/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "host.h" #include "isci.h" #include "port.h" #include "host.h" #include "probe_roms.h" #include "remote_device.h" #include "request.h" #include "scic_io_request.h" #include "scic_sds_port_configuration_agent.h" #include "sci_util.h" #include "scu_completion_codes.h" #include "scu_event_codes.h" #include "registers.h" #include "scu_remote_node_context.h" #include "scu_task_context.h" #include "scu_unsolicited_frame.h" #include "timers.h" #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 /** * smu_dcc_get_max_ports() - * * This macro returns the maximum number of logical ports supported by the * hardware. The caller passes in the value read from the device context * capacity register and this macro will mash and shift the value appropriately. */ #define smu_dcc_get_max_ports(dcc_value) \ (\ (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ ) /** * smu_dcc_get_max_task_context() - * * This macro returns the maximum number of task contexts supported by the * hardware. The caller passes in the value read from the device context * capacity register and this macro will mash and shift the value appropriately. */ #define smu_dcc_get_max_task_context(dcc_value) \ (\ (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ ) /** * smu_dcc_get_max_remote_node_context() - * * This macro returns the maximum number of remote node contexts supported by * the hardware. The caller passes in the value read from the device context * capacity register and this macro will mash and shift the value appropriately. */ #define smu_dcc_get_max_remote_node_context(dcc_value) \ (\ (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ ) #define SCIC_SDS_CONTROLLER_MIN_TIMER_COUNT 3 #define SCIC_SDS_CONTROLLER_MAX_TIMER_COUNT 3 /** * * * The number of milliseconds to wait for a phy to start. */ #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 /** * * * The number of milliseconds to wait while a given phy is consuming power * before allowing another set of phys to consume power. Ultimately, this will * be specified by OEM parameter. */ #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 /** * NORMALIZE_PUT_POINTER() - * * This macro will normalize the completion queue put pointer so its value can * be used as an array inde */ #define NORMALIZE_PUT_POINTER(x) \ ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) /** * NORMALIZE_EVENT_POINTER() - * * This macro will normalize the completion queue event entry so its value can * be used as an index. */ #define NORMALIZE_EVENT_POINTER(x) \ (\ ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ ) /** * INCREMENT_COMPLETION_QUEUE_GET() - * * This macro will increment the controllers completion queue index value and * possibly toggle the cycle bit if the completion queue index wraps back to 0. */ #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \ INCREMENT_QUEUE_GET(\ (index), \ (cycle), \ (controller)->completion_queue_entries, \ SMU_CQGR_CYCLE_BIT \ ) /** * INCREMENT_EVENT_QUEUE_GET() - * * This macro will increment the controllers event queue index value and * possibly toggle the event cycle bit if the event queue index wraps back to 0. */ #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \ INCREMENT_QUEUE_GET(\ (index), \ (cycle), \ (controller)->completion_event_entries, \ SMU_CQGR_EVENT_CYCLE_BIT \ ) /** * NORMALIZE_GET_POINTER() - * * This macro will normalize the completion queue get pointer so its value can * be used as an index into an array */ #define NORMALIZE_GET_POINTER(x) \ ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) /** * NORMALIZE_GET_POINTER_CYCLE_BIT() - * * This macro will normalize the completion queue cycle pointer so it matches * the completion queue cycle bit */ #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) /** * COMPLETION_QUEUE_CYCLE_BIT() - * * This macro will return the cycle bit of the completion queue entry */ #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) static bool scic_sds_controller_completion_queue_has_entries( struct scic_sds_controller *scic) { u32 get_value = scic->completion_queue_get; u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])) return true; return false; } static bool scic_sds_controller_isr(struct scic_sds_controller *scic) { if (scic_sds_controller_completion_queue_has_entries(scic)) { return true; } else { /* * we have a spurious interrupt it could be that we have already * emptied the completion queue from a previous interrupt */ writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); /* * There is a race in the hardware that could cause us not to be notified * of an interrupt completion if we do not take this step. We will mask * then unmask the interrupts so if there is another interrupt pending * the clearing of the interrupt source we get the next interrupt message. */ writel(0xFF000000, &scic->smu_registers->interrupt_mask); writel(0, &scic->smu_registers->interrupt_mask); } return false; } irqreturn_t isci_msix_isr(int vec, void *data) { struct isci_host *ihost = data; if (scic_sds_controller_isr(&ihost->sci)) tasklet_schedule(&ihost->completion_tasklet); return IRQ_HANDLED; } static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic) { u32 interrupt_status; interrupt_status = readl(&scic->smu_registers->interrupt_status); interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); if (interrupt_status != 0) { /* * There is an error interrupt pending so let it through and handle * in the callback */ return true; } /* * There is a race in the hardware that could cause us not to be notified * of an interrupt completion if we do not take this step. We will mask * then unmask the error interrupts so if there was another interrupt * pending we will be notified. * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ writel(0xff, &scic->smu_registers->interrupt_mask); writel(0, &scic->smu_registers->interrupt_mask); return false; } static void scic_sds_controller_task_completion(struct scic_sds_controller *scic, u32 completion_entry) { u32 index; struct scic_sds_request *io_request; index = SCU_GET_COMPLETION_INDEX(completion_entry); io_request = scic->io_request_table[index]; /* Make sure that we really want to process this IO request */ if ( (io_request != NULL) && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG) && ( scic_sds_io_tag_get_sequence(io_request->io_tag) == scic->io_request_sequence[index] ) ) { /* Yep this is a valid io request pass it along to the io request handler */ scic_sds_io_request_tc_completion(io_request, completion_entry); } } static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic, u32 completion_entry) { u32 index; struct scic_sds_request *io_request; struct scic_sds_remote_device *device; index = SCU_GET_COMPLETION_INDEX(completion_entry); switch (scu_get_command_request_type(completion_entry)) { case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: io_request = scic->io_request_table[index]; dev_warn(scic_to_dev(scic), "%s: SCIC SDS Completion type SDMA %x for io request " "%p\n", __func__, completion_entry, io_request); /* @todo For a post TC operation we need to fail the IO * request */ break; case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: device = scic->device_table[index]; dev_warn(scic_to_dev(scic), "%s: SCIC SDS Completion type SDMA %x for remote " "device %p\n", __func__, completion_entry, device); /* @todo For a port RNC operation we need to fail the * device */ break; default: dev_warn(scic_to_dev(scic), "%s: SCIC SDS Completion unknown SDMA completion " "type %x\n", __func__, completion_entry); break; } } static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic, u32 completion_entry) { u32 index; u32 frame_index; struct isci_host *ihost = scic_to_ihost(scic); struct scu_unsolicited_frame_header *frame_header; struct scic_sds_phy *phy; struct scic_sds_remote_device *device; enum sci_status result = SCI_FAILURE; frame_index = SCU_GET_FRAME_INDEX(completion_entry); frame_header = scic->uf_control.buffers.array[frame_index].header; scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; if (SCU_GET_FRAME_ERROR(completion_entry)) { /* * / @todo If the IAF frame or SIGNATURE FIS frame has an error will * / this cause a problem? We expect the phy initialization will * / fail if there is an error in the frame. */ scic_sds_controller_release_frame(scic, frame_index); return; } if (frame_header->is_address_frame) { index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); phy = &ihost->phys[index].sci; result = scic_sds_phy_frame_handler(phy, frame_index); } else { index = SCU_GET_COMPLETION_INDEX(completion_entry); if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { /* * This is a signature fis or a frame from a direct attached SATA * device that has not yet been created. In either case forwared * the frame to the PE and let it take care of the frame data. */ index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); phy = &ihost->phys[index].sci; result = scic_sds_phy_frame_handler(phy, frame_index); } else { if (index < scic->remote_node_entries) device = scic->device_table[index]; else device = NULL; if (device != NULL) result = scic_sds_remote_device_frame_handler(device, frame_index); else scic_sds_controller_release_frame(scic, frame_index); } } if (result != SCI_SUCCESS) { /* * / @todo Is there any reason to report some additional error message * / when we get this failure notifiction? */ } } static void scic_sds_controller_event_completion(struct scic_sds_controller *scic, u32 completion_entry) { struct isci_host *ihost = scic_to_ihost(scic); struct scic_sds_request *io_request; struct scic_sds_remote_device *device; struct scic_sds_phy *phy; u32 index; index = SCU_GET_COMPLETION_INDEX(completion_entry); switch (scu_get_event_type(completion_entry)) { case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: /* / @todo The driver did something wrong and we need to fix the condtion. */ dev_err(scic_to_dev(scic), "%s: SCIC Controller 0x%p received SMU command error " "0x%x\n", __func__, scic, completion_entry); break; case SCU_EVENT_TYPE_SMU_PCQ_ERROR: case SCU_EVENT_TYPE_SMU_ERROR: case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: /* * / @todo This is a hardware failure and its likely that we want to * / reset the controller. */ dev_err(scic_to_dev(scic), "%s: SCIC Controller 0x%p received fatal controller " "event 0x%x\n", __func__, scic, completion_entry); break; case SCU_EVENT_TYPE_TRANSPORT_ERROR: io_request = scic->io_request_table[index]; scic_sds_io_request_event_handler(io_request, completion_entry); break; case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: switch (scu_get_event_specifier(completion_entry)) { case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: io_request = scic->io_request_table[index]; if (io_request != NULL) scic_sds_io_request_event_handler(io_request, completion_entry); else dev_warn(scic_to_dev(scic), "%s: SCIC Controller 0x%p received " "event 0x%x for io request object " "that doesnt exist.\n", __func__, scic, completion_entry); break; case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: device = scic->device_table[index]; if (device != NULL) scic_sds_remote_device_event_handler(device, completion_entry); else dev_warn(scic_to_dev(scic), "%s: SCIC Controller 0x%p received " "event 0x%x for remote device object " "that doesnt exist.