1 /******************************************************************* 2 * This file is part of the Emulex Linux Device Driver for * 3 * Fibre Channel Host Bus Adapters. * 4 * Copyright (C) 2017-2022 Broadcom. All Rights Reserved. The term * 5 * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * 6 * Copyright (C) 2004-2016 Emulex. All rights reserved. * 7 * EMULEX and SLI are trademarks of Emulex. * 8 * www.broadcom.com * 9 * Portions Copyright (C) 2004-2005 Christoph Hellwig * 10 * * 11 * This program is free software; you can redistribute it and/or * 12 * modify it under the terms of version 2 of the GNU General * 13 * Public License as published by the Free Software Foundation. * 14 * This program is distributed in the hope that it will be useful. * 15 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * 16 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * 17 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * 18 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * 19 * TO BE LEGALLY INVALID. See the GNU General Public License for * 20 * more details, a copy of which can be found in the file COPYING * 21 * included with this package. * 22 ********************************************************************/ 23 #include <linux/pci.h> 24 #include <linux/slab.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include <asm/unaligned.h> 28 #include <linux/crc-t10dif.h> 29 #include <net/checksum.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_device.h> 33 #include <scsi/scsi_eh.h> 34 #include <scsi/scsi_host.h> 35 #include <scsi/scsi_tcq.h> 36 #include <scsi/scsi_transport_fc.h> 37 #include <scsi/fc/fc_fs.h> 38 39 #include "lpfc_version.h" 40 #include "lpfc_hw4.h" 41 #include "lpfc_hw.h" 42 #include "lpfc_sli.h" 43 #include "lpfc_sli4.h" 44 #include "lpfc_nl.h" 45 #include "lpfc_disc.h" 46 #include "lpfc.h" 47 #include "lpfc_scsi.h" 48 #include "lpfc_nvme.h" 49 #include "lpfc_logmsg.h" 50 #include "lpfc_crtn.h" 51 #include "lpfc_vport.h" 52 #include "lpfc_debugfs.h" 53 54 static struct lpfc_iocbq *lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *, 55 struct lpfc_async_xchg_ctx *, 56 dma_addr_t rspbuf, 57 uint16_t rspsize); 58 static struct lpfc_iocbq *lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *, 59 struct lpfc_async_xchg_ctx *); 60 static int lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *, 61 struct lpfc_async_xchg_ctx *, 62 uint32_t, uint16_t); 63 static int lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *, 64 struct lpfc_async_xchg_ctx *, 65 uint32_t, uint16_t); 66 static void lpfc_nvmet_wqfull_flush(struct lpfc_hba *, struct lpfc_queue *, 67 struct lpfc_async_xchg_ctx *); 68 static void lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *); 69 70 static void lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf); 71 72 static union lpfc_wqe128 lpfc_tsend_cmd_template; 73 static union lpfc_wqe128 lpfc_treceive_cmd_template; 74 static union lpfc_wqe128 lpfc_trsp_cmd_template; 75 76 /* Setup WQE templates for NVME IOs */ 77 void 78 lpfc_nvmet_cmd_template(void) 79 { 80 union lpfc_wqe128 *wqe; 81 82 /* TSEND template */ 83 wqe = &lpfc_tsend_cmd_template; 84 memset(wqe, 0, sizeof(union lpfc_wqe128)); 85 86 /* Word 0, 1, 2 - BDE is variable */ 87 88 /* Word 3 - payload_offset_len is zero */ 89 90 /* Word 4 - relative_offset is variable */ 91 92 /* Word 5 - is zero */ 93 94 /* Word 6 - ctxt_tag, xri_tag is variable */ 95 96 /* Word 7 - wqe_ar is variable */ 97 bf_set(wqe_cmnd, &wqe->fcp_tsend.wqe_com, CMD_FCP_TSEND64_WQE); 98 bf_set(wqe_pu, &wqe->fcp_tsend.wqe_com, PARM_REL_OFF); 99 bf_set(wqe_class, &wqe->fcp_tsend.wqe_com, CLASS3); 100 bf_set(wqe_ct, &wqe->fcp_tsend.wqe_com, SLI4_CT_RPI); 101 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 1); 102 103 /* Word 8 - abort_tag is variable */ 104 105 /* Word 9 - reqtag, rcvoxid is variable */ 106 107 /* Word 10 - wqes, xc is variable */ 108 bf_set(wqe_xchg, &wqe->fcp_tsend.wqe_com, LPFC_NVME_XCHG); 109 bf_set(wqe_dbde, &wqe->fcp_tsend.wqe_com, 1); 110 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 0); 111 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 112 bf_set(wqe_iod, &wqe->fcp_tsend.wqe_com, LPFC_WQE_IOD_WRITE); 113 bf_set(wqe_lenloc, &wqe->fcp_tsend.wqe_com, LPFC_WQE_LENLOC_WORD12); 114 115 /* Word 11 - sup, irsp, irsplen is variable */ 116 bf_set(wqe_cmd_type, &wqe->fcp_tsend.wqe_com, FCP_COMMAND_TSEND); 117 bf_set(wqe_cqid, &wqe->fcp_tsend.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 118 bf_set(wqe_sup, &wqe->fcp_tsend.wqe_com, 0); 119 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 0); 120 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 0); 121 bf_set(wqe_pbde, &wqe->fcp_tsend.wqe_com, 0); 122 123 /* Word 12 - fcp_data_len is variable */ 124 125 /* Word 13, 14, 15 - PBDE is zero */ 126 127 /* TRECEIVE template */ 128 wqe = &lpfc_treceive_cmd_template; 129 memset(wqe, 0, sizeof(union lpfc_wqe128)); 130 131 /* Word 0, 1, 2 - BDE is variable */ 132 133 /* Word 3 */ 134 wqe->fcp_treceive.payload_offset_len = TXRDY_PAYLOAD_LEN; 135 136 /* Word 4 - relative_offset is variable */ 137 138 /* Word 5 - is zero */ 139 140 /* Word 6 - ctxt_tag, xri_tag is variable */ 141 142 /* Word 7 */ 143 bf_set(wqe_cmnd, &wqe->fcp_treceive.wqe_com, CMD_FCP_TRECEIVE64_WQE); 144 bf_set(wqe_pu, &wqe->fcp_treceive.wqe_com, PARM_REL_OFF); 145 bf_set(wqe_class, &wqe->fcp_treceive.wqe_com, CLASS3); 146 bf_set(wqe_ct, &wqe->fcp_treceive.wqe_com, SLI4_CT_RPI); 147 bf_set(wqe_ar, &wqe->fcp_treceive.wqe_com, 0); 148 149 /* Word 8 - abort_tag is variable */ 150 151 /* Word 9 - reqtag, rcvoxid is variable */ 152 153 /* Word 10 - xc is variable */ 154 bf_set(wqe_dbde, &wqe->fcp_treceive.wqe_com, 1); 155 bf_set(wqe_wqes, &wqe->fcp_treceive.wqe_com, 0); 156 bf_set(wqe_xchg, &wqe->fcp_treceive.wqe_com, LPFC_NVME_XCHG); 157 bf_set(wqe_iod, &wqe->fcp_treceive.wqe_com, LPFC_WQE_IOD_READ); 158 bf_set(wqe_lenloc, &wqe->fcp_treceive.wqe_com, LPFC_WQE_LENLOC_WORD12); 159 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 1); 160 161 /* Word 11 - pbde is variable */ 162 bf_set(wqe_cmd_type, &wqe->fcp_treceive.wqe_com, FCP_COMMAND_TRECEIVE); 163 bf_set(wqe_cqid, &wqe->fcp_treceive.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 164 bf_set(wqe_sup, &wqe->fcp_treceive.wqe_com, 0); 165 bf_set(wqe_irsp, &wqe->fcp_treceive.wqe_com, 0); 166 bf_set(wqe_irsplen, &wqe->fcp_treceive.wqe_com, 0); 167 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 1); 168 169 /* Word 12 - fcp_data_len is variable */ 170 171 /* Word 13, 14, 15 - PBDE is variable */ 172 173 /* TRSP template */ 174 wqe = &lpfc_trsp_cmd_template; 175 memset(wqe, 0, sizeof(union lpfc_wqe128)); 176 177 /* Word 0, 1, 2 - BDE is variable */ 178 179 /* Word 3 - response_len is variable */ 180 181 /* Word 4, 5 - is zero */ 182 183 /* Word 6 - ctxt_tag, xri_tag is variable */ 184 185 /* Word 7 */ 186 bf_set(wqe_cmnd, &wqe->fcp_trsp.wqe_com, CMD_FCP_TRSP64_WQE); 187 bf_set(wqe_pu, &wqe->fcp_trsp.wqe_com, PARM_UNUSED); 188 bf_set(wqe_class, &wqe->fcp_trsp.wqe_com, CLASS3); 189 bf_set(wqe_ct, &wqe->fcp_trsp.wqe_com, SLI4_CT_RPI); 190 bf_set(wqe_ag, &wqe->fcp_trsp.wqe_com, 1); /* wqe_ar */ 191 192 /* Word 8 - abort_tag is variable */ 193 194 /* Word 9 - reqtag is variable */ 195 196 /* Word 10 wqes, xc is variable */ 197 bf_set(wqe_dbde, &wqe->fcp_trsp.wqe_com, 1); 198 bf_set(wqe_xchg, &wqe->fcp_trsp.wqe_com, LPFC_NVME_XCHG); 199 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 0); 200 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 0); 201 bf_set(wqe_iod, &wqe->fcp_trsp.wqe_com, LPFC_WQE_IOD_NONE); 202 bf_set(wqe_lenloc, &wqe->fcp_trsp.wqe_com, LPFC_WQE_LENLOC_WORD3); 203 204 /* Word 11 irsp, irsplen is variable */ 205 bf_set(wqe_cmd_type, &wqe->fcp_trsp.wqe_com, FCP_COMMAND_TRSP); 206 bf_set(wqe_cqid, &wqe->fcp_trsp.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 207 bf_set(wqe_sup, &wqe->fcp_trsp.wqe_com, 0); 208 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 0); 209 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 0); 210 bf_set(wqe_pbde, &wqe->fcp_trsp.wqe_com, 0); 211 212 /* Word 12, 13, 14, 15 - is zero */ 213 } 214 215 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 216 static struct lpfc_async_xchg_ctx * 217 lpfc_nvmet_get_ctx_for_xri(struct lpfc_hba *phba, u16 xri) 218 { 219 struct lpfc_async_xchg_ctx *ctxp; 220 unsigned long iflag; 221 bool found = false; 222 223 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 224 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 225 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 226 continue; 227 228 found = true; 229 break; 230 } 231 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 232 if (found) 233 return ctxp; 234 235 return NULL; 236 } 237 238 static struct lpfc_async_xchg_ctx * 239 lpfc_nvmet_get_ctx_for_oxid(struct lpfc_hba *phba, u16 oxid, u32 sid) 240 { 241 struct lpfc_async_xchg_ctx *ctxp; 242 unsigned long iflag; 243 bool found = false; 244 245 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 246 list_for_each_entry(ctxp, &phba->sli4_hba.t_active_ctx_list, list) { 247 if (ctxp->oxid != oxid || ctxp->sid != sid) 248 continue; 249 250 found = true; 251 break; 252 } 253 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 254 if (found) 255 return ctxp; 256 257 return NULL; 258 } 259 #endif 260 261 static void 262 lpfc_nvmet_defer_release(struct lpfc_hba *phba, 263 struct lpfc_async_xchg_ctx *ctxp) 264 { 265 lockdep_assert_held(&ctxp->ctxlock); 266 267 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 268 "6313 NVMET Defer ctx release oxid x%x flg x%x\n", 269 ctxp->oxid, ctxp->flag); 270 271 if (ctxp->flag & LPFC_NVME_CTX_RLS) 272 return; 273 274 ctxp->flag |= LPFC_NVME_CTX_RLS; 275 spin_lock(&phba->sli4_hba.t_active_list_lock); 276 list_del(&ctxp->list); 277 spin_unlock(&phba->sli4_hba.t_active_list_lock); 278 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 279 list_add_tail(&ctxp->list, &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); 280 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 281 } 282 283 /** 284 * __lpfc_nvme_xmt_ls_rsp_cmp - Generic completion handler for the 285 * transmission of an NVME LS response. 286 * @phba: Pointer to HBA context object. 287 * @cmdwqe: Pointer to driver command WQE object. 288 * @rspwqe: Pointer to driver response WQE object. 289 * 290 * The function is called from SLI ring event handler with no 291 * lock held. The function frees memory resources used for the command 292 * used to send the NVME LS RSP. 293 **/ 294 void 295 __lpfc_nvme_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 296 struct lpfc_iocbq *rspwqe) 297 { 298 struct lpfc_async_xchg_ctx *axchg = cmdwqe->context2; 299 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 300 struct nvmefc_ls_rsp *ls_rsp = &axchg->ls_rsp; 301 uint32_t status, result; 302 303 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 304 result = wcqe->parameter; 305 306 if (axchg->state != LPFC_NVME_STE_LS_RSP || axchg->entry_cnt != 2) { 307 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 308 "6410 NVMEx LS cmpl state mismatch IO x%x: " 309 "%d %d\n", 310 axchg->oxid, axchg->state, axchg->entry_cnt); 311 } 312 313 lpfc_nvmeio_data(phba, "NVMEx LS CMPL: xri x%x stat x%x result x%x\n", 314 axchg->oxid, status, result); 315 316 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 317 "6038 NVMEx LS rsp cmpl: %d %d oxid x%x\n", 318 status, result, axchg->oxid); 319 320 lpfc_nlp_put(cmdwqe->context1); 321 cmdwqe->context2 = NULL; 322 cmdwqe->context3 = NULL; 323 lpfc_sli_release_iocbq(phba, cmdwqe); 324 ls_rsp->done(ls_rsp); 325 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 326 "6200 NVMEx LS rsp cmpl done status %d oxid x%x\n", 327 status, axchg->oxid); 328 kfree(axchg); 329 } 330 331 /** 332 * lpfc_nvmet_xmt_ls_rsp_cmp - Completion handler for LS Response 333 * @phba: Pointer to HBA context object. 334 * @cmdwqe: Pointer to driver command WQE object. 335 * @rspwqe: Pointer to driver response WQE object. 336 * 337 * The function is called from SLI ring event handler with no 338 * lock held. This function is the completion handler for NVME LS commands 339 * The function updates any states and statistics, then calls the 340 * generic completion handler to free resources. 341 **/ 342 static void 343 lpfc_nvmet_xmt_ls_rsp_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 344 struct lpfc_iocbq *rspwqe) 345 { 346 struct lpfc_nvmet_tgtport *tgtp; 347 uint32_t status, result; 348 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 349 350 if (!phba->targetport) 351 goto finish; 352 353 status = bf_get(lpfc_wcqe_c_status, wcqe) & LPFC_IOCB_STATUS_MASK; 354 result = wcqe->parameter; 355 356 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 357 if (tgtp) { 358 if (status) { 359 atomic_inc(&tgtp->xmt_ls_rsp_error); 360 if (result == IOERR_ABORT_REQUESTED) 361 atomic_inc(&tgtp->xmt_ls_rsp_aborted); 362 if (bf_get(lpfc_wcqe_c_xb, wcqe)) 363 atomic_inc(&tgtp->xmt_ls_rsp_xb_set); 364 } else { 365 atomic_inc(&tgtp->xmt_ls_rsp_cmpl); 366 } 367 } 368 369 finish: 370 __lpfc_nvme_xmt_ls_rsp_cmp(phba, cmdwqe, rspwqe); 371 } 372 373 /** 374 * lpfc_nvmet_ctxbuf_post - Repost a NVMET RQ DMA buffer and clean up context 375 * @phba: HBA buffer is associated with 376 * @ctx_buf: ctx buffer context 377 * 378 * Description: Frees the given DMA buffer in the appropriate way given by 379 * reposting it to its associated RQ so it can be reused. 380 * 381 * Notes: Takes phba->hbalock. Can be called with or without other locks held. 382 * 383 * Returns: None 384 **/ 385 void 386 lpfc_nvmet_ctxbuf_post(struct lpfc_hba *phba, struct lpfc_nvmet_ctxbuf *ctx_buf) 387 { 388 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 389 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 390 struct lpfc_nvmet_tgtport *tgtp; 391 struct fc_frame_header *fc_hdr; 392 struct rqb_dmabuf *nvmebuf; 393 struct lpfc_nvmet_ctx_info *infop; 394 uint32_t size, oxid, sid; 395 int cpu; 396 unsigned long iflag; 397 398 if (ctxp->state == LPFC_NVME_STE_FREE) { 399 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 400 "6411 NVMET free, already free IO x%x: %d %d\n", 401 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 402 } 403 404 if (ctxp->rqb_buffer) { 405 spin_lock_irqsave(&ctxp->ctxlock, iflag); 406 nvmebuf = ctxp->rqb_buffer; 407 /* check if freed in another path whilst acquiring lock */ 408 if (nvmebuf) { 409 ctxp->rqb_buffer = NULL; 410 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 411 ctxp->flag &= ~LPFC_NVME_CTX_REUSE_WQ; 412 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 413 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, 414 nvmebuf); 415 } else { 416 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 417 /* repost */ 418 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 419 } 420 } else { 421 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 422 } 423 } 424 ctxp->state = LPFC_NVME_STE_FREE; 425 426 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 427 if (phba->sli4_hba.nvmet_io_wait_cnt) { 428 list_remove_head(&phba->sli4_hba.lpfc_nvmet_io_wait_list, 429 nvmebuf, struct rqb_dmabuf, 430 hbuf.list); 431 phba->sli4_hba.nvmet_io_wait_cnt--; 432 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 433 iflag); 434 435 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 436 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 437 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 438 size = nvmebuf->bytes_recv; 439 sid = sli4_sid_from_fc_hdr(fc_hdr); 440 441 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 442 ctxp->wqeq = NULL; 443 ctxp->offset = 0; 444 ctxp->phba = phba; 445 ctxp->size = size; 446 ctxp->oxid = oxid; 447 ctxp->sid = sid; 448 ctxp->state = LPFC_NVME_STE_RCV; 449 ctxp->entry_cnt = 1; 450 ctxp->flag = 0; 451 ctxp->ctxbuf = ctx_buf; 452 ctxp->rqb_buffer = (void *)nvmebuf; 453 spin_lock_init(&ctxp->ctxlock); 454 455 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 456 /* NOTE: isr time stamp is stale when context is re-assigned*/ 457 if (ctxp->ts_isr_cmd) { 458 ctxp->ts_cmd_nvme = 0; 459 ctxp->ts_nvme_data = 0; 460 ctxp->ts_data_wqput = 0; 461 ctxp->ts_isr_data = 0; 462 ctxp->ts_data_nvme = 0; 463 ctxp->ts_nvme_status = 0; 464 ctxp->ts_status_wqput = 0; 465 ctxp->ts_isr_status = 0; 466 ctxp->ts_status_nvme = 0; 467 } 468 #endif 469 atomic_inc(&tgtp->rcv_fcp_cmd_in); 470 471 /* Indicate that a replacement buffer has been posted */ 472 spin_lock_irqsave(&ctxp->ctxlock, iflag); 473 ctxp->flag |= LPFC_NVME_CTX_REUSE_WQ; 474 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 475 476 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 477 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 478 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 479 "6181 Unable to queue deferred work " 480 "for oxid x%x. " 481 "FCP Drop IO [x%x x%x x%x]\n", 482 ctxp->oxid, 483 atomic_read(&tgtp->rcv_fcp_cmd_in), 484 atomic_read(&tgtp->rcv_fcp_cmd_out), 485 atomic_read(&tgtp->xmt_fcp_release)); 486 487 spin_lock_irqsave(&ctxp->ctxlock, iflag); 488 lpfc_nvmet_defer_release(phba, ctxp); 489 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 490 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 491 } 492 return; 493 } 494 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 495 496 /* 497 * Use the CPU context list, from the MRQ the IO was received on 498 * (ctxp->idx), to save context structure. 