1 /* 2 * This file is provided under a dual BSD/GPLv2 license. When using or 3 * redistributing this file, you may do so under either license. 4 * 5 * GPL LICENSE SUMMARY 6 * 7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 21 * The full GNU General Public License is included in this distribution 22 * in the file called LICENSE.GPL. 23 * 24 * BSD LICENSE 25 * 26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. 27 * All rights reserved. 28 * 29 * Redistribution and use in source and binary forms, with or without 30 * modification, are permitted provided that the following conditions 31 * are met: 32 * 33 * * Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * * Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in 37 * the documentation and/or other materials provided with the 38 * distribution. 39 * * Neither the name of Intel Corporation nor the names of its 40 * contributors may be used to endorse or promote products derived 41 * from this software without specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 54 */ 55 #include <linux/device.h> 56 #include <scsi/sas.h> 57 #include "host.h" 58 #include "isci.h" 59 #include "port.h" 60 #include "host.h" 61 #include "probe_roms.h" 62 #include "remote_device.h" 63 #include "request.h" 64 #include "scic_io_request.h" 65 #include "scic_sds_port_configuration_agent.h" 66 #include "sci_util.h" 67 #include "scu_completion_codes.h" 68 #include "scu_event_codes.h" 69 #include "registers.h" 70 #include "scu_remote_node_context.h" 71 #include "scu_task_context.h" 72 #include "scu_unsolicited_frame.h" 73 #include "timers.h" 74 75 #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 76 77 /** 78 * smu_dcc_get_max_ports() - 79 * 80 * This macro returns the maximum number of logical ports supported by the 81 * hardware. The caller passes in the value read from the device context 82 * capacity register and this macro will mash and shift the value appropriately. 83 */ 84 #define smu_dcc_get_max_ports(dcc_value) \ 85 (\ 86 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ 87 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ 88 ) 89 90 /** 91 * smu_dcc_get_max_task_context() - 92 * 93 * This macro returns the maximum number of task contexts supported by the 94 * hardware. The caller passes in the value read from the device context 95 * capacity register and this macro will mash and shift the value appropriately. 96 */ 97 #define smu_dcc_get_max_task_context(dcc_value) \ 98 (\ 99 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ 100 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ 101 ) 102 103 /** 104 * smu_dcc_get_max_remote_node_context() - 105 * 106 * This macro returns the maximum number of remote node contexts supported by 107 * the hardware. The caller passes in the value read from the device context 108 * capacity register and this macro will mash and shift the value appropriately. 109 */ 110 #define smu_dcc_get_max_remote_node_context(dcc_value) \ 111 (\ 112 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ 113 >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ 114 ) 115 116 117 #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3 118 #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3 119 120 /** 121 * 122 * 123 * The number of milliseconds to wait for a phy to start. 124 */ 125 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 126 127 /** 128 * 129 * 130 * The number of milliseconds to wait while a given phy is consuming power 131 * before allowing another set of phys to consume power. Ultimately, this will 132 * be specified by OEM parameter. 133 */ 134 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 135 136 /** 137 * NORMALIZE_PUT_POINTER() - 138 * 139 * This macro will normalize the completion queue put pointer so its value can 140 * be used as an array inde 141 */ 142 #define NORMALIZE_PUT_POINTER(x) \ 143 ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) 144 145 146 /** 147 * NORMALIZE_EVENT_POINTER() - 148 * 149 * This macro will normalize the completion queue event entry so its value can 150 * be used as an index. 151 */ 152 #define NORMALIZE_EVENT_POINTER(x) \ 153 (\ 154 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ 155 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ 156 ) 157 158 /** 159 * INCREMENT_COMPLETION_QUEUE_GET() - 160 * 161 * This macro will increment the controllers completion queue index value and 162 * possibly toggle the cycle bit if the completion queue index wraps back to 0. 163 */ 164 #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \ 165 INCREMENT_QUEUE_GET(\ 166 (index), \ 167 (cycle), \ 168 (controller)->completion_queue_entries, \ 169 SMU_CQGR_CYCLE_BIT \ 170 ) 171 172 /** 173 * INCREMENT_EVENT_QUEUE_GET() - 174 * 175 * This macro will increment the controllers event queue index value and 176 * possibly toggle the event cycle bit if the event queue index wraps back to 0. 177 */ 178 #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \ 179 INCREMENT_QUEUE_GET(\ 180 (index), \ 181 (cycle), \ 182 (controller)->completion_event_entries, \ 183 SMU_CQGR_EVENT_CYCLE_BIT \ 184 ) 185 186 187 /** 188 * NORMALIZE_GET_POINTER() - 189 * 190 * This macro will normalize the completion queue get pointer so its value can 191 * be used as an index into an array 192 */ 193 #define NORMALIZE_GET_POINTER(x) \ 194 ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) 195 196 /** 197 * NORMALIZE_GET_POINTER_CYCLE_BIT() - 198 * 199 * This macro will normalize the completion queue cycle pointer so it matches 200 * the completion queue cycle bit 201 */ 202 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ 203 ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) 204 205 /** 206 * COMPLETION_QUEUE_CYCLE_BIT() - 207 * 208 * This macro will return the cycle bit of the completion queue entry 209 */ 210 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) 211 212 static bool scic_sds_controller_completion_queue_has_entries( 213 struct scic_sds_controller *scic) 214 { 215 u32 get_value = scic->completion_queue_get; 216 u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; 217 218 if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == 219 COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])) 220 return true; 221 222 return false; 223 } 224 225 static bool scic_sds_controller_isr(struct scic_sds_controller *scic) 226 { 227 if (scic_sds_controller_completion_queue_has_entries(scic)) { 228 return true; 229 } else { 230 /* 231 * we have a spurious interrupt it could be that we have already 232 * emptied the completion queue from a previous interrupt */ 233 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); 234 235 /* 236 * There is a race in the hardware that could cause us not to be notified 237 * of an interrupt completion if we do not take this step. We will mask 238 * then unmask the interrupts so if there is another interrupt pending 239 * the clearing of the interrupt source we get the next interrupt message. */ 240 writel(0xFF000000, &scic->smu_registers->interrupt_mask); 241 writel(0, &scic->smu_registers->interrupt_mask); 242 } 243 244 return false; 245 } 246 247 irqreturn_t isci_msix_isr(int vec, void *data) 248 { 249 struct isci_host *ihost = data; 250 251 if (scic_sds_controller_isr(&ihost->sci)) 252 tasklet_schedule(&ihost->completion_tasklet); 253 254 return IRQ_HANDLED; 255 } 256 257 static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic) 258 { 259 u32 interrupt_status; 260 261 interrupt_status = 262 readl(&scic->smu_registers->interrupt_status); 263 interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); 264 265 if (interrupt_status != 0) { 266 /* 267 * There is an error interrupt pending so let it through and handle 268 * in the callback */ 269 return true; 270 } 271 272 /* 273 * There is a race in the hardware that could cause us not to be notified 274 * of an interrupt completion if we do not take this step. We will mask 275 * then unmask the error interrupts so if there was another interrupt 276 * pending we will be notified. 277 * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ 278 writel(0xff, &scic->smu_registers->interrupt_mask); 279 writel(0, &scic->smu_registers->interrupt_mask); 280 281 return false; 282 } 283 284 static void scic_sds_controller_task_completion(struct scic_sds_controller *scic, 285 u32 completion_entry) 286 { 287 u32 index; 288 struct scic_sds_request *io_request; 289 290 index = SCU_GET_COMPLETION_INDEX(completion_entry); 291 io_request = scic->io_request_table[index]; 292 293 /* Make sure that we really want to process this IO request */ 294 if ( 295 (io_request != NULL) 296 && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) 297 && ( 298 scic_sds_io_tag_get_sequence(io_request->io_tag) 299 == scic->io_request_sequence[index] 300 ) 301 ) { 302 /* Yep this is a valid io request pass it along to the io request handler */ 303 scic_sds_io_request_tc_completion(io_request, completion_entry); 304 } 305 } 306 307 static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic, 308 u32 completion_entry) 309 { 310 u32 index; 311 struct scic_sds_request *io_request; 312 struct scic_sds_remote_device *device; 313 314 index = SCU_GET_COMPLETION_INDEX(completion_entry); 315 316 switch (scu_get_command_request_type(completion_entry)) { 317 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: 318 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: 319 io_request = scic->io_request_table[index]; 320 dev_warn(scic_to_dev(scic), 321 "%s: SCIC SDS Completion type SDMA %x for io request " 322 "%p\n", 323 __func__, 324 completion_entry, 325 io_request); 326 /* @todo For a post TC operation we need to fail the IO 327 * request 328 */ 329 break; 330 331 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: 332 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: 333 case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: 334 device = scic->device_table[index]; 335 dev_warn(scic_to_dev(scic), 336 "%s: SCIC SDS Completion type SDMA %x for remote " 337 "device %p\n", 338 __func__, 339 completion_entry, 340 device); 341 /* @todo For a port RNC operation we need to fail the 342 * device 343 */ 344 break; 345 346 default: 347 dev_warn(scic_to_dev(scic), 348 "%s: SCIC SDS Completion unknown SDMA completion " 349 "type %x\n", 350 __func__, 351 completion_entry); 352 break; 353 354 } 355 } 356 357 static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic, 358 u32 completion_entry) 359 { 360 u32 index; 361 u32 frame_index; 362 363 struct isci_host *ihost = scic_to_ihost(scic); 364 struct scu_unsolicited_frame_header *frame_header; 365 struct scic_sds_phy *phy; 366 struct scic_sds_remote_device *device; 367 368 enum sci_status result = SCI_FAILURE; 369 370 frame_index = SCU_GET_FRAME_INDEX(completion_entry); 371 372 frame_header = scic->uf_control.buffers.array[frame_index].header; 373 scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; 374 375 if (SCU_GET_FRAME_ERROR(completion_entry)) { 376 /* 377 * / @todo If the IAF frame or SIGNATURE FIS frame has an error will 378 * / this cause a problem? We expect the phy initialization will 379 * / fail if there is an error in the frame. */ 380 scic_sds_controller_release_frame(scic, frame_index); 381 return; 382 } 383 384 if (frame_header->is_address_frame) { 385 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); 386 phy = &ihost->phys[index].sci; 387 result = scic_sds_phy_frame_handler(phy, frame_index); 388 } else { 389 390 index = SCU_GET_COMPLETION_INDEX(completion_entry); 391 392 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 393 /* 394 * This is a signature fis or a frame from a direct attached SATA 395 * device that has not yet been created. In either case forwared 396 * the frame to the PE and let it take care of the frame data. */ 397 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); 398 phy = &ihost->phys[index].sci; 399 result = scic_sds_phy_frame_handler(phy, frame_index); 400 } else { 401 if (index < scic->remote_node_entries) 402 device = scic->device_table[index]; 403 else 404 device = NULL; 405 406 if (device != NULL) 407 result = scic_sds_remote_device_frame_handler(device, frame_index); 408 else 409 scic_sds_controller_release_frame(scic, frame_index); 410 } 411 } 412 413 if (result != SCI_SUCCESS) { 414 /* 415 * / @todo Is there any reason to report some additional error message 416 * / when we get this failure notifiction? */ 417 } 418 } 419 420 static void scic_sds_controller_event_completion(struct scic_sds_controller *scic, 421 u32 completion_entry) 422 { 423 struct isci_host *ihost = scic_to_ihost(scic); 424 struct scic_sds_request *io_request; 425 struct scic_sds_remote_device *device; 426 struct scic_sds_phy *phy; 427 u32 index; 428 429 index = SCU_GET_COMPLETION_INDEX(completion_entry); 430 431 switch (scu_get_event_type(completion_entry)) { 432 case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: 433 /* / @todo The driver did something wrong and we need to fix the condtion. */ 434 dev_err(scic_to_dev(scic), 435 "%s: SCIC Controller 0x%p received SMU command error " 436 "0x%x\n", 437 __func__, 438 scic, 439 completion_entry); 440 break; 441 442 case SCU_EVENT_TYPE_SMU_PCQ_ERROR: 443 case SCU_EVENT_TYPE_SMU_ERROR: 444 case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: 445 /* 446 * / @todo This is a hardware failure and its likely that we want to 447 * / reset the controller. */ 448 dev_err(scic_to_dev(scic), 449 "%s: SCIC Controller 0x%p received fatal controller " 450 "event 0x%x\n", 451 __func__, 452 scic, 453 completion_entry); 454 break; 455 456 case SCU_EVENT_TYPE_TRANSPORT_ERROR: 457 io_request = scic->io_request_table[index]; 458 scic_sds_io_request_event_handler(io_request, completion_entry); 459 break; 460 461 case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: 462 switch (scu_get_event_specifier(completion_entry)) { 463 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: 464 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: 465 io_request = scic->io_request_table[index]; 466 if (io_request != NULL) 467 scic_sds_io_request_event_handler(io_request, completion_entry); 468 else 469 dev_warn(scic_to_dev(scic), 470 "%s: SCIC Controller 0x%p received " 471 "event 0x%x for io request object " 472 "that doesnt exist.