\n", __func__, scic, completion_entry); break; } break; case SCU_EVENT_TYPE_BROADCAST_CHANGE: /* * direct the broadcast change event to the phy first and then let * the phy redirect the broadcast change to the port object */ case SCU_EVENT_TYPE_ERR_CNT_EVENT: /* * direct error counter event to the phy object since that is where * we get the event notification. This is a type 4 event. */ case SCU_EVENT_TYPE_OSSP_EVENT: index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry); phy = &ihost->phys[index].sci; scic_sds_phy_event_handler(phy, completion_entry); break; case SCU_EVENT_TYPE_RNC_SUSPEND_TX: case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: case SCU_EVENT_TYPE_RNC_OPS_MISC: if (index < scic->remote_node_entries) { device = scic->device_table[index]; if (device != NULL) scic_sds_remote_device_event_handler(device, completion_entry); } else dev_err(scic_to_dev(scic), "%s: SCIC Controller 0x%p received event 0x%x " "for remote device object 0x%0x that doesnt " "exist.\n", __func__, scic, completion_entry, index); break; default: dev_warn(scic_to_dev(scic), "%s: SCIC Controller received unknown event code %x\n", __func__, completion_entry); break; } } static void scic_sds_controller_process_completions(struct scic_sds_controller *scic) { u32 completion_count = 0; u32 completion_entry; u32 get_index; u32 get_cycle; u32 event_index; u32 event_cycle; dev_dbg(scic_to_dev(scic), "%s: completion queue begining get:0x%08x\n", __func__, scic->completion_queue_get); /* Get the component parts of the completion queue */ get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get); get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get; event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get); event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get; while ( NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]) ) { completion_count++; completion_entry = scic->completion_queue[get_index]; INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle); dev_dbg(scic_to_dev(scic), "%s: completion queue entry:0x%08x\n", __func__, completion_entry); switch (SCU_GET_COMPLETION_TYPE(completion_entry)) { case SCU_COMPLETION_TYPE_TASK: scic_sds_controller_task_completion(scic, completion_entry); break; case SCU_COMPLETION_TYPE_SDMA: scic_sds_controller_sdma_completion(scic, completion_entry); break; case SCU_COMPLETION_TYPE_UFI: scic_sds_controller_unsolicited_frame(scic, completion_entry); break; case SCU_COMPLETION_TYPE_EVENT: INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle); scic_sds_controller_event_completion(scic, completion_entry); break; case SCU_COMPLETION_TYPE_NOTIFY: /* * Presently we do the same thing with a notify event that we do with the * other event codes. */ INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle); scic_sds_controller_event_completion(scic, completion_entry); break; default: dev_warn(scic_to_dev(scic), "%s: SCIC Controller received unknown " "completion type %x\n", __func__, completion_entry); break; } } /* Update the get register if we completed one or more entries */ if (completion_count > 0) { scic->completion_queue_get = SMU_CQGR_GEN_BIT(ENABLE) | SMU_CQGR_GEN_BIT(EVENT_ENABLE) | event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) | get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index); writel(scic->completion_queue_get, &scic->smu_registers->completion_queue_get); } dev_dbg(scic_to_dev(scic), "%s: completion queue ending get:0x%08x\n", __func__, scic->completion_queue_get); } static void scic_sds_controller_error_handler(struct scic_sds_controller *scic) { u32 interrupt_status; interrupt_status = readl(&scic->smu_registers->interrupt_status); if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && scic_sds_controller_completion_queue_has_entries(scic)) { scic_sds_controller_process_completions(scic); writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status); } else { dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__, interrupt_status); sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_FAILED); return; } /* If we dont process any completions I am not sure that we want to do this. * We are in the middle of a hardware fault and should probably be reset. */ writel(0, &scic->smu_registers->interrupt_mask); } irqreturn_t isci_intx_isr(int vec, void *data) { irqreturn_t ret = IRQ_NONE; struct isci_host *ihost = data; struct scic_sds_controller *scic = &ihost->sci; if (scic_sds_controller_isr(scic)) { writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); tasklet_schedule(&ihost->completion_tasklet); ret = IRQ_HANDLED; } else if (scic_sds_controller_error_isr(scic)) { spin_lock(&ihost->scic_lock); scic_sds_controller_error_handler(scic); spin_unlock(&ihost->scic_lock); ret = IRQ_HANDLED; } return ret; } irqreturn_t isci_error_isr(int vec, void *data) { struct isci_host *ihost = data; if (scic_sds_controller_error_isr(&ihost->sci)) scic_sds_controller_error_handler(&ihost->sci); return IRQ_HANDLED; } /** * isci_host_start_complete() - This function is called by the core library, * through the ISCI Module, to indicate controller start status. * @isci_host: This parameter specifies the ISCI host object * @completion_status: This parameter specifies the completion status from the * core library. * */ static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) { if (completion_status != SCI_SUCCESS) dev_info(&ihost->pdev->dev, "controller start timed out, continuing...\n"); isci_host_change_state(ihost, isci_ready); clear_bit(IHOST_START_PENDING, &ihost->flags); wake_up(&ihost->eventq); } int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) { struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; if (test_bit(IHOST_START_PENDING, &ihost->flags)) return 0; /* todo: use sas_flush_discovery once it is upstream */ scsi_flush_work(shost); scsi_flush_work(shost); dev_dbg(&ihost->pdev->dev, "%s: ihost->status = %d, time = %ld\n", __func__, isci_host_get_state(ihost), time); return 1; } /** * scic_controller_get_suggested_start_timeout() - This method returns the * suggested scic_controller_start() timeout amount. The user is free to * use any timeout value, but this method provides the suggested minimum * start timeout value. The returned value is based upon empirical * information determined as a result of interoperability testing. * @controller: the handle to the controller object for which to return the * suggested start timeout. * * This method returns the number of milliseconds for the suggested start * operation timeout. */ static u32 scic_controller_get_suggested_start_timeout( struct scic_sds_controller *sc) { /* Validate the user supplied parameters. */ if (sc == NULL) return 0; /* * The suggested minimum timeout value for a controller start operation: * * Signature FIS Timeout * + Phy Start Timeout * + Number of Phy Spin Up Intervals * --------------------------------- * Number of milliseconds for the controller start operation. * * NOTE: The number of phy spin up intervals will be equivalent * to the number of phys divided by the number phys allowed * per interval - 1 (once OEM parameters are supported). * Currently we assume only 1 phy per interval. */ return SCIC_SDS_SIGNATURE_FIS_TIMEOUT + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); } static void scic_controller_enable_interrupts( struct scic_sds_controller *scic) { BUG_ON(scic->smu_registers == NULL); writel(0, &scic->smu_registers->interrupt_mask); } void scic_controller_disable_interrupts( struct scic_sds_controller *scic) { BUG_ON(scic->smu_registers == NULL); writel(0xffffffff, &scic->smu_registers->interrupt_mask); } static void scic_sds_controller_enable_port_task_scheduler( struct scic_sds_controller *scic) { u32 port_task_scheduler_value; port_task_scheduler_value = readl(&scic->scu_registers->peg0.ptsg.control); port_task_scheduler_value |= (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); writel(port_task_scheduler_value, &scic->scu_registers->peg0.ptsg.control); } static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic) { u32 task_assignment; /* * Assign all the TCs to function 0 * TODO: Do we actually need to read this register to write it back? */ task_assignment = readl(&scic->smu_registers->task_context_assignment[0]); task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) | (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); writel(task_assignment, &scic->smu_registers->task_context_assignment[0]); } static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic) { u32 index; u32 completion_queue_control_value; u32 completion_queue_get_value; u32 completion_queue_put_value; scic->completion_queue_get = 0; completion_queue_control_value = ( SMU_CQC_QUEUE_LIMIT_SET(scic->completion_queue_entries - 1) | SMU_CQC_EVENT_LIMIT_SET(scic->completion_event_entries - 1) ); writel(completion_queue_control_value, &scic->smu_registers->completion_queue_control); /* Set the completion queue get pointer and enable the queue */ completion_queue_get_value = ( (SMU_CQGR_GEN_VAL(POINTER, 0)) | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) | (SMU_CQGR_GEN_BIT(ENABLE)) | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) ); writel(completion_queue_get_value, &scic->smu_registers->completion_queue_get); /* Set the completion queue put pointer */ completion_queue_put_value = ( (SMU_CQPR_GEN_VAL(POINTER, 0)) | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) ); writel(completion_queue_put_value, &scic->smu_registers->completion_queue_put); /* Initialize the cycle bit of the completion queue entries */ for (index = 0; index < scic->completion_queue_entries; index++) { /* * If get.cycle_bit != completion_queue.cycle_bit * its not a valid completion queue entry * so at system start all entries are invalid */ scic->completion_queue[index] = 0x80000000; } } static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic) { u32 frame_queue_control_value; u32 frame_queue_get_value; u32 frame_queue_put_value; /* Write the queue size */ frame_queue_control_value = SCU_UFQC_GEN_VAL(QUEUE_SIZE, scic->uf_control.address_table.count); writel(frame_queue_control_value, &scic->scu_registers->sdma.unsolicited_frame_queue_control); /* Setup the get pointer for the unsolicited frame queue */ frame_queue_get_value = ( SCU_UFQGP_GEN_VAL(POINTER, 0) | SCU_UFQGP_GEN_BIT(ENABLE_BIT) ); writel(frame_queue_get_value, &scic->scu_registers->sdma.unsolicited_frame_get_pointer); /* Setup the put pointer for the unsolicited frame queue */ frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); writel(frame_queue_put_value, &scic->scu_registers->sdma.unsolicited_frame_put_pointer); } /** * This method will attempt to transition into the ready state for the * controller and indicate that the controller start operation has completed * if all criteria are met. * @scic: This parameter indicates the controller object for which * to transition to ready. * @status: This parameter indicates the status value to be pass into the call * to scic_cb_controller_start_complete(). * * none. */ static