1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term *
5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. *
6 * Copyright (C) 2004-2016 Emulex. All rights reserved. *
7 * EMULEX and SLI are trademarks of Emulex. *
8 * www.broadcom.com *
9 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
10 * *
11 * This program is free software; you can redistribute it and/or *
12 * modify it under the terms of version 2 of the GNU General *
13 * Public License as published by the Free Software Foundation. *
14 * This program is distributed in the hope that it will be useful. *
15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
19 * TO BE LEGALLY INVALID. See the GNU General Public License for *
20 * more details, a copy of which can be found in the file COPYING *
21 * included with this package. *
22 ********************************************************************/
23 #include <linux/pci.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/unaligned.h>
28 #include <linux/crc-t10dif.h>
29 #include <net/checksum.h>
30
31 #include <scsi/scsi.h>
32 #include <scsi/scsi_device.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_tcq.h>
36 #include <scsi/scsi_transport_fc.h>
37 #include <scsi/fc/fc_fs.h>
38
39 #include "lpfc_version.h"
40 #include "lpfc_hw4.h"
41 #include "lpfc_hw.h"
42 #include "lpfc_sli.h"
43 #include "lpfc_sli4.h"
44 #include "lpfc_nl.h"
45 #include "lpfc_disc.h"
46 #include "lpfc.h"
47 #include "lpfc_scsi.h"
48 #include "lpfc_nvme.h"
49 #include "lpfc_logmsg.h"
50 #include "lpfc_crtn.h"
51 #include "lpfc_vport.h"
52 #include "lpfc_debugfs.h"
53
54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *,
55 struct lpfc_async_xchg_ctx *,
56 dma_addr_t rspbuf,
57 uint16_t rspsize);
58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *,
59 struct lpfc_async_xchg_ctx *);
60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *,
61 struct lpfc_async_xchg_ctx *,
62 uint32_t, uint16_t);
63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *,
64 struct lpfc_async_xchg_ctx *,
65 uint32_t, uint16_t);
66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *,
67 struct lpfc_async_xchg_ctx *);
68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *);
69
70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf);
71
72 static union lpfc_wqe128 lpfc_tsend_cmd_template;
73 static union lpfc_wqe128 lpfc_treceive_cmd_template;
74 static union lpfc_wqe128 lpfc_trsp_cmd_template;
75
76 /* Setup WQE templates for NVME IOs */
77 void
lpfc_nvmet_cmd_template(void)78 lpfc_nvmet_cmd_template(void)
79 {
80 union lpfc_wqe128 *wqe;
81
82 /* TSEND template */
83 wqe = &lpfc_tsend_cmd_template;
84 memset(wqe, 0, sizeof(union lpfc_wqe128));
85
86 /* Word 0, 1, 2 - BDE is variable */
87
88 /* Word 3 - payload_offset_len is zero */
89
90 /* Word 4 - relative_offset is variable */
91
92 /* Word 5 - is zero */
93
94 /* Word 6 - ctxt_tag, xri_tag is variable */
95
96 /* Word 7 - wqe_ar is variable */
97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE);
98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF);
99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3);
100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI);
101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1);
102
103 /* Word 8 - abort_tag is variable */
104
105 /* Word 9 - reqtag, rcvoxid is variable */
106
107 /* Word 10 - wqes, xc is variable */
108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG);
109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1);
110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0);
111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE);
113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12);
114
115 /* Word 11 - sup, irsp, irsplen is variable */
116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND);
117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0);
119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0);
120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0);
121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0);
122
123 /* Word 12 - fcp_data_len is variable */
124
125 /* Word 13, 14, 15 - PBDE is zero */
126
127 /* TRECEIVE template */
128 wqe = &lpfc_treceive_cmd_template;
129 memset(wqe, 0, sizeof(union lpfc_wqe128));
130
131 /* Word 0, 1, 2 - BDE is variable */
132
133 /* Word 3 */
134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN;
135
136 /* Word 4 - relative_offset is variable */
137
138 /* Word 5 - is zero */
139
140 /* Word 6 - ctxt_tag, xri_tag is variable */
141
142 /* Word 7 */
143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE);
144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF);
145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3);
146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI);
147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0);
148
149 /* Word 8 - abort_tag is variable */
150
151 /* Word 9 - reqtag, rcvoxid is variable */
152
153 /* Word 10 - xc is variable */
154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1);
155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0);
156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG);
157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ);
158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12);
159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1);
160
161 /* Word 11 - pbde is variable */
162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE);
163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0);
165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0);
166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0);
167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1);
168
169 /* Word 12 - fcp_data_len is variable */
170
171 /* Word 13, 14, 15 - PBDE is variable */
172
173 /* TRSP template */
174 wqe = &lpfc_trsp_cmd_template;
175 memset(wqe, 0, sizeof(union lpfc_wqe128));
176
177 /* Word 0, 1, 2 - BDE is variable */
178
179 /* Word 3 - response_len is variable */
180
181 /* Word 4, 5 - is zero */
182
183 /* Word 6 - ctxt_tag, xri_tag is variable */
184
185 /* Word 7 */
186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE);
187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED);
188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3);
189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI);
190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */
191
192 /* Word 8 - abort_tag is variable */
193
194 /* Word 9 - reqtag is variable */
195
196 /* Word 10 wqes, xc is variable */
197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1);
198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG);
199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0);
200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0);
201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE);
202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3);
203
204 /* Word 11 irsp, irsplen is variable */
205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP);
206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0);
208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0);
209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0);
210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0);
211
212 /* Word 12, 13, 14, 15 - is zero */
213 }
214
215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
216 static struct lpfc_async_xchg_ctx *
lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba * phba,u16 xri)217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri)
218 {
219 struct lpfc_async_xchg_ctx *ctxp;
220 unsigned long iflag;
221 bool found = false;
222
223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
226 continue;
227
228 found = true;
229 break;
230 }
231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
232 if (found)
233 return ctxp;
234
235 return NULL;
236 }
237
238 static struct lpfc_async_xchg_ctx *
lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba * phba,u16 oxid,u32 sid)239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid)
240 {
241 struct lpfc_async_xchg_ctx *ctxp;
242 unsigned long iflag;
243 bool found = false;
244
245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) {
247 if (ctxp->oxid != oxid || ctxp->sid != sid)
248 continue;
249
250 found = true;
251 break;
252 }
253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
254 if (found)
255 return ctxp;
256
257 return NULL;
258 }
259 #endif
260
261 static void
lpfc_nvmet_defer_release(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp)262 lpfc_nvmet_defer_release(struct lpfc_hba *phba,
263 struct lpfc_async_xchg_ctx *ctxp)
264 {
265 lockdep_assert_held(&ctxp->ctxlock);
266
267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n",
269 ctxp->oxid, ctxp->flag);
270
271 if (ctxp->flag & LPFC_NVME_CTX_RLS)
272 return;
273
274 ctxp->flag |= LPFC_NVME_CTX_RLS;
275 spin_lock(&phba->sli4_hba.t_active_list_lock);
276 list_del(&ctxp->list);
277 spin_unlock(&phba->sli4_hba.t_active_list_lock);
278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list);
280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
281 }
282
283 /**
284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the
285 * transmission of an NVME LS response.
286 * @phba: Pointer to HBA context object.
287 * @cmdwqe: Pointer to driver command WQE object.
288 * @rspwqe: Pointer to driver response WQE object.
289 *
290 * The function is called from SLI ring event handler with no
291 * lock held. The function frees memory resources used for the command
292 * used to send the NVME LS RSP.
293 **/
294 void
__lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
296 struct lpfc_iocbq *rspwqe)
297 {
298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context_un.axchg;
299 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
300 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp;
301 uint32_t status, result;
302
303 status = bf_get(lpfc_wcqe_c_status, wcqe);
304 result = wcqe->parameter;
305
306 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) {
307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
308 "6410 NVMEx LS cmpl state mismatch IO x%x: "
309 "%d %d\n",
310 axchg->oxid, axchg->state, axchg->entry_cnt);
311 }
312
313 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n",
314 axchg->oxid, status, result);
315
316 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
317 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n",
318 status, result, axchg->oxid);
319
320 lpfc_nlp_put(cmdwqe->ndlp);
321 cmdwqe->context_un.axchg = NULL;
322 cmdwqe->bpl_dmabuf = NULL;
323 lpfc_sli_release_iocbq(phba, cmdwqe);
324 ls_rsp->done(ls_rsp);
325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
326 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n",
327 status, axchg->oxid);
328 kfree(axchg);
329 }
330
331 /**
332 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response
333 * @phba: Pointer to HBA context object.
334 * @cmdwqe: Pointer to driver command WQE object.
335 * @rspwqe: Pointer to driver response WQE object.
336 *
337 * The function is called from SLI ring event handler with no
338 * lock held. This function is the completion handler for NVME LS commands
339 * The function updates any states and statistics, then calls the
340 * generic completion handler to free resources.
341 **/
342 static void
lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)343 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
344 struct lpfc_iocbq *rspwqe)
345 {
346 struct lpfc_nvmet_tgtport *tgtp;
347 uint32_t status, result;
348 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
349
350 if (!phba->targetport)
351 goto finish;
352
353 status = bf_get(lpfc_wcqe_c_status, wcqe);
354 result = wcqe->parameter;
355
356 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
357 if (tgtp) {
358 if (status) {
359 atomic_inc(&tgtp->xmt_ls_rsp_error);
360 if (result == IOERR_ABORT_REQUESTED)
361 atomic_inc(&tgtp->xmt_ls_rsp_aborted);
362 if (bf_get(lpfc_wcqe_c_xb, wcqe))
363 atomic_inc(&tgtp->xmt_ls_rsp_xb_set);
364 } else {
365 atomic_inc(&tgtp->xmt_ls_rsp_cmpl);
366 }
367 }
368
369 finish:
370 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, rspwqe);
371 }
372
373 /**
374 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context
375 * @phba: HBA buffer is associated with
376 * @ctx_buf: ctx buffer context
377 *
378 * Description: Frees the given DMA buffer in the appropriate way given by
379 * reposting it to its associated RQ so it can be reused.
380 *
381 * Notes: Takes phba->hbalock. Can be called with or without other locks held.
382 *
383 * Returns: None
384 **/
385 void
lpfc_nvmet_ctxbuf_post(struct lpfc_hba * phba,struct lpfc_nvmet_ctxbuf * ctx_buf)386 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf)
387 {
388 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
389 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
390 struct lpfc_nvmet_tgtport *tgtp;
391 struct fc_frame_header *fc_hdr;
392 struct rqb_dmabuf *nvmebuf;
393 struct lpfc_nvmet_ctx_info *infop;
394 uint32_t size, oxid, sid;
395 int cpu;
396 unsigned long iflag;
397
398 if (ctxp->state == LPFC_NVME_STE_FREE) {
399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
400 "6411 NVMET free, already free IO x%x: %d %d\n",
401 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
402 }
403
404 if (ctxp->rqb_buffer) {
405 spin_lock_irqsave(&ctxp->ctxlock, iflag);
406 nvmebuf = ctxp->rqb_buffer;
407 /* check if freed in another path whilst acquiring lock */
408 if (nvmebuf) {
409 ctxp->rqb_buffer = NULL;
410 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
411 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ;
412 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
413 nvmebuf->hrq->rqbp->rqb_free_buffer(phba,
414 nvmebuf);
415 } else {
416 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
417 /* repost */
418 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
419 }
420 } else {
421 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
422 }
423 }
424 ctxp->state = LPFC_NVME_STE_FREE;
425
426 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
427 if (phba->sli4_hba.nvmet_io_wait_cnt) {
428 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list,
429 nvmebuf, struct rqb_dmabuf,
430 hbuf.list);
431 phba->sli4_hba.nvmet_io_wait_cnt--;
432 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
433 iflag);
434
435 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
436 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
437 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
438 size = nvmebuf->bytes_recv;
439 sid = sli4_sid_from_fc_hdr(fc_hdr);
440
441 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
442 ctxp->wqeq = NULL;
443 ctxp->offset = 0;
444 ctxp->phba = phba;
445 ctxp->size = size;
446 ctxp->oxid = oxid;
447 ctxp->sid = sid;
448 ctxp->state = LPFC_NVME_STE_RCV;
449 ctxp->entry_cnt = 1;
450 ctxp->flag = 0;
451 ctxp->ctxbuf = ctx_buf;
452 ctxp->rqb_buffer = (void *)nvmebuf;
453 spin_lock_init(&ctxp->ctxlock);
454
455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
456 /* NOTE: isr time stamp is stale when context is re-assigned*/
457 if (ctxp->ts_isr_cmd) {
458 ctxp->ts_cmd_nvme = 0;
459 ctxp->ts_nvme_data = 0;
460 ctxp->ts_data_wqput = 0;
461 ctxp->ts_isr_data = 0;
462 ctxp->ts_data_nvme = 0;
463 ctxp->ts_nvme_status = 0;
464 ctxp->ts_status_wqput = 0;
465 ctxp->ts_isr_status = 0;
466 ctxp->ts_status_nvme = 0;
467 }
468 #endif
469 atomic_inc(&tgtp->rcv_fcp_cmd_in);
470
471 /* Indicate that a replacement buffer has been posted */
472 spin_lock_irqsave(&ctxp->ctxlock, iflag);
473 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ;
474 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
475
476 if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
477 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
479 "6181 Unable to queue deferred work "
480 "for oxid x%x. "
481 "FCP Drop IO [x%x x%x x%x]\n",
482 ctxp->oxid,
483 atomic_read(&tgtp->rcv_fcp_cmd_in),
484 atomic_read(&tgtp->rcv_fcp_cmd_out),
485 atomic_read(&tgtp->xmt_fcp_release));
486
487 spin_lock_irqsave(&ctxp->ctxlock, iflag);
488 lpfc_nvmet_defer_release(phba, ctxp);
489 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
490 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
491 }
492 return;
493 }
494 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
495
496 /*
497 * Use the CPU context list, from the MRQ the IO was received on
498 * (ctxp->idx), to save context structure.
499 */
500 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
501 list_del_init(&ctxp->list);
502 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
503 cpu = raw_smp_processor_id();
504 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx);
505 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag);
506 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
507 infop->nvmet_ctx_list_cnt++;
508 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag);
509 #endif
510 }
511
512 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
513 static void
lpfc_nvmet_ktime(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp)514 lpfc_nvmet_ktime(struct lpfc_hba *phba,
515 struct lpfc_async_xchg_ctx *ctxp)
516 {
517 uint64_t seg1, seg2, seg3, seg4, seg5;
518 uint64_t seg6, seg7, seg8, seg9, seg10;
519 uint64_t segsum;
520
521 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme ||
522 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput ||
523 !ctxp->ts_isr_data || !ctxp->ts_data_nvme ||
524 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput ||
525 !ctxp->ts_isr_status || !ctxp->ts_status_nvme)
526 return;
527
528 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd)
529 return;
530 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme)
531 return;
532 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data)
533 return;
534 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput)
535 return;
536 if (ctxp->ts_data_wqput > ctxp->ts_isr_data)
537 return;
538 if (ctxp->ts_isr_data > ctxp->ts_data_nvme)
539 return;
540 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status)
541 return;
542 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput)
543 return;
544 if (ctxp->ts_status_wqput > ctxp->ts_isr_status)
545 return;
546 if (ctxp->ts_isr_status > ctxp->ts_status_nvme)
547 return;
548 /*
549 * Segment 1 - Time from FCP command received by MSI-X ISR
550 * to FCP command is passed to NVME Layer.