\n", 473 __func__, 474 scic, 475 completion_entry); 476 477 break; 478 479 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: 480 device = scic->device_table[index]; 481 if (device != NULL) 482 scic_sds_remote_device_event_handler(device, completion_entry); 483 else 484 dev_warn(scic_to_dev(scic), 485 "%s: SCIC Controller 0x%p received " 486 "event 0x%x for remote device object " 487 "that doesnt exist.\n", 488 __func__, 489 scic, 490 completion_entry); 491 492 break; 493 } 494 break; 495 496 case SCU_EVENT_TYPE_BROADCAST_CHANGE: 497 /* 498 * direct the broadcast change event to the phy first and then let 499 * the phy redirect the broadcast change to the port object */ 500 case SCU_EVENT_TYPE_ERR_CNT_EVENT: 501 /* 502 * direct error counter event to the phy object since that is where 503 * we get the event notification. This is a type 4 event. */ 504 case SCU_EVENT_TYPE_OSSP_EVENT: 505 index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); 506 phy = &ihost->phys[index].sci; 507 scic_sds_phy_event_handler(phy, completion_entry); 508 break; 509 510 case SCU_EVENT_TYPE_RNC_SUSPEND_TX: 511 case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: 512 case SCU_EVENT_TYPE_RNC_OPS_MISC: 513 if (index < scic->remote_node_entries) { 514 device = scic->device_table[index]; 515 516 if (device != NULL) 517 scic_sds_remote_device_event_handler(device, completion_entry); 518 } else 519 dev_err(scic_to_dev(scic), 520 "%s: SCIC Controller 0x%p received event 0x%x " 521 "for remote device object 0x%0x that doesnt " 522 "exist.\n", 523 __func__, 524 scic, 525 completion_entry, 526 index); 527 528 break; 529 530 default: 531 dev_warn(scic_to_dev(scic), 532 "%s: SCIC Controller received unknown event code %x\n", 533 __func__, 534 completion_entry); 535 break; 536 } 537 } 538 539 540 541 static void scic_sds_controller_process_completions(struct scic_sds_controller *scic) 542 { 543 u32 completion_count = 0; 544 u32 completion_entry; 545 u32 get_index; 546 u32 get_cycle; 547 u32 event_index; 548 u32 event_cycle; 549 550 dev_dbg(scic_to_dev(scic), 551 "%s: completion queue begining get:0x%08x\n", 552 __func__, 553 scic->completion_queue_get); 554 555 /* Get the component parts of the completion queue */ 556 get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get); 557 get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get; 558 559 event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get); 560 event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get; 561 562 while ( 563 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) 564 == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]) 565 ) { 566 completion_count++; 567 568 completion_entry = scic->completion_queue[get_index]; 569 INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle); 570 571 dev_dbg(scic_to_dev(scic), 572 "%s: completion queue entry:0x%08x\n", 573 __func__, 574 completion_entry); 575 576 switch (SCU_GET_COMPLETION_TYPE(completion_entry)) { 577 case SCU_COMPLETION_TYPE_TASK: 578 scic_sds_controller_task_completion(scic, completion_entry); 579 break; 580 581 case SCU_COMPLETION_TYPE_SDMA: 582 scic_sds_controller_sdma_completion(scic, completion_entry); 583 break; 584 585 case SCU_COMPLETION_TYPE_UFI: 586 scic_sds_controller_unsolicited_frame(scic, completion_entry); 587 break; 588 589 case SCU_COMPLETION_TYPE_EVENT: 590 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle); 591 scic_sds_controller_event_completion(scic, completion_entry); 592 break; 593 594 case SCU_COMPLETION_TYPE_NOTIFY: 595 /* 596 * Presently we do the same thing with a notify event that we do with the 597 * other event codes. */ 598 INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle); 599 scic_sds_controller_event_completion(scic, completion_entry); 600 break; 601 602 default: 603 dev_warn(scic_to_dev(scic), 604 "%s: SCIC Controller received unknown " 605 "completion type %x\n", 606 __func__, 607 completion_entry); 608 break; 609 } 610 } 611 612 /* Update the get register if we completed one or more entries */ 613 if (completion_count > 0) { 614 scic->completion_queue_get = 615 SMU_CQGR_GEN_BIT(ENABLE) | 616 SMU_CQGR_GEN_BIT(EVENT_ENABLE) | 617 event_cycle | 618 SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) | 619 get_cycle | 620 SMU_CQGR_GEN_VAL(POINTER, get_index); 621 622 writel(scic->completion_queue_get, 623 &scic->smu_registers->completion_queue_get); 624 625 } 626 627 dev_dbg(scic_to_dev(scic), 628 "%s: completion queue ending get:0x%08x\n", 629 __func__, 630 scic->completion_queue_get); 631 632 } 633 634 static void scic_sds_controller_error_handler(struct scic_sds_controller *scic) 635 { 636 u32 interrupt_status; 637 638 interrupt_status = 639 readl(&scic->smu_registers->interrupt_status); 640 641 if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && 642 scic_sds_controller_completion_queue_has_entries(scic)) { 643 644 scic_sds_controller_process_completions(scic); 645 writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status); 646 } else { 647 dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__, 648 interrupt_status); 649 650 sci_base_state_machine_change_state(&scic->state_machine, 651 SCI_BASE_CONTROLLER_STATE_FAILED); 652 653 return; 654 } 655 656 /* If we dont process any completions I am not sure that we want to do this. 657 * We are in the middle of a hardware fault and should probably be reset. 658 */ 659 writel(0, &scic->smu_registers->interrupt_mask); 660 } 661 662 irqreturn_t isci_intx_isr(int vec, void *data) 663 { 664 irqreturn_t ret = IRQ_NONE; 665 struct isci_host *ihost = data; 666 struct scic_sds_controller *scic = &ihost->sci; 667 668 if (scic_sds_controller_isr(scic)) { 669 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); 670 tasklet_schedule(&ihost->completion_tasklet); 671 ret = IRQ_HANDLED; 672 } else if (scic_sds_controller_error_isr(scic)) { 673 spin_lock(&ihost->scic_lock); 674 scic_sds_controller_error_handler(scic); 675 spin_unlock(&ihost->scic_lock); 676 ret = IRQ_HANDLED; 677 } 678 679 return ret; 680 } 681 682 irqreturn_t isci_error_isr(int vec, void *data) 683 { 684 struct isci_host *ihost = data; 685 686 if (scic_sds_controller_error_isr(&ihost->sci)) 687 scic_sds_controller_error_handler(&ihost->sci); 688 689 return IRQ_HANDLED; 690 } 691 692 /** 693 * isci_host_start_complete() - This function is called by the core library, 694 * through the ISCI Module, to indicate controller start status. 695 * @isci_host: This parameter specifies the ISCI host object 696 * @completion_status: This parameter specifies the completion status from the 697 * core library. 698 * 699 */ 700 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) 701 { 702 if (completion_status != SCI_SUCCESS) 703 dev_info(&ihost->pdev->dev, 704 "controller start timed out, continuing...\n"); 705 isci_host_change_state(ihost, isci_ready); 706 clear_bit(IHOST_START_PENDING, &ihost->flags); 707 wake_up(&ihost->eventq); 708 } 709 710 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) 711 { 712 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 713 714 if (test_bit(IHOST_START_PENDING, &ihost->flags)) 715 return 0; 716 717 /* todo: use sas_flush_discovery once it is upstream */ 718 scsi_flush_work(shost); 719 720 scsi_flush_work(shost); 721 722 dev_dbg(&ihost->pdev->dev, 723 "%s: ihost->status = %d, time = %ld\n", 724 __func__, isci_host_get_state(ihost), time); 725 726 return 1; 727 728 } 729 730 /** 731 * scic_controller_get_suggested_start_timeout() - This method returns the 732 * suggested scic_controller_start() timeout amount. The user is free to 733 * use any timeout value, but this method provides the suggested minimum 734 * start timeout value. The returned value is based upon empirical 735 * information determined as a result of interoperability testing. 736 * @controller: the handle to the controller object for which to return the 737 * suggested start timeout. 738 * 739 * This method returns the number of milliseconds for the suggested start 740 * operation timeout. 741 */ 742 static u32 scic_controller_get_suggested_start_timeout( 743 struct scic_sds_controller *sc) 744 { 745 /* Validate the user supplied parameters. */ 746 if (sc == NULL) 747 return 0; 748 749 /* 750 * The suggested minimum timeout value for a controller start operation: 751 * 752 * Signature FIS Timeout 753 * + Phy Start Timeout 754 * + Number of Phy Spin Up Intervals 755 * --------------------------------- 756 * Number of milliseconds for the controller start operation. 757 * 758 * NOTE: The number of phy spin up intervals will be equivalent 759 * to the number of phys divided by the number phys allowed 760 * per interval - 1 (once OEM parameters are supported). 761 * Currently we assume only 1 phy per interval. */ 762 763 return SCIC_SDS_SIGNATURE_FIS_TIMEOUT 764 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 765 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 766 } 767 768 static void scic_controller_enable_interrupts( 769 struct scic_sds_controller *scic) 770 { 771 BUG_ON(scic->smu_registers == NULL); 772 writel(0, &scic->smu_registers->interrupt_mask); 773 } 774 775 void scic_controller_disable_interrupts( 776 struct scic_sds_controller *scic) 777 { 778 BUG_ON(scic->smu_registers == NULL); 779 writel(0xffffffff, &scic->smu_registers->interrupt_mask); 780 } 781 782 static void scic_sds_controller_enable_port_task_scheduler( 783 struct scic_sds_controller *scic) 784 { 785 u32 port_task_scheduler_value; 786 787 port_task_scheduler_value = 788 readl(&scic->scu_registers->peg0.ptsg.control); 789 port_task_scheduler_value |= 790 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | 791 SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); 792 writel(port_task_scheduler_value, 793 &scic->scu_registers->peg0.ptsg.control); 794 } 795 796 static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic) 797 { 798 u32 task_assignment; 799 800 /* 801 * Assign all the TCs to function 0 802 * TODO: Do we actually need to read this register to write it back? 803 */ 804 805 task_assignment = 806 readl(&scic->smu_registers->task_context_assignment[0]); 807 808 task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | 809 (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) | 810 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); 811 812 writel(task_assignment, 813 &scic->smu_registers->task_context_assignment[0]); 814 815 } 816 817 static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic) 818 { 819 u32 index; 820 u32 completion_queue_control_value; 821 u32 completion_queue_get_value; 822 u32 completion_queue_put_value; 823 824 scic->completion_queue_get = 0; 825 826 completion_queue_control_value = ( 827 SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1) 828 | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1) 829 ); 830 831 writel(completion_queue_control_value, 832 &scic->smu_registers->completion_queue_control); 833 834 835 /* Set the completion queue get pointer and enable the queue */ 836 completion_queue_get_value = ( 837 (SMU_CQGR_GEN_VAL(POINTER, 0)) 838 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) 839 | (SMU_CQGR_GEN_BIT(ENABLE)) 840 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) 841 ); 842 843 writel(completion_queue_get_value, 844 &scic->smu_registers->completion_queue_get); 845 846 /* Set the completion queue put pointer */ 847 completion_queue_put_value = ( 848 (SMU_CQPR_GEN_VAL(POINTER, 0)) 849 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) 850 ); 851 852 writel(completion_queue_put_value, 853 &scic->smu_registers->completion_queue_put); 854 855 /* Initialize the cycle bit of the completion queue entries */ 856 for (index = 0; index < scic->completion_queue_entries; index++) { 857 /* 858 * If get.cycle_bit != completion_queue.cycle_bit 859 * its not a valid completion queue entry 860 * so at system start all entries are invalid */ 861 scic->completion_queue[index] = 0x80000000; 862 } 863 } 864 865 static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic) 866 { 867 u32 frame_queue_control_value; 868 u32 frame_queue_get_value; 869 u32 frame_queue_put_value; 870 871 /* Write the queue size */ 872 frame_queue_control_value = 873 SCU_UFQC_GEN_VAL(QUEUE_SIZE, 874 scic->uf_control.address_table.count); 875 876 writel(frame_queue_control_value, 877 &scic->scu_registers->sdma.unsolicited_frame_queue_control); 878 879 /* Setup the get pointer for the unsolicited frame queue */ 880 frame_queue_get_value = ( 881 SCU_UFQGP_GEN_VAL(POINTER, 0) 882 | SCU_UFQGP_GEN_BIT(ENABLE_BIT) 883 ); 884 885 writel(frame_queue_get_value, 886 &scic->scu_registers->sdma.unsolicited_frame_get_pointer); 887 /* Setup the put pointer for the unsolicited frame queue */ 888 frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); 889 writel(frame_queue_put_value, 890 &scic->scu_registers->sdma.unsolicited_frame_put_pointer); 891 } 892 893 /** 894 * This method will attempt to transition into the ready state for the 895 * controller and indicate that the controller start operation has completed 896 * if all criteria are met. 897 * @scic: This parameter indicates the controller object for which 898 * to transition to ready. 