1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <linux/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include "lpfc_version.h" 40 #include "lpfc_hw4.h" 41 #include "lpfc_hw.h" 42 #include "lpfc_sli.h" 43 #include "lpfc_sli4.h" 44 #include "lpfc_nl.h" 45 #include "lpfc_disc.h" 46 #include "lpfc.h" 47 #include "lpfc_scsi.h" 48 #include "lpfc_nvme.h" 49 #include "lpfc_logmsg.h" 50 #include "lpfc_crtn.h" 51 #include "lpfc_vport.h" 52 #include "lpfc_debugfs.h" 53 54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 55 struct lpfc_async_xchg_ctx *, 56 dma_addr_t rspbuf, 57 uint16_t rspsize); 58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 59 struct lpfc_async_xchg_ctx *); 60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 61 struct lpfc_async_xchg_ctx *, 62 uint32_t, uint16_t); 63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 64 struct lpfc_async_xchg_ctx *, 65 uint32_t, uint16_t); 66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 67 struct lpfc_async_xchg_ctx *); 68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 69 70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 71 72 static union lpfc_wqe128 lpfc_tsend_cmd_template; 73 static union lpfc_wqe128 lpfc_treceive_cmd_template; 74 static union lpfc_wqe128 lpfc_trsp_cmd_template; 75 76 /* Setup WQE templates for NVME IOs */ 77 void 78 lpfc_nvmet_cmd_template(void) 79 { 80 union lpfc_wqe128 *wqe; 81 82 /* TSEND template */ 83 wqe = &lpfc_tsend_cmd_template; 84 memset(wqe, 0, sizeof(union lpfc_wqe128)); 85 86 /* Word 0, 1, 2 - BDE is variable */ 87 88 /* Word 3 - payload_offset_len is zero */ 89 90 /* Word 4 - relative_offset is variable */ 91 92 /* Word 5 - is zero */ 93 94 /* Word 6 - ctxt_tag, xri_tag is variable */ 95 96 /* Word 7 - wqe_ar is variable */ 97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 102 103 /* Word 8 - abort_tag is variable */ 104 105 /* Word 9 - reqtag, rcvoxid is variable */ 106 107 /* Word 10 - wqes, xc is variable */ 108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG); 109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 114 115 /* Word 11 - sup, irsp, irsplen is variable */ 116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 122 123 /* Word 12 - fcp_data_len is variable */ 124 125 /* Word 13, 14, 15 - PBDE is zero */ 126 127 /* TRECEIVE template */ 128 wqe = &lpfc_treceive_cmd_template; 129 memset(wqe, 0, sizeof(union lpfc_wqe128)); 130 131 /* Word 0, 1, 2 - BDE is variable */ 132 133 /* Word 3 */ 134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 135 136 /* Word 4 - relative_offset is variable */ 137 138 /* Word 5 - is zero */ 139 140 /* Word 6 - ctxt_tag, xri_tag is variable */ 141 142 /* Word 7 */ 143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 148 149 /* Word 8 - abort_tag is variable */ 150 151 /* Word 9 - reqtag, rcvoxid is variable */ 152 153 /* Word 10 - xc is variable */ 154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG); 157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 160 161 /* Word 11 - pbde is variable */ 162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 168 169 /* Word 12 - fcp_data_len is variable */ 170 171 /* Word 13, 14, 15 - PBDE is variable */ 172 173 /* TRSP template */ 174 wqe = &lpfc_trsp_cmd_template; 175 memset(wqe, 0, sizeof(union lpfc_wqe128)); 176 177 /* Word 0, 1, 2 - BDE is variable */ 178 179 /* Word 3 - response_len is variable */ 180 181 /* Word 4, 5 - is zero */ 182 183 /* Word 6 - ctxt_tag, xri_tag is variable */ 184 185 /* Word 7 */ 186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 191 192 /* Word 8 - abort_tag is variable */ 193 194 /* Word 9 - reqtag is variable */ 195 196 /* Word 10 wqes, xc is variable */ 197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG); 199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 203 204 /* Word 11 irsp, irsplen is variable */ 205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 211 212 /* Word 12, 13, 14, 15 - is zero */ 213 } 214 215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 216 static struct lpfc_async_xchg_ctx * 217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 218 { 219 struct lpfc_async_xchg_ctx *ctxp; 220 unsigned long iflag; 221 bool found = false; 222 223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 226 continue; 227 228 found = true; 229 break; 230 } 231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 232 if (found) 233 return ctxp; 234 235 return NULL; 236 } 237 238 static struct lpfc_async_xchg_ctx * 239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 240 { 241 struct lpfc_async_xchg_ctx *ctxp; 242 unsigned long iflag; 243 bool found = false; 244 245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 247 if (ctxp->oxid != oxid || ctxp->sid != sid) 248 continue; 249 250 found = true; 251 break; 252 } 253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 254 if (found) 255 return ctxp; 256 257 return NULL; 258 } 259 #endif 260 261 static void 262 lpfc_nvmet_defer_release(struct lpfc_hba *phba, 263 struct lpfc_async_xchg_ctx *ctxp) 264 { 265 lockdep_assert_held(&ctxp->ctxlock); 266 267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 269 ctxp->oxid, ctxp->flag); 270 271 if (ctxp->flag & LPFC_NVME_CTX_RLS) 272 return; 273 274 ctxp->flag |= LPFC_NVME_CTX_RLS; 275 spin_lock(&phba->sli4_hba.t_active_list_lock); 276 list_del(&ctxp->list); 277 spin_unlock(&phba->sli4_hba.t_active_list_lock); 278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 281 } 282 283 /** 284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the 285 * transmission of an NVME LS response. 286 * @phba: Pointer to HBA context object. 287 * @cmdwqe: Pointer to driver command WQE object. 288 * @rspwqe: Pointer to driver response WQE object. 289 * 290 * The function is called from SLI ring event handler with no 291 * lock held. The function frees memory resources used for the command 292 * used to send the NVME LS RSP. 293 **/ 294 void 295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 296 struct lpfc_iocbq *rspwqe) 297 { 298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context_un.axchg; 299 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 300 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp; 301 uint32_t status, result; 302 303 status = bf_get(lpfc_wcqe_c_status, wcqe); 304 result = wcqe->parameter; 305 306 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) { 307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 308 "6410 NVMEx LS cmpl state mismatch IO x%x: " 309 "%d %d\n", 310 axchg->oxid, axchg->state, axchg->entry_cnt); 311 } 312 313 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n", 314 axchg->oxid, status, result); 315 316 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 317 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n", 318 status, result, axchg->oxid); 319 320 lpfc_nlp_put(cmdwqe->ndlp); 321 cmdwqe->context_un.axchg = NULL; 322 cmdwqe->bpl_dmabuf = NULL; 323 lpfc_sli_release_iocbq(phba, cmdwqe); 324 ls_rsp->done(ls_rsp); 325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 326 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n", 327 status, axchg->oxid); 328 kfree(axchg); 329 } 330 331 /** 332 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 333 * @phba: Pointer to HBA context object. 334 * @cmdwqe: Pointer to driver command WQE object. 335 * @rspwqe: Pointer to driver response WQE object. 336 * 337 * The function is called from SLI ring event handler with no 338 * lock held. This function is the completion handler for NVME LS commands 339 * The function updates any states and statistics, then calls the 340 * generic completion handler to free resources. 341 **/ 342 static void 343 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 344 struct lpfc_iocbq *rspwqe) 345 { 346 struct lpfc_nvmet_tgtport *tgtp; 347 uint32_t status, result; 348 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 349 350 if (!phba->targetport) 351 goto finish; 352 353 status = bf_get(lpfc_wcqe_c_status, wcqe); 354 result = wcqe->parameter; 355 356 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 357 if (tgtp) { 358 if (status) { 359 atomic_inc(&tgtp->xmt_ls_rsp_error); 360 if (result == IOERR_ABORT_REQUESTED) 361 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 362 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 363 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 364 } else { 365 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 366 } 367 } 368 369 finish: 370 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, rspwqe); 371 } 372 373 /** 374 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 375 * @phba: HBA buffer is associated with 376 * @ctx_buf: ctx buffer context 377 * 378 * Description: Frees the given DMA buffer in the appropriate way given by 379 * reposting it to its associated RQ so it can be reused. 380 * 381 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 382 * 383 * Returns: None 384 **/ 385 void 386 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 387 { 388 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 389 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 390 struct lpfc_nvmet_tgtport *tgtp; 391 struct fc_frame_header *fc_hdr; 392 struct rqb_dmabuf *nvmebuf; 393 struct lpfc_nvmet_ctx_info *infop; 394 uint32_t size, oxid, sid; 395 int cpu; 396 unsigned long iflag; 397 398 if (ctxp->state == LPFC_NVME_STE_FREE) { 399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 400 "6411 NVMET free, already free IO x%x: %d %d\n", 401 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 402 } 403 404 if (ctxp->rqb_buffer) { 405 spin_lock_irqsave(&ctxp->ctxlock, iflag); 406 nvmebuf = ctxp->rqb_buffer; 407 /* check if freed in another path whilst acquiring lock */ 408 if (nvmebuf) { 409 ctxp->rqb_buffer = NULL; 410 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 411 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ; 412 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 413 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 414 nvmebuf); 415 } else { 416 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 417 /* repost */ 418 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 419 } 420 } else { 421 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 422 } 423 } 424 ctxp->state = LPFC_NVME_STE_FREE; 425 426 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 427 if (phba->sli4_hba.nvmet_io_wait_cnt) { 428 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 429 nvmebuf, struct rqb_dmabuf, 430 hbuf.list); 431 phba->sli4_hba.nvmet_io_wait_cnt--; 432 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 433 iflag); 434 435 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 436 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 437 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 438 size = nvmebuf->bytes_recv; 439 sid = sli4_sid_from_fc_hdr(fc_hdr); 440 441 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 442 ctxp->wqeq = NULL; 443 ctxp->offset = 0; 444 ctxp->phba = phba; 445 ctxp->size = size; 446 ctxp->oxid = oxid; 447 ctxp->sid = sid; 448 ctxp->state = LPFC_NVME_STE_RCV; 449 ctxp->entry_cnt = 1; 450 ctxp->flag = 0; 451 ctxp->ctxbuf = ctx_buf; 452 ctxp->rqb_buffer = (void *)nvmebuf; 453 spin_lock_init(&ctxp->ctxlock); 454 455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 456 /* NOTE: isr time stamp is stale when context is re-assigned*/ 457 if (ctxp->ts_isr_cmd) { 458 ctxp->ts_cmd_nvme = 0; 459 ctxp->ts_nvme_data = 0; 460 ctxp->ts_data_wqput = 0; 461 ctxp->ts_isr_data = 0; 462 ctxp->ts_data_nvme = 0; 463 ctxp->ts_nvme_status = 0; 464 ctxp->ts_status_wqput = 0; 465 ctxp->ts_isr_status = 0; 466 ctxp->ts_status_nvme = 0; 467 } 468 #endif 469 atomic_inc(&tgtp->rcv_fcp_cmd_in); 470 471 /* Indicate that a replacement buffer has been posted */ 472 spin_lock_irqsave(&ctxp->ctxlock, iflag); 473 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ; 474 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 475 476 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 477 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 479 "6181 Unable to queue deferred work " 480 "for oxid x%x. " 481 "FCP Drop IO [x%x x%x x%x]\n", 482 ctxp->oxid, 483 atomic_read(&tgtp->rcv_fcp_cmd_in), 484 atomic_read(&tgtp->rcv_fcp_cmd_out), 485 atomic_read(&tgtp->xmt_fcp_release)); 486 487 spin_lock_irqsave(&ctxp->ctxlock, iflag); 488 lpfc_nvmet_defer_release(phba, ctxp); 489 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 490 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 491 } 492 return; 493 } 494 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 495 496 /* 497 * Use the CPU context list, from the MRQ the IO was received on 498 * (ctxp->idx), to save context structure. 499 */ 500 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 501 list_del_init(&ctxp->list); 502 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 503 cpu = raw_smp_processor_id(); 504 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 505 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 506 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 507 infop->nvmet_ctx_list_cnt++; 508 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 509 #endif 510 } 511 512 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 513 static void 514 lpfc_nvmet_ktime(struct lpfc_hba *phba, 515 struct lpfc_async_xchg_ctx *ctxp) 516 { 517 uint64_t seg1, seg2, seg3, seg4, seg5; 518 uint64_t seg6, seg7, seg8, seg9, seg10; 519 uint64_t segsum; 520 521 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 522 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 523 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 524 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 525 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 526 return; 527 528 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 529 return; 530 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 531 return; 532 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 533 return; 534 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 535 return; 536 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 537 return; 538 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 539 return; 540 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 541 return; 542 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 543 return; 544 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 545 return; 546 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 547 return; 548 /* 549 * Segment 1 - Time from FCP command received by MSI-X ISR 550 * to FCP command is passed to NVME Layer. 551 * Segment 2 - Time from FCP command payload handed 552 * off to NVME Layer to Driver receives a Command op 553 * from NVME Layer. 