555 "3167 NVMET FCP Drop IO\n"); 2556 return; 2557 } 2558 if (phba->nvmet_support == 0) { 2559 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2560 return; 2561 } 2562 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2563 } 2564 2565 /** 2566 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2567 * @phba: pointer to a host N_Port data structure. 2568 * @ctxp: Context info for NVME LS Request 2569 * @rspbuf: DMA buffer of NVME command. 2570 * @rspsize: size of the NVME command. 2571 * 2572 * This routine is used for allocating a lpfc-WQE data structure from 2573 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2574 * passed into the routine for discovery state machine to issue an Extended 2575 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2576 * and preparation routine that is used by all the discovery state machine 2577 * routines and the NVME command-specific fields will be later set up by 2578 * the individual discovery machine routines after calling this routine 2579 * allocating and preparing a generic WQE data structure. It fills in the 2580 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2581 * payload and response payload (if expected). The reference count on the 2582 * ndlp is incremented by 1 and the reference to the ndlp is put into 2583 * context1 of the WQE data structure for this WQE to hold the ndlp 2584 * reference for the command's callback function to access later. 2585 * 2586 * Return code 2587 * Pointer to the newly allocated/prepared nvme wqe data structure 2588 * NULL - when nvme wqe data structure allocation/preparation failed 2589 **/ 2590 static struct lpfc_iocbq * 2591 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2592 struct lpfc_async_xchg_ctx *ctxp, 2593 dma_addr_t rspbuf, uint16_t rspsize) 2594 { 2595 struct lpfc_nodelist *ndlp; 2596 struct lpfc_iocbq *nvmewqe; 2597 union lpfc_wqe128 *wqe; 2598 2599 if (!lpfc_is_link_up(phba)) { 2600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2601 "6104 NVMET prep LS wqe: link err: " 2602 "NPORT x%x oxid:x%x ste %d\n", 2603 ctxp->sid, ctxp->oxid, ctxp->state); 2604 return NULL; 2605 } 2606 2607 /* Allocate buffer for command wqe */ 2608 nvmewqe = lpfc_sli_get_iocbq(phba); 2609 if (nvmewqe == NULL) { 2610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2611 "6105 NVMET prep LS wqe: No WQE: " 2612 "NPORT x%x oxid x%x ste %d\n", 2613 ctxp->sid, ctxp->oxid, ctxp->state); 2614 return NULL; 2615 } 2616 2617 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2618 if (!ndlp || 2619 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2620 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2621 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2622 "6106 NVMET prep LS wqe: No ndlp: " 2623 "NPORT x%x oxid x%x ste %d\n", 2624 ctxp->sid, ctxp->oxid, ctxp->state); 2625 goto nvme_wqe_free_wqeq_exit; 2626 } 2627 ctxp->wqeq = nvmewqe; 2628 2629 /* prevent preparing wqe with NULL ndlp reference */ 2630 nvmewqe->ndlp = lpfc_nlp_get(ndlp); 2631 if (!nvmewqe->ndlp) 2632 goto nvme_wqe_free_wqeq_exit; 2633 nvmewqe->context_un.axchg = ctxp; 2634 2635 wqe = &nvmewqe->wqe; 2636 memset(wqe, 0, sizeof(union lpfc_wqe)); 2637 2638 /* Words 0 - 2 */ 2639 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2640 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2641 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2642 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2643 2644 /* Word 3 */ 2645 2646 /* Word 4 */ 2647 2648 /* Word 5 */ 2649 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2650 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2651 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2652 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2653 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2654 2655 /* Word 6 */ 2656 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2657 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2658 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2659 2660 /* Word 7 */ 2661 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2662 CMD_XMIT_SEQUENCE64_WQE); 2663 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2664 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2665 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2666 2667 /* Word 8 */ 2668 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2669 2670 /* Word 9 */ 2671 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2672 /* Needs to be set by caller */ 2673 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2674 2675 /* Word 10 */ 2676 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2677 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2678 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2679 