899 * @status: This parameter indicates the status value to be pass into the call 900 * to scic_cb_controller_start_complete(). 901 * 902 * none. 903 */ 904 static void scic_sds_controller_transition_to_ready( 905 struct scic_sds_controller *scic, 906 enum sci_status status) 907 { 908 struct isci_host *ihost = scic_to_ihost(scic); 909 910 if (scic->state_machine.current_state_id == 911 SCI_BASE_CONTROLLER_STATE_STARTING) { 912 /* 913 * We move into the ready state, because some of the phys/ports 914 * may be up and operational. 915 */ 916 sci_base_state_machine_change_state(&scic->state_machine, 917 SCI_BASE_CONTROLLER_STATE_READY); 918 919 isci_host_start_complete(ihost, status); 920 } 921 } 922 923 static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic) 924 { 925 isci_timer_stop(scic->phy_startup_timer); 926 927 scic->phy_startup_timer_pending = false; 928 } 929 930 static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic) 931 { 932 isci_timer_start(scic->phy_startup_timer, 933 SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); 934 935 scic->phy_startup_timer_pending = true; 936 } 937 938 /** 939 * scic_sds_controller_start_next_phy - start phy 940 * @scic: controller 941 * 942 * If all the phys have been started, then attempt to transition the 943 * controller to the READY state and inform the user 944 * (scic_cb_controller_start_complete()). 945 */ 946 static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic) 947 { 948 struct isci_host *ihost = scic_to_ihost(scic); 949 struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1; 950 struct scic_sds_phy *sci_phy; 951 enum sci_status status; 952 953 status = SCI_SUCCESS; 954 955 if (scic->phy_startup_timer_pending) 956 return status; 957 958 if (scic->next_phy_to_start >= SCI_MAX_PHYS) { 959 bool is_controller_start_complete = true; 960 u32 state; 961 u8 index; 962 963 for (index = 0; index < SCI_MAX_PHYS; index++) { 964 sci_phy = &ihost->phys[index].sci; 965 state = sci_phy->state_machine.current_state_id; 966 967 if (!scic_sds_phy_get_port(sci_phy)) 968 continue; 969 970 /* The controller start operation is complete iff: 971 * - all links have been given an opportunity to start 972 * - have no indication of a connected device 973 * - have an indication of a connected device and it has 974 * finished the link training process. 975 */ 976 if ((sci_phy->is_in_link_training == false && 977 state == SCI_BASE_PHY_STATE_INITIAL) || 978 (sci_phy->is_in_link_training == false && 979 state == SCI_BASE_PHY_STATE_STOPPED) || 980 (sci_phy->is_in_link_training == true && 981 state == SCI_BASE_PHY_STATE_STARTING)) { 982 is_controller_start_complete = false; 983 break; 984 } 985 } 986 987 /* 988 * The controller has successfully finished the start process. 989 * Inform the SCI Core user and transition to the READY state. */ 990 if (is_controller_start_complete == true) { 991 scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS); 992 scic_sds_controller_phy_timer_stop(scic); 993 } 994 } else { 995 sci_phy = &ihost->phys[scic->next_phy_to_start].sci; 996 997 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 998 if (scic_sds_phy_get_port(sci_phy) == NULL) { 999 scic->next_phy_to_start++; 1000 1001 /* Caution recursion ahead be forwarned 1002 * 1003 * The PHY was never added to a PORT in MPC mode 1004 * so start the next phy in sequence This phy 1005 * will never go link up and will not draw power 1006 * the OEM parameters either configured the phy 1007 * incorrectly for the PORT or it was never 1008 * assigned to a PORT 1009 */ 1010 return scic_sds_controller_start_next_phy(scic); 1011 } 1012 } 1013 1014 status = scic_sds_phy_start(sci_phy); 1015 1016 if (status == SCI_SUCCESS) { 1017 scic_sds_controller_phy_timer_start(scic); 1018 } else { 1019 dev_warn(scic_to_dev(scic), 1020 "%s: Controller stop operation failed " 1021 "to stop phy %d because of status " 1022 "%d.\n", 1023 __func__, 1024 ihost->phys[scic->next_phy_to_start].sci.phy_index, 1025 status); 1026 } 1027 1028 scic->next_phy_to_start++; 1029 } 1030 1031 return status; 1032 } 1033 1034 static void scic_sds_controller_phy_startup_timeout_handler(void *_scic) 1035 { 1036 struct scic_sds_controller *scic = _scic; 1037 enum sci_status status; 1038 1039 scic->phy_startup_timer_pending = false; 1040 status = SCI_FAILURE; 1041 while (status != SCI_SUCCESS) 1042 status = scic_sds_controller_start_next_phy(scic); 1043 } 1044 1045 static enum sci_status scic_controller_start(struct scic_sds_controller *scic, 1046 u32 timeout) 1047 { 1048 struct isci_host *ihost = scic_to_ihost(scic); 1049 enum sci_status result; 1050 u16 index; 1051 1052 if (scic->state_machine.current_state_id != 1053 SCI_BASE_CONTROLLER_STATE_INITIALIZED) { 1054 dev_warn(scic_to_dev(scic), 1055 "SCIC Controller start operation requested in " 1056 "invalid state\n"); 1057 return SCI_FAILURE_INVALID_STATE; 1058 } 1059 1060 /* Build the TCi free pool */ 1061 sci_pool_initialize(scic->tci_pool); 1062 for (index = 0; index < scic->task_context_entries; index++) 1063 sci_pool_put(scic->tci_pool, index); 1064 1065 /* Build the RNi free pool */ 1066 scic_sds_remote_node_table_initialize( 1067 &scic->available_remote_nodes, 1068 scic->remote_node_entries); 1069 1070 /* 1071 * Before anything else lets make sure we will not be 1072 * interrupted by the hardware. 1073 */ 1074 scic_controller_disable_interrupts(scic); 1075 1076 /* Enable the port task scheduler */ 1077 scic_sds_controller_enable_port_task_scheduler(scic); 1078 1079 /* Assign all the task entries to scic physical function */ 1080 scic_sds_controller_assign_task_entries(scic); 1081 1082 /* Now initialize the completion queue */ 1083 scic_sds_controller_initialize_completion_queue(scic); 1084 1085 /* Initialize the unsolicited frame queue for use */ 1086 scic_sds_controller_initialize_unsolicited_frame_queue(scic); 1087 1088 /* Start all of the ports on this controller */ 1089 for (index = 0; index < scic->logical_port_entries; index++) { 1090 struct scic_sds_port *sci_port = &ihost->ports[index].sci; 1091 1092 result = sci_port->state_handlers->start_handler(sci_port); 1093 if (result) 1094 return result; 1095 } 1096 1097 scic_sds_controller_start_next_phy(scic); 1098 1099 isci_timer_start(scic->timeout_timer, timeout); 1100 1101 sci_base_state_machine_change_state(&scic->state_machine, 1102 SCI_BASE_CONTROLLER_STATE_STARTING); 1103 1104 return SCI_SUCCESS; 1105 } 1106 1107 void isci_host_scan_start(struct Scsi_Host *shost) 1108 { 1109 struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; 1110 unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci); 1111 1112 set_bit(IHOST_START_PENDING, &ihost->flags); 1113 1114 spin_lock_irq(&ihost->scic_lock); 1115 scic_controller_start(&ihost->sci, tmo); 1116 scic_controller_enable_interrupts(&ihost->sci); 1117 spin_unlock_irq(&ihost->scic_lock); 1118 } 1119 1120 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status) 1121 { 1122 isci_host_change_state(ihost, isci_stopped); 1123 scic_controller_disable_interrupts(&ihost->sci); 1124 clear_bit(IHOST_STOP_PENDING, &ihost->flags); 1125 wake_up(&ihost->eventq); 1126 } 1127 1128 static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic) 1129 { 1130 /* Empty out the completion queue */ 1131 if (scic_sds_controller_completion_queue_has_entries(scic)) 1132 scic_sds_controller_process_completions(scic); 1133 1134 /* Clear the interrupt and enable all interrupts again */ 1135 writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); 1136 /* Could we write the value of SMU_ISR_COMPLETION? */ 1137 writel(0xFF000000, &scic->smu_registers->interrupt_mask); 1138 writel(0, &scic->smu_registers->interrupt_mask); 1139 } 1140 1141 /** 1142 * isci_host_completion_routine() - This function is the delayed service 1143 * routine that calls the sci core library's completion handler. It's 1144 * scheduled as a tasklet from the interrupt service routine when interrupts 1145 * in use, or set as the timeout function in polled mode. 1146 * @data: This parameter specifies the ISCI host object 1147 * 1148 */ 1149 static void isci_host_completion_routine(unsigned long data) 1150 { 1151 struct isci_host *isci_host = (struct isci_host *)data; 1152 struct list_head completed_request_list; 1153 struct list_head errored_request_list; 1154 struct list_head *current_position; 1155 struct list_head *next_position; 1156 struct isci_request *request; 1157 struct isci_request *next_request; 1158 struct sas_task *task; 1159 1160 INIT_LIST_HEAD(&completed_request_list); 1161 INIT_LIST_HEAD(&errored_request_list); 1162 1163 spin_lock_irq(&isci_host->scic_lock); 1164 1165 scic_sds_controller_completion_handler(&isci_host->sci); 1166 1167 /* Take the lists of completed I/Os from the host. */ 1168 1169 list_splice_init(&isci_host->requests_to_complete, 1170 &completed_request_list); 1171 1172 /* Take the list of errored I/Os from the host. */ 1173 list_splice_init(&isci_host->requests_to_errorback, 1174 &errored_request_list); 1175 1176 spin_unlock_irq(&isci_host->scic_lock); 1177 1178 /* Process any completions in the lists. */ 1179 list_for_each_safe(current_position, next_position, 1180 &completed_request_list) { 1181 1182 request = list_entry(current_position, struct isci_request, 1183 completed_node); 1184 task = isci_request_access_task(request); 1185 1186 /* Normal notification (task_done) */ 1187 dev_dbg(&isci_host->pdev->dev, 1188 "%s: Normal - request/task = %p/%p\n", 1189 __func__, 1190 request, 1191 task); 1192 1193 /* Return the task to libsas */ 1194 if (task != NULL) { 1195 1196 task->lldd_task = NULL; 1197 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { 1198 1199 /* If the task is already in the abort path, 1200 * the task_done callback cannot be called. 1201 */ 1202 task->task_done(task); 1203 } 1204 } 1205 /* Free the request object. */ 1206 isci_request_free(isci_host, request); 1207 } 1208 list_for_each_entry_safe(request, next_request, &errored_request_list, 1209 completed_node) { 1210 1211 task = isci_request_access_task(request); 1212 1213 /* Use sas_task_abort */ 1214 dev_warn(&isci_host->pdev->dev, 1215 "%s: Error - request/task = %p/%p\n", 1216 __func__, 1217 request, 1218 task); 1219 1220 if (task != NULL) { 1221 1222 /* Put the task into the abort path if it's not there 1223 * already. 1224 */ 1225 if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) 1226 sas_task_abort(task); 1227 1228 } else { 1229 /* This is a case where the request has completed with a 1230 * status such that it needed further target servicing, 1231 * but the sas_task reference has already been removed 1232 * from the request. Since it was errored, it was not 1233 * being aborted, so there is nothing to do except free 1234 * it. 1235 */ 1236 1237 spin_lock_irq(&isci_host->scic_lock); 1238 /* Remove the request from the remote device's list 1239 * of pending requests. 1240 */ 1241 list_del_init(&request->dev_node); 1242 spin_unlock_irq(&isci_host->scic_lock); 1243 1244 /* Free the request object. */ 1245 isci_request_free(isci_host, request); 1246 } 1247 } 1248 1249 } 1250 1251 /** 1252 * scic_controller_stop() - This method will stop an individual controller 1253 * object.This method will invoke the associated user callback upon 1254 * completion. The completion callback is called when the following 1255 * conditions are met: -# the method return status is SCI_SUCCESS. -# the 1256 * controller has been quiesced. This method will ensure that all IO 1257 * requests are quiesced, phys are stopped, and all additional operation by 1258 * the hardware is halted. 1259 * @controller: the handle to the controller object to stop. 1260 * @timeout: This parameter specifies the number of milliseconds in which the 1261 * stop operation should complete. 1262 * 1263 * The controller must be in the STARTED or STOPPED state. Indicate if the 1264 * controller stop method succeeded or failed in some way. SCI_SUCCESS if the 1265 * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the 1266 * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the 1267 * controller is not either in the STARTED or STOPPED states. 1268 */ 1269 static enum sci_status scic_controller_stop(struct scic_sds_controller *scic, 1270 u32 timeout) 1271 { 1272 if (scic->state_machine.current_state_id != 1273 SCI_BASE_CONTROLLER_STATE_READY) { 1274 dev_warn(scic_to_dev(scic), 1275 "SCIC Controller stop operation requested in " 1276 "invalid state\n"); 1277 return SCI_FAILURE_INVALID_STATE; 1278 } 1279 1280 isci_timer_start(scic->timeout_timer, timeout); 1281 sci_base_state_machine_change_state(&scic->state_machine, 1282 SCI_BASE_CONTROLLER_STATE_STOPPING); 1283 return SCI_SUCCESS; 1284 } 1285 1286 /** 1287 * scic_controller_reset() - This method will reset the supplied core 1288 * controller regardless of the state of said controller. This operation is 1289 * considered destructive. In other words, all current operations are wiped 1290 * out. No IO completions for outstanding devices occur. Outstanding IO 1291 * requests are not aborted or completed at the actual remote device. 