xref: /linux/drivers/scsi/aic7xxx/aic79xx_core.c (revision cbecf716ca618fd44feda6bd9a64a8179d031fc5)
1 /*
2  * Core routines and tables shareable across OS platforms.
3  *
4  * Copyright (c) 1994-2002 Justin T. Gibbs.
5  * Copyright (c) 2000-2003 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    substantially similar to the "NO WARRANTY" disclaimer below
16  *    ("Disclaimer") and any redistribution must be conditioned upon
17  *    including a substantially similar Disclaimer requirement for further
18  *    binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  *    of any contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41  */
42 
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
46 
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
49 {
50 	"NONE",
51 	"aic7901",
52 	"aic7902",
53 	"aic7901A"
54 };
55 
56 /*
57  * Hardware error codes.
58  */
59 struct ahd_hard_error_entry {
60         uint8_t errno;
61 	const char *errmesg;
62 };
63 
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 	{ DSCTMOUT,	"Discard Timer has timed out" },
66 	{ ILLOPCODE,	"Illegal Opcode in sequencer program" },
67 	{ SQPARERR,	"Sequencer Parity Error" },
68 	{ DPARERR,	"Data-path Parity Error" },
69 	{ MPARERR,	"Scratch or SCB Memory Parity Error" },
70 	{ CIOPARERR,	"CIOBUS Parity Error" },
71 };
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73 
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
75 {
76 	{ P_DATAOUT,	MSG_NOOP,		"in Data-out phase"	},
77 	{ P_DATAIN,	MSG_INITIATOR_DET_ERR,	"in Data-in phase"	},
78 	{ P_DATAOUT_DT,	MSG_NOOP,		"in DT Data-out phase"	},
79 	{ P_DATAIN_DT,	MSG_INITIATOR_DET_ERR,	"in DT Data-in phase"	},
80 	{ P_COMMAND,	MSG_NOOP,		"in Command phase"	},
81 	{ P_MESGOUT,	MSG_NOOP,		"in Message-out phase"	},
82 	{ P_STATUS,	MSG_INITIATOR_DET_ERR,	"in Status phase"	},
83 	{ P_MESGIN,	MSG_PARITY_ERROR,	"in Message-in phase"	},
84 	{ P_BUSFREE,	MSG_NOOP,		"while idle"		},
85 	{ 0,		MSG_NOOP,		"in unknown phase"	}
86 };
87 
88 /*
89  * In most cases we only wish to itterate over real phases, so
90  * exclude the last element from the count.
91  */
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93 
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
96 
97 /**************************** Function Declarations ***************************/
98 static void		ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void		ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 						  u_int lqistat1);
101 static int		ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 					       u_int busfreetime);
103 static int		ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void		ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void		ahd_force_renegotiation(struct ahd_softc *ahd,
106 						struct ahd_devinfo *devinfo);
107 
108 static struct ahd_tmode_tstate*
109 			ahd_alloc_tstate(struct ahd_softc *ahd,
110 					 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void		ahd_free_tstate(struct ahd_softc *ahd,
113 					u_int scsi_id, char channel, int force);
114 #endif
115 static void		ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 					        struct ahd_initiator_tinfo *,
117 						u_int *period,
118 						u_int *ppr_options,
119 						role_t role);
120 static void		ahd_update_neg_table(struct ahd_softc *ahd,
121 					     struct ahd_devinfo *devinfo,
122 					     struct ahd_transinfo *tinfo);
123 static void		ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void		ahd_fetch_devinfo(struct ahd_softc *ahd,
125 					  struct ahd_devinfo *devinfo);
126 static void		ahd_scb_devinfo(struct ahd_softc *ahd,
127 					struct ahd_devinfo *devinfo,
128 					struct scb *scb);
129 static void		ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 						   struct ahd_devinfo *devinfo,
131 						   struct scb *scb);
132 static void		ahd_build_transfer_msg(struct ahd_softc *ahd,
133 					       struct ahd_devinfo *devinfo);
134 static void		ahd_construct_sdtr(struct ahd_softc *ahd,
135 					   struct ahd_devinfo *devinfo,
136 					   u_int period, u_int offset);
137 static void		ahd_construct_wdtr(struct ahd_softc *ahd,
138 					   struct ahd_devinfo *devinfo,
139 					   u_int bus_width);
140 static void		ahd_construct_ppr(struct ahd_softc *ahd,
141 					  struct ahd_devinfo *devinfo,
142 					  u_int period, u_int offset,
143 					  u_int bus_width, u_int ppr_options);
144 static void		ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void		ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 	AHDMSG_1B,
148 	AHDMSG_2B,
149 	AHDMSG_EXT
150 } ahd_msgtype;
151 static int		ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 				     u_int msgval, int full);
153 static int		ahd_parse_msg(struct ahd_softc *ahd,
154 				      struct ahd_devinfo *devinfo);
155 static int		ahd_handle_msg_reject(struct ahd_softc *ahd,
156 					      struct ahd_devinfo *devinfo);
157 static void		ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 						struct ahd_devinfo *devinfo);
159 static void		ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void		ahd_handle_devreset(struct ahd_softc *ahd,
161 					    struct ahd_devinfo *devinfo,
162 					    u_int lun, cam_status status,
163 					    char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void		ahd_setup_target_msgin(struct ahd_softc *ahd,
166 					       struct ahd_devinfo *devinfo,
167 					       struct scb *scb);
168 #endif
169 
170 static u_int		ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int		ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 			ahd_dmamap_cb;
174 static void		ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int		ahd_init_scbdata(struct ahd_softc *ahd);
176 static void		ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void		ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void		ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void		ahd_add_col_list(struct ahd_softc *ahd,
180 					 struct scb *scb, u_int col_idx);
181 static void		ahd_rem_col_list(struct ahd_softc *ahd,
182 					 struct scb *scb);
183 static void		ahd_chip_init(struct ahd_softc *ahd);
184 static void		ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 					    struct scb *prev_scb,
186 					    struct scb *scb);
187 static int		ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int		ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 					    char channel, int lun, u_int tag,
190 					    role_t role, uint32_t status,
191 					    ahd_search_action action,
192 					    u_int *list_head, u_int *list_tail,
193 					    u_int tid);
194 static void		ahd_stitch_tid_list(struct ahd_softc *ahd,
195 					    u_int tid_prev, u_int tid_cur,
196 					    u_int tid_next);
197 static void		ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 						 u_int scbid);
199 static u_int		ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 				     u_int prev, u_int next, u_int tid);
201 static void		ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void		ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void		ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void		ahd_loadseq(struct ahd_softc *ahd);
207 static int		ahd_check_patch(struct ahd_softc *ahd,
208 					const struct patch **start_patch,
209 					u_int start_instr, u_int *skip_addr);
210 static u_int		ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 					    u_int address);
212 static void		ahd_download_instr(struct ahd_softc *ahd,
213 					   u_int instrptr, uint8_t *dconsts);
214 static int		ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int		ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 					       struct scb *scb);
217 static void		ahd_run_data_fifo(struct ahd_softc *ahd,
218 					  struct scb *scb);
219 
220 #ifdef AHD_TARGET_MODE
221 static void		ahd_queue_lstate_event(struct ahd_softc *ahd,
222 					       struct ahd_tmode_lstate *lstate,
223 					       u_int initiator_id,
224 					       u_int event_type,
225 					       u_int event_arg);
226 static void		ahd_update_scsiid(struct ahd_softc *ahd,
227 					  u_int targid_mask);
228 static int		ahd_handle_target_cmd(struct ahd_softc *ahd,
229 					      struct target_cmd *cmd);
230 #endif
231 
232 static int		ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 				       char channel, int lun, u_int tag,
234 				       role_t role, uint32_t status);
235 static void		ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void		ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 				     u_int scbid);
238 static void		ahd_calc_residual(struct ahd_softc *ahd,
239 					  struct scb *scb);
240 static void		ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void		ahd_clear_intstat(struct ahd_softc *ahd);
242 static void		ahd_enable_coalescing(struct ahd_softc *ahd,
243 					      int enable);
244 static u_int		ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void		ahd_freeze_devq(struct ahd_softc *ahd,
246 					struct scb *scb);
247 static void		ahd_handle_scb_status(struct ahd_softc *ahd,
248 					      struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void		ahd_shutdown(void *arg);
251 static void		ahd_update_coalescing_values(struct ahd_softc *ahd,
252 						     u_int timer,
253 						     u_int maxcmds,
254 						     u_int mincmds);
255 static int		ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int		ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int		ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 				      int target, char channel, int lun,
259 				      u_int tag, role_t role);
260 
261 static void		ahd_reset_cmds_pending(struct ahd_softc *ahd);
262 
263 /*************************** Interrupt Services *******************************/
264 static void		ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void		ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void		ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void		ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void		ahd_handle_scsiint(struct ahd_softc *ahd,
271 				           u_int intstat);
272 
273 /************************ Sequencer Execution Control *************************/
274 void
275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276 {
277 	if (ahd->src_mode == src && ahd->dst_mode == dst)
278 		return;
279 #ifdef AHD_DEBUG
280 	if (ahd->src_mode == AHD_MODE_UNKNOWN
281 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 		panic("Setting mode prior to saving it.\n");
283 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 		printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 		       ahd_build_mode_state(ahd, src, dst));
286 #endif
287 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 	ahd->src_mode = src;
289 	ahd->dst_mode = dst;
290 }
291 
292 static void
293 ahd_update_modes(struct ahd_softc *ahd)
294 {
295 	ahd_mode_state mode_ptr;
296 	ahd_mode src;
297 	ahd_mode dst;
298 
299 	mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 		printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 	ahd_known_modes(ahd, src, dst);
306 }
307 
308 static void
309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 		 ahd_mode dstmode, const char *file, int line)
311 {
312 #ifdef AHD_DEBUG
313 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 		panic("%s:%s:%d: Mode assertion failed.\n",
316 		       ahd_name(ahd), file, line);
317 	}
318 #endif
319 }
320 
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323 
324 ahd_mode_state
325 ahd_save_modes(struct ahd_softc *ahd)
326 {
327 	if (ahd->src_mode == AHD_MODE_UNKNOWN
328 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 		ahd_update_modes(ahd);
330 
331 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332 }
333 
334 void
335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336 {
337 	ahd_mode src;
338 	ahd_mode dst;
339 
340 	ahd_extract_mode_state(ahd, state, &src, &dst);
341 	ahd_set_modes(ahd, src, dst);
342 }
343 
344 /*
345  * Determine whether the sequencer has halted code execution.
346  * Returns non-zero status if the sequencer is stopped.
347  */
348 int
349 ahd_is_paused(struct ahd_softc *ahd)
350 {
351 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352 }
353 
354 /*
355  * Request that the sequencer stop and wait, indefinitely, for it
356  * to stop.  The sequencer will only acknowledge that it is paused
357  * once it has reached an instruction boundary and PAUSEDIS is
358  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
359  * for critical sections.
360  */
361 void
362 ahd_pause(struct ahd_softc *ahd)
363 {
364 	ahd_outb(ahd, HCNTRL, ahd->pause);
365 
366 	/*
367 	 * Since the sequencer can disable pausing in a critical section, we
368 	 * must loop until it actually stops.
369 	 */
370 	while (ahd_is_paused(ahd) == 0)
371 		;
372 }
373 
374 /*
375  * Allow the sequencer to continue program execution.
376  * We check here to ensure that no additional interrupt
377  * sources that would cause the sequencer to halt have been
378  * asserted.  If, for example, a SCSI bus reset is detected
379  * while we are fielding a different, pausing, interrupt type,
380  * we don't want to release the sequencer before going back
381  * into our interrupt handler and dealing with this new
382  * condition.
383  */
384 void
385 ahd_unpause(struct ahd_softc *ahd)
386 {
387 	/*
388 	 * Automatically restore our modes to those saved
389 	 * prior to the first change of the mode.
390 	 */
391 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 			ahd_reset_cmds_pending(ahd);
395 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396 	}
397 
398 	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 		ahd_outb(ahd, HCNTRL, ahd->unpause);
400 
401 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402 }
403 
404 /*********************** Scatter Gather List Handling *************************/
405 void *
406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 	     void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408 {
409 	scb->sg_count++;
410 	if (sizeof(dma_addr_t) > 4
411 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 		struct ahd_dma64_seg *sg;
413 
414 		sg = (struct ahd_dma64_seg *)sgptr;
415 		sg->addr = ahd_htole64(addr);
416 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 		return (sg + 1);
418 	} else {
419 		struct ahd_dma_seg *sg;
420 
421 		sg = (struct ahd_dma_seg *)sgptr;
422 		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 				    | (last ? AHD_DMA_LAST_SEG : 0));
425 		return (sg + 1);
426 	}
427 }
428 
429 static void
430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431 {
432 	/* XXX Handle target mode SCBs. */
433 	scb->crc_retry_count = 0;
434 	if ((scb->flags & SCB_PACKETIZED) != 0) {
435 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
436 		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 	} else {
438 		if (ahd_get_transfer_length(scb) & 0x01)
439 			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 		else
441 			scb->hscb->task_attribute = 0;
442 	}
443 
444 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 		    ahd_htole32(scb->sense_busaddr);
448 }
449 
450 static void
451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452 {
453 	/*
454 	 * Copy the first SG into the "current" data ponter area.
455 	 */
456 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 		struct ahd_dma64_seg *sg;
458 
459 		sg = (struct ahd_dma64_seg *)scb->sg_list;
460 		scb->hscb->dataptr = sg->addr;
461 		scb->hscb->datacnt = sg->len;
462 	} else {
463 		struct ahd_dma_seg *sg;
464 		uint32_t *dataptr_words;
465 
466 		sg = (struct ahd_dma_seg *)scb->sg_list;
467 		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 		dataptr_words[0] = sg->addr;
469 		dataptr_words[1] = 0;
470 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 			uint64_t high_addr;
472 
473 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475 		}
476 		scb->hscb->datacnt = sg->len;
477 	}
478 	/*
479 	 * Note where to find the SG entries in bus space.
480 	 * We also set the full residual flag which the
481 	 * sequencer will clear as soon as a data transfer
482 	 * occurs.
483 	 */
484 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485 }
486 
487 static void
488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489 {
490 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 	scb->hscb->dataptr = 0;
492 	scb->hscb->datacnt = 0;
493 }
494 
495 /************************** Memory mapping routines ***************************/
496 static void *
497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498 {
499 	dma_addr_t sg_offset;
500 
501 	/* sg_list_phys points to entry 1, not 0 */
502 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 	return ((uint8_t *)scb->sg_list + sg_offset);
504 }
505 
506 static uint32_t
507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508 {
509 	dma_addr_t sg_offset;
510 
511 	/* sg_list_phys points to entry 1, not 0 */
512 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 		  - ahd_sg_size(ahd);
514 
515 	return (scb->sg_list_busaddr + sg_offset);
516 }
517 
518 static void
519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520 {
521 	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 			scb->hscb_map->dmamap,
523 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 			/*len*/sizeof(*scb->hscb), op);
525 }
526 
527 void
528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529 {
530 	if (scb->sg_count == 0)
531 		return;
532 
533 	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 			scb->sg_map->dmamap,
535 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537 }
538 
539 static void
540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541 {
542 	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 			scb->sense_map->dmamap,
544 			/*offset*/scb->sense_busaddr,
545 			/*len*/AHD_SENSE_BUFSIZE, op);
546 }
547 
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551 {
552 	return (((uint8_t *)&ahd->targetcmds[index])
553 	       - (uint8_t *)ahd->qoutfifo);
554 }
555 #endif
556 
557 /*********************** Miscellaneous Support Functions ***********************/
558 /*
559  * Return pointers to the transfer negotiation information
560  * for the specified our_id/remote_id pair.
561  */
562 struct ahd_initiator_tinfo *
563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
565 {
566 	/*
567 	 * Transfer data structures are stored from the perspective
568 	 * of the target role.  Since the parameters for a connection
569 	 * in the initiator role to a given target are the same as
570 	 * when the roles are reversed, we pretend we are the target.
571 	 */
572 	if (channel == 'B')
573 		our_id += 8;
574 	*tstate = ahd->enabled_targets[our_id];
575 	return (&(*tstate)->transinfo[remote_id]);
576 }
577 
578 uint16_t
579 ahd_inw(struct ahd_softc *ahd, u_int port)
580 {
581 	/*
582 	 * Read high byte first as some registers increment
583 	 * or have other side effects when the low byte is
584 	 * read.
585 	 */
586 	uint16_t r = ahd_inb(ahd, port+1) << 8;
587 	return r | ahd_inb(ahd, port);
588 }
589 
590 void
591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592 {
593 	/*
594 	 * Write low byte first to accommodate registers
595 	 * such as PRGMCNT where the order maters.
596 	 */
597 	ahd_outb(ahd, port, value & 0xFF);
598 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599 }
600 
601 uint32_t
602 ahd_inl(struct ahd_softc *ahd, u_int port)
603 {
604 	return ((ahd_inb(ahd, port))
605 	      | (ahd_inb(ahd, port+1) << 8)
606 	      | (ahd_inb(ahd, port+2) << 16)
607 	      | (ahd_inb(ahd, port+3) << 24));
608 }
609 
610 void
611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612 {
613 	ahd_outb(ahd, port, (value) & 0xFF);
614 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617 }
618 
619 uint64_t
620 ahd_inq(struct ahd_softc *ahd, u_int port)
621 {
622 	return ((ahd_inb(ahd, port))
623 	      | (ahd_inb(ahd, port+1) << 8)
624 	      | (ahd_inb(ahd, port+2) << 16)
625 	      | (ahd_inb(ahd, port+3) << 24)
626 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630 }
631 
632 void
633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634 {
635 	ahd_outb(ahd, port, value & 0xFF);
636 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643 }
644 
645 u_int
646 ahd_get_scbptr(struct ahd_softc *ahd)
647 {
648 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651 }
652 
653 void
654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655 {
656 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660 }
661 
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665 {
666 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667 }
668 #endif
669 
670 static void
671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672 {
673 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674 }
675 
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
679 {
680 	return (ahd_inb(ahd, HESCB_QOFF));
681 }
682 #endif
683 
684 static void
685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686 {
687 	ahd_outb(ahd, HESCB_QOFF, value);
688 }
689 
690 static u_int
691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
692 {
693 	u_int oldvalue;
694 
695 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 	return (oldvalue);
699 }
700 
701 static void
702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703 {
704 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 	ahd_outw(ahd, SNSCB_QOFF, value);
706 }
707 
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
711 {
712 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 	return (ahd_inb(ahd, SESCB_QOFF));
714 }
715 #endif
716 
717 static void
718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719 {
720 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 	ahd_outb(ahd, SESCB_QOFF, value);
722 }
723 
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727 {
728 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730 }
731 #endif
732 
733 static void
734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735 {
736 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739 }
740 
741 u_int
742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743 {
744 	u_int value;
745 
746 	/*
747 	 * Workaround PCI-X Rev A. hardware bug.
748 	 * After a host read of SCB memory, the chip
749 	 * may become confused into thinking prefetch
750 	 * was required.  This starts the discard timer
751 	 * running and can cause an unexpected discard
752 	 * timer interrupt.  The work around is to read
753 	 * a normal register prior to the exhaustion of
754 	 * the discard timer.  The mode pointer register
755 	 * has no side effects and so serves well for
756 	 * this purpose.
757 	 *
758 	 * Razor #528
759 	 */
760 	value = ahd_inb(ahd, offset);
761 	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 		ahd_inb(ahd, MODE_PTR);
763 	return (value);
764 }
765 
766 u_int
767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768 {
769 	return (ahd_inb_scbram(ahd, offset)
770 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
771 }
772 
773 static uint32_t
774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775 {
776 	return (ahd_inw_scbram(ahd, offset)
777 	      | (ahd_inw_scbram(ahd, offset+2) << 16));
778 }
779 
780 static uint64_t
781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782 {
783 	return (ahd_inl_scbram(ahd, offset)
784 	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785 }
786 
787 struct scb *
788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789 {
790 	struct scb* scb;
791 
792 	if (tag >= AHD_SCB_MAX)
793 		return (NULL);
794 	scb = ahd->scb_data.scbindex[tag];
795 	if (scb != NULL)
796 		ahd_sync_scb(ahd, scb,
797 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 	return (scb);
799 }
800 
801 static void
802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803 {
804 	struct	 hardware_scb *q_hscb;
805 	struct	 map_node *q_hscb_map;
806 	uint32_t saved_hscb_busaddr;
807 
808 	/*
809 	 * Our queuing method is a bit tricky.  The card
810 	 * knows in advance which HSCB (by address) to download,
811 	 * and we can't disappoint it.  To achieve this, the next
812 	 * HSCB to download is saved off in ahd->next_queued_hscb.
813 	 * When we are called to queue "an arbitrary scb",
814 	 * we copy the contents of the incoming HSCB to the one
815 	 * the sequencer knows about, swap HSCB pointers and
816 	 * finally assign the SCB to the tag indexed location
817 	 * in the scb_array.  This makes sure that we can still
818 	 * locate the correct SCB by SCB_TAG.
819 	 */
820 	q_hscb = ahd->next_queued_hscb;
821 	q_hscb_map = ahd->next_queued_hscb_map;
822 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826 
827 	/* Now swap HSCB pointers. */
828 	ahd->next_queued_hscb = scb->hscb;
829 	ahd->next_queued_hscb_map = scb->hscb_map;
830 	scb->hscb = q_hscb;
831 	scb->hscb_map = q_hscb_map;
832 
833 	/* Now define the mapping from tag to SCB in the scbindex */
834 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835 }
836 
837 /*
838  * Tell the sequencer about a new transaction to execute.
839  */
840 void
841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842 {
843 	ahd_swap_with_next_hscb(ahd, scb);
844 
845 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 		panic("Attempt to queue invalid SCB tag %x\n",
847 		      SCB_GET_TAG(scb));
848 
849 	/*
850 	 * Keep a history of SCBs we've downloaded in the qinfifo.
851 	 */
852 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 	ahd->qinfifonext++;
854 
855 	if (scb->sg_count != 0)
856 		ahd_setup_data_scb(ahd, scb);
857 	else
858 		ahd_setup_noxfer_scb(ahd, scb);
859 	ahd_setup_scb_common(ahd, scb);
860 
861 	/*
862 	 * Make sure our data is consistent from the
863 	 * perspective of the adapter.
864 	 */
865 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866 
867 #ifdef AHD_DEBUG
868 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 		uint64_t host_dataptr;
870 
871 		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 		printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 		       ahd_name(ahd),
874 		       SCB_GET_TAG(scb), scb->hscb->scsiid,
875 		       ahd_le32toh(scb->hscb->hscb_busaddr),
876 		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 		       (u_int)(host_dataptr & 0xFFFFFFFF),
878 		       ahd_le32toh(scb->hscb->datacnt));
879 	}
880 #endif
881 	/* Tell the adapter about the newly queued SCB */
882 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883 }
884 
885 /************************** Interrupt Processing ******************************/
886 static void
887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888 {
889 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 			/*offset*/0,
891 			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892 }
893 
894 static void
895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896 {
897 #ifdef AHD_TARGET_MODE
898 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 				ahd->shared_data_map.dmamap,
901 				ahd_targetcmd_offset(ahd, 0),
902 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 				op);
904 	}
905 #endif
906 }
907 
908 /*
909  * See if the firmware has posted any completed commands
910  * into our in-core command complete fifos.
911  */
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916 {
917 	u_int retval;
918 
919 	retval = 0;
920 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 	  == ahd->qoutfifonext_valid_tag)
925 		retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 	if ((ahd->flags & AHD_TARGETROLE) != 0
928 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 				ahd->shared_data_map.dmamap,
931 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 				/*len*/sizeof(struct target_cmd),
933 				BUS_DMASYNC_POSTREAD);
934 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 			retval |= AHD_RUN_TQINFIFO;
936 	}
937 #endif
938 	return (retval);
939 }
940 
941 /*
942  * Catch an interrupt from the adapter
943  */
944 int
945 ahd_intr(struct ahd_softc *ahd)
946 {
947 	u_int	intstat;
948 
949 	if ((ahd->pause & INTEN) == 0) {
950 		/*
951 		 * Our interrupt is not enabled on the chip
952 		 * and may be disabled for re-entrancy reasons,
953 		 * so just return.  This is likely just a shared
954 		 * interrupt.
955 		 */
956 		return (0);
957 	}
958 
959 	/*
960 	 * Instead of directly reading the interrupt status register,
961 	 * infer the cause of the interrupt by checking our in-core
962 	 * completion queues.  This avoids a costly PCI bus read in
963 	 * most cases.
964 	 */
965 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 		intstat = CMDCMPLT;
968 	else
969 		intstat = ahd_inb(ahd, INTSTAT);
970 
971 	if ((intstat & INT_PEND) == 0)
972 		return (0);
973 
974 	if (intstat & CMDCMPLT) {
975 		ahd_outb(ahd, CLRINT, CLRCMDINT);
976 
977 		/*
978 		 * Ensure that the chip sees that we've cleared
979 		 * this interrupt before we walk the output fifo.
980 		 * Otherwise, we may, due to posted bus writes,
981 		 * clear the interrupt after we finish the scan,
982 		 * and after the sequencer has added new entries
983 		 * and asserted the interrupt again.
984 		 */
985 		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 			if (ahd_is_paused(ahd)) {
987 				/*
988 				 * Potentially lost SEQINT.
989 				 * If SEQINTCODE is non-zero,
990 				 * simulate the SEQINT.
991 				 */
992 				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 					intstat |= SEQINT;
994 			}
995 		} else {
996 			ahd_flush_device_writes(ahd);
997 		}
998 		ahd_run_qoutfifo(ahd);
999 		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 		ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 		if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1005 	}
1006 
1007 	/*
1008 	 * Handle statuses that may invalidate our cached
1009 	 * copy of INTSTAT separately.
1010 	 */
1011 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 		/* Hot eject.  Do nothing */
1013 	} else if (intstat & HWERRINT) {
1014 		ahd_handle_hwerrint(ahd);
1015 	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 		ahd->bus_intr(ahd);
1017 	} else {
1018 
1019 		if ((intstat & SEQINT) != 0)
1020 			ahd_handle_seqint(ahd, intstat);
1021 
1022 		if ((intstat & SCSIINT) != 0)
1023 			ahd_handle_scsiint(ahd, intstat);
1024 	}
1025 	return (1);
1026 }
1027 
1028 /******************************** Private Inlines *****************************/
1029 static inline void
1030 ahd_assert_atn(struct ahd_softc *ahd)
1031 {
1032 	ahd_outb(ahd, SCSISIGO, ATNO);
1033 }
1034 
1035 /*
1036  * Determine if the current connection has a packetized
1037  * agreement.  This does not necessarily mean that we
1038  * are currently in a packetized transfer.  We could
1039  * just as easily be sending or receiving a message.