551 * Segment 2 - Time from FCP command payload handed
552 * off to NVME Layer to Driver receives a Command op
553 * from NVME Layer.
554 * Segment 3 - Time from Driver receives a Command op
555 * from NVME Layer to Command is put on WQ.
556 * Segment 4 - Time from Driver WQ put is done
557 * to MSI-X ISR for Command cmpl.
558 * Segment 5 - Time from MSI-X ISR for Command cmpl to
559 * Command cmpl is passed to NVME Layer.
560 * Segment 6 - Time from Command cmpl is passed to NVME
561 * Layer to Driver receives a RSP op from NVME Layer.
562 * Segment 7 - Time from Driver receives a RSP op from
563 * NVME Layer to WQ put is done on TRSP FCP Status.
564 * Segment 8 - Time from Driver WQ put is done on TRSP
565 * FCP Status to MSI-X ISR for TRSP cmpl.
566 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to
567 * TRSP cmpl is passed to NVME Layer.
568 * Segment 10 - Time from FCP command received by
569 * MSI-X ISR to command is completed on wire.
570 * (Segments 1 thru 8) for READDATA / WRITEDATA
571 * (Segments 1 thru 4) for READDATA_RSP
572 */
573 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd;
574 segsum = seg1;
575
576 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd;
577 if (segsum > seg2)
578 return;
579 seg2 -= segsum;
580 segsum += seg2;
581
582 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd;
583 if (segsum > seg3)
584 return;
585 seg3 -= segsum;
586 segsum += seg3;
587
588 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd;
589 if (segsum > seg4)
590 return;
591 seg4 -= segsum;
592 segsum += seg4;
593
594 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd;
595 if (segsum > seg5)
596 return;
597 seg5 -= segsum;
598 segsum += seg5;
599
600
601 /* For auto rsp commands seg6 thru seg10 will be 0 */
602 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) {
603 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd;
604 if (segsum > seg6)
605 return;
606 seg6 -= segsum;
607 segsum += seg6;
608
609 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd;
610 if (segsum > seg7)
611 return;
612 seg7 -= segsum;
613 segsum += seg7;
614
615 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd;
616 if (segsum > seg8)
617 return;
618 seg8 -= segsum;
619 segsum += seg8;
620
621 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd;
622 if (segsum > seg9)
623 return;
624 seg9 -= segsum;
625 segsum += seg9;
626
627 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd)
628 return;
629 seg10 = (ctxp->ts_isr_status -
630 ctxp->ts_isr_cmd);
631 } else {
632 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd)
633 return;
634 seg6 = 0;
635 seg7 = 0;
636 seg8 = 0;
637 seg9 = 0;
638 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd);
639 }
640
641 phba->ktime_seg1_total += seg1;
642 if (seg1 < phba->ktime_seg1_min)
643 phba->ktime_seg1_min = seg1;
644 else if (seg1 > phba->ktime_seg1_max)
645 phba->ktime_seg1_max = seg1;
646
647 phba->ktime_seg2_total += seg2;
648 if (seg2 < phba->ktime_seg2_min)
649 phba->ktime_seg2_min = seg2;
650 else if (seg2 > phba->ktime_seg2_max)
651 phba->ktime_seg2_max = seg2;
652
653 phba->ktime_seg3_total += seg3;
654 if (seg3 < phba->ktime_seg3_min)
655 phba->ktime_seg3_min = seg3;
656 else if (seg3 > phba->ktime_seg3_max)
657 phba->ktime_seg3_max = seg3;
658
659 phba->ktime_seg4_total += seg4;
660 if (seg4 < phba->ktime_seg4_min)
661 phba->ktime_seg4_min = seg4;
662 else if (seg4 > phba->ktime_seg4_max)
663 phba->ktime_seg4_max = seg4;
664
665 phba->ktime_seg5_total += seg5;
666 if (seg5 < phba->ktime_seg5_min)
667 phba->ktime_seg5_min = seg5;
668 else if (seg5 > phba->ktime_seg5_max)
669 phba->ktime_seg5_max = seg5;
670
671 phba->ktime_data_samples++;
672 if (!seg6)
673 goto out;
674
675 phba->ktime_seg6_total += seg6;
676 if (seg6 < phba->ktime_seg6_min)
677 phba->ktime_seg6_min = seg6;
678 else if (seg6 > phba->ktime_seg6_max)
679 phba->ktime_seg6_max = seg6;
680
681 phba->ktime_seg7_total += seg7;
682 if (seg7 < phba->ktime_seg7_min)
683 phba->ktime_seg7_min = seg7;
684 else if (seg7 > phba->ktime_seg7_max)
685 phba->ktime_seg7_max = seg7;
686
687 phba->ktime_seg8_total += seg8;
688 if (seg8 < phba->ktime_seg8_min)
689 phba->ktime_seg8_min = seg8;
690 else if (seg8 > phba->ktime_seg8_max)
691 phba->ktime_seg8_max = seg8;
692
693 phba->ktime_seg9_total += seg9;
694 if (seg9 < phba->ktime_seg9_min)
695 phba->ktime_seg9_min = seg9;
696 else if (seg9 > phba->ktime_seg9_max)
697 phba->ktime_seg9_max = seg9;
698 out:
699 phba->ktime_seg10_total += seg10;
700 if (seg10 < phba->ktime_seg10_min)
701 phba->ktime_seg10_min = seg10;
702 else if (seg10 > phba->ktime_seg10_max)
703 phba->ktime_seg10_max = seg10;
704 phba->ktime_status_samples++;
705 }
706 #endif
707
708 /**
709 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response
710 * @phba: Pointer to HBA context object.
711 * @cmdwqe: Pointer to driver command WQE object.
712 * @rspwqe: Pointer to driver response WQE object.
713 *
714 * The function is called from SLI ring event handler with no
715 * lock held. This function is the completion handler for NVME FCP commands
716 * The function frees memory resources used for the NVME commands.
717 **/
718 static void
lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)719 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
720 struct lpfc_iocbq *rspwqe)
721 {
722 struct lpfc_nvmet_tgtport *tgtp;
723 struct nvmefc_tgt_fcp_req *rsp;
724 struct lpfc_async_xchg_ctx *ctxp;
725 uint32_t status, result, op, logerr;
726 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
727 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
728 int id;
729 #endif
730
731 ctxp = cmdwqe->context_un.axchg;
732 ctxp->flag &= ~LPFC_NVME_IO_INP;
733
734 rsp = &ctxp->hdlrctx.fcp_req;
735 op = rsp->op;
736
737 status = bf_get(lpfc_wcqe_c_status, wcqe);
738 result = wcqe->parameter;
739
740 if (phba->targetport)
741 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
742 else
743 tgtp = NULL;
744
745 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n",
746 ctxp->oxid, op, status);
747
748 if (status) {
749 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR;
750 rsp->transferred_length = 0;
751 if (tgtp) {
752 atomic_inc(&tgtp->xmt_fcp_rsp_error);
753 if (result == IOERR_ABORT_REQUESTED)
754 atomic_inc(&tgtp->xmt_fcp_rsp_aborted);
755 }
756
757 logerr = LOG_NVME_IOERR;
758
759 /* pick up SLI4 exhange busy condition */
760 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
761 ctxp->flag |= LPFC_NVME_XBUSY;
762 logerr |= LOG_NVME_ABTS;
763 if (tgtp)
764 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set);
765
766 } else {
767 ctxp->flag &= ~LPFC_NVME_XBUSY;
768 }
769
770 lpfc_printf_log(phba, KERN_INFO, logerr,
771 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x "
772 "XBUSY:x%x\n",
773 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag,
774 status, result, ctxp->flag);
775
776 } else {
777 rsp->fcp_error = NVME_SC_SUCCESS;
778 if (op == NVMET_FCOP_RSP)
779 rsp->transferred_length = rsp->rsplen;
780 else
781 rsp->transferred_length = rsp->transfer_length;
782 if (tgtp)
783 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl);
784 }
785
786 if ((op == NVMET_FCOP_READDATA_RSP) ||
787 (op == NVMET_FCOP_RSP)) {
788 /* Sanity check */
789 ctxp->state = LPFC_NVME_STE_DONE;
790 ctxp->entry_cnt++;
791
792 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
793 if (ctxp->ts_cmd_nvme) {
794 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
795 ctxp->ts_isr_data =
796 cmdwqe->isr_timestamp;
797 ctxp->ts_data_nvme =
798 ktime_get_ns();
799 ctxp->ts_nvme_status =
800 ctxp->ts_data_nvme;
801 ctxp->ts_status_wqput =
802 ctxp->ts_data_nvme;
803 ctxp->ts_isr_status =
804 ctxp->ts_data_nvme;
805 ctxp->ts_status_nvme =
806 ctxp->ts_data_nvme;
807 } else {
808 ctxp->ts_isr_status =
809 cmdwqe->isr_timestamp;
810 ctxp->ts_status_nvme =
811 ktime_get_ns();
812 }
813 }
814 #endif
815 rsp->done(rsp);
816 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
817 if (ctxp->ts_cmd_nvme)
818 lpfc_nvmet_ktime(phba, ctxp);
819 #endif
820 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */
821 } else {
822 ctxp->entry_cnt++;
823 memset_startat(cmdwqe, 0, cmd_flag);
824 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
825 if (ctxp->ts_cmd_nvme) {
826 ctxp->ts_isr_data = cmdwqe->isr_timestamp;
827 ctxp->ts_data_nvme = ktime_get_ns();
828 }
829 #endif
830 rsp->done(rsp);
831 }
832 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
833 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
834 id = raw_smp_processor_id();
835 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io);
836 if (ctxp->cpu != id)
837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
838 "6704 CPU Check cmdcmpl: "
839 "cpu %d expect %d\n",
840 id, ctxp->cpu);
841 }
842 #endif
843 }
844
845 /**
846 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit
847 * an NVME LS rsp for a prior NVME LS request that was received.
848 * @axchg: pointer to exchange context for the NVME LS request the response
849 * is for.
850 * @ls_rsp: pointer to the transport LS RSP that is to be sent
851 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done
852 *
853 * This routine is used to format and send a WQE to transmit a NVME LS
854 * Response. The response is for a prior NVME LS request that was
855 * received and posted to the transport.
856 *
857 * Returns:
858 * 0 : if response successfully transmit
859 * non-zero : if response failed to transmit, of the form -Exxx.
860 **/
861 int
__lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx * axchg,struct nvmefc_ls_rsp * ls_rsp,void (* xmt_ls_rsp_cmp)(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe))862 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg,
863 struct nvmefc_ls_rsp *ls_rsp,
864 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba,
865 struct lpfc_iocbq *cmdwqe,
866 struct lpfc_iocbq *rspwqe))
867 {
868 struct lpfc_hba *phba = axchg->phba;
869 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer;
870 struct lpfc_iocbq *nvmewqeq;
871 struct lpfc_dmabuf dmabuf;
872 struct ulp_bde64 bpl;
873 int rc;
874
875 if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
876 return -ENODEV;
877
878 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
879 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid);
880
881 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) {
882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
883 "6412 NVMEx LS rsp state mismatch "
884 "oxid x%x: %d %d\n",
885 axchg->oxid, axchg->state, axchg->entry_cnt);
886 return -EALREADY;
887 }
888 axchg->state = LPFC_NVME_STE_LS_RSP;
889 axchg->entry_cnt++;
890
891 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma,
892 ls_rsp->rsplen);
893 if (nvmewqeq == NULL) {
894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
895 "6150 NVMEx LS Drop Rsp x%x: Prep\n",
896 axchg->oxid);
897 rc = -ENOMEM;
898 goto out_free_buf;
899 }
900
901 /* Save numBdes for bpl2sgl */
902 nvmewqeq->num_bdes = 1;
903 nvmewqeq->hba_wqidx = 0;
904 nvmewqeq->bpl_dmabuf = &dmabuf;
905 dmabuf.virt = &bpl;
906 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow;
907 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh;
908 bpl.tus.f.bdeSize = ls_rsp->rsplen;
909 bpl.tus.f.bdeFlags = 0;
910 bpl.tus.w = le32_to_cpu(bpl.tus.w);
911 /*
912 * Note: although we're using stack space for the dmabuf, the
913 * call to lpfc_sli4_issue_wqe is synchronous, so it will not
914 * be referenced after it returns back to this routine.
915 */
916
917 nvmewqeq->cmd_cmpl = xmt_ls_rsp_cmp;
918 nvmewqeq->context_un.axchg = axchg;
919
920 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n",
921 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen);
922
923 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq);
924
925 /* clear to be sure there's no reference */
926 nvmewqeq->bpl_dmabuf = NULL;
927
928 if (rc == WQE_SUCCESS) {
929 /*
930 * Okay to repost buffer here, but wait till cmpl
931 * before freeing ctxp and iocbq.
932 */
933 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
934 return 0;
935 }
936
937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
938 "6151 NVMEx LS RSP x%x: failed to transmit %d\n",
939 axchg->oxid, rc);
940
941 rc = -ENXIO;
942
943 lpfc_nlp_put(nvmewqeq->ndlp);
944
945 out_free_buf:
946 /* Give back resources */
947 lpfc_in_buf_free(phba, &nvmebuf->dbuf);
948
949 /*
950 * As transport doesn't track completions of responses, if the rsp
951 * fails to send, the transport will effectively ignore the rsp
952 * and consider the LS done. However, the driver has an active
953 * exchange open for the LS - so be sure to abort the exchange
954 * if the response isn't sent.
955 */
956 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid);
957 return rc;
958 }
959
960 /**
961 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response
962 * @tgtport: pointer to target port that NVME LS is to be transmit from.
963 * @ls_rsp: pointer to the transport LS RSP that is to be sent
964 *
965 * Driver registers this routine to transmit responses for received NVME
966 * LS requests.
967 *
968 * This routine is used to format and send a WQE to transmit a NVME LS
969 * Response. The ls_rsp is used to reverse-map the LS to the original
970 * NVME LS request sequence, which provides addressing information for
971 * the remote port the LS to be sent to, as well as the exchange id
972 * that is the LS is bound to.
973 *
974 * Returns:
975 * 0 : if response successfully transmit
976 * non-zero : if response failed to transmit, of the form -Exxx.
977 **/
978 static int
lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port * tgtport,struct nvmefc_ls_rsp * ls_rsp)979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport,
980 struct nvmefc_ls_rsp *ls_rsp)
981 {
982 struct lpfc_async_xchg_ctx *axchg =
983 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp);
984 struct lpfc_nvmet_tgtport *nvmep = tgtport->private;
985 int rc;
986
987 if (test_bit(FC_UNLOADING, &axchg->phba->pport->load_flag))
988 return -ENODEV;
989
990 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp);
991
992 if (rc) {
993 atomic_inc(&nvmep->xmt_ls_drop);
994 /*
995 * unless the failure is due to having already sent
996 * the response, an abort will be generated for the
997 * exchange if the rsp can't be sent.