499 */ 500 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 501 list_del_init(&ctxp->list); 502 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 503 cpu = raw_smp_processor_id(); 504 infop = lpfc_get_ctx_list(phba, cpu, ctxp->idx); 505 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, iflag); 506 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 507 infop->nvmet_ctx_list_cnt++; 508 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, iflag); 509 #endif 510 } 511 512 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 513 static void 514 lpfc_nvmet_ktime(struct lpfc_hba *phba, 515 struct lpfc_async_xchg_ctx *ctxp) 516 { 517 uint64_t seg1, seg2, seg3, seg4, seg5; 518 uint64_t seg6, seg7, seg8, seg9, seg10; 519 uint64_t segsum; 520 521 if (!ctxp->ts_isr_cmd || !ctxp->ts_cmd_nvme || 522 !ctxp->ts_nvme_data || !ctxp->ts_data_wqput || 523 !ctxp->ts_isr_data || !ctxp->ts_data_nvme || 524 !ctxp->ts_nvme_status || !ctxp->ts_status_wqput || 525 !ctxp->ts_isr_status || !ctxp->ts_status_nvme) 526 return; 527 528 if (ctxp->ts_status_nvme < ctxp->ts_isr_cmd) 529 return; 530 if (ctxp->ts_isr_cmd > ctxp->ts_cmd_nvme) 531 return; 532 if (ctxp->ts_cmd_nvme > ctxp->ts_nvme_data) 533 return; 534 if (ctxp->ts_nvme_data > ctxp->ts_data_wqput) 535 return; 536 if (ctxp->ts_data_wqput > ctxp->ts_isr_data) 537 return; 538 if (ctxp->ts_isr_data > ctxp->ts_data_nvme) 539 return; 540 if (ctxp->ts_data_nvme > ctxp->ts_nvme_status) 541 return; 542 if (ctxp->ts_nvme_status > ctxp->ts_status_wqput) 543 return; 544 if (ctxp->ts_status_wqput > ctxp->ts_isr_status) 545 return; 546 if (ctxp->ts_isr_status > ctxp->ts_status_nvme) 547 return; 548 /* 549 * Segment 1 - Time from FCP command received by MSI-X ISR 550 * to FCP command is passed to NVME Layer. 551 * Segment 2 - Time from FCP command payload handed 552 * off to NVME Layer to Driver receives a Command op 553 * from NVME Layer. 554 * Segment 3 - Time from Driver receives a Command op 555 * from NVME Layer to Command is put on WQ. 556 * Segment 4 - Time from Driver WQ put is done 557 * to MSI-X ISR for Command cmpl. 558 * Segment 5 - Time from MSI-X ISR for Command cmpl to 559 * Command cmpl is passed to NVME Layer. 560 * Segment 6 - Time from Command cmpl is passed to NVME 561 * Layer to Driver receives a RSP op from NVME Layer. 562 * Segment 7 - Time from Driver receives a RSP op from 563 * NVME Layer to WQ put is done on TRSP FCP Status. 564 * Segment 8 - Time from Driver WQ put is done on TRSP 565 * FCP Status to MSI-X ISR for TRSP cmpl. 566 * Segment 9 - Time from MSI-X ISR for TRSP cmpl to 567 * TRSP cmpl is passed to NVME Layer. 568 * Segment 10 - Time from FCP command received by 569 * MSI-X ISR to command is completed on wire. 570 * (Segments 1 thru 8) for READDATA / WRITEDATA 571 * (Segments 1 thru 4) for READDATA_RSP 572 */ 573 seg1 = ctxp->ts_cmd_nvme - ctxp->ts_isr_cmd; 574 segsum = seg1; 575 576 seg2 = ctxp->ts_nvme_data - ctxp->ts_isr_cmd; 577 if (segsum > seg2) 578 return; 579 seg2 -= segsum; 580 segsum += seg2; 581 582 seg3 = ctxp->ts_data_wqput - ctxp->ts_isr_cmd; 583 if (segsum > seg3) 584 return; 585 seg3 -= segsum; 586 segsum += seg3; 587 588 seg4 = ctxp->ts_isr_data - ctxp->ts_isr_cmd; 589 if (segsum > seg4) 590 return; 591 seg4 -= segsum; 592 segsum += seg4; 593 594 seg5 = ctxp->ts_data_nvme - ctxp->ts_isr_cmd; 595 if (segsum > seg5) 596 return; 597 seg5 -= segsum; 598 segsum += seg5; 599 600 601 /* For auto rsp commands seg6 thru seg10 will be 0 */ 602 if (ctxp->ts_nvme_status > ctxp->ts_data_nvme) { 603 seg6 = ctxp->ts_nvme_status - ctxp->ts_isr_cmd; 604 if (segsum > seg6) 605 return; 606 seg6 -= segsum; 607 segsum += seg6; 608 609 seg7 = ctxp->ts_status_wqput - ctxp->ts_isr_cmd; 610 if (segsum > seg7) 611 return; 612 seg7 -= segsum; 613 segsum += seg7; 614 615 seg8 = ctxp->ts_isr_status - ctxp->ts_isr_cmd; 616 if (segsum > seg8) 617 return; 618 seg8 -= segsum; 619 segsum += seg8; 620 621 seg9 = ctxp->ts_status_nvme - ctxp->ts_isr_cmd; 622 if (segsum > seg9) 623 return; 624 seg9 -= segsum; 625 segsum += seg9; 626 627 if (ctxp->ts_isr_status < ctxp->ts_isr_cmd) 628 return; 629 seg10 = (ctxp->ts_isr_status - 630 ctxp->ts_isr_cmd); 631 } else { 632 if (ctxp->ts_isr_data < ctxp->ts_isr_cmd) 633 return; 634 seg6 = 0; 635 seg7 = 0; 636 seg8 = 0; 637 seg9 = 0; 638 seg10 = (ctxp->ts_isr_data - ctxp->ts_isr_cmd); 639 } 640 641 phba->ktime_seg1_total += seg1; 642 if (seg1 < phba->ktime_seg1_min) 643 phba->ktime_seg1_min = seg1; 644 else if (seg1 > phba->ktime_seg1_max) 645 phba->ktime_seg1_max = seg1; 646 647 phba->ktime_seg2_total += seg2; 648 if (seg2 < phba->ktime_seg2_min) 649 phba->ktime_seg2_min = seg2; 650 else if (seg2 > phba->ktime_seg2_max) 651 phba->ktime_seg2_max = seg2; 652 653 phba->ktime_seg3_total += seg3; 654 if (seg3 < phba->ktime_seg3_min) 655 phba->ktime_seg3_min = seg3; 656 else if (seg3 > phba->ktime_seg3_max) 657 phba->ktime_seg3_max = seg3; 658 659 phba->ktime_seg4_total += seg4; 660 if (seg4 < phba->ktime_seg4_min) 661 phba->ktime_seg4_min = seg4; 662 else if (seg4 > phba->ktime_seg4_max) 663 phba->ktime_seg4_max = seg4; 664 665 phba->ktime_seg5_total += seg5; 666 if (seg5 < phba->ktime_seg5_min) 667 phba->ktime_seg5_min = seg5; 668 else if (seg5 > phba->ktime_seg5_max) 669 phba->ktime_seg5_max = seg5; 670 671 phba->ktime_data_samples++; 672 if (!seg6) 673 goto out; 674 675 phba->ktime_seg6_total += seg6; 676 if (seg6 < phba->ktime_seg6_min) 677 phba->ktime_seg6_min = seg6; 678 else if (seg6 > phba->ktime_seg6_max) 679 phba->ktime_seg6_max = seg6; 680 681 phba->ktime_seg7_total += seg7; 682 if (seg7 < phba->ktime_seg7_min) 683 phba->ktime_seg7_min = seg7; 684 else if (seg7 > phba->ktime_seg7_max) 685 phba->ktime_seg7_max = seg7; 686 687 phba->ktime_seg8_total += seg8; 688 if (seg8 < phba->ktime_seg8_min) 689 phba->ktime_seg8_min = seg8; 690 else if (seg8 > phba->ktime_seg8_max) 691 phba->ktime_seg8_max = seg8; 692 693 phba->ktime_seg9_total += seg9; 694 if (seg9 < phba->ktime_seg9_min) 695 phba->ktime_seg9_min = seg9; 696 else if (seg9 > phba->ktime_seg9_max) 697 phba->ktime_seg9_max = seg9; 698 out: 699 phba->ktime_seg10_total += seg10; 700 if (seg10 < phba->ktime_seg10_min) 701 phba->ktime_seg10_min = seg10; 702 else if (seg10 > phba->ktime_seg10_max) 703 phba->ktime_seg10_max = seg10; 704 phba->ktime_status_samples++; 705 } 706 #endif 707 708 /** 709 * lpfc_nvmet_xmt_fcp_op_cmp - Completion handler for FCP Response 710 * @phba: Pointer to HBA context object. 711 * @cmdwqe: Pointer to driver command WQE object. 712 * @rspwqe: Pointer to driver response WQE object. 713 * 714 * The function is called from SLI ring event handler with no 715 * lock held. This function is the completion handler for NVME FCP commands 716 * The function frees memory resources used for the NVME commands. 717 **/ 718 static void 719 lpfc_nvmet_xmt_fcp_op_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 720 struct lpfc_iocbq *rspwqe) 721 { 722 struct lpfc_nvmet_tgtport *tgtp; 723 struct nvmefc_tgt_fcp_req *rsp; 724 struct lpfc_async_xchg_ctx *ctxp; 725 uint32_t status, result, op, start_clean, logerr; 726 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 727 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 728 int id; 729 #endif 730 731 ctxp = cmdwqe->context2; 732 ctxp->flag &= ~LPFC_NVME_IO_INP; 733 734 rsp = &ctxp->hdlrctx.fcp_req; 735 op = rsp->op; 736 737 status = bf_get(lpfc_wcqe_c_status, wcqe); 738 result = wcqe->parameter; 739 740 if (phba->targetport) 741 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 742 else 743 tgtp = NULL; 744 745 lpfc_nvmeio_data(phba, "NVMET FCP CMPL: xri x%x op x%x status x%x\n", 746 ctxp->oxid, op, status); 747 748 if (status) { 749 rsp->fcp_error = NVME_SC_DATA_XFER_ERROR; 750 rsp->transferred_length = 0; 751 if (tgtp) { 752 atomic_inc(&tgtp->xmt_fcp_rsp_error); 753 if (result == IOERR_ABORT_REQUESTED) 754 atomic_inc(&tgtp->xmt_fcp_rsp_aborted); 755 } 756 757 logerr = LOG_NVME_IOERR; 758 759 /* pick up SLI4 exhange busy condition */ 760 if (bf_get(lpfc_wcqe_c_xb, wcqe)) { 761 ctxp->flag |= LPFC_NVME_XBUSY; 762 logerr |= LOG_NVME_ABTS; 763 if (tgtp) 764 atomic_inc(&tgtp->xmt_fcp_rsp_xb_set); 765 766 } else { 767 ctxp->flag &= ~LPFC_NVME_XBUSY; 768 } 769 770 lpfc_printf_log(phba, KERN_INFO, logerr, 771 "6315 IO Error Cmpl oxid: x%x xri: x%x %x/%x " 772 "XBUSY:x%x\n", 773 ctxp->oxid, ctxp->ctxbuf->sglq->sli4_xritag, 774 status, result, ctxp->flag); 775 776 } else { 777 rsp->fcp_error = NVME_SC_SUCCESS; 778 if (op == NVMET_FCOP_RSP) 779 rsp->transferred_length = rsp->rsplen; 780 else 781 rsp->transferred_length = rsp->transfer_length; 782 if (tgtp) 783 atomic_inc(&tgtp->xmt_fcp_rsp_cmpl); 784 } 785 786 if ((op == NVMET_FCOP_READDATA_RSP) || 787 (op == NVMET_FCOP_RSP)) { 788 /* Sanity check */ 789 ctxp->state = LPFC_NVME_STE_DONE; 790 ctxp->entry_cnt++; 791 792 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 793 if (ctxp->ts_cmd_nvme) { 794 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 795 ctxp->ts_isr_data = 796 cmdwqe->isr_timestamp; 797 ctxp->ts_data_nvme = 798 ktime_get_ns(); 799 ctxp->ts_nvme_status = 800 ctxp->ts_data_nvme; 801 ctxp->ts_status_wqput = 802 ctxp->ts_data_nvme; 803 ctxp->ts_isr_status = 804 ctxp->ts_data_nvme; 805 ctxp->ts_status_nvme = 806 ctxp->ts_data_nvme; 807 } else { 808 ctxp->ts_isr_status = 809 cmdwqe->isr_timestamp; 810 ctxp->ts_status_nvme = 811 ktime_get_ns(); 812 } 813 } 814 #endif 815 rsp->done(rsp); 816 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 817 if (ctxp->ts_cmd_nvme) 818 lpfc_nvmet_ktime(phba, ctxp); 819 #endif 820 /* lpfc_nvmet_xmt_fcp_release() will recycle the context */ 821 } else { 822 ctxp->entry_cnt++; 823 start_clean = offsetof(struct lpfc_iocbq, cmd_flag); 824 memset(((char *)cmdwqe) + start_clean, 0, 825 (sizeof(struct lpfc_iocbq) - start_clean)); 826 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 827 if (ctxp->ts_cmd_nvme) { 828 ctxp->ts_isr_data = cmdwqe->isr_timestamp; 829 ctxp->ts_data_nvme = ktime_get_ns(); 830 } 831 #endif 832 rsp->done(rsp); 833 } 834 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 835 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 836 id = raw_smp_processor_id(); 837 this_cpu_inc(phba->sli4_hba.c_stat->cmpl_io); 838 if (ctxp->cpu != id) 839 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 840 "6704 CPU Check cmdcmpl: " 841 "cpu %d expect %d\n", 842 id, ctxp->cpu); 843 } 844 #endif 845 } 846 847 /** 848 * __lpfc_nvme_xmt_ls_rsp - Generic service routine to issue transmit 849 * an NVME LS rsp for a prior NVME LS request that was received. 850 * @axchg: pointer to exchange context for the NVME LS request the response 851 * is for. 852 * @ls_rsp: pointer to the transport LS RSP that is to be sent 853 * @xmt_ls_rsp_cmp: completion routine to call upon RSP transmit done 854 * 855 * This routine is used to format and send a WQE to transmit a NVME LS 856 * Response. The response is for a prior NVME LS request that was 857 * received and posted to the transport. 858 * 859 * Returns: 860 * 0 : if response successfully transmit 861 * non-zero : if response failed to transmit, of the form -Exxx. 862 **/ 863 int 864 __lpfc_nvme_xmt_ls_rsp(struct lpfc_async_xchg_ctx *axchg, 865 struct nvmefc_ls_rsp *ls_rsp, 866 void (*xmt_ls_rsp_cmp)(struct lpfc_hba *phba, 867 struct lpfc_iocbq *cmdwqe, 868 struct lpfc_iocbq *rspwqe)) 869 { 870 struct lpfc_hba *phba = axchg->phba; 871 struct hbq_dmabuf *nvmebuf = (struct hbq_dmabuf *)axchg->rqb_buffer; 872 struct lpfc_iocbq *nvmewqeq; 873 struct lpfc_dmabuf dmabuf; 874 struct ulp_bde64 bpl; 875 int rc; 876 877 if (phba->pport->load_flag & FC_UNLOADING) 878 return -ENODEV; 879 880 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 881 "6023 NVMEx LS rsp oxid x%x\n", axchg->oxid); 882 883 if (axchg->state != LPFC_NVME_STE_LS_RCV || axchg->entry_cnt != 1) { 884 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 885 "6412 NVMEx LS rsp state mismatch " 886 "oxid x%x: %d %d\n", 887 axchg->oxid, axchg->state, axchg->entry_cnt); 888 return -EALREADY; 889 } 890 axchg->state = LPFC_NVME_STE_LS_RSP; 891 axchg->entry_cnt++; 892 893 nvmewqeq = lpfc_nvmet_prep_ls_wqe(phba, axchg, ls_rsp->rspdma, 894 ls_rsp->rsplen); 895 if (nvmewqeq == NULL) { 896 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 897 "6150 NVMEx LS Drop Rsp x%x: Prep\n", 898 axchg->oxid); 899 rc = -ENOMEM; 900 goto out_free_buf; 901 } 902 903 /* Save numBdes for bpl2sgl */ 904 nvmewqeq->num_bdes = 1; 905 nvmewqeq->hba_wqidx = 0; 906 nvmewqeq->context3 = &dmabuf; 907 dmabuf.virt = &bpl; 908 bpl.addrLow = nvmewqeq->wqe.xmit_sequence.bde.addrLow; 909 bpl.addrHigh = nvmewqeq->wqe.xmit_sequence.bde.addrHigh; 910 bpl.tus.f.bdeSize = ls_rsp->rsplen; 911 bpl.tus.f.bdeFlags = 0; 912 bpl.tus.w = le32_to_cpu(bpl.tus.w); 913 /* 914 * Note: although we're using stack space for the dmabuf, the 915 * call to lpfc_sli4_issue_wqe is synchronous, so it will not 916 * be referenced after it returns back to this routine. 917 */ 918 919 nvmewqeq->cmd_cmpl = xmt_ls_rsp_cmp; 920 nvmewqeq->context2 = axchg; 921 922 lpfc_nvmeio_data(phba, "NVMEx LS RSP: xri x%x wqidx x%x len x%x\n", 923 axchg->oxid, nvmewqeq->hba_wqidx, ls_rsp->rsplen); 924 925 rc = lpfc_sli4_issue_wqe(phba, axchg->hdwq, nvmewqeq); 926 927 /* clear to be sure there's no reference */ 928 nvmewqeq->context3 = NULL; 929 930 if (rc == WQE_SUCCESS) { 931 /* 932 * Okay to repost buffer here, but wait till cmpl 933 * before freeing ctxp and iocbq. 