554 * Segment 3 - Time from Driver receives a Command op 555 * from NVME Layer to Command is put on WQ. 556 * Segment 4 - Time from Driver WQ put is done 557 * to MSI-X ISR for Command cmpl. 558 * Segment 5 - Time from MSI-X ISR for Command cmpl to 559 * Command cmpl is passed to NVME Layer. 560 * Segment 6 - Time from Command cmpl is passed to NVME 561 * Layer to Driver receives a RSP op from NVME Layer. 562 * Segment 7 - Time from Driver receives a RSP op from 563 * NVME Layer to WQ put is done on TRSP FCP Status. 564 * Segment 8 - Time from Driver WQ put is done on TRSP 565 * FCP Status to MSI-X ISR for TRSP cmpl. 566 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 567 * TRSP cmpl is passed to NVME Layer. 568 * Segment 10 - Time from FCP command received by 569 * MSI-X ISR to command is completed on wire. 570 * (Segments 1 thru 8) for READDATA / WRITEDATA 571 * (Segments 1 thru 4) for READDATA_RSP 572 */ 573 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 574 segsum = seg1; 575 576 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 577 if (segsum > seg2) 578 return; 579 seg2 -= segsum; 580 segsum += seg2; 581 582 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 583 if (segsum > seg3) 584 return; 585 seg3 -= segsum; 586 segsum += seg3; 587 588 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 589 if (segsum > seg4) 590 return; 591 seg4 -= segsum; 592 segsum += seg4; 593 594 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 595 if (segsum > seg5) 596 return; 597 seg5 -= segsum; 598 segsum += seg5; 599 600 601 /* For auto rsp commands seg6 thru seg10 will be 0 */ 602 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 603 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 604 if (segsum > seg6) 605 return; 606 seg6 -= segsum; 607 segsum += seg6; 608 609 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 610 if (segsum > seg7) 611 return; 612 seg7 -= segsum; 613 segsum += seg7; 614 615 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 616 if (segsum > seg8) 617 return; 618 seg8 -= segsum; 619 segsum += seg8; 620 621 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 622 if (segsum > seg9) 623 return; 624 seg9 -= segsum; 625 segsum += seg9; 626 627 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 628 return; 629 seg10 = (ctxp->ts_isr_status - 630 ctxp->ts_isr_cmd); 631 } else { 632 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 633 return; 634 seg6 = 0; 635 seg7 = 0; 636 seg8 = 0; 637 seg9 = 0; 638 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 639 } 640 641 phba->ktime_seg1_total += seg1; 642 if (seg1 < phba->ktime_seg1_min) 643 phba->ktime_seg1_min = seg1; 644 else if (seg1 > phba->ktime_seg1_max) 645 phba->ktime_seg1_max = seg1; 646 647 phba->ktime_seg2_total += seg2; 648 if (seg2 < phba->ktime_seg2_min) 649 phba->ktime_seg2_min = seg2; 650 else if (seg2 > phba->ktime_seg2_max) 651 phba->ktime_seg2_max = seg2; 652 653 phba->ktime_seg3_total += seg3; 654 if (seg3 < phba->ktime_seg3_min) 655 phba->ktime_seg3_min = seg3; 656 else if (seg3 > phba->ktime_seg3_max) 657 phba->ktime_seg3_max = seg3; 658 659 phba->ktime_seg4_total += seg4; 660 if (seg4 < phba->ktime_seg4_min) 661 phba->ktime_seg4_min = seg4; 662 else if (seg4 > phba->ktime_seg4_max) 663 phba->ktime_seg4_max = seg4; 664 665 phba->ktime_seg5_total += seg5; 666 if (seg5 < phba->ktime_seg5_min) 667 phba->ktime_seg5_min = seg5; 668 else if (seg5 > phba->ktime_seg5_max) 669 phba->ktime_seg5_max = seg5; 670 671 phba->ktime_data_samples++; 672 if (!seg6) 673 goto out; 674 675 phba->ktime_seg6_total += seg6; 676 if (seg6 < phba->ktime_seg6_min) 677 phba->ktime_seg6_min = seg6; 678 else if (seg6 > phba->ktime_seg6_max) 679 phba->ktime_seg6_max = seg6; 680 681 phba->ktime_seg7_total += seg7; 682 if (seg7 < phba->ktime_seg7_min) 683 phba->ktime_seg7_min = seg7; 684 else if (seg7 > phba->ktime_seg7_max) 685 phba->ktime_seg7_max = seg7; 686 687 phba->ktime_seg8_total += seg8; 688 if (seg8 < phba->ktime_seg8_min) 689 phba->ktime_seg8_min = seg8; 690 else if (seg8 > phba->ktime_seg8_max) 691 phba->ktime_seg8_max = seg8; 692 693 phba->ktime_seg9_total += seg9; 694 if (seg9 < phba->ktime_seg9_min) 695 phba->ktime_seg9_min = seg9; 696 else if (seg9 > phba->ktime_seg9_max) 697 phba->ktime_seg9_max = seg9; 698 out: 699 phba->ktime_seg10_total += seg10; 700 if (seg10 < phba->ktime_seg10_min) 701 phba->ktime_seg10_min = seg10; 702 else if (seg10 > phba->ktime_seg10_max) 703 phba->ktime_seg10_max = seg10; 704 phba->ktime_status_samples++; 705 } 706 #endif 707 708 /** 709 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 710 * @phba: Pointer to HBA context object. 711 * @cmdwqe: Pointer to driver command WQE object. 712 * @rspwqe: Pointer to driver response WQE object. 713 * 714 * The function is called from SLI ring event handler with no 715 * lock held. This function is the completion handler for NVME FCP commands 716 * The function frees memory resources used for the NVME commands. 717 **/ 718 static void 719 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 720 struct lpfc_iocbq *rspwqe) 721 { 722 struct lpfc_nvmet_tgtport *tgtp; 723 struct nvmefc_tgt_fcp_req *rsp; 724 struct lpfc_async_xchg_ctx *ctxp; 725 uint32_t status, result, op, logerr; 726 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 727 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 728 int id; 729 #endif 730 731 ctxp = cmdwqe->context_un.axchg; 732 ctxp->flag &= ~LPFC_NVME_IO_INP; 733 734 rsp = &ctxp->hdlrctx.fcp_req; 735 op = rsp->op; 736 737 status = bf_get(lpfc_wcqe_c_status, wcqe); 738 result = wcqe->parameter; 739 740 if (phba->targetport) 741 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 742 else 743 tgtp = NULL; 744 745 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 746 ctxp->oxid, op, status); 747 748 if (status) { 749 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 750 rsp->transferred_length = 0; 751 if (tgtp) { 752 atomic_inc(&tgtp->xmt_fcp_rsp_error); 753 if (result == IOERR_ABORT_REQUESTED) 754 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 755 } 756 757 logerr = LOG_NVME_IOERR; 758 759 /* pick up SLI4 exhange busy condition */ 760 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 761 ctxp->flag |= LPFC_NVME_XBUSY; 762 logerr |= LOG_NVME_ABTS; 763 if (tgtp) 764 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 765 766 } else { 767 ctxp->flag &= ~LPFC_NVME_XBUSY; 768 } 769 770 lpfc_printf_log(phba, KERN_INFO, logerr, 771 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 772 "XBUSY:x%x\n", 773 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 774 status, result, ctxp->flag); 775 776 } else { 777 rsp->fcp_error = NVME_SC_SUCCESS; 778 if (op == NVMET_FCOP_RSP) 779 rsp->transferred_length = rsp->rsplen; 780 else 781 rsp->transferred_length = rsp->transfer_length; 782 if (tgtp) 783 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 784 } 785 786 if ((op == NVMET_FCOP_READDATA_RSP) || 787 (op == NVMET_FCOP_RSP)) { 788 /* Sanity check */ 789 ctxp->state = LPFC_NVME_STE_DONE; 790 ctxp->entry_cnt++; 791 792 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 793 if (ctxp->ts_cmd_nvme) { 794 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 795 ctxp->ts_isr_data = 796 cmdwqe->isr_timestamp; 797 ctxp->ts_data_nvme = 798 ktime_get_ns(); 799 ctxp->ts_nvme_status = 800 ctxp->ts_data_nvme; 801 ctxp->ts_status_wqput = 802 ctxp->ts_data_nvme; 803 ctxp->ts_isr_status = 804 ctxp->ts_data_nvme; 805 ctxp->ts_status_nvme = 806 ctxp->ts_data_nvme; 807 } else { 808 ctxp->ts_isr_status = 809 cmdwqe->isr_timestamp; 810 ctxp->ts_status_nvme = 811 ktime_get_ns(); 812 } 813 } 814 #endif 815 rsp->done(rsp); 816 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 817 if (ctxp->ts_cmd_nvme) 818 lpfc_nvmet_ktime(phba, ctxp); 819 #endif 820 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 821 } else { 822 ctxp->entry_cnt++; 823 memset_startat(cmdwqe, 0, cmd_flag); 824 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 825 if (ctxp->ts_cmd_nvme) { 826 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 827 ctxp->ts_data_nvme = ktime_get_ns(); 828 } 829 #endif 830 rsp->done(rsp); 831 } 832 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 833 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 834 id = raw_smp_processor_id(); 835 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); 836 if (ctxp->cpu != id) 837 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 838 "6704 CPU Check cmdcmpl: " 839 "cpu %d expect %d\n", 840 id, ctxp->cpu); 841 } 842 #endif 843 } 844 845 /** 846 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit 847 * an NVME LS rsp for a prior NVME LS request that was received. 848 * @axchg: pointer to exchange context for the NVME LS request the response 849 * is for. 850 * @ls_rsp: pointer to the transport LS RSP that is to be sent 851 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done 852 * 853 * This routine is used to format and send a WQE to transmit a NVME LS 854 * Response. The response is for a prior NVME LS request that was 855 * received and posted to the transport. 856 * 857 * Returns: 858 * 0 : if response successfully transmit 859 * non-zero : if response failed to transmit, of the form -Exxx. 860 **/ 861 int 862 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg, 863 struct nvmefc_ls_rsp *ls_rsp, 864 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba, 865 struct lpfc_iocbq *cmdwqe, 866 struct lpfc_iocbq *rspwqe)) 867 { 868 struct lpfc_hba *phba = axchg->phba; 869 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer; 870 struct lpfc_iocbq *nvmewqeq; 871 struct lpfc_dmabuf dmabuf; 872 struct ulp_bde64 bpl; 873 int rc; 874 875 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 876 return -ENODEV; 877 878 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 879 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid); 880 881 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) { 882 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 883 "6412 NVMEx LS rsp state mismatch " 884 "oxid x%x: %d %d\n", 885 axchg->oxid, axchg->state, axchg->entry_cnt); 886 return -EALREADY; 887 } 888 axchg->state = LPFC_NVME_STE_LS_RSP; 889 axchg->entry_cnt++; 890 891 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma, 892 ls_rsp->rsplen); 893 if (nvmewqeq == NULL) { 894 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 895 "6150 NVMEx LS Drop Rsp x%x: Prep\n", 896 axchg->oxid); 897 rc = -ENOMEM; 898 goto out_free_buf; 899 } 900 901 /* Save numBdes for bpl2sgl */ 902 nvmewqeq->num_bdes = 1; 903 nvmewqeq->hba_wqidx = 0; 904 nvmewqeq->bpl_dmabuf = &dmabuf; 905 dmabuf.virt = &bpl; 906 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 907 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 908 bpl.tus.f.bdeSize = ls_rsp->rsplen; 909 bpl.tus.f.bdeFlags = 0; 910 bpl.tus.w = le32_to_cpu(bpl.tus.w); 911 /* 912 * Note: although we're using stack space for the dmabuf, the 913 * call to lpfc_sli4_issue_wqe is synchronous, so it will not 914 * be referenced after it returns back to this routine. 915 */ 916 917 nvmewqeq->cmd_cmpl = xmt_ls_rsp_cmp; 918 nvmewqeq->context_un.axchg = axchg; 919 920 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n", 921 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen); 922 923 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq); 924 925 /* clear to be sure there's no reference */ 926 nvmewqeq->bpl_dmabuf = NULL; 927 928 if (rc == WQE_SUCCESS) { 929 /* 930 * Okay to repost buffer here, but wait till cmpl 931 * before freeing ctxp and iocbq. 932 */ 933 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 934 return 0; 935 } 936 937 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 938 "6151 NVMEx LS RSP x%x: failed to transmit %d\n", 939 axchg->oxid, rc); 940 941 rc = -ENXIO; 942 943 lpfc_nlp_put(nvmewqeq->ndlp); 944 945 out_free_buf: 946 /* Give back resources */ 947 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 948 949 /* 950 * As transport doesn't track completions of responses, if the rsp 951 * fails to send, the transport will effectively ignore the rsp 952 * and consider the LS done. However, the driver has an active 953 * exchange open for the LS - so be sure to abort the exchange 954 * if the response isn't sent. 955 */ 956 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid); 957 return rc; 958 } 959 960 /** 961 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response 962 * @tgtport: pointer to target port that NVME LS is to be transmit from. 963 * @ls_rsp: pointer to the transport LS RSP that is to be sent 964 * 965 * Driver registers this routine to transmit responses for received NVME 966 * LS requests. 967 * 968 * This routine is used to format and send a WQE to transmit a NVME LS 969 * Response. The ls_rsp is used to reverse-map the LS to the original 970 * NVME LS request sequence, which provides addressing information for 971 * the remote port the LS to be sent to, as well as the exchange id 972 * that is the LS is bound to. 973 * 974 * Returns: 975 * 0 : if response successfully transmit 976 * non-zero : if response failed to transmit, of the form -Exxx. 977 **/ 978 static int 979 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 980 struct nvmefc_ls_rsp *ls_rsp) 981 { 982 struct lpfc_async_xchg_ctx *axchg = 983 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); 984 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 985 int rc; 986 987 if (test_bit(FC_UNLOADING, &axchg->phba->pport->load_flag)) 988 return -ENODEV; 989 990 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp); 991 992 if (rc) { 993 atomic_inc(&nvmep->xmt_ls_drop); 994 /* 995 * unless the failure is due to having already sent 996 * the response, an abort will be generated for the 997 * exchange if the rsp can't be sent. 998 */ 999 if (rc != -EALREADY) 1000 atomic_inc(&nvmep->xmt_ls_abort); 1001 return rc; 1002 } 1003 1004 atomic_inc(&nvmep->xmt_ls_rsp); 1005 return 0; 1006 } 1007 1008 static int 1009 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 1010 struct nvmefc_tgt_fcp_req *rsp) 1011 { 1012 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1013 struct lpfc_async_xchg_ctx *ctxp = 1014 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1015 struct lpfc_hba *phba = ctxp->phba; 1016 struct lpfc_queue *wq; 1017 struct lpfc_iocbq *nvmewqeq; 1018 struct lpfc_sli_ring *pring; 1019 unsigned long iflags; 1020 int rc; 1021 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1022 int id; 1023 #endif 1024 1025 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { 1026 rc = -ENODEV; 1027 goto aerr; 1028 } 1029 1030 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1031 if (ctxp->ts_cmd_nvme) { 1032 if (rsp->op == NVMET_FCOP_RSP) 1033 ctxp->ts_nvme_status = ktime_get_ns(); 1034 else 1035 ctxp->ts_nvme_data = ktime_get_ns(); 1036 } 1037 1038 /* Setup the hdw queue if not already set */ 1039 if (!ctxp->hdwq) 1040 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 1041 1042 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 