LPFC_WQE_LENLOC_WORD12); 2680 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2681 2682 /* Word 11 */ 2683 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2684 LPFC_WQE_CQ_ID_DEFAULT); 2685 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2686 OTHER_COMMAND); 2687 2688 /* Word 12 */ 2689 wqe->xmit_sequence.xmit_len = rspsize; 2690 2691 nvmewqe->retry = 1; 2692 nvmewqe->vport = phba->pport; 2693 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2694 nvmewqe->cmd_flag |= LPFC_IO_NVME_LS; 2695 2696 /* Xmit NVMET response to remote NPORT <did> */ 2697 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2698 "6039 Xmit NVMET LS response to remote " 2699 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2700 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2701 rspsize); 2702 return nvmewqe; 2703 2704 nvme_wqe_free_wqeq_exit: 2705 nvmewqe->context_un.axchg = NULL; 2706 nvmewqe->ndlp = NULL; 2707 nvmewqe->bpl_dmabuf = NULL; 2708 lpfc_sli_release_iocbq(phba, nvmewqe); 2709 return NULL; 2710 } 2711 2712 2713 static struct lpfc_iocbq * 2714 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2715 struct lpfc_async_xchg_ctx *ctxp) 2716 { 2717 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req; 2718 struct lpfc_nvmet_tgtport *tgtp; 2719 struct sli4_sge *sgl; 2720 struct lpfc_nodelist *ndlp; 2721 struct lpfc_iocbq *nvmewqe; 2722 struct scatterlist *sgel; 2723 union lpfc_wqe128 *wqe; 2724 struct ulp_bde64 *bde; 2725 dma_addr_t physaddr; 2726 int i, cnt, nsegs; 2727 bool use_pbde = false; 2728 int xc = 1; 2729 2730 if (!lpfc_is_link_up(phba)) { 2731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2732 "6107 NVMET prep FCP wqe: link err:" 2733 "NPORT x%x oxid x%x ste %d\n", 2734 ctxp->sid, ctxp->oxid, ctxp->state); 2735 return NULL; 2736 } 2737 2738 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2739 if (!ndlp || 2740 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2741 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2742 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2743 "6108 NVMET prep FCP wqe: no ndlp: " 2744 "NPORT x%x oxid x%x ste %d\n", 2745 ctxp->sid, ctxp->oxid, ctxp->state); 2746 return NULL; 2747 } 2748 2749 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2750 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2751 "6109 NVMET prep FCP wqe: seg cnt err: " 2752 "NPORT x%x oxid x%x ste %d cnt %d\n", 2753 ctxp->sid, ctxp->oxid, ctxp->state, 2754 phba->cfg_nvme_seg_cnt); 2755 return NULL; 2756 } 2757 nsegs = rsp->sg_cnt; 2758 2759 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2760 nvmewqe = ctxp->wqeq; 2761 if (nvmewqe == NULL) { 2762 /* Allocate buffer for command wqe */ 2763 nvmewqe = ctxp->ctxbuf->iocbq; 2764 if (nvmewqe == NULL) { 2765 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2766 "6110 NVMET prep FCP wqe: No " 2767 "WQE: NPORT x%x oxid x%x ste %d\n", 2768 ctxp->sid, ctxp->oxid, ctxp->state); 2769 return NULL; 2770 } 2771 ctxp->wqeq = nvmewqe; 2772 xc = 0; /* create new XRI */ 2773 nvmewqe->sli4_lxritag = NO_XRI; 2774 nvmewqe->sli4_xritag = NO_XRI; 2775 } 2776 2777 /* Sanity check */ 2778 if (((ctxp->state == LPFC_NVME_STE_RCV) && 2779 (ctxp->entry_cnt == 1)) || 2780 (ctxp->state == LPFC_NVME_STE_DATA)) { 2781 wqe = &nvmewqe->wqe; 2782 } else { 2783 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2784 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2785 ctxp->state, ctxp->entry_cnt); 2786 return NULL; 2787 } 2788 2789 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2790 switch (rsp->op) { 2791 case NVMET_FCOP_READDATA: 2792 case NVMET_FCOP_READDATA_RSP: 2793 /* From the tsend template, initialize words 7 - 11 */ 2794 memcpy(&wqe->words[7], 2795 &lpfc_tsend_cmd_template.words[7], 2796 sizeof(uint32_t) * 5); 2797 2798 /* Words 0 - 2 : The first sg segment */ 2799 sgel = &rsp->sg[0]; 2800 physaddr = sg_dma_address(sgel); 2801 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2802 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2803 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2804 wqe->fcp_tsend.bde.addrHigh = 2805 cpu_to_le32(putPaddrHigh(physaddr)); 2806 2807 /* Word 3 */ 2808 wqe->fcp_tsend.payload_offset_len = 0; 2809 2810 /* Word 4 */ 2811 wqe->fcp_tsend.relative_offset = ctxp->offset; 2812 2813 /* Word 5 */ 2814 wqe->fcp_tsend.reserved = 0; 2815 2816 /* Word 6 */ 2817 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2818 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2819 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2820 nvmewqe->sli4_xritag); 2821 2822 /* Word 7 - set ar later */ 2823 2824 /* Word 8 */ 2825 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2826 2827 /* Word 9 */ 2828 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2829 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2830 2831 /* Word 10 - set wqes later, in template xc=1 */ 2832 if (!xc) 2833 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2834 2835 /* Word 12 */ 2836 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2837 2838 /* Setup 2 SKIP SGEs */ 2839 sgl->addr_hi = 0; 2840 sgl->addr_lo = 0; 2841 sgl->word2 = 0; 2842 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2843 sgl->word2 = cpu_to_le32(sgl->word2); 2844 sgl->sge_len = 0; 2845 sgl++; 2846 sgl->addr_hi = 0; 2847 sgl->addr_lo = 0; 2848 sgl->word2 = 0; 2849 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2850 sgl->word2 = cpu_to_le32(sgl->word2); 2851 sgl->sge_len = 0; 2852 sgl++; 2853 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2854 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2855 2856 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2857 2858 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2859 if (test_bit(NLP_SUPPRESS_RSP, &ndlp->nlp_flag)) 2860 bf_set(wqe_sup, 2861 &wqe->fcp_tsend.wqe_com, 1); 2862 } else { 2863 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2864 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2865 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2866 ((rsp->rsplen >> 2) - 1)); 2867 memcpy(&wqe->words[16], rsp->rspaddr, 2868 rsp->rsplen); 2869 } 2870 } else { 2871 atomic_inc(&tgtp->xmt_fcp_read); 2872 2873 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2874 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2875 } 2876 break; 2877 2878 case NVMET_FCOP_WRITEDATA: 2879 /* From the treceive template, initialize words 3 - 11 */ 2880 memcpy(&wqe->words[3], 2881 &lpfc_treceive_cmd_template.words[3], 2882 sizeof(uint32_t) * 9); 2883 2884 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */ 2885 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP; 2886 wqe->fcp_treceive.bde.tus.f.bdeSize = 0; 2887 wqe->fcp_treceive.bde.addrLow = 0; 2888 wqe->fcp_treceive.bde.addrHigh = 0; 2889 2890 /* Word 4 */ 2891 wqe->fcp_treceive.relative_offset = ctxp->offset; 2892 2893 /* Word 6 */ 2894 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2895 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2896 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2897 nvmewqe->sli4_xritag); 2898 2899 /* Word 7 */ 2900 2901 /* Word 8 */ 2902 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2903 2904 /* Word 9 */ 2905 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2906 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2907 2908 /* Word 10 - in template xc=1 */ 2909 if (!xc) 2910 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2911 2912 /* Word 11 - check for pbde */ 2913 if (nsegs == 1 && phba->cfg_enable_pbde) { 2914 use_pbde = true; 2915 /* Word 11 - PBDE bit already preset by template */ 2916 } else { 2917 /* Overwrite default template setting */ 2918 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2919 } 2920 2921 /* Word 12 */ 2922 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2923 2924 /* Setup 2 SKIP SGEs */ 2925 sgl->addr_hi = 0; 2926 sgl->addr_lo = 0; 2927 sgl->word2 = 0; 2928 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2929 sgl->word2 = cpu_to_le32(sgl->word2); 2930 sgl->sge_len = 0; 2931 sgl++; 2932 sgl->addr_hi = 0; 2933 sgl->addr_lo = 0; 2934 sgl->word2 = 0; 2935 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2936 sgl->word2 = cpu_to_le32(sgl->word2); 2937 sgl->sge_len = 0; 2938 sgl++; 2939 atomic_inc(&tgtp->xmt_fcp_write); 2940 break; 2941 2942 case NVMET_FCOP_RSP: 2943 /* From the treceive template, initialize words 4 - 11 */ 2944 memcpy(&wqe->words[4], 2945 &lpfc_trsp_cmd_template.words[4], 2946 sizeof(uint32_t) * 8); 2947 2948 /* Words 0 - 2 */ 2949 physaddr = rsp->rspdma; 2950 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2951 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2952 wqe->fcp_trsp.bde.addrLow = 2953 cpu_to_le32(putPaddrLow(physaddr)); 2954 wqe->fcp_trsp.bde.addrHigh = 2955 cpu_to_le32(putPaddrHigh(physaddr)); 2956 2957 /* Word 3 */ 2958 wqe->fcp_trsp.response_len = rsp->rsplen; 2959 2960 /* Word 6 */ 2961 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2962 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2963 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2964 nvmewqe->sli4_xritag); 2965 2966 /* Word 7 */ 2967 2968 /* Word 8 */ 2969 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2970 2971 /* Word 9 */ 2972 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2973 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2974 2975 /* Word 10 */ 2976 if (xc) 2977 