1040  */
1041 static int
1042 ahd_currently_packetized(struct ahd_softc *ahd)
1043 {
1044 	ahd_mode_state	 saved_modes;
1045 	int		 packetized;
1046 
1047 	saved_modes = ahd_save_modes(ahd);
1048 	if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049 		/*
1050 		 * The packetized bit refers to the last
1051 		 * connection, not the current one.  Check
1052 		 * for non-zero LQISTATE instead.
1053 		 */
1054 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 		packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 	} else {
1057 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 		packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059 	}
1060 	ahd_restore_modes(ahd, saved_modes);
1061 	return (packetized);
1062 }
1063 
1064 static inline int
1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1066 {
1067 	u_int active_fifo;
1068 
1069 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 	active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 	switch (active_fifo) {
1072 	case 0:
1073 	case 1:
1074 		ahd_set_modes(ahd, active_fifo, active_fifo);
1075 		return (1);
1076 	default:
1077 		return (0);
1078 	}
1079 }
1080 
1081 static inline void
1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083 {
1084 	ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085 }
1086 
1087 /*
1088  * Determine whether the sequencer reported a residual
1089  * for this SCB/transaction.
1090  */
1091 static inline void
1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093 {
1094 	uint32_t sgptr;
1095 
1096 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 	if ((sgptr & SG_STATUS_VALID) != 0)
1098 		ahd_calc_residual(ahd, scb);
1099 }
1100 
1101 static inline void
1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103 {
1104 	uint32_t sgptr;
1105 
1106 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 	if ((sgptr & SG_STATUS_VALID) != 0)
1108 		ahd_handle_scb_status(ahd, scb);
1109 	else
1110 		ahd_done(ahd, scb);
1111 }
1112 
1113 
1114 /************************* Sequencer Execution Control ************************/
1115 /*
1116  * Restart the sequencer program from address zero
1117  */
1118 static void
1119 ahd_restart(struct ahd_softc *ahd)
1120 {
1121 
1122 	ahd_pause(ahd);
1123 
1124 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125 
1126 	/* No more pending messages */
1127 	ahd_clear_msg_state(ahd);
1128 	ahd_outb(ahd, SCSISIGO, 0);		/* De-assert BSY */
1129 	ahd_outb(ahd, MSG_OUT, MSG_NOOP);	/* No message to send */
1130 	ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 	ahd_outb(ahd, SEQINTCTL, 0);
1132 	ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 	ahd_outb(ahd, SEQ_FLAGS, 0);
1134 	ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 	ahd_outb(ahd, SAVED_LUN, 0xFF);
1136 
1137 	/*
1138 	 * Ensure that the sequencer's idea of TQINPOS
1139 	 * matches our own.  The sequencer increments TQINPOS
1140 	 * only after it sees a DMA complete and a reset could
1141 	 * occur before the increment leaving the kernel to believe
1142 	 * the command arrived but the sequencer to not.
1143 	 */
1144 	ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145 
1146 	/* Always allow reselection */
1147 	ahd_outb(ahd, SCSISEQ1,
1148 		 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150 
1151 	/*
1152 	 * Clear any pending sequencer interrupt.  It is no
1153 	 * longer relevant since we're resetting the Program
1154 	 * Counter.
1155 	 */
1156 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1157 
1158 	ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 	ahd_unpause(ahd);
1160 }
1161 
1162 static void
1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164 {
1165 	ahd_mode_state	 saved_modes;
1166 
1167 #ifdef AHD_DEBUG
1168 	if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 		printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 	saved_modes = ahd_save_modes(ahd);
1172 	ahd_set_modes(ahd, fifo, fifo);
1173 	ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 	if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 		ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 	ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 	ahd_outb(ahd, SG_STATE, 0);
1178 	ahd_restore_modes(ahd, saved_modes);
1179 }
1180 
1181 /************************* Input/Output Queues ********************************/
1182 /*
1183  * Flush and completed commands that are sitting in the command
1184  * complete queues down on the chip but have yet to be dma'ed back up.
1185  */
1186 static void
1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188 {
1189 	struct		scb *scb;
1190 	ahd_mode_state	saved_modes;
1191 	u_int		saved_scbptr;
1192 	u_int		ccscbctl;
1193 	u_int		scbid;
1194 	u_int		next_scbid;
1195 
1196 	saved_modes = ahd_save_modes(ahd);
1197 
1198 	/*
1199 	 * Flush the good status FIFO for completed packetized commands.
1200 	 */
1201 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 	saved_scbptr = ahd_get_scbptr(ahd);
1203 	while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 		u_int fifo_mode;
1205 		u_int i;
1206 
1207 		scbid = ahd_inw(ahd, GSFIFO);
1208 		scb = ahd_lookup_scb(ahd, scbid);
1209 		if (scb == NULL) {
1210 			printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 			       ahd_name(ahd), scbid);
1212 			continue;
1213 		}
1214 		/*
1215 		 * Determine if this transaction is still active in
1216 		 * any FIFO.  If it is, we must flush that FIFO to
1217 		 * the host before completing the  command.
1218 		 */
1219 		fifo_mode = 0;
1220 rescan_fifos:
1221 		for (i = 0; i < 2; i++) {
1222 			/* Toggle to the other mode. */
1223 			fifo_mode ^= 1;
1224 			ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225 
1226 			if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 				continue;
1228 
1229 			ahd_run_data_fifo(ahd, scb);
1230 
1231 			/*
1232 			 * Running this FIFO may cause a CFG4DATA for
1233 			 * this same transaction to assert in the other
1234 			 * FIFO or a new snapshot SAVEPTRS interrupt
1235 			 * in this FIFO.  Even running a FIFO may not
1236 			 * clear the transaction if we are still waiting
1237 			 * for data to drain to the host. We must loop
1238 			 * until the transaction is not active in either
1239 			 * FIFO just to be sure.  Reset our loop counter
1240 			 * so we will visit both FIFOs again before
1241 			 * declaring this transaction finished.  We
1242 			 * also delay a bit so that status has a chance
1243 			 * to change before we look at this FIFO again.
1244 			 */
1245 			ahd_delay(200);
1246 			goto rescan_fifos;
1247 		}
1248 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 		ahd_set_scbptr(ahd, scbid);
1250 		if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 		 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 		  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 		      & SG_LIST_NULL) != 0)) {
1254 			u_int comp_head;
1255 
1256 			/*
1257 			 * The transfer completed with a residual.
1258 			 * Place this SCB on the complete DMA list
1259 			 * so that we update our in-core copy of the
1260 			 * SCB before completing the command.
1261 			 */
1262 			ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 			ahd_outb(ahd, SCB_SGPTR,
1264 				 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 				 | SG_STATUS_VALID);
1266 			ahd_outw(ahd, SCB_TAG, scbid);
1267 			ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 			comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 			if (SCBID_IS_NULL(comp_head)) {
1270 				ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 			} else {
1273 				u_int tail;
1274 
1275 				tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 				ahd_set_scbptr(ahd, tail);
1277 				ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 				ahd_set_scbptr(ahd, scbid);
1280 			}
1281 		} else
1282 			ahd_complete_scb(ahd, scb);
1283 	}
1284 	ahd_set_scbptr(ahd, saved_scbptr);
1285 
1286 	/*
1287 	 * Setup for command channel portion of flush.
1288 	 */
1289 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290 
1291 	/*
1292 	 * Wait for any inprogress DMA to complete and clear DMA state
1293 	 * if this is for an SCB in the qinfifo.
1294 	 */
1295 	while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296 
1297 		if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 			if ((ccscbctl & ARRDONE) != 0)
1299 				break;
1300 		} else if ((ccscbctl & CCSCBDONE) != 0)
1301 			break;
1302 		ahd_delay(200);
1303 	}
1304 	/*
1305 	 * We leave the sequencer to cleanup in the case of DMA's to
1306 	 * update the qoutfifo.  In all other cases (DMA's to the
1307 	 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 	 * we disable the DMA engine so that the sequencer will not
1309 	 * attempt to handle the DMA completion.
1310 	 */
1311 	if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 		ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313 
1314 	/*
1315 	 * Complete any SCBs that just finished
1316 	 * being DMA'ed into the qoutfifo.
1317 	 */
1318 	ahd_run_qoutfifo(ahd);
1319 
1320 	saved_scbptr = ahd_get_scbptr(ahd);
1321 	/*
1322 	 * Manually update/complete any completed SCBs that are waiting to be
1323 	 * DMA'ed back up to the host.
1324 	 */
1325 	scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 	while (!SCBID_IS_NULL(scbid)) {
1327 		uint8_t *hscb_ptr;
1328 		u_int	 i;
1329 
1330 		ahd_set_scbptr(ahd, scbid);
1331 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 		scb = ahd_lookup_scb(ahd, scbid);
1333 		if (scb == NULL) {
1334 			printk("%s: Warning - DMA-up and complete "
1335 			       "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 			continue;
1337 		}
1338 		hscb_ptr = (uint8_t *)scb->hscb;
1339 		for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 			*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341 
1342 		ahd_complete_scb(ahd, scb);
1343 		scbid = next_scbid;
1344 	}
1345 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347 
1348 	scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 	while (!SCBID_IS_NULL(scbid)) {
1350 
1351 		ahd_set_scbptr(ahd, scbid);
1352 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 		scb = ahd_lookup_scb(ahd, scbid);
1354 		if (scb == NULL) {
1355 			printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 			       ahd_name(ahd), scbid);
1357 			continue;
1358 		}
1359 
1360 		ahd_complete_scb(ahd, scb);
1361 		scbid = next_scbid;
1362 	}
1363 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364 
1365 	scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 	while (!SCBID_IS_NULL(scbid)) {
1367 
1368 		ahd_set_scbptr(ahd, scbid);
1369 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 		scb = ahd_lookup_scb(ahd, scbid);
1371 		if (scb == NULL) {
1372 			printk("%s: Warning - Complete SCB %d invalid\n",
1373 			       ahd_name(ahd), scbid);
1374 			continue;
1375 		}
1376 
1377 		ahd_complete_scb(ahd, scb);
1378 		scbid = next_scbid;
1379 	}
1380 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381 
1382 	/*
1383 	 * Restore state.
1384 	 */
1385 	ahd_set_scbptr(ahd, saved_scbptr);
1386 	ahd_restore_modes(ahd, saved_modes);
1387 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388 }
1389 
1390 /*
1391  * Determine if an SCB for a packetized transaction
1392  * is active in a FIFO.
1393  */
1394 static int
1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396 {
1397 
1398 	/*
1399 	 * The FIFO is only active for our transaction if
1400 	 * the SCBPTR matches the SCB's ID and the firmware
1401 	 * has installed a handler for the FIFO or we have
1402 	 * a pending SAVEPTRS or CFG4DATA interrupt.
1403 	 */
1404 	if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 	 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 	  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 		return (0);
1408 
1409 	return (1);
1410 }
1411 
1412 /*
1413  * Run a data fifo to completion for a transaction we know
1414  * has completed across the SCSI bus (good status has been
1415  * received).  We are already set to the correct FIFO mode
1416  * on entry to this routine.
1417  *
1418  * This function attempts to operate exactly as the firmware
1419  * would when running this FIFO.  Care must be taken to update
1420  * this routine any time the firmware's FIFO algorithm is
1421  * changed.
1422  */
1423 static void
1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425 {
1426 	u_int seqintsrc;
1427 
1428 	seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 	if ((seqintsrc & CFG4DATA) != 0) {
1430 		uint32_t datacnt;
1431 		uint32_t sgptr;
1432 
1433 		/*
1434 		 * Clear full residual flag.
1435 		 */
1436 		sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 		ahd_outb(ahd, SCB_SGPTR, sgptr);
1438 
1439 		/*
1440 		 * Load datacnt and address.
1441 		 */
1442 		datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 		if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 			sgptr |= LAST_SEG;
1445 			ahd_outb(ahd, SG_STATE, 0);
1446 		} else
1447 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 		ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 		ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 		ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452 
1453 		/*
1454 		 * Initialize Residual Fields.
1455 		 */
1456 		ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 		ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458 
1459 		/*
1460 		 * Mark the SCB as having a FIFO in use.
1461 		 */
1462 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464 
1465 		/*
1466 		 * Install a "fake" handler for this FIFO.
1467 		 */
1468 		ahd_outw(ahd, LONGJMP_ADDR, 0);
1469 
1470 		/*
1471 		 * Notify the hardware that we have satisfied
1472 		 * this sequencer interrupt.
1473 		 */
1474 		ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 	} else if ((seqintsrc & SAVEPTRS) != 0) {
1476 		uint32_t sgptr;
1477 		uint32_t resid;
1478 
1479 		if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480 			/*
1481 			 * Snapshot Save Pointers.  All that
1482 			 * is necessary to clear the snapshot
1483 			 * is a CLRCHN.
1484 			 */
1485 			goto clrchn;
1486 		}
1487 
1488 		/*
1489 		 * Disable S/G fetch so the DMA engine
1490 		 * is available to future users.
1491 		 */
1492 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 			ahd_outb(ahd, CCSGCTL, 0);
1494 		ahd_outb(ahd, SG_STATE, 0);
1495 
1496 		/*
1497 		 * Flush the data FIFO.  Strickly only
1498 		 * necessary for Rev A parts.
1499 		 */
1500 		ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501 
1502 		/*
1503 		 * Calculate residual.
1504 		 */
1505 		sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 		resid = ahd_inl(ahd, SHCNT);
1507 		resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 		ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 		if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510 			/*
1511 			 * Must back up to the correct S/G element.
1512 			 * Typically this just means resetting our
1513 			 * low byte to the offset in the SG_CACHE,
1514 			 * but if we wrapped, we have to correct
1515 			 * the other bytes of the sgptr too.
1516 			 */
1517 			if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 			 && (sgptr & 0x80) == 0)
1519 				sgptr -= 0x100;
1520 			sgptr &= ~0xFF;
1521 			sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 			       & SG_ADDR_MASK;
1523 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 		} else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 			ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 				 sgptr | SG_LIST_NULL);
1528 		}
1529 		/*
1530 		 * Save Pointers.
1531 		 */
1532 		ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 		ahd_outl(ahd, SCB_DATACNT, resid);
1534 		ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 		ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 		ahd_outb(ahd, SEQIMODE,
1537 			 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538 		/*
1539 		 * If the data is to the SCSI bus, we are
1540 		 * done, otherwise wait for FIFOEMP.
1541 		 */
1542 		if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 			goto clrchn;
1544 	} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 		uint32_t sgptr;
1546 		uint64_t data_addr;
1547 		uint32_t data_len;
1548 		u_int	 dfcntrl;
1549 
1550 		/*
1551 		 * Disable S/G fetch so the DMA engine
1552 		 * is available to future users.  We won't
1553 		 * be using the DMA engine to load segments.
1554 		 */
1555 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 			ahd_outb(ahd, CCSGCTL, 0);
1557 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558 		}
1559 
1560 		/*
1561 		 * Wait for the DMA engine to notice that the
1562 		 * host transfer is enabled and that there is
1563 		 * space in the S/G FIFO for new segments before
1564 		 * loading more segments.
1565 		 */
1566 		if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 		 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568 
1569 			/*
1570 			 * Determine the offset of the next S/G
1571 			 * element to load.
1572 			 */
1573 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 			sgptr &= SG_PTR_MASK;
1575 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 				struct ahd_dma64_seg *sg;
1577 
1578 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 				data_addr = sg->addr;
1580 				data_len = sg->len;
1581 				sgptr += sizeof(*sg);
1582 			} else {
1583 				struct	ahd_dma_seg *sg;
1584 
1585 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 				data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 				data_addr <<= 8;
1588 				data_addr |= sg->addr;
1589 				data_len = sg->len;
1590 				sgptr += sizeof(*sg);
1591 			}
1592 
1593 			/*
1594 			 * Update residual information.
1595 			 */
1596 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598 
1599 			/*
1600 			 * Load the S/G.
1601 			 */
1602 			if (data_len & AHD_DMA_LAST_SEG) {
1603 				sgptr |= LAST_SEG;
1604 				ahd_outb(ahd, SG_STATE, 0);
1605 			}
1606 			ahd_outq(ahd, HADDR, data_addr);
1607 			ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 			ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609 
1610 			/*
1611 			 * Advertise the segment to the hardware.
1612 			 */
1613 			dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 			if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615 				/*
1616 				 * Use SCSIENWRDIS so that SCSIEN
1617 				 * is never modified by this
1618 				 * operation.
1619 				 */
1620 				dfcntrl |= SCSIENWRDIS;
1621 			}
1622 			ahd_outb(ahd, DFCNTRL, dfcntrl);
1623 		}
1624 	} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625 
1626 		/*
1627 		 * Transfer completed to the end of SG list
1628 		 * and has flushed to the host.
1629 		 */
1630 		ahd_outb(ahd, SCB_SGPTR,
1631 			 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 		goto clrchn;
1633 	} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1635 		/*
1636 		 * Clear any handler for this FIFO, decrement
1637 		 * the FIFO use count for the SCB, and release
1638 		 * the FIFO.
1639 		 */
1640 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 		ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644 	}
1645 }
1646 
1647 /*
1648  * Look for entries in the QoutFIFO that have completed.
1649  * The valid_tag completion field indicates the validity
1650  * of the entry - the valid value toggles each time through
1651  * the queue. We use the sg_status field in the completion
1652  * entry to avoid referencing the hscb if the completion
1653  * occurred with no errors and no residual.  sg_status is
1654  * a copy of the first byte (little endian) of the sgptr
1655  * hscb field.
1656  */
1657 static void
1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1659 {
1660 	struct ahd_completion *completion;
1661 	struct scb *scb;
1662 	u_int  scb_index;
1663 
1664 	if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 		panic("ahd_run_qoutfifo recursion");
1666 	ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 	for (;;) {
1669 		completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670 
1671 		if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 			break;
1673 
1674 		scb_index = ahd_le16toh(completion->tag);
1675 		scb = ahd_lookup_scb(ahd, scb_index);
1676 		if (scb == NULL) {
1677 			printk("%s: WARNING no command for scb %d "
1678 			       "(cmdcmplt)\nQOUTPOS = %d\n",
1679 			       ahd_name(ahd), scb_index,
1680 			       ahd->qoutfifonext);
1681 			ahd_dump_card_state(ahd);
1682 		} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 			ahd_handle_scb_status(ahd, scb);
1684 		} else {
1685 			ahd_done(ahd, scb);
1686 		}
1687 
1688 		ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 		if (ahd->qoutfifonext == 0)
1690 			ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691 	}
1692 	ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693 }
1694 
1695 /************************* Interrupt Handling *********************************/
1696 static void
1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1698 {
1699 	/*
1700 	 * Some catastrophic hardware error has occurred.
1701 	 * Print it for the user and disable the controller.
1702 	 */
1703 	int i;
1704 	int error;
1705 
1706 	error = ahd_inb(ahd, ERROR);
1707 	for (i = 0; i < num_errors; i++) {
1708 		if ((error & ahd_hard_errors[i].errno) != 0)
1709 			printk("%s: hwerrint, %s\n",
1710 			       ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711 	}
1712 
1713 	ahd_dump_card_state(ahd);
1714 	panic("BRKADRINT");
1715 
1716 	/* Tell everyone that this HBA is no longer available */
1717 	ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 		       CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 		       CAM_NO_HBA);
1720 
1721 	/* Tell the system that this controller has gone away. */
1722 	ahd_free(ahd);
1723 }
1724 
1725 #ifdef AHD_DEBUG
1726 static void
1727 ahd_dump_sglist(struct scb *scb)
1728 {
1729 	int i;
1730 
1731 	if (scb->sg_count > 0) {
1732 		if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 			struct ahd_dma64_seg *sg_list;
1734 
1735 			sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 			for (i = 0; i < scb->sg_count; i++) {
1737 				uint64_t addr;
1738 
1739 				addr = ahd_le64toh(sg_list[i].addr);
1740 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1741 				       i,
1742 				       (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1743 				       (uint32_t)(addr & 0xFFFFFFFF),
1744 				       sg_list[i].len & AHD_SG_LEN_MASK,
1745 				       (sg_list[i].len & AHD_DMA_LAST_SEG)
1746 				     ? " Last" : "");
1747 			}
1748 		} else {
1749 			struct ahd_dma_seg *sg_list;
1750 
1751 			sg_list = (struct ahd_dma_seg*)scb->sg_list;
1752 			for (i = 0; i < scb->sg_count; i++) {
1753 				uint32_t len;
1754 
1755 				len = ahd_le32toh(sg_list[i].len);
1756 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1757 				       i,
1758 				       (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1759 				       ahd_le32toh(sg_list[i].addr),
1760 				       len & AHD_SG_LEN_MASK,
1761 				       len & AHD_DMA_LAST_SEG ? " Last" : "");
1762 			}
1763 		}
1764 	}
1765 }
1766 #endif  /*  AHD_DEBUG  */
1767 
1768 static void
1769 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1770 {
1771 	u_int seqintcode;
1772 
1773 	/*
1774 	 * Save the sequencer interrupt code and clear the SEQINT
1775 	 * bit. We will unpause the sequencer, if appropriate,
1776 	 * after servicing the request.
1777 	 */
1778 	seqintcode = ahd_inb(ahd, SEQINTCODE);
1779 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1780 	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1781 		/*
1782 		 * Unpause the sequencer and let it clear
1783 		 * SEQINT by writing NO_SEQINT to it.  This
1784 		 * will cause the sequencer to be paused again,
1785 		 * which is the expected state of this routine.
1786 		 */
1787 		ahd_unpause(ahd);
1788 		while (!ahd_is_paused(ahd))
1789 			;
1790 		ahd_outb(ahd, CLRINT, CLRSEQINT);
1791 	}
1792 	ahd_update_modes(ahd);
1793 #ifdef AHD_DEBUG
1794 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
1795 		printk("%s: Handle Seqint Called for code %d\n",
1796 		       ahd_name(ahd), seqintcode);
1797 #endif
1798 	switch (seqintcode) {
1799 	case ENTERING_NONPACK:
1800 	{
1801 		struct	scb *scb;
1802 		u_int	scbid;
1803 
1804 		AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1805 				 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1806 		scbid = ahd_get_scbptr(ahd);
1807 		scb = ahd_lookup_scb(ahd, scbid);
1808 		if (scb == NULL) {
1809 			/*
1810 			 * Somehow need to know if this
1811 			 * is from a selection or reselection.
1812 			 * From that, we can determine target
1813 			 * ID so we at least have an I_T nexus.
1814 			 */
1815 		} else {
1816 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1817 			ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1818 			ahd_outb(ahd, SEQ_FLAGS, 0x0);
1819 		}
1820 		if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1821 		 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1822 			/*
1823 			 * Phase change after read stream with
1824 			 * CRC error with P0 asserted on last
1825 			 * packet.
1826 			 */
1827 #ifdef AHD_DEBUG
1828 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1829 				printk("%s: Assuming LQIPHASE_NLQ with "
1830 				       "P0 assertion\n", ahd_name(ahd));
1831 #endif
1832 		}
1833 #ifdef AHD_DEBUG
1834 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1835 			printk("%s: Entering NONPACK\n", ahd_name(ahd));
1836 #endif
1837 		break;
1838 	}
1839 	case INVALID_SEQINT:
1840 		printk("%s: Invalid Sequencer interrupt occurred, "
1841 		       "resetting channel.\n",
1842 		       ahd_name(ahd));
1843 #ifdef AHD_DEBUG
1844 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845 			ahd_dump_card_state(ahd);
1846 #endif
1847 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1848 		break;
1849 	case STATUS_OVERRUN:
1850 	{
1851 		struct	scb *scb;
1852 		u_int	scbid;
1853 
1854 		scbid = ahd_get_scbptr(ahd);
1855 		scb = ahd_lookup_scb(ahd, scbid);
1856 		if (scb != NULL)
1857 			ahd_print_path(ahd, scb);
1858 		else
1859 			printk("%s: ", ahd_name(ahd));
1860 		printk("SCB %d Packetized Status Overrun", scbid);
1861 		ahd_dump_card_state(ahd);
1862 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1863 		break;
1864 	}
1865 	case CFG4ISTAT_INTR:
1866 	{
1867 		struct	scb *scb;
1868 		u_int	scbid;
1869 
1870 		scbid = ahd_get_scbptr(ahd);
1871 		scb = ahd_lookup_scb(ahd, scbid);
1872 		if (scb == NULL) {
1873 			ahd_dump_card_state(ahd);
1874 			printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1875 			panic("For safety");
1876 		}
1877 		ahd_outq(ahd, HADDR, scb->sense_busaddr);
1878 		ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1879 		ahd_outb(ahd, HCNT + 2, 0);
1880 		ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1881 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1882 		break;
1883 	}
1884 	case ILLEGAL_PHASE:
1885 	{
1886 		u_int bus_phase;
1887 
1888 		bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1889 		printk("%s: ILLEGAL_PHASE 0x%x\n",
1890 		       ahd_name(ahd), bus_phase);
1891 
1892 		switch (bus_phase) {
1893 		case P_DATAOUT:
1894 		case P_DATAIN:
1895 		case P_DATAOUT_DT:
1896 		case P_DATAIN_DT:
1897 		case P_MESGOUT:
1898 		case P_STATUS:
1899 		case P_MESGIN:
1900 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1901 			printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1902 			break;
1903 		case P_COMMAND:
1904 		{
1905 			struct	ahd_devinfo devinfo;
1906 			struct	scb *scb;
1907 			u_int	scbid;
1908 
1909 			/*
1910 			 * If a target takes us into the command phase
1911 			 * assume that it has been externally reset and
1912 			 * has thus lost our previous packetized negotiation
1913 			 * agreement.  Since we have not sent an identify
1914 			 * message and may not have fully qualified the
1915 			 * connection, we change our command to TUR, assert
1916 			 * ATN and ABORT the task when we go to message in
1917 			 * phase.  The OSM will see the REQUEUE_REQUEST
1918 			 * status and retry the command.
1919 			 */
1920 			scbid = ahd_get_scbptr(ahd);
1921 			scb = ahd_lookup_scb(ahd, scbid);
1922 			if (scb == NULL) {
1923 				printk("Invalid phase with no valid SCB.  "
1924 				       "Resetting bus.\n");
1925 				ahd_reset_channel(ahd, 'A',
1926 						  /*Initiate Reset*/TRUE);
1927 				break;
1928 			}
1929 			ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1930 					    SCB_GET_TARGET(ahd, scb),
1931 					    SCB_GET_LUN(scb),
1932 					    SCB_GET_CHANNEL(ahd, scb),
1933 					    ROLE_INITIATOR);
1934 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1935 				      AHD_TRANS_ACTIVE, /*paused*/TRUE);
1936 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1937 					 /*offset*/0, /*ppr_options*/0,
1938 					 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1939 			/* Hand-craft TUR command */
1940 			ahd_outb(ahd, SCB_CDB_STORE, 0);
1941 			ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1942 			ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1943 			ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1944 			ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1945 			ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1946 			ahd_outb(ahd, SCB_CDB_LEN, 6);
1947 			scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1948 			scb->hscb->control |= MK_MESSAGE;
1949 			ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1950 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
1951 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1952 			/*
1953 			 * The lun is 0, regardless of the SCB's lun
1954 			 * as we have not sent an identify message.