1292 * @controller: the handle to the controller object to reset. 1293 * 1294 * Indicate if the controller reset method succeeded or failed in some way. 1295 * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if 1296 * the controller reset operation is unable to complete. 1297 */ 1298 static enum sci_status scic_controller_reset(struct scic_sds_controller *scic) 1299 { 1300 switch (scic->state_machine.current_state_id) { 1301 case SCI_BASE_CONTROLLER_STATE_RESET: 1302 case SCI_BASE_CONTROLLER_STATE_READY: 1303 case SCI_BASE_CONTROLLER_STATE_STOPPED: 1304 case SCI_BASE_CONTROLLER_STATE_FAILED: 1305 /* 1306 * The reset operation is not a graceful cleanup, just 1307 * perform the state transition. 1308 */ 1309 sci_base_state_machine_change_state(&scic->state_machine, 1310 SCI_BASE_CONTROLLER_STATE_RESETTING); 1311 return SCI_SUCCESS; 1312 default: 1313 dev_warn(scic_to_dev(scic), 1314 "SCIC Controller reset operation requested in " 1315 "invalid state\n"); 1316 return SCI_FAILURE_INVALID_STATE; 1317 } 1318 } 1319 1320 void isci_host_deinit(struct isci_host *ihost) 1321 { 1322 int i; 1323 1324 isci_host_change_state(ihost, isci_stopping); 1325 for (i = 0; i < SCI_MAX_PORTS; i++) { 1326 struct isci_port *iport = &ihost->ports[i]; 1327 struct isci_remote_device *idev, *d; 1328 1329 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) { 1330 isci_remote_device_change_state(idev, isci_stopping); 1331 isci_remote_device_stop(ihost, idev); 1332 } 1333 } 1334 1335 set_bit(IHOST_STOP_PENDING, &ihost->flags); 1336 1337 spin_lock_irq(&ihost->scic_lock); 1338 scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT); 1339 spin_unlock_irq(&ihost->scic_lock); 1340 1341 wait_for_stop(ihost); 1342 scic_controller_reset(&ihost->sci); 1343 isci_timer_list_destroy(ihost); 1344 } 1345 1346 static void __iomem *scu_base(struct isci_host *isci_host) 1347 { 1348 struct pci_dev *pdev = isci_host->pdev; 1349 int id = isci_host->id; 1350 1351 return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; 1352 } 1353 1354 static void __iomem *smu_base(struct isci_host *isci_host) 1355 { 1356 struct pci_dev *pdev = isci_host->pdev; 1357 int id = isci_host->id; 1358 1359 return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; 1360 } 1361 1362 static void isci_user_parameters_get( 1363 struct isci_host *isci_host, 1364 union scic_user_parameters *scic_user_params) 1365 { 1366 struct scic_sds_user_parameters *u = &scic_user_params->sds1; 1367 int i; 1368 1369 for (i = 0; i < SCI_MAX_PHYS; i++) { 1370 struct sci_phy_user_params *u_phy = &u->phys[i]; 1371 1372 u_phy->max_speed_generation = phy_gen; 1373 1374 /* we are not exporting these for now */ 1375 u_phy->align_insertion_frequency = 0x7f; 1376 u_phy->in_connection_align_insertion_frequency = 0xff; 1377 u_phy->notify_enable_spin_up_insertion_frequency = 0x33; 1378 } 1379 1380 u->stp_inactivity_timeout = stp_inactive_to; 1381 u->ssp_inactivity_timeout = ssp_inactive_to; 1382 u->stp_max_occupancy_timeout = stp_max_occ_to; 1383 u->ssp_max_occupancy_timeout = ssp_max_occ_to; 1384 u->no_outbound_task_timeout = no_outbound_task_to; 1385 u->max_number_concurrent_device_spin_up = max_concurr_spinup; 1386 } 1387 1388 static void scic_sds_controller_initial_state_enter(void *object) 1389 { 1390 struct scic_sds_controller *scic = object; 1391 1392 sci_base_state_machine_change_state(&scic->state_machine, 1393 SCI_BASE_CONTROLLER_STATE_RESET); 1394 } 1395 1396 static inline void scic_sds_controller_starting_state_exit(void *object) 1397 { 1398 struct scic_sds_controller *scic = object; 1399 1400 isci_timer_stop(scic->timeout_timer); 1401 } 1402 1403 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 1404 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 1405 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 1406 #define INTERRUPT_COALESCE_NUMBER_MAX 256 1407 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 1408 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 1409 1410 /** 1411 * scic_controller_set_interrupt_coalescence() - This method allows the user to 1412 * configure the interrupt coalescence. 1413 * @controller: This parameter represents the handle to the controller object 1414 * for which its interrupt coalesce register is overridden. 1415 * @coalesce_number: Used to control the number of entries in the Completion 1416 * Queue before an interrupt is generated. If the number of entries exceed 1417 * this number, an interrupt will be generated. The valid range of the input 1418 * is [0, 256]. A setting of 0 results in coalescing being disabled. 1419 * @coalesce_timeout: Timeout value in microseconds. The valid range of the 1420 * input is [0, 2700000] . A setting of 0 is allowed and results in no 1421 * interrupt coalescing timeout. 1422 * 1423 * Indicate if the user successfully set the interrupt coalesce parameters. 1424 * SCI_SUCCESS The user successfully updated the interrutp coalescence. 1425 * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. 1426 */ 1427 static enum sci_status scic_controller_set_interrupt_coalescence( 1428 struct scic_sds_controller *scic_controller, 1429 u32 coalesce_number, 1430 u32 coalesce_timeout) 1431 { 1432 u8 timeout_encode = 0; 1433 u32 min = 0; 1434 u32 max = 0; 1435 1436 /* Check if the input parameters fall in the range. */ 1437 if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) 1438 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1439 1440 /* 1441 * Defined encoding for interrupt coalescing timeout: 1442 * Value Min Max Units 1443 * ----- --- --- ----- 1444 * 0 - - Disabled 1445 * 1 13.3 20.0 ns 1446 * 2 26.7 40.0 1447 * 3 53.3 80.0 1448 * 4 106.7 160.0 1449 * 5 213.3 320.0 1450 * 6 426.7 640.0 1451 * 7 853.3 1280.0 1452 * 8 1.7 2.6 us 1453 * 9 3.4 5.1 1454 * 10 6.8 10.2 1455 * 11 13.7 20.5 1456 * 12 27.3 41.0 1457 * 13 54.6 81.9 1458 * 14 109.2 163.8 1459 * 15 218.5 327.7 1460 * 16 436.9 655.4 1461 * 17 873.8 1310.7 1462 * 18 1.7 2.6 ms 1463 * 19 3.5 5.2 1464 * 20 7.0 10.5 1465 * 21 14.0 21.0 1466 * 22 28.0 41.9 1467 * 23 55.9 83.9 1468 * 24 111.8 167.8 1469 * 25 223.7 335.5 1470 * 26 447.4 671.1 1471 * 27 894.8 1342.2 1472 * 28 1.8 2.7 s 1473 * Others Undefined */ 1474 1475 /* 1476 * Use the table above to decide the encode of interrupt coalescing timeout 1477 * value for register writing. */ 1478 if (coalesce_timeout == 0) 1479 timeout_encode = 0; 1480 else{ 1481 /* make the timeout value in unit of (10 ns). */ 1482 coalesce_timeout = coalesce_timeout * 100; 1483 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; 1484 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; 1485 1486 /* get the encode of timeout for register writing. */ 1487 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; 1488 timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; 1489 timeout_encode++) { 1490 if (min <= coalesce_timeout && max > coalesce_timeout) 1491 break; 1492 else if (coalesce_timeout >= max && coalesce_timeout < min * 2 1493 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { 1494 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) 1495 break; 1496 else{ 1497 timeout_encode++; 1498 break; 1499 } 1500 } else { 1501 max = max * 2; 1502 min = min * 2; 1503 } 1504 } 1505 1506 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) 1507 /* the value is out of range. */ 1508 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1509 } 1510 1511 writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | 1512 SMU_ICC_GEN_VAL(TIMER, timeout_encode), 1513 &scic_controller->smu_registers->interrupt_coalesce_control); 1514 1515 1516 scic_controller->interrupt_coalesce_number = (u16)coalesce_number; 1517 scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100; 1518 1519 return SCI_SUCCESS; 1520 } 1521 1522 1523 static void scic_sds_controller_ready_state_enter(void *object) 1524 { 1525 struct scic_sds_controller *scic = object; 1526 1527 /* set the default interrupt coalescence number and timeout value. */ 1528 scic_controller_set_interrupt_coalescence(scic, 0x10, 250); 1529 } 1530 1531 static void scic_sds_controller_ready_state_exit(void *object) 1532 { 1533 struct scic_sds_controller *scic = object; 1534 1535 /* disable interrupt coalescence. */ 1536 scic_controller_set_interrupt_coalescence(scic, 0, 0); 1537 } 1538 1539 static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic) 1540 { 1541 u32 index; 1542 enum sci_status status; 1543 enum sci_status phy_status; 1544 struct isci_host *ihost = scic_to_ihost(scic); 1545 1546 status = SCI_SUCCESS; 1547 1548 for (index = 0; index < SCI_MAX_PHYS; index++) { 1549 phy_status = scic_sds_phy_stop(&ihost->phys[index].sci); 1550 1551 if (phy_status != SCI_SUCCESS && 1552 phy_status != SCI_FAILURE_INVALID_STATE) { 1553 status = SCI_FAILURE; 1554 1555 dev_warn(scic_to_dev(scic), 1556 "%s: Controller stop operation failed to stop " 1557 "phy %d because of status %d.\n", 1558 __func__, 1559 ihost->phys[index].sci.phy_index, phy_status); 1560 } 1561 } 1562 1563 return status; 1564 } 1565 1566 static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic) 1567 { 1568 u32 index; 1569 enum sci_status port_status; 1570 enum sci_status status = SCI_SUCCESS; 1571 struct isci_host *ihost = scic_to_ihost(scic); 1572 1573 for (index = 0; index < scic->logical_port_entries; index++) { 1574 struct scic_sds_port *sci_port = &ihost->ports[index].sci; 1575 scic_sds_port_handler_t stop; 1576 1577 stop = sci_port->state_handlers->stop_handler; 1578 port_status = stop(sci_port); 1579 1580 if ((port_status != SCI_SUCCESS) && 1581 (port_status != SCI_FAILURE_INVALID_STATE)) { 1582 status = SCI_FAILURE; 1583 1584 dev_warn(scic_to_dev(scic), 1585 "%s: Controller stop operation failed to " 1586 "stop port %d because of status %d.\n", 1587 __func__, 1588 sci_port->logical_port_index, 1589 port_status); 1590 } 1591 } 1592 1593 return status; 1594 } 1595 1596 static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic) 1597 { 1598 u32 index; 1599 enum sci_status status; 1600 enum sci_status device_status; 1601 1602 status = SCI_SUCCESS; 1603 1604 for (index = 0; index < scic->remote_node_entries; index++) { 1605 if (scic->device_table[index] != NULL) { 1606 /* / @todo What timeout value do we want to provide to this request? */ 1607 device_status = scic_remote_device_stop(scic->device_table[index], 0); 1608 1609 if ((device_status != SCI_SUCCESS) && 1610 (device_status != SCI_FAILURE_INVALID_STATE)) { 1611 dev_warn(scic_to_dev(scic), 1612 "%s: Controller stop operation failed " 1613 "to stop device 0x%p because of " 1614 "status %d.\n", 1615 __func__, 1616 scic->device_table[index], device_status); 1617 } 1618 } 1619 } 1620 1621 return status; 1622 } 1623 1624 static void scic_sds_controller_stopping_state_enter(void *object) 1625 { 1626 struct scic_sds_controller *scic = object; 1627 1628 /* Stop all of the components for this controller */ 1629 scic_sds_controller_stop_phys(scic); 1630 scic_sds_controller_stop_ports(scic); 1631 scic_sds_controller_stop_devices(scic); 1632 } 1633 1634 static void scic_sds_controller_stopping_state_exit(void *object) 1635 { 1636 struct scic_sds_controller *scic = object; 1637 1638 isci_timer_stop(scic->timeout_timer); 1639 } 1640 1641 1642 /** 1643 * scic_sds_controller_reset_hardware() - 1644 * 1645 * This method will reset the controller hardware. 1646 */ 1647 static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic) 1648 { 1649 /* Disable interrupts so we dont take any spurious interrupts */ 1650 scic_controller_disable_interrupts(scic); 1651 1652 /* Reset the SCU */ 1653 writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control); 1654 1655 /* Delay for 1ms to before clearing the CQP and UFQPR. */ 1656 udelay(1000); 1657 1658 /* The write to the CQGR clears the CQP */ 1659 writel(0x00000000, &scic->smu_registers->completion_queue_get); 1660 1661 /* The write to the UFQGP clears the UFQPR */ 1662 writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer); 1663 } 1664 1665 static void scic_sds_controller_resetting_state_enter(void *object) 1666 { 1667 struct scic_sds_controller *scic = object; 1668 1669 scic_sds_controller_reset_hardware(scic); 1670 sci_base_state_machine_change_state(&scic->state_machine, 1671 SCI_BASE_CONTROLLER_STATE_RESET); 1672 } 1673 1674 static const struct sci_base_state scic_sds_controller_state_table[] = { 1675 [SCI_BASE_CONTROLLER_STATE_INITIAL] = { 1676 .enter_state = scic_sds_controller_initial_state_enter, 1677 }, 1678 [SCI_BASE_CONTROLLER_STATE_RESET] = {}, 1679 [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {}, 1680 [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {}, 1681 [SCI_BASE_CONTROLLER_STATE_STARTING] = { 1682 .exit_state = scic_sds_controller_starting_state_exit, 1683 }, 1684 [SCI_BASE_CONTROLLER_STATE_READY] = { 1685 .enter_state = scic_sds_controller_ready_state_enter, 1686 .exit_state = scic_sds_controller_ready_state_exit, 1687 }, 1688 [SCI_BASE_CONTROLLER_STATE_RESETTING] = { 1689 .enter_state = scic_sds_controller_resetting_state_enter, 1690 }, 1691 [SCI_BASE_CONTROLLER_STATE_STOPPING] = { 1692 .enter_state = scic_sds_controller_stopping_state_enter, 1693 .exit_state = scic_sds_controller_stopping_state_exit, 1694 }, 1695 [SCI_BASE_CONTROLLER_STATE_STOPPED] = {}, 1696 [SCI_BASE_CONTROLLER_STATE_FAILED] = {} 1697 }; 1698 1699 static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic) 1700 { 1701 /* these defaults are overridden by the platform / firmware */ 1702 struct isci_host *ihost = scic_to_ihost(scic); 1703 u16 index; 1704 1705 /* Default to APC mode. */ 1706 scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE; 1707 1708 /* Default to APC mode. */ 1709 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1; 1710 1711 /* Default to no SSC operation. */ 1712 scic->oem_parameters.sds1.controller.do_enable_ssc = false; 1713 1714 /* Initialize all of the port parameter information to narrow ports. */ 1715 for (index = 0; index < SCI_MAX_PORTS; index++) { 1716 scic->oem_parameters.sds1.ports[index].phy_mask = 0; 1717 } 1718 1719 /* Initialize all of the phy parameter information. */ 1720 for (index = 0; index < SCI_MAX_PHYS; index++) { 1721 /* Default to 6G (i.e. Gen 3) for now. */ 1722 scic->user_parameters.sds1.phys[index].max_speed_generation = 3; 1723 1724 /* the frequencies cannot be 0 */ 1725 scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f; 1726 scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff; 1727 scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33; 1728 1729 /* 1730 * Previous Vitesse based expanders had a arbitration issue that 1731 * is worked around by having the upper 32-bits of SAS address 1732 * with a value greater then the Vitesse company identifier. 