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2978 2979 /* Word 11 */ 2980 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2981 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2982 /* Bad response - embed it */ 2983 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2984 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2985 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2986 ((rsp->rsplen >> 2) - 1)); 2987 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2988 } 2989 2990 /* Word 12 */ 2991 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2992 2993 /* Use rspbuf, NOT sg list */ 2994 nsegs = 0; 2995 sgl->word2 = 0; 2996 atomic_inc(&tgtp->xmt_fcp_rsp); 2997 break; 2998 2999 default: 3000 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 3001 "6064 Unknown Rsp Op %d\n", 3002 rsp->op); 3003 return NULL; 3004 } 3005 3006 nvmewqe->retry = 1; 3007 nvmewqe->vport = phba->pport; 3008 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 3009 nvmewqe->ndlp = ndlp; 3010 3011 for_each_sg(rsp->sg, sgel, nsegs, i) { 3012 physaddr = sg_dma_address(sgel); 3013 cnt = sg_dma_len(sgel); 3014 sgl->addr_hi = putPaddrHigh(physaddr); 3015 sgl->addr_lo = putPaddrLow(physaddr); 3016 sgl->word2 = 0; 3017 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 3018 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 3019 if ((i+1) == rsp->sg_cnt) 3020 bf_set(lpfc_sli4_sge_last, sgl, 1); 3021 sgl->word2 = cpu_to_le32(sgl->word2); 3022 sgl->sge_len = cpu_to_le32(cnt); 3023 sgl++; 3024 ctxp->offset += cnt; 3025 } 3026 3027 bde = (struct ulp_bde64 *)&wqe->words[13]; 3028 if (use_pbde) { 3029 /* decrement sgl ptr backwards once to first data sge */ 3030 sgl--; 3031 3032 /* Words 13-15 (PBDE) */ 3033 bde->addrLow = sgl->addr_lo; 3034 bde->addrHigh = sgl->addr_hi; 3035 bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 3036 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 3037 bde->tus.w = cpu_to_le32(bde->tus.w); 3038 } else { 3039 memset(bde, 0, sizeof(struct ulp_bde64)); 3040 } 3041 ctxp->state = LPFC_NVME_STE_DATA; 3042 ctxp->entry_cnt++; 3043 return nvmewqe; 3044 } 3045 3046 /** 3047 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 3048 * @phba: Pointer to HBA context object. 3049 * @cmdwqe: Pointer to driver command WQE object. 3050 * @rspwqe: Pointer to driver response WQE object. 3051 * 3052 * The function is called from SLI ring event handler with no 3053 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3054 * The function frees memory resources used for the NVME commands. 3055 **/ 3056 static void 3057 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3058 struct lpfc_iocbq *rspwqe) 3059 { 3060 struct lpfc_async_xchg_ctx *ctxp; 3061 struct lpfc_nvmet_tgtport *tgtp; 3062 uint32_t result; 3063 unsigned long flags; 3064 bool released = false; 3065 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3066 3067 ctxp = cmdwqe->context_un.axchg; 3068 result = wcqe->parameter; 3069 3070 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3071 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3072 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3073 3074 spin_lock_irqsave(&ctxp->ctxlock, flags); 3075 ctxp->state = LPFC_NVME_STE_DONE; 3076 3077 /* Check if we already received a free context call 3078 * and we have completed processing an abort situation. 3079 */ 3080 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3081 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3082 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3083 list_del_init(&ctxp->list); 3084 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3085 released = true; 3086 } 3087 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3088 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3089 atomic_inc(&tgtp->xmt_abort_rsp); 3090 3091 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3092 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 3093 "WCQE: %08x %08x %08x %08x\n", 3094 ctxp->oxid, ctxp->flag, released, 3095 wcqe->word0, wcqe->total_data_placed, 3096 result, wcqe->word3); 3097 3098 cmdwqe->rsp_dmabuf = NULL; 3099 cmdwqe->bpl_dmabuf = NULL; 3100 /* 3101 * if transport has released ctx, then can reuse it. Otherwise, 3102 * will be recycled by transport release call. 3103 */ 3104 if (released) 3105 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3106 3107 /* This is the iocbq for the abort, not the command */ 3108 lpfc_sli_release_iocbq(phba, cmdwqe); 3109 3110 /* Since iaab/iaar are NOT set, there is no work left. 3111 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3112 * should have been called already. 3113 */ 3114 } 3115 3116 /** 3117 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3118 * @phba: Pointer to HBA context object. 