void scic_sds_controller_transition_to_ready( struct scic_sds_controller *scic, enum sci_status status) { struct isci_host *ihost = scic_to_ihost(scic); if (scic->state_machine.current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING) { /* * We move into the ready state, because some of the phys/ports * may be up and operational. */ sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_READY); isci_host_start_complete(ihost, status); } } static void scic_sds_controller_phy_timer_stop(struct scic_sds_controller *scic) { isci_timer_stop(scic->phy_startup_timer); scic->phy_startup_timer_pending = false; } static void scic_sds_controller_phy_timer_start(struct scic_sds_controller *scic) { isci_timer_start(scic->phy_startup_timer, SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); scic->phy_startup_timer_pending = true; } /** * scic_sds_controller_start_next_phy - start phy * @scic: controller * * If all the phys have been started, then attempt to transition the * controller to the READY state and inform the user * (scic_cb_controller_start_complete()). */ static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic) { struct isci_host *ihost = scic_to_ihost(scic); struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1; struct scic_sds_phy *sci_phy; enum sci_status status; status = SCI_SUCCESS; if (scic->phy_startup_timer_pending) return status; if (scic->next_phy_to_start >= SCI_MAX_PHYS) { bool is_controller_start_complete = true; u32 state; u8 index; for (index = 0; index < SCI_MAX_PHYS; index++) { sci_phy = &ihost->phys[index].sci; state = sci_phy->state_machine.current_state_id; if (!scic_sds_phy_get_port(sci_phy)) continue; /* The controller start operation is complete iff: * - all links have been given an opportunity to start * - have no indication of a connected device * - have an indication of a connected device and it has * finished the link training process. */ if ((sci_phy->is_in_link_training == false && state == SCI_BASE_PHY_STATE_INITIAL) || (sci_phy->is_in_link_training == false && state == SCI_BASE_PHY_STATE_STOPPED) || (sci_phy->is_in_link_training == true && state == SCI_BASE_PHY_STATE_STARTING)) { is_controller_start_complete = false; break; } } /* * The controller has successfully finished the start process. * Inform the SCI Core user and transition to the READY state. */ if (is_controller_start_complete == true) { scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS); scic_sds_controller_phy_timer_stop(scic); } } else { sci_phy = &ihost->phys[scic->next_phy_to_start].sci; if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { if (scic_sds_phy_get_port(sci_phy) == NULL) { scic->next_phy_to_start++; /* Caution recursion ahead be forwarned * * The PHY was never added to a PORT in MPC mode * so start the next phy in sequence This phy * will never go link up and will not draw power * the OEM parameters either configured the phy * incorrectly for the PORT or it was never * assigned to a PORT */ return scic_sds_controller_start_next_phy(scic); } } status = scic_sds_phy_start(sci_phy); if (status == SCI_SUCCESS) { scic_sds_controller_phy_timer_start(scic); } else { dev_warn(scic_to_dev(scic), "%s: Controller stop operation failed " "to stop phy %d because of status " "%d.\n", __func__, ihost->phys[scic->next_phy_to_start].sci.phy_index, status); } scic->next_phy_to_start++; } return status; } static void scic_sds_controller_phy_startup_timeout_handler(void *_scic) { struct scic_sds_controller *scic = _scic; enum sci_status status; scic->phy_startup_timer_pending = false; status = SCI_FAILURE; while (status != SCI_SUCCESS) status = scic_sds_controller_start_next_phy(scic); } static enum sci_status scic_controller_start(struct scic_sds_controller *scic, u32 timeout) { struct isci_host *ihost = scic_to_ihost(scic); enum sci_status result; u16 index; if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_INITIALIZED) { dev_warn(scic_to_dev(scic), "SCIC Controller start operation requested in " "invalid state\n"); return SCI_FAILURE_INVALID_STATE; } /* Build the TCi free pool */ sci_pool_initialize(scic->tci_pool); for (index = 0; index < scic->task_context_entries; index++) sci_pool_put(scic->tci_pool, index); /* Build the RNi free pool */ scic_sds_remote_node_table_initialize( &scic->available_remote_nodes, scic->remote_node_entries); /* * Before anything else lets make sure we will not be * interrupted by the hardware. */ scic_controller_disable_interrupts(scic); /* Enable the port task scheduler */ scic_sds_controller_enable_port_task_scheduler(scic); /* Assign all the task entries to scic physical function */ scic_sds_controller_assign_task_entries(scic); /* Now initialize the completion queue */ scic_sds_controller_initialize_completion_queue(scic); /* Initialize the unsolicited frame queue for use */ scic_sds_controller_initialize_unsolicited_frame_queue(scic); /* Start all of the ports on this controller */ for (index = 0; index < scic->logical_port_entries; index++) { struct scic_sds_port *sci_port = &ihost->ports[index].sci; result = sci_port->state_handlers->start_handler(sci_port); if (result) return result; } scic_sds_controller_start_next_phy(scic); isci_timer_start(scic->timeout_timer, timeout); sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_STARTING); return SCI_SUCCESS; } void isci_host_scan_start(struct Scsi_Host *shost) { struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci); set_bit(IHOST_START_PENDING, &ihost->flags); spin_lock_irq(&ihost->scic_lock); scic_controller_start(&ihost->sci, tmo); scic_controller_enable_interrupts(&ihost->sci); spin_unlock_irq(&ihost->scic_lock); } static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status) { isci_host_change_state(ihost, isci_stopped); scic_controller_disable_interrupts(&ihost->sci); clear_bit(IHOST_STOP_PENDING, &ihost->flags); wake_up(&ihost->eventq); } static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic) { /* Empty out the completion queue */ if (scic_sds_controller_completion_queue_has_entries(scic)) scic_sds_controller_process_completions(scic); /* Clear the interrupt and enable all interrupts again */ writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status); /* Could we write the value of SMU_ISR_COMPLETION? */ writel(0xFF000000, &scic->smu_registers->interrupt_mask); writel(0, &scic->smu_registers->interrupt_mask); } /** * isci_host_completion_routine() - This function is the delayed service * routine that calls the sci core library's completion handler. It's * scheduled as a tasklet from the interrupt service routine when interrupts * in use, or set as the timeout function in polled mode. * @data: This parameter specifies the ISCI host object * */ static void isci_host_completion_routine(unsigned long data) { struct isci_host *isci_host = (struct isci_host *)data; struct list_head completed_request_list; struct list_head errored_request_list; struct list_head *current_position; struct list_head *next_position; struct isci_request *request; struct isci_request *next_request; struct sas_task *task; INIT_LIST_HEAD(&completed_request_list); INIT_LIST_HEAD(&errored_request_list); spin_lock_irq(&isci_host->scic_lock); scic_sds_controller_completion_handler(&isci_host->sci); /* Take the lists of completed I/Os from the host. */ list_splice_init(&isci_host->requests_to_complete, &completed_request_list); /* Take the list of errored I/Os from the host. */ list_splice_init(&isci_host->requests_to_errorback, &errored_request_list); spin_unlock_irq(&isci_host->scic_lock); /* Process any completions in the lists. */ list_for_each_safe(current_position, next_position, &completed_request_list) { request = list_entry(current_position, struct isci_request, completed_node); task = isci_request_access_task(request); /* Normal notification (task_done) */ dev_dbg(&isci_host->pdev->dev, "%s: Normal - request/task = %p/%p\n", __func__, request, task); /* Return the task to libsas */ if (task != NULL) { task->lldd_task = NULL; if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { /* If the task is already in the abort path, * the task_done callback cannot be called. */ task->task_done(task); } } /* Free the request object. */ isci_request_free(isci_host, request); } list_for_each_entry_safe(request, next_request, &errored_request_list, completed_node) { task = isci_request_access_task(request); /* Use sas_task_abort */ dev_warn(&isci_host->pdev->dev, "%s: Error - request/task = %p/%p\n", __func__, request, task); if (task != NULL) { /* Put the task into the abort path if it's not there * already. */ if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) sas_task_abort(task); } else { /* This is a case where the request has completed with a * status such that it needed further target servicing, * but the sas_task reference has already been removed * from the request. Since it was errored, it was not * being aborted, so there is nothing to do except free * it. */ spin_lock_irq(&isci_host->scic_lock); /* Remove the request from the remote device's list * of pending requests. */ list_del_init(&request->dev_node); spin_unlock_irq(&isci_host->scic_lock); /* Free the request object. */ isci_request_free(isci_host, request); } } } /** * scic_controller_stop() - This method will stop an individual controller * object.This method will invoke the associated user callback upon * completion. The completion callback is called when the following * conditions are met: -# the method return status is SCI_SUCCESS. -# the * controller has been quiesced. This method will ensure that all IO * requests are quiesced, phys are stopped, and all additional operation by * the hardware is halted. * @controller: the handle to the controller object to stop. * @timeout: This parameter specifies the number of milliseconds in which the * stop operation should complete. * * The controller must be in the STARTED or STOPPED state. Indicate if the * controller stop method succeeded or failed in some way. SCI_SUCCESS if the * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the * controller is not either in the STARTED or STOPPED states. */ static enum sci_status scic_controller_stop(struct scic_sds_controller *scic, u32 timeout) { if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_READY) { dev_warn(scic_to_dev(scic), "SCIC Controller stop operation requested in " "invalid state\n"); return SCI_FAILURE_INVALID_STATE; } isci_timer_start(scic->timeout_timer, timeout); sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_STOPPING); return SCI_SUCCESS; } /** * scic_controller_reset() - This method will reset the supplied core * controller regardless of the state of said controller. This operation is * considered destructive. In other words, all current operations are wiped * out. No IO completions for outstanding devices occur. Outstanding IO * requests are not aborted or completed at the actual remote device. * @controller: the handle to the controller object to reset. * * Indicate if the controller reset method succeeded or failed in some way. * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if * the controller reset operation is unable to complete. */ static enum sci_status scic_controller_reset(struct