998 */
999 if (rc != -EALREADY)
1000 atomic_inc(&nvmep->xmt_ls_abort);
1001 return rc;
1002 }
1003
1004 atomic_inc(&nvmep->xmt_ls_rsp);
1005 return 0;
1006 }
1007
1008 static int
lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport,
1010 struct nvmefc_tgt_fcp_req *rsp)
1011 {
1012 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1013 struct lpfc_async_xchg_ctx *ctxp =
1014 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1015 struct lpfc_hba *phba = ctxp->phba;
1016 struct lpfc_queue *wq;
1017 struct lpfc_iocbq *nvmewqeq;
1018 struct lpfc_sli_ring *pring;
1019 unsigned long iflags;
1020 int rc;
1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1022 int id;
1023 #endif
1024
1025 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) {
1026 rc = -ENODEV;
1027 goto aerr;
1028 }
1029
1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1031 if (ctxp->ts_cmd_nvme) {
1032 if (rsp->op == NVMET_FCOP_RSP)
1033 ctxp->ts_nvme_status = ktime_get_ns();
1034 else
1035 ctxp->ts_nvme_data = ktime_get_ns();
1036 }
1037
1038 /* Setup the hdw queue if not already set */
1039 if (!ctxp->hdwq)
1040 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid];
1041
1042 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
1043 id = raw_smp_processor_id();
1044 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io);
1045 if (rsp->hwqid != id)
1046 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1047 "6705 CPU Check OP: "
1048 "cpu %d expect %d\n",
1049 id, rsp->hwqid);
1050 ctxp->cpu = id; /* Setup cpu for cmpl check */
1051 }
1052 #endif
1053
1054 /* Sanity check */
1055 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) ||
1056 (ctxp->state == LPFC_NVME_STE_ABORT)) {
1057 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1059 "6102 IO oxid x%x aborted\n",
1060 ctxp->oxid);
1061 rc = -ENXIO;
1062 goto aerr;
1063 }
1064
1065 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp);
1066 if (nvmewqeq == NULL) {
1067 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1069 "6152 FCP Drop IO x%x: Prep\n",
1070 ctxp->oxid);
1071 rc = -ENXIO;
1072 goto aerr;
1073 }
1074
1075 nvmewqeq->cmd_cmpl = lpfc_nvmet_xmt_fcp_op_cmp;
1076 nvmewqeq->context_un.axchg = ctxp;
1077 nvmewqeq->cmd_flag |= LPFC_IO_NVMET;
1078 ctxp->wqeq->hba_wqidx = rsp->hwqid;
1079
1080 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n",
1081 ctxp->oxid, rsp->op, rsp->rsplen);
1082
1083 ctxp->flag |= LPFC_NVME_IO_INP;
1084 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
1085 if (rc == WQE_SUCCESS) {
1086 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
1087 if (!ctxp->ts_cmd_nvme)
1088 return 0;
1089 if (rsp->op == NVMET_FCOP_RSP)
1090 ctxp->ts_status_wqput = ktime_get_ns();
1091 else
1092 ctxp->ts_data_wqput = ktime_get_ns();
1093 #endif
1094 return 0;
1095 }
1096
1097 if (rc == -EBUSY) {
1098 /*
1099 * WQ was full, so queue nvmewqeq to be sent after
1100 * WQE release CQE
1101 */
1102 ctxp->flag |= LPFC_NVME_DEFER_WQFULL;
1103 wq = ctxp->hdwq->io_wq;
1104 pring = wq->pring;
1105 spin_lock_irqsave(&pring->ring_lock, iflags);
1106 list_add_tail(&nvmewqeq->list, &wq->wqfull_list);
1107 wq->q_flag |= HBA_NVMET_WQFULL;
1108 spin_unlock_irqrestore(&pring->ring_lock, iflags);
1109 atomic_inc(&lpfc_nvmep->defer_wqfull);
1110 return 0;
1111 }
1112
1113 /* Give back resources */
1114 atomic_inc(&lpfc_nvmep->xmt_fcp_drop);
1115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1116 "6153 FCP Drop IO x%x: Issue: %d\n",
1117 ctxp->oxid, rc);
1118
1119 ctxp->wqeq->hba_wqidx = 0;
1120 nvmewqeq->context_un.axchg = NULL;
1121 nvmewqeq->bpl_dmabuf = NULL;
1122 rc = -EBUSY;
1123 aerr:
1124 return rc;
1125 }
1126
1127 static void
lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port * targetport)1128 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport)
1129 {
1130 struct lpfc_nvmet_tgtport *tport = targetport->private;
1131
1132 /* release any threads waiting for the unreg to complete */
1133 if (tport->phba->targetport)
1134 complete(tport->tport_unreg_cmp);
1135 }
1136
1137 static void
lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * req)1138 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport,
1139 struct nvmefc_tgt_fcp_req *req)
1140 {
1141 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1142 struct lpfc_async_xchg_ctx *ctxp =
1143 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1144 struct lpfc_hba *phba = ctxp->phba;
1145 struct lpfc_queue *wq;
1146 unsigned long flags;
1147
1148 if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1149 return;
1150
1151 if (!ctxp->hdwq)
1152 ctxp->hdwq = &phba->sli4_hba.hdwq[0];
1153
1154 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1155 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n",
1156 ctxp->oxid, ctxp->flag, ctxp->state);
1157
1158 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n",
1159 ctxp->oxid, ctxp->flag, ctxp->state);
1160
1161 atomic_inc(&lpfc_nvmep->xmt_fcp_abort);
1162
1163 spin_lock_irqsave(&ctxp->ctxlock, flags);
1164
1165 /* Since iaab/iaar are NOT set, we need to check
1166 * if the firmware is in process of aborting IO
1167 */
1168 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) {
1169 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1170 return;
1171 }
1172 ctxp->flag |= LPFC_NVME_ABORT_OP;
1173
1174 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) {
1175 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1176 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1177 ctxp->oxid);
1178 wq = ctxp->hdwq->io_wq;
1179 lpfc_nvmet_wqfull_flush(phba, wq, ctxp);
1180 return;
1181 }
1182 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1183
1184 /* A state of LPFC_NVME_STE_RCV means we have just received
1185 * the NVME command and have not started processing it.
1186 * (by issuing any IO WQEs on this exchange yet)
1187 */
1188 if (ctxp->state == LPFC_NVME_STE_RCV)
1189 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1190 ctxp->oxid);
1191 else
1192 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1193 ctxp->oxid);
1194 }
1195
1196 static void
lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1197 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport,
1198 struct nvmefc_tgt_fcp_req *rsp)
1199 {
1200 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private;
1201 struct lpfc_async_xchg_ctx *ctxp =
1202 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1203 struct lpfc_hba *phba = ctxp->phba;
1204 unsigned long flags;
1205 bool aborting = false;
1206
1207 spin_lock_irqsave(&ctxp->ctxlock, flags);
1208 if (ctxp->flag & LPFC_NVME_XBUSY)
1209 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1210 "6027 NVMET release with XBUSY flag x%x"
1211 " oxid x%x\n",
1212 ctxp->flag, ctxp->oxid);
1213 else if (ctxp->state != LPFC_NVME_STE_DONE &&
1214 ctxp->state != LPFC_NVME_STE_ABORT)
1215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1216 "6413 NVMET release bad state %d %d oxid x%x\n",
1217 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
1218
1219 if ((ctxp->flag & LPFC_NVME_ABORT_OP) ||
1220 (ctxp->flag & LPFC_NVME_XBUSY)) {
1221 aborting = true;
1222 /* let the abort path do the real release */
1223 lpfc_nvmet_defer_release(phba, ctxp);
1224 }
1225 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
1226
1227 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid,
1228 ctxp->state, aborting);
1229
1230 atomic_inc(&lpfc_nvmep->xmt_fcp_release);
1231 ctxp->flag &= ~LPFC_NVME_TNOTIFY;
1232
1233 if (aborting)
1234 return;
1235
1236 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1237 }
1238
1239 static void
lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port * tgtport,struct nvmefc_tgt_fcp_req * rsp)1240 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport,
1241 struct nvmefc_tgt_fcp_req *rsp)
1242 {
1243 struct lpfc_nvmet_tgtport *tgtp;
1244 struct lpfc_async_xchg_ctx *ctxp =
1245 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req);
1246 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
1247 struct lpfc_hba *phba = ctxp->phba;
1248 unsigned long iflag;
1249
1250
1251 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n",
1252 ctxp->oxid, ctxp->size, raw_smp_processor_id());
1253
1254 if (!nvmebuf) {
1255 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
1256 "6425 Defer rcv: no buffer oxid x%x: "
1257 "flg %x ste %x\n",
1258 ctxp->oxid, ctxp->flag, ctxp->state);
1259 return;
1260 }
1261
1262 tgtp = phba->targetport->private;
1263 if (tgtp)
1264 atomic_inc(&tgtp->rcv_fcp_cmd_defer);
1265
1266 /* Free the nvmebuf since a new buffer already replaced it */
1267 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1268 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1269 ctxp->rqb_buffer = NULL;
1270 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1271 }
1272
1273 /**
1274 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request
1275 * @phba: Pointer to HBA context object
1276 * @cmdwqe: Pointer to driver command WQE object.
1277 * @rspwqe: Pointer to driver response WQE object.
1278 *
1279 * This function is the completion handler for NVME LS requests.
1280 * The function updates any states and statistics, then calls the
1281 * generic completion handler to finish completion of the request.
1282 **/
1283 static void
lpfc_nvmet_ls_req_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)1284 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
1285 struct lpfc_iocbq *rspwqe)
1286 {
1287 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
1288 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe);
1289 }
1290
1291 /**
1292 * lpfc_nvmet_ls_req - Issue an Link Service request
1293 * @targetport: pointer to target instance registered with nvmet transport.
1294 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1295 * Driver sets this value to the ndlp pointer.
1296 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS
1297 *
1298 * Driver registers this routine to handle any link service request
1299 * from the nvme_fc transport to a remote nvme-aware port.
1300 *
1301 * Return value :
1302 * 0 - Success
1303 * non-zero: various error codes, in form of -Exxx
1304 **/
1305 static int
lpfc_nvmet_ls_req(struct nvmet_fc_target_port * targetport,void * hosthandle,struct nvmefc_ls_req * pnvme_lsreq)1306 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport,
1307 void *hosthandle,
1308 struct nvmefc_ls_req *pnvme_lsreq)
1309 {
1310 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1311 struct lpfc_hba *phba;
1312 struct lpfc_nodelist *ndlp;
1313 int ret;
1314 u32 hstate;
1315
1316 if (!lpfc_nvmet)
1317 return -EINVAL;
1318
1319 phba = lpfc_nvmet->phba;
1320 if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1321 return -EINVAL;
1322
1323 hstate = atomic_read(&lpfc_nvmet->state);
1324 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE)
1325 return -EACCES;
1326
1327 ndlp = (struct lpfc_nodelist *)hosthandle;
1328
1329 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq,
1330 lpfc_nvmet_ls_req_cmp);
1331
1332 return ret;
1333 }
1334
1335 /**
1336 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request
1337 * @targetport: Transport targetport, that LS was issued from.
1338 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv.
1339 * Driver sets this value to the ndlp pointer.
1340 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted
1341 *
1342 * Driver registers this routine to abort an NVME LS request that is
1343 * in progress (from the transports perspective).
1344 **/
1345 static void
lpfc_nvmet_ls_abort(struct nvmet_fc_target_port * targetport,void * hosthandle,struct nvmefc_ls_req * pnvme_lsreq)1346 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport,
1347 void *hosthandle,
1348 struct nvmefc_ls_req *pnvme_lsreq)
1349 {
1350 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private;
1351 struct lpfc_hba *phba;
1352 struct lpfc_nodelist *ndlp;
1353 int ret;
1354
1355 phba = lpfc_nvmet->phba;
1356 if (test_bit(FC_UNLOADING, &phba->pport->load_flag))
1357 return;
1358
1359 ndlp = (struct lpfc_nodelist *)hosthandle;
1360
1361 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq);
1362 if (!ret)
1363 atomic_inc(&lpfc_nvmet->xmt_ls_abort);
1364 }
1365
1366 static int
lpfc_nvmet_host_traddr(void * hosthandle,u64 * wwnn,u64 * wwpn)1367 lpfc_nvmet_host_traddr(void *hosthandle, u64 *wwnn, u64 *wwpn)
1368 {
1369 struct lpfc_nodelist *ndlp = hosthandle;
1370
1371 *wwnn = wwn_to_u64(ndlp->nlp_nodename.u.wwn);
1372 *wwpn = wwn_to_u64(ndlp->nlp_portname.u.wwn);
1373 return 0;
1374 }
1375
1376 static void
lpfc_nvmet_host_release(void * hosthandle)1377 lpfc_nvmet_host_release(void *hosthandle)
1378 {
1379 struct lpfc_nodelist *ndlp = hosthandle;
1380 struct lpfc_hba *phba = ndlp->phba;
1381 struct lpfc_nvmet_tgtport *tgtp;
1382
1383 if (!phba->targetport || !phba->targetport->private)
1384 return;
1385
1386 lpfc_printf_log(phba, KERN_ERR, LOG_NVME,
1387 "6202 NVMET XPT releasing hosthandle x%px "
1388 "DID x%x xflags x%x refcnt %d\n",
1389 hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags,
1390 kref_read(&ndlp->kref));
1391 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1392 spin_lock_irq(&ndlp->lock);
1393 ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH;
1394 spin_unlock_irq(&ndlp->lock);
1395 lpfc_nlp_put(ndlp);
1396 atomic_set(&tgtp->state, 0);
1397 }
1398
1399 static void
lpfc_nvmet_discovery_event(struct nvmet_fc_target_port * tgtport)1400 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport)
1401 {
1402 struct lpfc_nvmet_tgtport *tgtp;
1403 struct lpfc_hba *phba;
1404 uint32_t rc;
1405
1406 tgtp = tgtport->private;
1407 phba = tgtp->phba;
1408
1409 rc = lpfc_issue_els_rscn(phba->pport, 0);
1410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1411 "6420 NVMET subsystem change: Notification %s\n",
1412 (rc) ? "Failed" : "Sent");
1413 }
1414
1415 static struct nvmet_fc_target_template lpfc_tgttemplate = {
1416 .targetport_delete = lpfc_nvmet_targetport_delete,
1417 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp,
1418 .fcp_op = lpfc_nvmet_xmt_fcp_op,
1419 .fcp_abort = lpfc_nvmet_xmt_fcp_abort,
1420 .fcp_req_release = lpfc_nvmet_xmt_fcp_release,
1421 .defer_rcv = lpfc_nvmet_defer_rcv,
1422 .discovery_event = lpfc_nvmet_discovery_event,
1423 .ls_req = lpfc_nvmet_ls_req,
1424 .ls_abort = lpfc_nvmet_ls_abort,
1425 .host_release = lpfc_nvmet_host_release,
1426 .host_traddr = lpfc_nvmet_host_traddr,
1427
1428 .max_hw_queues = 1,
1429 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1430 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS,
1431 .dma_boundary = 0xFFFFFFFF,
1432
1433 /* optional features */
1434 .target_features = 0,
1435 /* sizes of additional private data for data structures */
1436 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport),
1437 .lsrqst_priv_sz = 0,
1438 };
1439
1440 static void
__lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * infop)1441 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba,
1442 struct lpfc_nvmet_ctx_info *infop)
1443 {
1444 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf;
1445 unsigned long flags;
1446
1447 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags);
1448 list_for_each_entry_safe(ctx_buf, next_ctx_buf,
1449 &infop->nvmet_ctx_list, list) {
1450 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1451 list_del_init(&ctx_buf->list);
1452 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1453
1454 spin_lock(&phba->hbalock);
1455 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag);
1456 spin_unlock(&phba->hbalock);
1457
1458 ctx_buf->sglq->state = SGL_FREED;
1459 ctx_buf->sglq->ndlp = NULL;
1460
1461 spin_lock(&phba->sli4_hba.sgl_list_lock);
1462 list_add_tail(&ctx_buf->sglq->list,
1463 &phba->sli4_hba.lpfc_nvmet_sgl_list);
1464 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1465
1466 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1467 kfree(ctx_buf->context);
1468 }
1469 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags);
1470 }
1471
1472 static void
lpfc_nvmet_cleanup_io_context(struct lpfc_hba * phba)1473 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba)
1474 {
1475 struct lpfc_nvmet_ctx_info *infop;
1476 int i, j;
1477
1478 /* The first context list, MRQ 0 CPU 0 */
1479 infop = phba->sli4_hba.nvmet_ctx_info;
1480 if (!infop)
1481 return;
1482
1483 /* Cycle the entire CPU context list for every MRQ */
1484 for (i = 0; i < phba->cfg_nvmet_mrq; i++) {
1485 for_each_present_cpu(j) {
1486 infop = lpfc_get_ctx_list(phba, j, i);
1487 __lpfc_nvmet_clean_io_for_cpu(phba, infop);
1488 }
1489 }
1490 kfree(phba->sli4_hba.nvmet_ctx_info);
1491 phba->sli4_hba.nvmet_ctx_info = NULL;
1492 }
1493
1494 static int
lpfc_nvmet_setup_io_context(struct lpfc_hba * phba)1495 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba)
1496 {
1497 struct lpfc_nvmet_ctxbuf *ctx_buf;
1498 struct lpfc_iocbq *nvmewqe;
1499 union lpfc_wqe128 *wqe;
1500 struct lpfc_nvmet_ctx_info *last_infop;
1501 struct lpfc_nvmet_ctx_info *infop;
1502 int i, j, idx, cpu;
1503
1504 lpfc_printf_log(phba, KERN_INFO, LOG_NVME,
1505 "6403 Allocate NVMET resources for %d XRIs\n",
1506 phba->sli4_hba.nvmet_xri_cnt);
1507
1508 phba->sli4_hba.nvmet_ctx_info = kcalloc(
1509 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq,
1510 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL);
1511 if (!phba->sli4_hba.nvmet_ctx_info) {
1512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1513 "6419 Failed allocate memory for "
1514 "nvmet context lists\n");
1515 return -ENOMEM;
1516 }
1517
1518 /*
1519 * Assuming X CPUs in the system, and Y MRQs, allocate some
1520 * lpfc_nvmet_ctx_info structures as follows:
1521 *
1522 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0
1523 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1
1524 * ...