3119 * @cmdwqe: Pointer to driver command WQE object. 3120 * @rspwqe: Pointer to driver response WQE object. 3121 * 3122 * The function is called from SLI ring event handler with no 3123 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3124 * The function frees memory resources used for the NVME commands. 3125 **/ 3126 static void 3127 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3128 struct lpfc_iocbq *rspwqe) 3129 { 3130 struct lpfc_async_xchg_ctx *ctxp; 3131 struct lpfc_nvmet_tgtport *tgtp; 3132 unsigned long flags; 3133 uint32_t result; 3134 bool released = false; 3135 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3136 3137 ctxp = cmdwqe->context_un.axchg; 3138 result = wcqe->parameter; 3139 3140 if (!ctxp) { 3141 /* if context is clear, related io alrady complete */ 3142 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3143 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3144 wcqe->word0, wcqe->total_data_placed, 3145 result, wcqe->word3); 3146 return; 3147 } 3148 3149 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3150 spin_lock_irqsave(&ctxp->ctxlock, flags); 3151 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3152 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3153 3154 /* Sanity check */ 3155 if (ctxp->state != LPFC_NVME_STE_ABORT) { 3156 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3157 "6112 ABTS Wrong state:%d oxid x%x\n", 3158 ctxp->state, ctxp->oxid); 3159 } 3160 3161 /* Check if we already received a free context call 3162 * and we have completed processing an abort situation. 3163 */ 3164 ctxp->state = LPFC_NVME_STE_DONE; 3165 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3166 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3167 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3168 list_del_init(&ctxp->list); 3169 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3170 released = true; 3171 } 3172 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3173 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3174 atomic_inc(&tgtp->xmt_abort_rsp); 3175 3176 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3177 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3178 "WCQE: %08x %08x %08x %08x\n", 3179 ctxp->oxid, ctxp->flag, released, 3180 wcqe->word0, wcqe->total_data_placed, 3181 result, wcqe->word3); 3182 3183 cmdwqe->rsp_dmabuf = NULL; 3184 cmdwqe->bpl_dmabuf = NULL; 3185 /* 3186 * if transport has released ctx, then can reuse it. Otherwise, 3187 * will be recycled by transport release call. 3188 */ 3189 if (released) 3190 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3191 3192 /* Since iaab/iaar are NOT set, there is no work left. 3193 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3194 * should have been called already. 3195 */ 3196 } 3197 3198 /** 3199 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3200 * @phba: Pointer to HBA context object. 3201 * @cmdwqe: Pointer to driver command WQE object. 3202 * @rspwqe: Pointer to driver response WQE object. 3203 * 3204 * The function is called from SLI ring event handler with no 3205 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3206 * The function frees memory resources used for the NVME commands. 3207 **/ 3208 static void 3209 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3210 struct lpfc_iocbq *rspwqe) 3211 { 3212 struct lpfc_async_xchg_ctx *ctxp; 3213 struct lpfc_nvmet_tgtport *tgtp; 3214 uint32_t result; 3215 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3216 3217 ctxp = cmdwqe->context_un.axchg; 3218 result = wcqe->parameter; 3219 3220 if (phba->nvmet_support) { 3221 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3222 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3223 } 3224 3225 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3226 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n", 3227 ctxp, wcqe->word0, wcqe->total_data_placed, 3228 result, wcqe->word3); 3229 3230 if (!ctxp) { 3231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3232 "6415 NVMET LS Abort No ctx: WCQE: " 3233 "%08x %08x %08x %08x\n", 3234 wcqe->word0, wcqe->total_data_placed, 3235 result, wcqe->word3); 3236 3237 lpfc_sli_release_iocbq(phba, cmdwqe); 3238 return; 3239 } 3240 3241 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) { 3242 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3243 "6416 NVMET LS abort cmpl state mismatch: " 3244 "oxid x%x: %d %d\n", 3245 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3246 } 3247 3248 cmdwqe->rsp_dmabuf = NULL; 3249 cmdwqe->bpl_dmabuf = NULL; 3250 lpfc_sli_release_iocbq(phba, cmdwqe); 3251 kfree(ctxp); 3252 } 3253 3254 static int 3255 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3256 