934 */ 935 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 936 return 0; 937 } 938 939 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 940 "6151 NVMEx LS RSP x%x: failed to transmit %d\n", 941 axchg->oxid, rc); 942 943 rc = -ENXIO; 944 945 lpfc_nlp_put(nvmewqeq->context1); 946 947 out_free_buf: 948 /* Give back resources */ 949 lpfc_in_buf_free(phba, &nvmebuf->dbuf); 950 951 /* 952 * As transport doesn't track completions of responses, if the rsp 953 * fails to send, the transport will effectively ignore the rsp 954 * and consider the LS done. However, the driver has an active 955 * exchange open for the LS - so be sure to abort the exchange 956 * if the response isn't sent. 957 */ 958 lpfc_nvme_unsol_ls_issue_abort(phba, axchg, axchg->sid, axchg->oxid); 959 return rc; 960 } 961 962 /** 963 * lpfc_nvmet_xmt_ls_rsp - Transmit NVME LS response 964 * @tgtport: pointer to target port that NVME LS is to be transmit from. 965 * @ls_rsp: pointer to the transport LS RSP that is to be sent 966 * 967 * Driver registers this routine to transmit responses for received NVME 968 * LS requests. 969 * 970 * This routine is used to format and send a WQE to transmit a NVME LS 971 * Response. The ls_rsp is used to reverse-map the LS to the original 972 * NVME LS request sequence, which provides addressing information for 973 * the remote port the LS to be sent to, as well as the exchange id 974 * that is the LS is bound to. 975 * 976 * Returns: 977 * 0 : if response successfully transmit 978 * non-zero : if response failed to transmit, of the form -Exxx. 979 **/ 980 static int 981 lpfc_nvmet_xmt_ls_rsp(struct nvmet_fc_target_port *tgtport, 982 struct nvmefc_ls_rsp *ls_rsp) 983 { 984 struct lpfc_async_xchg_ctx *axchg = 985 container_of(ls_rsp, struct lpfc_async_xchg_ctx, ls_rsp); 986 struct lpfc_nvmet_tgtport *nvmep = tgtport->private; 987 int rc; 988 989 if (axchg->phba->pport->load_flag & FC_UNLOADING) 990 return -ENODEV; 991 992 rc = __lpfc_nvme_xmt_ls_rsp(axchg, ls_rsp, lpfc_nvmet_xmt_ls_rsp_cmp); 993 994 if (rc) { 995 atomic_inc(&nvmep->xmt_ls_drop); 996 /* 997 * unless the failure is due to having already sent 998 * the response, an abort will be generated for the 999 * exchange if the rsp can't be sent. 1000 */ 1001 if (rc != -EALREADY) 1002 atomic_inc(&nvmep->xmt_ls_abort); 1003 return rc; 1004 } 1005 1006 atomic_inc(&nvmep->xmt_ls_rsp); 1007 return 0; 1008 } 1009 1010 static int 1011 lpfc_nvmet_xmt_fcp_op(struct nvmet_fc_target_port *tgtport, 1012 struct nvmefc_tgt_fcp_req *rsp) 1013 { 1014 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1015 struct lpfc_async_xchg_ctx *ctxp = 1016 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1017 struct lpfc_hba *phba = ctxp->phba; 1018 struct lpfc_queue *wq; 1019 struct lpfc_iocbq *nvmewqeq; 1020 struct lpfc_sli_ring *pring; 1021 unsigned long iflags; 1022 int rc; 1023 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1024 int id; 1025 #endif 1026 1027 if (phba->pport->load_flag & FC_UNLOADING) { 1028 rc = -ENODEV; 1029 goto aerr; 1030 } 1031 1032 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1033 if (ctxp->ts_cmd_nvme) { 1034 if (rsp->op == NVMET_FCOP_RSP) 1035 ctxp->ts_nvme_status = ktime_get_ns(); 1036 else 1037 ctxp->ts_nvme_data = ktime_get_ns(); 1038 } 1039 1040 /* Setup the hdw queue if not already set */ 1041 if (!ctxp->hdwq) 1042 ctxp->hdwq = &phba->sli4_hba.hdwq[rsp->hwqid]; 1043 1044 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 1045 id = raw_smp_processor_id(); 1046 this_cpu_inc(phba->sli4_hba.c_stat->xmt_io); 1047 if (rsp->hwqid != id) 1048 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1049 "6705 CPU Check OP: " 1050 "cpu %d expect %d\n", 1051 id, rsp->hwqid); 1052 ctxp->cpu = id; /* Setup cpu for cmpl check */ 1053 } 1054 #endif 1055 1056 /* Sanity check */ 1057 if ((ctxp->flag & LPFC_NVME_ABTS_RCV) || 1058 (ctxp->state == LPFC_NVME_STE_ABORT)) { 1059 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1060 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1061 "6102 IO oxid x%x aborted\n", 1062 ctxp->oxid); 1063 rc = -ENXIO; 1064 goto aerr; 1065 } 1066 1067 nvmewqeq = lpfc_nvmet_prep_fcp_wqe(phba, ctxp); 1068 if (nvmewqeq == NULL) { 1069 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1070 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1071 "6152 FCP Drop IO x%x: Prep\n", 1072 ctxp->oxid); 1073 rc = -ENXIO; 1074 goto aerr; 1075 } 1076 1077 nvmewqeq->cmd_cmpl = lpfc_nvmet_xmt_fcp_op_cmp; 1078 nvmewqeq->context2 = ctxp; 1079 nvmewqeq->cmd_flag |= LPFC_IO_NVMET; 1080 ctxp->wqeq->hba_wqidx = rsp->hwqid; 1081 1082 lpfc_nvmeio_data(phba, "NVMET FCP CMND: xri x%x op x%x len x%x\n", 1083 ctxp->oxid, rsp->op, rsp->rsplen); 1084 1085 ctxp->flag |= LPFC_NVME_IO_INP; 1086 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 1087 if (rc == WQE_SUCCESS) { 1088 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 1089 if (!ctxp->ts_cmd_nvme) 1090 return 0; 1091 if (rsp->op == NVMET_FCOP_RSP) 1092 ctxp->ts_status_wqput = ktime_get_ns(); 1093 else 1094 ctxp->ts_data_wqput = ktime_get_ns(); 1095 #endif 1096 return 0; 1097 } 1098 1099 if (rc == -EBUSY) { 1100 /* 1101 * WQ was full, so queue nvmewqeq to be sent after 1102 * WQE release CQE 1103 */ 1104 ctxp->flag |= LPFC_NVME_DEFER_WQFULL; 1105 wq = ctxp->hdwq->io_wq; 1106 pring = wq->pring; 1107 spin_lock_irqsave(&pring->ring_lock, iflags); 1108 list_add_tail(&nvmewqeq->list, &wq->wqfull_list); 1109 wq->q_flag |= HBA_NVMET_WQFULL; 1110 spin_unlock_irqrestore(&pring->ring_lock, iflags); 1111 atomic_inc(&lpfc_nvmep->defer_wqfull); 1112 return 0; 1113 } 1114 1115 /* Give back resources */ 1116 atomic_inc(&lpfc_nvmep->xmt_fcp_drop); 1117 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1118 "6153 FCP Drop IO x%x: Issue: %d\n", 1119 ctxp->oxid, rc); 1120 1121 ctxp->wqeq->hba_wqidx = 0; 1122 nvmewqeq->context2 = NULL; 1123 nvmewqeq->context3 = NULL; 1124 rc = -EBUSY; 1125 aerr: 1126 return rc; 1127 } 1128 1129 static void 1130 lpfc_nvmet_targetport_delete(struct nvmet_fc_target_port *targetport) 1131 { 1132 struct lpfc_nvmet_tgtport *tport = targetport->private; 1133 1134 /* release any threads waiting for the unreg to complete */ 1135 if (tport->phba->targetport) 1136 complete(tport->tport_unreg_cmp); 1137 } 1138 1139 static void 1140 lpfc_nvmet_xmt_fcp_abort(struct nvmet_fc_target_port *tgtport, 1141 struct nvmefc_tgt_fcp_req *req) 1142 { 1143 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1144 struct lpfc_async_xchg_ctx *ctxp = 1145 container_of(req, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1146 struct lpfc_hba *phba = ctxp->phba; 1147 struct lpfc_queue *wq; 1148 unsigned long flags; 1149 1150 if (phba->pport->load_flag & FC_UNLOADING) 1151 return; 1152 1153 if (!ctxp->hdwq) 1154 ctxp->hdwq = &phba->sli4_hba.hdwq[0]; 1155 1156 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1157 "6103 NVMET Abort op: oxid x%x flg x%x ste %d\n", 1158 ctxp->oxid, ctxp->flag, ctxp->state); 1159 1160 lpfc_nvmeio_data(phba, "NVMET FCP ABRT: xri x%x flg x%x ste x%x\n", 1161 ctxp->oxid, ctxp->flag, ctxp->state); 1162 1163 atomic_inc(&lpfc_nvmep->xmt_fcp_abort); 1164 1165 spin_lock_irqsave(&ctxp->ctxlock, flags); 1166 1167 /* Since iaab/iaar are NOT set, we need to check 1168 * if the firmware is in process of aborting IO 1169 */ 1170 if (ctxp->flag & (LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP)) { 1171 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1172 return; 1173 } 1174 ctxp->flag |= LPFC_NVME_ABORT_OP; 1175 1176 if (ctxp->flag & LPFC_NVME_DEFER_WQFULL) { 1177 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1178 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1179 ctxp->oxid); 1180 wq = ctxp->hdwq->io_wq; 1181 lpfc_nvmet_wqfull_flush(phba, wq, ctxp); 1182 return; 1183 } 1184 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1185 1186 /* A state of LPFC_NVME_STE_RCV means we have just received 1187 * the NVME command and have not started processing it. 1188 * (by issuing any IO WQEs on this exchange yet) 1189 */ 1190 if (ctxp->state == LPFC_NVME_STE_RCV) 1191 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1192 ctxp->oxid); 1193 else 1194 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1195 ctxp->oxid); 1196 } 1197 1198 static void 1199 lpfc_nvmet_xmt_fcp_release(struct nvmet_fc_target_port *tgtport, 1200 struct nvmefc_tgt_fcp_req *rsp) 1201 { 1202 struct lpfc_nvmet_tgtport *lpfc_nvmep = tgtport->private; 1203 struct lpfc_async_xchg_ctx *ctxp = 1204 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1205 struct lpfc_hba *phba = ctxp->phba; 1206 unsigned long flags; 1207 bool aborting = false; 1208 1209 spin_lock_irqsave(&ctxp->ctxlock, flags); 1210 if (ctxp->flag & LPFC_NVME_XBUSY) 1211 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1212 "6027 NVMET release with XBUSY flag x%x" 1213 " oxid x%x\n", 1214 ctxp->flag, ctxp->oxid); 1215 else if (ctxp->state != LPFC_NVME_STE_DONE && 1216 ctxp->state != LPFC_NVME_STE_ABORT) 1217 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1218 "6413 NVMET release bad state %d %d oxid x%x\n", 1219 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 1220 1221 if ((ctxp->flag & LPFC_NVME_ABORT_OP) || 1222 (ctxp->flag & LPFC_NVME_XBUSY)) { 1223 aborting = true; 1224 /* let the abort path do the real release */ 1225 lpfc_nvmet_defer_release(phba, ctxp); 1226 } 1227 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 1228 1229 lpfc_nvmeio_data(phba, "NVMET FCP FREE: xri x%x ste %d abt %d\n", ctxp->oxid, 1230 ctxp->state, aborting); 1231 1232 atomic_inc(&lpfc_nvmep->xmt_fcp_release); 1233 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 1234 1235 if (aborting) 1236 return; 1237 1238 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1239 } 1240 1241 static void 1242 lpfc_nvmet_defer_rcv(struct nvmet_fc_target_port *tgtport, 1243 struct nvmefc_tgt_fcp_req *rsp) 1244 { 1245 struct lpfc_nvmet_tgtport *tgtp; 1246 struct lpfc_async_xchg_ctx *ctxp = 1247 container_of(rsp, struct lpfc_async_xchg_ctx, hdlrctx.fcp_req); 1248 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 1249 struct lpfc_hba *phba = ctxp->phba; 1250 unsigned long iflag; 1251 1252 1253 lpfc_nvmeio_data(phba, "NVMET DEFERRCV: xri x%x sz %d CPU %02x\n", 1254 ctxp->oxid, ctxp->size, raw_smp_processor_id()); 1255 1256 if (!nvmebuf) { 1257 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 1258 "6425 Defer rcv: no buffer oxid x%x: " 1259 "flg %x ste %x\n", 1260 ctxp->oxid, ctxp->flag, ctxp->state); 1261 return; 1262 } 1263 1264 tgtp = phba->targetport->private; 1265 if (tgtp) 1266 atomic_inc(&tgtp->rcv_fcp_cmd_defer); 1267 1268 /* Free the nvmebuf since a new buffer already replaced it */ 1269 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1270 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1271 ctxp->rqb_buffer = NULL; 1272 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1273 } 1274 1275 /** 1276 * lpfc_nvmet_ls_req_cmp - completion handler for a nvme ls request 1277 * @phba: Pointer to HBA context object 1278 * @cmdwqe: Pointer to driver command WQE object. 1279 * @rspwqe: Pointer to driver response WQE object. 1280 * 1281 * This function is the completion handler for NVME LS requests. 1282 * The function updates any states and statistics, then calls the 1283 * generic completion handler to finish completion of the request. 1284 **/ 1285 static void 1286 lpfc_nvmet_ls_req_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 1287 struct lpfc_iocbq *rspwqe) 1288 { 1289 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 1290 __lpfc_nvme_ls_req_cmp(phba, cmdwqe->vport, cmdwqe, wcqe); 1291 } 1292 1293 /** 1294 * lpfc_nvmet_ls_req - Issue an Link Service request 1295 * @targetport: pointer to target instance registered with nvmet transport. 1296 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1297 * Driver sets this value to the ndlp pointer. 1298 * @pnvme_lsreq: the transport nvme_ls_req structure for the LS 1299 * 1300 * Driver registers this routine to handle any link service request 1301 * from the nvme_fc transport to a remote nvme-aware port. 1302 * 1303 * Return value : 1304 * 0 - Success 1305 * non-zero: various error codes, in form of -Exxx 1306 **/ 1307 static int 1308 lpfc_nvmet_ls_req(struct nvmet_fc_target_port *targetport, 1309 void *hosthandle, 1310 struct nvmefc_ls_req *pnvme_lsreq) 1311 { 1312 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1313 struct lpfc_hba *phba; 1314 struct lpfc_nodelist *ndlp; 1315 int ret; 1316 u32 hstate; 1317 1318 if (!lpfc_nvmet) 1319 return -EINVAL; 1320 1321 phba = lpfc_nvmet->phba; 1322 if (phba->pport->load_flag & FC_UNLOADING) 1323 return -EINVAL; 1324 1325 hstate = atomic_read(&lpfc_nvmet->state); 1326 if (hstate == LPFC_NVMET_INV_HOST_ACTIVE) 1327 return -EACCES; 1328 1329 ndlp = (struct lpfc_nodelist *)hosthandle; 1330 1331 ret = __lpfc_nvme_ls_req(phba->pport, ndlp, pnvme_lsreq, 1332 lpfc_nvmet_ls_req_cmp); 1333 1334 return ret; 1335 } 1336 1337 /** 1338 * lpfc_nvmet_ls_abort - Abort a prior NVME LS request 1339 * @targetport: Transport targetport, that LS was issued from. 1340 * @hosthandle: hosthandle set by the driver in a prior ls_rqst_rcv. 1341 * Driver sets this value to the ndlp pointer. 1342 * @pnvme_lsreq: the transport nvme_ls_req structure for LS to be aborted 1343 * 1344 * Driver registers this routine to abort an NVME LS request that is 1345 * in progress (from the transports perspective). 