scic_sds_controller *scic) { switch (scic->state_machine.current_state_id) { case SCI_BASE_CONTROLLER_STATE_RESET: case SCI_BASE_CONTROLLER_STATE_READY: case SCI_BASE_CONTROLLER_STATE_STOPPED: case SCI_BASE_CONTROLLER_STATE_FAILED: /* * The reset operation is not a graceful cleanup, just * perform the state transition. */ sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_RESETTING); return SCI_SUCCESS; default: dev_warn(scic_to_dev(scic), "SCIC Controller reset operation requested in " "invalid state\n"); return SCI_FAILURE_INVALID_STATE; } } void isci_host_deinit(struct isci_host *ihost) { int i; isci_host_change_state(ihost, isci_stopping); for (i = 0; i < SCI_MAX_PORTS; i++) { struct isci_port *iport = &ihost->ports[i]; struct isci_remote_device *idev, *d; list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) { isci_remote_device_change_state(idev, isci_stopping); isci_remote_device_stop(ihost, idev); } } set_bit(IHOST_STOP_PENDING, &ihost->flags); spin_lock_irq(&ihost->scic_lock); scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT); spin_unlock_irq(&ihost->scic_lock); wait_for_stop(ihost); scic_controller_reset(&ihost->sci); isci_timer_list_destroy(ihost); } static void __iomem *scu_base(struct isci_host *isci_host) { struct pci_dev *pdev = isci_host->pdev; int id = isci_host->id; return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; } static void __iomem *smu_base(struct isci_host *isci_host) { struct pci_dev *pdev = isci_host->pdev; int id = isci_host->id; return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; } static void isci_user_parameters_get( struct isci_host *isci_host, union scic_user_parameters *scic_user_params) { struct scic_sds_user_parameters *u = &scic_user_params->sds1; int i; for (i = 0; i < SCI_MAX_PHYS; i++) { struct sci_phy_user_params *u_phy = &u->phys[i]; u_phy->max_speed_generation = phy_gen; /* we are not exporting these for now */ u_phy->align_insertion_frequency = 0x7f; u_phy->in_connection_align_insertion_frequency = 0xff; u_phy->notify_enable_spin_up_insertion_frequency = 0x33; } u->stp_inactivity_timeout = stp_inactive_to; u->ssp_inactivity_timeout = ssp_inactive_to; u->stp_max_occupancy_timeout = stp_max_occ_to; u->ssp_max_occupancy_timeout = ssp_max_occ_to; u->no_outbound_task_timeout = no_outbound_task_to; u->max_number_concurrent_device_spin_up = max_concurr_spinup; } static void scic_sds_controller_initial_state_enter(void *object) { struct scic_sds_controller *scic = object; sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_RESET); } static inline void scic_sds_controller_starting_state_exit(void *object) { struct scic_sds_controller *scic = object; isci_timer_stop(scic->timeout_timer); } #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 #define INTERRUPT_COALESCE_NUMBER_MAX 256 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 /** * scic_controller_set_interrupt_coalescence() - This method allows the user to * configure the interrupt coalescence. * @controller: This parameter represents the handle to the controller object * for which its interrupt coalesce register is overridden. * @coalesce_number: Used to control the number of entries in the Completion * Queue before an interrupt is generated. If the number of entries exceed * this number, an interrupt will be generated. The valid range of the input * is [0, 256]. A setting of 0 results in coalescing being disabled. * @coalesce_timeout: Timeout value in microseconds. The valid range of the * input is [0, 2700000] . A setting of 0 is allowed and results in no * interrupt coalescing timeout. * * Indicate if the user successfully set the interrupt coalesce parameters. * SCI_SUCCESS The user successfully updated the interrutp coalescence. * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. */ static enum sci_status scic_controller_set_interrupt_coalescence( struct scic_sds_controller *scic_controller, u32 coalesce_number, u32 coalesce_timeout) { u8 timeout_encode = 0; u32 min = 0; u32 max = 0; /* Check if the input parameters fall in the range. */ if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) return SCI_FAILURE_INVALID_PARAMETER_VALUE; /* * Defined encoding for interrupt coalescing timeout: * Value Min Max Units * ----- --- --- ----- * 0 - - Disabled * 1 13.3 20.0 ns * 2 26.7 40.0 * 3 53.3 80.0 * 4 106.7 160.0 * 5 213.3 320.0 * 6 426.7 640.0 * 7 853.3 1280.0 * 8 1.7 2.6 us * 9 3.4 5.1 * 10 6.8 10.2 * 11 13.7 20.5 * 12 27.3 41.0 * 13 54.6 81.9 * 14 109.2 163.8 * 15 218.5 327.7 * 16 436.9 655.4 * 17 873.8 1310.7 * 18 1.7 2.6 ms * 19 3.5 5.2 * 20 7.0 10.5 * 21 14.0 21.0 * 22 28.0 41.9 * 23 55.9 83.9 * 24 111.8 167.8 * 25 223.7 335.5 * 26 447.4 671.1 * 27 894.8 1342.2 * 28 1.8 2.7 s * Others Undefined */ /* * Use the table above to decide the encode of interrupt coalescing timeout * value for register writing. */ if (coalesce_timeout == 0) timeout_encode = 0; else{ /* make the timeout value in unit of (10 ns). */ coalesce_timeout = coalesce_timeout * 100; min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; /* get the encode of timeout for register writing. */ for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; timeout_encode++) { if (min <= coalesce_timeout && max > coalesce_timeout) break; else if (coalesce_timeout >= max && coalesce_timeout < min * 2 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) break; else{ timeout_encode++; break; } } else { max = max * 2; min = min * 2; } } if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) /* the value is out of range. */ return SCI_FAILURE_INVALID_PARAMETER_VALUE; } writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | SMU_ICC_GEN_VAL(TIMER, timeout_encode), &scic_controller->smu_registers->interrupt_coalesce_control); scic_controller->interrupt_coalesce_number = (u16)coalesce_number; scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100; return SCI_SUCCESS; } static void scic_sds_controller_ready_state_enter(void *object) { struct scic_sds_controller *scic = object; /* set the default interrupt coalescence number and timeout value. */ scic_controller_set_interrupt_coalescence(scic, 0x10, 250); } static void scic_sds_controller_ready_state_exit(void *object) { struct scic_sds_controller *scic = object; /* disable interrupt coalescence. */ scic_controller_set_interrupt_coalescence(scic, 0, 0); } static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic) { u32 index; enum sci_status status; enum sci_status phy_status; struct isci_host *ihost = scic_to_ihost(scic); status = SCI_SUCCESS; for (index = 0; index < SCI_MAX_PHYS; index++) { phy_status = scic_sds_phy_stop(&ihost->phys[index].sci); if (phy_status != SCI_SUCCESS && phy_status != SCI_FAILURE_INVALID_STATE) { status = SCI_FAILURE; dev_warn(scic_to_dev(scic), "%s: Controller stop operation failed to stop " "phy %d because of status %d.\n", __func__, ihost->phys[index].sci.phy_index, phy_status); } } return status; } static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic) { u32 index; enum sci_status port_status; enum sci_status status = SCI_SUCCESS; struct isci_host *ihost = scic_to_ihost(scic); for (index = 0; index < scic->logical_port_entries; index++) { struct scic_sds_port *sci_port = &ihost->ports[index].sci; scic_sds_port_handler_t stop; stop = sci_port->state_handlers->stop_handler; port_status = stop(sci_port); if ((port_status != SCI_SUCCESS) && (port_status != SCI_FAILURE_INVALID_STATE)) { status = SCI_FAILURE; dev_warn(scic_to_dev(scic), "%s: Controller stop operation failed to " "stop port %d because of status %d.\n", __func__, sci_port->logical_port_index, port_status); } } return status; } static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic) { u32 index; enum sci_status status; enum sci_status device_status; status = SCI_SUCCESS; for (index = 0; index < scic->remote_node_entries; index++) { if (scic->device_table[index] != NULL) { /* / @todo What timeout value do we want to provide to this request? */ device_status = scic_remote_device_stop(scic->device_table[index], 0); if ((device_status != SCI_SUCCESS) && (device_status != SCI_FAILURE_INVALID_STATE)) { dev_warn(scic_to_dev(scic), "%s: Controller stop operation failed " "to stop device 0x%p because of " "status %d.\n", __func__, scic->device_table[index], device_status); } } } return status; } static void scic_sds_controller_stopping_state_enter(void *object) { struct scic_sds_controller *scic = object; /* Stop all of the components for this controller */ scic_sds_controller_stop_phys(scic); scic_sds_controller_stop_ports(scic); scic_sds_controller_stop_devices(scic); } static void scic_sds_controller_stopping_state_exit(void *object) { struct scic_sds_controller *scic = object; isci_timer_stop(scic->timeout_timer); } /** * scic_sds_controller_reset_hardware() - * * This method will reset the controller hardware. */ static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic) { /* Disable interrupts so we dont take any spurious interrupts */ scic_controller_disable_interrupts(scic); /* Reset the SCU */ writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control); /* Delay for 1ms to before clearing the CQP and UFQPR. */ udelay(1000); /* The write to the CQGR clears the CQP */ writel(0x00000000, &scic->smu_registers->completion_queue_get); /* The write to the UFQGP clears the UFQPR */ writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer); } static void scic_sds_controller_resetting_state_enter(void *object) { struct scic_sds_controller *scic = object; scic_sds_controller_reset_hardware(scic); sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_RESET); } static const struct sci_base_state scic_sds_controller_state_table[] = { [SCI_BASE_CONTROLLER_STATE_INITIAL] = { .enter_state = scic_sds_controller_initial_state_enter, }, [SCI_BASE_CONTROLLER_STATE_RESET] = {}, [SCI_BASE_CONTROLLER_STATE_INITIALIZING] = {}, [SCI_BASE_CONTROLLER_STATE_INITIALIZED] = {}, [SCI_BASE_CONTROLLER_STATE_STARTING] = { .exit_state = scic_sds_controller_starting_state_exit, }, [SCI_BASE_CONTROLLER_STATE_READY] = { .enter_state = scic_sds_controller_ready_state_enter, .exit_state = scic_sds_controller_ready_state_exit, }, [SCI_BASE_CONTROLLER_STATE_RESETTING] = { .enter_state = scic_sds_controller_resetting_state_enter, }, [SCI_BASE_CONTROLLER_STATE_STOPPING] = { .enter_state = scic_sds_controller_stopping_state_enter, .exit_state = scic_sds_controller_stopping_state_exit, }, [SCI_BASE_CONTROLLER_STATE_STOPPED] = {}, [SCI_BASE_CONTROLLER_STATE_FAILED] = {} }; static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic) { /* these defaults are overridden by the platform / firmware */ struct isci_host *ihost = scic_to_ihost(scic); u16 index; /* Default to APC mode. */ scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE; /* Default to APC mode. */ scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1; /* Default to no SSC operation. */ scic->oem_parameters.sds1.controller.do_enable_ssc = false; /* Initialize all of the port parameter information to narrow ports. */ for (index = 0; index < SCI_MAX_PORTS; index++) { scic->oem_parameters.sds1.ports[index].phy_mask = 0; } /* Initialize all of the phy parameter information. */ for (index = 0; index < SCI_MAX_PHYS; index++) { /* Default