1955 			 */
1956 			ahd_outb(ahd, SAVED_LUN, 0);
1957 			ahd_outb(ahd, SEQ_FLAGS, 0);
1958 			ahd_assert_atn(ahd);
1959 			scb->flags &= ~SCB_PACKETIZED;
1960 			scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1961 			ahd_freeze_devq(ahd, scb);
1962 			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1963 			ahd_freeze_scb(scb);
1964 
1965 			/* Notify XPT */
1966 			ahd_send_async(ahd, devinfo.channel, devinfo.target,
1967 				       CAM_LUN_WILDCARD, AC_SENT_BDR);
1968 
1969 			/*
1970 			 * Allow the sequencer to continue with
1971 			 * non-pack processing.
1972 			 */
1973 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1974 			ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1975 			if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1976 				ahd_outb(ahd, CLRLQOINT1, 0);
1977 			}
1978 #ifdef AHD_DEBUG
1979 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1980 				ahd_print_path(ahd, scb);
1981 				printk("Unexpected command phase from "
1982 				       "packetized target\n");
1983 			}
1984 #endif
1985 			break;
1986 		}
1987 		}
1988 		break;
1989 	}
1990 	case CFG4OVERRUN:
1991 	{
1992 		struct	scb *scb;
1993 		u_int	scb_index;
1994 
1995 #ifdef AHD_DEBUG
1996 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1997 			printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
1998 			       ahd_inb(ahd, MODE_PTR));
1999 		}
2000 #endif
2001 		scb_index = ahd_get_scbptr(ahd);
2002 		scb = ahd_lookup_scb(ahd, scb_index);
2003 		if (scb == NULL) {
2004 			/*
2005 			 * Attempt to transfer to an SCB that is
2006 			 * not outstanding.
2007 			 */
2008 			ahd_assert_atn(ahd);
2009 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
2010 			ahd->msgout_buf[0] = MSG_ABORT_TASK;
2011 			ahd->msgout_len = 1;
2012 			ahd->msgout_index = 0;
2013 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2014 			/*
2015 			 * Clear status received flag to prevent any
2016 			 * attempt to complete this bogus SCB.
2017 			 */
2018 			ahd_outb(ahd, SCB_CONTROL,
2019 				 ahd_inb_scbram(ahd, SCB_CONTROL)
2020 				 & ~STATUS_RCVD);
2021 		}
2022 		break;
2023 	}
2024 	case DUMP_CARD_STATE:
2025 	{
2026 		ahd_dump_card_state(ahd);
2027 		break;
2028 	}
2029 	case PDATA_REINIT:
2030 	{
2031 #ifdef AHD_DEBUG
2032 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2033 			printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2034 			       "SG_CACHE_SHADOW = 0x%x\n",
2035 			       ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2036 			       ahd_inb(ahd, SG_CACHE_SHADOW));
2037 		}
2038 #endif
2039 		ahd_reinitialize_dataptrs(ahd);
2040 		break;
2041 	}
2042 	case HOST_MSG_LOOP:
2043 	{
2044 		struct ahd_devinfo devinfo;
2045 
2046 		/*
2047 		 * The sequencer has encountered a message phase
2048 		 * that requires host assistance for completion.
2049 		 * While handling the message phase(s), we will be
2050 		 * notified by the sequencer after each byte is
2051 		 * transferred so we can track bus phase changes.
2052 		 *
2053 		 * If this is the first time we've seen a HOST_MSG_LOOP
2054 		 * interrupt, initialize the state of the host message
2055 		 * loop.
2056 		 */
2057 		ahd_fetch_devinfo(ahd, &devinfo);
2058 		if (ahd->msg_type == MSG_TYPE_NONE) {
2059 			struct scb *scb;
2060 			u_int scb_index;
2061 			u_int bus_phase;
2062 
2063 			bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2064 			if (bus_phase != P_MESGIN
2065 			 && bus_phase != P_MESGOUT) {
2066 				printk("ahd_intr: HOST_MSG_LOOP bad "
2067 				       "phase 0x%x\n", bus_phase);
2068 				/*
2069 				 * Probably transitioned to bus free before
2070 				 * we got here.  Just punt the message.
2071 				 */
2072 				ahd_dump_card_state(ahd);
2073 				ahd_clear_intstat(ahd);
2074 				ahd_restart(ahd);
2075 				return;
2076 			}
2077 
2078 			scb_index = ahd_get_scbptr(ahd);
2079 			scb = ahd_lookup_scb(ahd, scb_index);
2080 			if (devinfo.role == ROLE_INITIATOR) {
2081 				if (bus_phase == P_MESGOUT)
2082 					ahd_setup_initiator_msgout(ahd,
2083 								   &devinfo,
2084 								   scb);
2085 				else {
2086 					ahd->msg_type =
2087 					    MSG_TYPE_INITIATOR_MSGIN;
2088 					ahd->msgin_index = 0;
2089 				}
2090 			}
2091 #ifdef AHD_TARGET_MODE
2092 			else {
2093 				if (bus_phase == P_MESGOUT) {
2094 					ahd->msg_type =
2095 					    MSG_TYPE_TARGET_MSGOUT;
2096 					ahd->msgin_index = 0;
2097 				}
2098 				else
2099 					ahd_setup_target_msgin(ahd,
2100 							       &devinfo,
2101 							       scb);
2102 			}
2103 #endif
2104 		}
2105 
2106 		ahd_handle_message_phase(ahd);
2107 		break;
2108 	}
2109 	case NO_MATCH:
2110 	{
2111 		/* Ensure we don't leave the selection hardware on */
2112 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2113 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2114 
2115 		printk("%s:%c:%d: no active SCB for reconnecting "
2116 		       "target - issuing BUS DEVICE RESET\n",
2117 		       ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2118 		printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2119 		       "REG0 == 0x%x ACCUM = 0x%x\n",
2120 		       ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2121 		       ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2122 		printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2123 		       "SINDEX == 0x%x\n",
2124 		       ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2125 		       ahd_find_busy_tcl(ahd,
2126 					 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2127 						   ahd_inb(ahd, SAVED_LUN))),
2128 		       ahd_inw(ahd, SINDEX));
2129 		printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2130 		       "SCB_CONTROL == 0x%x\n",
2131 		       ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2132 		       ahd_inb_scbram(ahd, SCB_LUN),
2133 		       ahd_inb_scbram(ahd, SCB_CONTROL));
2134 		printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2135 		       ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2136 		printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2137 		printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2138 		ahd_dump_card_state(ahd);
2139 		ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2140 		ahd->msgout_len = 1;
2141 		ahd->msgout_index = 0;
2142 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2143 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
2144 		ahd_assert_atn(ahd);
2145 		break;
2146 	}
2147 	case PROTO_VIOLATION:
2148 	{
2149 		ahd_handle_proto_violation(ahd);
2150 		break;
2151 	}
2152 	case IGN_WIDE_RES:
2153 	{
2154 		struct ahd_devinfo devinfo;
2155 
2156 		ahd_fetch_devinfo(ahd, &devinfo);
2157 		ahd_handle_ign_wide_residue(ahd, &devinfo);
2158 		break;
2159 	}
2160 	case BAD_PHASE:
2161 	{
2162 		u_int lastphase;
2163 
2164 		lastphase = ahd_inb(ahd, LASTPHASE);
2165 		printk("%s:%c:%d: unknown scsi bus phase %x, "
2166 		       "lastphase = 0x%x.  Attempting to continue\n",
2167 		       ahd_name(ahd), 'A',
2168 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2169 		       lastphase, ahd_inb(ahd, SCSISIGI));
2170 		break;
2171 	}
2172 	case MISSED_BUSFREE:
2173 	{
2174 		u_int lastphase;
2175 
2176 		lastphase = ahd_inb(ahd, LASTPHASE);
2177 		printk("%s:%c:%d: Missed busfree. "
2178 		       "Lastphase = 0x%x, Curphase = 0x%x\n",
2179 		       ahd_name(ahd), 'A',
2180 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2181 		       lastphase, ahd_inb(ahd, SCSISIGI));
2182 		ahd_restart(ahd);
2183 		return;
2184 	}
2185 	case DATA_OVERRUN:
2186 	{
2187 		/*
2188 		 * When the sequencer detects an overrun, it
2189 		 * places the controller in "BITBUCKET" mode
2190 		 * and allows the target to complete its transfer.
2191 		 * Unfortunately, none of the counters get updated
2192 		 * when the controller is in this mode, so we have
2193 		 * no way of knowing how large the overrun was.
2194 		 */
2195 		struct	scb *scb;
2196 		u_int	scbindex;
2197 #ifdef AHD_DEBUG
2198 		u_int	lastphase;
2199 #endif
2200 
2201 		scbindex = ahd_get_scbptr(ahd);
2202 		scb = ahd_lookup_scb(ahd, scbindex);
2203 #ifdef AHD_DEBUG
2204 		lastphase = ahd_inb(ahd, LASTPHASE);
2205 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2206 			ahd_print_path(ahd, scb);
2207 			printk("data overrun detected %s.  Tag == 0x%x.\n",
2208 			       ahd_lookup_phase_entry(lastphase)->phasemsg,
2209 			       SCB_GET_TAG(scb));
2210 			ahd_print_path(ahd, scb);
2211 			printk("%s seen Data Phase.  Length = %ld.  "
2212 			       "NumSGs = %d.\n",
2213 			       ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2214 			       ? "Have" : "Haven't",
2215 			       ahd_get_transfer_length(scb), scb->sg_count);
2216 			ahd_dump_sglist(scb);
2217 		}
2218 #endif
2219 
2220 		/*
2221 		 * Set this and it will take effect when the
2222 		 * target does a command complete.
2223 		 */
2224 		ahd_freeze_devq(ahd, scb);
2225 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2226 		ahd_freeze_scb(scb);
2227 		break;
2228 	}
2229 	case MKMSG_FAILED:
2230 	{
2231 		struct ahd_devinfo devinfo;
2232 		struct scb *scb;
2233 		u_int scbid;
2234 
2235 		ahd_fetch_devinfo(ahd, &devinfo);
2236 		printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2237 		       ahd_name(ahd), devinfo.channel, devinfo.target,
2238 		       devinfo.lun);
2239 		scbid = ahd_get_scbptr(ahd);
2240 		scb = ahd_lookup_scb(ahd, scbid);
2241 		if (scb != NULL
2242 		 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2243 			/*
2244 			 * Ensure that we didn't put a second instance of this
2245 			 * SCB into the QINFIFO.
2246 			 */
2247 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2248 					   SCB_GET_CHANNEL(ahd, scb),
2249 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2250 					   ROLE_INITIATOR, /*status*/0,
2251 					   SEARCH_REMOVE);
2252 		ahd_outb(ahd, SCB_CONTROL,
2253 			 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2254 		break;
2255 	}
2256 	case TASKMGMT_FUNC_COMPLETE:
2257 	{
2258 		u_int	scbid;
2259 		struct	scb *scb;
2260 
2261 		scbid = ahd_get_scbptr(ahd);
2262 		scb = ahd_lookup_scb(ahd, scbid);
2263 		if (scb != NULL) {
2264 			u_int	   lun;
2265 			u_int	   tag;
2266 			cam_status error;
2267 
2268 			ahd_print_path(ahd, scb);
2269 			printk("Task Management Func 0x%x Complete\n",
2270 			       scb->hscb->task_management);
2271 			lun = CAM_LUN_WILDCARD;
2272 			tag = SCB_LIST_NULL;
2273 
2274 			switch (scb->hscb->task_management) {
2275 			case SIU_TASKMGMT_ABORT_TASK:
2276 				tag = SCB_GET_TAG(scb);
2277 				fallthrough;
2278 			case SIU_TASKMGMT_ABORT_TASK_SET:
2279 			case SIU_TASKMGMT_CLEAR_TASK_SET:
2280 				lun = scb->hscb->lun;
2281 				error = CAM_REQ_ABORTED;
2282 				ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2283 					       'A', lun, tag, ROLE_INITIATOR,
2284 					       error);
2285 				break;
2286 			case SIU_TASKMGMT_LUN_RESET:
2287 				lun = scb->hscb->lun;
2288 				fallthrough;
2289 			case SIU_TASKMGMT_TARGET_RESET:
2290 			{
2291 				struct ahd_devinfo devinfo;
2292 
2293 				ahd_scb_devinfo(ahd, &devinfo, scb);
2294 				error = CAM_BDR_SENT;
2295 				ahd_handle_devreset(ahd, &devinfo, lun,
2296 						    CAM_BDR_SENT,
2297 						    lun != CAM_LUN_WILDCARD
2298 						    ? "Lun Reset"
2299 						    : "Target Reset",
2300 						    /*verbose_level*/0);
2301 				break;
2302 			}
2303 			default:
2304 				panic("Unexpected TaskMgmt Func\n");
2305 				break;
2306 			}
2307 		}
2308 		break;
2309 	}
2310 	case TASKMGMT_CMD_CMPLT_OKAY:
2311 	{
2312 		u_int	scbid;
2313 		struct	scb *scb;
2314 
2315 		/*
2316 		 * An ABORT TASK TMF failed to be delivered before
2317 		 * the targeted command completed normally.
2318 		 */
2319 		scbid = ahd_get_scbptr(ahd);
2320 		scb = ahd_lookup_scb(ahd, scbid);
2321 		if (scb != NULL) {
2322 			/*
2323 			 * Remove the second instance of this SCB from
2324 			 * the QINFIFO if it is still there.
2325                          */
2326 			ahd_print_path(ahd, scb);
2327 			printk("SCB completes before TMF\n");
2328 			/*
2329 			 * Handle losing the race.  Wait until any
2330 			 * current selection completes.  We will then
2331 			 * set the TMF back to zero in this SCB so that
2332 			 * the sequencer doesn't bother to issue another
2333 			 * sequencer interrupt for its completion.
2334 			 */
2335 			while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2336 			    && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2337 			    && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2338 				;
2339 			ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2340 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2341 					   SCB_GET_CHANNEL(ahd, scb),
2342 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2343 					   ROLE_INITIATOR, /*status*/0,
2344 					   SEARCH_REMOVE);
2345 		}
2346 		break;
2347 	}
2348 	case TRACEPOINT0:
2349 	case TRACEPOINT1:
2350 	case TRACEPOINT2:
2351 	case TRACEPOINT3:
2352 		printk("%s: Tracepoint %d\n", ahd_name(ahd),
2353 		       seqintcode - TRACEPOINT0);
2354 		break;
2355 	case NO_SEQINT:
2356 		break;
2357 	case SAW_HWERR:
2358 		ahd_handle_hwerrint(ahd);
2359 		break;
2360 	default:
2361 		printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2362 		       seqintcode);
2363 		break;
2364 	}
2365 	/*
2366 	 *  The sequencer is paused immediately on
2367 	 *  a SEQINT, so we should restart it when
2368 	 *  we're done.
2369 	 */
2370 	ahd_unpause(ahd);
2371 }
2372 
2373 static void
2374 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2375 {
2376 	struct scb	*scb;
2377 	u_int		 status0;
2378 	u_int		 status3;
2379 	u_int		 status;
2380 	u_int		 lqistat1;
2381 	u_int		 lqostat0;
2382 	u_int		 scbid;
2383 	u_int		 busfreetime;
2384 
2385 	ahd_update_modes(ahd);
2386 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2387 
2388 	status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2389 	status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2390 	status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2391 	lqistat1 = ahd_inb(ahd, LQISTAT1);
2392 	lqostat0 = ahd_inb(ahd, LQOSTAT0);
2393 	busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2394 
2395 	/*
2396 	 * Ignore external resets after a bus reset.
2397 	 */
2398 	if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2399 		ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2400 		return;
2401 	}
2402 
2403 	/*
2404 	 * Clear bus reset flag
2405 	 */
2406 	ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2407 
2408 	if ((status0 & (SELDI|SELDO)) != 0) {
2409 		u_int simode0;
2410 
2411 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2412 		simode0 = ahd_inb(ahd, SIMODE0);
2413 		status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2414 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2415 	}
2416 	scbid = ahd_get_scbptr(ahd);
2417 	scb = ahd_lookup_scb(ahd, scbid);
2418 	if (scb != NULL
2419 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2420 		scb = NULL;
2421 
2422 	if ((status0 & IOERR) != 0) {
2423 		u_int now_lvd;
2424 
2425 		now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2426 		printk("%s: Transceiver State Has Changed to %s mode\n",
2427 		       ahd_name(ahd), now_lvd ? "LVD" : "SE");
2428 		ahd_outb(ahd, CLRSINT0, CLRIOERR);
2429 		/*
2430 		 * A change in I/O mode is equivalent to a bus reset.
2431 		 */
2432 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2433 		ahd_pause(ahd);
2434 		ahd_setup_iocell_workaround(ahd);
2435 		ahd_unpause(ahd);
2436 	} else if ((status0 & OVERRUN) != 0) {
2437 
2438 		printk("%s: SCSI offset overrun detected.  Resetting bus.\n",
2439 		       ahd_name(ahd));
2440 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2441 	} else if ((status & SCSIRSTI) != 0) {
2442 
2443 		printk("%s: Someone reset channel A\n", ahd_name(ahd));
2444 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2445 	} else if ((status & SCSIPERR) != 0) {
2446 
2447 		/* Make sure the sequencer is in a safe location. */
2448 		ahd_clear_critical_section(ahd);
2449 
2450 		ahd_handle_transmission_error(ahd);
2451 	} else if (lqostat0 != 0) {
2452 
2453 		printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2454 		ahd_outb(ahd, CLRLQOINT0, lqostat0);
2455 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2456 			ahd_outb(ahd, CLRLQOINT1, 0);
2457 	} else if ((status & SELTO) != 0) {
2458 		/* Stop the selection */
2459 		ahd_outb(ahd, SCSISEQ0, 0);
2460 
2461 		/* Make sure the sequencer is in a safe location. */
2462 		ahd_clear_critical_section(ahd);
2463 
2464 		/* No more pending messages */
2465 		ahd_clear_msg_state(ahd);
2466 
2467 		/* Clear interrupt state */
2468 		ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2469 
2470 		/*
2471 		 * Although the driver does not care about the
2472 		 * 'Selection in Progress' status bit, the busy
2473 		 * LED does.  SELINGO is only cleared by a successful
2474 		 * selection, so we must manually clear it to insure
2475 		 * the LED turns off just incase no future successful
2476 		 * selections occur (e.g. no devices on the bus).
2477 		 */
2478 		ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2479 
2480 		scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2481 		scb = ahd_lookup_scb(ahd, scbid);
2482 		if (scb == NULL) {
2483 			printk("%s: ahd_intr - referenced scb not "
2484 			       "valid during SELTO scb(0x%x)\n",
2485 			       ahd_name(ahd), scbid);
2486 			ahd_dump_card_state(ahd);
2487 		} else {
2488 			struct ahd_devinfo devinfo;
2489 #ifdef AHD_DEBUG
2490 			if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2491 				ahd_print_path(ahd, scb);
2492 				printk("Saw Selection Timeout for SCB 0x%x\n",
2493 				       scbid);
2494 			}
2495 #endif
2496 			ahd_scb_devinfo(ahd, &devinfo, scb);
2497 			ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2498 			ahd_freeze_devq(ahd, scb);
2499 
2500 			/*
2501 			 * Cancel any pending transactions on the device
2502 			 * now that it seems to be missing.  This will
2503 			 * also revert us to async/narrow transfers until
2504 			 * we can renegotiate with the device.
2505 			 */
2506 			ahd_handle_devreset(ahd, &devinfo,
2507 					    CAM_LUN_WILDCARD,
2508 					    CAM_SEL_TIMEOUT,
2509 					    "Selection Timeout",
2510 					    /*verbose_level*/1);
2511 		}
2512 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2513 		ahd_iocell_first_selection(ahd);
2514 		ahd_unpause(ahd);
2515 	} else if ((status0 & (SELDI|SELDO)) != 0) {
2516 
2517 		ahd_iocell_first_selection(ahd);
2518 		ahd_unpause(ahd);
2519 	} else if (status3 != 0) {
2520 		printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2521 		       ahd_name(ahd), status3);
2522 		ahd_outb(ahd, CLRSINT3, status3);
2523 	} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2524 
2525 		/* Make sure the sequencer is in a safe location. */
2526 		ahd_clear_critical_section(ahd);
2527 
2528 		ahd_handle_lqiphase_error(ahd, lqistat1);
2529 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2530 		/*
2531 		 * This status can be delayed during some
2532 		 * streaming operations.  The SCSIPHASE
2533 		 * handler has already dealt with this case
2534 		 * so just clear the error.
2535 		 */
2536 		ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2537 	} else if ((status & BUSFREE) != 0
2538 		|| (lqistat1 & LQOBUSFREE) != 0) {
2539 		u_int lqostat1;
2540 		int   restart;
2541 		int   clear_fifo;
2542 		int   packetized;
2543 		u_int mode;
2544 
2545 		/*
2546 		 * Clear our selection hardware as soon as possible.
2547 		 * We may have an entry in the waiting Q for this target,
2548 		 * that is affected by this busfree and we don't want to
2549 		 * go about selecting the target while we handle the event.
2550 		 */
2551 		ahd_outb(ahd, SCSISEQ0, 0);
2552 
2553 		/* Make sure the sequencer is in a safe location. */
2554 		ahd_clear_critical_section(ahd);
2555 
2556 		/*
2557 		 * Determine what we were up to at the time of
2558 		 * the busfree.
2559 		 */
2560 		mode = AHD_MODE_SCSI;
2561 		busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2562 		lqostat1 = ahd_inb(ahd, LQOSTAT1);
2563 		switch (busfreetime) {
2564 		case BUSFREE_DFF0:
2565 		case BUSFREE_DFF1:
2566 		{
2567 			mode = busfreetime == BUSFREE_DFF0
2568 			     ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2569 			ahd_set_modes(ahd, mode, mode);
2570 			scbid = ahd_get_scbptr(ahd);
2571 			scb = ahd_lookup_scb(ahd, scbid);
2572 			if (scb == NULL) {
2573 				printk("%s: Invalid SCB %d in DFF%d "
2574 				       "during unexpected busfree\n",
2575 				       ahd_name(ahd), scbid, mode);
2576 				packetized = 0;
2577 			} else
2578 				packetized = (scb->flags & SCB_PACKETIZED) != 0;
2579 			clear_fifo = 1;
2580 			break;
2581 		}
2582 		case BUSFREE_LQO:
2583 			clear_fifo = 0;
2584 			packetized = 1;
2585 			break;
2586 		default:
2587 			clear_fifo = 0;
2588 			packetized =  (lqostat1 & LQOBUSFREE) != 0;
2589 			if (!packetized
2590 			 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2591 			 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2592 			 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2593 			  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2594 				/*
2595 				 * Assume packetized if we are not
2596 				 * on the bus in a non-packetized
2597 				 * capacity and any pending selection
2598 				 * was a packetized selection.
2599 				 */
2600 				packetized = 1;
2601 			break;
2602 		}
2603 
2604 #ifdef AHD_DEBUG
2605 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
2606 			printk("Saw Busfree.  Busfreetime = 0x%x.\n",
2607 			       busfreetime);
2608 #endif
2609 		/*
2610 		 * Busfrees that occur in non-packetized phases are
2611 		 * handled by the nonpkt_busfree handler.
2612 		 */
2613 		if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2614 			restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2615 		} else {
2616 			packetized = 0;
2617 			restart = ahd_handle_nonpkt_busfree(ahd);
2618 		}
2619 		/*
2620 		 * Clear the busfree interrupt status.  The setting of
2621 		 * the interrupt is a pulse, so in a perfect world, we
2622 		 * would not need to muck with the ENBUSFREE logic.  This
2623 		 * would ensure that if the bus moves on to another
2624 		 * connection, busfree protection is still in force.  If
2625 		 * BUSFREEREV is broken, however, we must manually clear
2626 		 * the ENBUSFREE if the busfree occurred during a non-pack
2627 		 * connection so that we don't get false positives during
2628 		 * future, packetized, connections.
2629 		 */
2630 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2631 		if (packetized == 0
2632 		 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2633 			ahd_outb(ahd, SIMODE1,
2634 				 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2635 
2636 		if (clear_fifo)
2637 			ahd_clear_fifo(ahd, mode);
2638 
2639 		ahd_clear_msg_state(ahd);
2640 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2641 		if (restart) {
2642 			ahd_restart(ahd);
2643 		} else {
2644 			ahd_unpause(ahd);
2645 		}
2646 	} else {
2647 		printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2648 		       ahd_name(ahd), status);
2649 		ahd_dump_card_state(ahd);
2650 		ahd_clear_intstat(ahd);
2651 		ahd_unpause(ahd);
2652 	}
2653 }
2654 
2655 static void
2656 ahd_handle_transmission_error(struct ahd_softc *ahd)
2657 {
2658 	struct	scb *scb;
2659 	u_int	scbid;
2660 	u_int	lqistat1;
2661 	u_int	msg_out;
2662 	u_int	curphase;
2663 	u_int	lastphase;
2664 	u_int	perrdiag;
2665 	u_int	cur_col;
2666 	int	silent;
2667 
2668 	scb = NULL;
2669 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2670 	lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2671 	ahd_inb(ahd, LQISTAT2);
2672 	if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2673 	 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2674 		u_int lqistate;
2675 
2676 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2677 		lqistate = ahd_inb(ahd, LQISTATE);
2678 		if ((lqistate >= 0x1E && lqistate <= 0x24)
2679 		 || (lqistate == 0x29)) {
2680 #ifdef AHD_DEBUG
2681 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2682 				printk("%s: NLQCRC found via LQISTATE\n",
2683 				       ahd_name(ahd));
2684 			}
2685 #endif
2686 			lqistat1 |= LQICRCI_NLQ;
2687 		}
2688 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2689 	}
2690 
2691 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2692 	lastphase = ahd_inb(ahd, LASTPHASE);
2693 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2694 	perrdiag = ahd_inb(ahd, PERRDIAG);
2695 	msg_out = MSG_INITIATOR_DET_ERR;
2696 	ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2697 
2698 	/*
2699 	 * Try to find the SCB associated with this error.