1346 **/ 1347 static void 1348 lpfc_nvmet_ls_abort(struct nvmet_fc_target_port *targetport, 1349 void *hosthandle, 1350 struct nvmefc_ls_req *pnvme_lsreq) 1351 { 1352 struct lpfc_nvmet_tgtport *lpfc_nvmet = targetport->private; 1353 struct lpfc_hba *phba; 1354 struct lpfc_nodelist *ndlp; 1355 int ret; 1356 1357 phba = lpfc_nvmet->phba; 1358 if (phba->pport->load_flag & FC_UNLOADING) 1359 return; 1360 1361 ndlp = (struct lpfc_nodelist *)hosthandle; 1362 1363 ret = __lpfc_nvme_ls_abort(phba->pport, ndlp, pnvme_lsreq); 1364 if (!ret) 1365 atomic_inc(&lpfc_nvmet->xmt_ls_abort); 1366 } 1367 1368 static void 1369 lpfc_nvmet_host_release(void *hosthandle) 1370 { 1371 struct lpfc_nodelist *ndlp = hosthandle; 1372 struct lpfc_hba *phba = ndlp->phba; 1373 struct lpfc_nvmet_tgtport *tgtp; 1374 1375 if (!phba->targetport || !phba->targetport->private) 1376 return; 1377 1378 lpfc_printf_log(phba, KERN_ERR, LOG_NVME, 1379 "6202 NVMET XPT releasing hosthandle x%px " 1380 "DID x%x xflags x%x refcnt %d\n", 1381 hosthandle, ndlp->nlp_DID, ndlp->fc4_xpt_flags, 1382 kref_read(&ndlp->kref)); 1383 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1384 spin_lock_irq(&ndlp->lock); 1385 ndlp->fc4_xpt_flags &= ~NLP_XPT_HAS_HH; 1386 spin_unlock_irq(&ndlp->lock); 1387 lpfc_nlp_put(ndlp); 1388 atomic_set(&tgtp->state, 0); 1389 } 1390 1391 static void 1392 lpfc_nvmet_discovery_event(struct nvmet_fc_target_port *tgtport) 1393 { 1394 struct lpfc_nvmet_tgtport *tgtp; 1395 struct lpfc_hba *phba; 1396 uint32_t rc; 1397 1398 tgtp = tgtport->private; 1399 phba = tgtp->phba; 1400 1401 rc = lpfc_issue_els_rscn(phba->pport, 0); 1402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1403 "6420 NVMET subsystem change: Notification %s\n", 1404 (rc) ? "Failed" : "Sent"); 1405 } 1406 1407 static struct nvmet_fc_target_template lpfc_tgttemplate = { 1408 .targetport_delete = lpfc_nvmet_targetport_delete, 1409 .xmt_ls_rsp = lpfc_nvmet_xmt_ls_rsp, 1410 .fcp_op = lpfc_nvmet_xmt_fcp_op, 1411 .fcp_abort = lpfc_nvmet_xmt_fcp_abort, 1412 .fcp_req_release = lpfc_nvmet_xmt_fcp_release, 1413 .defer_rcv = lpfc_nvmet_defer_rcv, 1414 .discovery_event = lpfc_nvmet_discovery_event, 1415 .ls_req = lpfc_nvmet_ls_req, 1416 .ls_abort = lpfc_nvmet_ls_abort, 1417 .host_release = lpfc_nvmet_host_release, 1418 1419 .max_hw_queues = 1, 1420 .max_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1421 .max_dif_sgl_segments = LPFC_NVMET_DEFAULT_SEGS, 1422 .dma_boundary = 0xFFFFFFFF, 1423 1424 /* optional features */ 1425 .target_features = 0, 1426 /* sizes of additional private data for data structures */ 1427 .target_priv_sz = sizeof(struct lpfc_nvmet_tgtport), 1428 .lsrqst_priv_sz = 0, 1429 }; 1430 1431 static void 1432 __lpfc_nvmet_clean_io_for_cpu(struct lpfc_hba *phba, 1433 struct lpfc_nvmet_ctx_info *infop) 1434 { 1435 struct lpfc_nvmet_ctxbuf *ctx_buf, *next_ctx_buf; 1436 unsigned long flags; 1437 1438 spin_lock_irqsave(&infop->nvmet_ctx_list_lock, flags); 1439 list_for_each_entry_safe(ctx_buf, next_ctx_buf, 1440 &infop->nvmet_ctx_list, list) { 1441 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1442 list_del_init(&ctx_buf->list); 1443 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1444 1445 spin_lock(&phba->hbalock); 1446 __lpfc_clear_active_sglq(phba, ctx_buf->sglq->sli4_lxritag); 1447 spin_unlock(&phba->hbalock); 1448 1449 ctx_buf->sglq->state = SGL_FREED; 1450 ctx_buf->sglq->ndlp = NULL; 1451 1452 spin_lock(&phba->sli4_hba.sgl_list_lock); 1453 list_add_tail(&ctx_buf->sglq->list, 1454 &phba->sli4_hba.lpfc_nvmet_sgl_list); 1455 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1456 1457 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1458 kfree(ctx_buf->context); 1459 } 1460 spin_unlock_irqrestore(&infop->nvmet_ctx_list_lock, flags); 1461 } 1462 1463 static void 1464 lpfc_nvmet_cleanup_io_context(struct lpfc_hba *phba) 1465 { 1466 struct lpfc_nvmet_ctx_info *infop; 1467 int i, j; 1468 1469 /* The first context list, MRQ 0 CPU 0 */ 1470 infop = phba->sli4_hba.nvmet_ctx_info; 1471 if (!infop) 1472 return; 1473 1474 /* Cycle the the entire CPU context list for every MRQ */ 1475 for (i = 0; i < phba->cfg_nvmet_mrq; i++) { 1476 for_each_present_cpu(j) { 1477 infop = lpfc_get_ctx_list(phba, j, i); 1478 __lpfc_nvmet_clean_io_for_cpu(phba, infop); 1479 } 1480 } 1481 kfree(phba->sli4_hba.nvmet_ctx_info); 1482 phba->sli4_hba.nvmet_ctx_info = NULL; 1483 } 1484 1485 static int 1486 lpfc_nvmet_setup_io_context(struct lpfc_hba *phba) 1487 { 1488 struct lpfc_nvmet_ctxbuf *ctx_buf; 1489 struct lpfc_iocbq *nvmewqe; 1490 union lpfc_wqe128 *wqe; 1491 struct lpfc_nvmet_ctx_info *last_infop; 1492 struct lpfc_nvmet_ctx_info *infop; 1493 int i, j, idx, cpu; 1494 1495 lpfc_printf_log(phba, KERN_INFO, LOG_NVME, 1496 "6403 Allocate NVMET resources for %d XRIs\n", 1497 phba->sli4_hba.nvmet_xri_cnt); 1498 1499 phba->sli4_hba.nvmet_ctx_info = kcalloc( 1500 phba->sli4_hba.num_possible_cpu * phba->cfg_nvmet_mrq, 1501 sizeof(struct lpfc_nvmet_ctx_info), GFP_KERNEL); 1502 if (!phba->sli4_hba.nvmet_ctx_info) { 1503 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1504 "6419 Failed allocate memory for " 1505 "nvmet context lists\n"); 1506 return -ENOMEM; 1507 } 1508 1509 /* 1510 * Assuming X CPUs in the system, and Y MRQs, allocate some 1511 * lpfc_nvmet_ctx_info structures as follows: 1512 * 1513 * cpu0/mrq0 cpu1/mrq0 ... cpuX/mrq0 1514 * cpu0/mrq1 cpu1/mrq1 ... cpuX/mrq1 1515 * ... 1516 * cpuX/mrqY cpuX/mrqY ... cpuX/mrqY 1517 * 1518 * Each line represents a MRQ "silo" containing an entry for 1519 * every CPU. 1520 * 1521 * MRQ X is initially assumed to be associated with CPU X, thus 1522 * contexts are initially distributed across all MRQs using 1523 * the MRQ index (N) as follows cpuN/mrqN. When contexts are 1524 * freed, the are freed to the MRQ silo based on the CPU number 1525 * of the IO completion. Thus a context that was allocated for MRQ A 1526 * whose IO completed on CPU B will be freed to cpuB/mrqA. 1527 */ 1528 for_each_possible_cpu(i) { 1529 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1530 infop = lpfc_get_ctx_list(phba, i, j); 1531 INIT_LIST_HEAD(&infop->nvmet_ctx_list); 1532 spin_lock_init(&infop->nvmet_ctx_list_lock); 1533 infop->nvmet_ctx_list_cnt = 0; 1534 } 1535 } 1536 1537 /* 1538 * Setup the next CPU context info ptr for each MRQ. 1539 * MRQ 0 will cycle thru CPUs 0 - X separately from 1540 * MRQ 1 cycling thru CPUs 0 - X, and so on. 1541 */ 1542 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1543 last_infop = lpfc_get_ctx_list(phba, 1544 cpumask_first(cpu_present_mask), 1545 j); 1546 for (i = phba->sli4_hba.num_possible_cpu - 1; i >= 0; i--) { 1547 infop = lpfc_get_ctx_list(phba, i, j); 1548 infop->nvmet_ctx_next_cpu = last_infop; 1549 last_infop = infop; 1550 } 1551 } 1552 1553 /* For all nvmet xris, allocate resources needed to process a 1554 * received command on a per xri basis. 1555 */ 1556 idx = 0; 1557 cpu = cpumask_first(cpu_present_mask); 1558 for (i = 0; i < phba->sli4_hba.nvmet_xri_cnt; i++) { 1559 ctx_buf = kzalloc(sizeof(*ctx_buf), GFP_KERNEL); 1560 if (!ctx_buf) { 1561 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1562 "6404 Ran out of memory for NVMET\n"); 1563 return -ENOMEM; 1564 } 1565 1566 ctx_buf->context = kzalloc(sizeof(*ctx_buf->context), 1567 GFP_KERNEL); 1568 if (!ctx_buf->context) { 1569 kfree(ctx_buf); 1570 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1571 "6405 Ran out of NVMET " 1572 "context memory\n"); 1573 return -ENOMEM; 1574 } 1575 ctx_buf->context->ctxbuf = ctx_buf; 1576 ctx_buf->context->state = LPFC_NVME_STE_FREE; 1577 1578 ctx_buf->iocbq = lpfc_sli_get_iocbq(phba); 1579 if (!ctx_buf->iocbq) { 1580 kfree(ctx_buf->context); 1581 kfree(ctx_buf); 1582 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1583 "6406 Ran out of NVMET iocb/WQEs\n"); 1584 return -ENOMEM; 1585 } 1586 ctx_buf->iocbq->cmd_flag = LPFC_IO_NVMET; 1587 nvmewqe = ctx_buf->iocbq; 1588 wqe = &nvmewqe->wqe; 1589 1590 /* Initialize WQE */ 1591 memset(wqe, 0, sizeof(union lpfc_wqe)); 1592 1593 ctx_buf->iocbq->context1 = NULL; 1594 spin_lock(&phba->sli4_hba.sgl_list_lock); 1595 ctx_buf->sglq = __lpfc_sli_get_nvmet_sglq(phba, ctx_buf->iocbq); 1596 spin_unlock(&phba->sli4_hba.sgl_list_lock); 1597 if (!ctx_buf->sglq) { 1598 lpfc_sli_release_iocbq(phba, ctx_buf->iocbq); 1599 kfree(ctx_buf->context); 1600 kfree(ctx_buf); 1601 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1602 "6407 Ran out of NVMET XRIs\n"); 1603 return -ENOMEM; 1604 } 1605 INIT_WORK(&ctx_buf->defer_work, lpfc_nvmet_fcp_rqst_defer_work); 1606 1607 /* 1608 * Add ctx to MRQidx context list. Our initial assumption 1609 * is MRQidx will be associated with CPUidx. This association 1610 * can change on the fly. 1611 */ 1612 infop = lpfc_get_ctx_list(phba, cpu, idx); 1613 spin_lock(&infop->nvmet_ctx_list_lock); 1614 list_add_tail(&ctx_buf->list, &infop->nvmet_ctx_list); 1615 infop->nvmet_ctx_list_cnt++; 1616 spin_unlock(&infop->nvmet_ctx_list_lock); 1617 1618 /* Spread ctx structures evenly across all MRQs */ 1619 idx++; 1620 if (idx >= phba->cfg_nvmet_mrq) { 1621 idx = 0; 1622 cpu = cpumask_first(cpu_present_mask); 1623 continue; 1624 } 1625 cpu = cpumask_next(cpu, cpu_present_mask); 1626 if (cpu == nr_cpu_ids) 1627 cpu = cpumask_first(cpu_present_mask); 1628 1629 } 1630 1631 for_each_present_cpu(i) { 1632 for (j = 0; j < phba->cfg_nvmet_mrq; j++) { 1633 infop = lpfc_get_ctx_list(phba, i, j); 1634 lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, 1635 "6408 TOTAL NVMET ctx for CPU %d " 1636 "MRQ %d: cnt %d nextcpu x%px\n", 1637 i, j, infop->nvmet_ctx_list_cnt, 1638 infop->nvmet_ctx_next_cpu); 1639 } 1640 } 1641 return 0; 1642 } 1643 1644 int 1645 lpfc_nvmet_create_targetport(struct lpfc_hba *phba) 1646 { 1647 struct lpfc_vport *vport = phba->pport; 1648 struct lpfc_nvmet_tgtport *tgtp; 1649 struct nvmet_fc_port_info pinfo; 1650 int error; 1651 1652 if (phba->targetport) 1653 return 0; 1654 1655 error = lpfc_nvmet_setup_io_context(phba); 1656 if (error) 1657 return error; 1658 1659 memset(&pinfo, 0, sizeof(struct nvmet_fc_port_info)); 1660 pinfo.node_name = wwn_to_u64(vport->fc_nodename.u.wwn); 1661 pinfo.port_name = wwn_to_u64(vport->fc_portname.u.wwn); 1662 pinfo.port_id = vport->fc_myDID; 1663 1664 /* We need to tell the transport layer + 1 because it takes page 1665 * alignment into account. When space for the SGL is allocated we 1666 * allocate + 3, one for cmd, one for rsp and one for this alignment 1667 */ 1668 lpfc_tgttemplate.max_sgl_segments = phba->cfg_nvme_seg_cnt + 1; 1669 lpfc_tgttemplate.max_hw_queues = phba->cfg_hdw_queue; 1670 lpfc_tgttemplate.target_features = NVMET_FCTGTFEAT_READDATA_RSP; 1671 1672 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1673 error = nvmet_fc_register_targetport(&pinfo, &lpfc_tgttemplate, 1674 &phba->pcidev->dev, 1675 &phba->targetport); 1676 #else 1677 error = -ENOENT; 1678 #endif 1679 if (error) { 1680 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 1681 "6025 Cannot register NVME targetport x%x: " 1682 "portnm %llx nodenm %llx segs %d qs %d\n", 1683 error, 1684 pinfo.port_name, pinfo.node_name, 1685 lpfc_tgttemplate.max_sgl_segments, 1686 lpfc_tgttemplate.max_hw_queues); 1687 phba->targetport = NULL; 1688 phba->nvmet_support = 0; 1689 1690 lpfc_nvmet_cleanup_io_context(phba); 1691 1692 } else { 1693 tgtp = (struct lpfc_nvmet_tgtport *) 1694 phba->targetport->private; 1695 tgtp->phba = phba; 1696 1697 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 1698 "6026 Registered NVME " 1699 "targetport: x%px, private x%px " 1700 "portnm %llx nodenm %llx segs %d qs %d\n", 1701 phba->targetport, tgtp, 1702 pinfo.port_name, pinfo.node_name, 1703 lpfc_tgttemplate.max_sgl_segments, 1704 lpfc_tgttemplate.max_hw_queues); 1705 1706 atomic_set(&tgtp->rcv_ls_req_in, 0); 1707 atomic_set(&tgtp->rcv_ls_req_out, 0); 1708 atomic_set(&tgtp->rcv_ls_req_drop, 0); 1709 atomic_set(&tgtp->xmt_ls_abort, 0); 1710 atomic_set(&tgtp->xmt_ls_abort_cmpl, 0); 1711 atomic_set(&tgtp->xmt_ls_rsp, 0); 1712 atomic_set(&tgtp->xmt_ls_drop, 0); 1713 atomic_set(&tgtp->xmt_ls_rsp_error, 0); 1714 atomic_set(&tgtp->xmt_ls_rsp_xb_set, 0); 1715 atomic_set(&tgtp->xmt_ls_rsp_aborted, 0); 1716 atomic_set(&tgtp->xmt_ls_rsp_cmpl, 0); 1717 atomic_set(&tgtp->rcv_fcp_cmd_in, 0); 1718 atomic_set(&tgtp->rcv_fcp_cmd_out, 0); 1719 atomic_set(&tgtp->rcv_fcp_cmd_drop, 0); 1720 atomic_set(&tgtp->xmt_fcp_drop, 0); 1721 atomic_set(&tgtp->xmt_fcp_read_rsp, 0); 1722 atomic_set(&tgtp->xmt_fcp_read, 0); 1723 atomic_set(&tgtp->xmt_fcp_write, 0); 1724 atomic_set(&tgtp->xmt_fcp_rsp, 0); 1725 atomic_set(&tgtp->xmt_fcp_release, 0); 1726 atomic_set(&tgtp->xmt_fcp_rsp_cmpl, 0); 1727 atomic_set(&tgtp->xmt_fcp_rsp_error, 0); 1728 atomic_set(&tgtp->xmt_fcp_rsp_xb_set, 0); 1729 atomic_set(&tgtp->xmt_fcp_rsp_aborted, 0); 1730 atomic_set(&tgtp->xmt_fcp_rsp_drop, 0); 1731 atomic_set(&tgtp->xmt_fcp_xri_abort_cqe, 0); 1732 atomic_set(&tgtp->xmt_fcp_abort, 0); 1733 atomic_set(&tgtp->xmt_fcp_abort_cmpl, 0); 1734 atomic_set(&tgtp->xmt_abort_unsol, 0); 1735 atomic_set(&tgtp->xmt_abort_sol, 0); 1736 atomic_set(&tgtp->xmt_abort_rsp, 0); 1737 atomic_set(&tgtp->xmt_abort_rsp_error, 0); 1738 atomic_set(&tgtp->defer_ctx, 0); 1739 atomic_set(&tgtp->defer_fod, 0); 1740 atomic_set(&tgtp->defer_wqfull, 0); 1741 } 1742 return error; 1743 } 1744 1745 int 1746 lpfc_nvmet_update_targetport(struct lpfc_hba *phba) 1747 { 1748 struct lpfc_vport *vport = phba->pport; 1749 1750 if (!phba->targetport) 1751 return 0; 1752 1753 lpfc_printf_vlog(vport, KERN_INFO, LOG_NVME, 1754 "6007 Update NVMET port x%px did x%x\n", 1755 phba->targetport, vport->fc_myDID); 1756 1757 phba->targetport->port_id = vport->fc_myDID; 1758 return 0; 1759 } 1760 1761 /** 1762 * lpfc_sli4_nvmet_xri_aborted - Fast-path process of nvmet xri abort 1763 * @phba: pointer to lpfc hba data structure. 1764 * @axri: pointer to the nvmet xri abort wcqe structure. 1765 * 1766 * This routine is invoked by the worker thread to process a SLI4 fast-path 1767 * NVMET aborted xri. 1768 **/ 1769 void 1770 lpfc_sli4_nvmet_xri_aborted(struct lpfc_hba *phba, 1771 struct sli4_wcqe_xri_aborted *axri) 1772 { 1773 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1774 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri); 1775 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri); 1776 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1777 struct lpfc_nvmet_tgtport *tgtp; 1778 struct nvmefc_tgt_fcp_req *req = NULL; 1779 struct lpfc_nodelist *ndlp; 1780 unsigned long iflag = 0; 1781 int rrq_empty = 0; 1782 bool released = false; 1783 1784 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1785 "6317 XB aborted xri x%x rxid x%x\n", xri, rxid); 1786 1787 if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME)) 1788 return; 1789 1790 if (phba->targetport) { 1791 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 1792 atomic_inc(&tgtp->xmt_fcp_xri_abort_cqe); 1793 } 1794 1795 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1796 list_for_each_entry_safe(ctxp, next_ctxp, 1797 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1798 list) { 1799 if (ctxp->ctxbuf->sglq->sli4_xritag != xri) 1800 continue; 1801 1802 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1803 iflag); 1804 1805 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1806 /* Check if we already received a free context call 1807 * and we have completed processing an abort situation. 1808 */ 1809 if (ctxp->flag & LPFC_NVME_CTX_RLS && 1810 !(ctxp->flag & LPFC_NVME_ABORT_OP)) { 1811 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1812 list_del_init(&ctxp->list); 1813 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 1814 released = true; 1815 } 1816 ctxp->flag &= ~LPFC_NVME_XBUSY; 1817 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1818 1819 rrq_empty = list_empty(&phba->active_rrq_list); 1820 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 1821 if (ndlp && 1822 (ndlp->nlp_state == NLP_STE_UNMAPPED_NODE || 1823 ndlp->nlp_state == NLP_STE_MAPPED_NODE)) { 1824 lpfc_set_rrq_active(phba, ndlp, 1825 ctxp->ctxbuf->sglq->sli4_lxritag, 1826 rxid, 1); 1827 lpfc_sli4_abts_err_handler(phba, ndlp, axri); 1828 } 1829 1830 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1831 "6318 XB aborted oxid x%x flg x%x (%x)\n", 1832 ctxp->oxid, ctxp->flag, released); 1833 if (released) 1834 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 1835 1836 if (rrq_empty) 1837 lpfc_worker_wake_up(phba); 1838 return; 1839 } 1840 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1841 ctxp = lpfc_nvmet_get_ctx_for_xri(phba, xri); 1842 if (ctxp) { 1843 /* 1844 * Abort already done by FW, so BA_ACC sent. 1845 * However, the transport may be unaware. 