1525 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY
1526 *
1527 * Each line represents a MRQ "silo" containing an entry for
1528 * every CPU.
1529 *
1530 * MRQ X is initially assumed to be associated with CPU X, thus
1531 * contexts are initially distributed across all MRQs using
1532 * the MRQ index (N) as follows cpuN/mrqN. When contexts are
1533 * freed, the are freed to the MRQ silo based on the CPU number
1534 * of the IO completion. Thus a context that was allocated for MRQ A
1535 * whose IO completed on CPU B will be freed to cpuB/mrqA.
1536 */
1537 for_each_possible_cpu(i) {
1538 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1539 infop = lpfc_get_ctx_list(phba, i, j);
1540 INIT_LIST_HEAD(&infop->nvmet_ctx_list);
1541 spin_lock_init(&infop->nvmet_ctx_list_lock);
1542 infop->nvmet_ctx_list_cnt = 0;
1543 }
1544 }
1545
1546 /*
1547 * Setup the next CPU context info ptr for each MRQ.
1548 * MRQ 0 will cycle thru CPUs 0 - X separately from
1549 * MRQ 1 cycling thru CPUs 0 - X, and so on.
1550 */
1551 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1552 last_infop = lpfc_get_ctx_list(phba,
1553 cpumask_first(cpu_present_mask),
1554 j);
1555 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) {
1556 infop = lpfc_get_ctx_list(phba, i, j);
1557 infop->nvmet_ctx_next_cpu = last_infop;
1558 last_infop = infop;
1559 }
1560 }
1561
1562 /* For all nvmet xris, allocate resources needed to process a
1563 * received command on a per xri basis.
1564 */
1565 idx = 0;
1566 cpu = cpumask_first(cpu_present_mask);
1567 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) {
1568 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL);
1569 if (!ctx_buf) {
1570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1571 "6404 Ran out of memory for NVMET\n");
1572 return -ENOMEM;
1573 }
1574
1575 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context),
1576 GFP_KERNEL);
1577 if (!ctx_buf->context) {
1578 kfree(ctx_buf);
1579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1580 "6405 Ran out of NVMET "
1581 "context memory\n");
1582 return -ENOMEM;
1583 }
1584 ctx_buf->context->ctxbuf = ctx_buf;
1585 ctx_buf->context->state = LPFC_NVME_STE_FREE;
1586
1587 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba);
1588 if (!ctx_buf->iocbq) {
1589 kfree(ctx_buf->context);
1590 kfree(ctx_buf);
1591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1592 "6406 Ran out of NVMET iocb/WQEs\n");
1593 return -ENOMEM;
1594 }
1595 ctx_buf->iocbq->cmd_flag = LPFC_IO_NVMET;
1596 nvmewqe = ctx_buf->iocbq;
1597 wqe = &nvmewqe->wqe;
1598
1599 /* Initialize WQE */
1600 memset(wqe, 0, sizeof(*wqe));
1601
1602 ctx_buf->iocbq->cmd_dmabuf = NULL;
1603 spin_lock(&phba->sli4_hba.sgl_list_lock);
1604 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq);
1605 spin_unlock(&phba->sli4_hba.sgl_list_lock);
1606 if (!ctx_buf->sglq) {
1607 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq);
1608 kfree(ctx_buf->context);
1609 kfree(ctx_buf);
1610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1611 "6407 Ran out of NVMET XRIs\n");
1612 return -ENOMEM;
1613 }
1614 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work);
1615
1616 /*
1617 * Add ctx to MRQidx context list. Our initial assumption
1618 * is MRQidx will be associated with CPUidx. This association
1619 * can change on the fly.
1620 */
1621 infop = lpfc_get_ctx_list(phba, cpu, idx);
1622 spin_lock(&infop->nvmet_ctx_list_lock);
1623 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list);
1624 infop->nvmet_ctx_list_cnt++;
1625 spin_unlock(&infop->nvmet_ctx_list_lock);
1626
1627 /* Spread ctx structures evenly across all MRQs */
1628 idx++;
1629 if (idx >= phba->cfg_nvmet_mrq) {
1630 idx = 0;
1631 cpu = cpumask_first(cpu_present_mask);
1632 continue;
1633 }
1634 cpu = lpfc_next_present_cpu(cpu);
1635 }
1636
1637 for_each_present_cpu(i) {
1638 for (j = 0; j < phba->cfg_nvmet_mrq; j++) {
1639 infop = lpfc_get_ctx_list(phba, i, j);
1640 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT,
1641 "6408 TOTAL NVMET ctx for CPU %d "
1642 "MRQ %d: cnt %d nextcpu x%px\n",
1643 i, j, infop->nvmet_ctx_list_cnt,
1644 infop->nvmet_ctx_next_cpu);
1645 }
1646 }
1647 return 0;
1648 }
1649
1650 int
lpfc_nvmet_create_targetport(struct lpfc_hba * phba)1651 lpfc_nvmet_create_targetport(struct lpfc_hba *phba)
1652 {
1653 struct lpfc_vport *vport = phba->pport;
1654 struct lpfc_nvmet_tgtport *tgtp;
1655 struct nvmet_fc_port_info pinfo;
1656 int error;
1657
1658 if (phba->targetport)
1659 return 0;
1660
1661 error = lpfc_nvmet_setup_io_context(phba);
1662 if (error)
1663 return error;
1664
1665 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info));
1666 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn);
1667 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn);
1668 pinfo.port_id = vport->fc_myDID;
1669
1670 /* We need to tell the transport layer + 1 because it takes page
1671 * alignment into account. When space for the SGL is allocated we
1672 * allocate + 3, one for cmd, one for rsp and one for this alignment
1673 */
1674 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1;
1675 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue;
1676 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP;
1677
1678 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1679 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate,
1680 &phba->pcidev->dev,
1681 &phba->targetport);
1682 #else
1683 error = -ENOENT;
1684 #endif
1685 if (error) {
1686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
1687 "6025 Cannot register NVME targetport x%x: "
1688 "portnm %llx nodenm %llx segs %d qs %d\n",
1689 error,
1690 pinfo.port_name, pinfo.node_name,
1691 lpfc_tgttemplate.max_sgl_segments,
1692 lpfc_tgttemplate.max_hw_queues);
1693 phba->targetport = NULL;
1694 phba->nvmet_support = 0;
1695
1696 lpfc_nvmet_cleanup_io_context(phba);
1697
1698 } else {
1699 tgtp = (struct lpfc_nvmet_tgtport *)
1700 phba->targetport->private;
1701 tgtp->phba = phba;
1702
1703 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
1704 "6026 Registered NVME "
1705 "targetport: x%px, private x%px "
1706 "portnm %llx nodenm %llx segs %d qs %d\n",
1707 phba->targetport, tgtp,
1708 pinfo.port_name, pinfo.node_name,
1709 lpfc_tgttemplate.max_sgl_segments,
1710 lpfc_tgttemplate.max_hw_queues);
1711
1712 atomic_set(&tgtp->rcv_ls_req_in, 0);
1713 atomic_set(&tgtp->rcv_ls_req_out, 0);
1714 atomic_set(&tgtp->rcv_ls_req_drop, 0);
1715 atomic_set(&tgtp->xmt_ls_abort, 0);
1716 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0);
1717 atomic_set(&tgtp->xmt_ls_rsp, 0);
1718 atomic_set(&tgtp->xmt_ls_drop, 0);
1719 atomic_set(&tgtp->xmt_ls_rsp_error, 0);
1720 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0);
1721 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0);
1722 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0);
1723 atomic_set(&tgtp->rcv_fcp_cmd_in, 0);
1724 atomic_set(&tgtp->rcv_fcp_cmd_out, 0);
1725 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0);
1726 atomic_set(&tgtp->xmt_fcp_drop, 0);
1727 atomic_set(&tgtp->xmt_fcp_read_rsp, 0);
1728 atomic_set(&tgtp->xmt_fcp_read, 0);
1729 atomic_set(&tgtp->xmt_fcp_write, 0);
1730 atomic_set(&tgtp->xmt_fcp_rsp, 0);
1731 atomic_set(&tgtp->xmt_fcp_release, 0);
1732 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0);
1733 atomic_set(&tgtp->xmt_fcp_rsp_error, 0);
1734 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0);
1735 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0);
1736 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0);
1737 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0);
1738 atomic_set(&tgtp->xmt_fcp_abort, 0);
1739 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0);
1740 atomic_set(&tgtp->xmt_abort_unsol, 0);
1741 atomic_set(&tgtp->xmt_abort_sol, 0);
1742 atomic_set(&tgtp->xmt_abort_rsp, 0);
1743 atomic_set(&tgtp->xmt_abort_rsp_error, 0);
1744 atomic_set(&tgtp->defer_ctx, 0);
1745 atomic_set(&tgtp->defer_fod, 0);
1746 atomic_set(&tgtp->defer_wqfull, 0);
1747 }
1748 return error;
1749 }
1750
1751 int
lpfc_nvmet_update_targetport(struct lpfc_hba * phba)1752 lpfc_nvmet_update_targetport(struct lpfc_hba *phba)
1753 {
1754 struct lpfc_vport *vport = phba->pport;
1755
1756 if (!phba->targetport)
1757 return 0;
1758
1759 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME,
1760 "6007 Update NVMET port x%px did x%x\n",
1761 phba->targetport, vport->fc_myDID);
1762
1763 phba->targetport->port_id = vport->fc_myDID;
1764 return 0;
1765 }
1766
1767 /**
1768 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort
1769 * @phba: pointer to lpfc hba data structure.
1770 * @axri: pointer to the nvmet xri abort wcqe structure.
1771 *
1772 * This routine is invoked by the worker thread to process a SLI4 fast-path
1773 * NVMET aborted xri.
1774 **/
1775 void
lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba * phba,struct sli4_wcqe_xri_aborted * axri)1776 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba,
1777 struct sli4_wcqe_xri_aborted *axri)
1778 {
1779 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1780 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
1781 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
1782 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1783 struct lpfc_nvmet_tgtport *tgtp;
1784 struct nvmefc_tgt_fcp_req *req = NULL;
1785 struct lpfc_nodelist *ndlp;
1786 unsigned long iflag = 0;
1787 int rrq_empty = 0;
1788 bool released = false;
1789
1790 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1791 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid);
1792
1793 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME))
1794 return;
1795
1796 if (phba->targetport) {
1797 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
1798 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe);
1799 }
1800
1801 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1802 list_for_each_entry_safe(ctxp, next_ctxp,
1803 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1804 list) {
1805 if (ctxp->ctxbuf->sglq->sli4_xritag != xri)
1806 continue;
1807
1808 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock,
1809 iflag);
1810
1811 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1812 /* Check if we already received a free context call
1813 * and we have completed processing an abort situation.
1814 */
1815 if (ctxp->flag & LPFC_NVME_CTX_RLS &&
1816 !(ctxp->flag & LPFC_NVME_ABORT_OP)) {
1817 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1818 list_del_init(&ctxp->list);
1819 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
1820 released = true;
1821 }
1822 ctxp->flag &= ~LPFC_NVME_XBUSY;
1823 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1824
1825 spin_lock_irqsave(&phba->rrq_list_lock, iflag);
1826 rrq_empty = list_empty(&phba->active_rrq_list);
1827 spin_unlock_irqrestore(&phba->rrq_list_lock, iflag);
1828 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
1829 if (ndlp &&
1830 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE ||
1831 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) {
1832 lpfc_set_rrq_active(phba, ndlp,
1833 ctxp->ctxbuf->sglq->sli4_lxritag,
1834 rxid, 1);
1835 lpfc_sli4_abts_err_handler(phba, ndlp, axri);
1836 }
1837
1838 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1839 "6318 XB aborted oxid x%x flg x%x (%x)\n",
1840 ctxp->oxid, ctxp->flag, released);
1841 if (released)
1842 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
1843
1844 if (rrq_empty)
1845 lpfc_worker_wake_up(phba);
1846 return;
1847 }
1848 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1849 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri);
1850 if (ctxp) {
1851 /*
1852 * Abort already done by FW, so BA_ACC sent.
1853 * However, the transport may be unaware.