1043 id = raw_smp_processor_id(); 1044 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); 1045 if (rsp->hwqid != id) 1046 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1047 "6705 CPU Check OP: " 1048 "cpu %d expect %d\n", 1049 id, rsp->hwqid); 1050 ctxp->cpu = id; /* Setup cpu for cmpl check */ 1051 } 1052 #endif 1053 1054 /* Sanity check */ 1055 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) || 1056 (ctxp->state == LPFC_NVME_STE_ABORT)) { 1057 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1058 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1059 "6102 IO oxid x%x aborted\n", 1060 ctxp->oxid); 1061 rc = -ENXIO; 1062 goto aerr; 1063 } 1064 1065 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 1066 if (nvmewqeq == NULL) { 1067 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1068 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1069 "6152 FCP Drop IO x%x: Prep\n", 1070 ctxp->oxid); 1071 rc = -ENXIO; 1072 goto aerr; 1073 } 1074 1075 nvmewqeq->cmd_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1076 nvmewqeq->context_un.axchg = ctxp; 1077 nvmewqeq->cmd_flag |= LPFC_IO_NVMET; 1078 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1079 1080 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1081 ctxp->oxid, rsp->op, rsp->rsplen); 1082 1083 ctxp->flag |= LPFC_NVME_IO_INP; 1084 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1085 if (rc == WQE_SUCCESS) { 1086 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1087 if (!ctxp->ts_cmd_nvme) 1088 return 0; 1089 if (rsp->op == NVMET_FCOP_RSP) 1090 ctxp->ts_status_wqput = ktime_get_ns(); 1091 else 1092 ctxp->ts_data_wqput = ktime_get_ns(); 1093 #endif 1094 return 0; 1095 } 1096 1097 if (rc == -EBUSY) { 1098 /* 1099 * WQ was full, so queue nvmewqeq to be sent after 1100 * WQE release CQE 1101 */ 1102 ctxp->flag |= LPFC_NVME_DEFER_WQFULL; 1103 wq = ctxp->hdwq->io_wq; 1104 pring = wq->pring; 1105 spin_lock_irqsave(&pring->ring_lock, iflags); 1106 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1107 wq->q_flag |= HBA_NVMET_WQFULL; 1108 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1109 atomic_inc(&lpfc_nvmep->defer_wqfull); 1110 return 0; 1111 } 1112 1113 /* Give back resources */ 1114 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1115 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1116 "6153 FCP Drop IO x%x: Issue: %d\n", 1117 ctxp->oxid, rc); 1118 1119 ctxp->wqeq->hba_wqidx = 0; 1120 nvmewqeq->context_un.axchg = NULL; 1121 nvmewqeq->bpl_dmabuf = NULL; 1122 rc = -EBUSY; 1123 aerr: 1124 return rc; 1125 } 1126 1127 static void 1128 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1129 { 1130 struct lpfc_nvmet_tgtport *tport = targetport->private; 1131 1132 /* release any threads waiting for the unreg to complete */ 1133 if (tport->phba->targetport) 1134 complete(tport->tport_unreg_cmp); 1135 } 1136 1137 static void 1138 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1139 struct nvmefc_tgt_fcp_req *req) 1140 { 1141 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1142 struct lpfc_async_xchg_ctx *ctxp = 1143 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1144 struct lpfc_hba *phba = ctxp->phba; 1145 struct lpfc_queue *wq; 1146 unsigned long flags; 1147 1148 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1149 return; 1150 1151 if (!ctxp->hdwq) 1152 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1153 1154 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1155 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1156 ctxp->oxid, ctxp->flag, ctxp->state); 1157 1158 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1159 ctxp->oxid, ctxp->flag, ctxp->state); 1160 1161 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1162 1163 spin_lock_irqsave(&ctxp->ctxlock, flags); 1164 1165 /* Since iaab/iaar are NOT set, we need to check 1166 * if the firmware is in process of aborting IO 1167 */ 1168 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) { 1169 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1170 return; 1171 } 1172 ctxp->flag |= LPFC_NVME_ABORT_OP; 1173 1174 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) { 1175 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1176 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1177 ctxp->oxid); 1178 wq = ctxp->hdwq->io_wq; 1179 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1180 return; 1181 } 1182 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1183 1184 /* A state of LPFC_NVME_STE_RCV means we have just received 1185 * the NVME command and have not started processing it. 1186 * (by issuing any IO WQEs on this exchange yet) 1187 */ 1188 if (ctxp->state == LPFC_NVME_STE_RCV) 1189 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1190 ctxp->oxid); 1191 else 1192 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1193 ctxp->oxid); 1194 } 1195 1196 static void 1197 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1198 struct nvmefc_tgt_fcp_req *rsp) 1199 { 1200 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1201 struct lpfc_async_xchg_ctx *ctxp = 1202 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1203 struct lpfc_hba *phba = ctxp->phba; 1204 unsigned long flags; 1205 bool aborting = false; 1206 1207 spin_lock_irqsave(&ctxp->ctxlock, flags); 1208 if (ctxp->flag & LPFC_NVME_XBUSY) 1209 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1210 "6027 NVMET release with XBUSY flag x%x" 1211 " oxid x%x\n", 1212 ctxp->flag, ctxp->oxid); 1213 else if (ctxp->state != LPFC_NVME_STE_DONE && 1214 ctxp->state != LPFC_NVME_STE_ABORT) 1215 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1216 "6413 NVMET release bad state %d %d oxid x%x\n", 1217 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1218 1219 if ((ctxp->flag & LPFC_NVME_ABORT_OP) || 1220 (ctxp->flag & LPFC_NVME_XBUSY)) { 1221 aborting = true; 1222 /* let the abort path do the real release */ 1223 lpfc_nvmet_defer_release(phba, ctxp); 1224 } 1225 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1226 1227 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1228 ctxp->state, aborting); 1229 1230 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1231 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 1232 1233 if (aborting) 1234 return; 1235 1236 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1237 } 1238 1239 static void 1240 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1241 struct nvmefc_tgt_fcp_req *rsp) 1242 { 1243 struct lpfc_nvmet_tgtport *tgtp; 1244 struct lpfc_async_xchg_ctx *ctxp = 1245 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1246 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1247 struct lpfc_hba *phba = ctxp->phba; 1248 unsigned long iflag; 1249 1250 1251 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1252 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1253 1254 if (!nvmebuf) { 1255 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1256 "6425 Defer rcv: no buffer oxid x%x: " 1257 "flg %x ste %x\n", 1258 ctxp->oxid, ctxp->flag, ctxp->state); 1259 return; 1260 } 1261 1262 tgtp = phba->targetport->private; 1263 if (tgtp) 1264 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1265 1266 /* Free the nvmebuf since a new buffer already replaced it */ 1267 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1268 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1269 ctxp->rqb_buffer = NULL; 1270 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1271 } 1272 1273 /** 1274 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request 1275 * @phba: Pointer to HBA context object 1276 * @cmdwqe: Pointer to driver command WQE object. 1277 * @rspwqe: Pointer to driver response WQE object. 1278 * 1279 * This function is the completion handler for NVME LS requests. 1280 * The function updates any states and statistics, then calls the 1281 * generic completion handler to finish completion of the request. 1282 **/ 1283 static void 1284 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 1285 struct lpfc_iocbq *rspwqe) 1286 { 1287 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 1288 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe); 1289 } 1290 1291 /** 1292 * lpfc_nvmet_ls_req - Issue an Link Service request 1293 * @targetport: pointer to target instance registered with nvmet transport. 1294 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1295 * Driver sets this value to the ndlp pointer. 1296 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS 1297 * 1298 * Driver registers this routine to handle any link service request 1299 * from the nvme_fc transport to a remote nvme-aware port. 1300 * 1301 * Return value : 1302 * 0 - Success 1303 * non-zero: various error codes, in form of -Exxx 1304 **/ 1305 static int 1306 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport, 1307 void *hosthandle, 1308 struct nvmefc_ls_req *pnvme_lsreq) 1309 { 1310 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1311 struct lpfc_hba *phba; 1312 struct lpfc_nodelist *ndlp; 1313 int ret; 1314 u32 hstate; 1315 1316 if (!lpfc_nvmet) 1317 return -EINVAL; 1318 1319 phba = lpfc_nvmet->phba; 1320 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1321 return -EINVAL; 1322 1323 hstate = atomic_read(&lpfc_nvmet->state); 1324 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE) 1325 return -EACCES; 1326 1327 ndlp = (struct lpfc_nodelist *)hosthandle; 1328 1329 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq, 1330 lpfc_nvmet_ls_req_cmp); 1331 1332 return ret; 1333 } 1334 1335 /** 1336 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request 1337 * @targetport: Transport targetport, that LS was issued from. 1338 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1339 * Driver sets this value to the ndlp pointer. 1340 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted 1341 * 1342 * Driver registers this routine to abort an NVME LS request that is 1343 * in progress (from the transports perspective). 1344 **/ 1345 static void 1346 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport, 1347 void *hosthandle, 1348 struct nvmefc_ls_req *pnvme_lsreq) 1349 { 1350 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1351 struct lpfc_hba *phba; 1352 struct lpfc_nodelist *ndlp; 1353 int ret; 1354 1355 phba = lpfc_nvmet->phba; 1356 if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) 1357 return; 1358 1359 ndlp = (struct lpfc_nodelist *)hosthandle; 1360 1361 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq); 1362 if (!ret) 1363 atomic_inc(&lpfc_nvmet->xmt_ls_abort); 1364 } 1365 1366 static int 1367 lpfc_nvmet_host_traddr(void *hosthandle, u64 *wwnn, u64 *wwpn) 1368 { 1369 struct lpfc_nodelist *ndlp = hosthandle; 1370 1371 *wwnn = wwn_to_u64(ndlp->nlp_nodename.u.wwn); 1372 *wwpn = wwn_to_u64(ndlp->nlp_portname.u.wwn); 1373 return 0; 1374 } 1375 1376 static void 1377 lpfc_nvmet_host_release(void *hosthandle) 1378 { 1379 struct lpfc_nodelist *ndlp = hosthandle; 1380 struct lpfc_hba *phba = ndlp->phba; 1381 struct lpfc_nvmet_tgtport *tgtp; 1382 1383 if (!phba->targetport || !phba->targetport->private) 1384 return; 1385 1386 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1387 "6202 NVMET XPT releasing hosthandle x%px " 1388 "DID x%x xflags x%x refcnt %d\n", 1389 hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags, 1390 kref_read(&ndlp->kref)); 1391 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1392 spin_lock_irq(&ndlp->lock); 1393 ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH; 1394 spin_unlock_irq(&ndlp->lock); 1395 lpfc_nlp_put(ndlp); 1396 atomic_set(&tgtp->state, 0); 1397 } 1398 1399 static void 1400 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1401 { 1402 struct lpfc_nvmet_tgtport *tgtp; 1403 struct lpfc_hba *phba; 1404 uint32_t rc; 1405 1406 tgtp = tgtport->private; 1407 phba = tgtp->phba; 1408 1409 rc = lpfc_issue_els_rscn(phba->pport, 0); 1410 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1411 "6420 NVMET subsystem change: Notification %s\n", 1412 (rc) ? "Failed" : "Sent"); 1413 } 1414 1415 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1416 .targetport_delete = lpfc_nvmet_targetport_delete, 1417 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1418 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1419 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1420 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1421 .defer_rcv = lpfc_nvmet_defer_rcv, 1422 .discovery_event = lpfc_nvmet_discovery_event, 1423 .ls_req = lpfc_nvmet_ls_req, 1424 .ls_abort = lpfc_nvmet_ls_abort, 1425 .host_release = lpfc_nvmet_host_release, 1426 .host_traddr = lpfc_nvmet_host_traddr, 1427 1428 .max_hw_queues = 1, 1429 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1430 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1431 .dma_boundary = 0xFFFFFFFF, 1432 1433 /* optional features */ 1434 .target_features = 0, 1435 /* sizes of additional private data for data structures */ 1436 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1437 .lsrqst_priv_sz = 0, 1438 }; 1439 1440 static void 1441 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1442 struct lpfc_nvmet_ctx_info *infop) 1443 { 1444 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1445 unsigned long flags; 1446 1447 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1448 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1449 &infop->nvmet_ctx_list, list) { 1450 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1451 list_del_init(&ctx_buf->list); 1452 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1453 1454 spin_lock(&phba->hbalock); 1455 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1456 spin_unlock(&phba->hbalock); 1457 1458 ctx_buf->sglq->state = SGL_FREED; 1459 ctx_buf->sglq->ndlp = NULL; 1460 1461 spin_lock(&phba->sli4_hba.sgl_list_lock); 1462 list_add_tail(&ctx_buf->sglq->list, 1463 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1464 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1465 1466 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1467 kfree(ctx_buf->context); 1468 } 1469 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1470 } 1471 1472 static void 1473 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1474 { 1475 struct lpfc_nvmet_ctx_info *infop; 1476 int i, j; 1477 1478 /* The first context list, MRQ 0 CPU 0 */ 1479 infop = phba->sli4_hba.nvmet_ctx_info; 1480 if (!infop) 1481 return; 1482 1483 /* Cycle the entire CPU context list for every MRQ */ 1484 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1485 for_each_present_cpu(j) { 1486 infop = lpfc_get_ctx_list(phba, j, i); 1487 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1488 } 1489 } 1490 kfree(phba->sli4_hba.nvmet_ctx_info); 1491 phba->sli4_hba.nvmet_ctx_info = NULL; 1492 } 1493 1494 static int 1495 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1496 { 1497 struct lpfc_nvmet_ctxbuf *ctx_buf; 1498 struct lpfc_iocbq *nvmewqe; 1499 union lpfc_wqe128 *wqe; 1500 struct lpfc_nvmet_ctx_info *last_infop; 1501 struct lpfc_nvmet_ctx_info *infop; 1502 int i, j, idx, cpu; 1503 1504 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1505 "6403 Allocate NVMET resources for %d XRIs\n", 1506 phba->sli4_hba.nvmet_xri_cnt); 1507 1508 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1509 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1510 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1511 if (!phba->sli4_hba.nvmet_ctx_info) { 1512 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1513 "6419 Failed allocate memory for " 1514 "nvmet context lists\n"); 1515 return -ENOMEM; 1516 } 1517 1518 /* 1519 * Assuming X CPUs in the system, and Y MRQs, allocate some 1520 * lpfc_nvmet_ctx_info structures as follows: 1521 * 1522 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1523 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1524 * ... 