1846 */ 1847 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1848 "6323 NVMET Rcv ABTS xri x%x ctxp state x%x " 1849 "flag x%x oxid x%x rxid x%x\n", 1850 xri, ctxp->state, ctxp->flag, ctxp->oxid, 1851 rxid); 1852 1853 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1854 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1855 ctxp->state = LPFC_NVME_STE_ABORT; 1856 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1857 1858 lpfc_nvmeio_data(phba, 1859 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1860 xri, raw_smp_processor_id(), 0); 1861 1862 req = &ctxp->hdlrctx.fcp_req; 1863 if (req) 1864 nvmet_fc_rcv_fcp_abort(phba->targetport, req); 1865 } 1866 #endif 1867 } 1868 1869 int 1870 lpfc_nvmet_rcv_unsol_abort(struct lpfc_vport *vport, 1871 struct fc_frame_header *fc_hdr) 1872 { 1873 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 1874 struct lpfc_hba *phba = vport->phba; 1875 struct lpfc_async_xchg_ctx *ctxp, *next_ctxp; 1876 struct nvmefc_tgt_fcp_req *rsp; 1877 uint32_t sid; 1878 uint16_t oxid, xri; 1879 unsigned long iflag = 0; 1880 1881 sid = sli4_sid_from_fc_hdr(fc_hdr); 1882 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 1883 1884 spin_lock_irqsave(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1885 list_for_each_entry_safe(ctxp, next_ctxp, 1886 &phba->sli4_hba.lpfc_abts_nvmet_ctx_list, 1887 list) { 1888 if (ctxp->oxid != oxid || ctxp->sid != sid) 1889 continue; 1890 1891 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1892 1893 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, 1894 iflag); 1895 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1896 ctxp->flag |= LPFC_NVME_ABTS_RCV; 1897 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1898 1899 lpfc_nvmeio_data(phba, 1900 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1901 xri, raw_smp_processor_id(), 0); 1902 1903 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1904 "6319 NVMET Rcv ABTS:acc xri x%x\n", xri); 1905 1906 rsp = &ctxp->hdlrctx.fcp_req; 1907 nvmet_fc_rcv_fcp_abort(phba->targetport, rsp); 1908 1909 /* Respond with BA_ACC accordingly */ 1910 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1911 return 0; 1912 } 1913 spin_unlock_irqrestore(&phba->sli4_hba.abts_nvmet_buf_list_lock, iflag); 1914 /* check the wait list */ 1915 if (phba->sli4_hba.nvmet_io_wait_cnt) { 1916 struct rqb_dmabuf *nvmebuf; 1917 struct fc_frame_header *fc_hdr_tmp; 1918 u32 sid_tmp; 1919 u16 oxid_tmp; 1920 bool found = false; 1921 1922 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 1923 1924 /* match by oxid and s_id */ 1925 list_for_each_entry(nvmebuf, 1926 &phba->sli4_hba.lpfc_nvmet_io_wait_list, 1927 hbuf.list) { 1928 fc_hdr_tmp = (struct fc_frame_header *) 1929 (nvmebuf->hbuf.virt); 1930 oxid_tmp = be16_to_cpu(fc_hdr_tmp->fh_ox_id); 1931 sid_tmp = sli4_sid_from_fc_hdr(fc_hdr_tmp); 1932 if (oxid_tmp != oxid || sid_tmp != sid) 1933 continue; 1934 1935 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1936 "6321 NVMET Rcv ABTS oxid x%x from x%x " 1937 "is waiting for a ctxp\n", 1938 oxid, sid); 1939 1940 list_del_init(&nvmebuf->hbuf.list); 1941 phba->sli4_hba.nvmet_io_wait_cnt--; 1942 found = true; 1943 break; 1944 } 1945 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 1946 iflag); 1947 1948 /* free buffer since already posted a new DMA buffer to RQ */ 1949 if (found) { 1950 nvmebuf->hrq->rqbp->rqb_free_buffer(phba, nvmebuf); 1951 /* Respond with BA_ACC accordingly */ 1952 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1953 return 0; 1954 } 1955 } 1956 1957 /* check active list */ 1958 ctxp = lpfc_nvmet_get_ctx_for_oxid(phba, oxid, sid); 1959 if (ctxp) { 1960 xri = ctxp->ctxbuf->sglq->sli4_xritag; 1961 1962 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1963 ctxp->flag |= (LPFC_NVME_ABTS_RCV | LPFC_NVME_ABORT_OP); 1964 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1965 1966 lpfc_nvmeio_data(phba, 1967 "NVMET ABTS RCV: xri x%x CPU %02x rjt %d\n", 1968 xri, raw_smp_processor_id(), 0); 1969 1970 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1971 "6322 NVMET Rcv ABTS:acc oxid x%x xri x%x " 1972 "flag x%x state x%x\n", 1973 ctxp->oxid, xri, ctxp->flag, ctxp->state); 1974 1975 if (ctxp->flag & LPFC_NVME_TNOTIFY) { 1976 /* Notify the transport */ 1977 nvmet_fc_rcv_fcp_abort(phba->targetport, 1978 &ctxp->hdlrctx.fcp_req); 1979 } else { 1980 cancel_work_sync(&ctxp->ctxbuf->defer_work); 1981 spin_lock_irqsave(&ctxp->ctxlock, iflag); 1982 lpfc_nvmet_defer_release(phba, ctxp); 1983 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 1984 } 1985 lpfc_nvmet_sol_fcp_issue_abort(phba, ctxp, ctxp->sid, 1986 ctxp->oxid); 1987 1988 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 1); 1989 return 0; 1990 } 1991 1992 lpfc_nvmeio_data(phba, "NVMET ABTS RCV: oxid x%x CPU %02x rjt %d\n", 1993 oxid, raw_smp_processor_id(), 1); 1994 1995 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 1996 "6320 NVMET Rcv ABTS:rjt oxid x%x\n", oxid); 1997 1998 /* Respond with BA_RJT accordingly */ 1999 lpfc_sli4_seq_abort_rsp(vport, fc_hdr, 0); 2000 #endif 2001 return 0; 2002 } 2003 2004 static void 2005 lpfc_nvmet_wqfull_flush(struct lpfc_hba *phba, struct lpfc_queue *wq, 2006 struct lpfc_async_xchg_ctx *ctxp) 2007 { 2008 struct lpfc_sli_ring *pring; 2009 struct lpfc_iocbq *nvmewqeq; 2010 struct lpfc_iocbq *next_nvmewqeq; 2011 unsigned long iflags; 2012 struct lpfc_wcqe_complete wcqe; 2013 struct lpfc_wcqe_complete *wcqep; 2014 2015 pring = wq->pring; 2016 wcqep = &wcqe; 2017 2018 /* Fake an ABORT error code back to cmpl routine */ 2019 memset(wcqep, 0, sizeof(struct lpfc_wcqe_complete)); 2020 bf_set(lpfc_wcqe_c_status, wcqep, IOSTAT_LOCAL_REJECT); 2021 wcqep->parameter = IOERR_ABORT_REQUESTED; 2022 2023 spin_lock_irqsave(&pring->ring_lock, iflags); 2024 list_for_each_entry_safe(nvmewqeq, next_nvmewqeq, 2025 &wq->wqfull_list, list) { 2026 if (ctxp) { 2027 /* Checking for a specific IO to flush */ 2028 if (nvmewqeq->context2 == ctxp) { 2029 list_del(&nvmewqeq->list); 2030 spin_unlock_irqrestore(&pring->ring_lock, 2031 iflags); 2032 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, 2033 sizeof(*wcqep)); 2034 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, 2035 nvmewqeq); 2036 return; 2037 } 2038 continue; 2039 } else { 2040 /* Flush all IOs */ 2041 list_del(&nvmewqeq->list); 2042 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2043 memcpy(&nvmewqeq->wcqe_cmpl, wcqep, sizeof(*wcqep)); 2044 lpfc_nvmet_xmt_fcp_op_cmp(phba, nvmewqeq, nvmewqeq); 2045 spin_lock_irqsave(&pring->ring_lock, iflags); 2046 } 2047 } 2048 if (!ctxp) 2049 wq->q_flag &= ~HBA_NVMET_WQFULL; 2050 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2051 } 2052 2053 void 2054 lpfc_nvmet_wqfull_process(struct lpfc_hba *phba, 2055 struct lpfc_queue *wq) 2056 { 2057 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2058 struct lpfc_sli_ring *pring; 2059 struct lpfc_iocbq *nvmewqeq; 2060 struct lpfc_async_xchg_ctx *ctxp; 2061 unsigned long iflags; 2062 int rc; 2063 2064 /* 2065 * Some WQE slots are available, so try to re-issue anything 2066 * on the WQ wqfull_list. 2067 */ 2068 pring = wq->pring; 2069 spin_lock_irqsave(&pring->ring_lock, iflags); 2070 while (!list_empty(&wq->wqfull_list)) { 2071 list_remove_head(&wq->wqfull_list, nvmewqeq, struct lpfc_iocbq, 2072 list); 2073 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2074 ctxp = (struct lpfc_async_xchg_ctx *)nvmewqeq->context2; 2075 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, nvmewqeq); 2076 spin_lock_irqsave(&pring->ring_lock, iflags); 2077 if (rc == -EBUSY) { 2078 /* WQ was full again, so put it back on the list */ 2079 list_add(&nvmewqeq->list, &wq->wqfull_list); 2080 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2081 return; 2082 } 2083 if (rc == WQE_SUCCESS) { 2084 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2085 if (ctxp->ts_cmd_nvme) { 2086 if (ctxp->hdlrctx.fcp_req.op == NVMET_FCOP_RSP) 2087 ctxp->ts_status_wqput = ktime_get_ns(); 2088 else 2089 ctxp->ts_data_wqput = ktime_get_ns(); 2090 } 2091 #endif 2092 } else { 2093 WARN_ON(rc); 2094 } 2095 } 2096 wq->q_flag &= ~HBA_NVMET_WQFULL; 2097 spin_unlock_irqrestore(&pring->ring_lock, iflags); 2098 2099 #endif 2100 } 2101 2102 void 2103 lpfc_nvmet_destroy_targetport(struct lpfc_hba *phba) 2104 { 2105 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2106 struct lpfc_nvmet_tgtport *tgtp; 2107 struct lpfc_queue *wq; 2108 uint32_t qidx; 2109 DECLARE_COMPLETION_ONSTACK(tport_unreg_cmp); 2110 2111 if (phba->nvmet_support == 0) 2112 return; 2113 if (phba->targetport) { 2114 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2115 for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { 2116 wq = phba->sli4_hba.hdwq[qidx].io_wq; 2117 lpfc_nvmet_wqfull_flush(phba, wq, NULL); 2118 } 2119 tgtp->tport_unreg_cmp = &tport_unreg_cmp; 2120 nvmet_fc_unregister_targetport(phba->targetport); 2121 if (!wait_for_completion_timeout(&tport_unreg_cmp, 2122 msecs_to_jiffies(LPFC_NVMET_WAIT_TMO))) 2123 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2124 "6179 Unreg targetport x%px timeout " 2125 "reached.\n", phba->targetport); 2126 lpfc_nvmet_cleanup_io_context(phba); 2127 } 2128 phba->targetport = NULL; 2129 #endif 2130 } 2131 2132 /** 2133 * lpfc_nvmet_handle_lsreq - Process an NVME LS request 2134 * @phba: pointer to lpfc hba data structure. 2135 * @axchg: pointer to exchange context for the NVME LS request 2136 * 2137 * This routine is used for processing an asychronously received NVME LS 2138 * request. Any remaining validation is done and the LS is then forwarded 2139 * to the nvmet-fc transport via nvmet_fc_rcv_ls_req(). 2140 * 2141 * The calling sequence should be: nvmet_fc_rcv_ls_req() -> (processing) 2142 * -> lpfc_nvmet_xmt_ls_rsp/cmp -> req->done. 2143 * lpfc_nvme_xmt_ls_rsp_cmp should free the allocated axchg. 2144 * 2145 * Returns 0 if LS was handled and delivered to the transport 2146 * Returns 1 if LS failed to be handled and should be dropped 2147 */ 2148 int 2149 lpfc_nvmet_handle_lsreq(struct lpfc_hba *phba, 2150 struct lpfc_async_xchg_ctx *axchg) 2151 { 2152 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2153 struct lpfc_nvmet_tgtport *tgtp = phba->targetport->private; 2154 uint32_t *payload = axchg->payload; 2155 int rc; 2156 2157 atomic_inc(&tgtp->rcv_ls_req_in); 2158 2159 /* 2160 * Driver passes the ndlp as the hosthandle argument allowing 2161 * the transport to generate LS requests for any associateions 2162 * that are created. 2163 */ 2164 rc = nvmet_fc_rcv_ls_req(phba->targetport, axchg->ndlp, &axchg->ls_rsp, 2165 axchg->payload, axchg->size); 2166 2167 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2168 "6037 NVMET Unsol rcv: sz %d rc %d: %08x %08x %08x " 2169 "%08x %08x %08x\n", axchg->size, rc, 2170 *payload, *(payload+1), *(payload+2), 2171 *(payload+3), *(payload+4), *(payload+5)); 2172 2173 if (!rc) { 2174 atomic_inc(&tgtp->rcv_ls_req_out); 2175 return 0; 2176 } 2177 2178 atomic_inc(&tgtp->rcv_ls_req_drop); 2179 #endif 2180 return 1; 2181 } 2182 2183 static void 2184 lpfc_nvmet_process_rcv_fcp_req(struct lpfc_nvmet_ctxbuf *ctx_buf) 2185 { 2186 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2187 struct lpfc_async_xchg_ctx *ctxp = ctx_buf->context; 2188 struct lpfc_hba *phba = ctxp->phba; 2189 struct rqb_dmabuf *nvmebuf = ctxp->rqb_buffer; 2190 struct lpfc_nvmet_tgtport *tgtp; 2191 uint32_t *payload, qno; 2192 uint32_t rc; 2193 unsigned long iflags; 2194 2195 if (!nvmebuf) { 2196 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2197 "6159 process_rcv_fcp_req, nvmebuf is NULL, " 2198 "oxid: x%x flg: x%x state: x%x\n", 2199 ctxp->oxid, ctxp->flag, ctxp->state); 2200 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2201 lpfc_nvmet_defer_release(phba, ctxp); 2202 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2203 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, 2204 ctxp->oxid); 2205 return; 2206 } 2207 2208 if (ctxp->flag & LPFC_NVME_ABTS_RCV) { 2209 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2210 "6324 IO oxid x%x aborted\n", 2211 ctxp->oxid); 2212 return; 2213 } 2214 2215 payload = (uint32_t *)(nvmebuf->dbuf.virt); 2216 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2217 ctxp->flag |= LPFC_NVME_TNOTIFY; 2218 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2219 if (ctxp->ts_isr_cmd) 2220 ctxp->ts_cmd_nvme = ktime_get_ns(); 2221 #endif 2222 /* 2223 * The calling sequence should be: 2224 * nvmet_fc_rcv_fcp_req->lpfc_nvmet_xmt_fcp_op/cmp- req->done 2225 * lpfc_nvmet_xmt_fcp_op_cmp should free the allocated ctxp. 2226 * When we return from nvmet_fc_rcv_fcp_req, all relevant info 2227 * the NVME command / FC header is stored. 2228 * A buffer has already been reposted for this IO, so just free 2229 * the nvmebuf. 2230 */ 2231 rc = nvmet_fc_rcv_fcp_req(phba->targetport, &ctxp->hdlrctx.fcp_req, 2232 payload, ctxp->size); 2233 /* Process FCP command */ 2234 if (rc == 0) { 2235 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2236 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2237 if ((ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) || 2238 (nvmebuf != ctxp->rqb_buffer)) { 2239 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2240 return; 2241 } 2242 ctxp->rqb_buffer = NULL; 2243 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2244 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); /* repost */ 2245 return; 2246 } 2247 2248 /* Processing of FCP command is deferred */ 2249 if (rc == -EOVERFLOW) { 2250 lpfc_nvmeio_data(phba, "NVMET RCV BUSY: xri x%x sz %d " 2251 "from %06x\n", 2252 ctxp->oxid, ctxp->size, ctxp->sid); 2253 atomic_inc(&tgtp->rcv_fcp_cmd_out); 2254 atomic_inc(&tgtp->defer_fod); 2255 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2256 if (ctxp->flag & LPFC_NVME_CTX_REUSE_WQ) { 2257 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2258 return; 2259 } 2260 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2261 /* 2262 * Post a replacement DMA buffer to RQ and defer 2263 * freeing rcv buffer till .defer_rcv callback 2264 */ 2265 qno = nvmebuf->idx; 2266 lpfc_post_rq_buffer( 2267 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2268 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2269 return; 2270 } 2271 ctxp->flag &= ~LPFC_NVME_TNOTIFY; 2272 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2273 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2274 "2582 FCP Drop IO x%x: err x%x: x%x x%x x%x\n", 2275 ctxp->oxid, rc, 2276 atomic_read(&tgtp->rcv_fcp_cmd_in), 2277 atomic_read(&tgtp->rcv_fcp_cmd_out), 2278 atomic_read(&tgtp->xmt_fcp_release)); 2279 lpfc_nvmeio_data(phba, "NVMET FCP DROP: xri x%x sz %d from %06x\n", 2280 ctxp->oxid, ctxp->size, ctxp->sid); 2281 spin_lock_irqsave(&ctxp->ctxlock, iflags); 2282 lpfc_nvmet_defer_release(phba, ctxp); 2283 spin_unlock_irqrestore(&ctxp->ctxlock, iflags); 2284 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, ctxp->sid, ctxp->oxid); 2285 #endif 2286 } 2287 2288 static void 2289 lpfc_nvmet_fcp_rqst_defer_work(struct work_struct *work) 2290 { 2291 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2292 struct lpfc_nvmet_ctxbuf *ctx_buf = 2293 container_of(work, struct lpfc_nvmet_ctxbuf, defer_work); 2294 2295 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2296 #endif 2297 } 2298 2299 static struct lpfc_nvmet_ctxbuf * 2300 lpfc_nvmet_replenish_context(struct lpfc_hba *phba, 2301 struct lpfc_nvmet_ctx_info *current_infop) 2302 { 2303 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2304 struct lpfc_nvmet_ctxbuf *ctx_buf = NULL; 2305 struct lpfc_nvmet_ctx_info *get_infop; 2306 int i; 2307 2308 /* 2309 * The current_infop for the MRQ a NVME command IU was received 2310 * on is empty. Our goal is to replenish this MRQs context 2311 * list from a another CPUs. 2312 * 2313 * First we need to pick a context list to start looking on. 2314 * nvmet_ctx_start_cpu has available context the last time 2315 * we needed to replenish this CPU where nvmet_ctx_next_cpu 2316 * is just the next sequential CPU for this MRQ. 2317 */ 2318 if (current_infop->nvmet_ctx_start_cpu) 2319 get_infop = current_infop->nvmet_ctx_start_cpu; 2320 else 2321 get_infop = current_infop->nvmet_ctx_next_cpu; 2322 2323 for (i = 0; i < phba->sli4_hba.num_possible_cpu; i++) { 2324 if (get_infop == current_infop) { 2325 get_infop = get_infop->nvmet_ctx_next_cpu; 2326 continue; 2327 } 2328 spin_lock(&get_infop->nvmet_ctx_list_lock); 2329 2330 /* Just take the entire context list, if there are any */ 2331 if (get_infop->nvmet_ctx_list_cnt) { 2332 list_splice_init(&get_infop->nvmet_ctx_list, 2333 ¤t_infop->nvmet_ctx_list); 2334 current_infop->nvmet_ctx_list_cnt = 2335 get_infop->nvmet_ctx_list_cnt - 1; 2336 get_infop->nvmet_ctx_list_cnt = 0; 2337 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2338 2339 current_infop->nvmet_ctx_start_cpu = get_infop; 2340 list_remove_head(¤t_infop->nvmet_ctx_list, 2341 ctx_buf, struct lpfc_nvmet_ctxbuf, 2342 list); 2343 return ctx_buf; 2344 } 2345 2346 /* Otherwise, move on to the next CPU for this MRQ */ 2347 spin_unlock(&get_infop->nvmet_ctx_list_lock); 2348 get_infop = get_infop->nvmet_ctx_next_cpu; 2349 } 2350 2351 #endif 2352 /* Nothing found, all contexts for the MRQ are in-flight */ 2353 return NULL; 2354 } 2355 2356 /** 2357 * lpfc_nvmet_unsol_fcp_buffer - Process an unsolicited event data buffer 2358 * @phba: pointer to lpfc hba data structure. 