1854 */
1855 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1856 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x "
1857 "flag x%x oxid x%x rxid x%x\n",
1858 xri, ctxp->state, ctxp->flag, ctxp->oxid,
1859 rxid);
1860
1861 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1862 ctxp->flag |= LPFC_NVME_ABTS_RCV;
1863 ctxp->state = LPFC_NVME_STE_ABORT;
1864 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1865
1866 lpfc_nvmeio_data(phba,
1867 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1868 xri, raw_smp_processor_id(), 0);
1869
1870 req = &ctxp->hdlrctx.fcp_req;
1871 if (req)
1872 nvmet_fc_rcv_fcp_abort(phba->targetport, req);
1873 }
1874 #endif
1875 }
1876
1877 int
lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport * vport,struct fc_frame_header * fc_hdr)1878 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport,
1879 struct fc_frame_header *fc_hdr)
1880 {
1881 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
1882 struct lpfc_hba *phba = vport->phba;
1883 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp;
1884 struct nvmefc_tgt_fcp_req *rsp;
1885 uint32_t sid;
1886 uint16_t oxid, xri;
1887 unsigned long iflag = 0;
1888
1889 sid = sli4_sid_from_fc_hdr(fc_hdr);
1890 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
1891
1892 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1893 list_for_each_entry_safe(ctxp, next_ctxp,
1894 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list,
1895 list) {
1896 if (ctxp->oxid != oxid || ctxp->sid != sid)
1897 continue;
1898
1899 xri = ctxp->ctxbuf->sglq->sli4_xritag;
1900
1901 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock,
1902 iflag);
1903 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1904 ctxp->flag |= LPFC_NVME_ABTS_RCV;
1905 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1906
1907 lpfc_nvmeio_data(phba,
1908 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1909 xri, raw_smp_processor_id(), 0);
1910
1911 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1912 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri);
1913
1914 rsp = &ctxp->hdlrctx.fcp_req;
1915 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp);
1916
1917 /* Respond with BA_ACC accordingly */
1918 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1919 return 0;
1920 }
1921 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag);
1922 /* check the wait list */
1923 if (phba->sli4_hba.nvmet_io_wait_cnt) {
1924 struct rqb_dmabuf *nvmebuf;
1925 struct fc_frame_header *fc_hdr_tmp;
1926 u32 sid_tmp;
1927 u16 oxid_tmp;
1928 bool found = false;
1929
1930 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
1931
1932 /* match by oxid and s_id */
1933 list_for_each_entry(nvmebuf,
1934 &phba->sli4_hba.lpfc_nvmet_io_wait_list,
1935 hbuf.list) {
1936 fc_hdr_tmp = (struct fc_frame_header *)
1937 (nvmebuf->hbuf.virt);
1938 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id);
1939 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp);
1940 if (oxid_tmp != oxid || sid_tmp != sid)
1941 continue;
1942
1943 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1944 "6321 NVMET Rcv ABTS oxid x%x from x%x "
1945 "is waiting for a ctxp\n",
1946 oxid, sid);
1947
1948 list_del_init(&nvmebuf->hbuf.list);
1949 phba->sli4_hba.nvmet_io_wait_cnt--;
1950 found = true;
1951 break;
1952 }
1953 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
1954 iflag);
1955
1956 /* free buffer since already posted a new DMA buffer to RQ */
1957 if (found) {
1958 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf);
1959 /* Respond with BA_ACC accordingly */
1960 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1961 return 0;
1962 }
1963 }
1964
1965 /* check active list */
1966 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid);
1967 if (ctxp) {
1968 xri = ctxp->ctxbuf->sglq->sli4_xritag;
1969
1970 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1971 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP);
1972 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1973
1974 lpfc_nvmeio_data(phba,
1975 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n",
1976 xri, raw_smp_processor_id(), 0);
1977
1978 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
1979 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x "
1980 "flag x%x state x%x\n",
1981 ctxp->oxid, xri, ctxp->flag, ctxp->state);
1982
1983 if (ctxp->flag & LPFC_NVME_TNOTIFY) {
1984 /* Notify the transport */
1985 nvmet_fc_rcv_fcp_abort(phba->targetport,
1986 &ctxp->hdlrctx.fcp_req);
1987 } else {
1988 cancel_work_sync(&ctxp->ctxbuf->defer_work);
1989 spin_lock_irqsave(&ctxp->ctxlock, iflag);
1990 lpfc_nvmet_defer_release(phba, ctxp);
1991 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
1992 }
1993 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid,
1994 ctxp->oxid);
1995
1996 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1);
1997 return 0;
1998 }
1999
2000 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n",
2001 oxid, raw_smp_processor_id(), 1);
2002
2003 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
2004 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid);
2005
2006 /* Respond with BA_RJT accordingly */
2007 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0);
2008 #endif
2009 return 0;
2010 }
2011
2012 static void
lpfc_nvmet_wqfull_flush(struct lpfc_hba * phba,struct lpfc_queue * wq,struct lpfc_async_xchg_ctx * ctxp)2013 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq,
2014 struct lpfc_async_xchg_ctx *ctxp)
2015 {
2016 struct lpfc_sli_ring *pring;
2017 struct lpfc_iocbq *nvmewqeq;
2018 struct lpfc_iocbq *next_nvmewqeq;
2019 unsigned long iflags;
2020 struct lpfc_wcqe_complete wcqe;
2021 struct lpfc_wcqe_complete *wcqep;
2022
2023 pring = wq->pring;
2024 wcqep = &wcqe;
2025
2026 /* Fake an ABORT error code back to cmpl routine */
2027 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete));
2028 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT);
2029 wcqep->parameter = IOERR_ABORT_REQUESTED;
2030
2031 spin_lock_irqsave(&pring->ring_lock, iflags);
2032 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq,
2033 &wq->wqfull_list, list) {
2034 if (ctxp) {
2035 /* Checking for a specific IO to flush */
2036 if (nvmewqeq->context_un.axchg == ctxp) {
2037 list_del(&nvmewqeq->list);
2038 spin_unlock_irqrestore(&pring->ring_lock,
2039 iflags);
2040 memcpy(&nvmewqeq->wcqe_cmpl, wcqep,
2041 sizeof(*wcqep));
2042 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq,
2043 nvmewqeq);
2044 return;
2045 }
2046 continue;
2047 } else {
2048 /* Flush all IOs */
2049 list_del(&nvmewqeq->list);
2050 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2051 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, sizeof(*wcqep));
2052 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, nvmewqeq);
2053 spin_lock_irqsave(&pring->ring_lock, iflags);
2054 }
2055 }
2056 if (!ctxp)
2057 wq->q_flag &= ~HBA_NVMET_WQFULL;
2058 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2059 }
2060
2061 void
lpfc_nvmet_wqfull_process(struct lpfc_hba * phba,struct lpfc_queue * wq)2062 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba,
2063 struct lpfc_queue *wq)
2064 {
2065 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2066 struct lpfc_sli_ring *pring;
2067 struct lpfc_iocbq *nvmewqeq;
2068 struct lpfc_async_xchg_ctx *ctxp;
2069 unsigned long iflags;
2070 int rc;
2071
2072 /*
2073 * Some WQE slots are available, so try to re-issue anything
2074 * on the WQ wqfull_list.
2075 */
2076 pring = wq->pring;
2077 spin_lock_irqsave(&pring->ring_lock, iflags);
2078 while (!list_empty(&wq->wqfull_list)) {
2079 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq,
2080 list);
2081 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2082 ctxp = nvmewqeq->context_un.axchg;
2083 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq);
2084 spin_lock_irqsave(&pring->ring_lock, iflags);
2085 if (rc == -EBUSY) {
2086 /* WQ was full again, so put it back on the list */
2087 list_add(&nvmewqeq->list, &wq->wqfull_list);
2088 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2089 return;
2090 }
2091 if (rc == WQE_SUCCESS) {
2092 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2093 if (ctxp->ts_cmd_nvme) {
2094 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP)
2095 ctxp->ts_status_wqput = ktime_get_ns();
2096 else
2097 ctxp->ts_data_wqput = ktime_get_ns();
2098 }
2099 #endif
2100 } else {
2101 WARN_ON(rc);
2102 }
2103 }
2104 wq->q_flag &= ~HBA_NVMET_WQFULL;
2105 spin_unlock_irqrestore(&pring->ring_lock, iflags);
2106
2107 #endif
2108 }
2109
2110 void
lpfc_nvmet_destroy_targetport(struct lpfc_hba * phba)2111 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba)
2112 {
2113 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2114 struct lpfc_nvmet_tgtport *tgtp;
2115 struct lpfc_queue *wq;
2116 uint32_t qidx;
2117 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp);
2118
2119 if (phba->nvmet_support == 0)
2120 return;
2121 if (phba->targetport) {
2122 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2123 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) {
2124 wq = phba->sli4_hba.hdwq[qidx].io_wq;
2125 lpfc_nvmet_wqfull_flush(phba, wq, NULL);
2126 }
2127 tgtp->tport_unreg_cmp = &tport_unreg_cmp;
2128 nvmet_fc_unregister_targetport(phba->targetport);
2129 if (!wait_for_completion_timeout(&tport_unreg_cmp,
2130 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO)))
2131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2132 "6179 Unreg targetport x%px timeout "
2133 "reached.\n", phba->targetport);
2134 lpfc_nvmet_cleanup_io_context(phba);
2135 }
2136 phba->targetport = NULL;
2137 #endif
2138 }
2139
2140 /**
2141 * lpfc_nvmet_handle_lsreq - Process an NVME LS request
2142 * @phba: pointer to lpfc hba data structure.
2143 * @axchg: pointer to exchange context for the NVME LS request
2144 *
2145 * This routine is used for processing an asychronously received NVME LS
2146 * request. Any remaining validation is done and the LS is then forwarded
2147 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req().
2148 *
2149 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing)
2150 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done.
2151 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg.
2152 *
2153 * Returns 0 if LS was handled and delivered to the transport
2154 * Returns 1 if LS failed to be handled and should be dropped
2155 */
2156 int
lpfc_nvmet_handle_lsreq(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * axchg)2157 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba,
2158 struct lpfc_async_xchg_ctx *axchg)
2159 {
2160 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2161 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private;
2162 uint32_t *payload = axchg->payload;
2163 int rc;
2164
2165 atomic_inc(&tgtp->rcv_ls_req_in);
2166
2167 /*
2168 * Driver passes the ndlp as the hosthandle argument allowing
2169 * the transport to generate LS requests for any associateions
2170 * that are created.
2171 */
2172 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp,
2173 axchg->payload, axchg->size);
2174
2175 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2176 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x "
2177 "%08x %08x %08x\n", axchg->size, rc,
2178 *payload, *(payload+1), *(payload+2),
2179 *(payload+3), *(payload+4), *(payload+5));
2180
2181 if (!rc) {
2182 atomic_inc(&tgtp->rcv_ls_req_out);
2183 return 0;
2184 }
2185
2186 atomic_inc(&tgtp->rcv_ls_req_drop);
2187 #endif
2188 return 1;
2189 }
2190
2191 static void
lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf * ctx_buf)2192 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf)
2193 {
2194 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2195 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context;
2196 struct lpfc_hba *phba = ctxp->phba;
2197 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer;
2198 struct lpfc_nvmet_tgtport *tgtp;
2199 uint32_t *payload, qno;
2200 uint32_t rc;
2201 unsigned long iflags;
2202
2203 if (!nvmebuf) {
2204 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2205 "6159 process_rcv_fcp_req, nvmebuf is NULL, "
2206 "oxid: x%x flg: x%x state: x%x\n",
2207 ctxp->oxid, ctxp->flag, ctxp->state);
2208 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2209 lpfc_nvmet_defer_release(phba, ctxp);
2210 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2211 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid,
2212 ctxp->oxid);
2213 return;
2214 }
2215
2216 if (ctxp->flag & LPFC_NVME_ABTS_RCV) {
2217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2218 "6324 IO oxid x%x aborted\n",
2219 ctxp->oxid);
2220 return;
2221 }
2222
2223 payload = (uint32_t *)(nvmebuf->dbuf.virt);
2224 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2225 ctxp->flag |= LPFC_NVME_TNOTIFY;
2226 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2227 if (ctxp->ts_isr_cmd)
2228 ctxp->ts_cmd_nvme = ktime_get_ns();
2229 #endif
2230 /*
2231 * The calling sequence should be:
2232 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done
2233 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp.
2234 * When we return from nvmet_fc_rcv_fcp_req, all relevant info
2235 * the NVME command / FC header is stored.
2236 * A buffer has already been reposted for this IO, so just free
2237 * the nvmebuf.
2238 */
2239 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req,
2240 payload, ctxp->size);
2241 /* Process FCP command */
2242 if (rc == 0) {
2243 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2244 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2245 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) ||
2246 (nvmebuf != ctxp->rqb_buffer)) {
2247 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2248 return;
2249 }
2250 ctxp->rqb_buffer = NULL;
2251 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2252 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */
2253 return;
2254 }
2255
2256 /* Processing of FCP command is deferred */
2257 if (rc == -EOVERFLOW) {
2258 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d "
2259 "from %06x\n",
2260 ctxp->oxid, ctxp->size, ctxp->sid);
2261 atomic_inc(&tgtp->rcv_fcp_cmd_out);
2262 atomic_inc(&tgtp->defer_fod);
2263 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2264 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) {
2265 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2266 return;
2267 }
2268 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2269 /*
2270 * Post a replacement DMA buffer to RQ and defer
2271 * freeing rcv buffer till .defer_rcv callback
2272 */
2273 qno = nvmebuf->idx;
2274 lpfc_post_rq_buffer(
2275 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2276 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2277 return;
2278 }
2279 ctxp->flag &= ~LPFC_NVME_TNOTIFY;
2280 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2282 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n",
2283 ctxp->oxid, rc,
2284 atomic_read(&tgtp->rcv_fcp_cmd_in),
2285 atomic_read(&tgtp->rcv_fcp_cmd_out),
2286 atomic_read(&tgtp->xmt_fcp_release));
2287 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n",
2288 ctxp->oxid, ctxp->size, ctxp->sid);
2289 spin_lock_irqsave(&ctxp->ctxlock, iflags);
2290 lpfc_nvmet_defer_release(phba, ctxp);
2291 spin_unlock_irqrestore(&ctxp->ctxlock, iflags);
2292 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid);
2293 #endif
2294 }
2295
2296 static void
lpfc_nvmet_fcp_rqst_defer_work(struct work_struct * work)2297 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work)
2298 {
2299 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2300 struct lpfc_nvmet_ctxbuf *ctx_buf =
2301 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work);
2302
2303 lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2304 #endif
2305 }
2306
2307 static struct lpfc_nvmet_ctxbuf *
lpfc_nvmet_replenish_context(struct lpfc_hba * phba,struct lpfc_nvmet_ctx_info * current_infop)2308 lpfc_nvmet_replenish_context(struct lpfc_hba *phba,
2309 struct lpfc_nvmet_ctx_info *current_infop)
2310 {
2311 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
2312 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL;
2313 struct lpfc_nvmet_ctx_info *get_infop;
2314 int i;
2315
2316 /*
2317 * The current_infop for the MRQ a NVME command IU was received
2318 * on is empty. Our goal is to replenish this MRQs context
2319 * list from a another CPUs.
2320 *
2321 * First we need to pick a context list to start looking on.
2322 * nvmet_ctx_start_cpu has available context the last time
2323 * we needed to replenish this CPU where nvmet_ctx_next_cpu
2324 * is just the next sequential CPU for this MRQ.