2700 	 */
2701 	silent = FALSE;
2702 	if (lqistat1 == 0
2703 	 || (lqistat1 & LQICRCI_NLQ) != 0) {
2704 	 	if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2705 			ahd_set_active_fifo(ahd);
2706 		scbid = ahd_get_scbptr(ahd);
2707 		scb = ahd_lookup_scb(ahd, scbid);
2708 		if (scb != NULL && SCB_IS_SILENT(scb))
2709 			silent = TRUE;
2710 	}
2711 
2712 	cur_col = 0;
2713 	if (silent == FALSE) {
2714 		printk("%s: Transmission error detected\n", ahd_name(ahd));
2715 		ahd_lqistat1_print(lqistat1, &cur_col, 50);
2716 		ahd_lastphase_print(lastphase, &cur_col, 50);
2717 		ahd_scsisigi_print(curphase, &cur_col, 50);
2718 		ahd_perrdiag_print(perrdiag, &cur_col, 50);
2719 		printk("\n");
2720 		ahd_dump_card_state(ahd);
2721 	}
2722 
2723 	if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2724 		if (silent == FALSE) {
2725 			printk("%s: Gross protocol error during incoming "
2726 			       "packet.  lqistat1 == 0x%x.  Resetting bus.\n",
2727 			       ahd_name(ahd), lqistat1);
2728 		}
2729 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2730 		return;
2731 	} else if ((lqistat1 & LQICRCI_LQ) != 0) {
2732 		/*
2733 		 * A CRC error has been detected on an incoming LQ.
2734 		 * The bus is currently hung on the last ACK.
2735 		 * Hit LQIRETRY to release the last ack, and
2736 		 * wait for the sequencer to determine that ATNO
2737 		 * is asserted while in message out to take us
2738 		 * to our host message loop.  No NONPACKREQ or
2739 		 * LQIPHASE type errors will occur in this
2740 		 * scenario.  After this first LQIRETRY, the LQI
2741 		 * manager will be in ISELO where it will
2742 		 * happily sit until another packet phase begins.
2743 		 * Unexpected bus free detection is enabled
2744 		 * through any phases that occur after we release
2745 		 * this last ack until the LQI manager sees a
2746 		 * packet phase.  This implies we may have to
2747 		 * ignore a perfectly valid "unexected busfree"
2748 		 * after our "initiator detected error" message is
2749 		 * sent.  A busfree is the expected response after
2750 		 * we tell the target that it's L_Q was corrupted.
2751 		 * (SPI4R09 10.7.3.3.3)
2752 		 */
2753 		ahd_outb(ahd, LQCTL2, LQIRETRY);
2754 		printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2755 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2756 		/*
2757 		 * We detected a CRC error in a NON-LQ packet.
2758 		 * The hardware has varying behavior in this situation
2759 		 * depending on whether this packet was part of a
2760 		 * stream or not.
2761 		 *
2762 		 * PKT by PKT mode:
2763 		 * The hardware has already acked the complete packet.
2764 		 * If the target honors our outstanding ATN condition,
2765 		 * we should be (or soon will be) in MSGOUT phase.
2766 		 * This will trigger the LQIPHASE_LQ status bit as the
2767 		 * hardware was expecting another LQ.  Unexpected
2768 		 * busfree detection is enabled.  Once LQIPHASE_LQ is
2769 		 * true (first entry into host message loop is much
2770 		 * the same), we must clear LQIPHASE_LQ and hit
2771 		 * LQIRETRY so the hardware is ready to handle
2772 		 * a future LQ.  NONPACKREQ will not be asserted again
2773 		 * once we hit LQIRETRY until another packet is
2774 		 * processed.  The target may either go busfree
2775 		 * or start another packet in response to our message.
2776 		 *
2777 		 * Read Streaming P0 asserted:
2778 		 * If we raise ATN and the target completes the entire
2779 		 * stream (P0 asserted during the last packet), the
2780 		 * hardware will ack all data and return to the ISTART
2781 		 * state.  When the target reponds to our ATN condition,
2782 		 * LQIPHASE_LQ will be asserted.  We should respond to
2783 		 * this with an LQIRETRY to prepare for any future
2784 		 * packets.  NONPACKREQ will not be asserted again
2785 		 * once we hit LQIRETRY until another packet is
2786 		 * processed.  The target may either go busfree or
2787 		 * start another packet in response to our message.
2788 		 * Busfree detection is enabled.
2789 		 *
2790 		 * Read Streaming P0 not asserted:
2791 		 * If we raise ATN and the target transitions to
2792 		 * MSGOUT in or after a packet where P0 is not
2793 		 * asserted, the hardware will assert LQIPHASE_NLQ.
2794 		 * We should respond to the LQIPHASE_NLQ with an
2795 		 * LQIRETRY.  Should the target stay in a non-pkt
2796 		 * phase after we send our message, the hardware
2797 		 * will assert LQIPHASE_LQ.  Recovery is then just as
2798 		 * listed above for the read streaming with P0 asserted.
2799 		 * Busfree detection is enabled.
2800 		 */
2801 		if (silent == FALSE)
2802 			printk("LQICRC_NLQ\n");
2803 		if (scb == NULL) {
2804 			printk("%s: No SCB valid for LQICRC_NLQ.  "
2805 			       "Resetting bus\n", ahd_name(ahd));
2806 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2807 			return;
2808 		}
2809 	} else if ((lqistat1 & LQIBADLQI) != 0) {
2810 		printk("Need to handle BADLQI!\n");
2811 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2812 		return;
2813 	} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2814 		if ((curphase & ~P_DATAIN_DT) != 0) {
2815 			/* Ack the byte.  So we can continue. */
2816 			if (silent == FALSE)
2817 				printk("Acking %s to clear perror\n",
2818 				    ahd_lookup_phase_entry(curphase)->phasemsg);
2819 			ahd_inb(ahd, SCSIDAT);
2820 		}
2821 
2822 		if (curphase == P_MESGIN)
2823 			msg_out = MSG_PARITY_ERROR;
2824 	}
2825 
2826 	/*
2827 	 * We've set the hardware to assert ATN if we
2828 	 * get a parity error on "in" phases, so all we
2829 	 * need to do is stuff the message buffer with
2830 	 * the appropriate message.  "In" phases have set
2831 	 * mesg_out to something other than MSG_NOP.
2832 	 */
2833 	ahd->send_msg_perror = msg_out;
2834 	if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2835 		scb->flags |= SCB_TRANSMISSION_ERROR;
2836 	ahd_outb(ahd, MSG_OUT, HOST_MSG);
2837 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
2838 	ahd_unpause(ahd);
2839 }
2840 
2841 static void
2842 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2843 {
2844 	/*
2845 	 * Clear the sources of the interrupts.
2846 	 */
2847 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2848 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2849 
2850 	/*
2851 	 * If the "illegal" phase changes were in response
2852 	 * to our ATN to flag a CRC error, AND we ended up
2853 	 * on packet boundaries, clear the error, restart the
2854 	 * LQI manager as appropriate, and go on our merry
2855 	 * way toward sending the message.  Otherwise, reset
2856 	 * the bus to clear the error.
2857 	 */
2858 	ahd_set_active_fifo(ahd);
2859 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2860 	 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2861 		if ((lqistat1 & LQIPHASE_LQ) != 0) {
2862 			printk("LQIRETRY for LQIPHASE_LQ\n");
2863 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2864 		} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2865 			printk("LQIRETRY for LQIPHASE_NLQ\n");
2866 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2867 		} else
2868 			panic("ahd_handle_lqiphase_error: No phase errors\n");
2869 		ahd_dump_card_state(ahd);
2870 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2871 		ahd_unpause(ahd);
2872 	} else {
2873 		printk("Resetting Channel for LQI Phase error\n");
2874 		ahd_dump_card_state(ahd);
2875 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2876 	}
2877 }
2878 
2879 /*
2880  * Packetized unexpected or expected busfree.
2881  * Entered in mode based on busfreetime.
2882  */
2883 static int
2884 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2885 {
2886 	u_int lqostat1;
2887 
2888 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2889 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2890 	lqostat1 = ahd_inb(ahd, LQOSTAT1);
2891 	if ((lqostat1 & LQOBUSFREE) != 0) {
2892 		struct scb *scb;
2893 		u_int scbid;
2894 		u_int saved_scbptr;
2895 		u_int waiting_h;
2896 		u_int waiting_t;
2897 		u_int next;
2898 
2899 		/*
2900 		 * The LQO manager detected an unexpected busfree
2901 		 * either:
2902 		 *
2903 		 * 1) During an outgoing LQ.
2904 		 * 2) After an outgoing LQ but before the first
2905 		 *    REQ of the command packet.
2906 		 * 3) During an outgoing command packet.
2907 		 *
2908 		 * In all cases, CURRSCB is pointing to the
2909 		 * SCB that encountered the failure.  Clean
2910 		 * up the queue, clear SELDO and LQOBUSFREE,
2911 		 * and allow the sequencer to restart the select
2912 		 * out at its lesure.
2913 		 */
2914 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2915 		scbid = ahd_inw(ahd, CURRSCB);
2916 		scb = ahd_lookup_scb(ahd, scbid);
2917 		if (scb == NULL)
2918 		       panic("SCB not valid during LQOBUSFREE");
2919 		/*
2920 		 * Clear the status.
2921 		 */
2922 		ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2923 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2924 			ahd_outb(ahd, CLRLQOINT1, 0);
2925 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2926 		ahd_flush_device_writes(ahd);
2927 		ahd_outb(ahd, CLRSINT0, CLRSELDO);
2928 
2929 		/*
2930 		 * Return the LQO manager to its idle loop.  It will
2931 		 * not do this automatically if the busfree occurs
2932 		 * after the first REQ of either the LQ or command
2933 		 * packet or between the LQ and command packet.
2934 		 */
2935 		ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2936 
2937 		/*
2938 		 * Update the waiting for selection queue so
2939 		 * we restart on the correct SCB.
2940 		 */
2941 		waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2942 		saved_scbptr = ahd_get_scbptr(ahd);
2943 		if (waiting_h != scbid) {
2944 
2945 			ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2946 			waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2947 			if (waiting_t == waiting_h) {
2948 				ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2949 				next = SCB_LIST_NULL;
2950 			} else {
2951 				ahd_set_scbptr(ahd, waiting_h);
2952 				next = ahd_inw_scbram(ahd, SCB_NEXT2);
2953 			}
2954 			ahd_set_scbptr(ahd, scbid);
2955 			ahd_outw(ahd, SCB_NEXT2, next);
2956 		}
2957 		ahd_set_scbptr(ahd, saved_scbptr);
2958 		if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2959 			if (SCB_IS_SILENT(scb) == FALSE) {
2960 				ahd_print_path(ahd, scb);
2961 				printk("Probable outgoing LQ CRC error.  "
2962 				       "Retrying command\n");
2963 			}
2964 			scb->crc_retry_count++;
2965 		} else {
2966 			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2967 			ahd_freeze_scb(scb);
2968 			ahd_freeze_devq(ahd, scb);
2969 		}
2970 		/* Return unpausing the sequencer. */
2971 		return (0);
2972 	} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2973 		/*
2974 		 * Ignore what are really parity errors that
2975 		 * occur on the last REQ of a free running
2976 		 * clock prior to going busfree.  Some drives
2977 		 * do not properly active negate just before
2978 		 * going busfree resulting in a parity glitch.
2979 		 */
2980 		ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2981 #ifdef AHD_DEBUG
2982 		if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2983 			printk("%s: Parity on last REQ detected "
2984 			       "during busfree phase.\n",
2985 			       ahd_name(ahd));
2986 #endif
2987 		/* Return unpausing the sequencer. */
2988 		return (0);
2989 	}
2990 	if (ahd->src_mode != AHD_MODE_SCSI) {
2991 		u_int	scbid;
2992 		struct	scb *scb;
2993 
2994 		scbid = ahd_get_scbptr(ahd);
2995 		scb = ahd_lookup_scb(ahd, scbid);
2996 		ahd_print_path(ahd, scb);
2997 		printk("Unexpected PKT busfree condition\n");
2998 		ahd_dump_card_state(ahd);
2999 		ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3000 			       SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3001 			       ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3002 
3003 		/* Return restarting the sequencer. */
3004 		return (1);
3005 	}
3006 	printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3007 	ahd_dump_card_state(ahd);
3008 	/* Restart the sequencer. */
3009 	return (1);
3010 }
3011 
3012 /*
3013  * Non-packetized unexpected or expected busfree.
3014  */
3015 static int
3016 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3017 {
3018 	struct	ahd_devinfo devinfo;
3019 	struct	scb *scb;
3020 	u_int	lastphase;
3021 	u_int	saved_scsiid;
3022 	u_int	saved_lun;
3023 	u_int	target;
3024 	u_int	initiator_role_id;
3025 	u_int	scbid;
3026 	u_int	ppr_busfree;
3027 	int	printerror;
3028 
3029 	/*
3030 	 * Look at what phase we were last in.  If its message out,
3031 	 * chances are pretty good that the busfree was in response
3032 	 * to one of our abort requests.
3033 	 */
3034 	lastphase = ahd_inb(ahd, LASTPHASE);
3035 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3036 	saved_lun = ahd_inb(ahd, SAVED_LUN);
3037 	target = SCSIID_TARGET(ahd, saved_scsiid);
3038 	initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3039 	ahd_compile_devinfo(&devinfo, initiator_role_id,
3040 			    target, saved_lun, 'A', ROLE_INITIATOR);
3041 	printerror = 1;
3042 
3043 	scbid = ahd_get_scbptr(ahd);
3044 	scb = ahd_lookup_scb(ahd, scbid);
3045 	if (scb != NULL
3046 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3047 		scb = NULL;
3048 
3049 	ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3050 	if (lastphase == P_MESGOUT) {
3051 		u_int tag;
3052 
3053 		tag = SCB_LIST_NULL;
3054 		if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3055 		 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3056 			int found;
3057 			int sent_msg;
3058 
3059 			if (scb == NULL) {
3060 				ahd_print_devinfo(ahd, &devinfo);
3061 				printk("Abort for unidentified "
3062 				       "connection completed.\n");
3063 				/* restart the sequencer. */
3064 				return (1);
3065 			}
3066 			sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3067 			ahd_print_path(ahd, scb);
3068 			printk("SCB %d - Abort%s Completed.\n",
3069 			       SCB_GET_TAG(scb),
3070 			       sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3071 
3072 			if (sent_msg == MSG_ABORT_TAG)
3073 				tag = SCB_GET_TAG(scb);
3074 
3075 			if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3076 				/*
3077 				 * This abort is in response to an
3078 				 * unexpected switch to command phase
3079 				 * for a packetized connection.  Since
3080 				 * the identify message was never sent,
3081 				 * "saved lun" is 0.  We really want to
3082 				 * abort only the SCB that encountered
3083 				 * this error, which could have a different
3084 				 * lun.  The SCB will be retried so the OS
3085 				 * will see the UA after renegotiating to
3086 				 * packetized.
3087 				 */
3088 				tag = SCB_GET_TAG(scb);
3089 				saved_lun = scb->hscb->lun;
3090 			}
3091 			found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3092 					       tag, ROLE_INITIATOR,
3093 					       CAM_REQ_ABORTED);
3094 			printk("found == 0x%x\n", found);
3095 			printerror = 0;
3096 		} else if (ahd_sent_msg(ahd, AHDMSG_1B,
3097 					MSG_BUS_DEV_RESET, TRUE)) {
3098 			ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3099 					    CAM_BDR_SENT, "Bus Device Reset",
3100 					    /*verbose_level*/0);
3101 			printerror = 0;
3102 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3103 			&& ppr_busfree == 0) {
3104 			struct ahd_initiator_tinfo *tinfo;
3105 			struct ahd_tmode_tstate *tstate;
3106 
3107 			/*
3108 			 * PPR Rejected.
3109 			 *
3110 			 * If the previous negotiation was packetized,
3111 			 * this could be because the device has been
3112 			 * reset without our knowledge.  Force our
3113 			 * current negotiation to async and retry the
3114 			 * negotiation.  Otherwise retry the command
3115 			 * with non-ppr negotiation.
3116 			 */
3117 #ifdef AHD_DEBUG
3118 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3119 				printk("PPR negotiation rejected busfree.\n");
3120 #endif
3121 			tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3122 						    devinfo.our_scsiid,
3123 						    devinfo.target, &tstate);
3124 			if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3125 				ahd_set_width(ahd, &devinfo,
3126 					      MSG_EXT_WDTR_BUS_8_BIT,
3127 					      AHD_TRANS_CUR,
3128 					      /*paused*/TRUE);
3129 				ahd_set_syncrate(ahd, &devinfo,
3130 						/*period*/0, /*offset*/0,
3131 						/*ppr_options*/0,
3132 						AHD_TRANS_CUR,
3133 						/*paused*/TRUE);
3134 				/*
3135 				 * The expect PPR busfree handler below
3136 				 * will effect the retry and necessary
3137 				 * abort.
3138 				 */
3139 			} else {
3140 				tinfo->curr.transport_version = 2;
3141 				tinfo->goal.transport_version = 2;
3142 				tinfo->goal.ppr_options = 0;
3143 				if (scb != NULL) {
3144 					/*
3145 					 * Remove any SCBs in the waiting
3146 					 * for selection queue that may
3147 					 * also be for this target so that
3148 					 * command ordering is preserved.
3149 					 */
3150 					ahd_freeze_devq(ahd, scb);
3151 					ahd_qinfifo_requeue_tail(ahd, scb);
3152 				}
3153 				printerror = 0;
3154 			}
3155 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3156 			&& ppr_busfree == 0) {
3157 			/*
3158 			 * Negotiation Rejected.  Go-narrow and
3159 			 * retry command.
3160 			 */
3161 #ifdef AHD_DEBUG
3162 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3163 				printk("WDTR negotiation rejected busfree.\n");
3164 #endif
3165 			ahd_set_width(ahd, &devinfo,
3166 				      MSG_EXT_WDTR_BUS_8_BIT,
3167 				      AHD_TRANS_CUR|AHD_TRANS_GOAL,
3168 				      /*paused*/TRUE);
3169 			if (scb != NULL) {
3170 				/*
3171 				 * Remove any SCBs in the waiting for
3172 				 * selection queue that may also be for
3173 				 * this target so that command ordering
3174 				 * is preserved.
3175 				 */
3176 				ahd_freeze_devq(ahd, scb);
3177 				ahd_qinfifo_requeue_tail(ahd, scb);
3178 			}
3179 			printerror = 0;
3180 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3181 			&& ppr_busfree == 0) {
3182 			/*
3183 			 * Negotiation Rejected.  Go-async and
3184 			 * retry command.
3185 			 */
3186 #ifdef AHD_DEBUG
3187 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3188 				printk("SDTR negotiation rejected busfree.\n");
3189 #endif
3190 			ahd_set_syncrate(ahd, &devinfo,
3191 					/*period*/0, /*offset*/0,
3192 					/*ppr_options*/0,
3193 					AHD_TRANS_CUR|AHD_TRANS_GOAL,
3194 					/*paused*/TRUE);
3195 			if (scb != NULL) {
3196 				/*
3197 				 * Remove any SCBs in the waiting for
3198 				 * selection queue that may also be for
3199 				 * this target so that command ordering
3200 				 * is preserved.
3201 				 */
3202 				ahd_freeze_devq(ahd, scb);
3203 				ahd_qinfifo_requeue_tail(ahd, scb);
3204 			}
3205 			printerror = 0;
3206 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3207 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3208 					 MSG_INITIATOR_DET_ERR, TRUE)) {
3209 
3210 #ifdef AHD_DEBUG
3211 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3212 				printk("Expected IDE Busfree\n");
3213 #endif
3214 			printerror = 0;
3215 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3216 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3217 					MSG_MESSAGE_REJECT, TRUE)) {
3218 
3219 #ifdef AHD_DEBUG
3220 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3221 				printk("Expected QAS Reject Busfree\n");
3222 #endif
3223 			printerror = 0;
3224 		}
3225 	}
3226 
3227 	/*
3228 	 * The busfree required flag is honored at the end of
3229 	 * the message phases.  We check it last in case we
3230 	 * had to send some other message that caused a busfree.
3231 	 */
3232 	if (scb != NULL && printerror != 0
3233 	 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3234 	 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3235 
3236 		ahd_freeze_devq(ahd, scb);
3237 		ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3238 		ahd_freeze_scb(scb);
3239 		if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3240 			ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3241 				       SCB_GET_CHANNEL(ahd, scb),
3242 				       SCB_GET_LUN(scb), SCB_LIST_NULL,
3243 				       ROLE_INITIATOR, CAM_REQ_ABORTED);
3244 		} else {
3245 #ifdef AHD_DEBUG
3246 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3247 				printk("PPR Negotiation Busfree.\n");
3248 #endif
3249 			ahd_done(ahd, scb);
3250 		}
3251 		printerror = 0;
3252 	}
3253 	if (printerror != 0) {
3254 		int aborted;
3255 
3256 		aborted = 0;
3257 		if (scb != NULL) {
3258 			u_int tag;
3259 
3260 			if ((scb->hscb->control & TAG_ENB) != 0)
3261 				tag = SCB_GET_TAG(scb);
3262 			else
3263 				tag = SCB_LIST_NULL;
3264 			ahd_print_path(ahd, scb);
3265 			aborted = ahd_abort_scbs(ahd, target, 'A',
3266 				       SCB_GET_LUN(scb), tag,
3267 				       ROLE_INITIATOR,
3268 				       CAM_UNEXP_BUSFREE);
3269 		} else {
3270 			/*
3271 			 * We had not fully identified this connection,
3272 			 * so we cannot abort anything.
3273 			 */
3274 			printk("%s: ", ahd_name(ahd));
3275 		}
3276 		printk("Unexpected busfree %s, %d SCBs aborted, "
3277 		       "PRGMCNT == 0x%x\n",
3278 		       ahd_lookup_phase_entry(lastphase)->phasemsg,
3279 		       aborted,
3280 		       ahd_inw(ahd, PRGMCNT));
3281 		ahd_dump_card_state(ahd);
3282 		if (lastphase != P_BUSFREE)
3283 			ahd_force_renegotiation(ahd, &devinfo);
3284 	}
3285 	/* Always restart the sequencer. */
3286 	return (1);
3287 }
3288 
3289 static void
3290 ahd_handle_proto_violation(struct ahd_softc *ahd)
3291 {
3292 	struct	ahd_devinfo devinfo;
3293 	struct	scb *scb;
3294 	u_int	scbid;
3295 	u_int	seq_flags;
3296 	u_int	curphase;
3297 	u_int	lastphase;
3298 	int	found;
3299 
3300 	ahd_fetch_devinfo(ahd, &devinfo);
3301 	scbid = ahd_get_scbptr(ahd);
3302 	scb = ahd_lookup_scb(ahd, scbid);
3303 	seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3304 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3305 	lastphase = ahd_inb(ahd, LASTPHASE);
3306 	if ((seq_flags & NOT_IDENTIFIED) != 0) {
3307 
3308 		/*
3309 		 * The reconnecting target either did not send an
3310 		 * identify message, or did, but we didn't find an SCB
3311 		 * to match.
3312 		 */
3313 		ahd_print_devinfo(ahd, &devinfo);
3314 		printk("Target did not send an IDENTIFY message. "
3315 		       "LASTPHASE = 0x%x.\n", lastphase);
3316 		scb = NULL;
3317 	} else if (scb == NULL) {
3318 		/*
3319 		 * We don't seem to have an SCB active for this
3320 		 * transaction.  Print an error and reset the bus.
3321 		 */
3322 		ahd_print_devinfo(ahd, &devinfo);
3323 		printk("No SCB found during protocol violation\n");
3324 		goto proto_violation_reset;
3325 	} else {
3326 		ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3327 		if ((seq_flags & NO_CDB_SENT) != 0) {
3328 			ahd_print_path(ahd, scb);
3329 			printk("No or incomplete CDB sent to device.\n");
3330 		} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3331 			  & STATUS_RCVD) == 0) {
3332 			/*
3333 			 * The target never bothered to provide status to
3334 			 * us prior to completing the command.  Since we don't
3335 			 * know the disposition of this command, we must attempt
3336 			 * to abort it.  Assert ATN and prepare to send an abort
3337 			 * message.
3338 			 */
3339 			ahd_print_path(ahd, scb);
3340 			printk("Completed command without status.\n");
3341 		} else {
3342 			ahd_print_path(ahd, scb);
3343 			printk("Unknown protocol violation.\n");
3344 			ahd_dump_card_state(ahd);
3345 		}
3346 	}
3347 	if ((lastphase & ~P_DATAIN_DT) == 0
3348 	 || lastphase == P_COMMAND) {
3349 proto_violation_reset:
3350 		/*
3351 		 * Target either went directly to data
3352 		 * phase or didn't respond to our ATN.
3353 		 * The only safe thing to do is to blow
3354 		 * it away with a bus reset.
3355 		 */
3356 		found = ahd_reset_channel(ahd, 'A', TRUE);
3357 		printk("%s: Issued Channel %c Bus Reset. "
3358 		       "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3359 	} else {
3360 		/*
3361 		 * Leave the selection hardware off in case
3362 		 * this abort attempt will affect yet to
3363 		 * be sent commands.
3364 		 */
3365 		ahd_outb(ahd, SCSISEQ0,
3366 			 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3367 		ahd_assert_atn(ahd);
3368 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
3369 		if (scb == NULL) {
3370 			ahd_print_devinfo(ahd, &devinfo);
3371 			ahd->msgout_buf[0] = MSG_ABORT_TASK;
3372 			ahd->msgout_len = 1;
3373 			ahd->msgout_index = 0;
3374 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3375 		} else {
3376 			ahd_print_path(ahd, scb);
3377 			scb->flags |= SCB_ABORT;
3378 		}
3379 		printk("Protocol violation %s.  Attempting to abort.\n",
3380 		       ahd_lookup_phase_entry(curphase)->phasemsg);
3381 	}
3382 }
3383 
3384 /*
3385  * Force renegotiation to occur the next time we initiate
3386  * a command to the current device.