2359 * @idx: relative index of MRQ vector 2360 * @nvmebuf: pointer to lpfc nvme command HBQ data structure. 2361 * @isr_timestamp: in jiffies. 2362 * @cqflag: cq processing information regarding workload. 2363 * 2364 * This routine is used for processing the WQE associated with a unsolicited 2365 * event. It first determines whether there is an existing ndlp that matches 2366 * the DID from the unsolicited WQE. If not, it will create a new one with 2367 * the DID from the unsolicited WQE. The ELS command from the unsolicited 2368 * WQE is then used to invoke the proper routine and to set up proper state 2369 * of the discovery state machine. 2370 **/ 2371 static void 2372 lpfc_nvmet_unsol_fcp_buffer(struct lpfc_hba *phba, 2373 uint32_t idx, 2374 struct rqb_dmabuf *nvmebuf, 2375 uint64_t isr_timestamp, 2376 uint8_t cqflag) 2377 { 2378 struct lpfc_async_xchg_ctx *ctxp; 2379 struct lpfc_nvmet_tgtport *tgtp; 2380 struct fc_frame_header *fc_hdr; 2381 struct lpfc_nvmet_ctxbuf *ctx_buf; 2382 struct lpfc_nvmet_ctx_info *current_infop; 2383 uint32_t size, oxid, sid, qno; 2384 unsigned long iflag; 2385 int current_cpu; 2386 2387 if (!IS_ENABLED(CONFIG_NVME_TARGET_FC)) 2388 return; 2389 2390 ctx_buf = NULL; 2391 if (!nvmebuf || !phba->targetport) { 2392 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2393 "6157 NVMET FCP Drop IO\n"); 2394 if (nvmebuf) 2395 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2396 return; 2397 } 2398 2399 /* 2400 * Get a pointer to the context list for this MRQ based on 2401 * the CPU this MRQ IRQ is associated with. If the CPU association 2402 * changes from our initial assumption, the context list could 2403 * be empty, thus it would need to be replenished with the 2404 * context list from another CPU for this MRQ. 2405 */ 2406 current_cpu = raw_smp_processor_id(); 2407 current_infop = lpfc_get_ctx_list(phba, current_cpu, idx); 2408 spin_lock_irqsave(¤t_infop->nvmet_ctx_list_lock, iflag); 2409 if (current_infop->nvmet_ctx_list_cnt) { 2410 list_remove_head(¤t_infop->nvmet_ctx_list, 2411 ctx_buf, struct lpfc_nvmet_ctxbuf, list); 2412 current_infop->nvmet_ctx_list_cnt--; 2413 } else { 2414 ctx_buf = lpfc_nvmet_replenish_context(phba, current_infop); 2415 } 2416 spin_unlock_irqrestore(¤t_infop->nvmet_ctx_list_lock, iflag); 2417 2418 fc_hdr = (struct fc_frame_header *)(nvmebuf->hbuf.virt); 2419 oxid = be16_to_cpu(fc_hdr->fh_ox_id); 2420 size = nvmebuf->bytes_recv; 2421 2422 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2423 if (phba->hdwqstat_on & LPFC_CHECK_NVMET_IO) { 2424 this_cpu_inc(phba->sli4_hba.c_stat->rcv_io); 2425 if (idx != current_cpu) 2426 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2427 "6703 CPU Check rcv: " 2428 "cpu %d expect %d\n", 2429 current_cpu, idx); 2430 } 2431 #endif 2432 2433 lpfc_nvmeio_data(phba, "NVMET FCP RCV: xri x%x sz %d CPU %02x\n", 2434 oxid, size, raw_smp_processor_id()); 2435 2436 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2437 2438 if (!ctx_buf) { 2439 /* Queue this NVME IO to process later */ 2440 spin_lock_irqsave(&phba->sli4_hba.nvmet_io_wait_lock, iflag); 2441 list_add_tail(&nvmebuf->hbuf.list, 2442 &phba->sli4_hba.lpfc_nvmet_io_wait_list); 2443 phba->sli4_hba.nvmet_io_wait_cnt++; 2444 phba->sli4_hba.nvmet_io_wait_total++; 2445 spin_unlock_irqrestore(&phba->sli4_hba.nvmet_io_wait_lock, 2446 iflag); 2447 2448 /* Post a brand new DMA buffer to RQ */ 2449 qno = nvmebuf->idx; 2450 lpfc_post_rq_buffer( 2451 phba, phba->sli4_hba.nvmet_mrq_hdr[qno], 2452 phba->sli4_hba.nvmet_mrq_data[qno], 1, qno); 2453 2454 atomic_inc(&tgtp->defer_ctx); 2455 return; 2456 } 2457 2458 sid = sli4_sid_from_fc_hdr(fc_hdr); 2459 2460 ctxp = (struct lpfc_async_xchg_ctx *)ctx_buf->context; 2461 spin_lock_irqsave(&phba->sli4_hba.t_active_list_lock, iflag); 2462 list_add_tail(&ctxp->list, &phba->sli4_hba.t_active_ctx_list); 2463 spin_unlock_irqrestore(&phba->sli4_hba.t_active_list_lock, iflag); 2464 if (ctxp->state != LPFC_NVME_STE_FREE) { 2465 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2466 "6414 NVMET Context corrupt %d %d oxid x%x\n", 2467 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 2468 } 2469 ctxp->wqeq = NULL; 2470 ctxp->offset = 0; 2471 ctxp->phba = phba; 2472 ctxp->size = size; 2473 ctxp->oxid = oxid; 2474 ctxp->sid = sid; 2475 ctxp->idx = idx; 2476 ctxp->state = LPFC_NVME_STE_RCV; 2477 ctxp->entry_cnt = 1; 2478 ctxp->flag = 0; 2479 ctxp->ctxbuf = ctx_buf; 2480 ctxp->rqb_buffer = (void *)nvmebuf; 2481 ctxp->hdwq = NULL; 2482 spin_lock_init(&ctxp->ctxlock); 2483 2484 #ifdef CONFIG_SCSI_LPFC_DEBUG_FS 2485 if (isr_timestamp) 2486 ctxp->ts_isr_cmd = isr_timestamp; 2487 ctxp->ts_cmd_nvme = 0; 2488 ctxp->ts_nvme_data = 0; 2489 ctxp->ts_data_wqput = 0; 2490 ctxp->ts_isr_data = 0; 2491 ctxp->ts_data_nvme = 0; 2492 ctxp->ts_nvme_status = 0; 2493 ctxp->ts_status_wqput = 0; 2494 ctxp->ts_isr_status = 0; 2495 ctxp->ts_status_nvme = 0; 2496 #endif 2497 2498 atomic_inc(&tgtp->rcv_fcp_cmd_in); 2499 /* check for cq processing load */ 2500 if (!cqflag) { 2501 lpfc_nvmet_process_rcv_fcp_req(ctx_buf); 2502 return; 2503 } 2504 2505 if (!queue_work(phba->wq, &ctx_buf->defer_work)) { 2506 atomic_inc(&tgtp->rcv_fcp_cmd_drop); 2507 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2508 "6325 Unable to queue work for oxid x%x. " 2509 "FCP Drop IO [x%x x%x x%x]\n", 2510 ctxp->oxid, 2511 atomic_read(&tgtp->rcv_fcp_cmd_in), 2512 atomic_read(&tgtp->rcv_fcp_cmd_out), 2513 atomic_read(&tgtp->xmt_fcp_release)); 2514 2515 spin_lock_irqsave(&ctxp->ctxlock, iflag); 2516 lpfc_nvmet_defer_release(phba, ctxp); 2517 spin_unlock_irqrestore(&ctxp->ctxlock, iflag); 2518 lpfc_nvmet_unsol_fcp_issue_abort(phba, ctxp, sid, oxid); 2519 } 2520 } 2521 2522 /** 2523 * lpfc_nvmet_unsol_fcp_event - Process an unsolicited event from an nvme nport 2524 * @phba: pointer to lpfc hba data structure. 2525 * @idx: relative index of MRQ vector 2526 * @nvmebuf: pointer to received nvme data structure. 2527 * @isr_timestamp: in jiffies. 2528 * @cqflag: cq processing information regarding workload. 2529 * 2530 * This routine is used to process an unsolicited event received from a SLI 2531 * (Service Level Interface) ring. The actual processing of the data buffer 2532 * associated with the unsolicited event is done by invoking the routine 2533 * lpfc_nvmet_unsol_fcp_buffer() after properly set up the buffer from the 2534 * SLI RQ on which the unsolicited event was received. 2535 **/ 2536 void 2537 lpfc_nvmet_unsol_fcp_event(struct lpfc_hba *phba, 2538 uint32_t idx, 2539 struct rqb_dmabuf *nvmebuf, 2540 uint64_t isr_timestamp, 2541 uint8_t cqflag) 2542 { 2543 if (!nvmebuf) { 2544 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2545 "3167 NVMET FCP Drop IO\n"); 2546 return; 2547 } 2548 if (phba->nvmet_support == 0) { 2549 lpfc_rq_buf_free(phba, &nvmebuf->hbuf); 2550 return; 2551 } 2552 lpfc_nvmet_unsol_fcp_buffer(phba, idx, nvmebuf, isr_timestamp, cqflag); 2553 } 2554 2555 /** 2556 * lpfc_nvmet_prep_ls_wqe - Allocate and prepare a lpfc wqe data structure 2557 * @phba: pointer to a host N_Port data structure. 2558 * @ctxp: Context info for NVME LS Request 2559 * @rspbuf: DMA buffer of NVME command. 2560 * @rspsize: size of the NVME command. 2561 * 2562 * This routine is used for allocating a lpfc-WQE data structure from 2563 * the driver lpfc-WQE free-list and prepare the WQE with the parameters 2564 * passed into the routine for discovery state machine to issue an Extended 2565 * Link Service (NVME) commands. It is a generic lpfc-WQE allocation 2566 * and preparation routine that is used by all the discovery state machine 2567 * routines and the NVME command-specific fields will be later set up by 2568 * the individual discovery machine routines after calling this routine 2569 * allocating and preparing a generic WQE data structure. It fills in the 2570 * Buffer Descriptor Entries (BDEs), allocates buffers for both command 2571 * payload and response payload (if expected). The reference count on the 2572 * ndlp is incremented by 1 and the reference to the ndlp is put into 2573 * context1 of the WQE data structure for this WQE to hold the ndlp 2574 * reference for the command's callback function to access later. 2575 * 2576 * Return code 2577 * Pointer to the newly allocated/prepared nvme wqe data structure 2578 * NULL - when nvme wqe data structure allocation/preparation failed 2579 **/ 2580 static struct lpfc_iocbq * 2581 lpfc_nvmet_prep_ls_wqe(struct lpfc_hba *phba, 2582 struct lpfc_async_xchg_ctx *ctxp, 2583 dma_addr_t rspbuf, uint16_t rspsize) 2584 { 2585 struct lpfc_nodelist *ndlp; 2586 struct lpfc_iocbq *nvmewqe; 2587 union lpfc_wqe128 *wqe; 2588 2589 if (!lpfc_is_link_up(phba)) { 2590 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2591 "6104 NVMET prep LS wqe: link err: " 2592 "NPORT x%x oxid:x%x ste %d\n", 2593 ctxp->sid, ctxp->oxid, ctxp->state); 2594 return NULL; 2595 } 2596 2597 /* Allocate buffer for command wqe */ 2598 nvmewqe = lpfc_sli_get_iocbq(phba); 2599 if (nvmewqe == NULL) { 2600 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2601 "6105 NVMET prep LS wqe: No WQE: " 2602 "NPORT x%x oxid x%x ste %d\n", 2603 ctxp->sid, ctxp->oxid, ctxp->state); 2604 return NULL; 2605 } 2606 2607 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2608 if (!ndlp || 2609 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2610 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2611 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2612 "6106 NVMET prep LS wqe: No ndlp: " 2613 "NPORT x%x oxid x%x ste %d\n", 2614 ctxp->sid, ctxp->oxid, ctxp->state); 2615 goto nvme_wqe_free_wqeq_exit; 2616 } 2617 ctxp->wqeq = nvmewqe; 2618 2619 /* prevent preparing wqe with NULL ndlp reference */ 2620 nvmewqe->context1 = lpfc_nlp_get(ndlp); 2621 if (nvmewqe->context1 == NULL) 2622 goto nvme_wqe_free_wqeq_exit; 2623 nvmewqe->context2 = ctxp; 2624 2625 wqe = &nvmewqe->wqe; 2626 memset(wqe, 0, sizeof(union lpfc_wqe)); 2627 2628 /* Words 0 - 2 */ 2629 wqe->xmit_sequence.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2630 wqe->xmit_sequence.bde.tus.f.bdeSize = rspsize; 2631 wqe->xmit_sequence.bde.addrLow = le32_to_cpu(putPaddrLow(rspbuf)); 2632 wqe->xmit_sequence.bde.addrHigh = le32_to_cpu(putPaddrHigh(rspbuf)); 2633 2634 /* Word 3 */ 2635 2636 /* Word 4 */ 2637 2638 /* Word 5 */ 2639 bf_set(wqe_dfctl, &wqe->xmit_sequence.wge_ctl, 0); 2640 bf_set(wqe_ls, &wqe->xmit_sequence.wge_ctl, 1); 2641 bf_set(wqe_la, &wqe->xmit_sequence.wge_ctl, 0); 2642 bf_set(wqe_rctl, &wqe->xmit_sequence.wge_ctl, FC_RCTL_ELS4_REP); 2643 bf_set(wqe_type, &wqe->xmit_sequence.wge_ctl, FC_TYPE_NVME); 2644 2645 /* Word 6 */ 2646 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com, 2647 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2648 bf_set(wqe_xri_tag, &wqe->xmit_sequence.wqe_com, nvmewqe->sli4_xritag); 2649 2650 /* Word 7 */ 2651 bf_set(wqe_cmnd, &wqe->xmit_sequence.wqe_com, 2652 CMD_XMIT_SEQUENCE64_WQE); 2653 bf_set(wqe_ct, &wqe->xmit_sequence.wqe_com, SLI4_CT_RPI); 2654 bf_set(wqe_class, &wqe->xmit_sequence.wqe_com, CLASS3); 2655 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0); 2656 2657 /* Word 8 */ 2658 wqe->xmit_sequence.wqe_com.abort_tag = nvmewqe->iotag; 2659 2660 /* Word 9 */ 2661 bf_set(wqe_reqtag, &wqe->xmit_sequence.wqe_com, nvmewqe->iotag); 2662 /* Needs to be set by caller */ 2663 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com, ctxp->oxid); 2664 2665 /* Word 10 */ 2666 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1); 2667 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 2668 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com, 2669 LPFC_WQE_LENLOC_WORD12); 2670 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0); 2671 2672 /* Word 11 */ 2673 bf_set(wqe_cqid, &wqe->xmit_sequence.wqe_com, 2674 LPFC_WQE_CQ_ID_DEFAULT); 2675 bf_set(wqe_cmd_type, &wqe->xmit_sequence.wqe_com, 2676 OTHER_COMMAND); 2677 2678 /* Word 12 */ 2679 wqe->xmit_sequence.xmit_len = rspsize; 2680 2681 nvmewqe->retry = 1; 2682 nvmewqe->vport = phba->pport; 2683 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2684 nvmewqe->cmd_flag |= LPFC_IO_NVME_LS; 2685 2686 /* Xmit NVMET response to remote NPORT <did> */ 2687 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_DISC, 2688 "6039 Xmit NVMET LS response to remote " 2689 "NPORT x%x iotag:x%x oxid:x%x size:x%x\n", 2690 ndlp->nlp_DID, nvmewqe->iotag, ctxp->oxid, 2691 rspsize); 2692 return nvmewqe; 2693 2694 nvme_wqe_free_wqeq_exit: 2695 nvmewqe->context2 = NULL; 2696 nvmewqe->context3 = NULL; 2697 lpfc_sli_release_iocbq(phba, nvmewqe); 2698 return NULL; 2699 } 2700 2701 2702 static struct lpfc_iocbq * 2703 lpfc_nvmet_prep_fcp_wqe(struct lpfc_hba *phba, 2704 struct lpfc_async_xchg_ctx *ctxp) 2705 { 2706 struct nvmefc_tgt_fcp_req *rsp = &ctxp->hdlrctx.fcp_req; 2707 struct lpfc_nvmet_tgtport *tgtp; 2708 struct sli4_sge *sgl; 2709 struct lpfc_nodelist *ndlp; 2710 struct lpfc_iocbq *nvmewqe; 2711 struct scatterlist *sgel; 2712 union lpfc_wqe128 *wqe; 2713 struct ulp_bde64 *bde; 2714 dma_addr_t physaddr; 2715 int i, cnt, nsegs; 2716 bool use_pbde = false; 2717 int xc = 1; 2718 2719 if (!lpfc_is_link_up(phba)) { 2720 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2721 "6107 NVMET prep FCP wqe: link err:" 2722 "NPORT x%x oxid x%x ste %d\n", 2723 ctxp->sid, ctxp->oxid, ctxp->state); 2724 return NULL; 2725 } 2726 2727 ndlp = lpfc_findnode_did(phba->pport, ctxp->sid); 2728 if (!ndlp || 2729 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 2730 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 2731 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2732 "6108 NVMET prep FCP wqe: no ndlp: " 2733 "NPORT x%x oxid x%x ste %d\n", 2734 ctxp->sid, ctxp->oxid, ctxp->state); 2735 return NULL; 2736 } 2737 2738 if (rsp->sg_cnt > lpfc_tgttemplate.max_sgl_segments) { 2739 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2740 "6109 NVMET prep FCP wqe: seg cnt err: " 2741 "NPORT x%x oxid x%x ste %d cnt %d\n", 2742 ctxp->sid, ctxp->oxid, ctxp->state, 2743 phba->cfg_nvme_seg_cnt); 2744 return NULL; 2745 } 2746 nsegs = rsp->sg_cnt; 2747 2748 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 2749 nvmewqe = ctxp->wqeq; 2750 if (nvmewqe == NULL) { 2751 /* Allocate buffer for command wqe */ 2752 nvmewqe = ctxp->ctxbuf->iocbq; 2753 if (nvmewqe == NULL) { 2754 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2755 "6110 NVMET prep FCP wqe: No " 2756 "WQE: NPORT x%x oxid x%x ste %d\n", 2757 ctxp->sid, ctxp->oxid, ctxp->state); 2758 return NULL; 2759 } 2760 ctxp->wqeq = nvmewqe; 2761 xc = 0; /* create new XRI */ 2762 nvmewqe->sli4_lxritag = NO_XRI; 2763 nvmewqe->sli4_xritag = NO_XRI; 2764 } 2765 2766 /* Sanity check */ 2767 if (((ctxp->state == LPFC_NVME_STE_RCV) && 2768 (ctxp->entry_cnt == 1)) || 2769 (ctxp->state == LPFC_NVME_STE_DATA)) { 2770 wqe = &nvmewqe->wqe; 2771 } else { 2772 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 2773 "6111 Wrong state NVMET FCP: %d cnt %d\n", 2774 ctxp->state, ctxp->entry_cnt); 2775 return NULL; 2776 } 2777 2778 sgl = (struct sli4_sge *)ctxp->ctxbuf->sglq->sgl; 2779 switch (rsp->op) { 2780 case NVMET_FCOP_READDATA: 2781 case NVMET_FCOP_READDATA_RSP: 2782 /* From the tsend template, initialize words 7 - 11 */ 2783 memcpy(&wqe->words[7], 2784 &lpfc_tsend_cmd_template.words[7], 2785 sizeof(uint32_t) * 5); 2786 2787 /* Words 0 - 2 : The first sg segment */ 2788 sgel = &rsp->sg[0]; 2789 physaddr = sg_dma_address(sgel); 2790 wqe->fcp_tsend.