1733 * Hence, usage of 0x5FCFFFFF. */ 1734 scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id; 1735 scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF; 1736 } 1737 1738 scic->user_parameters.sds1.stp_inactivity_timeout = 5; 1739 scic->user_parameters.sds1.ssp_inactivity_timeout = 5; 1740 scic->user_parameters.sds1.stp_max_occupancy_timeout = 5; 1741 scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20; 1742 scic->user_parameters.sds1.no_outbound_task_timeout = 20; 1743 } 1744 1745 1746 1747 /** 1748 * scic_controller_construct() - This method will attempt to construct a 1749 * controller object utilizing the supplied parameter information. 1750 * @c: This parameter specifies the controller to be constructed. 1751 * @scu_base: mapped base address of the scu registers 1752 * @smu_base: mapped base address of the smu registers 1753 * 1754 * Indicate if the controller was successfully constructed or if it failed in 1755 * some way. SCI_SUCCESS This value is returned if the controller was 1756 * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned 1757 * if the interrupt coalescence timer may cause SAS compliance issues for SMP 1758 * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE 1759 * This value is returned if the controller does not support the supplied type. 1760 * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the 1761 * controller does not support the supplied initialization data version. 1762 */ 1763 static enum sci_status scic_controller_construct(struct scic_sds_controller *scic, 1764 void __iomem *scu_base, 1765 void __iomem *smu_base) 1766 { 1767 struct isci_host *ihost = scic_to_ihost(scic); 1768 u8 i; 1769 1770 sci_base_state_machine_construct(&scic->state_machine, 1771 scic, scic_sds_controller_state_table, 1772 SCI_BASE_CONTROLLER_STATE_INITIAL); 1773 1774 sci_base_state_machine_start(&scic->state_machine); 1775 1776 scic->scu_registers = scu_base; 1777 scic->smu_registers = smu_base; 1778 1779 scic_sds_port_configuration_agent_construct(&scic->port_agent); 1780 1781 /* Construct the ports for this controller */ 1782 for (i = 0; i < SCI_MAX_PORTS; i++) 1783 scic_sds_port_construct(&ihost->ports[i].sci, i, scic); 1784 scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic); 1785 1786 /* Construct the phys for this controller */ 1787 for (i = 0; i < SCI_MAX_PHYS; i++) { 1788 /* Add all the PHYs to the dummy port */ 1789 scic_sds_phy_construct(&ihost->phys[i].sci, 1790 &ihost->ports[SCI_MAX_PORTS].sci, i); 1791 } 1792 1793 scic->invalid_phy_mask = 0; 1794 1795 /* Set the default maximum values */ 1796 scic->completion_event_entries = SCU_EVENT_COUNT; 1797 scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT; 1798 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES; 1799 scic->logical_port_entries = SCI_MAX_PORTS; 1800 scic->task_context_entries = SCU_IO_REQUEST_COUNT; 1801 scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT; 1802 scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT; 1803 1804 /* Initialize the User and OEM parameters to default values. */ 1805 scic_sds_controller_set_default_config_parameters(scic); 1806 1807 return scic_controller_reset(scic); 1808 } 1809 1810 int scic_oem_parameters_validate(struct scic_sds_oem_params *oem) 1811 { 1812 int i; 1813 1814 for (i = 0; i < SCI_MAX_PORTS; i++) 1815 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) 1816 return -EINVAL; 1817 1818 for (i = 0; i < SCI_MAX_PHYS; i++) 1819 if (oem->phys[i].sas_address.high == 0 && 1820 oem->phys[i].sas_address.low == 0) 1821 return -EINVAL; 1822 1823 if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { 1824 for (i = 0; i < SCI_MAX_PHYS; i++) 1825 if (oem->ports[i].phy_mask != 0) 1826 return -EINVAL; 1827 } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { 1828 u8 phy_mask = 0; 1829 1830 for (i = 0; i < SCI_MAX_PHYS; i++) 1831 phy_mask |= oem->ports[i].phy_mask; 1832 1833 if (phy_mask == 0) 1834 return -EINVAL; 1835 } else 1836 return -EINVAL; 1837 1838 if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT) 1839 return -EINVAL; 1840 1841 return 0; 1842 } 1843 1844 static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic, 1845 union scic_oem_parameters *scic_parms) 1846 { 1847 u32 state = scic->state_machine.current_state_id; 1848 1849 if (state == SCI_BASE_CONTROLLER_STATE_RESET || 1850 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING || 1851 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) { 1852 1853 if (scic_oem_parameters_validate(&scic_parms->sds1)) 1854 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 1855 scic->oem_parameters.sds1 = scic_parms->sds1; 1856 1857 return SCI_SUCCESS; 1858 } 1859 1860 return SCI_FAILURE_INVALID_STATE; 1861 } 1862 1863 void scic_oem_parameters_get( 1864 struct scic_sds_controller *scic, 1865 union scic_oem_parameters *scic_parms) 1866 { 1867 memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms)); 1868 } 1869 1870 static void scic_sds_controller_timeout_handler(void *_scic) 1871 { 1872 struct scic_sds_controller *scic = _scic; 1873 struct isci_host *ihost = scic_to_ihost(scic); 1874 struct sci_base_state_machine *sm = &scic->state_machine; 1875 1876 if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING) 1877 scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT); 1878 else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) { 1879 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED); 1880 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT); 1881 } else /* / @todo Now what do we want to do in this case? */ 1882 dev_err(scic_to_dev(scic), 1883 "%s: Controller timer fired when controller was not " 1884 "in a state being timed.\n", 1885 __func__); 1886 } 1887 1888 static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic) 1889 { 1890 struct isci_host *ihost = scic_to_ihost(scic); 1891 1892 scic->phy_startup_timer = isci_timer_create(ihost, 1893 scic, 1894 scic_sds_controller_phy_startup_timeout_handler); 1895 1896 if (scic->phy_startup_timer == NULL) 1897 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 1898 else { 1899 scic->next_phy_to_start = 0; 1900 scic->phy_startup_timer_pending = false; 1901 } 1902 1903 return SCI_SUCCESS; 1904 } 1905 1906 static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic) 1907 { 1908 isci_timer_start(scic->power_control.timer, 1909 SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); 1910 1911 scic->power_control.timer_started = true; 1912 } 1913 1914 static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic) 1915 { 1916 if (scic->power_control.timer_started) { 1917 isci_timer_stop(scic->power_control.timer); 1918 scic->power_control.timer_started = false; 1919 } 1920 } 1921 1922 static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic) 1923 { 1924 scic_sds_controller_power_control_timer_stop(scic); 1925 scic_sds_controller_power_control_timer_start(scic); 1926 } 1927 1928 static void scic_sds_controller_power_control_timer_handler( 1929 void *controller) 1930 { 1931 struct scic_sds_controller *scic; 1932 1933 scic = (struct scic_sds_controller *)controller; 1934 1935 scic->power_control.phys_granted_power = 0; 1936 1937 if (scic->power_control.phys_waiting == 0) { 1938 scic->power_control.timer_started = false; 1939 } else { 1940 struct scic_sds_phy *sci_phy = NULL; 1941 u8 i; 1942 1943 for (i = 0; 1944 (i < SCI_MAX_PHYS) 1945 && (scic->power_control.phys_waiting != 0); 1946 i++) { 1947 if (scic->power_control.requesters[i] != NULL) { 1948 if (scic->power_control.phys_granted_power < 1949 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) { 1950 sci_phy = scic->power_control.requesters[i]; 1951 scic->power_control.requesters[i] = NULL; 1952 scic->power_control.phys_waiting--; 1953 scic->power_control.phys_granted_power++; 1954 scic_sds_phy_consume_power_handler(sci_phy); 1955 } else { 1956 break; 1957 } 1958 } 1959 } 1960 1961 /* 1962 * It doesn't matter if the power list is empty, we need to start the 1963 * timer in case another phy becomes ready. 1964 */ 1965 scic_sds_controller_power_control_timer_start(scic); 1966 } 1967 } 1968 1969 /** 1970 * This method inserts the phy in the stagger spinup control queue. 1971 * @scic: 1972 * 1973 * 1974 */ 1975 void scic_sds_controller_power_control_queue_insert( 1976 struct scic_sds_controller *scic, 1977 struct scic_sds_phy *sci_phy) 1978 { 1979 BUG_ON(sci_phy == NULL); 1980 1981 if (scic->power_control.phys_granted_power < 1982 scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) { 1983 scic->power_control.phys_granted_power++; 1984 scic_sds_phy_consume_power_handler(sci_phy); 1985 1986 /* 1987 * stop and start the power_control timer. When the timer fires, the 1988 * no_of_phys_granted_power will be set to 0 1989 */ 1990 scic_sds_controller_power_control_timer_restart(scic); 1991 } else { 1992 /* Add the phy in the waiting list */ 1993 scic->power_control.requesters[sci_phy->phy_index] = sci_phy; 1994 scic->power_control.phys_waiting++; 1995 } 1996 } 1997 1998 /** 1999 * This method removes the phy from the stagger spinup control queue. 2000 * @scic: 2001 * 2002 * 2003 */ 2004 void scic_sds_controller_power_control_queue_remove( 2005 struct scic_sds_controller *scic, 2006 struct scic_sds_phy *sci_phy) 2007 { 2008 BUG_ON(sci_phy == NULL); 2009 2010 if (scic->power_control.requesters[sci_phy->phy_index] != NULL) { 2011 scic->power_control.phys_waiting--; 2012 } 2013 2014 scic->power_control.requesters[sci_phy->phy_index] = NULL; 2015 } 2016 2017 #define AFE_REGISTER_WRITE_DELAY 10 2018 2019 /* Initialize the AFE for this phy index. We need to read the AFE setup from 2020 * the OEM parameters 2021 */ 2022 static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic) 2023 { 2024 const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1; 2025 u32 afe_status; 2026 u32 phy_id; 2027 2028 /* Clear DFX Status registers */ 2029 writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0); 2030 udelay(AFE_REGISTER_WRITE_DELAY); 2031 2032 if (is_b0()) { 2033 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement 2034 * Timer, PM Stagger Timer */ 2035 writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2); 2036 udelay(AFE_REGISTER_WRITE_DELAY); 2037 } 2038 2039 /* Configure bias currents to normal */ 2040 if (is_a0()) 2041 writel(0x00005500, &scic->scu_registers->afe.afe_bias_control); 2042 else if (is_a2()) 2043 writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control); 2044 else if (is_b0()) 2045 writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control); 2046 2047 udelay(AFE_REGISTER_WRITE_DELAY); 2048 2049 /* Enable PLL */ 2050 if (is_b0()) 2051 writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0); 2052 else 2053 writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0); 2054 2055 udelay(AFE_REGISTER_WRITE_DELAY); 2056 2057 /* Wait for the PLL to lock */ 2058 do { 2059 afe_status = readl(&scic->scu_registers->afe.afe_common_block_status); 2060 udelay(AFE_REGISTER_WRITE_DELAY); 2061 } while ((afe_status & 0x00001000) == 0); 2062 2063 if (is_a0() || is_a2()) { 2064 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */ 2065 writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0); 2066 udelay(AFE_REGISTER_WRITE_DELAY); 2067 } 2068 2069 for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { 2070 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; 2071 2072 if (is_b0()) { 2073 /* Configure transmitter SSC parameters */ 2074 writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control); 2075 udelay(AFE_REGISTER_WRITE_DELAY); 2076 } else { 2077 /* 2078 * All defaults, except the Receive Word Alignament/Comma Detect 2079 * Enable....(0xe800) */ 2080 writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); 2081 udelay(AFE_REGISTER_WRITE_DELAY); 2082 2083 writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1); 2084 udelay(AFE_REGISTER_WRITE_DELAY); 2085 } 2086 2087 /* 2088 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) 2089 * & increase TX int & ext bias 20%....