3387  */
3388 static void
3389 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3390 {
3391 	struct	ahd_initiator_tinfo *targ_info;
3392 	struct	ahd_tmode_tstate *tstate;
3393 
3394 #ifdef AHD_DEBUG
3395 	if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3396 		ahd_print_devinfo(ahd, devinfo);
3397 		printk("Forcing renegotiation\n");
3398 	}
3399 #endif
3400 	targ_info = ahd_fetch_transinfo(ahd,
3401 					devinfo->channel,
3402 					devinfo->our_scsiid,
3403 					devinfo->target,
3404 					&tstate);
3405 	ahd_update_neg_request(ahd, devinfo, tstate,
3406 			       targ_info, AHD_NEG_IF_NON_ASYNC);
3407 }
3408 
3409 #define AHD_MAX_STEPS 2000
3410 static void
3411 ahd_clear_critical_section(struct ahd_softc *ahd)
3412 {
3413 	ahd_mode_state	saved_modes;
3414 	int		stepping;
3415 	int		steps;
3416 	int		first_instr;
3417 	u_int		simode0;
3418 	u_int		simode1;
3419 	u_int		simode3;
3420 	u_int		lqimode0;
3421 	u_int		lqimode1;
3422 	u_int		lqomode0;
3423 	u_int		lqomode1;
3424 
3425 	if (ahd->num_critical_sections == 0)
3426 		return;
3427 
3428 	stepping = FALSE;
3429 	steps = 0;
3430 	first_instr = 0;
3431 	simode0 = 0;
3432 	simode1 = 0;
3433 	simode3 = 0;
3434 	lqimode0 = 0;
3435 	lqimode1 = 0;
3436 	lqomode0 = 0;
3437 	lqomode1 = 0;
3438 	saved_modes = ahd_save_modes(ahd);
3439 	for (;;) {
3440 		struct	cs *cs;
3441 		u_int	seqaddr;
3442 		u_int	i;
3443 
3444 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3445 		seqaddr = ahd_inw(ahd, CURADDR);
3446 
3447 		cs = ahd->critical_sections;
3448 		for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3449 
3450 			if (cs->begin < seqaddr && cs->end >= seqaddr)
3451 				break;
3452 		}
3453 
3454 		if (i == ahd->num_critical_sections)
3455 			break;
3456 
3457 		if (steps > AHD_MAX_STEPS) {
3458 			printk("%s: Infinite loop in critical section\n"
3459 			       "%s: First Instruction 0x%x now 0x%x\n",
3460 			       ahd_name(ahd), ahd_name(ahd), first_instr,
3461 			       seqaddr);
3462 			ahd_dump_card_state(ahd);
3463 			panic("critical section loop");
3464 		}
3465 
3466 		steps++;
3467 #ifdef AHD_DEBUG
3468 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
3469 			printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3470 			       seqaddr);
3471 #endif
3472 		if (stepping == FALSE) {
3473 
3474 			first_instr = seqaddr;
3475   			ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3476   			simode0 = ahd_inb(ahd, SIMODE0);
3477 			simode3 = ahd_inb(ahd, SIMODE3);
3478 			lqimode0 = ahd_inb(ahd, LQIMODE0);
3479 			lqimode1 = ahd_inb(ahd, LQIMODE1);
3480 			lqomode0 = ahd_inb(ahd, LQOMODE0);
3481 			lqomode1 = ahd_inb(ahd, LQOMODE1);
3482 			ahd_outb(ahd, SIMODE0, 0);
3483 			ahd_outb(ahd, SIMODE3, 0);
3484 			ahd_outb(ahd, LQIMODE0, 0);
3485 			ahd_outb(ahd, LQIMODE1, 0);
3486 			ahd_outb(ahd, LQOMODE0, 0);
3487 			ahd_outb(ahd, LQOMODE1, 0);
3488 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3489 			simode1 = ahd_inb(ahd, SIMODE1);
3490 			/*
3491 			 * We don't clear ENBUSFREE.  Unfortunately
3492 			 * we cannot re-enable busfree detection within
3493 			 * the current connection, so we must leave it
3494 			 * on while single stepping.
3495 			 */
3496 			ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3497 			ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3498 			stepping = TRUE;
3499 		}
3500 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3501 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3502 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3503 		ahd_outb(ahd, HCNTRL, ahd->unpause);
3504 		while (!ahd_is_paused(ahd))
3505 			ahd_delay(200);
3506 		ahd_update_modes(ahd);
3507 	}
3508 	if (stepping) {
3509 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3510 		ahd_outb(ahd, SIMODE0, simode0);
3511 		ahd_outb(ahd, SIMODE3, simode3);
3512 		ahd_outb(ahd, LQIMODE0, lqimode0);
3513 		ahd_outb(ahd, LQIMODE1, lqimode1);
3514 		ahd_outb(ahd, LQOMODE0, lqomode0);
3515 		ahd_outb(ahd, LQOMODE1, lqomode1);
3516 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3517 		ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3518   		ahd_outb(ahd, SIMODE1, simode1);
3519 		/*
3520 		 * SCSIINT seems to glitch occasionally when
3521 		 * the interrupt masks are restored.  Clear SCSIINT
3522 		 * one more time so that only persistent errors
3523 		 * are seen as a real interrupt.
3524 		 */
3525 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3526 	}
3527 	ahd_restore_modes(ahd, saved_modes);
3528 }
3529 
3530 /*
3531  * Clear any pending interrupt status.
3532  */
3533 static void
3534 ahd_clear_intstat(struct ahd_softc *ahd)
3535 {
3536 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3537 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3538 	/* Clear any interrupt conditions this may have caused */
3539 	ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3540 				 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3541 	ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3542 				 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3543 				 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3544 	ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3545 				 |CLRLQOATNPKT|CLRLQOTCRC);
3546 	ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3547 				 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3548 	if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3549 		ahd_outb(ahd, CLRLQOINT0, 0);
3550 		ahd_outb(ahd, CLRLQOINT1, 0);
3551 	}
3552 	ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3553 	ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3554 				|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3555 	ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3556 			        |CLRIOERR|CLROVERRUN);
3557 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
3558 }
3559 
3560 /**************************** Debugging Routines ******************************/
3561 #ifdef AHD_DEBUG
3562 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3563 #endif
3564 
3565 #if 0
3566 void
3567 ahd_print_scb(struct scb *scb)
3568 {
3569 	struct hardware_scb *hscb;
3570 	int i;
3571 
3572 	hscb = scb->hscb;
3573 	printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3574 	       (void *)scb,
3575 	       hscb->control,
3576 	       hscb->scsiid,
3577 	       hscb->lun,
3578 	       hscb->cdb_len);
3579 	printk("Shared Data: ");
3580 	for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3581 		printk("%#02x", hscb->shared_data.idata.cdb[i]);
3582 	printk("        dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3583 	       (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3584 	       (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3585 	       ahd_le32toh(hscb->datacnt),
3586 	       ahd_le32toh(hscb->sgptr),
3587 	       SCB_GET_TAG(scb));
3588 	ahd_dump_sglist(scb);
3589 }
3590 #endif  /*  0  */
3591 
3592 /************************* Transfer Negotiation *******************************/
3593 /*
3594  * Allocate per target mode instance (ID we respond to as a target)
3595  * transfer negotiation data structures.
3596  */
3597 static struct ahd_tmode_tstate *
3598 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3599 {
3600 	struct ahd_tmode_tstate *master_tstate;
3601 	struct ahd_tmode_tstate *tstate;
3602 	int i;
3603 
3604 	master_tstate = ahd->enabled_targets[ahd->our_id];
3605 	if (ahd->enabled_targets[scsi_id] != NULL
3606 	 && ahd->enabled_targets[scsi_id] != master_tstate)
3607 		panic("%s: ahd_alloc_tstate - Target already allocated",
3608 		      ahd_name(ahd));
3609 	tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3610 	if (tstate == NULL)
3611 		return (NULL);
3612 
3613 	/*
3614 	 * If we have allocated a master tstate, copy user settings from
3615 	 * the master tstate (taken from SRAM or the EEPROM) for this
3616 	 * channel, but reset our current and goal settings to async/narrow
3617 	 * until an initiator talks to us.
3618 	 */
3619 	if (master_tstate != NULL) {
3620 		memcpy(tstate, master_tstate, sizeof(*tstate));
3621 		memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3622 		for (i = 0; i < 16; i++) {
3623 			memset(&tstate->transinfo[i].curr, 0,
3624 			      sizeof(tstate->transinfo[i].curr));
3625 			memset(&tstate->transinfo[i].goal, 0,
3626 			      sizeof(tstate->transinfo[i].goal));
3627 		}
3628 	} else
3629 		memset(tstate, 0, sizeof(*tstate));
3630 	ahd->enabled_targets[scsi_id] = tstate;
3631 	return (tstate);
3632 }
3633 
3634 #ifdef AHD_TARGET_MODE
3635 /*
3636  * Free per target mode instance (ID we respond to as a target)
3637  * transfer negotiation data structures.
3638  */
3639 static void
3640 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3641 {
3642 	struct ahd_tmode_tstate *tstate;
3643 
3644 	/*
3645 	 * Don't clean up our "master" tstate.
3646 	 * It has our default user settings.
3647 	 */
3648 	if (scsi_id == ahd->our_id
3649 	 && force == FALSE)
3650 		return;
3651 
3652 	tstate = ahd->enabled_targets[scsi_id];
3653 	kfree(tstate);
3654 	ahd->enabled_targets[scsi_id] = NULL;
3655 }
3656 #endif
3657 
3658 /*
3659  * Called when we have an active connection to a target on the bus,
3660  * this function finds the nearest period to the input period limited
3661  * by the capabilities of the bus connectivity of and sync settings for
3662  * the target.
3663  */
3664 static void
3665 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3666 			struct ahd_initiator_tinfo *tinfo,
3667 			u_int *period, u_int *ppr_options, role_t role)
3668 {
3669 	struct	ahd_transinfo *transinfo;
3670 	u_int	maxsync;
3671 
3672 	if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3673 	 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3674 		maxsync = AHD_SYNCRATE_PACED;
3675 	} else {
3676 		maxsync = AHD_SYNCRATE_ULTRA;
3677 		/* Can't do DT related options on an SE bus */
3678 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3679 	}
3680 	/*
3681 	 * Never allow a value higher than our current goal
3682 	 * period otherwise we may allow a target initiated
3683 	 * negotiation to go above the limit as set by the
3684 	 * user.  In the case of an initiator initiated
3685 	 * sync negotiation, we limit based on the user
3686 	 * setting.  This allows the system to still accept
3687 	 * incoming negotiations even if target initiated
3688 	 * negotiation is not performed.
3689 	 */
3690 	if (role == ROLE_TARGET)
3691 		transinfo = &tinfo->user;
3692 	else
3693 		transinfo = &tinfo->goal;
3694 	*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3695 	if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3696 		maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3697 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3698 	}
3699 	if (transinfo->period == 0) {
3700 		*period = 0;
3701 		*ppr_options = 0;
3702 	} else {
3703 		*period = max(*period, (u_int)transinfo->period);
3704 		ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3705 	}
3706 }
3707 
3708 /*
3709  * Look up the valid period to SCSIRATE conversion in our table.
3710  * Return the period and offset that should be sent to the target
3711  * if this was the beginning of an SDTR.
3712  */
3713 void
3714 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3715 		  u_int *ppr_options, u_int maxsync)
3716 {
3717 	if (*period < maxsync)
3718 		*period = maxsync;
3719 
3720 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3721 	 && *period > AHD_SYNCRATE_MIN_DT)
3722 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3723 
3724 	if (*period > AHD_SYNCRATE_MIN)
3725 		*period = 0;
3726 
3727 	/* Honor PPR option conformance rules. */
3728 	if (*period > AHD_SYNCRATE_PACED)
3729 		*ppr_options &= ~MSG_EXT_PPR_RTI;
3730 
3731 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3732 		*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3733 
3734 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3735 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3736 
3737 	/* Skip all PACED only entries if IU is not available */
3738 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3739 	 && *period < AHD_SYNCRATE_DT)
3740 		*period = AHD_SYNCRATE_DT;
3741 
3742 	/* Skip all DT only entries if DT is not available */
3743 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3744 	 && *period < AHD_SYNCRATE_ULTRA2)
3745 		*period = AHD_SYNCRATE_ULTRA2;
3746 }
3747 
3748 /*
3749  * Truncate the given synchronous offset to a value the
3750  * current adapter type and syncrate are capable of.
3751  */
3752 static void
3753 ahd_validate_offset(struct ahd_softc *ahd,
3754 		    struct ahd_initiator_tinfo *tinfo,
3755 		    u_int period, u_int *offset, int wide,
3756 		    role_t role)
3757 {
3758 	u_int maxoffset;
3759 
3760 	/* Limit offset to what we can do */
3761 	if (period == 0)
3762 		maxoffset = 0;
3763 	else if (period <= AHD_SYNCRATE_PACED) {
3764 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3765 			maxoffset = MAX_OFFSET_PACED_BUG;
3766 		else
3767 			maxoffset = MAX_OFFSET_PACED;
3768 	} else
3769 		maxoffset = MAX_OFFSET_NON_PACED;
3770 	*offset = min(*offset, maxoffset);
3771 	if (tinfo != NULL) {
3772 		if (role == ROLE_TARGET)
3773 			*offset = min(*offset, (u_int)tinfo->user.offset);
3774 		else
3775 			*offset = min(*offset, (u_int)tinfo->goal.offset);
3776 	}
3777 }
3778 
3779 /*
3780  * Truncate the given transfer width parameter to a value the
3781  * current adapter type is capable of.
3782  */
3783 static void
3784 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3785 		   u_int *bus_width, role_t role)
3786 {
3787 	switch (*bus_width) {
3788 	default:
3789 		if (ahd->features & AHD_WIDE) {
3790 			/* Respond Wide */
3791 			*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3792 			break;
3793 		}
3794 		fallthrough;
3795 	case MSG_EXT_WDTR_BUS_8_BIT:
3796 		*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3797 		break;
3798 	}
3799 	if (tinfo != NULL) {
3800 		if (role == ROLE_TARGET)
3801 			*bus_width = min((u_int)tinfo->user.width, *bus_width);
3802 		else
3803 			*bus_width = min((u_int)tinfo->goal.width, *bus_width);
3804 	}
3805 }
3806 
3807 /*
3808  * Update the bitmask of targets for which the controller should
3809  * negotiate with at the next convenient opportunity.  This currently
3810  * means the next time we send the initial identify messages for
3811  * a new transaction.
3812  */
3813 int
3814 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3815 		       struct ahd_tmode_tstate *tstate,
3816 		       struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3817 {
3818 	u_int auto_negotiate_orig;
3819 
3820 	auto_negotiate_orig = tstate->auto_negotiate;
3821 	if (neg_type == AHD_NEG_ALWAYS) {
3822 		/*
3823 		 * Force our "current" settings to be
3824 		 * unknown so that unless a bus reset
3825 		 * occurs the need to renegotiate is
3826 		 * recorded persistently.
3827 		 */
3828 		if ((ahd->features & AHD_WIDE) != 0)
3829 			tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3830 		tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3831 		tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3832 	}
3833 	if (tinfo->curr.period != tinfo->goal.period
3834 	 || tinfo->curr.width != tinfo->goal.width
3835 	 || tinfo->curr.offset != tinfo->goal.offset
3836 	 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3837 	 || (neg_type == AHD_NEG_IF_NON_ASYNC
3838 	  && (tinfo->goal.offset != 0
3839 	   || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3840 	   || tinfo->goal.ppr_options != 0)))
3841 		tstate->auto_negotiate |= devinfo->target_mask;
3842 	else
3843 		tstate->auto_negotiate &= ~devinfo->target_mask;
3844 
3845 	return (auto_negotiate_orig != tstate->auto_negotiate);
3846 }
3847 
3848 /*
3849  * Update the user/goal/curr tables of synchronous negotiation
3850  * parameters as well as, in the case of a current or active update,
3851  * any data structures on the host controller.  In the case of an
3852  * active update, the specified target is currently talking to us on
3853  * the bus, so the transfer parameter update must take effect
3854  * immediately.
3855  */
3856 void
3857 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3858 		 u_int period, u_int offset, u_int ppr_options,
3859 		 u_int type, int paused)
3860 {
3861 	struct	ahd_initiator_tinfo *tinfo;
3862 	struct	ahd_tmode_tstate *tstate;
3863 	u_int	old_period;
3864 	u_int	old_offset;
3865 	u_int	old_ppr;
3866 	int	active;
3867 	int	update_needed;
3868 
3869 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3870 	update_needed = 0;
3871 
3872 	if (period == 0 || offset == 0) {
3873 		period = 0;
3874 		offset = 0;
3875 	}
3876 
3877 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3878 				    devinfo->target, &tstate);
3879 
3880 	if ((type & AHD_TRANS_USER) != 0) {
3881 		tinfo->user.period = period;
3882 		tinfo->user.offset = offset;
3883 		tinfo->user.ppr_options = ppr_options;
3884 	}
3885 
3886 	if ((type & AHD_TRANS_GOAL) != 0) {
3887 		tinfo->goal.period = period;
3888 		tinfo->goal.offset = offset;
3889 		tinfo->goal.ppr_options = ppr_options;
3890 	}
3891 
3892 	old_period = tinfo->curr.period;
3893 	old_offset = tinfo->curr.offset;
3894 	old_ppr	   = tinfo->curr.ppr_options;
3895 
3896 	if ((type & AHD_TRANS_CUR) != 0
3897 	 && (old_period != period
3898 	  || old_offset != offset
3899 	  || old_ppr != ppr_options)) {
3900 
3901 		update_needed++;
3902 
3903 		tinfo->curr.period = period;
3904 		tinfo->curr.offset = offset;
3905 		tinfo->curr.ppr_options = ppr_options;
3906 
3907 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
3908 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3909 		if (bootverbose) {
3910 			if (offset != 0) {
3911 				int options;
3912 
3913 				printk("%s: target %d synchronous with "
3914 				       "period = 0x%x, offset = 0x%x",
3915 				       ahd_name(ahd), devinfo->target,
3916 				       period, offset);
3917 				options = 0;
3918 				if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3919 					printk("(RDSTRM");
3920 					options++;
3921 				}
3922 				if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3923 					printk("%s", options ? "|DT" : "(DT");
3924 					options++;
3925 				}
3926 				if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3927 					printk("%s", options ? "|IU" : "(IU");
3928 					options++;
3929 				}
3930 				if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3931 					printk("%s", options ? "|RTI" : "(RTI");
3932 					options++;
3933 				}
3934 				if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3935 					printk("%s", options ? "|QAS" : "(QAS");
3936 					options++;
3937 				}
3938 				if (options != 0)
3939 					printk(")\n");
3940 				else
3941 					printk("\n");
3942 			} else {
3943 				printk("%s: target %d using "
3944 				       "asynchronous transfers%s\n",
3945 				       ahd_name(ahd), devinfo->target,
3946 				       (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3947 				     ?  "(QAS)" : "");
3948 			}
3949 		}
3950 	}
3951 	/*
3952 	 * Always refresh the neg-table to handle the case of the
3953 	 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3954 	 * We will always renegotiate in that case if this is a
3955 	 * packetized request.  Also manage the busfree expected flag
3956 	 * from this common routine so that we catch changes due to
3957 	 * WDTR or SDTR messages.
3958 	 */
3959 	if ((type & AHD_TRANS_CUR) != 0) {
3960 		if (!paused)
3961 			ahd_pause(ahd);
3962 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3963 		if (!paused)
3964 			ahd_unpause(ahd);
3965 		if (ahd->msg_type != MSG_TYPE_NONE) {
3966 			if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3967 			 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3968 #ifdef AHD_DEBUG
3969 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3970 					ahd_print_devinfo(ahd, devinfo);
3971 					printk("Expecting IU Change busfree\n");
3972 				}
3973 #endif
3974 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3975 					       |  MSG_FLAG_IU_REQ_CHANGED;
3976 			}
3977 			if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3978 #ifdef AHD_DEBUG
3979 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3980 					printk("PPR with IU_REQ outstanding\n");
3981 #endif
3982 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3983 			}
3984 		}
3985 	}
3986 
3987 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3988 						tinfo, AHD_NEG_TO_GOAL);
3989 
3990 	if (update_needed && active)
3991 		ahd_update_pending_scbs(ahd);
3992 }
3993 
3994 /*
3995  * Update the user/goal/curr tables of wide negotiation
3996  * parameters as well as, in the case of a current or active update,
3997  * any data structures on the host controller.  In the case of an
3998  * active update, the specified target is currently talking to us on
3999  * the bus, so the transfer parameter update must take effect
4000  * immediately.
4001  */
4002 void
4003 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4004 	      u_int width, u_int type, int paused)
4005 {
4006 	struct	ahd_initiator_tinfo *tinfo;
4007 	struct	ahd_tmode_tstate *tstate;
4008 	u_int	oldwidth;
4009 	int	active;
4010 	int	update_needed;
4011 
4012 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4013 	update_needed = 0;
4014 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4015 				    devinfo->target, &tstate);
4016 
4017 	if ((type & AHD_TRANS_USER) != 0)
4018 		tinfo->user.width = width;
4019 
4020 	if ((type & AHD_TRANS_GOAL) != 0)
4021 		tinfo->goal.width = width;
4022 
4023 	oldwidth = tinfo->curr.width;
4024 	if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4025 
4026 		update_needed++;
4027 
4028 		tinfo->curr.width = width;
4029 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
4030 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4031 		if (bootverbose) {
4032 			printk("%s: target %d using %dbit transfers\n",
4033 			       ahd_name(ahd), devinfo->target,
4034 			       8 * (0x01 << width));
4035 		}
4036 	}
4037 
4038 	if ((type & AHD_TRANS_CUR) != 0) {
4039 		if (!paused)
4040 			ahd_pause(ahd);
4041 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4042 		if (!paused)
4043 			ahd_unpause(ahd);
4044 	}
4045 
4046 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4047 						tinfo, AHD_NEG_TO_GOAL);
4048 	if (update_needed && active)
4049 		ahd_update_pending_scbs(ahd);
4050 
4051 }
4052 
4053 /*
4054  * Update the current state of tagged queuing for a given target.
4055  */
4056 static void
4057 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4058 	     struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4059 {
4060 	struct scsi_device *sdev = cmd->device;
4061 
4062 	ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4063 	ahd_send_async(ahd, devinfo->channel, devinfo->target,
4064 		       devinfo->lun, AC_TRANSFER_NEG);
4065 }
4066 
4067 static void
4068 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4069 		     struct ahd_transinfo *tinfo)
4070 {
4071 	ahd_mode_state	saved_modes;
4072 	u_int		period;
4073 	u_int		ppr_opts;
4074 	u_int		con_opts;
4075 	u_int		offset;
4076 	u_int		saved_negoaddr;
4077 	uint8_t		iocell_opts[sizeof(ahd->iocell_opts)];
4078 
4079 	saved_modes = ahd_save_modes(ahd);
4080 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4081 
4082 	saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4083 	ahd_outb(ahd, NEGOADDR, devinfo->target);
4084 	period = tinfo->period;
4085 	offset = tinfo->offset;
4086 	memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4087 	ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4088 					|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4089 	con_opts = 0;
4090 	if (period == 0)
4091 		period = AHD_SYNCRATE_ASYNC;
4092 	if (period == AHD_SYNCRATE_160) {
4093 
4094 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4095 			/*
4096 			 * When the SPI4 spec was finalized, PACE transfers
4097 			 * was not made a configurable option in the PPR
4098 			 * message.  Instead it is assumed to be enabled for
4099 			 * any syncrate faster than 80MHz.  Nevertheless,
4100 			 * Harpoon2A4 allows this to be configurable.
4101 			 *
4102 			 * Harpoon2A4 also assumes at most 2 data bytes per
4103 			 * negotiated REQ/ACK offset.  Paced transfers take
4104 			 * 4, so we must adjust our offset.
4105 			 */
4106 			ppr_opts |= PPROPT_PACE;
4107 			offset *= 2;
4108 
4109 			/*
4110 			 * Harpoon2A assumed that there would be a
4111 			 * fallback rate between 160MHz and 80MHz,
4112 			 * so 7 is used as the period factor rather
4113 			 * than 8 for 160MHz.
4114 			 */
4115 			period = AHD_SYNCRATE_REVA_160;
4116 		}
4117 		if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4118 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4119 			    ~AHD_PRECOMP_MASK;
4120 	} else {
4121 		/*
4122 		 * Precomp should be disabled for non-paced transfers.
4123 		 */
4124 		iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4125 
4126 		if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4127 		 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4128 		 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4129 			/*
4130 			 * Slow down our CRC interval to be
4131 			 * compatible with non-packetized
4132 			 * U160 devices that can't handle a
4133 			 * CRC at full speed.
4134 			 */
4135 			con_opts |= ENSLOWCRC;
4136 		}
4137 
4138 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4139 			/*
4140 			 * On H2A4, revert to a slower slewrate
4141 			 * on non-paced transfers.
4142 			 */
4143 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4144 			    ~AHD_SLEWRATE_MASK;
4145 		}
4146 	}
4147 
4148 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4149 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4150 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4151 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4152 
4153 	ahd_outb(ahd, NEGPERIOD, period);
4154 	ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4155 	ahd_outb(ahd, NEGOFFSET, offset);
4156 
4157 	if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4158 		con_opts |= WIDEXFER;
4159 
4160 	/*
4161 	 * Slow down our CRC interval to be
4162 	 * compatible with packetized U320 devices
4163 	 * that can't handle a CRC at full speed
4164 	 */
4165 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4166 		con_opts |= ENSLOWCRC;
4167 	}
4168 
4169 	/*
4170 	 * During packetized transfers, the target will
4171 	 * give us the opportunity to send command packets
4172 	 * without us asserting attention.
4173 	 */
4174 	if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4175 		con_opts |= ENAUTOATNO;
4176 	ahd_outb(ahd, NEGCONOPTS, con_opts);
4177 	ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4178 	ahd_restore_modes(ahd, saved_modes);
4179 }
4180 
4181 /*
4182  * When the transfer settings for a connection change, setup for
4183  * negotiation in pending SCBs to effect the change as quickly as
4184  * possible.  We also cancel any negotiations that are scheduled
4185  * for inflight SCBs that have not been started yet.
4186  */
4187 static void
4188 ahd_update_pending_scbs(struct ahd_softc *ahd)
4189 {
4190 	struct		scb *pending_scb;
4191 	int		pending_scb_count;
4192 	int		paused;
4193 	u_int		saved_scbptr;
4194 	ahd_mode_state	saved_modes;
4195 
4196 	/*
4197 	 * Traverse the pending SCB list and ensure that all of the
4198 	 * SCBs there have the proper settings.  We can only safely
4199 	 * clear the negotiation required flag (setting requires the
4200 	 * execution queue to be modified) and this is only possible
4201 	 * if we are not already attempting to select out for this
4202 	 * SCB.  For this reason, all callers only call this routine
4203 	 * if we are changing the negotiation settings for the currently
4204 	 * active transaction on the bus.
4205 	 */
4206 	pending_scb_count = 0;
4207 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4208 		struct ahd_devinfo devinfo;
4209 		struct ahd_tmode_tstate *tstate;
4210 
4211 		ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4212 		ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid,
4213 				    devinfo.target, &tstate);
4214 		if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4215 		 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4216 			pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4217 			pending_scb->hscb->control &= ~MK_MESSAGE;
4218 		}
4219 		ahd_sync_scb(ahd, pending_scb,
4220 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4221 		pending_scb_count++;
4222 	}
4223 
4224 	if (pending_scb_count == 0)
4225 		return;
4226 
4227 	if (ahd_is_paused(ahd)) {
4228 		paused = 1;
4229 	} else {
4230 		paused = 0;
4231 		ahd_pause(ahd);
4232 	}
4233 
4234 	/*
4235 	 * Force the sequencer to reinitialize the selection for
4236 	 * the command at the head of the execution queue if it
4237 	 * has already been setup.  The negotiation changes may
4238 	 * effect whether we select-out with ATN.  It is only
4239 	 * safe to clear ENSELO when the bus is not free and no
4240 	 * selection is in progres or completed.