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2791 wqe->fcp_tsend.bde.tus.f.bdeSize = sg_dma_len(sgel); 2792 wqe->fcp_tsend.bde.addrLow = cpu_to_le32(putPaddrLow(physaddr)); 2793 wqe->fcp_tsend.bde.addrHigh = 2794 cpu_to_le32(putPaddrHigh(physaddr)); 2795 2796 /* Word 3 */ 2797 wqe->fcp_tsend.payload_offset_len = 0; 2798 2799 /* Word 4 */ 2800 wqe->fcp_tsend.relative_offset = ctxp->offset; 2801 2802 /* Word 5 */ 2803 wqe->fcp_tsend.reserved = 0; 2804 2805 /* Word 6 */ 2806 bf_set(wqe_ctxt_tag, &wqe->fcp_tsend.wqe_com, 2807 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2808 bf_set(wqe_xri_tag, &wqe->fcp_tsend.wqe_com, 2809 nvmewqe->sli4_xritag); 2810 2811 /* Word 7 - set ar later */ 2812 2813 /* Word 8 */ 2814 wqe->fcp_tsend.wqe_com.abort_tag = nvmewqe->iotag; 2815 2816 /* Word 9 */ 2817 bf_set(wqe_reqtag, &wqe->fcp_tsend.wqe_com, nvmewqe->iotag); 2818 bf_set(wqe_rcvoxid, &wqe->fcp_tsend.wqe_com, ctxp->oxid); 2819 2820 /* Word 10 - set wqes later, in template xc=1 */ 2821 if (!xc) 2822 bf_set(wqe_xc, &wqe->fcp_tsend.wqe_com, 0); 2823 2824 /* Word 12 */ 2825 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2826 2827 /* Setup 2 SKIP SGEs */ 2828 sgl->addr_hi = 0; 2829 sgl->addr_lo = 0; 2830 sgl->word2 = 0; 2831 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2832 sgl->word2 = cpu_to_le32(sgl->word2); 2833 sgl->sge_len = 0; 2834 sgl++; 2835 sgl->addr_hi = 0; 2836 sgl->addr_lo = 0; 2837 sgl->word2 = 0; 2838 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2839 sgl->word2 = cpu_to_le32(sgl->word2); 2840 sgl->sge_len = 0; 2841 sgl++; 2842 if (rsp->op == NVMET_FCOP_READDATA_RSP) { 2843 atomic_inc(&tgtp->xmt_fcp_read_rsp); 2844 2845 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2846 2847 if (rsp->rsplen == LPFC_NVMET_SUCCESS_LEN) { 2848 if (ndlp->nlp_flag & NLP_SUPPRESS_RSP) 2849 bf_set(wqe_sup, 2850 &wqe->fcp_tsend.wqe_com, 1); 2851 } else { 2852 bf_set(wqe_wqes, &wqe->fcp_tsend.wqe_com, 1); 2853 bf_set(wqe_irsp, &wqe->fcp_tsend.wqe_com, 1); 2854 bf_set(wqe_irsplen, &wqe->fcp_tsend.wqe_com, 2855 ((rsp->rsplen >> 2) - 1)); 2856 memcpy(&wqe->words[16], rsp->rspaddr, 2857 rsp->rsplen); 2858 } 2859 } else { 2860 atomic_inc(&tgtp->xmt_fcp_read); 2861 2862 /* In template ar=1 wqes=0 sup=0 irsp=0 irsplen=0 */ 2863 bf_set(wqe_ar, &wqe->fcp_tsend.wqe_com, 0); 2864 } 2865 break; 2866 2867 case NVMET_FCOP_WRITEDATA: 2868 /* From the treceive template, initialize words 3 - 11 */ 2869 memcpy(&wqe->words[3], 2870 &lpfc_treceive_cmd_template.words[3], 2871 sizeof(uint32_t) * 9); 2872 2873 /* Words 0 - 2 : First SGE is skipped, set invalid BDE type */ 2874 wqe->fcp_treceive.bde.tus.f.bdeFlags = LPFC_SGE_TYPE_SKIP; 2875 wqe->fcp_treceive.bde.tus.f.bdeSize = 0; 2876 wqe->fcp_treceive.bde.addrLow = 0; 2877 wqe->fcp_treceive.bde.addrHigh = 0; 2878 2879 /* Word 4 */ 2880 wqe->fcp_treceive.relative_offset = ctxp->offset; 2881 2882 /* Word 6 */ 2883 bf_set(wqe_ctxt_tag, &wqe->fcp_treceive.wqe_com, 2884 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2885 bf_set(wqe_xri_tag, &wqe->fcp_treceive.wqe_com, 2886 nvmewqe->sli4_xritag); 2887 2888 /* Word 7 */ 2889 2890 /* Word 8 */ 2891 wqe->fcp_treceive.wqe_com.abort_tag = nvmewqe->iotag; 2892 2893 /* Word 9 */ 2894 bf_set(wqe_reqtag, &wqe->fcp_treceive.wqe_com, nvmewqe->iotag); 2895 bf_set(wqe_rcvoxid, &wqe->fcp_treceive.wqe_com, ctxp->oxid); 2896 2897 /* Word 10 - in template xc=1 */ 2898 if (!xc) 2899 bf_set(wqe_xc, &wqe->fcp_treceive.wqe_com, 0); 2900 2901 /* Word 11 - check for pbde */ 2902 if (nsegs == 1 && phba->cfg_enable_pbde) { 2903 use_pbde = true; 2904 /* Word 11 - PBDE bit already preset by template */ 2905 } else { 2906 /* Overwrite default template setting */ 2907 bf_set(wqe_pbde, &wqe->fcp_treceive.wqe_com, 0); 2908 } 2909 2910 /* Word 12 */ 2911 wqe->fcp_tsend.fcp_data_len = rsp->transfer_length; 2912 2913 /* Setup 2 SKIP SGEs */ 2914 sgl->addr_hi = 0; 2915 sgl->addr_lo = 0; 2916 sgl->word2 = 0; 2917 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2918 sgl->word2 = cpu_to_le32(sgl->word2); 2919 sgl->sge_len = 0; 2920 sgl++; 2921 sgl->addr_hi = 0; 2922 sgl->addr_lo = 0; 2923 sgl->word2 = 0; 2924 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_SKIP); 2925 sgl->word2 = cpu_to_le32(sgl->word2); 2926 sgl->sge_len = 0; 2927 sgl++; 2928 atomic_inc(&tgtp->xmt_fcp_write); 2929 break; 2930 2931 case NVMET_FCOP_RSP: 2932 /* From the treceive template, initialize words 4 - 11 */ 2933 memcpy(&wqe->words[4], 2934 &lpfc_trsp_cmd_template.words[4], 2935 sizeof(uint32_t) * 8); 2936 2937 /* Words 0 - 2 */ 2938 physaddr = rsp->rspdma; 2939 wqe->fcp_trsp.bde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; 2940 wqe->fcp_trsp.bde.tus.f.bdeSize = rsp->rsplen; 2941 wqe->fcp_trsp.bde.addrLow = 2942 cpu_to_le32(putPaddrLow(physaddr)); 2943 wqe->fcp_trsp.bde.addrHigh = 2944 cpu_to_le32(putPaddrHigh(physaddr)); 2945 2946 /* Word 3 */ 2947 wqe->fcp_trsp.response_len = rsp->rsplen; 2948 2949 /* Word 6 */ 2950 bf_set(wqe_ctxt_tag, &wqe->fcp_trsp.wqe_com, 2951 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 2952 bf_set(wqe_xri_tag, &wqe->fcp_trsp.wqe_com, 2953 nvmewqe->sli4_xritag); 2954 2955 /* Word 7 */ 2956 2957 /* Word 8 */ 2958 wqe->fcp_trsp.wqe_com.abort_tag = nvmewqe->iotag; 2959 2960 /* Word 9 */ 2961 bf_set(wqe_reqtag, &wqe->fcp_trsp.wqe_com, nvmewqe->iotag); 2962 bf_set(wqe_rcvoxid, &wqe->fcp_trsp.wqe_com, ctxp->oxid); 2963 2964 /* Word 10 */ 2965 if (xc) 2966 bf_set(wqe_xc, &wqe->fcp_trsp.wqe_com, 1); 2967 2968 /* Word 11 */ 2969 /* In template wqes=0 irsp=0 irsplen=0 - good response */ 2970 if (rsp->rsplen != LPFC_NVMET_SUCCESS_LEN) { 2971 /* Bad response - embed it */ 2972 bf_set(wqe_wqes, &wqe->fcp_trsp.wqe_com, 1); 2973 bf_set(wqe_irsp, &wqe->fcp_trsp.wqe_com, 1); 2974 bf_set(wqe_irsplen, &wqe->fcp_trsp.wqe_com, 2975 ((rsp->rsplen >> 2) - 1)); 2976 memcpy(&wqe->words[16], rsp->rspaddr, rsp->rsplen); 2977 } 2978 2979 /* Word 12 */ 2980 wqe->fcp_trsp.rsvd_12_15[0] = 0; 2981 2982 /* Use rspbuf, NOT sg list */ 2983 nsegs = 0; 2984 sgl->word2 = 0; 2985 atomic_inc(&tgtp->xmt_fcp_rsp); 2986 break; 2987 2988 default: 2989 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_IOERR, 2990 "6064 Unknown Rsp Op %d\n", 2991 rsp->op); 2992 return NULL; 2993 } 2994 2995 nvmewqe->retry = 1; 2996 nvmewqe->vport = phba->pport; 2997 nvmewqe->drvrTimeout = (phba->fc_ratov * 3) + LPFC_DRVR_TIMEOUT; 2998 nvmewqe->context1 = ndlp; 2999 3000 for_each_sg(rsp->sg, sgel, nsegs, i) { 3001 physaddr = sg_dma_address(sgel); 3002 cnt = sg_dma_len(sgel); 3003 sgl->addr_hi = putPaddrHigh(physaddr); 3004 sgl->addr_lo = putPaddrLow(physaddr); 3005 sgl->word2 = 0; 3006 bf_set(lpfc_sli4_sge_type, sgl, LPFC_SGE_TYPE_DATA); 3007 bf_set(lpfc_sli4_sge_offset, sgl, ctxp->offset); 3008 if ((i+1) == rsp->sg_cnt) 3009 bf_set(lpfc_sli4_sge_last, sgl, 1); 3010 sgl->word2 = cpu_to_le32(sgl->word2); 3011 sgl->sge_len = cpu_to_le32(cnt); 3012 sgl++; 3013 ctxp->offset += cnt; 3014 } 3015 3016 bde = (struct ulp_bde64 *)&wqe->words[13]; 3017 if (use_pbde) { 3018 /* decrement sgl ptr backwards once to first data sge */ 3019 sgl--; 3020 3021 /* Words 13-15 (PBDE) */ 3022 bde->addrLow = sgl->addr_lo; 3023 bde->addrHigh = sgl->addr_hi; 3024 bde->tus.f.bdeSize = le32_to_cpu(sgl->sge_len); 3025 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; 3026 bde->tus.w = cpu_to_le32(bde->tus.w); 3027 } else { 3028 memset(bde, 0, sizeof(struct ulp_bde64)); 3029 } 3030 ctxp->state = LPFC_NVME_STE_DATA; 3031 ctxp->entry_cnt++; 3032 return nvmewqe; 3033 } 3034 3035 /** 3036 * lpfc_nvmet_sol_fcp_abort_cmp - Completion handler for ABTS 3037 * @phba: Pointer to HBA context object. 3038 * @cmdwqe: Pointer to driver command WQE object. 3039 * @rspwqe: Pointer to driver response WQE object. 3040 * 3041 * The function is called from SLI ring event handler with no 3042 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3043 * The function frees memory resources used for the NVME commands. 3044 **/ 3045 static void 3046 lpfc_nvmet_sol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3047 struct lpfc_iocbq *rspwqe) 3048 { 3049 struct lpfc_async_xchg_ctx *ctxp; 3050 struct lpfc_nvmet_tgtport *tgtp; 3051 uint32_t result; 3052 unsigned long flags; 3053 bool released = false; 3054 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3055 3056 ctxp = cmdwqe->context2; 3057 result = wcqe->parameter; 3058 3059 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3060 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3061 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3062 3063 spin_lock_irqsave(&ctxp->ctxlock, flags); 3064 ctxp->state = LPFC_NVME_STE_DONE; 3065 3066 /* Check if we already received a free context call 3067 * and we have completed processing an abort situation. 3068 */ 3069 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3070 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3071 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3072 list_del_init(&ctxp->list); 3073 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3074 released = true; 3075 } 3076 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3077 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3078 atomic_inc(&tgtp->xmt_abort_rsp); 3079 3080 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3081 "6165 ABORT cmpl: oxid x%x flg x%x (%d) " 3082 "WCQE: %08x %08x %08x %08x\n", 3083 ctxp->oxid, ctxp->flag, released, 3084 wcqe->word0, wcqe->total_data_placed, 3085 result, wcqe->word3); 3086 3087 cmdwqe->context2 = NULL; 3088 cmdwqe->context3 = NULL; 3089 /* 3090 * if transport has released ctx, then can reuse it. Otherwise, 3091 * will be recycled by transport release call. 3092 */ 3093 if (released) 3094 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3095 3096 /* This is the iocbq for the abort, not the command */ 3097 lpfc_sli_release_iocbq(phba, cmdwqe); 3098 3099 /* Since iaab/iaar are NOT set, there is no work left. 3100 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3101 * should have been called already. 3102 */ 3103 } 3104 3105 /** 3106 * lpfc_nvmet_unsol_fcp_abort_cmp - Completion handler for ABTS 3107 * @phba: Pointer to HBA context object. 3108 * @cmdwqe: Pointer to driver command WQE object. 3109 * @rspwqe: Pointer to driver response WQE object. 3110 * 3111 * The function is called from SLI ring event handler with no 3112 * lock held. This function is the completion handler for NVME ABTS for FCP cmds 3113 * The function frees memory resources used for the NVME commands. 3114 **/ 3115 static void 3116 lpfc_nvmet_unsol_fcp_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3117 struct lpfc_iocbq *rspwqe) 3118 { 3119 struct lpfc_async_xchg_ctx *ctxp; 3120 struct lpfc_nvmet_tgtport *tgtp; 3121 unsigned long flags; 3122 uint32_t result; 3123 bool released = false; 3124 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3125 3126 ctxp = cmdwqe->context2; 3127 result = wcqe->parameter; 3128 3129 if (!ctxp) { 3130 /* if context is clear, related io alrady complete */ 3131 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3132 "6070 ABTS cmpl: WCQE: %08x %08x %08x %08x\n", 3133 wcqe->word0, wcqe->total_data_placed, 3134 result, wcqe->word3); 3135 return; 3136 } 3137 3138 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3139 spin_lock_irqsave(&ctxp->ctxlock, flags); 3140 if (ctxp->flag & LPFC_NVME_ABORT_OP) 3141 atomic_inc(&tgtp->xmt_fcp_abort_cmpl); 3142 3143 /* Sanity check */ 3144 if (ctxp->state != LPFC_NVME_STE_ABORT) { 3145 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3146 "6112 ABTS Wrong state:%d oxid x%x\n", 3147 ctxp->state, ctxp->oxid); 3148 } 3149 3150 /* Check if we already received a free context call 3151 * and we have completed processing an abort situation. 3152 */ 3153 ctxp->state = LPFC_NVME_STE_DONE; 3154 if ((ctxp->flag & LPFC_NVME_CTX_RLS) && 3155 !(ctxp->flag & LPFC_NVME_XBUSY)) { 3156 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3157 list_del_init(&ctxp->list); 3158 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3159 released = true; 3160 } 3161 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3162 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3163 atomic_inc(&tgtp->xmt_abort_rsp); 3164 3165 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3166 "6316 ABTS cmpl oxid x%x flg x%x (%x) " 3167 "WCQE: %08x %08x %08x %08x\n", 3168 ctxp->oxid, ctxp->flag, released, 3169 wcqe->word0, wcqe->total_data_placed, 3170 result, wcqe->word3); 3171 3172 cmdwqe->context2 = NULL; 3173 cmdwqe->context3 = NULL; 3174 /* 3175 * if transport has released ctx, then can reuse it. Otherwise, 3176 * will be recycled by transport release call. 3177 */ 3178 if (released) 3179 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3180 3181 /* Since iaab/iaar are NOT set, there is no work left. 3182 * For LPFC_NVME_XBUSY, lpfc_sli4_nvmet_xri_aborted 3183 * should have been called already. 3184 */ 3185 } 3186 3187 /** 3188 * lpfc_nvmet_xmt_ls_abort_cmp - Completion handler for ABTS 3189 * @phba: Pointer to HBA context object. 3190 * @cmdwqe: Pointer to driver command WQE object. 3191 * @rspwqe: Pointer to driver response WQE object. 3192 * 3193 * The function is called from SLI ring event handler with no 3194 * lock held. This function is the completion handler for NVME ABTS for LS cmds 3195 * The function frees memory resources used for the NVME commands. 3196 **/ 3197 static void 3198 lpfc_nvmet_xmt_ls_abort_cmp(struct lpfc_hba *phba, struct lpfc_iocbq *cmdwqe, 3199 struct lpfc_iocbq *rspwqe) 3200 { 3201 struct lpfc_async_xchg_ctx *ctxp; 3202 struct lpfc_nvmet_tgtport *tgtp; 3203 uint32_t result; 3204 struct lpfc_wcqe_complete *wcqe = &rspwqe->wcqe_cmpl; 3205 3206 ctxp = cmdwqe->context2; 3207 result = wcqe->parameter; 3208 3209 if (phba->nvmet_support) { 3210 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3211 atomic_inc(&tgtp->xmt_ls_abort_cmpl); 3212 } 3213 3214 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3215 "6083 Abort cmpl: ctx x%px WCQE:%08x %08x %08x %08x\n", 3216 ctxp, wcqe->word0, wcqe->total_data_placed, 3217 result, wcqe->word3); 3218 3219 if (!ctxp) { 3220 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3221 "6415 NVMET LS Abort No ctx: WCQE: " 3222 "%08x %08x %08x %08x\n", 3223 wcqe->word0, wcqe->total_data_placed, 3224 result, wcqe->word3); 3225 3226 lpfc_sli_release_iocbq(phba, cmdwqe); 3227 return; 3228 } 3229 3230 if (ctxp->state != LPFC_NVME_STE_LS_ABORT) { 3231 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3232 "6416 NVMET LS abort cmpl state mismatch: " 3233 "oxid x%x: %d %d\n", 3234 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3235 } 3236 3237 cmdwqe->context2 = NULL; 3238 cmdwqe->context3 = NULL; 3239 lpfc_sli_release_iocbq(phba, cmdwqe); 3240 kfree(ctxp); 3241 } 3242 3243 static int 3244 lpfc_nvmet_unsol_issue_abort(struct lpfc_hba *phba, 3245 struct lpfc_async_xchg_ctx *ctxp, 3246 uint32_t sid, uint16_t xri) 3247 { 3248 struct lpfc_nvmet_tgtport *tgtp = NULL; 3249 struct lpfc_iocbq *abts_wqeq; 3250 union lpfc_wqe128 *wqe_abts; 3251 struct lpfc_nodelist *ndlp; 3252 3253 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3254 "6067 ABTS: sid %x xri x%x/x%x\n", 3255 sid, xri, ctxp->wqeq->sli4_xritag); 3256 3257 if (phba->nvmet_support && phba->targetport) 3258 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3259 3260 ndlp = lpfc_findnode_did(phba->pport, sid); 3261 if (!ndlp || 3262 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3263 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3264 if (tgtp) 3265 atomic_inc(&tgtp->xmt_abort_rsp_error); 3266 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3267 "6134 Drop ABTS - wrong NDLP state x%x.