1525 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1526 * 1527 * Each line represents a MRQ "silo" containing an entry for 1528 * every CPU. 1529 * 1530 * MRQ X is initially assumed to be associated with CPU X, thus 1531 * contexts are initially distributed across all MRQs using 1532 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1533 * freed, the are freed to the MRQ silo based on the CPU number 1534 * of the IO completion. Thus a context that was allocated for MRQ A 1535 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1536 */ 1537 for_each_possible_cpu(i) { 1538 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1539 infop = lpfc_get_ctx_list(phba, i, j); 1540 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1541 spin_lock_init(&infop->nvmet_ctx_list_lock); 1542 infop->nvmet_ctx_list_cnt = 0; 1543 } 1544 } 1545 1546 /* 1547 * Setup the next CPU context info ptr for each MRQ. 1548 * MRQ 0 will cycle thru CPUs 0 - X separately from 1549 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1550 */ 1551 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1552 last_infop = lpfc_get_ctx_list(phba, 1553 cpumask_first(cpu_present_mask), 1554 j); 1555 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1556 infop = lpfc_get_ctx_list(phba, i, j); 1557 infop->nvmet_ctx_next_cpu = last_infop; 1558 last_infop = infop; 1559 } 1560 } 1561 1562 /* For all nvmet xris, allocate resources needed to process a 1563 * received command on a per xri basis. 1564 */ 1565 idx = 0; 1566 cpu = cpumask_first(cpu_present_mask); 1567 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1568 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1569 if (!ctx_buf) { 1570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1571 "6404 Ran out of memory for NVMET\n"); 1572 return -ENOMEM; 1573 } 1574 1575 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1576 GFP_KERNEL); 1577 if (!ctx_buf->context) { 1578 kfree(ctx_buf); 1579 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1580 "6405 Ran out of NVMET " 1581 "context memory\n"); 1582 return -ENOMEM; 1583 } 1584 ctx_buf->context->ctxbuf = ctx_buf; 1585 ctx_buf->context->state = LPFC_NVME_STE_FREE; 1586 1587 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1588 if (!ctx_buf->iocbq) { 1589 kfree(ctx_buf->context); 1590 kfree(ctx_buf); 1591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1592 "6406 Ran out of NVMET iocb/WQEs\n"); 1593 return -ENOMEM; 1594 } 1595 ctx_buf->iocbq->cmd_flag = LPFC_IO_NVMET; 1596 nvmewqe = ctx_buf->iocbq; 1597 wqe = &nvmewqe->wqe; 1598 1599 /* Initialize WQE */ 1600 memset(wqe, 0, sizeof(*wqe)); 1601 1602 ctx_buf->iocbq->cmd_dmabuf = NULL; 1603 spin_lock(&phba->sli4_hba.sgl_list_lock); 1604 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1605 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1606 if (!ctx_buf->sglq) { 1607 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1608 kfree(ctx_buf->context); 1609 kfree(ctx_buf); 1610 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1611 "6407 Ran out of NVMET XRIs\n"); 1612 return -ENOMEM; 1613 } 1614 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1615 1616 /* 1617 * Add ctx to MRQidx context list. Our initial assumption 1618 * is MRQidx will be associated with CPUidx. This association 1619 * can change on the fly. 1620 */ 1621 infop = lpfc_get_ctx_list(phba, cpu, idx); 1622 spin_lock(&infop->nvmet_ctx_list_lock); 1623 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1624 infop->nvmet_ctx_list_cnt++; 1625 spin_unlock(&infop->nvmet_ctx_list_lock); 1626 1627 /* Spread ctx structures evenly across all MRQs */ 1628 idx++; 1629 if (idx >= phba->cfg_nvmet_mrq) { 1630 idx = 0; 1631 cpu = cpumask_first(cpu_present_mask); 1632 continue; 1633 } 1634 cpu = lpfc_next_present_cpu(cpu); 1635 } 1636 1637 for_each_present_cpu(i) { 1638 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1639 infop = lpfc_get_ctx_list(phba, i, j); 1640 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1641 "6408 TOTAL NVMET ctx for CPU %d " 1642 "MRQ %d: cnt %d nextcpu x%px\n", 1643 i, j, infop->nvmet_ctx_list_cnt, 1644 infop->nvmet_ctx_next_cpu); 1645 } 1646 } 1647 return 0; 1648 } 1649 1650 int 1651 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1652 { 1653 struct lpfc_vport *vport = phba->pport; 1654 struct lpfc_nvmet_tgtport *tgtp; 1655 struct nvmet_fc_port_info pinfo; 1656 int error; 1657 1658 if (phba->targetport) 1659 return 0; 1660 1661 error = lpfc_nvmet_setup_io_context(phba); 1662 if (error) 1663 return error; 1664 1665 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1666 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1667 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1668 pinfo.port_id = vport->fc_myDID; 1669 1670 /* We need to tell the transport layer + 1 because it takes page 1671 * alignment into account. When space for the SGL is allocated we 1672 * allocate + 3, one for cmd, one for rsp and one for this alignment 1673 */ 1674 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1675 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1676 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1677 1678 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1679 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1680 &phba->pcidev->dev, 1681 &phba->targetport); 1682 #else 1683 error = -ENOENT; 1684 #endif 1685 if (error) { 1686 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1687 "6025 Cannot register NVME targetport x%x: " 1688 "portnm %llx nodenm %llx segs %d qs %d\n", 1689 error, 1690 pinfo.port_name, pinfo.node_name, 1691 lpfc_tgttemplate.max_sgl_segments, 1692 lpfc_tgttemplate.max_hw_queues); 1693 phba->targetport = NULL; 1694 phba->nvmet_support = 0; 1695 1696 lpfc_nvmet_cleanup_io_context(phba); 1697 1698 } else { 1699 tgtp = (struct lpfc_nvmet_tgtport *) 1700 phba->targetport->private; 1701 tgtp->phba = phba; 1702 1703 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1704 "6026 Registered NVME " 1705 "targetport: x%px, private x%px " 1706 "portnm %llx nodenm %llx segs %d qs %d\n", 1707 phba->targetport, tgtp, 1708 pinfo.port_name, pinfo.node_name, 1709 lpfc_tgttemplate.max_sgl_segments, 1710 lpfc_tgttemplate.max_hw_queues); 1711 1712 atomic_set(&tgtp->rcv_ls_req_in, 0); 1713 atomic_set(&tgtp->rcv_ls_req_out, 0); 1714 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1715 atomic_set(&tgtp->xmt_ls_abort, 0); 1716 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1717 atomic_set(&tgtp->xmt_ls_rsp, 0); 1718 atomic_set(&tgtp->xmt_ls_drop, 0); 1719 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1720 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1721 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1722 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1723 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1724 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1725 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1726 atomic_set(&tgtp->xmt_fcp_drop, 0); 1727 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1728 atomic_set(&tgtp->xmt_fcp_read, 0); 1729 atomic_set(&tgtp->xmt_fcp_write, 0); 1730 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1731 atomic_set(&tgtp->xmt_fcp_release, 0); 1732 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1733 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1734 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1735 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1736 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1737 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1738 atomic_set(&tgtp->xmt_fcp_abort, 0); 1739 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1740 atomic_set(&tgtp->xmt_abort_unsol, 0); 1741 atomic_set(&tgtp->xmt_abort_sol, 0); 1742 atomic_set(&tgtp->xmt_abort_rsp, 0); 1743 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1744 atomic_set(&tgtp->defer_ctx, 0); 1745 atomic_set(&tgtp->defer_fod, 0); 1746 atomic_set(&tgtp->defer_wqfull, 0); 1747 } 1748 return error; 1749 } 1750 1751 int 1752 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1753 { 1754 struct lpfc_vport *vport = phba->pport; 1755 1756 if (!phba->targetport) 1757 return 0; 1758 1759 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1760 "6007 Update NVMET port x%px did x%x\n", 1761 phba->targetport, vport->fc_myDID); 1762 1763 phba->targetport->port_id = vport->fc_myDID; 1764 return 0; 1765 } 1766 1767 /** 1768 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1769 * @phba: pointer to lpfc hba data structure. 1770 * @axri: pointer to the nvmet xri abort wcqe structure. 1771 * 1772 * This routine is invoked by the worker thread to process a SLI4 fast-path 1773 * NVMET aborted xri. 1774 **/ 1775 void 1776 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1777 struct sli4_wcqe_xri_aborted *axri) 1778 { 1779 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1780 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1781 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1782 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1783 struct lpfc_nvmet_tgtport *tgtp; 1784 struct nvmefc_tgt_fcp_req *req = NULL; 1785 struct lpfc_nodelist *ndlp; 1786 unsigned long iflag = 0; 1787 int rrq_empty = 0; 1788 bool released = false; 1789 1790 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1791 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1792 1793 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1794 return; 1795 1796 if (phba->targetport) { 1797 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1798 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1799 } 1800 1801 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1802 list_for_each_entry_safe(ctxp, next_ctxp, 1803 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1804 list) { 1805 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1806 continue; 1807 1808 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1809 iflag); 1810 1811 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1812 /* Check if we already received a free context call 1813 * and we have completed processing an abort situation. 1814 */ 1815 if (ctxp->flag & LPFC_NVME_CTX_RLS && 1816 !(ctxp->flag & LPFC_NVME_ABORT_OP)) { 1817 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1818 list_del_init(&ctxp->list); 1819 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1820 released = true; 1821 } 1822 ctxp->flag &= ~LPFC_NVME_XBUSY; 1823 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1824 1825 spin_lock_irqsave(&phba->rrq_list_lock, iflag); 1826 rrq_empty = list_empty(&phba->active_rrq_list); 1827 spin_unlock_irqrestore(&phba->rrq_list_lock, iflag); 1828 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1829 if (ndlp && 1830 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1831 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1832 lpfc_set_rrq_active(phba, ndlp, 1833 ctxp->ctxbuf->sglq->sli4_lxritag, 1834 rxid, 1); 1835 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1836 } 1837 1838 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1839 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1840 ctxp->oxid, ctxp->flag, released); 1841 if (released) 1842 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1843 1844 if (rrq_empty) 1845 lpfc_worker_wake_up(phba); 1846 return; 1847 } 1848 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1849 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1850 if (ctxp) { 1851 /* 1852 * Abort already done by FW, so BA_ACC sent. 1853 * However, the transport may be unaware. 1854 */ 1855 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1856 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1857 "flag x%x oxid x%x rxid x%x\n", 1858 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1859 rxid); 1860 1861 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1862 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1863 ctxp->state = LPFC_NVME_STE_ABORT; 1864 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1865 1866 lpfc_nvmeio_data(phba, 1867 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1868 xri, raw_smp_processor_id(), 0); 1869 1870 req = &ctxp->hdlrctx.fcp_req; 1871 if (req) 1872 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1873 } 1874 #endif 1875 } 1876 1877 int 1878 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1879 struct fc_frame_header *fc_hdr) 1880 { 1881 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1882 struct lpfc_hba *phba = vport->phba; 1883 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1884 struct nvmefc_tgt_fcp_req *rsp; 1885 uint32_t sid; 1886 uint16_t oxid, xri; 1887 unsigned long iflag = 0; 1888 1889 sid = sli4_sid_from_fc_hdr(fc_hdr); 1890 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1891 1892 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1893 list_for_each_entry_safe(ctxp, next_ctxp, 1894 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1895 list) { 1896 if (ctxp->oxid != oxid || ctxp->sid != sid) 1897 continue; 1898 1899 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1900 1901 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1902 iflag); 1903 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1904 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1905 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1906 1907 lpfc_nvmeio_data(phba, 1908 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1909 xri, raw_smp_processor_id(), 0); 1910 1911 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1912 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1913 1914 rsp = &ctxp->hdlrctx.fcp_req; 1915 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1916 1917 /* Respond with BA_ACC accordingly */ 1918 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1919 return 0; 1920 } 1921 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1922 /* check the wait list */ 1923 