struct lpfc_async_xchg_ctx *ctxp, 3257 uint32_t sid, uint16_t xri) 3258 { 3259 struct lpfc_nvmet_tgtport *tgtp = NULL; 3260 struct lpfc_iocbq *abts_wqeq; 3261 union lpfc_wqe128 *wqe_abts; 3262 struct lpfc_nodelist *ndlp; 3263 3264 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3265 "6067 ABTS: sid %x xri x%x/x%x\n", 3266 sid, xri, ctxp->wqeq->sli4_xritag); 3267 3268 if (phba->nvmet_support && phba->targetport) 3269 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3270 3271 ndlp = lpfc_findnode_did(phba->pport, sid); 3272 if (!ndlp || 3273 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3274 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3275 if (tgtp) 3276 atomic_inc(&tgtp->xmt_abort_rsp_error); 3277 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3278 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3279 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3280 3281 /* No failure to an ABTS request. */ 3282 return 0; 3283 } 3284 3285 abts_wqeq = ctxp->wqeq; 3286 wqe_abts = &abts_wqeq->wqe; 3287 3288 /* 3289 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3290 * that were initialized in lpfc_sli4_nvmet_alloc. 3291 */ 3292 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3293 3294 /* Word 5 */ 3295 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3296 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3297 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3298 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3299 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3300 3301 /* Word 6 */ 3302 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3303 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3304 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3305 abts_wqeq->sli4_xritag); 3306 3307 /* Word 7 */ 3308 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3309 CMD_XMIT_SEQUENCE64_WQE); 3310 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3311 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3312 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3313 3314 /* Word 8 */ 3315 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3316 3317 /* Word 9 */ 3318 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3319 /* Needs to be set by caller */ 3320 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3321 3322 /* Word 10 */ 3323 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3324 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3325 LPFC_WQE_LENLOC_WORD12); 3326 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3327 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3328 3329 /* Word 11 */ 3330 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3331 LPFC_WQE_CQ_ID_DEFAULT); 3332 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3333 OTHER_COMMAND); 3334 3335 abts_wqeq->vport = phba->pport; 3336 abts_wqeq->ndlp = ndlp; 3337 abts_wqeq->context_un.axchg = ctxp; 3338 abts_wqeq->bpl_dmabuf = NULL; 3339 abts_wqeq->num_bdes = 0; 3340 /* hba_wqidx should already be setup from command we are aborting */ 3341 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3342 abts_wqeq->iocb.ulpLe = 1; 3343 3344 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3345 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3346 xri, abts_wqeq->iotag); 3347 return 1; 3348 } 3349 3350 static int 3351 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3352 struct lpfc_async_xchg_ctx *ctxp, 3353 uint32_t sid, uint16_t xri) 3354 { 3355 struct lpfc_nvmet_tgtport *tgtp; 3356 struct lpfc_iocbq *abts_wqeq; 3357 struct lpfc_nodelist *ndlp; 3358 unsigned long flags; 3359 bool ia; 3360 int rc; 3361 3362 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3363 if (!ctxp->wqeq) { 3364 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3365 ctxp->wqeq->hba_wqidx = 0; 3366 } 3367 3368 ndlp = lpfc_findnode_did(phba->pport, sid); 3369 if (!ndlp || 3370 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3371 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3372 atomic_inc(&tgtp->xmt_abort_rsp_error); 3373 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3374 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3375 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3376 3377 /* No failure to an ABTS request. */ 3378 spin_lock_irqsave(&ctxp->ctxlock, flags); 3379 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3380 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3381 return 0; 3382 } 3383 3384 /* Issue ABTS for this WQE based on iotag */ 3385 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3386 spin_lock_irqsave(&ctxp->ctxlock, flags); 3387 if (!ctxp->abort_wqeq) { 3388 atomic_inc(&tgtp->xmt_abort_rsp_error); 3389 