4241 	 */
4242 	saved_modes = ahd_save_modes(ahd);
4243 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4244 	if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4245 	 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4246 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4247 	saved_scbptr = ahd_get_scbptr(ahd);
4248 	/* Ensure that the hscbs down on the card match the new information */
4249 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4250 		u_int	scb_tag;
4251 		u_int	control;
4252 
4253 		scb_tag = SCB_GET_TAG(pending_scb);
4254 		ahd_set_scbptr(ahd, scb_tag);
4255 		control = ahd_inb_scbram(ahd, SCB_CONTROL);
4256 		control &= ~MK_MESSAGE;
4257 		control |= pending_scb->hscb->control & MK_MESSAGE;
4258 		ahd_outb(ahd, SCB_CONTROL, control);
4259 	}
4260 	ahd_set_scbptr(ahd, saved_scbptr);
4261 	ahd_restore_modes(ahd, saved_modes);
4262 
4263 	if (paused == 0)
4264 		ahd_unpause(ahd);
4265 }
4266 
4267 /**************************** Pathing Information *****************************/
4268 static void
4269 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4270 {
4271 	ahd_mode_state	saved_modes;
4272 	u_int		saved_scsiid;
4273 	role_t		role;
4274 	int		our_id;
4275 
4276 	saved_modes = ahd_save_modes(ahd);
4277 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4278 
4279 	if (ahd_inb(ahd, SSTAT0) & TARGET)
4280 		role = ROLE_TARGET;
4281 	else
4282 		role = ROLE_INITIATOR;
4283 
4284 	if (role == ROLE_TARGET
4285 	 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4286 		/* We were selected, so pull our id from TARGIDIN */
4287 		our_id = ahd_inb(ahd, TARGIDIN) & OID;
4288 	} else if (role == ROLE_TARGET)
4289 		our_id = ahd_inb(ahd, TOWNID);
4290 	else
4291 		our_id = ahd_inb(ahd, IOWNID);
4292 
4293 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4294 	ahd_compile_devinfo(devinfo,
4295 			    our_id,
4296 			    SCSIID_TARGET(ahd, saved_scsiid),
4297 			    ahd_inb(ahd, SAVED_LUN),
4298 			    SCSIID_CHANNEL(ahd, saved_scsiid),
4299 			    role);
4300 	ahd_restore_modes(ahd, saved_modes);
4301 }
4302 
4303 void
4304 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4305 {
4306 	printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4307 	       devinfo->target, devinfo->lun);
4308 }
4309 
4310 static const struct ahd_phase_table_entry*
4311 ahd_lookup_phase_entry(int phase)
4312 {
4313 	const struct ahd_phase_table_entry *entry;
4314 	const struct ahd_phase_table_entry *last_entry;
4315 
4316 	/*
4317 	 * num_phases doesn't include the default entry which
4318 	 * will be returned if the phase doesn't match.
4319 	 */
4320 	last_entry = &ahd_phase_table[num_phases];
4321 	for (entry = ahd_phase_table; entry < last_entry; entry++) {
4322 		if (phase == entry->phase)
4323 			break;
4324 	}
4325 	return (entry);
4326 }
4327 
4328 void
4329 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4330 		    u_int lun, char channel, role_t role)
4331 {
4332 	devinfo->our_scsiid = our_id;
4333 	devinfo->target = target;
4334 	devinfo->lun = lun;
4335 	devinfo->target_offset = target;
4336 	devinfo->channel = channel;
4337 	devinfo->role = role;
4338 	if (channel == 'B')
4339 		devinfo->target_offset += 8;
4340 	devinfo->target_mask = (0x01 << devinfo->target_offset);
4341 }
4342 
4343 static void
4344 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4345 		struct scb *scb)
4346 {
4347 	role_t	role;
4348 	int	our_id;
4349 
4350 	our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4351 	role = ROLE_INITIATOR;
4352 	if ((scb->hscb->control & TARGET_SCB) != 0)
4353 		role = ROLE_TARGET;
4354 	ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4355 			    SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4356 }
4357 
4358 
4359 /************************ Message Phase Processing ****************************/
4360 /*
4361  * When an initiator transaction with the MK_MESSAGE flag either reconnects
4362  * or enters the initial message out phase, we are interrupted.  Fill our
4363  * outgoing message buffer with the appropriate message and beging handing
4364  * the message phase(s) manually.
4365  */
4366 static void
4367 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4368 			   struct scb *scb)
4369 {
4370 	/*
4371 	 * To facilitate adding multiple messages together,
4372 	 * each routine should increment the index and len
4373 	 * variables instead of setting them explicitly.
4374 	 */
4375 	ahd->msgout_index = 0;
4376 	ahd->msgout_len = 0;
4377 
4378 	if (ahd_currently_packetized(ahd))
4379 		ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4380 
4381 	if (ahd->send_msg_perror
4382 	 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4383 		ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4384 		ahd->msgout_len++;
4385 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4386 #ifdef AHD_DEBUG
4387 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4388 			printk("Setting up for Parity Error delivery\n");
4389 #endif
4390 		return;
4391 	} else if (scb == NULL) {
4392 		printk("%s: WARNING. No pending message for "
4393 		       "I_T msgin.  Issuing NO-OP\n", ahd_name(ahd));
4394 		ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4395 		ahd->msgout_len++;
4396 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4397 		return;
4398 	}
4399 
4400 	if ((scb->flags & SCB_DEVICE_RESET) == 0
4401 	 && (scb->flags & SCB_PACKETIZED) == 0
4402 	 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4403 		u_int identify_msg;
4404 
4405 		identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4406 		if ((scb->hscb->control & DISCENB) != 0)
4407 			identify_msg |= MSG_IDENTIFY_DISCFLAG;
4408 		ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4409 		ahd->msgout_len++;
4410 
4411 		if ((scb->hscb->control & TAG_ENB) != 0) {
4412 			ahd->msgout_buf[ahd->msgout_index++] =
4413 			    scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4414 			ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4415 			ahd->msgout_len += 2;
4416 		}
4417 	}
4418 
4419 	if (scb->flags & SCB_DEVICE_RESET) {
4420 		ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4421 		ahd->msgout_len++;
4422 		ahd_print_path(ahd, scb);
4423 		printk("Bus Device Reset Message Sent\n");
4424 		/*
4425 		 * Clear our selection hardware in advance of
4426 		 * the busfree.  We may have an entry in the waiting
4427 		 * Q for this target, and we don't want to go about
4428 		 * selecting while we handle the busfree and blow it
4429 		 * away.
4430 		 */
4431 		ahd_outb(ahd, SCSISEQ0, 0);
4432 	} else if ((scb->flags & SCB_ABORT) != 0) {
4433 
4434 		if ((scb->hscb->control & TAG_ENB) != 0) {
4435 			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4436 		} else {
4437 			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4438 		}
4439 		ahd->msgout_len++;
4440 		ahd_print_path(ahd, scb);
4441 		printk("Abort%s Message Sent\n",
4442 		       (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4443 		/*
4444 		 * Clear our selection hardware in advance of
4445 		 * the busfree.  We may have an entry in the waiting
4446 		 * Q for this target, and we don't want to go about
4447 		 * selecting while we handle the busfree and blow it
4448 		 * away.
4449 		 */
4450 		ahd_outb(ahd, SCSISEQ0, 0);
4451 	} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4452 		ahd_build_transfer_msg(ahd, devinfo);
4453 		/*
4454 		 * Clear our selection hardware in advance of potential
4455 		 * PPR IU status change busfree.  We may have an entry in
4456 		 * the waiting Q for this target, and we don't want to go
4457 		 * about selecting while we handle the busfree and blow
4458 		 * it away.
4459 		 */
4460 		ahd_outb(ahd, SCSISEQ0, 0);
4461 	} else {
4462 		printk("ahd_intr: AWAITING_MSG for an SCB that "
4463 		       "does not have a waiting message\n");
4464 		printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4465 		       devinfo->target_mask);
4466 		panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4467 		      "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4468 		      ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4469 		      scb->flags);
4470 	}
4471 
4472 	/*
4473 	 * Clear the MK_MESSAGE flag from the SCB so we aren't
4474 	 * asked to send this message again.
4475 	 */
4476 	ahd_outb(ahd, SCB_CONTROL,
4477 		 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4478 	scb->hscb->control &= ~MK_MESSAGE;
4479 	ahd->msgout_index = 0;
4480 	ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4481 }
4482 
4483 /*
4484  * Build an appropriate transfer negotiation message for the
4485  * currently active target.
4486  */
4487 static void
4488 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4489 {
4490 	/*
4491 	 * We need to initiate transfer negotiations.
4492 	 * If our current and goal settings are identical,
4493 	 * we want to renegotiate due to a check condition.
4494 	 */
4495 	struct	ahd_initiator_tinfo *tinfo;
4496 	struct	ahd_tmode_tstate *tstate;
4497 	int	dowide;
4498 	int	dosync;
4499 	int	doppr;
4500 	u_int	period;
4501 	u_int	ppr_options;
4502 	u_int	offset;
4503 
4504 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4505 				    devinfo->target, &tstate);
4506 	/*
4507 	 * Filter our period based on the current connection.
4508 	 * If we can't perform DT transfers on this segment (not in LVD
4509 	 * mode for instance), then our decision to issue a PPR message
4510 	 * may change.
4511 	 */
4512 	period = tinfo->goal.period;
4513 	offset = tinfo->goal.offset;
4514 	ppr_options = tinfo->goal.ppr_options;
4515 	/* Target initiated PPR is not allowed in the SCSI spec */
4516 	if (devinfo->role == ROLE_TARGET)
4517 		ppr_options = 0;
4518 	ahd_devlimited_syncrate(ahd, tinfo, &period,
4519 				&ppr_options, devinfo->role);
4520 	dowide = tinfo->curr.width != tinfo->goal.width;
4521 	dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4522 	/*
4523 	 * Only use PPR if we have options that need it, even if the device
4524 	 * claims to support it.  There might be an expander in the way
4525 	 * that doesn't.
4526 	 */
4527 	doppr = ppr_options != 0;
4528 
4529 	if (!dowide && !dosync && !doppr) {
4530 		dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4531 		dosync = tinfo->goal.offset != 0;
4532 	}
4533 
4534 	if (!dowide && !dosync && !doppr) {
4535 		/*
4536 		 * Force async with a WDTR message if we have a wide bus,
4537 		 * or just issue an SDTR with a 0 offset.
4538 		 */
4539 		if ((ahd->features & AHD_WIDE) != 0)
4540 			dowide = 1;
4541 		else
4542 			dosync = 1;
4543 
4544 		if (bootverbose) {
4545 			ahd_print_devinfo(ahd, devinfo);
4546 			printk("Ensuring async\n");
4547 		}
4548 	}
4549 	/* Target initiated PPR is not allowed in the SCSI spec */
4550 	if (devinfo->role == ROLE_TARGET)
4551 		doppr = 0;
4552 
4553 	/*
4554 	 * Both the PPR message and SDTR message require the
4555 	 * goal syncrate to be limited to what the target device
4556 	 * is capable of handling (based on whether an LVD->SE
4557 	 * expander is on the bus), so combine these two cases.
4558 	 * Regardless, guarantee that if we are using WDTR and SDTR
4559 	 * messages that WDTR comes first.
4560 	 */
4561 	if (doppr || (dosync && !dowide)) {
4562 
4563 		offset = tinfo->goal.offset;
4564 		ahd_validate_offset(ahd, tinfo, period, &offset,
4565 				    doppr ? tinfo->goal.width
4566 					  : tinfo->curr.width,
4567 				    devinfo->role);
4568 		if (doppr) {
4569 			ahd_construct_ppr(ahd, devinfo, period, offset,
4570 					  tinfo->goal.width, ppr_options);
4571 		} else {
4572 			ahd_construct_sdtr(ahd, devinfo, period, offset);
4573 		}
4574 	} else {
4575 		ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4576 	}
4577 }
4578 
4579 /*
4580  * Build a synchronous negotiation message in our message
4581  * buffer based on the input parameters.
4582  */
4583 static void
4584 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4585 		   u_int period, u_int offset)
4586 {
4587 	if (offset == 0)
4588 		period = AHD_ASYNC_XFER_PERIOD;
4589 	ahd->msgout_index += spi_populate_sync_msg(
4590 			ahd->msgout_buf + ahd->msgout_index, period, offset);
4591 	ahd->msgout_len += 5;
4592 	if (bootverbose) {
4593 		printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4594 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4595 		       devinfo->lun, period, offset);
4596 	}
4597 }
4598 
4599 /*
4600  * Build a wide negotiateion message in our message
4601  * buffer based on the input parameters.
4602  */
4603 static void
4604 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4605 		   u_int bus_width)
4606 {
4607 	ahd->msgout_index += spi_populate_width_msg(
4608 			ahd->msgout_buf + ahd->msgout_index, bus_width);
4609 	ahd->msgout_len += 4;
4610 	if (bootverbose) {
4611 		printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4612 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4613 		       devinfo->lun, bus_width);
4614 	}
4615 }
4616 
4617 /*
4618  * Build a parallel protocol request message in our message
4619  * buffer based on the input parameters.
4620  */
4621 static void
4622 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4623 		  u_int period, u_int offset, u_int bus_width,
4624 		  u_int ppr_options)
4625 {
4626 	/*
4627 	 * Always request precompensation from
4628 	 * the other target if we are running
4629 	 * at paced syncrates.
4630 	 */
4631 	if (period <= AHD_SYNCRATE_PACED)
4632 		ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4633 	if (offset == 0)
4634 		period = AHD_ASYNC_XFER_PERIOD;
4635 	ahd->msgout_index += spi_populate_ppr_msg(
4636 			ahd->msgout_buf + ahd->msgout_index, period, offset,
4637 			bus_width, ppr_options);
4638 	ahd->msgout_len += 8;
4639 	if (bootverbose) {
4640 		printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4641 		       "offset %x, ppr_options %x\n", ahd_name(ahd),
4642 		       devinfo->channel, devinfo->target, devinfo->lun,
4643 		       bus_width, period, offset, ppr_options);
4644 	}
4645 }
4646 
4647 /*
4648  * Clear any active message state.
4649  */
4650 static void
4651 ahd_clear_msg_state(struct ahd_softc *ahd)
4652 {
4653 	ahd_mode_state saved_modes;
4654 
4655 	saved_modes = ahd_save_modes(ahd);
4656 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4657 	ahd->send_msg_perror = 0;
4658 	ahd->msg_flags = MSG_FLAG_NONE;
4659 	ahd->msgout_len = 0;
4660 	ahd->msgin_index = 0;
4661 	ahd->msg_type = MSG_TYPE_NONE;
4662 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4663 		/*
4664 		 * The target didn't care to respond to our
4665 		 * message request, so clear ATN.
4666 		 */
4667 		ahd_outb(ahd, CLRSINT1, CLRATNO);
4668 	}
4669 	ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4670 	ahd_outb(ahd, SEQ_FLAGS2,
4671 		 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4672 	ahd_restore_modes(ahd, saved_modes);
4673 }
4674 
4675 /*
4676  * Manual message loop handler.
4677  */
4678 static void
4679 ahd_handle_message_phase(struct ahd_softc *ahd)
4680 {
4681 	struct	ahd_devinfo devinfo;
4682 	u_int	bus_phase;
4683 	int	end_session;
4684 
4685 	ahd_fetch_devinfo(ahd, &devinfo);
4686 	end_session = FALSE;
4687 	bus_phase = ahd_inb(ahd, LASTPHASE);
4688 
4689 	if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4690 		printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4691 		ahd_outb(ahd, LQCTL2, LQIRETRY);
4692 	}
4693 reswitch:
4694 	switch (ahd->msg_type) {
4695 	case MSG_TYPE_INITIATOR_MSGOUT:
4696 	{
4697 		int lastbyte;
4698 		int phasemis;
4699 		int msgdone;
4700 
4701 		if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4702 			panic("HOST_MSG_LOOP interrupt with no active message");
4703 
4704 #ifdef AHD_DEBUG
4705 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4706 			ahd_print_devinfo(ahd, &devinfo);
4707 			printk("INITIATOR_MSG_OUT");
4708 		}
4709 #endif
4710 		phasemis = bus_phase != P_MESGOUT;
4711 		if (phasemis) {
4712 #ifdef AHD_DEBUG
4713 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4714 				printk(" PHASEMIS %s\n",
4715 				       ahd_lookup_phase_entry(bus_phase)
4716 							     ->phasemsg);
4717 			}
4718 #endif
4719 			if (bus_phase == P_MESGIN) {
4720 				/*
4721 				 * Change gears and see if
4722 				 * this messages is of interest to
4723 				 * us or should be passed back to
4724 				 * the sequencer.
4725 				 */
4726 				ahd_outb(ahd, CLRSINT1, CLRATNO);
4727 				ahd->send_msg_perror = 0;
4728 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4729 				ahd->msgin_index = 0;
4730 				goto reswitch;
4731 			}
4732 			end_session = TRUE;
4733 			break;
4734 		}
4735 
4736 		if (ahd->send_msg_perror) {
4737 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4738 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4739 #ifdef AHD_DEBUG
4740 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4741 				printk(" byte 0x%x\n", ahd->send_msg_perror);
4742 #endif
4743 			/*
4744 			 * If we are notifying the target of a CRC error
4745 			 * during packetized operations, the target is
4746 			 * within its rights to acknowledge our message
4747 			 * with a busfree.
4748 			 */
4749 			if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4750 			 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4751 				ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4752 
4753 			ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4754 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4755 			break;
4756 		}
4757 
4758 		msgdone	= ahd->msgout_index == ahd->msgout_len;
4759 		if (msgdone) {
4760 			/*
4761 			 * The target has requested a retry.
4762 			 * Re-assert ATN, reset our message index to
4763 			 * 0, and try again.
4764 			 */
4765 			ahd->msgout_index = 0;
4766 			ahd_assert_atn(ahd);
4767 		}
4768 
4769 		lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4770 		if (lastbyte) {
4771 			/* Last byte is signified by dropping ATN */
4772 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4773 		}
4774 
4775 		/*
4776 		 * Clear our interrupt status and present
4777 		 * the next byte on the bus.
4778 		 */
4779 		ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4780 #ifdef AHD_DEBUG
4781 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4782 			printk(" byte 0x%x\n",
4783 			       ahd->msgout_buf[ahd->msgout_index]);
4784 #endif
4785 		ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4786 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4787 		break;
4788 	}
4789 	case MSG_TYPE_INITIATOR_MSGIN:
4790 	{
4791 		int phasemis;
4792 		int message_done;
4793 
4794 #ifdef AHD_DEBUG
4795 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4796 			ahd_print_devinfo(ahd, &devinfo);
4797 			printk("INITIATOR_MSG_IN");
4798 		}
4799 #endif
4800 		phasemis = bus_phase != P_MESGIN;
4801 		if (phasemis) {
4802 #ifdef AHD_DEBUG
4803 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4804 				printk(" PHASEMIS %s\n",
4805 				       ahd_lookup_phase_entry(bus_phase)
4806 							     ->phasemsg);
4807 			}
4808 #endif
4809 			ahd->msgin_index = 0;
4810 			if (bus_phase == P_MESGOUT
4811 			 && (ahd->send_msg_perror != 0
4812 			  || (ahd->msgout_len != 0
4813 			   && ahd->msgout_index == 0))) {
4814 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4815 				goto reswitch;
4816 			}
4817 			end_session = TRUE;
4818 			break;
4819 		}
4820 
4821 		/* Pull the byte in without acking it */
4822 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4823 #ifdef AHD_DEBUG
4824 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4825 			printk(" byte 0x%x\n",
4826 			       ahd->msgin_buf[ahd->msgin_index]);
4827 #endif
4828 
4829 		message_done = ahd_parse_msg(ahd, &devinfo);
4830 
4831 		if (message_done) {
4832 			/*
4833 			 * Clear our incoming message buffer in case there
4834 			 * is another message following this one.
4835 			 */
4836 			ahd->msgin_index = 0;
4837 
4838 			/*
4839 			 * If this message illicited a response,
4840 			 * assert ATN so the target takes us to the
4841 			 * message out phase.
4842 			 */
4843 			if (ahd->msgout_len != 0) {
4844 #ifdef AHD_DEBUG
4845 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4846 					ahd_print_devinfo(ahd, &devinfo);
4847 					printk("Asserting ATN for response\n");
4848 				}
4849 #endif
4850 				ahd_assert_atn(ahd);
4851 			}
4852 		} else
4853 			ahd->msgin_index++;
4854 
4855 		if (message_done == MSGLOOP_TERMINATED) {
4856 			end_session = TRUE;
4857 		} else {
4858 			/* Ack the byte */
4859 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4860 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4861 		}
4862 		break;
4863 	}
4864 	case MSG_TYPE_TARGET_MSGIN:
4865 	{
4866 		int msgdone;
4867 		int msgout_request;
4868 
4869 		/*
4870 		 * By default, the message loop will continue.
4871 		 */
4872 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4873 
4874 		if (ahd->msgout_len == 0)
4875 			panic("Target MSGIN with no active message");
4876 
4877 		/*
4878 		 * If we interrupted a mesgout session, the initiator
4879 		 * will not know this until our first REQ.  So, we
4880 		 * only honor mesgout requests after we've sent our
4881 		 * first byte.
4882 		 */
4883 		if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4884 		 && ahd->msgout_index > 0)
4885 			msgout_request = TRUE;
4886 		else
4887 			msgout_request = FALSE;
4888 
4889 		if (msgout_request) {
4890 
4891 			/*
4892 			 * Change gears and see if
4893 			 * this messages is of interest to
4894 			 * us or should be passed back to
4895 			 * the sequencer.
4896 			 */
4897 			ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4898 			ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4899 			ahd->msgin_index = 0;
4900 			/* Dummy read to REQ for first byte */
4901 			ahd_inb(ahd, SCSIDAT);
4902 			ahd_outb(ahd, SXFRCTL0,
4903 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4904 			break;
4905 		}
4906 
4907 		msgdone = ahd->msgout_index == ahd->msgout_len;
4908 		if (msgdone) {
4909 			ahd_outb(ahd, SXFRCTL0,
4910 				 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4911 			end_session = TRUE;
4912 			break;
4913 		}
4914 
4915 		/*
4916 		 * Present the next byte on the bus.
4917 		 */
4918 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4919 		ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4920 		break;
4921 	}
4922 	case MSG_TYPE_TARGET_MSGOUT:
4923 	{
4924 		int lastbyte;
4925 		int msgdone;
4926 
4927 		/*
4928 		 * By default, the message loop will continue.
4929 		 */
4930 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4931 
4932 		/*
4933 		 * The initiator signals that this is
4934 		 * the last byte by dropping ATN.
4935 		 */
4936 		lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4937 
4938 		/*
4939 		 * Read the latched byte, but turn off SPIOEN first
4940 		 * so that we don't inadvertently cause a REQ for the
4941 		 * next byte.
4942 		 */
4943 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4944 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4945 		msgdone = ahd_parse_msg(ahd, &devinfo);
4946 		if (msgdone == MSGLOOP_TERMINATED) {
4947 			/*
4948 			 * The message is *really* done in that it caused
4949 			 * us to go to bus free.  The sequencer has already
4950 			 * been reset at this point, so pull the ejection
4951 			 * handle.
4952 			 */
4953 			return;
4954 		}
4955 
4956 		ahd->msgin_index++;
4957 
4958 		/*
4959 		 * XXX Read spec about initiator dropping ATN too soon
4960 		 *     and use msgdone to detect it.
4961 		 */
4962 		if (msgdone == MSGLOOP_MSGCOMPLETE) {
4963 			ahd->msgin_index = 0;
4964 
4965 			/*
4966 			 * If this message illicited a response, transition
4967 			 * to the Message in phase and send it.
4968 			 */
4969 			if (ahd->msgout_len != 0) {
4970 				ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4971 				ahd_outb(ahd, SXFRCTL0,
4972 					 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4973 				ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4974 				ahd->msgin_index = 0;
4975 				break;
4976 			}
4977 		}
4978 
4979 		if (lastbyte)
4980 			end_session = TRUE;
4981 		else {
4982 			/* Ask for the next byte. */
4983 			ahd_outb(ahd, SXFRCTL0,
4984 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4985 		}
4986 
4987 		break;
4988 	}
4989 	default:
4990 		panic("Unknown REQINIT message type");
4991 	}
4992 
4993 	if (end_session) {
4994 		if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
4995 			printk("%s: Returning to Idle Loop\n",
4996 			       ahd_name(ahd));
4997 			ahd_clear_msg_state(ahd);
4998 
4999 			/*
5000 			 * Perform the equivalent of a clear_target_state.
5001 			 */
5002 			ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5003 			ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5004 			ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5005 		} else {
5006 			ahd_clear_msg_state(ahd);
5007 			ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5008 		}
5009 	}
5010 }
5011 
5012 /*
5013  * See if we sent a particular extended message to the target.
5014  * If "full" is true, return true only if the target saw the full
5015  * message.  If "full" is false, return true if the target saw at
5016  * least the first byte of the message.
5017  */
5018 static int
5019 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5020 {
5021 	int found;
5022 	u_int index;
5023 
5024 	found = FALSE;
5025 	index = 0;
5026 
5027 	while (index < ahd->msgout_len) {
5028 		if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5029 			u_int end_index;
5030 
5031 			end_index = index + 1 + ahd->msgout_buf[index + 1];
5032 			if (ahd->msgout_buf[index+2] == msgval
5033 			 && type == AHDMSG_EXT) {
5034 
5035 				if (full) {
5036 					if (ahd->msgout_index > end_index)
5037 						found = TRUE;
5038 				} else if (ahd->msgout_index > index)
5039 					found = TRUE;
5040 			}
5041 			index = end_index;
5042 		} else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5043 			&& ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5044 
5045 			/* Skip tag type and tag id or residue param*/
5046 			index += 2;
5047 		} else {
5048 			/* Single byte message */
5049 			if (type == AHDMSG_1B
5050 			 && ahd->msgout_index > index
5051 			 && (ahd->msgout_buf[index] == msgval
5052 			  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5053 			   && msgval == MSG_IDENTIFYFLAG)))
5054 				found = TRUE;
5055 			index++;
5056 		}
5057 
5058 		if (found)
5059 			break;
5060 	}
5061 	return (found);
5062 }
5063 
5064 /*
5065  * Wait for a complete incoming message, parse it, and respond accordingly.