(0xe85c) */ 2090 if (is_a0()) 2091 writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 2092 else if (is_a2()) 2093 writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 2094 else { 2095 /* Power down TX and RX (PWRDNTX and PWRDNRX) */ 2096 writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 2097 udelay(AFE_REGISTER_WRITE_DELAY); 2098 2099 /* 2100 * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) 2101 * & increase TX int & ext bias 20%....(0xe85c) */ 2102 writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); 2103 } 2104 udelay(AFE_REGISTER_WRITE_DELAY); 2105 2106 if (is_a0() || is_a2()) { 2107 /* Enable TX equalization (0xe824) */ 2108 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); 2109 udelay(AFE_REGISTER_WRITE_DELAY); 2110 } 2111 2112 /* 2113 * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On), 2114 * RDD=0x0(RX Detect Enabled) ....(0xe800) */ 2115 writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); 2116 udelay(AFE_REGISTER_WRITE_DELAY); 2117 2118 /* Leave DFE/FFE on */ 2119 if (is_a0()) 2120 writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); 2121 else if (is_a2()) 2122 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); 2123 else { 2124 writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); 2125 udelay(AFE_REGISTER_WRITE_DELAY); 2126 /* Enable TX equalization (0xe824) */ 2127 writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); 2128 } 2129 udelay(AFE_REGISTER_WRITE_DELAY); 2130 2131 writel(oem_phy->afe_tx_amp_control0, 2132 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0); 2133 udelay(AFE_REGISTER_WRITE_DELAY); 2134 2135 writel(oem_phy->afe_tx_amp_control1, 2136 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1); 2137 udelay(AFE_REGISTER_WRITE_DELAY); 2138 2139 writel(oem_phy->afe_tx_amp_control2, 2140 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2); 2141 udelay(AFE_REGISTER_WRITE_DELAY); 2142 2143 writel(oem_phy->afe_tx_amp_control3, 2144 &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3); 2145 udelay(AFE_REGISTER_WRITE_DELAY); 2146 } 2147 2148 /* Transfer control to the PEs */ 2149 writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0); 2150 udelay(AFE_REGISTER_WRITE_DELAY); 2151 } 2152 2153 static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic, 2154 enum sci_controller_mode operating_mode) 2155 { 2156 enum sci_status status = SCI_SUCCESS; 2157 2158 if ((scic->state_machine.current_state_id == 2159 SCI_BASE_CONTROLLER_STATE_INITIALIZING) || 2160 (scic->state_machine.current_state_id == 2161 SCI_BASE_CONTROLLER_STATE_INITIALIZED)) { 2162 switch (operating_mode) { 2163 case SCI_MODE_SPEED: 2164 scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES; 2165 scic->task_context_entries = SCU_IO_REQUEST_COUNT; 2166 scic->uf_control.buffers.count = 2167 SCU_UNSOLICITED_FRAME_COUNT; 2168 scic->completion_event_entries = SCU_EVENT_COUNT; 2169 scic->completion_queue_entries = 2170 SCU_COMPLETION_QUEUE_COUNT; 2171 break; 2172 2173 case SCI_MODE_SIZE: 2174 scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES; 2175 scic->task_context_entries = SCI_MIN_IO_REQUESTS; 2176 scic->uf_control.buffers.count = 2177 SCU_MIN_UNSOLICITED_FRAMES; 2178 scic->completion_event_entries = SCU_MIN_EVENTS; 2179 scic->completion_queue_entries = 2180 SCU_MIN_COMPLETION_QUEUE_ENTRIES; 2181 break; 2182 2183 default: 2184 status = SCI_FAILURE_INVALID_PARAMETER_VALUE; 2185 break; 2186 } 2187 } else 2188 status = SCI_FAILURE_INVALID_STATE; 2189 2190 return status; 2191 } 2192 2193 static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic) 2194 { 2195 struct isci_host *ihost = scic_to_ihost(scic); 2196 scic->power_control.timer = isci_timer_create(ihost, 2197 scic, 2198 scic_sds_controller_power_control_timer_handler); 2199 2200 memset(scic->power_control.requesters, 0, 2201 sizeof(scic->power_control.requesters)); 2202 2203 scic->power_control.phys_waiting = 0; 2204 scic->power_control.phys_granted_power = 0; 2205 } 2206 2207 static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic) 2208 { 2209 struct sci_base_state_machine *sm = &scic->state_machine; 2210 enum sci_status result = SCI_SUCCESS; 2211 struct isci_host *ihost = scic_to_ihost(scic); 2212 u32 index, state; 2213 2214 if (scic->state_machine.current_state_id != 2215 SCI_BASE_CONTROLLER_STATE_RESET) { 2216 dev_warn(scic_to_dev(scic), 2217 "SCIC Controller initialize operation requested " 2218 "in invalid state\n"); 2219 return SCI_FAILURE_INVALID_STATE; 2220 } 2221 2222 sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING); 2223 2224 scic->timeout_timer = isci_timer_create(ihost, scic, 2225 scic_sds_controller_timeout_handler); 2226 2227 scic_sds_controller_initialize_phy_startup(scic); 2228 2229 scic_sds_controller_initialize_power_control(scic); 2230 2231 /* 2232 * There is nothing to do here for B0 since we do not have to 2233 * program the AFE registers. 2234 * / @todo The AFE settings are supposed to be correct for the B0 but 2235 * / presently they seem to be wrong. */ 2236 scic_sds_controller_afe_initialization(scic); 2237 2238 if (result == SCI_SUCCESS) { 2239 u32 status; 2240 u32 terminate_loop; 2241 2242 /* Take the hardware out of reset */ 2243 writel(0, &scic->smu_registers->soft_reset_control); 2244 2245 /* 2246 * / @todo Provide meaningfull error code for hardware failure 2247 * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ 2248 result = SCI_FAILURE; 2249 terminate_loop = 100; 2250 2251 while (terminate_loop-- && (result != SCI_SUCCESS)) { 2252 /* Loop until the hardware reports success */ 2253 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); 2254 status = readl(&scic->smu_registers->control_status); 2255 2256 if ((status & SCU_RAM_INIT_COMPLETED) == 2257 SCU_RAM_INIT_COMPLETED) 2258 result = SCI_SUCCESS; 2259 } 2260 } 2261 2262 if (result == SCI_SUCCESS) { 2263 u32 max_supported_ports; 2264 u32 max_supported_devices; 2265 u32 max_supported_io_requests; 2266 u32 device_context_capacity; 2267 2268 /* 2269 * Determine what are the actaul device capacities that the 2270 * hardware will support */ 2271 device_context_capacity = 2272 readl(&scic->smu_registers->device_context_capacity); 2273 2274 2275 max_supported_ports = smu_dcc_get_max_ports(device_context_capacity); 2276 max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity); 2277 max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity); 2278 2279 /* 2280 * Make all PEs that are unassigned match up with the 2281 * logical ports 2282 */ 2283 for (index = 0; index < max_supported_ports; index++) { 2284 struct scu_port_task_scheduler_group_registers __iomem 2285 *ptsg = &scic->scu_registers->peg0.ptsg; 2286 2287 writel(index, &ptsg->protocol_engine[index]); 2288 } 2289 2290 /* Record the smaller of the two capacity values */ 2291 scic->logical_port_entries = 2292 min(max_supported_ports, scic->logical_port_entries); 2293 2294 scic->task_context_entries = 2295 min(max_supported_io_requests, 2296 scic->task_context_entries); 2297 2298 scic->remote_node_entries = 2299 min(max_supported_devices, scic->remote_node_entries); 2300 2301 /* 2302 * Now that we have the correct hardware reported minimum values 2303 * build the MDL for the controller. Default to a performance 2304 * configuration. 2305 */ 2306 scic_controller_set_mode(scic, SCI_MODE_SPEED); 2307 } 2308 2309 /* Initialize hardware PCI Relaxed ordering in DMA engines */ 2310 if (result == SCI_SUCCESS) { 2311 u32 dma_configuration; 2312 2313 /* Configure the payload DMA */ 2314 dma_configuration = 2315 readl(&scic->scu_registers->sdma.pdma_configuration); 2316 dma_configuration |= 2317 SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2318 writel(dma_configuration, 2319 &scic->scu_registers->sdma.pdma_configuration); 2320 2321 /* Configure the control DMA */ 2322 dma_configuration = 2323 readl(&scic->scu_registers->sdma.cdma_configuration); 2324 dma_configuration |= 2325 SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); 2326 writel(dma_configuration, 2327 &scic->scu_registers->sdma.cdma_configuration); 2328 } 2329 2330 /* 2331 * Initialize the PHYs before the PORTs because the PHY registers 2332 * are accessed during the port initialization. 2333 */ 2334 if (result == SCI_SUCCESS) { 2335 /* Initialize the phys */ 2336 for (index = 0; 2337 (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS); 2338 index++) { 2339 result = scic_sds_phy_initialize( 2340 &ihost->phys[index].sci, 2341 &scic->scu_registers->peg0.pe[index].tl, 2342 &scic->scu_registers->peg0.pe[index].ll); 2343 } 2344 } 2345 2346 if (result == SCI_SUCCESS) { 2347 /* Initialize the logical ports */ 2348 for (index = 0; 2349 (index < scic->logical_port_entries) && 2350 (result == SCI_SUCCESS); 2351 index++) { 2352 result = scic_sds_port_initialize( 2353 &ihost->ports[index].sci, 2354 &scic->scu_registers->peg0.ptsg.port[index], 2355 &scic->scu_registers->peg0.ptsg.protocol_engine, 2356 &scic->scu_registers->peg0.viit[index]); 2357 } 2358 } 2359 2360 if (result == SCI_SUCCESS) 2361 result = scic_sds_port_configuration_agent_initialize( 2362 scic, 2363 &scic->port_agent); 2364 2365 /* Advance the controller state machine */ 2366 if (result == SCI_SUCCESS) 2367 state = SCI_BASE_CONTROLLER_STATE_INITIALIZED; 2368 else 2369 state = SCI_BASE_CONTROLLER_STATE_FAILED; 2370 sci_base_state_machine_change_state(sm, state); 2371 2372 return result; 2373 } 2374 2375 static enum sci_status scic_user_parameters_set( 2376 struct scic_sds_controller *scic, 2377 union scic_user_parameters *scic_parms) 2378 { 2379 u32 state = scic->state_machine.current_state_id; 2380 2381 if (state == SCI_BASE_CONTROLLER_STATE_RESET || 2382 state == SCI_BASE_CONTROLLER_STATE_INITIALIZING || 2383 state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) { 2384 u16 index; 2385 2386 /* 2387 * Validate the user parameters. If they are not legal, then 2388 * return a failure. 2389 */ 2390 for (index = 0; index < SCI_MAX_PHYS; index++) { 2391 struct sci_phy_user_params *user_phy; 2392 2393 user_phy = &scic_parms->sds1.phys[index]; 2394 2395 if (!((user_phy->max_speed_generation <= 2396 SCIC_SDS_PARM_MAX_SPEED) && 2397 (user_phy->max_speed_generation > 2398 SCIC_SDS_PARM_NO_SPEED))) 2399 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2400 2401 if (user_phy->in_connection_align_insertion_frequency < 2402 3) 2403 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2404 2405 if ((user_phy->in_connection_align_insertion_frequency < 2406 3) || 2407 (user_phy->align_insertion_frequency == 0) || 2408 (user_phy-> 2409 notify_enable_spin_up_insertion_frequency == 2410 0)) 2411 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2412 } 2413 2414 if ((scic_parms->sds1.stp_inactivity_timeout == 0) || 2415 (scic_parms->sds1.ssp_inactivity_timeout == 0) || 2416 (scic_parms->sds1.stp_max_occupancy_timeout == 0) || 2417 (scic_parms->sds1.ssp_max_occupancy_timeout == 0) || 2418 (scic_parms->sds1.no_outbound_task_timeout == 0)) 2419 return SCI_FAILURE_INVALID_PARAMETER_VALUE; 2420 2421 memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms)); 2422 2423 return SCI_SUCCESS; 2424 } 2425 2426 return SCI_FAILURE_INVALID_STATE; 2427 } 2428 2429 static int scic_controller_mem_init(struct scic_sds_controller *scic) 2430 { 2431 struct device *dev = scic_to_dev(scic); 2432 dma_addr_t dma_handle; 2433 enum sci_status result; 2434 2435 scic->completion_queue = dmam_alloc_coherent(dev, 2436 scic->completion_queue_entries * sizeof(u32), 2437 &dma_handle, GFP_KERNEL); 2438 if (!scic->completion_queue) 2439 return -ENOMEM; 2440 2441 writel(lower_32_bits(dma_handle), 2442 &scic->smu_registers->completion_queue_lower); 2443 writel(upper_32_bits(dma_handle), 2444 &scic->smu_registers->completion_queue_upper); 2445 2446 scic->remote_node_context_table = dmam_alloc_coherent(dev, 2447 scic->remote_node_entries * 2448 sizeof(union scu_remote_node_context), 2449 &dma_handle, GFP_KERNEL); 2450 if (!scic->remote_node_context_table) 2451 return -ENOMEM; 2452 2453 writel(lower_32_bits(dma_handle), 2454 &scic->smu_registers->remote_node_context_lower); 2455 writel(upper_32_bits(dma_handle), 2456 &scic->smu_registers->remote_node_context_upper); 2457 2458 scic->task_context_table = dmam_alloc_coherent(dev, 2459 scic->task_context_entries * 2460 sizeof(struct scu_task_context), 2461 &dma_handle, GFP_KERNEL); 2462 if (!scic->task_context_table) 2463 return -ENOMEM; 2464 2465 writel(lower_32_bits(dma_handle), 2466 &scic->smu_registers->host_task_table_lower); 2467 writel(upper_32_bits(dma_handle), 2468 &scic->smu_registers->host_task_table_upper); 2469 2470 result = scic_sds_unsolicited_frame_control_construct(scic); 2471 if (result) 2472 return result; 2473 2474 /* 2475 * Inform the silicon as to the location of the UF headers and 2476 * address table. 