2325 */
2326 if (current_infop->nvmet_ctx_start_cpu)
2327 get_infop = current_infop->nvmet_ctx_start_cpu;
2328 else
2329 get_infop = current_infop->nvmet_ctx_next_cpu;
2330
2331 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) {
2332 if (get_infop == current_infop) {
2333 get_infop = get_infop->nvmet_ctx_next_cpu;
2334 continue;
2335 }
2336 spin_lock(&get_infop->nvmet_ctx_list_lock);
2337
2338 /* Just take the entire context list, if there are any */
2339 if (get_infop->nvmet_ctx_list_cnt) {
2340 list_splice_init(&get_infop->nvmet_ctx_list,
2341 ¤t_infop->nvmet_ctx_list);
2342 current_infop->nvmet_ctx_list_cnt =
2343 get_infop->nvmet_ctx_list_cnt - 1;
2344 get_infop->nvmet_ctx_list_cnt = 0;
2345 spin_unlock(&get_infop->nvmet_ctx_list_lock);
2346
2347 current_infop->nvmet_ctx_start_cpu = get_infop;
2348 list_remove_head(¤t_infop->nvmet_ctx_list,
2349 ctx_buf, struct lpfc_nvmet_ctxbuf,
2350 list);
2351 return ctx_buf;
2352 }
2353
2354 /* Otherwise, move on to the next CPU for this MRQ */
2355 spin_unlock(&get_infop->nvmet_ctx_list_lock);
2356 get_infop = get_infop->nvmet_ctx_next_cpu;
2357 }
2358
2359 #endif
2360 /* Nothing found, all contexts for the MRQ are in-flight */
2361 return NULL;
2362 }
2363
2364 /**
2365 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer
2366 * @phba: pointer to lpfc hba data structure.
2367 * @idx: relative index of MRQ vector
2368 * @nvmebuf: pointer to lpfc nvme command HBQ data structure.
2369 * @isr_timestamp: in jiffies.
2370 * @cqflag: cq processing information regarding workload.
2371 *
2372 * This routine is used for processing the WQE associated with a unsolicited
2373 * event. It first determines whether there is an existing ndlp that matches
2374 * the DID from the unsolicited WQE. If not, it will create a new one with
2375 * the DID from the unsolicited WQE. The ELS command from the unsolicited
2376 * WQE is then used to invoke the proper routine and to set up proper state
2377 * of the discovery state machine.
2378 **/
2379 static void
lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp,uint8_t cqflag)2380 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba,
2381 uint32_t idx,
2382 struct rqb_dmabuf *nvmebuf,
2383 uint64_t isr_timestamp,
2384 uint8_t cqflag)
2385 {
2386 struct lpfc_async_xchg_ctx *ctxp;
2387 struct lpfc_nvmet_tgtport *tgtp;
2388 struct fc_frame_header *fc_hdr;
2389 struct lpfc_nvmet_ctxbuf *ctx_buf;
2390 struct lpfc_nvmet_ctx_info *current_infop;
2391 uint32_t size, oxid, sid, qno;
2392 unsigned long iflag;
2393 int current_cpu;
2394
2395 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC))
2396 return;
2397
2398 ctx_buf = NULL;
2399 if (!nvmebuf || !phba->targetport) {
2400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2401 "6157 NVMET FCP Drop IO\n");
2402 if (nvmebuf)
2403 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2404 return;
2405 }
2406
2407 /*
2408 * Get a pointer to the context list for this MRQ based on
2409 * the CPU this MRQ IRQ is associated with. If the CPU association
2410 * changes from our initial assumption, the context list could
2411 * be empty, thus it would need to be replenished with the
2412 * context list from another CPU for this MRQ.
2413 */
2414 current_cpu = raw_smp_processor_id();
2415 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx);
2416 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag);
2417 if (current_infop->nvmet_ctx_list_cnt) {
2418 list_remove_head(¤t_infop->nvmet_ctx_list,
2419 ctx_buf, struct lpfc_nvmet_ctxbuf, list);
2420 current_infop->nvmet_ctx_list_cnt--;
2421 } else {
2422 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop);
2423 }
2424 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag);
2425
2426 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt);
2427 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
2428 size = nvmebuf->bytes_recv;
2429
2430 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2431 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) {
2432 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io);
2433 if (idx != current_cpu)
2434 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2435 "6703 CPU Check rcv: "
2436 "cpu %d expect %d\n",
2437 current_cpu, idx);
2438 }
2439 #endif
2440
2441 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n",
2442 oxid, size, raw_smp_processor_id());
2443
2444 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2445
2446 if (!ctx_buf) {
2447 /* Queue this NVME IO to process later */
2448 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag);
2449 list_add_tail(&nvmebuf->hbuf.list,
2450 &phba->sli4_hba.lpfc_nvmet_io_wait_list);
2451 phba->sli4_hba.nvmet_io_wait_cnt++;
2452 phba->sli4_hba.nvmet_io_wait_total++;
2453 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock,
2454 iflag);
2455
2456 /* Post a brand new DMA buffer to RQ */
2457 qno = nvmebuf->idx;
2458 lpfc_post_rq_buffer(
2459 phba, phba->sli4_hba.nvmet_mrq_hdr[qno],
2460 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno);
2461
2462 atomic_inc(&tgtp->defer_ctx);
2463 return;
2464 }
2465
2466 sid = sli4_sid_from_fc_hdr(fc_hdr);
2467
2468 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context;
2469 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag);
2470 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list);
2471 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag);
2472 if (ctxp->state != LPFC_NVME_STE_FREE) {
2473 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2474 "6414 NVMET Context corrupt %d %d oxid x%x\n",
2475 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
2476 }
2477 ctxp->wqeq = NULL;
2478 ctxp->offset = 0;
2479 ctxp->phba = phba;
2480 ctxp->size = size;
2481 ctxp->oxid = oxid;
2482 ctxp->sid = sid;
2483 ctxp->idx = idx;
2484 ctxp->state = LPFC_NVME_STE_RCV;
2485 ctxp->entry_cnt = 1;
2486 ctxp->flag = 0;
2487 ctxp->ctxbuf = ctx_buf;
2488 ctxp->rqb_buffer = (void *)nvmebuf;
2489 ctxp->hdwq = NULL;
2490 spin_lock_init(&ctxp->ctxlock);
2491
2492 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS
2493 if (isr_timestamp)
2494 ctxp->ts_isr_cmd = isr_timestamp;
2495 ctxp->ts_cmd_nvme = 0;
2496 ctxp->ts_nvme_data = 0;
2497 ctxp->ts_data_wqput = 0;
2498 ctxp->ts_isr_data = 0;
2499 ctxp->ts_data_nvme = 0;
2500 ctxp->ts_nvme_status = 0;
2501 ctxp->ts_status_wqput = 0;
2502 ctxp->ts_isr_status = 0;
2503 ctxp->ts_status_nvme = 0;
2504 #endif
2505
2506 atomic_inc(&tgtp->rcv_fcp_cmd_in);
2507 /* check for cq processing load */
2508 if (!cqflag) {
2509 lpfc_nvmet_process_rcv_fcp_req(ctx_buf);
2510 return;
2511 }
2512
2513 if (!queue_work(phba->wq, &ctx_buf->defer_work)) {
2514 atomic_inc(&tgtp->rcv_fcp_cmd_drop);
2515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2516 "6325 Unable to queue work for oxid x%x. "
2517 "FCP Drop IO [x%x x%x x%x]\n",
2518 ctxp->oxid,
2519 atomic_read(&tgtp->rcv_fcp_cmd_in),
2520 atomic_read(&tgtp->rcv_fcp_cmd_out),
2521 atomic_read(&tgtp->xmt_fcp_release));
2522
2523 spin_lock_irqsave(&ctxp->ctxlock, iflag);
2524 lpfc_nvmet_defer_release(phba, ctxp);
2525 spin_unlock_irqrestore(&ctxp->ctxlock, iflag);
2526 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid);
2527 }
2528 }
2529
2530 /**
2531 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport
2532 * @phba: pointer to lpfc hba data structure.
2533 * @idx: relative index of MRQ vector
2534 * @nvmebuf: pointer to received nvme data structure.
2535 * @isr_timestamp: in jiffies.
2536 * @cqflag: cq processing information regarding workload.
2537 *
2538 * This routine is used to process an unsolicited event received from a SLI
2539 * (Service Level Interface) ring. The actual processing of the data buffer
2540 * associated with the unsolicited event is done by invoking the routine
2541 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the
2542 * SLI RQ on which the unsolicited event was received.
2543 **/
2544 void
lpfc_nvmet_unsol_fcp_event(struct lpfc_hba * phba,uint32_t idx,struct rqb_dmabuf * nvmebuf,uint64_t isr_timestamp,uint8_t cqflag)2545 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba,
2546 uint32_t idx,
2547 struct rqb_dmabuf *nvmebuf,
2548 uint64_t isr_timestamp,
2549 uint8_t cqflag)
2550 {
2551 if (!nvmebuf) {
2552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2553 "3167 NVMET FCP Drop IO\n");
2554 return;
2555 }
2556 if (phba->nvmet_support == 0) {
2557 lpfc_rq_buf_free(phba, &nvmebuf->hbuf);
2558 return;
2559 }
2560 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag);
2561 }
2562
2563 /**
2564 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure
2565 * @phba: pointer to a host N_Port data structure.
2566 * @ctxp: Context info for NVME LS Request
2567 * @rspbuf: DMA buffer of NVME command.
2568 * @rspsize: size of the NVME command.
2569 *
2570 * This routine is used for allocating a lpfc-WQE data structure from
2571 * the driver lpfc-WQE free-list and prepare the WQE with the parameters
2572 * passed into the routine for discovery state machine to issue an Extended
2573 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation
2574 * and preparation routine that is used by all the discovery state machine
2575 * routines and the NVME command-specific fields will be later set up by
2576 * the individual discovery machine routines after calling this routine
2577 * allocating and preparing a generic WQE data structure. It fills in the
2578 * Buffer Descriptor Entries (BDEs), allocates buffers for both command
2579 * payload and response payload (if expected). The reference count on the
2580 * ndlp is incremented by 1 and the reference to the ndlp is put into
2581 * context1 of the WQE data structure for this WQE to hold the ndlp
2582 * reference for the command's callback function to access later.
2583 *
2584 * Return code
2585 * Pointer to the newly allocated/prepared nvme wqe data structure
2586 * NULL - when nvme wqe data structure allocation/preparation failed
2587 **/
2588 static struct lpfc_iocbq *
lpfc_nvmet_prep_ls_wqe(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,dma_addr_t rspbuf,uint16_t rspsize)2589 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba,
2590 struct lpfc_async_xchg_ctx *ctxp,
2591 dma_addr_t rspbuf, uint16_t rspsize)
2592 {
2593 struct lpfc_nodelist *ndlp;
2594 struct lpfc_iocbq *nvmewqe;
2595 union lpfc_wqe128 *wqe;
2596
2597 if (!lpfc_is_link_up(phba)) {
2598 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2599 "6104 NVMET prep LS wqe: link err: "
2600 "NPORT x%x oxid:x%x ste %d\n",
2601 ctxp->sid, ctxp->oxid, ctxp->state);
2602 return NULL;
2603 }
2604
2605 /* Allocate buffer for command wqe */
2606 nvmewqe = lpfc_sli_get_iocbq(phba);
2607 if (nvmewqe == NULL) {
2608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2609 "6105 NVMET prep LS wqe: No WQE: "
2610 "NPORT x%x oxid x%x ste %d\n",
2611 ctxp->sid, ctxp->oxid, ctxp->state);
2612 return NULL;
2613 }
2614
2615 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2616 if (!ndlp ||
2617 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2618 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2620 "6106 NVMET prep LS wqe: No ndlp: "
2621 "NPORT x%x oxid x%x ste %d\n",
2622 ctxp->sid, ctxp->oxid, ctxp->state);
2623 goto nvme_wqe_free_wqeq_exit;
2624 }
2625 ctxp->wqeq = nvmewqe;
2626
2627 /* prevent preparing wqe with NULL ndlp reference */
2628 nvmewqe->ndlp = lpfc_nlp_get(ndlp);
2629 if (!nvmewqe->ndlp)
2630 goto nvme_wqe_free_wqeq_exit;
2631 nvmewqe->context_un.axchg = ctxp;
2632
2633 wqe = &nvmewqe->wqe;
2634 memset(wqe, 0, sizeof(union lpfc_wqe));
2635
2636 /* Words 0 - 2 */
2637 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2638 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize;
2639 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf));
2640 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf));
2641
2642 /* Word 3 */
2643
2644 /* Word 4 */
2645
2646 /* Word 5 */
2647 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0);
2648 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1);
2649 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0);
2650 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP);
2651 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME);
2652
2653 /* Word 6 */
2654 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
2655 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2656 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag);
2657
2658 /* Word 7 */
2659 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com,
2660 CMD_XMIT_SEQUENCE64_WQE);
2661 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI);
2662 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3);
2663 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
2664
2665 /* Word 8 */
2666 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag;
2667
2668 /* Word 9 */
2669 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag);
2670 /* Needs to be set by caller */
2671 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid);
2672
2673 /* Word 10 */
2674 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
2675 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
2676 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
2677 LPFC_WQE_LENLOC_WORD12);
2678 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
2679
2680 /* Word 11 */
2681 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com,
2682 LPFC_WQE_CQ_ID_DEFAULT);
2683 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com,
2684 OTHER_COMMAND);
2685
2686 /* Word 12 */
2687 wqe->xmit_sequence.xmit_len = rspsize;
2688
2689 nvmewqe->retry = 1;
2690 nvmewqe->vport = phba->pport;
2691 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
2692 nvmewqe->cmd_flag |= LPFC_IO_NVME_LS;
2693
2694 /* Xmit NVMET response to remote NPORT <did> */
2695 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC,
2696 "6039 Xmit NVMET LS response to remote "
2697 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n",
2698 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid,
2699 rspsize);
2700 return nvmewqe;
2701
2702 nvme_wqe_free_wqeq_exit:
2703 nvmewqe->context_un.axchg = NULL;
2704 nvmewqe->ndlp = NULL;
2705 nvmewqe->bpl_dmabuf = NULL;
2706 lpfc_sli_release_iocbq(phba, nvmewqe);
2707 return NULL;
2708 }
2709
2710
2711 static struct lpfc_iocbq *
lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp)2712 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba,
2713 struct lpfc_async_xchg_ctx *ctxp)
2714 {
2715 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req;
2716 struct lpfc_nvmet_tgtport *tgtp;
2717 struct sli4_sge *sgl;
2718 struct lpfc_nodelist *ndlp;
2719 struct lpfc_iocbq *nvmewqe;
2720 struct scatterlist *sgel;
2721 union lpfc_wqe128 *wqe;
2722 struct ulp_bde64 *bde;
2723 dma_addr_t physaddr;
2724 int i, cnt, nsegs;
2725 bool use_pbde = false;
2726 int xc = 1;
2727
2728 if (!lpfc_is_link_up(phba)) {
2729 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2730 "6107 NVMET prep FCP wqe: link err:"
2731 "NPORT x%x oxid x%x ste %d\n",
2732 ctxp->sid, ctxp->oxid, ctxp->state);
2733 return NULL;
2734 }
2735
2736 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid);
2737 if (!ndlp ||
2738 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
2739 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
2740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2741 "6108 NVMET prep FCP wqe: no ndlp: "
2742 "NPORT x%x oxid x%x ste %d\n",
2743 ctxp->sid, ctxp->oxid, ctxp->state);