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1924 struct rqb_dmabuf *nvmebuf; 1925 struct fc_frame_header *fc_hdr_tmp; 1926 u32 sid_tmp; 1927 u16 oxid_tmp; 1928 bool found = false; 1929 1930 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1931 1932 /* match by oxid and s_id */ 1933 list_for_each_entry(nvmebuf, 1934 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1935 hbuf.list) { 1936 fc_hdr_tmp = (struct fc_frame_header *) 1937 (nvmebuf->hbuf.virt); 1938 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1939 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1940 if (oxid_tmp != oxid || sid_tmp != sid) 1941 continue; 1942 1943 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1944 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1945 "is waiting for a ctxp\n", 1946 oxid, sid); 1947 1948 list_del_init(&nvmebuf->hbuf.list); 1949 phba->sli4_hba.nvmet_io_wait_cnt--; 1950 found = true; 1951 break; 1952 } 1953 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1954 iflag); 1955 1956 /* free buffer since already posted a new DMA buffer to RQ */ 1957 if (found) { 1958 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1959 /* Respond with BA_ACC accordingly */ 1960 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1961 return 0; 1962 } 1963 } 1964 1965 /* check active list */ 1966 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1967 if (ctxp) { 1968 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1969 1970 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1971 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP); 1972 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1973 1974 lpfc_nvmeio_data(phba, 1975 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1976 xri, raw_smp_processor_id(), 0); 1977 1978 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1979 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1980 "flag x%x state x%x\n", 1981 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1982 1983 if (ctxp->flag & LPFC_NVME_TNOTIFY) { 1984 /* Notify the transport */ 1985 nvmet_fc_rcv_fcp_abort(phba->targetport, 1986 &ctxp->hdlrctx.fcp_req); 1987 } else { 1988 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1989 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1990 lpfc_nvmet_defer_release(phba, ctxp); 1991 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1992 } 1993 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1994 ctxp->oxid); 1995 1996 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1997 return 0; 1998 } 1999 2000 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 2001 oxid, raw_smp_processor_id(), 1); 2002 2003 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 2004 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 2005 2006 /* Respond with BA_RJT accordingly */ 2007 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 2008 #endif 2009 return 0; 2010 } 2011 2012 static void 2013 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 2014 struct lpfc_async_xchg_ctx *ctxp) 2015 { 2016 struct lpfc_sli_ring *pring; 2017 struct lpfc_iocbq *nvmewqeq; 2018 struct lpfc_iocbq *next_nvmewqeq; 2019 unsigned long iflags; 2020 struct lpfc_wcqe_complete wcqe; 2021 struct lpfc_wcqe_complete *wcqep; 2022 2023 pring = wq->pring; 2024 wcqep = &wcqe; 2025 2026 /* Fake an ABORT error code back to cmpl routine */ 2027 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 2028 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 2029 wcqep->parameter = IOERR_ABORT_REQUESTED; 2030 2031 spin_lock_irqsave(&pring->ring_lock, iflags); 2032 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 2033 &wq->wqfull_list, list) { 2034 if (ctxp) { 2035 /* Checking for a specific IO to flush */ 2036 if (nvmewqeq->context_un.axchg == ctxp) { 2037 list_del(&nvmewqeq->list); 2038 spin_unlock_irqrestore(&pring->ring_lock, 2039 iflags); 2040 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, 2041 sizeof(*wcqep)); 2042 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 2043 nvmewqeq); 2044 return; 2045 } 2046 continue; 2047 } else { 2048 /* Flush all IOs */ 2049 list_del(&nvmewqeq->list); 2050 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2051 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, sizeof(*wcqep)); 2052 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, nvmewqeq); 2053 spin_lock_irqsave(&pring->ring_lock, iflags); 2054 } 2055 } 2056 if (!ctxp) 2057 wq->q_flag &= ~HBA_NVMET_WQFULL; 2058 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2059 } 2060 2061 void 2062 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 2063 struct lpfc_queue *wq) 2064 { 2065 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2066 struct lpfc_sli_ring *pring; 2067 struct lpfc_iocbq *nvmewqeq; 2068 struct lpfc_async_xchg_ctx *ctxp; 2069 unsigned long iflags; 2070 int rc; 2071 2072 /* 2073 * Some WQE slots are available, so try to re-issue anything 2074 * on the WQ wqfull_list. 2075 */ 2076 pring = wq->pring; 2077 spin_lock_irqsave(&pring->ring_lock, iflags); 2078 while (!list_empty(&wq->wqfull_list)) { 2079 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 2080 list); 2081 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2082 ctxp = nvmewqeq->context_un.axchg; 2083 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 2084 spin_lock_irqsave(&pring->ring_lock, iflags); 2085 if (rc == -EBUSY) { 2086 /* WQ was full again, so put it back on the list */ 2087 list_add(&nvmewqeq->list, &wq->wqfull_list); 2088 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2089 return; 2090 } 2091 if (rc == WQE_SUCCESS) { 2092 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2093 if (ctxp->ts_cmd_nvme) { 2094 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP) 2095 ctxp->ts_status_wqput = ktime_get_ns(); 2096 else 2097 ctxp->ts_data_wqput = ktime_get_ns(); 2098 } 2099 #endif 2100 } else { 2101 WARN_ON(rc); 2102 } 2103 } 2104 wq->q_flag &= ~HBA_NVMET_WQFULL; 2105 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2106 2107 #endif 2108 } 2109 2110 void 2111 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 2112 { 2113 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2114 struct lpfc_nvmet_tgtport *tgtp; 2115 struct lpfc_queue *wq; 2116 uint32_t qidx; 2117 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 2118 2119 if (phba->nvmet_support == 0) 2120 return; 2121 if (phba->targetport) { 2122 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2123 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 2124 wq = phba->sli4_hba.hdwq[qidx].io_wq; 2125 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 2126 } 2127 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 2128 nvmet_fc_unregister_targetport(phba->targetport); 2129 if (!wait_for_completion_timeout(&tport_unreg_cmp, 2130 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 2131 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2132 "6179 Unreg targetport x%px timeout " 2133 "reached.\n", phba->targetport); 2134 lpfc_nvmet_cleanup_io_context(phba); 2135 } 2136 phba->targetport = NULL; 2137 #endif 2138 } 2139 2140 /** 2141 * lpfc_nvmet_handle_lsreq - Process an NVME LS request 2142 * @phba: pointer to lpfc hba data structure. 2143 * @axchg: pointer to exchange context for the NVME LS request 2144 * 2145 * This routine is used for processing an asychronously received NVME LS 2146 * request. Any remaining validation is done and the LS is then forwarded 2147 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req(). 2148 * 2149 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing) 2150 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done. 2151 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. 2152 * 2153 * Returns 0 if LS was handled and delivered to the transport 2154 * Returns 1 if LS failed to be handled and should be dropped 2155 */ 2156 int 2157 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba, 2158 struct lpfc_async_xchg_ctx *axchg) 2159 { 2160 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2161 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private; 2162 uint32_t *payload = axchg->payload; 2163 int rc; 2164 2165 atomic_inc(&tgtp->rcv_ls_req_in); 2166 2167 /* 2168 * Driver passes the ndlp as the hosthandle argument allowing 2169 * the transport to generate LS requests for any associateions 2170 * that are created. 2171 */ 2172 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp, 2173 axchg->payload, axchg->size); 2174 2175 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2176 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2177 "%08x %08x %08x\n", axchg->size, rc, 2178 *payload, *(payload+1), *(payload+2), 2179 *(payload+3), *(payload+4), *(payload+5)); 2180 2181 if (!rc) { 2182 atomic_inc(&tgtp->rcv_ls_req_out); 2183 return 0; 2184 } 2185 2186 atomic_inc(&tgtp->rcv_ls_req_drop); 2187 #endif 2188 return 1; 2189 } 2190 2191 static void 2192 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2193 { 2194 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2195 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 2196 struct lpfc_hba *phba = ctxp->phba; 2197 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2198 struct lpfc_nvmet_tgtport *tgtp; 2199 uint32_t *payload, qno; 2200 uint32_t rc; 2201 unsigned long iflags; 2202 2203 if (!nvmebuf) { 2204 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2205 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2206 "oxid: x%x flg: x%x state: x%x\n", 2207 ctxp->oxid, ctxp->flag, ctxp->state); 2208 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2209 lpfc_nvmet_defer_release(phba, ctxp); 2210 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2211 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2212 ctxp->oxid); 2213 return; 2214 } 2215 2216 if (ctxp->flag & LPFC_NVME_ABTS_RCV) { 2217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2218 "6324 IO oxid x%x aborted\n", 2219 ctxp->oxid); 2220 return; 2221 } 2222 2223 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2224 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2225 ctxp->flag |= LPFC_NVME_TNOTIFY; 2226 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2227 if (ctxp->ts_isr_cmd) 2228 ctxp->ts_cmd_nvme = ktime_get_ns(); 2229 #endif 2230 /* 2231 * The calling sequence should be: 2232 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2233 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2234 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2235 * the NVME command / FC header is stored. 2236 * A buffer has already been reposted for this IO, so just free 2237 * the nvmebuf. 2238 */ 2239 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req, 2240 payload, ctxp->size); 2241 /* Process FCP command */ 2242 if (rc == 0) { 2243 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2244 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2245 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) || 2246 (nvmebuf != ctxp->rqb_buffer)) { 2247 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2248 return; 2249 } 2250 ctxp->rqb_buffer = NULL; 2251 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2252 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2253 return; 2254 } 2255 2256 /* Processing of FCP command is deferred */ 2257 if (rc == -EOVERFLOW) { 2258 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2259 "from %06x\n", 2260 ctxp->oxid, ctxp->size, ctxp->sid); 2261 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2262 atomic_inc(&tgtp->defer_fod); 2263 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2264 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 2265 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2266 return; 2267 } 2268 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2269 /* 2270 * Post a replacement DMA buffer to RQ and defer 2271 * freeing rcv buffer till .defer_rcv callback 2272 */ 2273 qno = nvmebuf->idx; 2274 lpfc_post_rq_buffer( 2275 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2276 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2277 return; 2278 } 2279 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 2280 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2281 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2282 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2283 ctxp->oxid, rc, 2284 atomic_read(&tgtp->rcv_fcp_cmd_in), 2285 atomic_read(&tgtp->rcv_fcp_cmd_out), 2286 atomic_read(&tgtp->xmt_fcp_release)); 2287 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2288 ctxp->oxid, ctxp->size, ctxp->sid); 2289 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2290 lpfc_nvmet_defer_release(phba, ctxp); 2291 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2292 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2293 #endif 2294 } 2295 2296 static void 2297 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2298 { 2299 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2300 struct lpfc_nvmet_ctxbuf *ctx_buf = 2301 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2302 2303 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2304 #endif 2305 } 2306 2307 static struct lpfc_nvmet_ctxbuf * 2308 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2309 struct lpfc_nvmet_ctx_info *current_infop) 2310 { 2311 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2312 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2313 struct lpfc_nvmet_ctx_info *get_infop; 2314 int i; 2315 2316 /* 2317 * The current_infop for the MRQ a NVME command IU was received 2318 * on is empty. Our goal is to replenish this MRQs context 2319 * list from a another CPUs. 2320 * 2321 * First we need to pick a context list to start looking on. 2322 * nvmet_ctx_start_cpu has available context the last time 2323 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2324 * is just the next sequential CPU for this MRQ. 2325 */ 2326 if (current_infop->nvmet_ctx_start_cpu) 2327 get_infop = current_infop->nvmet_ctx_start_cpu; 2328 else 2329 get_infop = current_infop->nvmet_ctx_next_cpu; 2330 2331 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2332 if (get_infop == current_infop) { 2333 get_infop = get_infop->nvmet_ctx_next_cpu; 2334 continue; 2335 } 2336 spin_lock(&get_infop->nvmet_ctx_list_lock); 2337 2338 /* Just take the entire context list, if there are any */ 2339 if (get_infop->nvmet_ctx_list_cnt) { 2340 list_splice_init(&get_infop->nvmet_ctx_list, 2341 ¤t_infop->nvmet_ctx_list); 2342 current_infop->nvmet_ctx_list_cnt = 2343 get_infop->nvmet_ctx_list_cnt - 1; 2344 get_infop->nvmet_ctx_list_cnt = 0; 2345 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2346 2347 current_infop->nvmet_ctx_start_cpu = get_infop; 2348 list_remove_head(¤t_infop->nvmet_ctx_list, 2349 ctx_buf, struct lpfc_nvmet_ctxbuf, 2350 list); 2351 return ctx_buf; 2352 } 2353 2354 /* Otherwise, move on to the next CPU for this MRQ */ 2355 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2356 get_infop = get_infop->nvmet_ctx_next_cpu; 2357 } 2358 2359 #endif 2360 /* Nothing found, all contexts for the MRQ are in-flight */ 2361 return NULL; 2362 } 2363 2364 /** 2365 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2366 * @phba: pointer to lpfc hba data structure. 