2477 */ 2478 writel(lower_32_bits(scic->uf_control.headers.physical_address), 2479 &scic->scu_registers->sdma.uf_header_base_address_lower); 2480 writel(upper_32_bits(scic->uf_control.headers.physical_address), 2481 &scic->scu_registers->sdma.uf_header_base_address_upper); 2482 2483 writel(lower_32_bits(scic->uf_control.address_table.physical_address), 2484 &scic->scu_registers->sdma.uf_address_table_lower); 2485 writel(upper_32_bits(scic->uf_control.address_table.physical_address), 2486 &scic->scu_registers->sdma.uf_address_table_upper); 2487 2488 return 0; 2489 } 2490 2491 int isci_host_init(struct isci_host *isci_host) 2492 { 2493 int err = 0, i; 2494 enum sci_status status; 2495 union scic_oem_parameters oem; 2496 union scic_user_parameters scic_user_params; 2497 struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev); 2498 2499 isci_timer_list_construct(isci_host); 2500 2501 spin_lock_init(&isci_host->state_lock); 2502 spin_lock_init(&isci_host->scic_lock); 2503 spin_lock_init(&isci_host->queue_lock); 2504 init_waitqueue_head(&isci_host->eventq); 2505 2506 isci_host_change_state(isci_host, isci_starting); 2507 isci_host->can_queue = ISCI_CAN_QUEUE_VAL; 2508 2509 status = scic_controller_construct(&isci_host->sci, scu_base(isci_host), 2510 smu_base(isci_host)); 2511 2512 if (status != SCI_SUCCESS) { 2513 dev_err(&isci_host->pdev->dev, 2514 "%s: scic_controller_construct failed - status = %x\n", 2515 __func__, 2516 status); 2517 return -ENODEV; 2518 } 2519 2520 isci_host->sas_ha.dev = &isci_host->pdev->dev; 2521 isci_host->sas_ha.lldd_ha = isci_host; 2522 2523 /* 2524 * grab initial values stored in the controller object for OEM and USER 2525 * parameters 2526 */ 2527 isci_user_parameters_get(isci_host, &scic_user_params); 2528 status = scic_user_parameters_set(&isci_host->sci, 2529 &scic_user_params); 2530 if (status != SCI_SUCCESS) { 2531 dev_warn(&isci_host->pdev->dev, 2532 "%s: scic_user_parameters_set failed\n", 2533 __func__); 2534 return -ENODEV; 2535 } 2536 2537 scic_oem_parameters_get(&isci_host->sci, &oem); 2538 2539 /* grab any OEM parameters specified in orom */ 2540 if (pci_info->orom) { 2541 status = isci_parse_oem_parameters(&oem, 2542 pci_info->orom, 2543 isci_host->id); 2544 if (status != SCI_SUCCESS) { 2545 dev_warn(&isci_host->pdev->dev, 2546 "parsing firmware oem parameters failed\n"); 2547 return -EINVAL; 2548 } 2549 } 2550 2551 status = scic_oem_parameters_set(&isci_host->sci, &oem); 2552 if (status != SCI_SUCCESS) { 2553 dev_warn(&isci_host->pdev->dev, 2554 "%s: scic_oem_parameters_set failed\n", 2555 __func__); 2556 return -ENODEV; 2557 } 2558 2559 tasklet_init(&isci_host->completion_tasklet, 2560 isci_host_completion_routine, (unsigned long)isci_host); 2561 2562 INIT_LIST_HEAD(&isci_host->requests_to_complete); 2563 INIT_LIST_HEAD(&isci_host->requests_to_errorback); 2564 2565 spin_lock_irq(&isci_host->scic_lock); 2566 status = scic_controller_initialize(&isci_host->sci); 2567 spin_unlock_irq(&isci_host->scic_lock); 2568 if (status != SCI_SUCCESS) { 2569 dev_warn(&isci_host->pdev->dev, 2570 "%s: scic_controller_initialize failed -" 2571 " status = 0x%x\n", 2572 __func__, status); 2573 return -ENODEV; 2574 } 2575 2576 err = scic_controller_mem_init(&isci_host->sci); 2577 if (err) 2578 return err; 2579 2580 isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev, 2581 sizeof(struct isci_request), 2582 SLAB_HWCACHE_ALIGN, 0); 2583 2584 if (!isci_host->dma_pool) 2585 return -ENOMEM; 2586 2587 for (i = 0; i < SCI_MAX_PORTS; i++) 2588 isci_port_init(&isci_host->ports[i], isci_host, i); 2589 2590 for (i = 0; i < SCI_MAX_PHYS; i++) 2591 isci_phy_init(&isci_host->phys[i], isci_host, i); 2592 2593 for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { 2594 struct isci_remote_device *idev = &isci_host->devices[i]; 2595 2596 INIT_LIST_HEAD(&idev->reqs_in_process); 2597 INIT_LIST_HEAD(&idev->node); 2598 spin_lock_init(&idev->state_lock); 2599 } 2600 2601 return 0; 2602 } 2603 2604 void scic_sds_controller_link_up(struct scic_sds_controller *scic, 2605 struct scic_sds_port *port, struct scic_sds_phy *phy) 2606 { 2607 switch (scic->state_machine.current_state_id) { 2608 case SCI_BASE_CONTROLLER_STATE_STARTING: 2609 scic_sds_controller_phy_timer_stop(scic); 2610 scic->port_agent.link_up_handler(scic, &scic->port_agent, 2611 port, phy); 2612 scic_sds_controller_start_next_phy(scic); 2613 break; 2614 case SCI_BASE_CONTROLLER_STATE_READY: 2615 scic->port_agent.link_up_handler(scic, &scic->port_agent, 2616 port, phy); 2617 break; 2618 default: 2619 dev_dbg(scic_to_dev(scic), 2620 "%s: SCIC Controller linkup event from phy %d in " 2621 "unexpected state %d\n", __func__, phy->phy_index, 2622 scic->state_machine.current_state_id); 2623 } 2624 } 2625 2626 void scic_sds_controller_link_down(struct scic_sds_controller *scic, 2627 struct scic_sds_port *port, struct scic_sds_phy *phy) 2628 { 2629 switch (scic->state_machine.current_state_id) { 2630 case SCI_BASE_CONTROLLER_STATE_STARTING: 2631 case SCI_BASE_CONTROLLER_STATE_READY: 2632 scic->port_agent.link_down_handler(scic, &scic->port_agent, 2633 port, phy); 2634 break; 2635 default: 2636 dev_dbg(scic_to_dev(scic), 2637 "%s: SCIC Controller linkdown event from phy %d in " 2638 "unexpected state %d\n", 2639 __func__, 2640 phy->phy_index, 2641 scic->state_machine.current_state_id); 2642 } 2643 } 2644 2645 /** 2646 * This is a helper method to determine if any remote devices on this 2647 * controller are still in the stopping state. 2648 * 2649 */ 2650 static bool scic_sds_controller_has_remote_devices_stopping( 2651 struct scic_sds_controller *controller) 2652 { 2653 u32 index; 2654 2655 for (index = 0; index < controller->remote_node_entries; index++) { 2656 if ((controller->device_table[index] != NULL) && 2657 (controller->device_table[index]->state_machine.current_state_id 2658 == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING)) 2659 return true; 2660 } 2661 2662 return false; 2663 } 2664 2665 /** 2666 * This method is called by the remote device to inform the controller 2667 * object that the remote device has stopped. 2668 */ 2669 void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic, 2670 struct scic_sds_remote_device *sci_dev) 2671 { 2672 if (scic->state_machine.current_state_id != 2673 SCI_BASE_CONTROLLER_STATE_STOPPING) { 2674 dev_dbg(scic_to_dev(scic), 2675 "SCIC Controller 0x%p remote device stopped event " 2676 "from device 0x%p in unexpected state %d\n", 2677 scic, sci_dev, 2678 scic->state_machine.current_state_id); 2679 return; 2680 } 2681 2682 if (!scic_sds_controller_has_remote_devices_stopping(scic)) { 2683 sci_base_state_machine_change_state(&scic->state_machine, 2684 SCI_BASE_CONTROLLER_STATE_STOPPED); 2685 } 2686 } 2687 2688 /** 2689 * This method will write to the SCU PCP register the request value. The method 2690 * is used to suspend/resume ports, devices, and phys. 2691 * @scic: 2692 * 2693 * 2694 */ 2695 void scic_sds_controller_post_request( 2696 struct scic_sds_controller *scic, 2697 u32 request) 2698 { 2699 dev_dbg(scic_to_dev(scic), 2700 "%s: SCIC Controller 0x%p post request 0x%08x\n", 2701 __func__, 2702 scic, 2703 request); 2704 2705 writel(request, &scic->smu_registers->post_context_port); 2706 } 2707 2708 /** 2709 * This method will copy the soft copy of the task context into the physical 2710 * memory accessible by the controller. 2711 * @scic: This parameter specifies the controller for which to copy 2712 * the task context. 2713 * @sci_req: This parameter specifies the request for which the task 2714 * context is being copied. 2715 * 2716 * After this call is made the SCIC_SDS_IO_REQUEST object will always point to 2717 * the physical memory version of the task context. Thus, all subsequent 2718 * updates to the task context are performed in the TC table (i.e. DMAable 2719 * memory). none 2720 */ 2721 void scic_sds_controller_copy_task_context( 2722 struct scic_sds_controller *scic, 2723 struct scic_sds_request *sci_req) 2724 { 2725 struct scu_task_context *task_context_buffer; 2726 2727 task_context_buffer = scic_sds_controller_get_task_context_buffer( 2728 scic, sci_req->io_tag); 2729 2730 memcpy(task_context_buffer, 2731 sci_req->task_context_buffer, 2732 offsetof(struct scu_task_context, sgl_snapshot_ac)); 2733 2734 /* 2735 * Now that the soft copy of the TC has been copied into the TC 2736 * table accessible by the silicon. Thus, any further changes to 2737 * the TC (e.g. TC termination) occur in the appropriate location. */ 2738 sci_req->task_context_buffer = task_context_buffer; 2739 } 2740 2741 /** 2742 * This method returns the task context buffer for the given io tag. 2743 * @scic: 2744 * @io_tag: 2745 * 2746 * struct scu_task_context* 2747 */ 2748 struct scu_task_context *scic_sds_controller_get_task_context_buffer( 2749 struct scic_sds_controller *scic, 2750 u16 io_tag 2751 ) { 2752 u16 task_index = scic_sds_io_tag_get_index(io_tag); 2753 2754 if (task_index < scic->task_context_entries) { 2755 return &scic->task_context_table[task_index]; 2756 } 2757 2758 return NULL; 2759 } 2760 2761 struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic, 2762 u16 io_tag) 2763 { 2764 u16 task_index; 2765 u16 task_sequence; 2766 2767 task_index = scic_sds_io_tag_get_index(io_tag); 2768 2769 if (task_index < scic->task_context_entries) { 2770 if (scic->io_request_table[task_index] != NULL) { 2771 task_sequence = scic_sds_io_tag_get_sequence(io_tag); 2772 2773 if (task_sequence == scic->io_request_sequence[task_index]) { 2774 return scic->io_request_table[task_index]; 2775 } 2776 } 2777 } 2778 2779 return NULL; 2780 } 2781 2782 /** 2783 * This method allocates remote node index and the reserves the remote node 2784 * context space for use. This method can fail if there are no more remote 2785 * node index available. 2786 * @scic: This is the controller object which contains the set of 2787 * free remote node ids 2788 * @sci_dev: This is the device object which is requesting the a remote node 2789 * id 2790 * @node_id: This is the remote node id that is assinged to the device if one 2791 * is available 2792 * 2793 * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote 2794 * node index available. 2795 */ 2796 enum sci_status scic_sds_controller_allocate_remote_node_context( 2797 struct scic_sds_controller *scic, 2798 struct scic_sds_remote_device *sci_dev, 2799 u16 *node_id) 2800 { 2801 u16 node_index; 2802 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev); 2803 2804 node_index = scic_sds_remote_node_table_allocate_remote_node( 2805 &scic->available_remote_nodes, remote_node_count 2806 ); 2807 2808 if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { 2809 scic->device_table[node_index] = sci_dev; 2810 2811 *node_id = node_index; 2812 2813 return SCI_SUCCESS; 2814 } 2815 2816 return SCI_FAILURE_INSUFFICIENT_RESOURCES; 2817 } 2818 2819 /** 2820 * This method frees the remote node index back to the available pool. Once 2821 * this is done the remote node context buffer is no longer valid and can 2822 * not be used. 2823 * @scic: 2824 * @sci_dev: 2825 * @node_id: 2826 * 2827 */ 2828 void scic_sds_controller_free_remote_node_context( 2829 struct scic_sds_controller *scic, 2830 struct scic_sds_remote_device *sci_dev, 2831 u16 node_id) 2832 { 2833 u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev); 2834 2835 if (scic->device_table[node_id] == sci_dev) { 2836 scic->device_table[node_id] = NULL; 2837 2838 scic_sds_remote_node_table_release_remote_node_index( 2839 &scic->available_remote_nodes, remote_node_count, node_id 2840 ); 2841 } 2842 } 2843 2844 /** 2845 * This method returns the union scu_remote_node_context for the specified remote 2846 * node id. 2847 * @scic: 2848 * @node_id: 2849 * 2850 * union scu_remote_node_context* 2851 */ 2852 union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer( 2853 struct scic_sds_controller *scic, 2854 u16 node_id 2855 ) { 2856 if ( 2857 (node_id < scic->remote_node_entries) 2858 && (scic->device_table[node_id] != NULL) 2859 ) { 2860 return &scic->remote_node_context_table[node_id]; 2861 } 2862 2863 return NULL; 2864 } 2865 2866 /** 2867 * 2868 * @resposne_buffer: This is the buffer into which the D2H register FIS will be 2869 * constructed. 2870 * @frame_header: This is the frame header returned by the hardware. 2871 * @frame_buffer: This is the frame buffer returned by the hardware. 2872 * 2873 * This method will combind the frame header and frame buffer to create a SATA 2874 * D2H register FIS none 2875 */ 2876 void scic_sds_controller_copy_sata_response( 2877 void *response_buffer, 2878 void *frame_header, 2879 void *frame_buffer) 2880 { 2881 memcpy(response_buffer, frame_header, sizeof(u32)); 2882 2883 memcpy(response_buffer + sizeof(u32), 2884 frame_buffer, 2885 sizeof(struct dev_to_host_fis) - sizeof(u32)); 2886 } 2887 2888 /** 2889 * This method releases the frame once this is done the frame is available for 2890 * re-use by the hardware. The data contained in the frame header and frame 2891 * buffer is no longer valid. The UF queue get pointer is only updated if UF 2892 * control indicates this is appropriate. 2893 * @scic: 2894 * @frame_index: 2895 * 2896 */ 2897 void scic_sds_controller_release_frame( 2898 struct scic_sds_controller *scic, 2899 u32 frame_index) 2900 { 2901 if (scic_sds_unsolicited_frame_control_release_frame( 2902 &scic->uf_control, frame_index) == true) 2903 writel(scic->uf_control.get, 2904 &scic->scu_registers->sdma.unsolicited_frame_get_pointer); 2905 } 2906 2907 /** 2908 * scic_controller_start_io() - This method is called by the SCI user to 2909 * send/start an IO request. If the method invocation is successful, then 2910 * the IO request has been queued to the hardware for processing. 2911 * @controller: the handle to the controller object for which to start an IO 2912 * request. 2913 * @remote_device: the handle to the remote device object for which to start an 2914 * IO request. 