2744 return NULL;
2745 }
2746
2747 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) {
2748 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2749 "6109 NVMET prep FCP wqe: seg cnt err: "
2750 "NPORT x%x oxid x%x ste %d cnt %d\n",
2751 ctxp->sid, ctxp->oxid, ctxp->state,
2752 phba->cfg_nvme_seg_cnt);
2753 return NULL;
2754 }
2755 nsegs = rsp->sg_cnt;
2756
2757 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
2758 nvmewqe = ctxp->wqeq;
2759 if (nvmewqe == NULL) {
2760 /* Allocate buffer for command wqe */
2761 nvmewqe = ctxp->ctxbuf->iocbq;
2762 if (nvmewqe == NULL) {
2763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2764 "6110 NVMET prep FCP wqe: No "
2765 "WQE: NPORT x%x oxid x%x ste %d\n",
2766 ctxp->sid, ctxp->oxid, ctxp->state);
2767 return NULL;
2768 }
2769 ctxp->wqeq = nvmewqe;
2770 xc = 0; /* create new XRI */
2771 nvmewqe->sli4_lxritag = NO_XRI;
2772 nvmewqe->sli4_xritag = NO_XRI;
2773 }
2774
2775 /* Sanity check */
2776 if (((ctxp->state == LPFC_NVME_STE_RCV) &&
2777 (ctxp->entry_cnt == 1)) ||
2778 (ctxp->state == LPFC_NVME_STE_DATA)) {
2779 wqe = &nvmewqe->wqe;
2780 } else {
2781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
2782 "6111 Wrong state NVMET FCP: %d cnt %d\n",
2783 ctxp->state, ctxp->entry_cnt);
2784 return NULL;
2785 }
2786
2787 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl;
2788 switch (rsp->op) {
2789 case NVMET_FCOP_READDATA:
2790 case NVMET_FCOP_READDATA_RSP:
2791 /* From the tsend template, initialize words 7 - 11 */
2792 memcpy(&wqe->words[7],
2793 &lpfc_tsend_cmd_template.words[7],
2794 sizeof(uint32_t) * 5);
2795
2796 /* Words 0 - 2 : The first sg segment */
2797 sgel = &rsp->sg[0];
2798 physaddr = sg_dma_address(sgel);
2799 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2800 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel);
2801 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr));
2802 wqe->fcp_tsend.bde.addrHigh =
2803 cpu_to_le32(putPaddrHigh(physaddr));
2804
2805 /* Word 3 */
2806 wqe->fcp_tsend.payload_offset_len = 0;
2807
2808 /* Word 4 */
2809 wqe->fcp_tsend.relative_offset = ctxp->offset;
2810
2811 /* Word 5 */
2812 wqe->fcp_tsend.reserved = 0;
2813
2814 /* Word 6 */
2815 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com,
2816 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2817 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com,
2818 nvmewqe->sli4_xritag);
2819
2820 /* Word 7 - set ar later */
2821
2822 /* Word 8 */
2823 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag;
2824
2825 /* Word 9 */
2826 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag);
2827 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid);
2828
2829 /* Word 10 - set wqes later, in template xc=1 */
2830 if (!xc)
2831 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0);
2832
2833 /* Word 12 */
2834 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2835
2836 /* Setup 2 SKIP SGEs */
2837 sgl->addr_hi = 0;
2838 sgl->addr_lo = 0;
2839 sgl->word2 = 0;
2840 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2841 sgl->word2 = cpu_to_le32(sgl->word2);
2842 sgl->sge_len = 0;
2843 sgl++;
2844 sgl->addr_hi = 0;
2845 sgl->addr_lo = 0;
2846 sgl->word2 = 0;
2847 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2848 sgl->word2 = cpu_to_le32(sgl->word2);
2849 sgl->sge_len = 0;
2850 sgl++;
2851 if (rsp->op == NVMET_FCOP_READDATA_RSP) {
2852 atomic_inc(&tgtp->xmt_fcp_read_rsp);
2853
2854 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2855
2856 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) {
2857 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP)
2858 bf_set(wqe_sup,
2859 &wqe->fcp_tsend.wqe_com, 1);
2860 } else {
2861 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1);
2862 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1);
2863 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com,
2864 ((rsp->rsplen >> 2) - 1));
2865 memcpy(&wqe->words[16], rsp->rspaddr,
2866 rsp->rsplen);
2867 }
2868 } else {
2869 atomic_inc(&tgtp->xmt_fcp_read);
2870
2871 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */
2872 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0);
2873 }
2874 break;
2875
2876 case NVMET_FCOP_WRITEDATA:
2877 /* From the treceive template, initialize words 3 - 11 */
2878 memcpy(&wqe->words[3],
2879 &lpfc_treceive_cmd_template.words[3],
2880 sizeof(uint32_t) * 9);
2881
2882 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */
2883 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP;
2884 wqe->fcp_treceive.bde.tus.f.bdeSize = 0;
2885 wqe->fcp_treceive.bde.addrLow = 0;
2886 wqe->fcp_treceive.bde.addrHigh = 0;
2887
2888 /* Word 4 */
2889 wqe->fcp_treceive.relative_offset = ctxp->offset;
2890
2891 /* Word 6 */
2892 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com,
2893 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2894 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com,
2895 nvmewqe->sli4_xritag);
2896
2897 /* Word 7 */
2898
2899 /* Word 8 */
2900 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag;
2901
2902 /* Word 9 */
2903 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag);
2904 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid);
2905
2906 /* Word 10 - in template xc=1 */
2907 if (!xc)
2908 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0);
2909
2910 /* Word 11 - check for pbde */
2911 if (nsegs == 1 && phba->cfg_enable_pbde) {
2912 use_pbde = true;
2913 /* Word 11 - PBDE bit already preset by template */
2914 } else {
2915 /* Overwrite default template setting */
2916 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0);
2917 }
2918
2919 /* Word 12 */
2920 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length;
2921
2922 /* Setup 2 SKIP SGEs */
2923 sgl->addr_hi = 0;
2924 sgl->addr_lo = 0;
2925 sgl->word2 = 0;
2926 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2927 sgl->word2 = cpu_to_le32(sgl->word2);
2928 sgl->sge_len = 0;
2929 sgl++;
2930 sgl->addr_hi = 0;
2931 sgl->addr_lo = 0;
2932 sgl->word2 = 0;
2933 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP);
2934 sgl->word2 = cpu_to_le32(sgl->word2);
2935 sgl->sge_len = 0;
2936 sgl++;
2937 atomic_inc(&tgtp->xmt_fcp_write);
2938 break;
2939
2940 case NVMET_FCOP_RSP:
2941 /* From the treceive template, initialize words 4 - 11 */
2942 memcpy(&wqe->words[4],
2943 &lpfc_trsp_cmd_template.words[4],
2944 sizeof(uint32_t) * 8);
2945
2946 /* Words 0 - 2 */
2947 physaddr = rsp->rspdma;
2948 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2949 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen;
2950 wqe->fcp_trsp.bde.addrLow =
2951 cpu_to_le32(putPaddrLow(physaddr));
2952 wqe->fcp_trsp.bde.addrHigh =
2953 cpu_to_le32(putPaddrHigh(physaddr));
2954
2955 /* Word 3 */
2956 wqe->fcp_trsp.response_len = rsp->rsplen;
2957
2958 /* Word 6 */
2959 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com,
2960 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
2961 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com,
2962 nvmewqe->sli4_xritag);
2963
2964 /* Word 7 */
2965
2966 /* Word 8 */
2967 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag;
2968
2969 /* Word 9 */
2970 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag);
2971 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid);
2972
2973 /* Word 10 */
2974 if (xc)
2975 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1);
2976
2977 /* Word 11 */
2978 /* In template wqes=0 irsp=0 irsplen=0 - good response */
2979 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) {
2980 /* Bad response - embed it */
2981 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1);
2982 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1);
2983 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com,
2984 ((rsp->rsplen >> 2) - 1));
2985 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen);
2986 }
2987
2988 /* Word 12 */
2989 wqe->fcp_trsp.rsvd_12_15[0] = 0;
2990
2991 /* Use rspbuf, NOT sg list */
2992 nsegs = 0;
2993 sgl->word2 = 0;
2994 atomic_inc(&tgtp->xmt_fcp_rsp);
2995 break;
2996
2997 default:
2998 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR,
2999 "6064 Unknown Rsp Op %d\n",
3000 rsp->op);
3001 return NULL;
3002 }
3003
3004 nvmewqe->retry = 1;
3005 nvmewqe->vport = phba->pport;
3006 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT;
3007 nvmewqe->ndlp = ndlp;
3008
3009 for_each_sg(rsp->sg, sgel, nsegs, i) {
3010 physaddr = sg_dma_address(sgel);
3011 cnt = sg_dma_len(sgel);
3012 sgl->addr_hi = putPaddrHigh(physaddr);
3013 sgl->addr_lo = putPaddrLow(physaddr);
3014 sgl->word2 = 0;
3015 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA);
3016 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset);
3017 if ((i+1) == rsp->sg_cnt)
3018 bf_set(lpfc_sli4_sge_last, sgl, 1);
3019 sgl->word2 = cpu_to_le32(sgl->word2);
3020 sgl->sge_len = cpu_to_le32(cnt);
3021 sgl++;
3022 ctxp->offset += cnt;
3023 }
3024
3025 bde = (struct ulp_bde64 *)&wqe->words[13];
3026 if (use_pbde) {
3027 /* decrement sgl ptr backwards once to first data sge */
3028 sgl--;
3029
3030 /* Words 13-15 (PBDE) */
3031 bde->addrLow = sgl->addr_lo;
3032 bde->addrHigh = sgl->addr_hi;
3033 bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len);
3034 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
3035 bde->tus.w = cpu_to_le32(bde->tus.w);
3036 } else {
3037 memset(bde, 0, sizeof(struct ulp_bde64));
3038 }
3039 ctxp->state = LPFC_NVME_STE_DATA;
3040 ctxp->entry_cnt++;
3041 return nvmewqe;
3042 }
3043
3044 /**
3045 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS
3046 * @phba: Pointer to HBA context object.
3047 * @cmdwqe: Pointer to driver command WQE object.
3048 * @rspwqe: Pointer to driver response WQE object.
3049 *
3050 * The function is called from SLI ring event handler with no
3051 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3052 * The function frees memory resources used for the NVME commands.
3053 **/
3054 static void
lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)3055 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3056 struct lpfc_iocbq *rspwqe)
3057 {
3058 struct lpfc_async_xchg_ctx *ctxp;
3059 struct lpfc_nvmet_tgtport *tgtp;
3060 uint32_t result;
3061 unsigned long flags;
3062 bool released = false;
3063 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
3064
3065 ctxp = cmdwqe->context_un.axchg;
3066 result = wcqe->parameter;
3067
3068 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3069 if (ctxp->flag & LPFC_NVME_ABORT_OP)
3070 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3071
3072 spin_lock_irqsave(&ctxp->ctxlock, flags);
3073 ctxp->state = LPFC_NVME_STE_DONE;
3074
3075 /* Check if we already received a free context call
3076 * and we have completed processing an abort situation.
3077 */
3078 if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3079 !(ctxp->flag & LPFC_NVME_XBUSY)) {
3080 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3081 list_del_init(&ctxp->list);
3082 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3083 released = true;
3084 }
3085 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3086 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3087 atomic_inc(&tgtp->xmt_abort_rsp);
3088
3089 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3090 "6165 ABORT cmpl: oxid x%x flg x%x (%d) "
3091 "WCQE: %08x %08x %08x %08x\n",
3092 ctxp->oxid, ctxp->flag, released,
3093 wcqe->word0, wcqe->total_data_placed,
3094 result, wcqe->word3);
3095
3096 cmdwqe->rsp_dmabuf = NULL;
3097 cmdwqe->bpl_dmabuf = NULL;
3098 /*
3099 * if transport has released ctx, then can reuse it. Otherwise,
3100 * will be recycled by transport release call.
3101 */
3102 if (released)
3103 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3104
3105 /* This is the iocbq for the abort, not the command */
3106 lpfc_sli_release_iocbq(phba, cmdwqe);
3107
3108 /* Since iaab/iaar are NOT set, there is no work left.
3109 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3110 * should have been called already.
3111 */
3112 }
3113
3114 /**
3115 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS
3116 * @phba: Pointer to HBA context object.
3117 * @cmdwqe: Pointer to driver command WQE object.
3118 * @rspwqe: Pointer to driver response WQE object.
3119 *
3120 * The function is called from SLI ring event handler with no
3121 * lock held. This function is the completion handler for NVME ABTS for FCP cmds
3122 * The function frees memory resources used for the NVME commands.
3123 **/
3124 static void
lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)3125 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3126 struct lpfc_iocbq *rspwqe)
3127 {
3128 struct lpfc_async_xchg_ctx *ctxp;
3129 struct lpfc_nvmet_tgtport *tgtp;
3130 unsigned long flags;
3131 uint32_t result;
3132 bool released = false;
3133 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
3134
3135 ctxp = cmdwqe->context_un.axchg;
3136 result = wcqe->parameter;
3137
3138 if (!ctxp) {
3139 /* if context is clear, related io alrady complete */
3140 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3141 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n",
3142 wcqe->word0, wcqe->total_data_placed,
3143 result, wcqe->word3);
3144 return;
3145 }
3146
3147 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3148 spin_lock_irqsave(&ctxp->ctxlock, flags);
3149 if (ctxp->flag & LPFC_NVME_ABORT_OP)
3150 atomic_inc(&tgtp->xmt_fcp_abort_cmpl);
3151
3152 /* Sanity check */
3153 if (ctxp->state != LPFC_NVME_STE_ABORT) {
3154 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3155 "6112 ABTS Wrong state:%d oxid x%x\n",
3156 ctxp->state, ctxp->oxid);
3157 }
3158
3159 /* Check if we already received a free context call
3160 * and we have completed processing an abort situation.
3161 */
3162 ctxp->state = LPFC_NVME_STE_DONE;
3163 if ((ctxp->flag & LPFC_NVME_CTX_RLS) &&
3164 !(ctxp->flag & LPFC_NVME_XBUSY)) {
3165 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3166 list_del_init(&ctxp->list);
3167 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3168 released = true;
3169 }
3170 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3171 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3172 atomic_inc(&tgtp->xmt_abort_rsp);
3173
3174 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3175 "6316 ABTS cmpl oxid x%x flg x%x (%x) "
3176 "WCQE: %08x %08x %08x %08x\n",
3177 ctxp->oxid, ctxp->flag, released,
3178 wcqe->word0, wcqe->total_data_placed,
3179 result, wcqe->word3);
3180
3181 cmdwqe->rsp_dmabuf = NULL;
3182 cmdwqe->bpl_dmabuf = NULL;
3183 /*
3184 * if transport has released ctx, then can reuse it. Otherwise,
3185 * will be recycled by transport release call.
3186 */
3187 if (released)
3188 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3189
3190 /* Since iaab/iaar are NOT set, there is no work left.
3191 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted
3192 * should have been called already.
3193 */
3194 }
3195
3196 /**
3197 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS
3198 * @phba: Pointer to HBA context object.
3199 * @cmdwqe: Pointer to driver command WQE object.
3200 * @rspwqe: Pointer to driver response WQE object.
3201 *
3202 * The function is called from SLI ring event handler with no
3203 * lock held. This function is the completion handler for NVME ABTS for LS cmds
3204 * The function frees memory resources used for the NVME commands.