2367 * @idx: relative index of MRQ vector 2368 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2369 * @isr_timestamp: in jiffies. 2370 * @cqflag: cq processing information regarding workload. 2371 * 2372 * This routine is used for processing the WQE associated with a unsolicited 2373 * event. It first determines whether there is an existing ndlp that matches 2374 * the DID from the unsolicited WQE. If not, it will create a new one with 2375 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2376 * WQE is then used to invoke the proper routine and to set up proper state 2377 * of the discovery state machine. 2378 **/ 2379 static void 2380 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2381 uint32_t idx, 2382 struct rqb_dmabuf *nvmebuf, 2383 uint64_t isr_timestamp, 2384 uint8_t cqflag) 2385 { 2386 struct lpfc_async_xchg_ctx *ctxp; 2387 struct lpfc_nvmet_tgtport *tgtp; 2388 struct fc_frame_header *fc_hdr; 2389 struct lpfc_nvmet_ctxbuf *ctx_buf; 2390 struct lpfc_nvmet_ctx_info *current_infop; 2391 uint32_t size, oxid, sid, qno; 2392 unsigned long iflag; 2393 int current_cpu; 2394 2395 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2396 return; 2397 2398 ctx_buf = NULL; 2399 if (!nvmebuf || !phba->targetport) { 2400 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2401 "6157 NVMET FCP Drop IO\n"); 2402 if (nvmebuf) 2403 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2404 return; 2405 } 2406 2407 /* 2408 * Get a pointer to the context list for this MRQ based on 2409 * the CPU this MRQ IRQ is associated with. If the CPU association 2410 * changes from our initial assumption, the context list could 2411 * be empty, thus it would need to be replenished with the 2412 * context list from another CPU for this MRQ. 2413 */ 2414 current_cpu = raw_smp_processor_id(); 2415 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2416 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2417 if (current_infop->nvmet_ctx_list_cnt) { 2418 list_remove_head(¤t_infop->nvmet_ctx_list, 2419 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2420 current_infop->nvmet_ctx_list_cnt--; 2421 } else { 2422 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2423 } 2424 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2425 2426 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2427 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2428 size = nvmebuf->bytes_recv; 2429 2430 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2431 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 2432 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io); 2433 if (idx != current_cpu) 2434 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2435 "6703 CPU Check rcv: " 2436 "cpu %d expect %d\n", 2437 current_cpu, idx); 2438 } 2439 #endif 2440 2441 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2442 oxid, size, raw_smp_processor_id()); 2443 2444 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2445 2446 if (!ctx_buf) { 2447 /* Queue this NVME IO to process later */ 2448 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2449 list_add_tail(&nvmebuf->hbuf.list, 2450 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2451 phba->sli4_hba.nvmet_io_wait_cnt++; 2452 phba->sli4_hba.nvmet_io_wait_total++; 2453 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2454 iflag); 2455 2456 /* Post a brand new DMA buffer to RQ */ 2457 qno = nvmebuf->idx; 2458 lpfc_post_rq_buffer( 2459 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2460 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2461 2462 atomic_inc(&tgtp->defer_ctx); 2463 return; 2464 } 2465 2466 sid = sli4_sid_from_fc_hdr(fc_hdr); 2467 2468 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 2469 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2470 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2471 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2472 if (ctxp->state != LPFC_NVME_STE_FREE) { 2473 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2474 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2475 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2476 } 2477 ctxp->wqeq = NULL; 2478 ctxp->offset = 0; 2479 ctxp->phba = phba; 2480 ctxp->size = size; 2481 ctxp->oxid = oxid; 2482 ctxp->sid = sid; 2483 ctxp->idx = idx; 2484 ctxp->state = LPFC_NVME_STE_RCV; 2485 ctxp->entry_cnt = 1; 2486 ctxp->flag = 0; 2487 ctxp->ctxbuf = ctx_buf; 2488 ctxp->rqb_buffer = (void *)nvmebuf; 2489 ctxp->hdwq = NULL; 2490 spin_lock_init(&ctxp->ctxlock); 2491 2492 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2493 if (isr_timestamp) 2494 ctxp->ts_isr_cmd = isr_timestamp; 2495 ctxp->ts_cmd_nvme = 0; 2496 ctxp->ts_nvme_data = 0; 2497 ctxp->ts_data_wqput = 0; 2498 ctxp->ts_isr_data = 0; 2499 ctxp->ts_data_nvme = 0; 2500 ctxp->ts_nvme_status = 0; 2501 ctxp->ts_status_wqput = 0; 2502 ctxp->ts_isr_status = 0; 2503 ctxp->ts_status_nvme = 0; 2504 #endif 2505 2506 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2507 /* check for cq processing load */ 2508 if (!cqflag) { 2509 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2510 return; 2511 } 2512 2513 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2514 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2515 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2516 "6325 Unable to queue work for oxid x%x. " 2517 "FCP Drop IO [x%x x%x x%x]\n", 2518 ctxp->oxid, 2519 atomic_read(&tgtp->rcv_fcp_cmd_in), 2520 atomic_read(&tgtp->rcv_fcp_cmd_out), 2521 atomic_read(&tgtp->xmt_fcp_release)); 2522 2523 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2524 lpfc_nvmet_defer_release(phba, ctxp); 2525 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2526 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2527 } 2528 } 2529 2530 /** 2531 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2532 * @phba: pointer to lpfc hba data structure. 2533 * @idx: relative index of MRQ vector 2534 * @nvmebuf: pointer to received nvme data structure. 2535 * @isr_timestamp: in jiffies. 2536 * @cqflag: cq processing information regarding workload. 2537 * 2538 * This routine is used to process an unsolicited event received from a SLI 2539 * (Service Level Interface) ring. The actual processing of the data buffer 2540 * associated with the unsolicited event is done by invoking the routine 2541 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2542 * SLI RQ on which the unsolicited event was received. 2543 **/ 2544 void 2545 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2546 uint32_t idx, 2547 struct rqb_dmabuf *nvmebuf, 2548 uint64_t isr_timestamp, 2549 uint8_t cqflag) 2550 { 2551 if (!nvmebuf) { 2552 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2553 "3167 NVMET FCP Drop IO\n"); 2554 return; 2555 } 2556 if (phba->nvmet_support == 0) { 2557 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2558 return; 2559 } 2560 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2561 } 2562 2563 /** 2564 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2565 * @phba: pointer to a host N_Port data structure. 2566 * @ctxp: Context info for NVME LS Request 2567 * @rspbuf: DMA buffer of NVME command. 2568 * @rspsize: size of the NVME command. 2569 * 2570 * This routine is used for allocating a lpfc-WQE data structure from 2571 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2572 * passed into the routine for discovery state machine to issue an Extended 2573 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2574 * and preparation routine that is used by all the discovery state machine 2575 * routines and the NVME command-specific fields will be later set up by 2576 * the individual discovery machine routines after calling this routine 2577 * allocating and preparing a generic WQE data structure. It fills in the 2578 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2579 * payload and response payload (if expected). The reference count on the 2580 * ndlp is incremented by 1 and the reference to the ndlp is put into 2581 * context1 of the WQE data structure for this WQE to hold the ndlp 2582 * reference for the command's callback function to access later. 2583 * 2584 * Return code 2585 * Pointer to the newly allocated/prepared nvme wqe data structure 2586 * NULL - when nvme wqe data structure allocation/preparation failed 2587 **/ 2588 static struct lpfc_iocbq * 2589 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2590 struct lpfc_async_xchg_ctx *ctxp, 2591 dma_addr_t rspbuf, uint16_t rspsize) 2592 { 2593 struct lpfc_nodelist *ndlp; 2594 struct lpfc_iocbq *nvmewqe; 2595 union lpfc_wqe128 *wqe; 2596 2597 if (!lpfc_is_link_up(phba)) { 2598 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2599 "6104 NVMET prep LS wqe: link err: " 2600 "NPORT x%x oxid:x%x ste %d\n", 2601 ctxp->sid, ctxp->oxid, ctxp->state); 2602 return NULL; 2603 } 2604 2605 /* Allocate buffer for command wqe */ 2606 nvmewqe = lpfc_sli_get_iocbq(phba); 2607 if (nvmewqe == NULL) { 2608 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2609 "6105 NVMET prep LS wqe: No WQE: " 2610 "NPORT x%x oxid x%x ste %d\n", 2611 ctxp->sid, ctxp->oxid, ctxp->state); 2612 return NULL; 2613 } 2614 2615 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2616 if (!ndlp || 2617 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2618 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2619 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2620 "6106 NVMET prep LS wqe: No ndlp: " 2621 "NPORT x%x oxid x%x ste %d\n", 2622 ctxp->sid, ctxp->oxid, ctxp->state); 2623 goto nvme_wqe_free_wqeq_exit; 2624 } 2625 ctxp->wqeq = nvmewqe; 2626 2627 /* prevent preparing wqe with NULL ndlp reference */ 2628 nvmewqe->ndlp = lpfc_nlp_get(ndlp); 2629 if (!nvmewqe->ndlp) 2630 goto nvme_wqe_free_wqeq_exit; 2631 nvmewqe->context_un.axchg = ctxp; 2632 2633 wqe = &nvmewqe->wqe; 2634 memset(wqe, 0, sizeof(union lpfc_wqe)); 2635 2636 /* Words 0 - 2 */ 2637 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2638 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2639 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2640 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2641 2642 /* Word 3 */ 2643 2644 /* Word 4 */ 2645 2646 /* Word 5 */ 2647 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2648 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2649 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2650 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2651 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2652 2653 /* Word 6 */ 2654 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2655 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2656 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2657 2658 /* Word 7 */ 2659 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2660 CMD_XMIT_SEQUENCE64_WQE); 2661 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2662 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2663 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2664 2665 /* Word 8 */ 2666 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2667 2668 /* Word 9 */ 2669 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2670 /* Needs to be set by caller */ 2671 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2672 2673 /* Word 10 */ 2674 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2675 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2676 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2677 LPFC_WQE_LENLOC_WORD12); 2678 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2679 2680 /* Word 11 */ 2681 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2682 LPFC_WQE_CQ_ID_DEFAULT); 2683 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2684 OTHER_COMMAND); 2685 2686 /* Word 12 */ 2687 wqe->xmit_sequence.xmit_len = rspsize; 2688 2689 nvmewqe->retry = 1; 2690 nvmewqe->vport = phba->pport; 2691 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2692 nvmewqe->cmd_flag |= LPFC_IO_NVME_LS; 2693 2694 /* Xmit NVMET response to remote NPORT <did> */ 2695 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2696 "6039 Xmit NVMET LS response to remote " 2697 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2698 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2699 rspsize); 2700 return nvmewqe; 2701 2702 nvme_wqe_free_wqeq_exit: 2703 nvmewqe->context_un.axchg = NULL; 2704 nvmewqe->ndlp = NULL; 2705 nvmewqe->bpl_dmabuf = NULL; 2706 lpfc_sli_release_iocbq(phba, nvmewqe); 2707 return NULL; 2708 } 2709 2710 2711 static struct lpfc_iocbq * 2712 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2713 struct lpfc_async_xchg_ctx *ctxp) 2714 { 2715 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req; 2716 struct lpfc_nvmet_tgtport *tgtp; 2717 struct sli4_sge *sgl; 2718 struct lpfc_nodelist *ndlp; 2719 struct lpfc_iocbq *nvmewqe; 2720 struct scatterlist *sgel; 2721 union lpfc_wqe128 *wqe; 2722 struct ulp_bde64 *bde; 2723 dma_addr_t physaddr; 2724 int i, cnt, nsegs; 2725 bool use_pbde = false; 2726 int xc = 1; 2727 2728 if (!lpfc_is_link_up(phba)) { 2729 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2730 "6107 NVMET prep FCP wqe: link err:" 2731 "NPORT x%x oxid x%x ste %d\n", 2732 ctxp->sid, ctxp->oxid, ctxp->state); 2733 return NULL; 2734 } 2735 2736 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2737 if (!ndlp || 2738 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2739 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2740 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2741 "6108 NVMET prep FCP wqe: no ndlp: " 2742 "NPORT x%x oxid x%x ste %d\n", 2743 ctxp->sid, ctxp->oxid, ctxp->state); 2744 return NULL; 2745 } 2746 2747 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2748 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2749 "6109 NVMET prep FCP wqe: seg cnt err: " 2750 "NPORT x%x oxid x%x ste %d cnt %d\n", 2751 ctxp->sid, ctxp->oxid, ctxp->state, 2752 phba->cfg_nvme_seg_cnt); 2753 return NULL; 2754 } 2755 nsegs = rsp->sg_cnt; 2756 2757 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2758 nvmewqe = ctxp->wqeq; 2759 if (nvmewqe == NULL) { 2760 /* Allocate buffer for command wqe */ 2761 nvmewqe = ctxp->ctxbuf->iocbq; 2762 if (nvmewqe == NULL) { 2763 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2764 "6110 NVMET prep FCP wqe: No " 2765 "WQE: NPORT x%x oxid x%x ste %d\n", 2766 ctxp->sid, ctxp->oxid, ctxp->state); 2767 return NULL; 2768 } 2769 ctxp->wqeq = nvmewqe; 2770 xc = 0; /* create new XRI */ 2771 nvmewqe->sli4_lxritag = NO_XRI; 2772 nvmewqe->sli4_xritag = NO_XRI; 2773 } 2774 2775 /* Sanity check */ 2776 if (((ctxp->state == LPFC_NVME_STE_RCV) && 2777 (ctxp->entry_cnt == 1)) || 2778 (ctxp->state == LPFC_NVME_STE_DATA)) { 2779 wqe = &nvmewqe->wqe; 2780 } else { 2781 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2782 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2783 ctxp->state, ctxp->entry_cnt); 2784 return NULL; 2785 } 2786 2787 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2788 switch (rsp->op) { 2789 case NVMET_FCOP_READDATA: 2790 case NVMET_FCOP_READDATA_RSP: 2791 /* From the tsend template, initialize words 7 - 11 */ 2792 memcpy(&wqe->words[7], 2793 &lpfc_tsend_cmd_template.words[7], 2794 sizeof(uint32_t) * 5); 2795 2796 /* Words 0 - 2 : The first sg segment */ 2797 sgel = &rsp->sg[0]; 2798 physaddr = sg_dma_address(sgel); 2799 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2800 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2801 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2802 wqe->fcp_tsend.bde.addrHigh = 2803 cpu_to_le32(putPaddrHigh(physaddr)); 2804 2805 /* Word 3 */ 2806 wqe->fcp_tsend.payload_offset_len = 0; 2807 2808 /* Word 4 */ 2809 wqe->fcp_tsend.relative_offset = ctxp->offset; 2810 2811 /* Word 5 */ 2812 wqe->fcp_tsend.reserved = 0; 2813 2814 /* Word 6 */ 2815 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2816 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2817 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2818 nvmewqe->sli4_xritag); 2819 2820 /* Word 7 - set ar later */ 2821 2822 /* Word 8 */ 2823 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2824 2825 /* Word 9 */ 2826 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2827 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2828 2829 /* Word 10 - set wqes later, in template xc=1 */ 2830 if (!xc) 2831 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2832 2833 /* Word 12 */ 2834 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2835 2836 /* Setup 2 SKIP SGEs */ 2837 sgl->addr_hi = 0; 2838 sgl->addr_lo = 0; 2839 sgl->word2 = 0; 2840 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2841 sgl->word2 = cpu_to_le32(sgl->word2); 2842 sgl->sge_len = 0; 2843 sgl++; 2844 sgl->addr_hi = 0; 2845 sgl->addr_lo = 0; 2846 sgl->word2 = 0; 2847 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2848 sgl->word2 = cpu_to_le32(sgl->word2); 2849 sgl->sge_len = 0; 2850 sgl++; 2851 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2852 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2853 2854 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2855 2856 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2857 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2858 bf_set(wqe_sup, 2859 &wqe->fcp_tsend.wqe_com, 1); 2860 } else { 2861 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2862 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2863 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2864 ((rsp->rsplen >> 2) - 1)); 2865 memcpy(&wqe->words[16], rsp->rspaddr, 2866 rsp->rsplen); 2867 } 2868 } else { 2869 atomic_inc(&tgtp->xmt_fcp_read); 2870 2871 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2872 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2873 } 2874 break; 2875 2876 case NVMET_FCOP_WRITEDATA: 2877 /* From the treceive template, initialize words 3 - 11 */ 2878 memcpy(&wqe->words[3], 2879 &lpfc_treceive_cmd_template.words[3], 2880 sizeof(uint32_t) * 9); 2881 2882 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */ 2883 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP; 2884 wqe->fcp_treceive.bde.tus.f.bdeSize = 0; 2885 wqe->fcp_treceive.bde.addrLow = 0; 2886 wqe->fcp_treceive.bde.addrHigh = 0; 2887 2888 /* Word 4 */ 2889 wqe->fcp_treceive.relative_offset = ctxp->offset; 2890 2891 /* Word 6 */ 2892 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2893 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2894 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2895 nvmewqe->sli4_xritag); 2896 2897 /* Word 7 */ 2898 2899 /* Word 8 */ 2900 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2901 2902 /* Word 9 */ 2903 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2904 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2905 2906 /* Word 10 - in template xc=1 */ 2907 if (!xc) 2908 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2909 2910 /* Word 11 - check for pbde */ 2911 if (nsegs == 1 && phba->cfg_enable_pbde) { 2912 use_pbde = true; 2913 /* Word 11 - PBDE bit already preset by template */ 2914 } else { 2915 /* Overwrite default template setting */ 2916 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2917 } 2918 2919 /* Word 12 */ 2920 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2921 2922 /* Setup 2 SKIP SGEs */ 2923 sgl->addr_hi = 0; 2924 sgl->addr_lo = 0; 2925 sgl->word2 = 0; 2926 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2927 sgl->word2 = cpu_to_le32(sgl->word2); 2928 sgl->sge_len = 0; 2929 sgl++; 2930 sgl->addr_hi = 0; 2931 sgl->addr_lo = 0; 2932 sgl->word2 = 0; 2933 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2934 sgl->word2 = cpu_to_le32(sgl->word2); 2935 sgl->sge_len = 0; 2936 sgl++; 2937 atomic_inc(&tgtp->xmt_fcp_write); 2938 break; 2939 2940 case NVMET_FCOP_RSP: 2941 /* From the treceive template, initialize words 4 - 11 */ 2942 memcpy(&wqe->words[4], 2943 &lpfc_trsp_cmd_template.words[4], 2944 sizeof(uint32_t) * 8); 2945 2946 /* Words 0 - 2 */ 2947 physaddr = rsp->rspdma; 2948 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2949 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2950 wqe->fcp_trsp.bde.addrLow = 2951 cpu_to_le32(putPaddrLow(physaddr)); 2952 wqe->fcp_trsp.bde.addrHigh = 2953 cpu_to_le32(putPaddrHigh(physaddr)); 2954 2955 /* Word 3 */ 2956 wqe->fcp_trsp.response_len = rsp->rsplen; 2957 2958 /* Word 6 */ 2959 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2960 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2961 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2962 nvmewqe->sli4_xritag); 2963 2964 /* Word 7 */ 2965 2966 /* Word 8 */ 2967 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2968 2969 /* Word 9 */ 2970 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2971 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2972 2973 /* Word 10 */ 2974 if (xc) 2975 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2976 2977 /* Word 11 */ 2978 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2979 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2980 /* Bad response - embed it */ 2981 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2982 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2983 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2984 ((rsp->rsplen >> 2) - 1)); 2985 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2986 } 2987 2988 /* Word 12 */ 2989 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2990 2991 /* Use rspbuf, NOT sg list */ 2992 nsegs = 0; 2993 sgl->word2 = 0; 2994 atomic_inc(&tgtp->xmt_fcp_rsp); 2995 break; 2996 2997 default: 2998 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2999 "6064 Unknown Rsp Op %d\n", 3000 rsp->op); 3001 return NULL; 3002 } 3003 3004 nvmewqe->retry = 1; 3005 nvmewqe->vport = phba->pport; 3006 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 3007 nvmewqe->ndlp = ndlp; 3008 3009 for_each_sg(rsp->sg, sgel, nsegs, i) { 3010 physaddr = sg_dma_address(sgel); 3011 cnt = sg_dma_len(sgel); 3012 sgl->addr_hi = putPaddrHigh(physaddr); 3013 sgl->addr_lo = putPaddrLow(physaddr); 3014 sgl->word2 = 0; 3015 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 3016 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 3017 if ((i+1) == rsp->sg_cnt) 3018 bf_set(lpfc_sli4_sge_last, sgl, 1); 3019 sgl->word2 = cpu_to_le32(sgl->word2); 3020 sgl->sge_len = cpu_to_le32(cnt); 3021 sgl++; 3022 ctxp->offset += cnt; 3023 } 3024 3025 bde = (struct ulp_bde64 *)&wqe->words[13]; 3026 if (use_pbde) { 3027 /* decrement sgl ptr backwards once to first data sge */ 3028 sgl--; 3029 3030 /* Words 13-15 (PBDE) */ 3031 bde->addrLow = sgl->addr_lo; 3032 bde->addrHigh = sgl->addr_hi; 3033 bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 3034 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 3035 bde->tus.w = cpu_to_le32(bde->tus.w); 3036 } else { 3037 memset(bde, 0, sizeof(struct ulp_bde64)); 3038 } 3039 ctxp->state = LPFC_NVME_STE_DATA; 3040 ctxp->entry_cnt++; 3041 return nvmewqe; 3042 } 3043 3044 /** 3045 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 3046 * @phba: Pointer to HBA context object. 3047 * @cmdwqe: Pointer to driver command WQE object. 3048 * @rspwqe: Pointer to driver response WQE object. 3049 * 3050 * The function is called from SLI ring event handler with no 3051 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3052 * The function frees memory resources used for the NVME commands. 3053 **/ 3054 static void 3055 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3056 struct lpfc_iocbq *rspwqe) 3057 { 3058 struct lpfc_async_xchg_ctx *ctxp; 3059 struct lpfc_nvmet_tgtport *tgtp; 3060 uint32_t result; 3061 unsigned long flags; 3062 bool released = false; 3063 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3064 3065 ctxp = cmdwqe->context_un.axchg; 3066 result = wcqe->parameter; 3067 3068 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3069 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3070 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3071 3072 spin_lock_irqsave(&ctxp->ctxlock, flags); 3073 ctxp->state = LPFC_NVME_STE_DONE; 3074 3075 /* Check if we already received a free context call 3076 * and we have completed processing an abort situation. 3077 */ 3078 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3079 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3080 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3081 list_del_init(&ctxp->list); 3082 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3083 released = true; 3084 } 3085 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3086 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3087 atomic_inc(&tgtp->xmt_abort_rsp); 3088 3089 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3090 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 3091 "WCQE: %08x %08x %08x %08x\n", 3092 ctxp->oxid, ctxp->flag, released, 3093 wcqe->word0, wcqe->total_data_placed, 3094 result, wcqe->word3); 3095 3096 cmdwqe->rsp_dmabuf = NULL; 3097 cmdwqe->bpl_dmabuf = NULL; 3098 /* 3099 * if transport has released ctx, then can reuse it. Otherwise, 3100 * will be recycled by transport release call. 3101 */ 3102 if (released) 3103 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3104 3105 /* This is the iocbq for the abort, not the command */ 3106 lpfc_sli_release_iocbq(phba, cmdwqe); 3107 3108 /* Since iaab/iaar are NOT set, there is no work left. 3109 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3110 * should have been called already. 3111 */ 3112 } 3113 3114 /** 3115 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3116 * @phba: Pointer to HBA context object. 3117 * @cmdwqe: Pointer to driver command WQE object. 3118 * @rspwqe: Pointer to driver response WQE object. 3119 * 3120 * The function is called from SLI ring event handler with no 3121 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3122 * The function frees memory resources used for the NVME commands. 3123 **/ 3124 static void 3125 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3126 struct lpfc_iocbq *rspwqe) 3127 { 3128 struct lpfc_async_xchg_ctx *ctxp; 3129 struct lpfc_nvmet_tgtport *tgtp; 3130 unsigned long flags; 3131 uint32_t result; 3132 bool released = false; 3133 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3134 3135 ctxp = cmdwqe->context_un.axchg; 3136 result = wcqe->parameter; 3137 3138 if (!ctxp) { 3139 /* if context is clear, related io alrady complete */ 3140 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3141 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3142 wcqe->word0, wcqe->total_data_placed, 3143 result, wcqe->word3); 3144 return; 3145 } 3146 3147 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3148 spin_lock_irqsave(&ctxp->ctxlock, flags); 3149 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3150 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3151 3152 /* Sanity check */ 3153 if (ctxp->state != LPFC_NVME_STE_ABORT) { 3154 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3155 "6112 ABTS Wrong state:%d oxid x%x\n", 3156 ctxp->state, ctxp->oxid); 3157 } 3158 3159 /* Check if we already received a free context call 3160 * and we have completed processing an abort situation. 3161 */ 3162 ctxp->state = LPFC_NVME_STE_DONE; 3163 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3164 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3165 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3166 list_del_init(&ctxp->list); 3167 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3168 released = true; 3169 } 3170 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3171 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3172 atomic_inc(&tgtp->xmt_abort_rsp); 3173 3174 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3175 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3176 "WCQE: %08x %08x %08x %08x\n", 3177 ctxp->oxid, ctxp->flag, released, 3178 wcqe->word0, wcqe->total_data_placed, 3179 result, wcqe->word3); 3180 3181 cmdwqe->rsp_dmabuf = NULL; 3182 cmdwqe->bpl_dmabuf = NULL; 3183 /* 3184 * if transport has released ctx, then can reuse it. Otherwise, 3185 * will be recycled by transport release call. 3186 */ 3187 if (released) 3188 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3189 3190 /* Since iaab/iaar are NOT set, there is no work left. 3191 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3192 * should have been called already. 3193 */ 3194 } 3195 3196 /** 3197 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3198 * @phba: Pointer to HBA context object. 3199 * @cmdwqe: Pointer to driver command WQE object. 3200 * @rspwqe: Pointer to driver response WQE object. 3201 * 3202 * The function is called from SLI ring event handler with no 3203 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3204 * The function frees memory resources used for the NVME commands. 