to 6G (i.e. Gen 3) for now. */ scic->user_parameters.sds1.phys[index].max_speed_generation = 3; /* the frequencies cannot be 0 */ scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f; scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff; scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33; /* * Previous Vitesse based expanders had a arbitration issue that * is worked around by having the upper 32-bits of SAS address * with a value greater then the Vitesse company identifier. * Hence, usage of 0x5FCFFFFF. */ scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id; scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF; } scic->user_parameters.sds1.stp_inactivity_timeout = 5; scic->user_parameters.sds1.ssp_inactivity_timeout = 5; scic->user_parameters.sds1.stp_max_occupancy_timeout = 5; scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20; scic->user_parameters.sds1.no_outbound_task_timeout = 20; } /** * scic_controller_construct() - This method will attempt to construct a * controller object utilizing the supplied parameter information. * @c: This parameter specifies the controller to be constructed. * @scu_base: mapped base address of the scu registers * @smu_base: mapped base address of the smu registers * * Indicate if the controller was successfully constructed or if it failed in * some way. SCI_SUCCESS This value is returned if the controller was * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned * if the interrupt coalescence timer may cause SAS compliance issues for SMP * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE * This value is returned if the controller does not support the supplied type. * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the * controller does not support the supplied initialization data version. */ static enum sci_status scic_controller_construct(struct scic_sds_controller *scic, void __iomem *scu_base, void __iomem *smu_base) { struct isci_host *ihost = scic_to_ihost(scic); u8 i; sci_base_state_machine_construct(&scic->state_machine, scic, scic_sds_controller_state_table, SCI_BASE_CONTROLLER_STATE_INITIAL); sci_base_state_machine_start(&scic->state_machine); scic->scu_registers = scu_base; scic->smu_registers = smu_base; scic_sds_port_configuration_agent_construct(&scic->port_agent); /* Construct the ports for this controller */ for (i = 0; i < SCI_MAX_PORTS; i++) scic_sds_port_construct(&ihost->ports[i].sci, i, scic); scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic); /* Construct the phys for this controller */ for (i = 0; i < SCI_MAX_PHYS; i++) { /* Add all the PHYs to the dummy port */ scic_sds_phy_construct(&ihost->phys[i].sci, &ihost->ports[SCI_MAX_PORTS].sci, i); } scic->invalid_phy_mask = 0; /* Set the default maximum values */ scic->completion_event_entries = SCU_EVENT_COUNT; scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT; scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES; scic->logical_port_entries = SCI_MAX_PORTS; scic->task_context_entries = SCU_IO_REQUEST_COUNT; scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT; scic->uf_control.address_table.count = SCU_UNSOLICITED_FRAME_COUNT; /* Initialize the User and OEM parameters to default values. */ scic_sds_controller_set_default_config_parameters(scic); return scic_controller_reset(scic); } int scic_oem_parameters_validate(struct scic_sds_oem_params *oem) { int i; for (i = 0; i < SCI_MAX_PORTS; i++) if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) return -EINVAL; for (i = 0; i < SCI_MAX_PHYS; i++) if (oem->phys[i].sas_address.high == 0 && oem->phys[i].sas_address.low == 0) return -EINVAL; if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { for (i = 0; i < SCI_MAX_PHYS; i++) if (oem->ports[i].phy_mask != 0) return -EINVAL; } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { u8 phy_mask = 0; for (i = 0; i < SCI_MAX_PHYS; i++) phy_mask |= oem->ports[i].phy_mask; if (phy_mask == 0) return -EINVAL; } else return -EINVAL; if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT) return -EINVAL; return 0; } static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic, union scic_oem_parameters *scic_parms) { u32 state = scic->state_machine.current_state_id; if (state == SCI_BASE_CONTROLLER_STATE_RESET || state == SCI_BASE_CONTROLLER_STATE_INITIALIZING || state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) { if (scic_oem_parameters_validate(&scic_parms->sds1)) return SCI_FAILURE_INVALID_PARAMETER_VALUE; scic->oem_parameters.sds1 = scic_parms->sds1; return SCI_SUCCESS; } return SCI_FAILURE_INVALID_STATE; } void scic_oem_parameters_get( struct scic_sds_controller *scic, union scic_oem_parameters *scic_parms) { memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms)); } static void scic_sds_controller_timeout_handler(void *_scic) { struct scic_sds_controller *scic = _scic; struct isci_host *ihost = scic_to_ihost(scic); struct sci_base_state_machine *sm = &scic->state_machine; if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STARTING) scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT); else if (sm->current_state_id == SCI_BASE_CONTROLLER_STATE_STOPPING) { sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_FAILED); isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT); } else /* / @todo Now what do we want to do in this case? */ dev_err(scic_to_dev(scic), "%s: Controller timer fired when controller was not " "in a state being timed.\n", __func__); } static enum sci_status scic_sds_controller_initialize_phy_startup(struct scic_sds_controller *scic) { struct isci_host *ihost = scic_to_ihost(scic); scic->phy_startup_timer = isci_timer_create(ihost, scic, scic_sds_controller_phy_startup_timeout_handler); if (scic->phy_startup_timer == NULL) return SCI_FAILURE_INSUFFICIENT_RESOURCES; else { scic->next_phy_to_start = 0; scic->phy_startup_timer_pending = false; } return SCI_SUCCESS; } static void scic_sds_controller_power_control_timer_start(struct scic_sds_controller *scic) { isci_timer_start(scic->power_control.timer, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); scic->power_control.timer_started = true; } static void scic_sds_controller_power_control_timer_stop(struct scic_sds_controller *scic) { if (scic->power_control.timer_started) { isci_timer_stop(scic->power_control.timer); scic->power_control.timer_started = false; } } static void scic_sds_controller_power_control_timer_restart(struct scic_sds_controller *scic) { scic_sds_controller_power_control_timer_stop(scic); scic_sds_controller_power_control_timer_start(scic); } static void scic_sds_controller_power_control_timer_handler( void *controller) { struct scic_sds_controller *scic; scic = (struct scic_sds_controller *)controller; scic->power_control.phys_granted_power = 0; if (scic->power_control.phys_waiting == 0) { scic->power_control.timer_started = false; } else { struct scic_sds_phy *sci_phy = NULL; u8 i; for (i = 0; (i < SCI_MAX_PHYS) && (scic->power_control.phys_waiting != 0); i++) { if (scic->power_control.requesters[i] != NULL) { if (scic->power_control.phys_granted_power < scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) { sci_phy = scic->power_control.requesters[i]; scic->power_control.requesters[i] = NULL; scic->power_control.phys_waiting--; scic->power_control.phys_granted_power++; scic_sds_phy_consume_power_handler(sci_phy); } else { break; } } } /* * It doesn't matter if the power list is empty, we need to start the * timer in case another phy becomes ready. */ scic_sds_controller_power_control_timer_start(scic); } } /** * This method inserts the phy in the stagger spinup control queue. * @scic: * * */ void scic_sds_controller_power_control_queue_insert( struct scic_sds_controller *scic, struct scic_sds_phy *sci_phy) { BUG_ON(sci_phy == NULL); if (scic->power_control.phys_granted_power < scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) { scic->power_control.phys_granted_power++; scic_sds_phy_consume_power_handler(sci_phy); /* * stop and start the power_control timer. When the timer fires, the * no_of_phys_granted_power will be set to 0 */ scic_sds_controller_power_control_timer_restart(scic); } else { /* Add the phy in the waiting list */ scic->power_control.requesters[sci_phy->phy_index] = sci_phy; scic->power_control.phys_waiting++; } } /** * This method removes the phy from the stagger spinup control queue. * @scic: * * */ void scic_sds_controller_power_control_queue_remove( struct scic_sds_controller *scic, struct scic_sds_phy *sci_phy) { BUG_ON(sci_phy == NULL); if (scic->power_control.requesters[sci_phy->phy_index] != NULL) { scic->power_control.phys_waiting--; } scic->power_control.requesters[sci_phy->phy_index] = NULL; } #define AFE_REGISTER_WRITE_DELAY 10 /* Initialize the AFE for this phy index. We need to read the AFE setup from * the OEM parameters */ static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic) { const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1; u32 afe_status; u32 phy_id; /* Clear DFX Status registers */ writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0); udelay(AFE_REGISTER_WRITE_DELAY); if (is_b0()) { /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement * Timer, PM Stagger Timer */ writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2); udelay(AFE_REGISTER_WRITE_DELAY); } /* Configure bias currents to normal */ if (is_a0()) writel(0x00005500, &scic->scu_registers->afe.afe_bias_control); else if (is_a2()) writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control); else if (is_b0()) writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control); udelay(AFE_REGISTER_WRITE_DELAY); /* Enable PLL */ if (is_b0()) writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0); else writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0); udelay(AFE_REGISTER_WRITE_DELAY); /* Wait for the PLL to lock */ do { afe_status = readl(&scic->scu_registers->afe.afe_common_block_status); udelay(AFE_REGISTER_WRITE_DELAY); } while ((afe_status & 0x00001000) == 0); if (is_a0() || is_a2()) { /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */ writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0); udelay(AFE_REGISTER_WRITE_DELAY); } for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; if (is_b0()) { /* Configure transmitter SSC parameters */ writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control); udelay(AFE_REGISTER_WRITE_DELAY); } else { /* * All defaults, except the Receive Word Alignament/Comma Detect * Enable....(0xe800) */ writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1); udelay(AFE_REGISTER_WRITE_DELAY); } /* * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) * & increase TX int & ext bias 20%....(0xe85c) */ if (is_a0()) writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); else if (is_a2()) writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); else { /* Power down TX and RX (PWRDNTX and PWRDNRX) */ writel(0x000003d7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); udelay(AFE_REGISTER_WRITE_DELAY); /* * Power up TX and RX out from power down (PWRDNTX and PWRDNRX) * & increase TX int & ext bias 20%....