\n", 3268 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3269 3270 /* No failure to an ABTS request. */ 3271 return 0; 3272 } 3273 3274 abts_wqeq = ctxp->wqeq; 3275 wqe_abts = &abts_wqeq->wqe; 3276 3277 /* 3278 * Since we zero the whole WQE, we need to ensure we set the WQE fields 3279 * that were initialized in lpfc_sli4_nvmet_alloc. 3280 */ 3281 memset(wqe_abts, 0, sizeof(union lpfc_wqe)); 3282 3283 /* Word 5 */ 3284 bf_set(wqe_dfctl, &wqe_abts->xmit_sequence.wge_ctl, 0); 3285 bf_set(wqe_ls, &wqe_abts->xmit_sequence.wge_ctl, 1); 3286 bf_set(wqe_la, &wqe_abts->xmit_sequence.wge_ctl, 0); 3287 bf_set(wqe_rctl, &wqe_abts->xmit_sequence.wge_ctl, FC_RCTL_BA_ABTS); 3288 bf_set(wqe_type, &wqe_abts->xmit_sequence.wge_ctl, FC_TYPE_BLS); 3289 3290 /* Word 6 */ 3291 bf_set(wqe_ctxt_tag, &wqe_abts->xmit_sequence.wqe_com, 3292 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]); 3293 bf_set(wqe_xri_tag, &wqe_abts->xmit_sequence.wqe_com, 3294 abts_wqeq->sli4_xritag); 3295 3296 /* Word 7 */ 3297 bf_set(wqe_cmnd, &wqe_abts->xmit_sequence.wqe_com, 3298 CMD_XMIT_SEQUENCE64_WQE); 3299 bf_set(wqe_ct, &wqe_abts->xmit_sequence.wqe_com, SLI4_CT_RPI); 3300 bf_set(wqe_class, &wqe_abts->xmit_sequence.wqe_com, CLASS3); 3301 bf_set(wqe_pu, &wqe_abts->xmit_sequence.wqe_com, 0); 3302 3303 /* Word 8 */ 3304 wqe_abts->xmit_sequence.wqe_com.abort_tag = abts_wqeq->iotag; 3305 3306 /* Word 9 */ 3307 bf_set(wqe_reqtag, &wqe_abts->xmit_sequence.wqe_com, abts_wqeq->iotag); 3308 /* Needs to be set by caller */ 3309 bf_set(wqe_rcvoxid, &wqe_abts->xmit_sequence.wqe_com, xri); 3310 3311 /* Word 10 */ 3312 bf_set(wqe_iod, &wqe_abts->xmit_sequence.wqe_com, LPFC_WQE_IOD_WRITE); 3313 bf_set(wqe_lenloc, &wqe_abts->xmit_sequence.wqe_com, 3314 LPFC_WQE_LENLOC_WORD12); 3315 bf_set(wqe_ebde_cnt, &wqe_abts->xmit_sequence.wqe_com, 0); 3316 bf_set(wqe_qosd, &wqe_abts->xmit_sequence.wqe_com, 0); 3317 3318 /* Word 11 */ 3319 bf_set(wqe_cqid, &wqe_abts->xmit_sequence.wqe_com, 3320 LPFC_WQE_CQ_ID_DEFAULT); 3321 bf_set(wqe_cmd_type, &wqe_abts->xmit_sequence.wqe_com, 3322 OTHER_COMMAND); 3323 3324 abts_wqeq->vport = phba->pport; 3325 abts_wqeq->context1 = ndlp; 3326 abts_wqeq->context2 = ctxp; 3327 abts_wqeq->context3 = NULL; 3328 abts_wqeq->num_bdes = 0; 3329 /* hba_wqidx should already be setup from command we are aborting */ 3330 abts_wqeq->iocb.ulpCommand = CMD_XMIT_SEQUENCE64_CR; 3331 abts_wqeq->iocb.ulpLe = 1; 3332 3333 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3334 "6069 Issue ABTS to xri x%x reqtag x%x\n", 3335 xri, abts_wqeq->iotag); 3336 return 1; 3337 } 3338 3339 /** 3340 * lpfc_nvmet_prep_abort_wqe - set up 'abort' work queue entry. 3341 * @pwqeq: Pointer to command iocb. 3342 * @xritag: Tag that uniqely identifies the local exchange resource. 3343 * @opt: Option bits - 3344 * bit 0 = inhibit sending abts on the link 3345 * 3346 * This function is called with hbalock held. 3347 **/ 3348 static void 3349 lpfc_nvmet_prep_abort_wqe(struct lpfc_iocbq *pwqeq, u16 xritag, u8 opt) 3350 { 3351 union lpfc_wqe128 *wqe = &pwqeq->wqe; 3352 3353 /* WQEs are reused. Clear stale data and set key fields to 3354 * zero like ia, iaab, iaar, xri_tag, and ctxt_tag. 3355 */ 3356 memset(wqe, 0, sizeof(*wqe)); 3357 3358 if (opt & INHIBIT_ABORT) 3359 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1); 3360 /* Abort specified xri tag, with the mask deliberately zeroed */ 3361 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG); 3362 3363 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX); 3364 3365 /* Abort the I/O associated with this outstanding exchange ID. */ 3366 wqe->abort_cmd.wqe_com.abort_tag = xritag; 3367 3368 /* iotag for the wqe completion. */ 3369 bf_set(wqe_reqtag, &wqe->abort_cmd.wqe_com, pwqeq->iotag); 3370 3371 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1); 3372 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com, LPFC_WQE_LENLOC_NONE); 3373 3374 bf_set(wqe_cmd_type, &wqe->abort_cmd.wqe_com, OTHER_COMMAND); 3375 bf_set(wqe_wqec, &wqe->abort_cmd.wqe_com, 1); 3376 bf_set(wqe_cqid, &wqe->abort_cmd.wqe_com, LPFC_WQE_CQ_ID_DEFAULT); 3377 } 3378 3379 static int 3380 lpfc_nvmet_sol_fcp_issue_abort(struct lpfc_hba *phba, 3381 struct lpfc_async_xchg_ctx *ctxp, 3382 uint32_t sid, uint16_t xri) 3383 { 3384 struct lpfc_nvmet_tgtport *tgtp; 3385 struct lpfc_iocbq *abts_wqeq; 3386 struct lpfc_nodelist *ndlp; 3387 unsigned long flags; 3388 u8 opt; 3389 int rc; 3390 3391 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3392 if (!ctxp->wqeq) { 3393 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3394 ctxp->wqeq->hba_wqidx = 0; 3395 } 3396 3397 ndlp = lpfc_findnode_did(phba->pport, sid); 3398 if (!ndlp || 3399 ((ndlp->nlp_state != NLP_STE_UNMAPPED_NODE) && 3400 (ndlp->nlp_state != NLP_STE_MAPPED_NODE))) { 3401 atomic_inc(&tgtp->xmt_abort_rsp_error); 3402 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3403 "6160 Drop ABORT - wrong NDLP state x%x.\n", 3404 (ndlp) ? ndlp->nlp_state : NLP_STE_MAX_STATE); 3405 3406 /* No failure to an ABTS request. */ 3407 spin_lock_irqsave(&ctxp->ctxlock, flags); 3408 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3409 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3410 return 0; 3411 } 3412 3413 /* Issue ABTS for this WQE based on iotag */ 3414 ctxp->abort_wqeq = lpfc_sli_get_iocbq(phba); 3415 spin_lock_irqsave(&ctxp->ctxlock, flags); 3416 if (!ctxp->abort_wqeq) { 3417 atomic_inc(&tgtp->xmt_abort_rsp_error); 3418 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3419 "6161 ABORT failed: No wqeqs: " 3420 "xri: x%x\n", ctxp->oxid); 3421 /* No failure to an ABTS request. */ 3422 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3423 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3424 return 0; 3425 } 3426 abts_wqeq = ctxp->abort_wqeq; 3427 ctxp->state = LPFC_NVME_STE_ABORT; 3428 opt = (ctxp->flag & LPFC_NVME_ABTS_RCV) ? INHIBIT_ABORT : 0; 3429 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3430 3431 /* Announce entry to new IO submit field. */ 3432 lpfc_printf_log(phba, KERN_INFO, LOG_NVME_ABTS, 3433 "6162 ABORT Request to rport DID x%06x " 3434 "for xri x%x x%x\n", 3435 ctxp->sid, ctxp->oxid, ctxp->wqeq->sli4_xritag); 3436 3437 /* If the hba is getting reset, this flag is set. It is 3438 * cleared when the reset is complete and rings reestablished. 3439 */ 3440 spin_lock_irqsave(&phba->hbalock, flags); 3441 /* driver queued commands are in process of being flushed */ 3442 if (phba->hba_flag & HBA_IOQ_FLUSH) { 3443 spin_unlock_irqrestore(&phba->hbalock, flags); 3444 atomic_inc(&tgtp->xmt_abort_rsp_error); 3445 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3446 "6163 Driver in reset cleanup - flushing " 3447 "NVME Req now. hba_flag x%x oxid x%x\n", 3448 phba->hba_flag, ctxp->oxid); 3449 lpfc_sli_release_iocbq(phba, abts_wqeq); 3450 spin_lock_irqsave(&ctxp->ctxlock, flags); 3451 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3452 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3453 return 0; 3454 } 3455 3456 /* Outstanding abort is in progress */ 3457 if (abts_wqeq->cmd_flag & LPFC_DRIVER_ABORTED) { 3458 spin_unlock_irqrestore(&phba->hbalock, flags); 3459 atomic_inc(&tgtp->xmt_abort_rsp_error); 3460 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3461 "6164 Outstanding NVME I/O Abort Request " 3462 "still pending on oxid x%x\n", 3463 ctxp->oxid); 3464 lpfc_sli_release_iocbq(phba, abts_wqeq); 3465 spin_lock_irqsave(&ctxp->ctxlock, flags); 3466 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3467 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3468 return 0; 3469 } 3470 3471 /* Ready - mark outstanding as aborted by driver. */ 3472 abts_wqeq->cmd_flag |= LPFC_DRIVER_ABORTED; 3473 3474 lpfc_nvmet_prep_abort_wqe(abts_wqeq, ctxp->wqeq->sli4_xritag, opt); 3475 3476 /* ABTS WQE must go to the same WQ as the WQE to be aborted */ 3477 abts_wqeq->hba_wqidx = ctxp->wqeq->hba_wqidx; 3478 abts_wqeq->cmd_cmpl = lpfc_nvmet_sol_fcp_abort_cmp; 3479 abts_wqeq->cmd_flag |= LPFC_IO_NVME; 3480 abts_wqeq->context2 = ctxp; 3481 abts_wqeq->vport = phba->pport; 3482 if (!ctxp->hdwq) 3483 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3484 3485 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3486 spin_unlock_irqrestore(&phba->hbalock, flags); 3487 if (rc == WQE_SUCCESS) { 3488 atomic_inc(&tgtp->xmt_abort_sol); 3489 return 0; 3490 } 3491 3492 atomic_inc(&tgtp->xmt_abort_rsp_error); 3493 spin_lock_irqsave(&ctxp->ctxlock, flags); 3494 ctxp->flag &= ~LPFC_NVME_ABORT_OP; 3495 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3496 lpfc_sli_release_iocbq(phba, abts_wqeq); 3497 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3498 "6166 Failed ABORT issue_wqe with status x%x " 3499 "for oxid x%x.\n", 3500 rc, ctxp->oxid); 3501 return 1; 3502 } 3503 3504 static int 3505 lpfc_nvmet_unsol_fcp_issue_abort(struct lpfc_hba *phba, 3506 struct lpfc_async_xchg_ctx *ctxp, 3507 uint32_t sid, uint16_t xri) 3508 { 3509 struct lpfc_nvmet_tgtport *tgtp; 3510 struct lpfc_iocbq *abts_wqeq; 3511 unsigned long flags; 3512 bool released = false; 3513 int rc; 3514 3515 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3516 if (!ctxp->wqeq) { 3517 ctxp->wqeq = ctxp->ctxbuf->iocbq; 3518 ctxp->wqeq->hba_wqidx = 0; 3519 } 3520 3521 if (ctxp->state == LPFC_NVME_STE_FREE) { 3522 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3523 "6417 NVMET ABORT ctx freed %d %d oxid x%x\n", 3524 ctxp->state, ctxp->entry_cnt, ctxp->oxid); 3525 rc = WQE_BUSY; 3526 goto aerr; 3527 } 3528 ctxp->state = LPFC_NVME_STE_ABORT; 3529 ctxp->entry_cnt++; 3530 rc = lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri); 3531 if (rc == 0) 3532 goto aerr; 3533 3534 spin_lock_irqsave(&phba->hbalock, flags); 3535 abts_wqeq = ctxp->wqeq; 3536 abts_wqeq->cmd_cmpl = lpfc_nvmet_unsol_fcp_abort_cmp; 3537 abts_wqeq->cmd_flag |= LPFC_IO_NVMET; 3538 if (!ctxp->hdwq) 3539 ctxp->hdwq = &phba->sli4_hba.hdwq[abts_wqeq->hba_wqidx]; 3540 3541 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3542 spin_unlock_irqrestore(&phba->hbalock, flags); 3543 if (rc == WQE_SUCCESS) { 3544 return 0; 3545 } 3546 3547 aerr: 3548 spin_lock_irqsave(&ctxp->ctxlock, flags); 3549 if (ctxp->flag & LPFC_NVME_CTX_RLS) { 3550 spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3551 list_del_init(&ctxp->list); 3552 spin_unlock(&phba->sli4_hba.abts_nvmet_buf_list_lock); 3553 released = true; 3554 } 3555 ctxp->flag &= ~(LPFC_NVME_ABORT_OP | LPFC_NVME_CTX_RLS); 3556 spin_unlock_irqrestore(&ctxp->ctxlock, flags); 3557 3558 atomic_inc(&tgtp->xmt_abort_rsp_error); 3559 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3560 "6135 Failed to Issue ABTS for oxid x%x. Status x%x " 3561 "(%x)\n", 3562 ctxp->oxid, rc, released); 3563 if (released) 3564 lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); 3565 return 1; 3566 } 3567 3568 /** 3569 * lpfc_nvme_unsol_ls_issue_abort - issue ABTS on an exchange received 3570 * via async frame receive where the frame is not handled. 3571 * @phba: pointer to adapter structure 3572 * @ctxp: pointer to the asynchronously received received sequence 3573 * @sid: address of the remote port to send the ABTS to 3574 * @xri: oxid value to for the ABTS (other side's exchange id). 3575 **/ 3576 int 3577 lpfc_nvme_unsol_ls_issue_abort(struct lpfc_hba *phba, 3578 struct lpfc_async_xchg_ctx *ctxp, 3579 uint32_t sid, uint16_t xri) 3580 { 3581 struct lpfc_nvmet_tgtport *tgtp = NULL; 3582 struct lpfc_iocbq *abts_wqeq; 3583 unsigned long flags; 3584 int rc; 3585 3586 if ((ctxp->state == LPFC_NVME_STE_LS_RCV && ctxp->entry_cnt == 1) || 3587 (ctxp->state == LPFC_NVME_STE_LS_RSP && ctxp->entry_cnt == 2)) { 3588 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3589 ctxp->entry_cnt++; 3590 } else { 3591 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3592 "6418 NVMET LS abort state mismatch " 3593 "IO x%x: %d %d\n", 3594 ctxp->oxid, ctxp->state, ctxp->entry_cnt); 3595 ctxp->state = LPFC_NVME_STE_LS_ABORT; 3596 } 3597 3598 if (phba->nvmet_support && phba->targetport) 3599 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3600 3601 if (!ctxp->wqeq) { 3602 /* Issue ABTS for this WQE based on iotag */ 3603 ctxp->wqeq = lpfc_sli_get_iocbq(phba); 3604 if (!ctxp->wqeq) { 3605 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3606 "6068 Abort failed: No wqeqs: " 3607 "xri: x%x\n", xri); 3608 /* No failure to an ABTS request. */ 3609 kfree(ctxp); 3610 return 0; 3611 } 3612 } 3613 abts_wqeq = ctxp->wqeq; 3614 3615 if (lpfc_nvmet_unsol_issue_abort(phba, ctxp, sid, xri) == 0) { 3616 rc = WQE_BUSY; 3617 goto out; 3618 } 3619 3620 spin_lock_irqsave(&phba->hbalock, flags); 3621 abts_wqeq->cmd_cmpl = lpfc_nvmet_xmt_ls_abort_cmp; 3622 abts_wqeq->cmd_flag |= LPFC_IO_NVME_LS; 3623 rc = lpfc_sli4_issue_wqe(phba, ctxp->hdwq, abts_wqeq); 3624 spin_unlock_irqrestore(&phba->hbalock, flags); 3625 if (rc == WQE_SUCCESS) { 3626 if (tgtp) 3627 atomic_inc(&tgtp->xmt_abort_unsol); 3628 return 0; 3629 } 3630 out: 3631 if (tgtp) 3632 atomic_inc(&tgtp->xmt_abort_rsp_error); 3633 abts_wqeq->context2 = NULL; 3634 abts_wqeq->context3 = NULL; 3635 lpfc_sli_release_iocbq(phba, abts_wqeq); 3636 lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, 3637 "6056 Failed to Issue ABTS. Status x%x\n", rc); 3638 return 1; 3639 } 3640 3641 /** 3642 * lpfc_nvmet_invalidate_host 3643 * 3644 * @phba: pointer to the driver instance bound to an adapter port. 3645 * @ndlp: pointer to an lpfc_nodelist type 3646 * 3647 * This routine upcalls the nvmet transport to invalidate an NVME 3648 * host to which this target instance had active connections. 3649 */ 3650 void 3651 lpfc_nvmet_invalidate_host(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp) 3652 { 3653 u32 ndlp_has_hh; 3654 struct lpfc_nvmet_tgtport *tgtp; 3655 3656 lpfc_printf_log(phba, KERN_INFO, 3657 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3658 "6203 Invalidating hosthandle x%px\n", 3659 ndlp); 3660 3661 tgtp = (struct lpfc_nvmet_tgtport *)phba->targetport->private; 3662 atomic_set(&tgtp->state, LPFC_NVMET_INV_HOST_ACTIVE); 3663 3664 spin_lock_irq(&ndlp->lock); 3665 ndlp_has_hh = ndlp->fc4_xpt_flags & NLP_XPT_HAS_HH; 3666 spin_unlock_irq(&ndlp->lock); 3667 3668 /* Do not invalidate any nodes that do not have a hosthandle. 3669 * The host_release callbk will cause a node reference 3670 * count imbalance and a crash. 3671 */ 3672 if (!ndlp_has_hh) { 3673 lpfc_printf_log(phba, KERN_INFO, 3674 LOG_NVME | LOG_NVME_ABTS | LOG_NVME_DISC, 3675 "6204 Skip invalidate on node x%px DID x%x\n", 3676 ndlp, ndlp->nlp_DID); 3677 return; 3678 } 3679 3680 #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) 3681 /* Need to get the nvmet_fc_target_port pointer here.*/ 3682 nvmet_fc_invalidate_host(phba->targetport, ndlp); 3683 #endif 3684 } 3685