3205 **/
3206 static void
lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba * phba,struct lpfc_iocbq * cmdwqe,struct lpfc_iocbq * rspwqe)3207 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe,
3208 struct lpfc_iocbq *rspwqe)
3209 {
3210 struct lpfc_async_xchg_ctx *ctxp;
3211 struct lpfc_nvmet_tgtport *tgtp;
3212 uint32_t result;
3213 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl;
3214
3215 ctxp = cmdwqe->context_un.axchg;
3216 result = wcqe->parameter;
3217
3218 if (phba->nvmet_support) {
3219 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3220 atomic_inc(&tgtp->xmt_ls_abort_cmpl);
3221 }
3222
3223 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3224 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n",
3225 ctxp, wcqe->word0, wcqe->total_data_placed,
3226 result, wcqe->word3);
3227
3228 if (!ctxp) {
3229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3230 "6415 NVMET LS Abort No ctx: WCQE: "
3231 "%08x %08x %08x %08x\n",
3232 wcqe->word0, wcqe->total_data_placed,
3233 result, wcqe->word3);
3234
3235 lpfc_sli_release_iocbq(phba, cmdwqe);
3236 return;
3237 }
3238
3239 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) {
3240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3241 "6416 NVMET LS abort cmpl state mismatch: "
3242 "oxid x%x: %d %d\n",
3243 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3244 }
3245
3246 cmdwqe->rsp_dmabuf = NULL;
3247 cmdwqe->bpl_dmabuf = NULL;
3248 lpfc_sli_release_iocbq(phba, cmdwqe);
3249 kfree(ctxp);
3250 }
3251
3252 static int
lpfc_nvmet_unsol_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3253 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba,
3254 struct lpfc_async_xchg_ctx *ctxp,
3255 uint32_t sid, uint16_t xri)
3256 {
3257 struct lpfc_nvmet_tgtport *tgtp = NULL;
3258 struct lpfc_iocbq *abts_wqeq;
3259 union lpfc_wqe128 *wqe_abts;
3260 struct lpfc_nodelist *ndlp;
3261
3262 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3263 "6067 ABTS: sid %x xri x%x/x%x\n",
3264 sid, xri, ctxp->wqeq->sli4_xritag);
3265
3266 if (phba->nvmet_support && phba->targetport)
3267 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3268
3269 ndlp = lpfc_findnode_did(phba->pport, sid);
3270 if (!ndlp ||
3271 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3272 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3273 if (tgtp)
3274 atomic_inc(&tgtp->xmt_abort_rsp_error);
3275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3276 "6134 Drop ABTS - wrong NDLP state x%x.\n",
3277 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3278
3279 /* No failure to an ABTS request. */
3280 return 0;
3281 }
3282
3283 abts_wqeq = ctxp->wqeq;
3284 wqe_abts = &abts_wqeq->wqe;
3285
3286 /*
3287 * Since we zero the whole WQE, we need to ensure we set the WQE fields
3288 * that were initialized in lpfc_sli4_nvmet_alloc.
3289 */
3290 memset(wqe_abts, 0, sizeof(union lpfc_wqe));
3291
3292 /* Word 5 */
3293 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0);
3294 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1);
3295 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0);
3296 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS);
3297 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS);
3298
3299 /* Word 6 */
3300 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com,
3301 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
3302 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com,
3303 abts_wqeq->sli4_xritag);
3304
3305 /* Word 7 */
3306 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com,
3307 CMD_XMIT_SEQUENCE64_WQE);
3308 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI);
3309 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3);
3310 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0);
3311
3312 /* Word 8 */
3313 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag;
3314
3315 /* Word 9 */
3316 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag);
3317 /* Needs to be set by caller */
3318 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri);
3319
3320 /* Word 10 */
3321 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE);
3322 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com,
3323 LPFC_WQE_LENLOC_WORD12);
3324 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0);
3325 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0);
3326
3327 /* Word 11 */
3328 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com,
3329 LPFC_WQE_CQ_ID_DEFAULT);
3330 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com,
3331 OTHER_COMMAND);
3332
3333 abts_wqeq->vport = phba->pport;
3334 abts_wqeq->ndlp = ndlp;
3335 abts_wqeq->context_un.axchg = ctxp;
3336 abts_wqeq->bpl_dmabuf = NULL;
3337 abts_wqeq->num_bdes = 0;
3338 /* hba_wqidx should already be setup from command we are aborting */
3339 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR;
3340 abts_wqeq->iocb.ulpLe = 1;
3341
3342 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3343 "6069 Issue ABTS to xri x%x reqtag x%x\n",
3344 xri, abts_wqeq->iotag);
3345 return 1;
3346 }
3347
3348 static int
lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3349 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba,
3350 struct lpfc_async_xchg_ctx *ctxp,
3351 uint32_t sid, uint16_t xri)
3352 {
3353 struct lpfc_nvmet_tgtport *tgtp;
3354 struct lpfc_iocbq *abts_wqeq;
3355 struct lpfc_nodelist *ndlp;
3356 unsigned long flags;
3357 bool ia;
3358 int rc;
3359
3360 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3361 if (!ctxp->wqeq) {
3362 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3363 ctxp->wqeq->hba_wqidx = 0;
3364 }
3365
3366 ndlp = lpfc_findnode_did(phba->pport, sid);
3367 if (!ndlp ||
3368 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) &&
3369 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) {
3370 atomic_inc(&tgtp->xmt_abort_rsp_error);
3371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3372 "6160 Drop ABORT - wrong NDLP state x%x.\n",
3373 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE);
3374
3375 /* No failure to an ABTS request. */
3376 spin_lock_irqsave(&ctxp->ctxlock, flags);
3377 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3378 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3379 return 0;
3380 }
3381
3382 /* Issue ABTS for this WQE based on iotag */
3383 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba);
3384 spin_lock_irqsave(&ctxp->ctxlock, flags);
3385 if (!ctxp->abort_wqeq) {
3386 atomic_inc(&tgtp->xmt_abort_rsp_error);
3387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3388 "6161 ABORT failed: No wqeqs: "
3389 "xri: x%x\n", ctxp->oxid);
3390 /* No failure to an ABTS request. */
3391 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3392 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3393 return 0;
3394 }
3395 abts_wqeq = ctxp->abort_wqeq;
3396 ctxp->state = LPFC_NVME_STE_ABORT;
3397 ia = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? true : false;
3398 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3399
3400 /* Announce entry to new IO submit field. */
3401 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS,
3402 "6162 ABORT Request to rport DID x%06x "
3403 "for xri x%x x%x\n",
3404 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag);
3405
3406 /* If the hba is getting reset, this flag is set. It is
3407 * cleared when the reset is complete and rings reestablished.
3408 */
3409 /* driver queued commands are in process of being flushed */
3410 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) {
3411 atomic_inc(&tgtp->xmt_abort_rsp_error);
3412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3413 "6163 Driver in reset cleanup - flushing "
3414 "NVME Req now. hba_flag x%lx oxid x%x\n",
3415 phba->hba_flag, ctxp->oxid);
3416 lpfc_sli_release_iocbq(phba, abts_wqeq);
3417 spin_lock_irqsave(&ctxp->ctxlock, flags);
3418 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3419 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3420 return 0;
3421 }
3422
3423 spin_lock_irqsave(&phba->hbalock, flags);
3424 /* Outstanding abort is in progress */
3425 if (abts_wqeq->cmd_flag & LPFC_DRIVER_ABORTED) {
3426 spin_unlock_irqrestore(&phba->hbalock, flags);
3427 atomic_inc(&tgtp->xmt_abort_rsp_error);
3428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3429 "6164 Outstanding NVME I/O Abort Request "
3430 "still pending on oxid x%x\n",
3431 ctxp->oxid);
3432 lpfc_sli_release_iocbq(phba, abts_wqeq);
3433 spin_lock_irqsave(&ctxp->ctxlock, flags);
3434 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3435 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3436 return 0;
3437 }
3438
3439 /* Ready - mark outstanding as aborted by driver. */
3440 abts_wqeq->cmd_flag |= LPFC_DRIVER_ABORTED;
3441
3442 lpfc_sli_prep_abort_xri(phba, abts_wqeq, ctxp->wqeq->sli4_xritag,
3443 abts_wqeq->iotag, CLASS3,
3444 LPFC_WQE_CQ_ID_DEFAULT, ia, true);
3445
3446 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3447 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx;
3448 abts_wqeq->cmd_cmpl = lpfc_nvmet_sol_fcp_abort_cmp;
3449 abts_wqeq->cmd_flag |= LPFC_IO_NVME;
3450 abts_wqeq->context_un.axchg = ctxp;
3451 abts_wqeq->vport = phba->pport;
3452 if (!ctxp->hdwq)
3453 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3454
3455 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3456 spin_unlock_irqrestore(&phba->hbalock, flags);
3457 if (rc == WQE_SUCCESS) {
3458 atomic_inc(&tgtp->xmt_abort_sol);
3459 return 0;
3460 }
3461
3462 atomic_inc(&tgtp->xmt_abort_rsp_error);
3463 spin_lock_irqsave(&ctxp->ctxlock, flags);
3464 ctxp->flag &= ~LPFC_NVME_ABORT_OP;
3465 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3466 lpfc_sli_release_iocbq(phba, abts_wqeq);
3467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3468 "6166 Failed ABORT issue_wqe with status x%x "
3469 "for oxid x%x.\n",
3470 rc, ctxp->oxid);
3471 return 1;
3472 }
3473
3474 static int
lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3475 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba,
3476 struct lpfc_async_xchg_ctx *ctxp,
3477 uint32_t sid, uint16_t xri)
3478 {
3479 struct lpfc_nvmet_tgtport *tgtp;
3480 struct lpfc_iocbq *abts_wqeq;
3481 unsigned long flags;
3482 bool released = false;
3483 int rc;
3484
3485 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3486 if (!ctxp->wqeq) {
3487 ctxp->wqeq = ctxp->ctxbuf->iocbq;
3488 ctxp->wqeq->hba_wqidx = 0;
3489 }
3490
3491 if (ctxp->state == LPFC_NVME_STE_FREE) {
3492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3493 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n",
3494 ctxp->state, ctxp->entry_cnt, ctxp->oxid);
3495 rc = WQE_BUSY;
3496 goto aerr;
3497 }
3498 ctxp->state = LPFC_NVME_STE_ABORT;
3499 ctxp->entry_cnt++;
3500 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri);
3501 if (rc == 0)
3502 goto aerr;
3503
3504 spin_lock_irqsave(&phba->hbalock, flags);
3505 abts_wqeq = ctxp->wqeq;
3506 abts_wqeq->cmd_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp;
3507 abts_wqeq->cmd_flag |= LPFC_IO_NVMET;
3508 if (!ctxp->hdwq)
3509 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx];
3510
3511 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3512 spin_unlock_irqrestore(&phba->hbalock, flags);
3513 if (rc == WQE_SUCCESS) {
3514 return 0;
3515 }
3516
3517 aerr:
3518 spin_lock_irqsave(&ctxp->ctxlock, flags);
3519 if (ctxp->flag & LPFC_NVME_CTX_RLS) {
3520 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3521 list_del_init(&ctxp->list);
3522 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock);
3523 released = true;
3524 }
3525 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS);
3526 spin_unlock_irqrestore(&ctxp->ctxlock, flags);
3527
3528 atomic_inc(&tgtp->xmt_abort_rsp_error);
3529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3530 "6135 Failed to Issue ABTS for oxid x%x. Status x%x "
3531 "(%x)\n",
3532 ctxp->oxid, rc, released);
3533 if (released)
3534 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf);
3535 return 1;
3536 }
3537
3538 /**
3539 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received
3540 * via async frame receive where the frame is not handled.
3541 * @phba: pointer to adapter structure
3542 * @ctxp: pointer to the asynchronously received received sequence
3543 * @sid: address of the remote port to send the ABTS to
3544 * @xri: oxid value to for the ABTS (other side's exchange id).
3545 **/
3546 int
lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba * phba,struct lpfc_async_xchg_ctx * ctxp,uint32_t sid,uint16_t xri)3547 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba,
3548 struct lpfc_async_xchg_ctx *ctxp,
3549 uint32_t sid, uint16_t xri)
3550 {
3551 struct lpfc_nvmet_tgtport *tgtp = NULL;
3552 struct lpfc_iocbq *abts_wqeq;
3553 unsigned long flags;
3554 int rc;
3555
3556 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) ||
3557 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) {
3558 ctxp->state = LPFC_NVME_STE_LS_ABORT;
3559 ctxp->entry_cnt++;
3560 } else {
3561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3562 "6418 NVMET LS abort state mismatch "
3563 "IO x%x: %d %d\n",
3564 ctxp->oxid, ctxp->state, ctxp->entry_cnt);
3565 ctxp->state = LPFC_NVME_STE_LS_ABORT;
3566 }
3567
3568 if (phba->nvmet_support && phba->targetport)
3569 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3570
3571 if (!ctxp->wqeq) {
3572 /* Issue ABTS for this WQE based on iotag */
3573 ctxp->wqeq = lpfc_sli_get_iocbq(phba);
3574 if (!ctxp->wqeq) {
3575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3576 "6068 Abort failed: No wqeqs: "
3577 "xri: x%x\n", xri);
3578 /* No failure to an ABTS request. */
3579 kfree(ctxp);
3580 return 0;
3581 }
3582 }
3583 abts_wqeq = ctxp->wqeq;
3584
3585 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) {
3586 rc = WQE_BUSY;
3587 goto out;
3588 }
3589
3590 spin_lock_irqsave(&phba->hbalock, flags);
3591 abts_wqeq->cmd_cmpl = lpfc_nvmet_xmt_ls_abort_cmp;
3592 abts_wqeq->cmd_flag |= LPFC_IO_NVME_LS;
3593 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq);
3594 spin_unlock_irqrestore(&phba->hbalock, flags);
3595 if (rc == WQE_SUCCESS) {
3596 if (tgtp)
3597 atomic_inc(&tgtp->xmt_abort_unsol);
3598 return 0;
3599 }
3600 out:
3601 if (tgtp)
3602 atomic_inc(&tgtp->xmt_abort_rsp_error);
3603 abts_wqeq->rsp_dmabuf = NULL;
3604 abts_wqeq->bpl_dmabuf = NULL;
3605 lpfc_sli_release_iocbq(phba, abts_wqeq);
3606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT,
3607 "6056 Failed to Issue ABTS. Status x%x\n", rc);
3608 return 1;
3609 }
3610
3611 /**
3612 * lpfc_nvmet_invalidate_host
3613 *
3614 * @phba: pointer to the driver instance bound to an adapter port.
3615 * @ndlp: pointer to an lpfc_nodelist type
3616 *
3617 * This routine upcalls the nvmet transport to invalidate an NVME
3618 * host to which this target instance had active connections.
3619 */
3620 void
lpfc_nvmet_invalidate_host(struct lpfc_hba * phba,struct lpfc_nodelist * ndlp)3621 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
3622 {
3623 u32 ndlp_has_hh;
3624 struct lpfc_nvmet_tgtport *tgtp;
3625
3626 lpfc_printf_log(phba, KERN_INFO,
3627 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC,
3628 "6203 Invalidating hosthandle x%px\n",
3629 ndlp);
3630
3631 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private;
3632 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE);
3633
3634 spin_lock_irq(&ndlp->lock);
3635 ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH;
3636 spin_unlock_irq(&ndlp->lock);
3637
3638 /* Do not invalidate any nodes that do not have a hosthandle.
3639 * The host_release callbk will cause a node reference
3640 * count imbalance and a crash.
3641 */
3642 if (!ndlp_has_hh) {
3643 lpfc_printf_log(phba, KERN_INFO,
3644 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC,
3645 "6204 Skip invalidate on node x%px DID x%x\n",
3646 ndlp, ndlp->nlp_DID);
3647 return;
3648 }
3649
3650 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC))
3651 /* Need to get the nvmet_fc_target_port pointer here.*/
3652 nvmet_fc_invalidate_host(phba->targetport, ndlp);
3653 #endif
3654 }
3655