5066  */
5067 static int
5068 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5069 {
5070 	struct	ahd_initiator_tinfo *tinfo;
5071 	struct	ahd_tmode_tstate *tstate;
5072 	int	reject;
5073 	int	done;
5074 	int	response;
5075 
5076 	done = MSGLOOP_IN_PROG;
5077 	response = FALSE;
5078 	reject = FALSE;
5079 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5080 				    devinfo->target, &tstate);
5081 
5082 	/*
5083 	 * Parse as much of the message as is available,
5084 	 * rejecting it if we don't support it.  When
5085 	 * the entire message is available and has been
5086 	 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5087 	 * that we have parsed an entire message.
5088 	 *
5089 	 * In the case of extended messages, we accept the length
5090 	 * byte outright and perform more checking once we know the
5091 	 * extended message type.
5092 	 */
5093 	switch (ahd->msgin_buf[0]) {
5094 	case MSG_DISCONNECT:
5095 	case MSG_SAVEDATAPOINTER:
5096 	case MSG_CMDCOMPLETE:
5097 	case MSG_RESTOREPOINTERS:
5098 	case MSG_IGN_WIDE_RESIDUE:
5099 		/*
5100 		 * End our message loop as these are messages
5101 		 * the sequencer handles on its own.
5102 		 */
5103 		done = MSGLOOP_TERMINATED;
5104 		break;
5105 	case MSG_MESSAGE_REJECT:
5106 		response = ahd_handle_msg_reject(ahd, devinfo);
5107 		fallthrough;
5108 	case MSG_NOOP:
5109 		done = MSGLOOP_MSGCOMPLETE;
5110 		break;
5111 	case MSG_EXTENDED:
5112 	{
5113 		/* Wait for enough of the message to begin validation */
5114 		if (ahd->msgin_index < 2)
5115 			break;
5116 		switch (ahd->msgin_buf[2]) {
5117 		case MSG_EXT_SDTR:
5118 		{
5119 			u_int	 period;
5120 			u_int	 ppr_options;
5121 			u_int	 offset;
5122 			u_int	 saved_offset;
5123 
5124 			if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5125 				reject = TRUE;
5126 				break;
5127 			}
5128 
5129 			/*
5130 			 * Wait until we have both args before validating
5131 			 * and acting on this message.
5132 			 *
5133 			 * Add one to MSG_EXT_SDTR_LEN to account for
5134 			 * the extended message preamble.
5135 			 */
5136 			if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5137 				break;
5138 
5139 			period = ahd->msgin_buf[3];
5140 			ppr_options = 0;
5141 			saved_offset = offset = ahd->msgin_buf[4];
5142 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5143 						&ppr_options, devinfo->role);
5144 			ahd_validate_offset(ahd, tinfo, period, &offset,
5145 					    tinfo->curr.width, devinfo->role);
5146 			if (bootverbose) {
5147 				printk("(%s:%c:%d:%d): Received "
5148 				       "SDTR period %x, offset %x\n\t"
5149 				       "Filtered to period %x, offset %x\n",
5150 				       ahd_name(ahd), devinfo->channel,
5151 				       devinfo->target, devinfo->lun,
5152 				       ahd->msgin_buf[3], saved_offset,
5153 				       period, offset);
5154 			}
5155 			ahd_set_syncrate(ahd, devinfo, period,
5156 					 offset, ppr_options,
5157 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5158 					 /*paused*/TRUE);
5159 
5160 			/*
5161 			 * See if we initiated Sync Negotiation
5162 			 * and didn't have to fall down to async
5163 			 * transfers.
5164 			 */
5165 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5166 				/* We started it */
5167 				if (saved_offset != offset) {
5168 					/* Went too low - force async */
5169 					reject = TRUE;
5170 				}
5171 			} else {
5172 				/*
5173 				 * Send our own SDTR in reply
5174 				 */
5175 				if (bootverbose
5176 				 && devinfo->role == ROLE_INITIATOR) {
5177 					printk("(%s:%c:%d:%d): Target "
5178 					       "Initiated SDTR\n",
5179 					       ahd_name(ahd), devinfo->channel,
5180 					       devinfo->target, devinfo->lun);
5181 				}
5182 				ahd->msgout_index = 0;
5183 				ahd->msgout_len = 0;
5184 				ahd_construct_sdtr(ahd, devinfo,
5185 						   period, offset);
5186 				ahd->msgout_index = 0;
5187 				response = TRUE;
5188 			}
5189 			done = MSGLOOP_MSGCOMPLETE;
5190 			break;
5191 		}
5192 		case MSG_EXT_WDTR:
5193 		{
5194 			u_int bus_width;
5195 			u_int saved_width;
5196 			u_int sending_reply;
5197 
5198 			sending_reply = FALSE;
5199 			if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5200 				reject = TRUE;
5201 				break;
5202 			}
5203 
5204 			/*
5205 			 * Wait until we have our arg before validating
5206 			 * and acting on this message.
5207 			 *
5208 			 * Add one to MSG_EXT_WDTR_LEN to account for
5209 			 * the extended message preamble.
5210 			 */
5211 			if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5212 				break;
5213 
5214 			bus_width = ahd->msgin_buf[3];
5215 			saved_width = bus_width;
5216 			ahd_validate_width(ahd, tinfo, &bus_width,
5217 					   devinfo->role);
5218 			if (bootverbose) {
5219 				printk("(%s:%c:%d:%d): Received WDTR "
5220 				       "%x filtered to %x\n",
5221 				       ahd_name(ahd), devinfo->channel,
5222 				       devinfo->target, devinfo->lun,
5223 				       saved_width, bus_width);
5224 			}
5225 
5226 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5227 				/*
5228 				 * Don't send a WDTR back to the
5229 				 * target, since we asked first.
5230 				 * If the width went higher than our
5231 				 * request, reject it.
5232 				 */
5233 				if (saved_width > bus_width) {
5234 					reject = TRUE;
5235 					printk("(%s:%c:%d:%d): requested %dBit "
5236 					       "transfers.  Rejecting...\n",
5237 					       ahd_name(ahd), devinfo->channel,
5238 					       devinfo->target, devinfo->lun,
5239 					       8 * (0x01 << bus_width));
5240 					bus_width = 0;
5241 				}
5242 			} else {
5243 				/*
5244 				 * Send our own WDTR in reply
5245 				 */
5246 				if (bootverbose
5247 				 && devinfo->role == ROLE_INITIATOR) {
5248 					printk("(%s:%c:%d:%d): Target "
5249 					       "Initiated WDTR\n",
5250 					       ahd_name(ahd), devinfo->channel,
5251 					       devinfo->target, devinfo->lun);
5252 				}
5253 				ahd->msgout_index = 0;
5254 				ahd->msgout_len = 0;
5255 				ahd_construct_wdtr(ahd, devinfo, bus_width);
5256 				ahd->msgout_index = 0;
5257 				response = TRUE;
5258 				sending_reply = TRUE;
5259 			}
5260 			/*
5261 			 * After a wide message, we are async, but
5262 			 * some devices don't seem to honor this portion
5263 			 * of the spec.  Force a renegotiation of the
5264 			 * sync component of our transfer agreement even
5265 			 * if our goal is async.  By updating our width
5266 			 * after forcing the negotiation, we avoid
5267 			 * renegotiating for width.
5268 			 */
5269 			ahd_update_neg_request(ahd, devinfo, tstate,
5270 					       tinfo, AHD_NEG_ALWAYS);
5271 			ahd_set_width(ahd, devinfo, bus_width,
5272 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5273 				      /*paused*/TRUE);
5274 			if (sending_reply == FALSE && reject == FALSE) {
5275 
5276 				/*
5277 				 * We will always have an SDTR to send.
5278 				 */
5279 				ahd->msgout_index = 0;
5280 				ahd->msgout_len = 0;
5281 				ahd_build_transfer_msg(ahd, devinfo);
5282 				ahd->msgout_index = 0;
5283 				response = TRUE;
5284 			}
5285 			done = MSGLOOP_MSGCOMPLETE;
5286 			break;
5287 		}
5288 		case MSG_EXT_PPR:
5289 		{
5290 			u_int	period;
5291 			u_int	offset;
5292 			u_int	bus_width;
5293 			u_int	ppr_options;
5294 			u_int	saved_width;
5295 			u_int	saved_offset;
5296 			u_int	saved_ppr_options;
5297 
5298 			if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5299 				reject = TRUE;
5300 				break;
5301 			}
5302 
5303 			/*
5304 			 * Wait until we have all args before validating
5305 			 * and acting on this message.
5306 			 *
5307 			 * Add one to MSG_EXT_PPR_LEN to account for
5308 			 * the extended message preamble.
5309 			 */
5310 			if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5311 				break;
5312 
5313 			period = ahd->msgin_buf[3];
5314 			offset = ahd->msgin_buf[5];
5315 			bus_width = ahd->msgin_buf[6];
5316 			saved_width = bus_width;
5317 			ppr_options = ahd->msgin_buf[7];
5318 			/*
5319 			 * According to the spec, a DT only
5320 			 * period factor with no DT option
5321 			 * set implies async.
5322 			 */
5323 			if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5324 			 && period <= 9)
5325 				offset = 0;
5326 			saved_ppr_options = ppr_options;
5327 			saved_offset = offset;
5328 
5329 			/*
5330 			 * Transfer options are only available if we
5331 			 * are negotiating wide.
5332 			 */
5333 			if (bus_width == 0)
5334 				ppr_options &= MSG_EXT_PPR_QAS_REQ;
5335 
5336 			ahd_validate_width(ahd, tinfo, &bus_width,
5337 					   devinfo->role);
5338 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5339 						&ppr_options, devinfo->role);
5340 			ahd_validate_offset(ahd, tinfo, period, &offset,
5341 					    bus_width, devinfo->role);
5342 
5343 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5344 				/*
5345 				 * If we are unable to do any of the
5346 				 * requested options (we went too low),
5347 				 * then we'll have to reject the message.
5348 				 */
5349 				if (saved_width > bus_width
5350 				 || saved_offset != offset
5351 				 || saved_ppr_options != ppr_options) {
5352 					reject = TRUE;
5353 					period = 0;
5354 					offset = 0;
5355 					bus_width = 0;
5356 					ppr_options = 0;
5357 				}
5358 			} else {
5359 				if (devinfo->role != ROLE_TARGET)
5360 					printk("(%s:%c:%d:%d): Target "
5361 					       "Initiated PPR\n",
5362 					       ahd_name(ahd), devinfo->channel,
5363 					       devinfo->target, devinfo->lun);
5364 				else
5365 					printk("(%s:%c:%d:%d): Initiator "
5366 					       "Initiated PPR\n",
5367 					       ahd_name(ahd), devinfo->channel,
5368 					       devinfo->target, devinfo->lun);
5369 				ahd->msgout_index = 0;
5370 				ahd->msgout_len = 0;
5371 				ahd_construct_ppr(ahd, devinfo, period, offset,
5372 						  bus_width, ppr_options);
5373 				ahd->msgout_index = 0;
5374 				response = TRUE;
5375 			}
5376 			if (bootverbose) {
5377 				printk("(%s:%c:%d:%d): Received PPR width %x, "
5378 				       "period %x, offset %x,options %x\n"
5379 				       "\tFiltered to width %x, period %x, "
5380 				       "offset %x, options %x\n",
5381 				       ahd_name(ahd), devinfo->channel,
5382 				       devinfo->target, devinfo->lun,
5383 				       saved_width, ahd->msgin_buf[3],
5384 				       saved_offset, saved_ppr_options,
5385 				       bus_width, period, offset, ppr_options);
5386 			}
5387 			ahd_set_width(ahd, devinfo, bus_width,
5388 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5389 				      /*paused*/TRUE);
5390 			ahd_set_syncrate(ahd, devinfo, period,
5391 					 offset, ppr_options,
5392 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5393 					 /*paused*/TRUE);
5394 
5395 			done = MSGLOOP_MSGCOMPLETE;
5396 			break;
5397 		}
5398 		default:
5399 			/* Unknown extended message.  Reject it. */
5400 			reject = TRUE;
5401 			break;
5402 		}
5403 		break;
5404 	}
5405 #ifdef AHD_TARGET_MODE
5406 	case MSG_BUS_DEV_RESET:
5407 		ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5408 				    CAM_BDR_SENT,
5409 				    "Bus Device Reset Received",
5410 				    /*verbose_level*/0);
5411 		ahd_restart(ahd);
5412 		done = MSGLOOP_TERMINATED;
5413 		break;
5414 	case MSG_ABORT_TAG:
5415 	case MSG_ABORT:
5416 	case MSG_CLEAR_QUEUE:
5417 	{
5418 		int tag;
5419 
5420 		/* Target mode messages */
5421 		if (devinfo->role != ROLE_TARGET) {
5422 			reject = TRUE;
5423 			break;
5424 		}
5425 		tag = SCB_LIST_NULL;
5426 		if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5427 			tag = ahd_inb(ahd, INITIATOR_TAG);
5428 		ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5429 			       devinfo->lun, tag, ROLE_TARGET,
5430 			       CAM_REQ_ABORTED);
5431 
5432 		tstate = ahd->enabled_targets[devinfo->our_scsiid];
5433 		if (tstate != NULL) {
5434 			struct ahd_tmode_lstate* lstate;
5435 
5436 			lstate = tstate->enabled_luns[devinfo->lun];
5437 			if (lstate != NULL) {
5438 				ahd_queue_lstate_event(ahd, lstate,
5439 						       devinfo->our_scsiid,
5440 						       ahd->msgin_buf[0],
5441 						       /*arg*/tag);
5442 				ahd_send_lstate_events(ahd, lstate);
5443 			}
5444 		}
5445 		ahd_restart(ahd);
5446 		done = MSGLOOP_TERMINATED;
5447 		break;
5448 	}
5449 #endif
5450 	case MSG_QAS_REQUEST:
5451 #ifdef AHD_DEBUG
5452 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5453 			printk("%s: QAS request.  SCSISIGI == 0x%x\n",
5454 			       ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5455 #endif
5456 		ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5457 		fallthrough;
5458 	case MSG_TERM_IO_PROC:
5459 	default:
5460 		reject = TRUE;
5461 		break;
5462 	}
5463 
5464 	if (reject) {
5465 		/*
5466 		 * Setup to reject the message.
5467 		 */
5468 		ahd->msgout_index = 0;
5469 		ahd->msgout_len = 1;
5470 		ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5471 		done = MSGLOOP_MSGCOMPLETE;
5472 		response = TRUE;
5473 	}
5474 
5475 	if (done != MSGLOOP_IN_PROG && !response)
5476 		/* Clear the outgoing message buffer */
5477 		ahd->msgout_len = 0;
5478 
5479 	return (done);
5480 }
5481 
5482 /*
5483  * Process a message reject message.
5484  */
5485 static int
5486 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5487 {
5488 	/*
5489 	 * What we care about here is if we had an
5490 	 * outstanding SDTR or WDTR message for this
5491 	 * target.  If we did, this is a signal that
5492 	 * the target is refusing negotiation.
5493 	 */
5494 	struct scb *scb;
5495 	struct ahd_initiator_tinfo *tinfo;
5496 	struct ahd_tmode_tstate *tstate;
5497 	u_int scb_index;
5498 	u_int last_msg;
5499 	int   response = 0;
5500 
5501 	scb_index = ahd_get_scbptr(ahd);
5502 	scb = ahd_lookup_scb(ahd, scb_index);
5503 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5504 				    devinfo->our_scsiid,
5505 				    devinfo->target, &tstate);
5506 	/* Might be necessary */
5507 	last_msg = ahd_inb(ahd, LAST_MSG);
5508 
5509 	if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5510 		if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5511 		 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5512 			/*
5513 			 * Target may not like our SPI-4 PPR Options.
5514 			 * Attempt to negotiate 80MHz which will turn
5515 			 * off these options.
5516 			 */
5517 			if (bootverbose) {
5518 				printk("(%s:%c:%d:%d): PPR Rejected. "
5519 				       "Trying simple U160 PPR\n",
5520 				       ahd_name(ahd), devinfo->channel,
5521 				       devinfo->target, devinfo->lun);
5522 			}
5523 			tinfo->goal.period = AHD_SYNCRATE_DT;
5524 			tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5525 						|  MSG_EXT_PPR_QAS_REQ
5526 						|  MSG_EXT_PPR_DT_REQ;
5527 		} else {
5528 			/*
5529 			 * Target does not support the PPR message.
5530 			 * Attempt to negotiate SPI-2 style.
5531 			 */
5532 			if (bootverbose) {
5533 				printk("(%s:%c:%d:%d): PPR Rejected. "
5534 				       "Trying WDTR/SDTR\n",
5535 				       ahd_name(ahd), devinfo->channel,
5536 				       devinfo->target, devinfo->lun);
5537 			}
5538 			tinfo->goal.ppr_options = 0;
5539 			tinfo->curr.transport_version = 2;
5540 			tinfo->goal.transport_version = 2;
5541 		}
5542 		ahd->msgout_index = 0;
5543 		ahd->msgout_len = 0;
5544 		ahd_build_transfer_msg(ahd, devinfo);
5545 		ahd->msgout_index = 0;
5546 		response = 1;
5547 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5548 
5549 		/* note 8bit xfers */
5550 		printk("(%s:%c:%d:%d): refuses WIDE negotiation.  Using "
5551 		       "8bit transfers\n", ahd_name(ahd),
5552 		       devinfo->channel, devinfo->target, devinfo->lun);
5553 		ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5554 			      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5555 			      /*paused*/TRUE);
5556 		/*
5557 		 * No need to clear the sync rate.  If the target
5558 		 * did not accept the command, our syncrate is
5559 		 * unaffected.  If the target started the negotiation,
5560 		 * but rejected our response, we already cleared the
5561 		 * sync rate before sending our WDTR.
5562 		 */
5563 		if (tinfo->goal.offset != tinfo->curr.offset) {
5564 
5565 			/* Start the sync negotiation */
5566 			ahd->msgout_index = 0;
5567 			ahd->msgout_len = 0;
5568 			ahd_build_transfer_msg(ahd, devinfo);
5569 			ahd->msgout_index = 0;
5570 			response = 1;
5571 		}
5572 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5573 		/* note asynch xfers and clear flag */
5574 		ahd_set_syncrate(ahd, devinfo, /*period*/0,
5575 				 /*offset*/0, /*ppr_options*/0,
5576 				 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5577 				 /*paused*/TRUE);
5578 		printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5579 		       "Using asynchronous transfers\n",
5580 		       ahd_name(ahd), devinfo->channel,
5581 		       devinfo->target, devinfo->lun);
5582 	} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5583 		int tag_type;
5584 		int mask;
5585 
5586 		tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5587 
5588 		if (tag_type == MSG_SIMPLE_TASK) {
5589 			printk("(%s:%c:%d:%d): refuses tagged commands.  "
5590 			       "Performing non-tagged I/O\n", ahd_name(ahd),
5591 			       devinfo->channel, devinfo->target, devinfo->lun);
5592 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5593 			mask = ~0x23;
5594 		} else {
5595 			printk("(%s:%c:%d:%d): refuses %s tagged commands.  "
5596 			       "Performing simple queue tagged I/O only\n",
5597 			       ahd_name(ahd), devinfo->channel, devinfo->target,
5598 			       devinfo->lun, tag_type == MSG_ORDERED_TASK
5599 			       ? "ordered" : "head of queue");
5600 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5601 			mask = ~0x03;
5602 		}
5603 
5604 		/*
5605 		 * Resend the identify for this CCB as the target
5606 		 * may believe that the selection is invalid otherwise.
5607 		 */
5608 		ahd_outb(ahd, SCB_CONTROL,
5609 			 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5610 	 	scb->hscb->control &= mask;
5611 		ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5612 					/*type*/MSG_SIMPLE_TASK);
5613 		ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5614 		ahd_assert_atn(ahd);
5615 		ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5616 			     SCB_GET_TAG(scb));
5617 
5618 		/*
5619 		 * Requeue all tagged commands for this target
5620 		 * currently in our possession so they can be
5621 		 * converted to untagged commands.
5622 		 */
5623 		ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5624 				   SCB_GET_CHANNEL(ahd, scb),
5625 				   SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5626 				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
5627 				   SEARCH_COMPLETE);
5628 	} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5629 		/*
5630 		 * Most likely the device believes that we had
5631 		 * previously negotiated packetized.
5632 		 */
5633 		ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5634 			       |  MSG_FLAG_IU_REQ_CHANGED;
5635 
5636 		ahd_force_renegotiation(ahd, devinfo);
5637 		ahd->msgout_index = 0;
5638 		ahd->msgout_len = 0;
5639 		ahd_build_transfer_msg(ahd, devinfo);
5640 		ahd->msgout_index = 0;
5641 		response = 1;
5642 	} else {
5643 		/*
5644 		 * Otherwise, we ignore it.
5645 		 */
5646 		printk("%s:%c:%d: Message reject for %x -- ignored\n",
5647 		       ahd_name(ahd), devinfo->channel, devinfo->target,
5648 		       last_msg);
5649 	}
5650 	return (response);
5651 }
5652 
5653 /*
5654  * Process an ingnore wide residue message.
5655  */
5656 static void
5657 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5658 {
5659 	u_int scb_index;
5660 	struct scb *scb;
5661 
5662 	scb_index = ahd_get_scbptr(ahd);
5663 	scb = ahd_lookup_scb(ahd, scb_index);
5664 	/*
5665 	 * XXX Actually check data direction in the sequencer?
5666 	 * Perhaps add datadir to some spare bits in the hscb?
5667 	 */
5668 	if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5669 	 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5670 		/*
5671 		 * Ignore the message if we haven't
5672 		 * seen an appropriate data phase yet.
5673 		 */
5674 	} else {
5675 		/*
5676 		 * If the residual occurred on the last
5677 		 * transfer and the transfer request was
5678 		 * expected to end on an odd count, do
5679 		 * nothing.  Otherwise, subtract a byte
5680 		 * and update the residual count accordingly.
5681 		 */
5682 		uint32_t sgptr;
5683 
5684 		sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5685 		if ((sgptr & SG_LIST_NULL) != 0
5686 		 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5687 		     & SCB_XFERLEN_ODD) != 0) {
5688 			/*
5689 			 * If the residual occurred on the last
5690 			 * transfer and the transfer request was
5691 			 * expected to end on an odd count, do
5692 			 * nothing.
5693 			 */
5694 		} else {
5695 			uint32_t data_cnt;
5696 			uint64_t data_addr;
5697 			uint32_t sglen;
5698 
5699 			/* Pull in the rest of the sgptr */
5700 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5701 			data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5702 			if ((sgptr & SG_LIST_NULL) != 0) {
5703 				/*
5704 				 * The residual data count is not updated
5705 				 * for the command run to completion case.
5706 				 * Explicitly zero the count.
5707 				 */
5708 				data_cnt &= ~AHD_SG_LEN_MASK;
5709 			}
5710 			data_addr = ahd_inq(ahd, SHADDR);
5711 			data_cnt += 1;
5712 			data_addr -= 1;
5713 			sgptr &= SG_PTR_MASK;
5714 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5715 				struct ahd_dma64_seg *sg;
5716 
5717 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5718 
5719 				/*
5720 				 * The residual sg ptr points to the next S/G
5721 				 * to load so we must go back one.
5722 				 */
5723 				sg--;
5724 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5725 				if (sg != scb->sg_list
5726 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5727 
5728 					sg--;
5729 					sglen = ahd_le32toh(sg->len);
5730 					/*
5731 					 * Preserve High Address and SG_LIST
5732 					 * bits while setting the count to 1.
5733 					 */
5734 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5735 					data_addr = ahd_le64toh(sg->addr)
5736 						  + (sglen & AHD_SG_LEN_MASK)
5737 						  - 1;
5738 
5739 					/*
5740 					 * Increment sg so it points to the
5741 					 * "next" sg.
5742 					 */
5743 					sg++;
5744 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5745 								   sg);
5746 				}
5747 			} else {
5748 				struct ahd_dma_seg *sg;
5749 
5750 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5751 
5752 				/*
5753 				 * The residual sg ptr points to the next S/G
5754 				 * to load so we must go back one.
5755 				 */
5756 				sg--;
5757 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5758 				if (sg != scb->sg_list
5759 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5760 
5761 					sg--;
5762 					sglen = ahd_le32toh(sg->len);
5763 					/*
5764 					 * Preserve High Address and SG_LIST
5765 					 * bits while setting the count to 1.
5766 					 */
5767 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5768 					data_addr = ahd_le32toh(sg->addr)
5769 						  + (sglen & AHD_SG_LEN_MASK)
5770 						  - 1;
5771 
5772 					/*
5773 					 * Increment sg so it points to the
5774 					 * "next" sg.
5775 					 */
5776 					sg++;
5777 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5778 								  sg);
5779 				}
5780 			}
5781 			/*
5782 			 * Toggle the "oddness" of the transfer length
5783 			 * to handle this mid-transfer ignore wide
5784 			 * residue.  This ensures that the oddness is
5785 			 * correct for subsequent data transfers.
5786 			 */
5787 			ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5788 			    ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5789 			    ^ SCB_XFERLEN_ODD);
5790 
5791 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5792 			ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5793 			/*
5794 			 * The FIFO's pointers will be updated if/when the
5795 			 * sequencer re-enters a data phase.
5796 			 */
5797 		}
5798 	}
5799 }
5800 
5801 
5802 /*
5803  * Reinitialize the data pointers for the active transfer
5804  * based on its current residual.
5805  */
5806 static void
5807 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5808 {
5809 	struct		 scb *scb;
5810 	ahd_mode_state	 saved_modes;
5811 	u_int		 scb_index;
5812 	u_int		 wait;
5813 	uint32_t	 sgptr;
5814 	uint32_t	 resid;
5815 	uint64_t	 dataptr;
5816 
5817 	AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5818 			 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5819 
5820 	scb_index = ahd_get_scbptr(ahd);
5821 	scb = ahd_lookup_scb(ahd, scb_index);
5822 
5823 	/*
5824 	 * Release and reacquire the FIFO so we
5825 	 * have a clean slate.
5826 	 */
5827 	ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5828 	wait = 1000;
5829 	while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5830 		ahd_delay(100);
5831 	if (wait == 0) {
5832 		ahd_print_path(ahd, scb);
5833 		printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5834 		ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5835 	}
5836 	saved_modes = ahd_save_modes(ahd);
5837 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5838 	ahd_outb(ahd, DFFSTAT,
5839 		 ahd_inb(ahd, DFFSTAT)
5840 		| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5841 
5842 	/*
5843 	 * Determine initial values for data_addr and data_cnt
5844 	 * for resuming the data phase.