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3390 "6161 ABORT failed: No wqeqs: " 3391 "xri: x%x\n", ctxp->oxid); 3392 /* No failure to an ABTS request. */ 3393 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3394 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3395 return 0; 3396 } 3397 abts_wqeq = ctxp->abort_wqeq; 3398 ctxp->state = LPFC_NVME_STE_ABORT; 3399 ia = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? true : false; 3400 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3401 3402 /* Announce entry to new IO submit field. */ 3403 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3404 "6162 ABORT Request to rport DID x%06x " 3405 "for xri x%x x%x\n", 3406 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3407 3408 /* If the hba is getting reset, this flag is set. It is 3409 * cleared when the reset is complete and rings reestablished. 3410 */ 3411 /* driver queued commands are in process of being flushed */ 3412 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) { 3413 atomic_inc(&tgtp->xmt_abort_rsp_error); 3414 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3415 "6163 Driver in reset cleanup - flushing " 3416 "NVME Req now. hba_flag x%lx oxid x%x\n", 3417 phba->hba_flag, ctxp->oxid); 3418 lpfc_sli_release_iocbq(phba, abts_wqeq); 3419 spin_lock_irqsave(&ctxp->ctxlock, flags); 3420 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3421 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3422 return 0; 3423 } 3424 3425 spin_lock_irqsave(&phba->hbalock, flags); 3426 /* Outstanding abort is in progress */ 3427 if (abts_wqeq->cmd_flag & LPFC_DRIVER_ABORTED) { 3428 spin_unlock_irqrestore(&phba->hbalock, flags); 3429 atomic_inc(&tgtp->xmt_abort_rsp_error); 3430 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3431 "6164 Outstanding NVME I/O Abort Request " 3432 "still pending on oxid x%x\n", 3433 ctxp->oxid); 3434 lpfc_sli_release_iocbq(phba, abts_wqeq); 3435 spin_lock_irqsave(&ctxp->ctxlock, flags); 3436 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3437 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3438 return 0; 3439 } 3440 3441 /* Ready - mark outstanding as aborted by driver. */ 3442 abts_wqeq->cmd_flag |= LPFC_DRIVER_ABORTED; 3443 3444 lpfc_sli_prep_abort_xri(phba, abts_wqeq, ctxp->wqeq->sli4_xritag, 3445 abts_wqeq->iotag, CLASS3, 3446 LPFC_WQE_CQ_ID_DEFAULT, ia, true); 3447 3448 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3449 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3450 abts_wqeq->cmd_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3451 abts_wqeq->cmd_flag |= LPFC_IO_NVME; 3452 abts_wqeq->context_un.axchg = ctxp; 3453 abts_wqeq->vport = phba->pport; 3454 if (!ctxp->hdwq) 3455 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3456 3457 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3458 spin_unlock_irqrestore(&phba->hbalock, flags); 3459 if (rc == WQE_SUCCESS) { 3460 atomic_inc(&tgtp->xmt_abort_sol); 3461 return 0; 3462 } 3463 3464 atomic_inc(&tgtp->xmt_abort_rsp_error); 3465 spin_lock_irqsave(&ctxp->ctxlock, flags); 3466 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3467 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3468 lpfc_sli_release_iocbq(phba, abts_wqeq); 3469 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3470 "6166 Failed ABORT issue_wqe with status x%x " 3471 "for oxid x%x.\n", 3472 rc, ctxp->oxid); 3473 return 1; 3474 } 3475 3476 static int 3477 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3478 struct lpfc_async_xchg_ctx *ctxp, 3479 uint32_t sid, uint16_t xri) 3480 { 3481 struct lpfc_nvmet_tgtport *tgtp; 3482 struct lpfc_iocbq *abts_wqeq; 3483 unsigned long flags; 3484 bool released = false; 3485 int rc; 3486 3487 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3488 if (!ctxp->wqeq) { 3489 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3490 ctxp->wqeq->hba_wqidx = 0; 3491 } 3492 3493 if (ctxp->state == LPFC_NVME_STE_FREE) { 3494 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3495 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3496 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3497 rc = WQE_BUSY; 3498 goto aerr; 3499 } 3500 ctxp->state = LPFC_NVME_STE_ABORT; 3501 ctxp->entry_cnt++; 3502 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3503 if (rc == 0) 3504 goto aerr; 3505 3506 spin_lock_irqsave(&phba->hbalock, flags); 3507 abts_wqeq = ctxp->wqeq; 3508 abts_wqeq->cmd_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3509 abts_wqeq->cmd_flag |= LPFC_IO_NVMET; 3510 if (!ctxp->hdwq) 3511 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3512 3513 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3514 spin_unlock_irqrestore(&phba->hbalock, flags); 