3205 **/ 3206 static void 3207 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3208 struct lpfc_iocbq *rspwqe) 3209 { 3210 struct lpfc_async_xchg_ctx *ctxp; 3211 struct lpfc_nvmet_tgtport *tgtp; 3212 uint32_t result; 3213 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3214 3215 ctxp = cmdwqe->context_un.axchg; 3216 result = wcqe->parameter; 3217 3218 if (phba->nvmet_support) { 3219 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3220 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3221 } 3222 3223 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3224 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n", 3225 ctxp, wcqe->word0, wcqe->total_data_placed, 3226 result, wcqe->word3); 3227 3228 if (!ctxp) { 3229 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3230 "6415 NVMET LS Abort No ctx: WCQE: " 3231 "%08x %08x %08x %08x\n", 3232 wcqe->word0, wcqe->total_data_placed, 3233 result, wcqe->word3); 3234 3235 lpfc_sli_release_iocbq(phba, cmdwqe); 3236 return; 3237 } 3238 3239 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) { 3240 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3241 "6416 NVMET LS abort cmpl state mismatch: " 3242 "oxid x%x: %d %d\n", 3243 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3244 } 3245 3246 cmdwqe->rsp_dmabuf = NULL; 3247 cmdwqe->bpl_dmabuf = NULL; 3248 lpfc_sli_release_iocbq(phba, cmdwqe); 3249 kfree(ctxp); 3250 } 3251 3252 static int 3253 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3254 struct lpfc_async_xchg_ctx *ctxp, 3255 uint32_t sid, uint16_t xri) 3256 { 3257 struct lpfc_nvmet_tgtport *tgtp = NULL; 3258 struct lpfc_iocbq *abts_wqeq; 3259 union lpfc_wqe128 *wqe_abts; 3260 struct lpfc_nodelist *ndlp; 3261 3262 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3263 "6067 ABTS: sid %x xri x%x/x%x\n", 3264 sid, xri, ctxp->wqeq->sli4_xritag); 3265 3266 if (phba->nvmet_support && phba->targetport) 3267 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3268 3269 ndlp = lpfc_findnode_did(phba->pport, sid); 3270 if (!ndlp || 3271 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3272 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3273 if (tgtp) 3274 atomic_inc(&tgtp->xmt_abort_rsp_error); 3275 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3276 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3277 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3278 3279 /* No failure to an ABTS request. */ 3280 return 0; 3281 } 3282 3283 abts_wqeq = ctxp->wqeq; 3284 wqe_abts = &abts_wqeq->wqe; 3285 3286 /* 3287 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3288 * that were initialized in lpfc_sli4_nvmet_alloc. 3289 */ 3290 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3291 3292 /* Word 5 */ 3293 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3294 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3295 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3296 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3297 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3298 3299 /* Word 6 */ 3300 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3301 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3302 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3303 abts_wqeq->sli4_xritag); 3304 3305 /* Word 7 */ 3306 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3307 CMD_XMIT_SEQUENCE64_WQE); 3308 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3309 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3310 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3311 3312 /* Word 8 */ 3313 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3314 3315 /* Word 9 */ 3316 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3317 /* Needs to be set by caller */ 3318 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3319 3320 /* Word 10 */ 3321 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3322 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3323 LPFC_WQE_LENLOC_WORD12); 3324 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3325 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3326 3327 /* Word 11 */ 3328 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3329 LPFC_WQE_CQ_ID_DEFAULT); 3330 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3331 OTHER_COMMAND); 3332 3333 abts_wqeq->vport = phba->pport; 3334 abts_wqeq->ndlp = ndlp; 3335 abts_wqeq->context_un.axchg = ctxp; 3336 abts_wqeq->bpl_dmabuf = NULL; 3337 abts_wqeq->num_bdes = 0; 3338 /* hba_wqidx should already be setup from command we are aborting */ 3339 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3340 abts_wqeq->iocb.ulpLe = 1; 3341 3342 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3343 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3344 xri, abts_wqeq->iotag); 3345 return 1; 3346 } 3347 3348 static int 3349 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3350 struct lpfc_async_xchg_ctx *ctxp, 3351 uint32_t sid, uint16_t xri) 3352 { 3353 struct lpfc_nvmet_tgtport *tgtp; 3354 struct lpfc_iocbq *abts_wqeq; 3355 struct lpfc_nodelist *ndlp; 3356 unsigned long flags; 3357 bool ia; 3358 int rc; 3359 3360 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3361 if (!ctxp->wqeq) { 3362 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3363 ctxp->wqeq->hba_wqidx = 0; 3364 } 3365 3366 ndlp = lpfc_findnode_did(phba->pport, sid); 3367 if (!ndlp || 3368 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3369 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3370 atomic_inc(&tgtp->xmt_abort_rsp_error); 3371 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3372 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3373 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3374 3375 /* No failure to an ABTS request. */ 3376 spin_lock_irqsave(&ctxp->ctxlock, flags); 3377 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3378 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3379 return 0; 3380 } 3381 3382 /* Issue ABTS for this WQE based on iotag */ 3383 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3384 spin_lock_irqsave(&ctxp->ctxlock, flags); 3385 if (!ctxp->abort_wqeq) { 3386 atomic_inc(&tgtp->xmt_abort_rsp_error); 3387 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3388 "6161 ABORT failed: No wqeqs: " 3389 "xri: x%x\n", ctxp->oxid); 3390 /* No failure to an ABTS request. */ 3391 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3392 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3393 return 0; 3394 } 3395 abts_wqeq = ctxp->abort_wqeq; 3396 ctxp->state = LPFC_NVME_STE_ABORT; 3397 ia = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? true : false; 3398 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3399 3400 /* Announce entry to new IO submit field. */ 3401 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3402 "6162 ABORT Request to rport DID x%06x " 3403 "for xri x%x x%x\n", 3404 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3405 3406 /* If the hba is getting reset, this flag is set. It is 3407 * cleared when the reset is complete and rings reestablished. 3408 */ 3409 /* driver queued commands are in process of being flushed */ 3410 if (test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) { 3411 atomic_inc(&tgtp->xmt_abort_rsp_error); 3412 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3413 "6163 Driver in reset cleanup - flushing " 3414 "NVME Req now. hba_flag x%lx oxid x%x\n", 3415 phba->hba_flag, ctxp->oxid); 3416 lpfc_sli_release_iocbq(phba, abts_wqeq); 3417 spin_lock_irqsave(&ctxp->ctxlock, flags); 3418 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3419 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3420 return 0; 3421 } 3422 3423 spin_lock_irqsave(&phba->hbalock, flags); 3424 /* Outstanding abort is in progress */ 3425 if (abts_wqeq->cmd_flag & LPFC_DRIVER_ABORTED) { 3426 spin_unlock_irqrestore(&phba->hbalock, flags); 3427 atomic_inc(&tgtp->xmt_abort_rsp_error); 3428 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3429 "6164 Outstanding NVME I/O Abort Request " 3430 "still pending on oxid x%x\n", 3431 ctxp->oxid); 3432 lpfc_sli_release_iocbq(phba, abts_wqeq); 3433 spin_lock_irqsave(&ctxp->ctxlock, flags); 3434 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3435 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3436 return 0; 3437 } 3438 3439 /* Ready - mark outstanding as aborted by driver. */ 3440 abts_wqeq->cmd_flag |= LPFC_DRIVER_ABORTED; 3441 3442 lpfc_sli_prep_abort_xri(phba, abts_wqeq, ctxp->wqeq->sli4_xritag, 3443 abts_wqeq->iotag, CLASS3, 3444 LPFC_WQE_CQ_ID_DEFAULT, ia, true); 3445 3446 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3447 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3448 abts_wqeq->cmd_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3449 abts_wqeq->cmd_flag |= LPFC_IO_NVME; 3450 abts_wqeq->context_un.axchg = ctxp; 3451 abts_wqeq->vport = phba->pport; 3452 if (!ctxp->hdwq) 3453 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3454 3455 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3456 spin_unlock_irqrestore(&phba->hbalock, flags); 3457 if (rc == WQE_SUCCESS) { 3458 atomic_inc(&tgtp->xmt_abort_sol); 3459 return 0; 3460 } 3461 3462 atomic_inc(&tgtp->xmt_abort_rsp_error); 3463 spin_lock_irqsave(&ctxp->ctxlock, flags); 3464 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3465 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3466 lpfc_sli_release_iocbq(phba, abts_wqeq); 3467 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3468 "6166 Failed ABORT issue_wqe with status x%x " 3469 "for oxid x%x.\n", 3470 rc, ctxp->oxid); 3471 return 1; 3472 } 3473 3474 static int 3475 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3476 struct lpfc_async_xchg_ctx *ctxp, 3477 uint32_t sid, uint16_t xri) 3478 { 3479 struct lpfc_nvmet_tgtport *tgtp; 3480 struct lpfc_iocbq *abts_wqeq; 3481 unsigned long flags; 3482 bool released = false; 3483 int rc; 3484 3485 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3486 if (!ctxp->wqeq) { 3487 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3488 ctxp->wqeq->hba_wqidx = 0; 3489 } 3490 3491 if (ctxp->state == LPFC_NVME_STE_FREE) { 3492 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3493 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3494 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3495 rc = WQE_BUSY; 3496 goto aerr; 3497 } 3498 ctxp->state = LPFC_NVME_STE_ABORT; 3499 ctxp->entry_cnt++; 3500 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3501 if (rc == 0) 3502 goto aerr; 3503 3504 spin_lock_irqsave(&phba->hbalock, flags); 3505 abts_wqeq = ctxp->wqeq; 3506 abts_wqeq->cmd_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3507 abts_wqeq->cmd_flag |= LPFC_IO_NVMET; 3508 if (!ctxp->hdwq) 3509 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3510 3511 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3512 spin_unlock_irqrestore(&phba->hbalock, flags); 3513 if (rc == WQE_SUCCESS) { 3514 return 0; 3515 } 3516 3517 aerr: 3518 spin_lock_irqsave(&ctxp->ctxlock, flags); 3519 if (ctxp->flag & LPFC_NVME_CTX_RLS) { 3520 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3521 list_del_init(&ctxp->list); 3522 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3523 released = true; 3524 } 3525 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS); 3526 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3527 3528 atomic_inc(&tgtp->xmt_abort_rsp_error); 3529 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3530 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3531 "(%x)\n", 3532 ctxp->oxid, rc, released); 3533 if (released) 3534 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3535 return 1; 3536 } 3537 3538 /** 3539 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received 3540 * via async frame receive where the frame is not handled. 3541 * @phba: pointer to adapter structure 3542 * @ctxp: pointer to the asynchronously received received sequence 3543 * @sid: address of the remote port to send the ABTS to 3544 * @xri: oxid value to for the ABTS (other side's exchange id). 3545 **/ 3546 int 3547 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba, 3548 struct lpfc_async_xchg_ctx *ctxp, 3549 uint32_t sid, uint16_t xri) 3550 { 3551 struct lpfc_nvmet_tgtport *tgtp = NULL; 3552 struct lpfc_iocbq *abts_wqeq; 3553 unsigned long flags; 3554 int rc; 3555 3556 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) || 3557 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3558 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3559 ctxp->entry_cnt++; 3560 } else { 3561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3562 "6418 NVMET LS abort state mismatch " 3563 "IO x%x: %d %d\n", 3564 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3565 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3566 } 3567 3568 if (phba->nvmet_support && phba->targetport) 3569 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3570 3571 if (!ctxp->wqeq) { 3572 /* Issue ABTS for this WQE based on iotag */ 3573 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3574 if (!ctxp->wqeq) { 3575 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3576 "6068 Abort failed: No wqeqs: " 3577 "xri: x%x\n", xri); 3578 /* No failure to an ABTS request. */ 3579 kfree(ctxp); 3580 return 0; 3581 } 3582 } 3583 abts_wqeq = ctxp->wqeq; 3584 3585 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3586 rc = WQE_BUSY; 3587 goto out; 3588 } 3589 3590 spin_lock_irqsave(&phba->hbalock, flags); 3591 abts_wqeq->cmd_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3592 abts_wqeq->cmd_flag |= LPFC_IO_NVME_LS; 3593 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3594 spin_unlock_irqrestore(&phba->hbalock, flags); 3595 if (rc == WQE_SUCCESS) { 3596 if (tgtp) 3597 atomic_inc(&tgtp->xmt_abort_unsol); 3598 return 0; 3599 } 3600 out: 3601 if (tgtp) 3602 atomic_inc(&tgtp->xmt_abort_rsp_error); 3603 abts_wqeq->rsp_dmabuf = NULL; 3604 abts_wqeq->bpl_dmabuf = NULL; 3605 lpfc_sli_release_iocbq(phba, abts_wqeq); 3606 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3607 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3608 return 1; 3609 } 3610 3611 /** 3612 * lpfc_nvmet_invalidate_host 3613 * 3614 * @phba: pointer to the driver instance bound to an adapter port. 3615 * @ndlp: pointer to an lpfc_nodelist type 3616 * 3617 * This routine upcalls the nvmet transport to invalidate an NVME 3618 * host to which this target instance had active connections. 3619 */ 3620 void 3621 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 3622 { 3623 u32 ndlp_has_hh; 3624 struct lpfc_nvmet_tgtport *tgtp; 3625 3626 lpfc_printf_log(phba, KERN_INFO, 3627 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3628 "6203 Invalidating hosthandle x%px\n", 3629 ndlp); 3630 3631 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3632 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE); 3633 3634 spin_lock_irq(&ndlp->lock); 3635 ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH; 3636 spin_unlock_irq(&ndlp->lock); 3637 3638 /* Do not invalidate any nodes that do not have a hosthandle. 3639 * The host_release callbk will cause a node reference 3640 * count imbalance and a crash. 3641 */ 3642 if (!ndlp_has_hh) { 3643 lpfc_printf_log(phba, KERN_INFO, 3644 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3645 "6204 Skip invalidate on node x%px DID x%x\n", 3646 ndlp, ndlp->nlp_DID); 3647 return; 3648 } 3649 3650 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 3651 /* Need to get the nvmet_fc_target_port pointer here.*/ 3652 nvmet_fc_invalidate_host(phba->targetport, ndlp); 3653 #endif 3654 } 3655