(0xe85c) */ writel(0x000003d4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control); } udelay(AFE_REGISTER_WRITE_DELAY); if (is_a0() || is_a2()) { /* Enable TX equalization (0xe824) */ writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); udelay(AFE_REGISTER_WRITE_DELAY); } /* * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On), * RDD=0x0(RX Detect Enabled) ....(0xe800) */ writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0); udelay(AFE_REGISTER_WRITE_DELAY); /* Leave DFE/FFE on */ if (is_a0()) writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); else if (is_a2()) writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); else { writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0); udelay(AFE_REGISTER_WRITE_DELAY); /* Enable TX equalization (0xe824) */ writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control); } udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0); udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control1, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1); udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control2, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2); udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control3, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3); udelay(AFE_REGISTER_WRITE_DELAY); } /* Transfer control to the PEs */ writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0); udelay(AFE_REGISTER_WRITE_DELAY); } static enum sci_status scic_controller_set_mode(struct scic_sds_controller *scic, enum sci_controller_mode operating_mode) { enum sci_status status = SCI_SUCCESS; if ((scic->state_machine.current_state_id == SCI_BASE_CONTROLLER_STATE_INITIALIZING) || (scic->state_machine.current_state_id == SCI_BASE_CONTROLLER_STATE_INITIALIZED)) { switch (operating_mode) { case SCI_MODE_SPEED: scic->remote_node_entries = SCI_MAX_REMOTE_DEVICES; scic->task_context_entries = SCU_IO_REQUEST_COUNT; scic->uf_control.buffers.count = SCU_UNSOLICITED_FRAME_COUNT; scic->completion_event_entries = SCU_EVENT_COUNT; scic->completion_queue_entries = SCU_COMPLETION_QUEUE_COUNT; break; case SCI_MODE_SIZE: scic->remote_node_entries = SCI_MIN_REMOTE_DEVICES; scic->task_context_entries = SCI_MIN_IO_REQUESTS; scic->uf_control.buffers.count = SCU_MIN_UNSOLICITED_FRAMES; scic->completion_event_entries = SCU_MIN_EVENTS; scic->completion_queue_entries = SCU_MIN_COMPLETION_QUEUE_ENTRIES; break; default: status = SCI_FAILURE_INVALID_PARAMETER_VALUE; break; } } else status = SCI_FAILURE_INVALID_STATE; return status; } static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic) { struct isci_host *ihost = scic_to_ihost(scic); scic->power_control.timer = isci_timer_create(ihost, scic, scic_sds_controller_power_control_timer_handler); memset(scic->power_control.requesters, 0, sizeof(scic->power_control.requesters)); scic->power_control.phys_waiting = 0; scic->power_control.phys_granted_power = 0; } static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic) { struct sci_base_state_machine *sm = &scic->state_machine; enum sci_status result = SCI_SUCCESS; struct isci_host *ihost = scic_to_ihost(scic); u32 index, state; if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_RESET) { dev_warn(scic_to_dev(scic), "SCIC Controller initialize operation requested " "in invalid state\n"); return SCI_FAILURE_INVALID_STATE; } sci_base_state_machine_change_state(sm, SCI_BASE_CONTROLLER_STATE_INITIALIZING); scic->timeout_timer = isci_timer_create(ihost, scic, scic_sds_controller_timeout_handler); scic_sds_controller_initialize_phy_startup(scic); scic_sds_controller_initialize_power_control(scic); /* * There is nothing to do here for B0 since we do not have to * program the AFE registers. * / @todo The AFE settings are supposed to be correct for the B0 but * / presently they seem to be wrong. */ scic_sds_controller_afe_initialization(scic); if (result == SCI_SUCCESS) { u32 status; u32 terminate_loop; /* Take the hardware out of reset */ writel(0, &scic->smu_registers->soft_reset_control); /* * / @todo Provide meaningfull error code for hardware failure * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ result = SCI_FAILURE; terminate_loop = 100; while (terminate_loop-- && (result != SCI_SUCCESS)) { /* Loop until the hardware reports success */ udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); status = readl(&scic->smu_registers->control_status); if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) result = SCI_SUCCESS; } } if (result == SCI_SUCCESS) { u32 max_supported_ports; u32 max_supported_devices; u32 max_supported_io_requests; u32 device_context_capacity; /* * Determine what are the actaul device capacities that the * hardware will support */ device_context_capacity = readl(&scic->smu_registers->device_context_capacity); max_supported_ports = smu_dcc_get_max_ports(device_context_capacity); max_supported_devices = smu_dcc_get_max_remote_node_context(device_context_capacity); max_supported_io_requests = smu_dcc_get_max_task_context(device_context_capacity); /* * Make all PEs that are unassigned match up with the * logical ports */ for (index = 0; index < max_supported_ports; index++) { struct scu_port_task_scheduler_group_registers __iomem *ptsg = &scic->scu_registers->peg0.ptsg; writel(index, &ptsg->protocol_engine[index]); } /* Record the smaller of the two capacity values */ scic->logical_port_entries = min(max_supported_ports, scic->logical_port_entries); scic->task_context_entries = min(max_supported_io_requests, scic->task_context_entries); scic->remote_node_entries = min(max_supported_devices, scic->remote_node_entries); /* * Now that we have the correct hardware reported minimum values * build the MDL for the controller. Default to a performance * configuration. */ scic_controller_set_mode(scic, SCI_MODE_SPEED); } /* Initialize hardware PCI Relaxed ordering in DMA engines */ if (result == SCI_SUCCESS) { u32 dma_configuration; /* Configure the payload DMA */ dma_configuration = readl(&scic->scu_registers->sdma.pdma_configuration); dma_configuration |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); writel(dma_configuration, &scic->scu_registers->sdma.pdma_configuration); /* Configure the control DMA */ dma_configuration = readl(&scic->scu_registers->sdma.cdma_configuration); dma_configuration |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); writel(dma_configuration, &scic->scu_registers->sdma.cdma_configuration); } /* * Initialize the PHYs before the PORTs because the PHY registers * are accessed during the port initialization. */ if (result == SCI_SUCCESS) { /* Initialize the phys */ for (index = 0; (result == SCI_SUCCESS) && (index < SCI_MAX_PHYS); index++) { result = scic_sds_phy_initialize( &ihost->phys[index].sci, &scic->scu_registers->peg0.pe[index].tl, &scic->scu_registers->peg0.pe[index].ll); } } if (result == SCI_SUCCESS) { /* Initialize the logical ports */ for (index = 0; (index < scic->logical_port_entries) && (result == SCI_SUCCESS); index++) { result = scic_sds_port_initialize( &ihost->ports[index].sci, &scic->scu_registers->peg0.ptsg.port[index], &scic->scu_registers->peg0.ptsg.protocol_engine, &scic->scu_registers->peg0.viit[index]); } } if (result == SCI_SUCCESS) result = scic_sds_port_configuration_agent_initialize( scic, &scic->port_agent); /* Advance the controller state machine */ if (result == SCI_SUCCESS) state = SCI_BASE_CONTROLLER_STATE_INITIALIZED; else state = SCI_BASE_CONTROLLER_STATE_FAILED; sci_base_state_machine_change_state(sm, state); return result; } static enum sci_status scic_user_parameters_set( struct scic_sds_controller *scic, union scic_user_parameters *scic_parms) { u32 state = scic->state_machine.current_state_id; if (state == SCI_BASE_CONTROLLER_STATE_RESET || state == SCI_BASE_CONTROLLER_STATE_INITIALIZING || state == SCI_BASE_CONTROLLER_STATE_INITIALIZED) { u16 index; /* * Validate the user parameters. If they are not legal, then * return a failure. */ for (index = 0; index < SCI_MAX_PHYS; index++) { struct sci_phy_user_params *user_phy; user_phy = &scic_parms->sds1.phys[index]; if (!((user_phy->max_speed_generation <= SCIC_SDS_PARM_MAX_SPEED) && (user_phy->max_speed_generation > SCIC_SDS_PARM_NO_SPEED))) return SCI_FAILURE_INVALID_PARAMETER_VALUE; if (user_phy->in_connection_align_insertion_frequency < 3) return SCI_FAILURE_INVALID_PARAMETER_VALUE; if ((user_phy->in_connection_align_insertion_frequency < 3) || (user_phy->align_insertion_frequency == 0) || (user_phy-> notify_enable_spin_up_insertion_frequency == 0)) return SCI_FAILURE_INVALID_PARAMETER_VALUE; } if ((scic_parms->sds1.stp_inactivity_timeout == 0) || (scic_parms->sds1.ssp_inactivity_timeout == 0) || (scic_parms->sds1.stp_max_occupancy_timeout == 0) || (scic_parms->sds1.ssp_max_occupancy_timeout == 0) || (scic_parms->sds1.no_outbound_task_timeout == 0)) return SCI_FAILURE_INVALID_PARAMETER_VALUE; memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms)); return SCI_SUCCESS; } return SCI_FAILURE_INVALID_STATE; } static int scic_controller_mem_init(struct scic_sds_controller *scic) { struct device *dev = scic_to_dev(scic); dma_addr_t dma_handle; enum sci_status result; scic->completion_queue = dmam_alloc_coherent(dev, scic->completion_queue_entries * sizeof(u32), &dma_handle, GFP_KERNEL); if (!scic->completion_queue) return -ENOMEM; writel(lower_32_bits(dma_handle), &scic->smu_registers->completion_queue_lower); writel(upper_32_bits(dma_handle), &scic->smu_registers->completion_queue_upper); scic->remote_node_context_table = dmam_alloc_coherent(dev, scic->remote_node_entries * sizeof(union scu_remote_node_context), &dma_handle, GFP_KERNEL); if (!scic->remote_node_context_table) return -ENOMEM; writel(lower_32_bits(dma_handle), &scic->smu_registers->remote_node_context_lower); writel(upper_32_bits(dma_handle), &scic->smu_registers->remote_node_context_upper); scic->task_context_table = dmam_alloc_coherent(dev, scic->task_context_entries * sizeof(struct scu_task_context), &dma_handle, GFP_KERNEL); if (!scic->task_context_table) return -ENOMEM; writel(lower_32_bits(dma_handle), &scic->smu_registers->host_task_table_lower); writel(upper_32_bits(dma_handle), &scic->smu_registers->host_task_table_upper); result = scic_sds_unsolicited_frame_control_construct(scic); if (result) return result; /* * Inform the silicon as to the location of the UF headers and * address table. */ writel(lower_32_bits(scic->uf_control.headers.physical_address), &scic->scu_registers->sdma.uf_header_base_address_lower); writel(upper_32_bits(scic->uf_control.headers.physical_address), &scic->scu_registers->sdma.uf_header_base_address_upper); writel(lower_32_bits(scic->uf_control.address_table.physical_address), &scic->scu_registers->sdma.uf_address_table_lower); writel(upper_32_bits(scic->uf_control.address_table.physical_address), &scic->scu_registers->sdma.uf_address_table_upper); return 0; } int isci_host_init(struct isci_host *isci_host) { int err = 0, i; enum sci_status status; union scic_oem_parameters oem; union scic_user_parameters scic_user_params; struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev); isci_timer_list_construct(isci_host); spin_lock_init(&isci_host->state_lock); spin_lock_init(&isci_host->scic_lock); spin_lock_init(&isci_host->queue_lock); init_waitqueue_head(&isci_host->eventq); isci_host_change_state(isci_host, isci_starting); isci_host->can_queue = ISCI_CAN_QUEUE_VAL; status = scic_controller_construct(&isci_host->sci, scu_base(isci_host), smu_base(isci_host)); if (status != SCI_SUCCESS) { dev_err(&isci_host->pdev->dev, "%s: scic_controller_construct failed - status = %x\n", __func__, status); return -ENODEV; } isci_host->sas_ha.dev = &isci_host->pdev->dev; isci_host->sas_ha.lldd_ha = isci_host; /* * grab initial values stored in the controller object for OEM and USER * parameters */ isci_user_parameters_get(isci_host, &scic_user_params); status = scic_user_parameters_set(&isci_host->sci, &scic_user_params); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: scic_user_parameters_set failed\n", __func__); return -ENODEV; } scic_oem_parameters_get(&isci_host->sci, &oem); /* grab any OEM parameters specified in orom */ if (pci_info->orom) { status = isci_parse_oem_parameters(&oem, pci_info->orom, isci_host->id); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "parsing firmware oem parameters failed\n"); return -EINVAL; } } status = scic_oem_parameters_set(&isci_host->sci, &oem); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: scic_oem_parameters_set failed\n", __func__); return -ENODEV; } tasklet_init(&isci_host->completion_tasklet, isci_host_completion_routine, (unsigned long)isci_host); INIT_LIST_HEAD(&isci_host->requests_to_complete); INIT_LIST_HEAD(&isci_host->requests_to_errorback); spin_lock_irq(&isci_host->scic_lock); status = scic_controller_initialize(&isci_host->sci); spin_unlock_irq(&isci_host->scic_lock); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: scic_controller_initialize failed -" " status = 0x%x\n", __func__, status); return -ENODEV; } err = scic_controller_mem_init(&isci_host->sci); if (err) return err; isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev, sizeof(struct isci_request), SLAB_HWCACHE_ALIGN, 0); if (!isci_host->dma_pool) return -ENOMEM; for (i = 0; i < SCI_MAX_PORTS; i++) isci_port_init(&isci_host->ports[i], isci_host, i); for (i = 0; i < SCI_MAX_PHYS; i++) isci_phy_init(&isci_host->phys[i], isci_host, i); for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) { struct isci_remote_device *idev = &isci_host->devices[i]; INIT_LIST_HEAD(&idev->reqs_in_process); INIT_LIST_HEAD(&idev->node); spin_lock_init(&idev->state_lock); } return 0; } void scic_sds_controller_link_up(struct scic_sds_controller *scic, struct scic_sds_port *port, struct scic_sds_phy *phy) { switch (scic->state_machine.current_state_id) { case SCI_BASE_CONTROLLER_STATE_STARTING: scic_sds_controller_phy_timer_stop(scic); scic->port_agent.link_up_handler(scic, &scic->port_agent, port, phy); scic_sds_controller_start_next_phy(scic); break; case SCI_BASE_CONTROLLER_STATE_READY: scic->port_agent.link_up_handler(scic, &scic->port_agent, port, phy); break; default: dev_dbg(scic_to_dev(scic), "%s: SCIC Controller linkup event from phy %d in " "unexpected state %d\n", __func__, phy->phy_index, scic->state_machine.current_state_id); } } void scic_sds_controller_link_down(struct scic_sds_controller *scic, struct scic_sds_port *port, struct scic_sds_phy *phy) { switch (scic->state_machine.current_state_id) { case SCI_BASE_CONTROLLER_STATE_STARTING: case SCI_BASE_CONTROLLER_STATE_READY: scic->port_agent.link_down_handler(scic, &scic->port_agent, port, phy); break; default: dev_dbg(scic_to_dev(scic), "%s: SCIC Controller linkdown event from phy %d in " "unexpected state %d\n", __func__, phy->phy_index, scic->state_machine.current_state_id); } } /** * This is a helper method to determine if any remote devices on this * controller are still in the stopping state. * */ static bool scic_sds_controller_has_remote_devices_stopping( struct scic_sds_controller *controller) { u32 index; for (index = 0; index < controller->remote_node_entries; index++) { if ((controller->device_table[index] != NULL) && (controller->device_table[index]->state_machine.current_state_id == SCI_BASE_REMOTE_DEVICE_STATE_STOPPING)) return true; } return false; } /** * This method is called by the remote device to inform the controller * object that the remote device has stopped. */ void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic, struct scic_sds_remote_device *sci_dev) { if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_STOPPING) { dev_dbg(scic_to_dev(scic), "SCIC Controller 0x%p remote device stopped event " "from device 0x%p in unexpected state %d\n", scic, sci_dev, scic->state_machine.current_state_id); return; } if (!scic_sds_controller_has_remote_devices_stopping(scic)) { sci_base_state_machine_change_state(&scic->state_machine, SCI_BASE_CONTROLLER_STATE_STOPPED); } } /** * This method will write to the SCU PCP register the request value. The method * is used to suspend/resume ports, devices, and phys. * @scic: * * */ void scic_sds_controller_post_request( struct scic_sds_controller *scic, u32 request) { dev_dbg(scic_to_dev(scic), "%s: SCIC Controller 0x%p post request 0x%08x\n", __func__, scic, request); writel(request, &scic->smu_registers->post_context_port); } /** * This method will copy the soft copy of the task context into the physical * memory accessible by the controller. * @scic: This parameter specifies the controller for which to copy * the task context. * @sci_req: This parameter specifies the request for which the task * context is being copied. * * After this call is made the SCIC_SDS_IO_REQUEST object will always point to * the physical memory version of the task context. Thus, all subsequent * updates to the task context are performed in the TC table (i.e. DMAable * memory). none */ void scic_sds_controller_copy_task_context( struct scic_sds_controller *scic, struct scic_sds_request *sci_req) { struct scu_task_context *task_context_buffer; task_context_buffer = scic_sds_controller_get_task_context_buffer( scic, sci_req->io_tag); memcpy(task_context_buffer, sci_req->task_context_buffer, offsetof(struct scu_task_context, sgl_snapshot_ac)); /* * Now that the soft copy of the TC has been copied into the TC * table accessible by the silicon. Thus, any further changes to * the TC (e.g. TC termination) occur in the appropriate location. */ sci_req->task_context_buffer = task_context_buffer; } /** * This method returns the task context buffer for the given io tag. * @scic: * @io_tag: * * struct scu_task_context* */ struct scu_task_context *scic_sds_controller_get_task_context_buffer( struct scic_sds_controller *scic, u16 io_tag ) { u16 task_index = scic_sds_io_tag_get_index(io_tag); if (task_index < scic->task_context_entries) { return &scic->task_context_table[task_index]; } return NULL; } struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic, u16 io_tag) { u16 task_index; u16 task_sequence; task_index = scic_sds_io_tag_get_index(io_tag); if (task_index < scic->task_context_entries) { if (scic->io_request_table[task_index] != NULL) { task_sequence = scic_sds_io_tag_get_sequence(io_tag); if (task_sequence == scic->io_request_sequence[task_index]) { return scic->io_request_table[task_index]; } } } return NULL; } /** * This method allocates remote node index and the reserves the remote node * context space for use. This method can fail if there are no more remote * node index available. * @scic: This is the controller object which contains the set of * free remote node ids * @sci_dev: This is the device object which is requesting the a remote node * id * @node_id: This is the remote node id that is assinged to the device if one * is available * * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote * node index available. */ enum sci_status scic_sds_controller_allocate_remote_node_context( struct scic_sds_controller *scic, struct scic_sds_remote_device *sci_dev, u16 *node_id) { u16 node_index; u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev); node_index = scic_sds_remote_node_table_allocate_remote_node( &scic->available_remote_nodes, remote_node_count ); if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { scic->device_table[node_index] = sci_dev; *node_id = node_index; return SCI_SUCCESS; } return SCI_FAILURE_INSUFFICIENT_RESOURCES; } /** * This method frees the remote node index back to the available pool. Once * this is done the remote node context buffer is no longer valid and can * not be used. * @scic: * @sci_dev: * @node_id: * */ void scic_sds_controller_free_remote_node_context( struct scic_sds_controller *scic, struct scic_sds_remote_device *sci_dev, u16 node_id) { u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev); if (scic->device_table[node_id] == sci_dev) { scic->device_table[node_id] = NULL; scic_sds_remote_node_table_release_remote_node_index( &scic->available_remote_nodes, remote_node_count, node_id ); } } /** * This method returns the union scu_remote_node_context for the specified remote * node id. * @scic: * @node_id: * * union scu_remote_node_context* */ union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer( struct scic_sds_controller *scic, u16 node_id ) { if ( (node_id < scic->remote_node_entries) && (scic->device_table[node_id] != NULL) ) { return &scic->remote_node_context_table[node_id]; } return NULL; } /** * * @resposne_buffer: This is the buffer into which the D2H register FIS will be * constructed. * @frame_header: This is the frame header returned by the hardware. * @frame_buffer: This is the frame buffer returned by the hardware. * * This method will combind the frame header and frame buffer to create a SATA * D2H register FIS none */ void scic_sds_controller_copy_sata_response( void *response_buffer, void *frame_header, void *frame_buffer) { memcpy(response_buffer, frame_header, sizeof(u32)); memcpy(response_buffer + sizeof(u32), frame_buffer, sizeof(struct dev_to_host_fis) - sizeof(u32)); } /** * This method releases the frame once this is done the frame is available for * re-use by the hardware. The data contained in the frame header and frame * buffer is no longer valid. The UF queue get pointer is only updated if UF * control indicates this is appropriate. * @scic: * @frame_index: * */ void scic_sds_controller_release_frame( struct scic_sds_controller *scic, u32 frame_index) { if (scic_sds_unsolicited_frame_control_release_frame( &scic->uf_control, frame_index) == true) writel(scic->uf_control.get, &scic->scu_registers->sdma.unsolicited_frame_get_pointer); } /** * scic_controller_start_io() - This method is called by the SCI user to * send/start an IO request. If the method invocation is successful, then * the IO request has been queued to the hardware for processing. * @controller: the handle to the controller object for which to start an IO * request. * @remote_device: the handle to the remote device object for which to start an * IO request. * @io_request: the handle to the io request object to start. * @io_tag: This parameter specifies a previously allocated IO tag that the * user desires to be utilized for this request. This parameter is optional. * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value * for this parameter. * * - IO tags are a protected resource. It is incumbent upon the SCI Core user * to ensure that each of the methods that may allocate or free available IO * tags are handled in a mutually exclusive manner. This method is one of said * methods requiring proper critical code section protection (e.g. semaphore, * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a * result, it is expected the user will have set the NCQ tag field in the host * to device register FIS prior to calling this method. There is also a * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking * the scic_controller_start_io() method. scic_controller_allocate_tag() for * more information on allocating a tag. Indicate if the controller * successfully started the IO request. SCI_SUCCESS if the IO request was * successfully started. Determine the failure situations and return values. */ enum sci_status scic_controller_start_io( struct scic_sds_controller *scic, struct scic_sds_remote_device *rdev, struct scic_sds_request *req, u16 io_tag) { enum sci_status status; if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_READY) { dev_warn(scic_to_dev(scic), "invalid state to start I/O"); return SCI_FAILURE_INVALID_STATE; } status = scic_sds_remote_device_start_io(scic, rdev, req); if (status != SCI_SUCCESS) return status; scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req)); return SCI_SUCCESS; } /** * scic_controller_terminate_request() - This method is called by the SCI Core * user to terminate an ongoing (i.e. started) core IO request. This does * not abort the IO request at the target, but rather removes the IO request * from the host controller. * @controller: the handle to the controller object for which to terminate a * request. * @remote_device: the handle to the remote device object for which to * terminate a request. * @request: the handle to the io or task management request object to * terminate. * * Indicate if the controller successfully began the terminate process for the * IO request. SCI_SUCCESS if the terminate process was successfully started * for the request. Determine the failure situations and return values. */ enum sci_status scic_controller_terminate_request( struct scic_sds_controller *scic, struct scic_sds_remote_device *rdev, struct scic_sds_request *req) { enum sci_status status; if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_READY) { dev_warn(scic_to_dev(scic), "invalid state to terminate request\n"); return SCI_FAILURE_INVALID_STATE; } status = scic_sds_io_request_terminate(req); if (status != SCI_SUCCESS) return status; /* * Utilize the original post context command and or in the POST_TC_ABORT * request sub-type. */ scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req) | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); return SCI_SUCCESS; } /** * scic_controller_complete_io() - This method will perform core specific * completion operations for an IO request. After this method is invoked, * the user should consider the IO request as invalid until it is properly * reused (i.e. re-constructed). * @controller: The handle to the controller object for which to complete the * IO request. * @remote_device: The handle to the remote device object for which to complete * the IO request. * @io_request: the handle to the io request object to complete. * * - IO tags are a protected resource. It is incumbent upon the SCI Core user * to ensure that each of the methods that may allocate or free available IO * tags are handled in a mutually exclusive manner. This method is one of said * methods requiring proper critical code section protection (e.g. semaphore, * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI * Core user, using the scic_controller_allocate_io_tag() method, then it is * the responsibility of the caller to invoke the scic_controller_free_io_tag() * method to free the tag (i.e. this method will not free the IO tag). Indicate * if the controller successfully completed the IO request. SCI_SUCCESS if the * completion process was successful. */ enum sci_status scic_controller_complete_io( struct scic_sds_controller *scic, struct scic_sds_remote_device *rdev, struct scic_sds_request *request) { enum sci_status status; u16 index; switch (scic->state_machine.current_state_id) { case SCI_BASE_CONTROLLER_STATE_STOPPING: /* XXX: Implement this function */ return SCI_FAILURE; case SCI_BASE_CONTROLLER_STATE_READY: status = scic_sds_remote_device_complete_io(scic, rdev, request); if (status != SCI_SUCCESS) return status; index = scic_sds_io_tag_get_index(request->io_tag); scic->io_request_table[index] = NULL; return SCI_SUCCESS; default: dev_warn(scic_to_dev(scic), "invalid state to complete I/O"); return SCI_FAILURE_INVALID_STATE; } } enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req) { struct scic_sds_controller *scic = sci_req->owning_controller; if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_READY) { dev_warn(scic_to_dev(scic), "invalid state to continue I/O"); return SCI_FAILURE_INVALID_STATE; } scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req; scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req)); return SCI_SUCCESS; } /** * scic_controller_start_task() - This method is called by the SCIC user to * send/start a framework task management request. * @controller: the handle to the controller object for which to start the task * management request. * @remote_device: the handle to the remote device object for which to start * the task management request. * @task_request: the handle to the task request object to start. * @io_tag: This parameter specifies a previously allocated IO tag that the * user desires to be utilized for this request. Note this not the io_tag * of the request being managed. It is to be utilized for the task request * itself. This parameter is optional. The user is allowed to supply * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter. * * - IO tags are a protected resource. It is incumbent upon the SCI Core user * to ensure that each of the methods that may allocate or free available IO * tags are handled in a mutually exclusive manner. This method is one of said * methods requiring proper critical code section protection (e.g. semaphore, * spin-lock, etc.). - The user must synchronize this task with completion * queue processing. If they are not synchronized then it is possible for the * io requests that are being managed by the task request can complete before * starting the task request. scic_controller_allocate_tag() for more * information on allocating a tag. Indicate if the controller successfully * started the IO request. SCI_TASK_SUCCESS if the task request was * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is * returned if there is/are task(s) outstanding that require termination or * completion before this request can succeed. */ enum sci_task_status scic_controller_start_task( struct scic_sds_controller *scic, struct scic_sds_remote_device *rdev, struct scic_sds_request *req, u16 task_tag) { enum sci_status status; if (scic->state_machine.current_state_id != SCI_BASE_CONTROLLER_STATE_READY) { dev_warn(scic_to_dev(scic), "%s: SCIC Controller starting task from invalid " "state\n", __func__); return SCI_TASK_FAILURE_INVALID_STATE; } status = scic_sds_remote_device_start_task(scic, rdev, req); switch (status) { case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; /* * We will let framework know this task request started successfully, * although core is still woring on starting the request (to post tc when * RNC is resumed.) */ return SCI_SUCCESS; case SCI_SUCCESS: scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req; scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req)); break; default: break; } return status; } /** * scic_controller_allocate_io_tag() - This method will allocate a tag from the * pool of free IO tags. Direct allocation of IO tags by the SCI Core user * is optional. The scic_controller_start_io() method will allocate an IO * tag if this method is not utilized and the tag is not supplied to the IO * construct routine. Direct allocation of IO tags may provide additional * performance improvements in environments capable of supporting this usage * model. Additionally, direct allocation of IO tags also provides * additional flexibility to the SCI Core user. Specifically, the user may * retain IO tags across the lives of multiple IO requests. * @controller: the handle to the controller object for which to allocate the * tag. * * IO tags are a protected resource. It is incumbent upon the SCI Core user to * ensure that each of the methods that may allocate or free available IO tags * are handled in a mutually exclusive manner. This method is one of said * methods requiring proper critical code section protection (e.g. semaphore, * spin-lock, etc.). An unsigned integer representing an available IO tag. * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no * currently available tags to be allocated. All return other values indicate a * legitimate tag. */ u16 scic_controller_allocate_io_tag( struct scic_sds_controller *scic) { u16 task_context; u16 sequence_count; if (!sci_pool_empty(scic->tci_pool)) { sci_pool_get(scic->tci_pool, task_context); sequence_count = scic->io_request_sequence[task_context]; return scic_sds_io_tag_construct(sequence_count, task_context); } return SCI_CONTROLLER_INVALID_IO_TAG; } /** * scic_controller_free_io_tag() - This method will free an IO tag to the pool * of free IO tags. This method provides the SCI Core user more flexibility * with regards to IO tags. The user may desire to keep an IO tag after an * IO request has completed, because they plan on re-using the tag for a * subsequent IO request. This method is only legal if the tag was * allocated via scic_controller_allocate_io_tag(). * @controller: This parameter specifies the handle to the controller object * for which to free/return the tag. * @io_tag: This parameter represents the tag to be freed to the pool of * available tags. * * - IO tags are a protected resource. It is incumbent upon the SCI Core user * to ensure that each of the methods that may allocate or free available IO * tags are handled in a mutually exclusive manner. This method is one of said * methods requiring proper critical code section protection (e.g. semaphore, * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI * Core user, using the scic_controller_allocate_io_tag() method, then it is * the responsibility of the caller to invoke this method to free the tag. This * method returns an indication of whether the tag was successfully put back * (freed) to the pool of available tags. SCI_SUCCESS This return value * indicates the tag was successfully placed into the pool of available IO * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag * is not a valid IO tag value. */ enum sci_status scic_controller_free_io_tag( struct scic_sds_controller *scic, u16 io_tag) { u16 sequence; u16 index; BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG); sequence = scic_sds_io_tag_get_sequence(io_tag); index = scic_sds_io_tag_get_index(io_tag); if (!sci_pool_full(scic->tci_pool)) { if (sequence == scic->io_request_sequence[index]) { scic_sds_io_sequence_increment( scic->io_request_sequence[index]); sci_pool_put(scic->tci_pool, index); return SCI_SUCCESS; } } return SCI_FAILURE_INVALID_IO_TAG; }