3515 if (rc == WQE_SUCCESS) { 3516 return 0; 3517 } 3518 3519 aerr: 3520 spin_lock_irqsave(&ctxp->ctxlock, flags); 3521 if (ctxp->flag & LPFC_NVME_CTX_RLS) { 3522 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3523 list_del_init(&ctxp->list); 3524 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3525 released = true; 3526 } 3527 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS); 3528 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3529 3530 atomic_inc(&tgtp->xmt_abort_rsp_error); 3531 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3532 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3533 "(%x)\n", 3534 ctxp->oxid, rc, released); 3535 if (released) 3536 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3537 return 1; 3538 } 3539 3540 /** 3541 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received 3542 * via async frame receive where the frame is not handled. 3543 * @phba: pointer to adapter structure 3544 * @ctxp: pointer to the asynchronously received received sequence 3545 * @sid: address of the remote port to send the ABTS to 3546 * @xri: oxid value to for the ABTS (other side's exchange id). 3547 **/ 3548 int 3549 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba, 3550 struct lpfc_async_xchg_ctx *ctxp, 3551 uint32_t sid, uint16_t xri) 3552 { 3553 struct lpfc_nvmet_tgtport *tgtp = NULL; 3554 struct lpfc_iocbq *abts_wqeq; 3555 unsigned long flags; 3556 int rc; 3557 3558 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) || 3559 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3560 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3561 ctxp->entry_cnt++; 3562 } else { 3563 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3564 "6418 NVMET LS abort state mismatch " 3565 "IO x%x: %d %d\n", 3566 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3567 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3568 } 3569 3570 if (phba->nvmet_support && phba->targetport) 3571 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3572 3573 if (!ctxp->wqeq) { 3574 /* Issue ABTS for this WQE based on iotag */ 3575 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3576 if (!ctxp->wqeq) { 3577 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3578 "6068 Abort failed: No wqeqs: " 3579 "xri: x%x\n", xri); 3580 /* No failure to an ABTS request. */ 3581 kfree(ctxp); 3582 return 0; 3583 } 3584 } 3585 abts_wqeq = ctxp->wqeq; 3586 3587 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3588 rc = WQE_BUSY; 3589 goto out; 3590 } 3591 3592 spin_lock_irqsave(&phba->hbalock, flags); 3593 abts_wqeq->cmd_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3594 abts_wqeq->cmd_flag |= LPFC_IO_NVME_LS; 3595 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3596 spin_unlock_irqrestore(&phba->hbalock, flags); 3597 if (rc == WQE_SUCCESS) { 3598 if (tgtp) 3599 atomic_inc(&tgtp->xmt_abort_unsol); 3600 return 0; 3601 } 3602 out: 3603 if (tgtp) 3604 atomic_inc(&tgtp->xmt_abort_rsp_error); 3605 abts_wqeq->rsp_dmabuf = NULL; 3606 abts_wqeq->bpl_dmabuf = NULL; 3607 lpfc_sli_release_iocbq(phba, abts_wqeq); 3608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3609 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3610 return 1; 3611 } 3612 3613 /** 3614 * lpfc_nvmet_invalidate_host 3615 * 3616 * @phba: pointer to the driver instance bound to an adapter port. 3617 * @ndlp: pointer to an lpfc_nodelist type 3618 * 3619 * This routine upcalls the nvmet transport to invalidate an NVME 3620 * host to which this target instance had active connections. 3621 */ 3622 void 3623 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 3624 { 3625 u32 ndlp_has_hh; 3626 struct lpfc_nvmet_tgtport *tgtp; 3627 3628 lpfc_printf_log(phba, KERN_INFO, 3629 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3630 "6203 Invalidating hosthandle x%px\n", 3631 ndlp); 3632 3633 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3634 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE); 3635 3636 spin_lock_irq(&ndlp->lock); 3637 ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH; 3638 spin_unlock_irq(&ndlp->lock); 3639 3640 /* Do not invalidate any nodes that do not have a hosthandle. 3641 * The host_release callbk will cause a node reference 3642 * count imbalance and a crash. 3643 */ 3644 if (!ndlp_has_hh) { 3645 lpfc_printf_log(phba, KERN_INFO, 3646 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3647 "6204 Skip invalidate on node x%px DID x%x\n", 3648 ndlp, ndlp->nlp_DID); 3649 return; 3650 } 3651 3652 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 3653 /* Need to get the nvmet_fc_target_port pointer here.*/ 3654 nvmet_fc_invalidate_host(phba->targetport, ndlp); 3655 #endif 3656 } 3657