2915 * @io_request: the handle to the io request object to start. 2916 * @io_tag: This parameter specifies a previously allocated IO tag that the 2917 * user desires to be utilized for this request. This parameter is optional. 2918 * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value 2919 * for this parameter. 2920 * 2921 * - IO tags are a protected resource. It is incumbent upon the SCI Core user 2922 * to ensure that each of the methods that may allocate or free available IO 2923 * tags are handled in a mutually exclusive manner. This method is one of said 2924 * methods requiring proper critical code section protection (e.g. semaphore, 2925 * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a 2926 * result, it is expected the user will have set the NCQ tag field in the host 2927 * to device register FIS prior to calling this method. There is also a 2928 * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking 2929 * the scic_controller_start_io() method. scic_controller_allocate_tag() for 2930 * more information on allocating a tag. Indicate if the controller 2931 * successfully started the IO request. SCI_SUCCESS if the IO request was 2932 * successfully started. Determine the failure situations and return values. 2933 */ 2934 enum sci_status scic_controller_start_io( 2935 struct scic_sds_controller *scic, 2936 struct scic_sds_remote_device *rdev, 2937 struct scic_sds_request *req, 2938 u16 io_tag) 2939 { 2940 enum sci_status status; 2941 2942 if (scic->state_machine.current_state_id != 2943 SCI_BASE_CONTROLLER_STATE_READY) { 2944 dev_warn(scic_to_dev(scic), "invalid state to start I/O"); 2945 return SCI_FAILURE_INVALID_STATE; 2946 } 2947 2948 status = scic_sds_remote_device_start_io(scic, rdev, req); 2949 if (status != SCI_SUCCESS) 2950 return status; 2951 2952 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; 2953 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req)); 2954 return SCI_SUCCESS; 2955 } 2956 2957 /** 2958 * scic_controller_terminate_request() - This method is called by the SCI Core 2959 * user to terminate an ongoing (i.e. started) core IO request. This does 2960 * not abort the IO request at the target, but rather removes the IO request 2961 * from the host controller. 2962 * @controller: the handle to the controller object for which to terminate a 2963 * request. 2964 * @remote_device: the handle to the remote device object for which to 2965 * terminate a request. 2966 * @request: the handle to the io or task management request object to 2967 * terminate. 2968 * 2969 * Indicate if the controller successfully began the terminate process for the 2970 * IO request. SCI_SUCCESS if the terminate process was successfully started 2971 * for the request. Determine the failure situations and return values. 2972 */ 2973 enum sci_status scic_controller_terminate_request( 2974 struct scic_sds_controller *scic, 2975 struct scic_sds_remote_device *rdev, 2976 struct scic_sds_request *req) 2977 { 2978 enum sci_status status; 2979 2980 if (scic->state_machine.current_state_id != 2981 SCI_BASE_CONTROLLER_STATE_READY) { 2982 dev_warn(scic_to_dev(scic), 2983 "invalid state to terminate request\n"); 2984 return SCI_FAILURE_INVALID_STATE; 2985 } 2986 2987 status = scic_sds_io_request_terminate(req); 2988 if (status != SCI_SUCCESS) 2989 return status; 2990 2991 /* 2992 * Utilize the original post context command and or in the POST_TC_ABORT 2993 * request sub-type. 2994 */ 2995 scic_sds_controller_post_request(scic, 2996 scic_sds_request_get_post_context(req) | 2997 SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); 2998 return SCI_SUCCESS; 2999 } 3000 3001 /** 3002 * scic_controller_complete_io() - This method will perform core specific 3003 * completion operations for an IO request. After this method is invoked, 3004 * the user should consider the IO request as invalid until it is properly 3005 * reused (i.e. re-constructed). 3006 * @controller: The handle to the controller object for which to complete the 3007 * IO request. 3008 * @remote_device: The handle to the remote device object for which to complete 3009 * the IO request. 3010 * @io_request: the handle to the io request object to complete. 3011 * 3012 * - IO tags are a protected resource. It is incumbent upon the SCI Core user 3013 * to ensure that each of the methods that may allocate or free available IO 3014 * tags are handled in a mutually exclusive manner. This method is one of said 3015 * methods requiring proper critical code section protection (e.g. semaphore, 3016 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI 3017 * Core user, using the scic_controller_allocate_io_tag() method, then it is 3018 * the responsibility of the caller to invoke the scic_controller_free_io_tag() 3019 * method to free the tag (i.e. this method will not free the IO tag). Indicate 3020 * if the controller successfully completed the IO request. SCI_SUCCESS if the 3021 * completion process was successful. 3022 */ 3023 enum sci_status scic_controller_complete_io( 3024 struct scic_sds_controller *scic, 3025 struct scic_sds_remote_device *rdev, 3026 struct scic_sds_request *request) 3027 { 3028 enum sci_status status; 3029 u16 index; 3030 3031 switch (scic->state_machine.current_state_id) { 3032 case SCI_BASE_CONTROLLER_STATE_STOPPING: 3033 /* XXX: Implement this function */ 3034 return SCI_FAILURE; 3035 case SCI_BASE_CONTROLLER_STATE_READY: 3036 status = scic_sds_remote_device_complete_io(scic, rdev, request); 3037 if (status != SCI_SUCCESS) 3038 return status; 3039 3040 index = scic_sds_io_tag_get_index(request->io_tag); 3041 scic->io_request_table[index] = NULL; 3042 return SCI_SUCCESS; 3043 default: 3044 dev_warn(scic_to_dev(scic), "invalid state to complete I/O"); 3045 return SCI_FAILURE_INVALID_STATE; 3046 } 3047 3048 } 3049 3050 enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req) 3051 { 3052 struct scic_sds_controller *scic = sci_req->owning_controller; 3053 3054 if (scic->state_machine.current_state_id != 3055 SCI_BASE_CONTROLLER_STATE_READY) { 3056 dev_warn(scic_to_dev(scic), "invalid state to continue I/O"); 3057 return SCI_FAILURE_INVALID_STATE; 3058 } 3059 3060 scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req; 3061 scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req)); 3062 return SCI_SUCCESS; 3063 } 3064 3065 /** 3066 * scic_controller_start_task() - This method is called by the SCIC user to 3067 * send/start a framework task management request. 3068 * @controller: the handle to the controller object for which to start the task 3069 * management request. 3070 * @remote_device: the handle to the remote device object for which to start 3071 * the task management request. 3072 * @task_request: the handle to the task request object to start. 3073 * @io_tag: This parameter specifies a previously allocated IO tag that the 3074 * user desires to be utilized for this request. Note this not the io_tag 3075 * of the request being managed. It is to be utilized for the task request 3076 * itself. This parameter is optional. The user is allowed to supply 3077 * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter. 3078 * 3079 * - IO tags are a protected resource. It is incumbent upon the SCI Core user 3080 * to ensure that each of the methods that may allocate or free available IO 3081 * tags are handled in a mutually exclusive manner. This method is one of said 3082 * methods requiring proper critical code section protection (e.g. semaphore, 3083 * spin-lock, etc.). - The user must synchronize this task with completion 3084 * queue processing. If they are not synchronized then it is possible for the 3085 * io requests that are being managed by the task request can complete before 3086 * starting the task request. scic_controller_allocate_tag() for more 3087 * information on allocating a tag. Indicate if the controller successfully 3088 * started the IO request. SCI_TASK_SUCCESS if the task request was 3089 * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is 3090 * returned if there is/are task(s) outstanding that require termination or 3091 * completion before this request can succeed. 3092 */ 3093 enum sci_task_status scic_controller_start_task( 3094 struct scic_sds_controller *scic, 3095 struct scic_sds_remote_device *rdev, 3096 struct scic_sds_request *req, 3097 u16 task_tag) 3098 { 3099 enum sci_status status; 3100 3101 if (scic->state_machine.current_state_id != 3102 SCI_BASE_CONTROLLER_STATE_READY) { 3103 dev_warn(scic_to_dev(scic), 3104 "%s: SCIC Controller starting task from invalid " 3105 "state\n", 3106 __func__); 3107 return SCI_TASK_FAILURE_INVALID_STATE; 3108 } 3109 3110 status = scic_sds_remote_device_start_task(scic, rdev, req); 3111 switch (status) { 3112 case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: 3113 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; 3114 3115 /* 3116 * We will let framework know this task request started successfully, 3117 * although core is still woring on starting the request (to post tc when 3118 * RNC is resumed.) 3119 */ 3120 return SCI_SUCCESS; 3121 case SCI_SUCCESS: 3122 scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; 3123 3124 scic_sds_controller_post_request(scic, 3125 scic_sds_request_get_post_context(req)); 3126 break; 3127 default: 3128 break; 3129 } 3130 3131 return status; 3132 } 3133 3134 /** 3135 * scic_controller_allocate_io_tag() - This method will allocate a tag from the 3136 * pool of free IO tags. Direct allocation of IO tags by the SCI Core user 3137 * is optional. The scic_controller_start_io() method will allocate an IO 3138 * tag if this method is not utilized and the tag is not supplied to the IO 3139 * construct routine. Direct allocation of IO tags may provide additional 3140 * performance improvements in environments capable of supporting this usage 3141 * model. Additionally, direct allocation of IO tags also provides 3142 * additional flexibility to the SCI Core user. Specifically, the user may 3143 * retain IO tags across the lives of multiple IO requests. 3144 * @controller: the handle to the controller object for which to allocate the 3145 * tag. 3146 * 3147 * IO tags are a protected resource. It is incumbent upon the SCI Core user to 3148 * ensure that each of the methods that may allocate or free available IO tags 3149 * are handled in a mutually exclusive manner. This method is one of said 3150 * methods requiring proper critical code section protection (e.g. semaphore, 3151 * spin-lock, etc.). An unsigned integer representing an available IO tag. 3152 * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no 3153 * currently available tags to be allocated. All return other values indicate a 3154 * legitimate tag. 3155 */ 3156 u16 scic_controller_allocate_io_tag( 3157 struct scic_sds_controller *scic) 3158 { 3159 u16 task_context; 3160 u16 sequence_count; 3161 3162 if (!sci_pool_empty(scic->tci_pool)) { 3163 sci_pool_get(scic->tci_pool, task_context); 3164 3165 sequence_count = scic->io_request_sequence[task_context]; 3166 3167 return scic_sds_io_tag_construct(sequence_count, task_context); 3168 } 3169 3170 return SCI_CONTROLLER_INVALID_IO_TAG; 3171 } 3172 3173 /** 3174 * scic_controller_free_io_tag() - This method will free an IO tag to the pool 3175 * of free IO tags. This method provides the SCI Core user more flexibility 3176 * with regards to IO tags. The user may desire to keep an IO tag after an 3177 * IO request has completed, because they plan on re-using the tag for a 3178 * subsequent IO request. This method is only legal if the tag was 3179 * allocated via scic_controller_allocate_io_tag(). 3180 * @controller: This parameter specifies the handle to the controller object 3181 * for which to free/return the tag. 3182 * @io_tag: This parameter represents the tag to be freed to the pool of 3183 * available tags. 3184 * 3185 * - IO tags are a protected resource. It is incumbent upon the SCI Core user 3186 * to ensure that each of the methods that may allocate or free available IO 3187 * tags are handled in a mutually exclusive manner. This method is one of said 3188 * methods requiring proper critical code section protection (e.g. semaphore, 3189 * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI 3190 * Core user, using the scic_controller_allocate_io_tag() method, then it is 3191 * the responsibility of the caller to invoke this method to free the tag. This 3192 * method returns an indication of whether the tag was successfully put back 3193 * (freed) to the pool of available tags. SCI_SUCCESS This return value 3194 * indicates the tag was successfully placed into the pool of available IO 3195 * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag 3196 * is not a valid IO tag value. 3197 */ 3198 enum sci_status scic_controller_free_io_tag( 3199 struct scic_sds_controller *scic, 3200 u16 io_tag) 3201 { 3202 u16 sequence; 3203 u16 index; 3204 3205 BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG); 3206 3207 sequence = scic_sds_io_tag_get_sequence(io_tag); 3208 index = scic_sds_io_tag_get_index(io_tag); 3209 3210 if (!sci_pool_full(scic->tci_pool)) { 3211 if (sequence == scic->io_request_sequence[index]) { 3212 scic_sds_io_sequence_increment( 3213 scic->io_request_sequence[index]); 3214 3215 sci_pool_put(scic->tci_pool, index); 3216 3217 return SCI_SUCCESS; 3218 } 3219 } 3220 3221 return SCI_FAILURE_INVALID_IO_TAG; 3222 } 3223 3224 3225