5845 	 */
5846 	sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5847 	sgptr &= SG_PTR_MASK;
5848 
5849 	resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5850 	      | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5851 	      | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5852 
5853 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5854 		struct ahd_dma64_seg *sg;
5855 
5856 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5857 
5858 		/* The residual sg_ptr always points to the next sg */
5859 		sg--;
5860 
5861 		dataptr = ahd_le64toh(sg->addr)
5862 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5863 			- resid;
5864 		ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5865 	} else {
5866 		struct	 ahd_dma_seg *sg;
5867 
5868 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5869 
5870 		/* The residual sg_ptr always points to the next sg */
5871 		sg--;
5872 
5873 		dataptr = ahd_le32toh(sg->addr)
5874 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5875 			- resid;
5876 		ahd_outb(ahd, HADDR + 4,
5877 			 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5878 	}
5879 	ahd_outl(ahd, HADDR, dataptr);
5880 	ahd_outb(ahd, HCNT + 2, resid >> 16);
5881 	ahd_outb(ahd, HCNT + 1, resid >> 8);
5882 	ahd_outb(ahd, HCNT, resid);
5883 }
5884 
5885 /*
5886  * Handle the effects of issuing a bus device reset message.
5887  */
5888 static void
5889 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5890 		    u_int lun, cam_status status, char *message,
5891 		    int verbose_level)
5892 {
5893 #ifdef AHD_TARGET_MODE
5894 	struct ahd_tmode_tstate* tstate;
5895 #endif
5896 	int found;
5897 
5898 	found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5899 			       lun, SCB_LIST_NULL, devinfo->role,
5900 			       status);
5901 
5902 #ifdef AHD_TARGET_MODE
5903 	/*
5904 	 * Send an immediate notify ccb to all target mord peripheral
5905 	 * drivers affected by this action.
5906 	 */
5907 	tstate = ahd->enabled_targets[devinfo->our_scsiid];
5908 	if (tstate != NULL) {
5909 		u_int cur_lun;
5910 		u_int max_lun;
5911 
5912 		if (lun != CAM_LUN_WILDCARD) {
5913 			cur_lun = 0;
5914 			max_lun = AHD_NUM_LUNS - 1;
5915 		} else {
5916 			cur_lun = lun;
5917 			max_lun = lun;
5918 		}
5919 		for (;cur_lun <= max_lun; cur_lun++) {
5920 			struct ahd_tmode_lstate* lstate;
5921 
5922 			lstate = tstate->enabled_luns[cur_lun];
5923 			if (lstate == NULL)
5924 				continue;
5925 
5926 			ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5927 					       MSG_BUS_DEV_RESET, /*arg*/0);
5928 			ahd_send_lstate_events(ahd, lstate);
5929 		}
5930 	}
5931 #endif
5932 
5933 	/*
5934 	 * Go back to async/narrow transfers and renegotiate.
5935 	 */
5936 	ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5937 		      AHD_TRANS_CUR, /*paused*/TRUE);
5938 	ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5939 			 /*ppr_options*/0, AHD_TRANS_CUR,
5940 			 /*paused*/TRUE);
5941 
5942 	if (status != CAM_SEL_TIMEOUT)
5943 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
5944 			       CAM_LUN_WILDCARD, AC_SENT_BDR);
5945 
5946 	if (message != NULL && bootverbose)
5947 		printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5948 		       message, devinfo->channel, devinfo->target, found);
5949 }
5950 
5951 #ifdef AHD_TARGET_MODE
5952 static void
5953 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5954 		       struct scb *scb)
5955 {
5956 
5957 	/*
5958 	 * To facilitate adding multiple messages together,
5959 	 * each routine should increment the index and len
5960 	 * variables instead of setting them explicitly.
5961 	 */
5962 	ahd->msgout_index = 0;
5963 	ahd->msgout_len = 0;
5964 
5965 	if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5966 		ahd_build_transfer_msg(ahd, devinfo);
5967 	else
5968 		panic("ahd_intr: AWAITING target message with no message");
5969 
5970 	ahd->msgout_index = 0;
5971 	ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5972 }
5973 #endif
5974 /**************************** Initialization **********************************/
5975 static u_int
5976 ahd_sglist_size(struct ahd_softc *ahd)
5977 {
5978 	bus_size_t list_size;
5979 
5980 	list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5981 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5982 		list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5983 	return (list_size);
5984 }
5985 
5986 /*
5987  * Calculate the optimum S/G List allocation size.  S/G elements used
5988  * for a given transaction must be physically contiguous.  Assume the
5989  * OS will allocate full pages to us, so it doesn't make sense to request
5990  * less than a page.
5991  */
5992 static u_int
5993 ahd_sglist_allocsize(struct ahd_softc *ahd)
5994 {
5995 	bus_size_t sg_list_increment;
5996 	bus_size_t sg_list_size;
5997 	bus_size_t max_list_size;
5998 	bus_size_t best_list_size;
5999 
6000 	/* Start out with the minimum required for AHD_NSEG. */
6001 	sg_list_increment = ahd_sglist_size(ahd);
6002 	sg_list_size = sg_list_increment;
6003 
6004 	/* Get us as close as possible to a page in size. */
6005 	while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6006 		sg_list_size += sg_list_increment;
6007 
6008 	/*
6009 	 * Try to reduce the amount of wastage by allocating
6010 	 * multiple pages.
6011 	 */
6012 	best_list_size = sg_list_size;
6013 	max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6014 	if (max_list_size < 4 * PAGE_SIZE)
6015 		max_list_size = 4 * PAGE_SIZE;
6016 	if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6017 		max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6018 	while ((sg_list_size + sg_list_increment) <= max_list_size
6019 	   &&  (sg_list_size % PAGE_SIZE) != 0) {
6020 		bus_size_t new_mod;
6021 		bus_size_t best_mod;
6022 
6023 		sg_list_size += sg_list_increment;
6024 		new_mod = sg_list_size % PAGE_SIZE;
6025 		best_mod = best_list_size % PAGE_SIZE;
6026 		if (new_mod > best_mod || new_mod == 0) {
6027 			best_list_size = sg_list_size;
6028 		}
6029 	}
6030 	return (best_list_size);
6031 }
6032 
6033 /*
6034  * Allocate a controller structure for a new device
6035  * and perform initial initializion.
6036  */
6037 struct ahd_softc *
6038 ahd_alloc(void *platform_arg, char *name)
6039 {
6040 	struct  ahd_softc *ahd;
6041 
6042 	ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC);
6043 	if (!ahd) {
6044 		printk("aic7xxx: cannot malloc softc!\n");
6045 		kfree(name);
6046 		return NULL;
6047 	}
6048 
6049 	ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6050 	if (ahd->seep_config == NULL) {
6051 		kfree(ahd);
6052 		kfree(name);
6053 		return (NULL);
6054 	}
6055 	LIST_INIT(&ahd->pending_scbs);
6056 	/* We don't know our unit number until the OSM sets it */
6057 	ahd->name = name;
6058 	ahd->unit = -1;
6059 	ahd->description = NULL;
6060 	ahd->bus_description = NULL;
6061 	ahd->channel = 'A';
6062 	ahd->chip = AHD_NONE;
6063 	ahd->features = AHD_FENONE;
6064 	ahd->bugs = AHD_BUGNONE;
6065 	ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6066 		   | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6067 	timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6068 	ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6069 	ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6070 	ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6071 	ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6072 	ahd->int_coalescing_stop_threshold =
6073 	    AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6074 
6075 #ifdef AHD_DEBUG
6076 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6077 		printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6078 		       ahd_name(ahd), (u_int)sizeof(struct scb),
6079 		       (u_int)sizeof(struct hardware_scb));
6080 	}
6081 #endif
6082 	if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6083 		ahd_free(ahd);
6084 		ahd = NULL;
6085 	}
6086 	return (ahd);
6087 }
6088 
6089 int
6090 ahd_softc_init(struct ahd_softc *ahd)
6091 {
6092 
6093 	ahd->unpause = 0;
6094 	ahd->pause = PAUSE;
6095 	return (0);
6096 }
6097 
6098 void
6099 ahd_set_unit(struct ahd_softc *ahd, int unit)
6100 {
6101 	ahd->unit = unit;
6102 }
6103 
6104 void
6105 ahd_set_name(struct ahd_softc *ahd, char *name)
6106 {
6107 	kfree(ahd->name);
6108 	ahd->name = name;
6109 }
6110 
6111 void
6112 ahd_free(struct ahd_softc *ahd)
6113 {
6114 	int i;
6115 
6116 	switch (ahd->init_level) {
6117 	default:
6118 	case 5:
6119 		ahd_shutdown(ahd);
6120 		fallthrough;
6121 	case 4:
6122 		ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6123 				  ahd->shared_data_map.dmamap);
6124 		fallthrough;
6125 	case 3:
6126 		ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6127 				ahd->shared_data_map.dmamap);
6128 		ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6129 				   ahd->shared_data_map.dmamap);
6130 		fallthrough;
6131 	case 2:
6132 		ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6133 		break;
6134 	case 1:
6135 		break;
6136 	case 0:
6137 		break;
6138 	}
6139 
6140 	ahd_platform_free(ahd);
6141 	ahd_fini_scbdata(ahd);
6142 	for (i = 0; i < AHD_NUM_TARGETS; i++) {
6143 		struct ahd_tmode_tstate *tstate;
6144 
6145 		tstate = ahd->enabled_targets[i];
6146 		if (tstate != NULL) {
6147 #ifdef AHD_TARGET_MODE
6148 			int j;
6149 
6150 			for (j = 0; j < AHD_NUM_LUNS; j++) {
6151 				struct ahd_tmode_lstate *lstate;
6152 
6153 				lstate = tstate->enabled_luns[j];
6154 				if (lstate != NULL) {
6155 					xpt_free_path(lstate->path);
6156 					kfree(lstate);
6157 				}
6158 			}
6159 #endif
6160 			kfree(tstate);
6161 		}
6162 	}
6163 #ifdef AHD_TARGET_MODE
6164 	if (ahd->black_hole != NULL) {
6165 		xpt_free_path(ahd->black_hole->path);
6166 		kfree(ahd->black_hole);
6167 	}
6168 #endif
6169 	kfree(ahd->name);
6170 	kfree(ahd->seep_config);
6171 	kfree(ahd->saved_stack);
6172 	kfree(ahd);
6173 	return;
6174 }
6175 
6176 static void
6177 ahd_shutdown(void *arg)
6178 {
6179 	struct	ahd_softc *ahd;
6180 
6181 	ahd = (struct ahd_softc *)arg;
6182 
6183 	/*
6184 	 * Stop periodic timer callbacks.
6185 	 */
6186 	del_timer_sync(&ahd->stat_timer);
6187 
6188 	/* This will reset most registers to 0, but not all */
6189 	ahd_reset(ahd, /*reinit*/FALSE);
6190 }
6191 
6192 /*
6193  * Reset the controller and record some information about it
6194  * that is only available just after a reset.  If "reinit" is
6195  * non-zero, this reset occurred after initial configuration
6196  * and the caller requests that the chip be fully reinitialized
6197  * to a runable state.  Chip interrupts are *not* enabled after
6198  * a reinitialization.  The caller must enable interrupts via
6199  * ahd_intr_enable().
6200  */
6201 int
6202 ahd_reset(struct ahd_softc *ahd, int reinit)
6203 {
6204 	u_int	 sxfrctl1;
6205 	int	 wait;
6206 	uint32_t cmd;
6207 
6208 	/*
6209 	 * Preserve the value of the SXFRCTL1 register for all channels.
6210 	 * It contains settings that affect termination and we don't want
6211 	 * to disturb the integrity of the bus.
6212 	 */
6213 	ahd_pause(ahd);
6214 	ahd_update_modes(ahd);
6215 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6216 	sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6217 
6218 	cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6219 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6220 		uint32_t mod_cmd;
6221 
6222 		/*
6223 		 * A4 Razor #632
6224 		 * During the assertion of CHIPRST, the chip
6225 		 * does not disable its parity logic prior to
6226 		 * the start of the reset.  This may cause a
6227 		 * parity error to be detected and thus a
6228 		 * spurious SERR or PERR assertion.  Disable
6229 		 * PERR and SERR responses during the CHIPRST.
6230 		 */
6231 		mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6232 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6233 				     mod_cmd, /*bytes*/2);
6234 	}
6235 	ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6236 
6237 	/*
6238 	 * Ensure that the reset has finished.  We delay 1000us
6239 	 * prior to reading the register to make sure the chip
6240 	 * has sufficiently completed its reset to handle register
6241 	 * accesses.
6242 	 */
6243 	wait = 1000;
6244 	do {
6245 		ahd_delay(1000);
6246 	} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6247 
6248 	if (wait == 0) {
6249 		printk("%s: WARNING - Failed chip reset!  "
6250 		       "Trying to initialize anyway.\n", ahd_name(ahd));
6251 	}
6252 	ahd_outb(ahd, HCNTRL, ahd->pause);
6253 
6254 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6255 		/*
6256 		 * Clear any latched PCI error status and restore
6257 		 * previous SERR and PERR response enables.
6258 		 */
6259 		ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6260 				     0xFF, /*bytes*/1);
6261 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6262 				     cmd, /*bytes*/2);
6263 	}
6264 
6265 	/*
6266 	 * Mode should be SCSI after a chip reset, but lets
6267 	 * set it just to be safe.  We touch the MODE_PTR
6268 	 * register directly so as to bypass the lazy update
6269 	 * code in ahd_set_modes().
6270 	 */
6271 	ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6272 	ahd_outb(ahd, MODE_PTR,
6273 		 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6274 
6275 	/*
6276 	 * Restore SXFRCTL1.
6277 	 *
6278 	 * We must always initialize STPWEN to 1 before we
6279 	 * restore the saved values.  STPWEN is initialized
6280 	 * to a tri-state condition which can only be cleared
6281 	 * by turning it on.
6282 	 */
6283 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6284 	ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6285 
6286 	/* Determine chip configuration */
6287 	ahd->features &= ~AHD_WIDE;
6288 	if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6289 		ahd->features |= AHD_WIDE;
6290 
6291 	/*
6292 	 * If a recovery action has forced a chip reset,
6293 	 * re-initialize the chip to our liking.
6294 	 */
6295 	if (reinit != 0)
6296 		ahd_chip_init(ahd);
6297 
6298 	return (0);
6299 }
6300 
6301 /*
6302  * Determine the number of SCBs available on the controller
6303  */
6304 static int
6305 ahd_probe_scbs(struct ahd_softc *ahd) {
6306 	int i;
6307 
6308 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6309 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6310 	for (i = 0; i < AHD_SCB_MAX; i++) {
6311 		int j;
6312 
6313 		ahd_set_scbptr(ahd, i);
6314 		ahd_outw(ahd, SCB_BASE, i);
6315 		for (j = 2; j < 64; j++)
6316 			ahd_outb(ahd, SCB_BASE+j, 0);
6317 		/* Start out life as unallocated (needing an abort) */
6318 		ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6319 		if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6320 			break;
6321 		ahd_set_scbptr(ahd, 0);
6322 		if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6323 			break;
6324 	}
6325 	return (i);
6326 }
6327 
6328 static void
6329 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6330 {
6331 	dma_addr_t *baddr;
6332 
6333 	baddr = (dma_addr_t *)arg;
6334 	*baddr = segs->ds_addr;
6335 }
6336 
6337 static void
6338 ahd_initialize_hscbs(struct ahd_softc *ahd)
6339 {
6340 	int i;
6341 
6342 	for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6343 		ahd_set_scbptr(ahd, i);
6344 
6345 		/* Clear the control byte. */
6346 		ahd_outb(ahd, SCB_CONTROL, 0);
6347 
6348 		/* Set the next pointer */
6349 		ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6350 	}
6351 }
6352 
6353 static int
6354 ahd_init_scbdata(struct ahd_softc *ahd)
6355 {
6356 	struct	scb_data *scb_data;
6357 	int	i;
6358 
6359 	scb_data = &ahd->scb_data;
6360 	TAILQ_INIT(&scb_data->free_scbs);
6361 	for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6362 		LIST_INIT(&scb_data->free_scb_lists[i]);
6363 	LIST_INIT(&scb_data->any_dev_free_scb_list);
6364 	SLIST_INIT(&scb_data->hscb_maps);
6365 	SLIST_INIT(&scb_data->sg_maps);
6366 	SLIST_INIT(&scb_data->sense_maps);
6367 
6368 	/* Determine the number of hardware SCBs and initialize them */
6369 	scb_data->maxhscbs = ahd_probe_scbs(ahd);
6370 	if (scb_data->maxhscbs == 0) {
6371 		printk("%s: No SCB space found\n", ahd_name(ahd));
6372 		return (ENXIO);
6373 	}
6374 
6375 	ahd_initialize_hscbs(ahd);
6376 
6377 	/*
6378 	 * Create our DMA tags.  These tags define the kinds of device
6379 	 * accessible memory allocations and memory mappings we will
6380 	 * need to perform during normal operation.
6381 	 *
6382 	 * Unless we need to further restrict the allocation, we rely
6383 	 * on the restrictions of the parent dmat, hence the common
6384 	 * use of MAXADDR and MAXSIZE.
6385 	 */
6386 
6387 	/* DMA tag for our hardware scb structures */
6388 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6389 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6390 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6391 			       /*highaddr*/BUS_SPACE_MAXADDR,
6392 			       /*filter*/NULL, /*filterarg*/NULL,
6393 			       PAGE_SIZE, /*nsegments*/1,
6394 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6395 			       /*flags*/0, &scb_data->hscb_dmat) != 0) {
6396 		goto error_exit;
6397 	}
6398 
6399 	scb_data->init_level++;
6400 
6401 	/* DMA tag for our S/G structures. */
6402 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6403 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6404 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6405 			       /*highaddr*/BUS_SPACE_MAXADDR,
6406 			       /*filter*/NULL, /*filterarg*/NULL,
6407 			       ahd_sglist_allocsize(ahd), /*nsegments*/1,
6408 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6409 			       /*flags*/0, &scb_data->sg_dmat) != 0) {
6410 		goto error_exit;
6411 	}
6412 #ifdef AHD_DEBUG
6413 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6414 		printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6415 		       ahd_sglist_allocsize(ahd));
6416 #endif
6417 
6418 	scb_data->init_level++;
6419 
6420 	/* DMA tag for our sense buffers.  We allocate in page sized chunks */
6421 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6422 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6423 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6424 			       /*highaddr*/BUS_SPACE_MAXADDR,
6425 			       /*filter*/NULL, /*filterarg*/NULL,
6426 			       PAGE_SIZE, /*nsegments*/1,
6427 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6428 			       /*flags*/0, &scb_data->sense_dmat) != 0) {
6429 		goto error_exit;
6430 	}
6431 
6432 	scb_data->init_level++;
6433 
6434 	/* Perform initial CCB allocation */
6435 	ahd_alloc_scbs(ahd);
6436 
6437 	if (scb_data->numscbs == 0) {
6438 		printk("%s: ahd_init_scbdata - "
6439 		       "Unable to allocate initial scbs\n",
6440 		       ahd_name(ahd));
6441 		goto error_exit;
6442 	}
6443 
6444 	/*
6445 	 * Note that we were successful
6446 	 */
6447 	return (0);
6448 
6449 error_exit:
6450 
6451 	return (ENOMEM);
6452 }
6453 
6454 static struct scb *
6455 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6456 {
6457 	struct scb *scb;
6458 
6459 	/*
6460 	 * Look on the pending list.
6461 	 */
6462 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6463 		if (SCB_GET_TAG(scb) == tag)
6464 			return (scb);
6465 	}
6466 
6467 	/*
6468 	 * Then on all of the collision free lists.
6469 	 */
6470 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6471 		struct scb *list_scb;
6472 
6473 		list_scb = scb;
6474 		do {
6475 			if (SCB_GET_TAG(list_scb) == tag)
6476 				return (list_scb);
6477 			list_scb = LIST_NEXT(list_scb, collision_links);
6478 		} while (list_scb);
6479 	}
6480 
6481 	/*
6482 	 * And finally on the generic free list.
6483 	 */
6484 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6485 		if (SCB_GET_TAG(scb) == tag)
6486 			return (scb);
6487 	}
6488 
6489 	return (NULL);
6490 }
6491 
6492 static void
6493 ahd_fini_scbdata(struct ahd_softc *ahd)
6494 {
6495 	struct scb_data *scb_data;
6496 
6497 	scb_data = &ahd->scb_data;
6498 	if (scb_data == NULL)
6499 		return;
6500 
6501 	switch (scb_data->init_level) {
6502 	default:
6503 	case 7:
6504 	{
6505 		struct map_node *sns_map;
6506 
6507 		while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6508 			SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6509 			ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6510 					  sns_map->dmamap);
6511 			ahd_dmamem_free(ahd, scb_data->sense_dmat,
6512 					sns_map->vaddr, sns_map->dmamap);
6513 			kfree(sns_map);
6514 		}
6515 		ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6516 	}
6517 		fallthrough;
6518 	case 6:
6519 	{
6520 		struct map_node *sg_map;
6521 
6522 		while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6523 			SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6524 			ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6525 					  sg_map->dmamap);
6526 			ahd_dmamem_free(ahd, scb_data->sg_dmat,
6527 					sg_map->vaddr, sg_map->dmamap);
6528 			kfree(sg_map);
6529 		}
6530 		ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6531 	}
6532 		fallthrough;
6533 	case 5:
6534 	{
6535 		struct map_node *hscb_map;
6536 
6537 		while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6538 			SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6539 			ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6540 					  hscb_map->dmamap);
6541 			ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6542 					hscb_map->vaddr, hscb_map->dmamap);
6543 			kfree(hscb_map);
6544 		}
6545 		ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6546 	}
6547 		fallthrough;
6548 	case 4:
6549 	case 3:
6550 	case 2:
6551 	case 1:
6552 	case 0:
6553 		break;
6554 	}
6555 }
6556 
6557 /*
6558  * DSP filter Bypass must be enabled until the first selection
6559  * after a change in bus mode (Razor #491 and #493).
6560  */
6561 static void
6562 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6563 {
6564 	ahd_mode_state saved_modes;
6565 
6566 	saved_modes = ahd_save_modes(ahd);
6567 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6568 	ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6569 	       | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6570 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6571 #ifdef AHD_DEBUG
6572 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6573 		printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6574 #endif
6575 	ahd_restore_modes(ahd, saved_modes);
6576 	ahd->flags &= ~AHD_HAD_FIRST_SEL;
6577 }
6578 
6579 static void
6580 ahd_iocell_first_selection(struct ahd_softc *ahd)
6581 {
6582 	ahd_mode_state	saved_modes;
6583 	u_int		sblkctl;
6584 
6585 	if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6586 		return;
6587 	saved_modes = ahd_save_modes(ahd);
6588 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6589 	sblkctl = ahd_inb(ahd, SBLKCTL);
6590 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6591 #ifdef AHD_DEBUG
6592 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6593 		printk("%s: iocell first selection\n", ahd_name(ahd));
6594 #endif
6595 	if ((sblkctl & ENAB40) != 0) {
6596 		ahd_outb(ahd, DSPDATACTL,
6597 			 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6598 #ifdef AHD_DEBUG
6599 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
6600 			printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6601 #endif
6602 	}
6603 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6604 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
6605 	ahd_restore_modes(ahd, saved_modes);
6606 	ahd->flags |= AHD_HAD_FIRST_SEL;
6607 }
6608 
6609 /*************************** SCB Management ***********************************/
6610 static void
6611 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6612 {
6613 	struct	scb_list *free_list;
6614 	struct	scb_tailq *free_tailq;
6615 	struct	scb *first_scb;
6616 
6617 	scb->flags |= SCB_ON_COL_LIST;
6618 	AHD_SET_SCB_COL_IDX(scb, col_idx);
6619 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6620 	free_tailq = &ahd->scb_data.free_scbs;
6621 	first_scb = LIST_FIRST(free_list);
6622 	if (first_scb != NULL) {
6623 		LIST_INSERT_AFTER(first_scb, scb, collision_links);
6624 	} else {
6625 		LIST_INSERT_HEAD(free_list, scb, collision_links);
6626 		TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6627 	}
6628 }
6629 
6630 static void
6631 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6632 {
6633 	struct	scb_list *free_list;
6634 	struct	scb_tailq *free_tailq;
6635 	struct	scb *first_scb;
6636 	u_int	col_idx;
6637 
6638 	scb->flags &= ~SCB_ON_COL_LIST;
6639 	col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6640 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6641 	free_tailq = &ahd->scb_data.free_scbs;
6642 	first_scb = LIST_FIRST(free_list);
6643 	if (first_scb == scb) {
6644 		struct scb *next_scb;
6645 
6646 		/*
6647 		 * Maintain order in the collision free
6648 		 * lists for fairness if this device has
6649 		 * other colliding tags active.
6650 		 */
6651 		next_scb = LIST_NEXT(scb, collision_links);
6652 		if (next_scb != NULL) {
6653 			TAILQ_INSERT_AFTER(free_tailq, scb,
6654 					   next_scb, links.tqe);
6655 		}
6656 		TAILQ_REMOVE(free_tailq, scb, links.tqe);
6657 	}
6658 	LIST_REMOVE(scb, collision_links);
6659 }
6660 
6661 /*
6662  * Get a free scb. If there are none, see if we can allocate a new SCB.
6663  */
6664 struct scb *
6665 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6666 {
6667 	struct scb *scb;
6668 	int tries;
6669 
6670 	tries = 0;
6671 look_again:
6672 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6673 		if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6674 			ahd_rem_col_list(ahd, scb);
6675 			goto found;
6676 		}
6677 	}
6678 	if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6679 
6680 		if (tries++ != 0)
6681 			return (NULL);
6682 		ahd_alloc_scbs(ahd);
6683 		goto look_again;
6684 	}
6685 	LIST_REMOVE(scb, links.le);
6686 	if (col_idx != AHD_NEVER_COL_IDX
6687 	 && (scb->col_scb != NULL)
6688 	 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6689 		LIST_REMOVE(scb->col_scb, links.le);
6690 		ahd_add_col_list(ahd, scb->col_scb, col_idx);
6691 	}
6692 found:
6693 	scb->flags |= SCB_ACTIVE;
6694 	return (scb);
6695 }
6696 
6697 /*
6698  * Return an SCB resource to the free list.
6699  */
6700 void
6701 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6702 {
6703 	/* Clean up for the next user */
6704 	scb->flags = SCB_FLAG_NONE;
6705 	scb->hscb->control = 0;
6706 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6707 
6708 	if (scb->col_scb == NULL) {
6709 
6710 		/*
6711 		 * No collision possible.  Just free normally.
6712 		 */
6713 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6714 				 scb, links.le);
6715 	} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6716 
6717 		/*
6718 		 * The SCB we might have collided with is on
6719 		 * a free collision list.  Put both SCBs on
6720 		 * the generic list.
6721 		 */
6722 		ahd_rem_col_list(ahd, scb->col_scb);
6723 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6724 				 scb, links.le);
6725 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6726 				 scb->col_scb, links.le);
6727 	} else if ((scb->col_scb->flags
6728 		  & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6729 		&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6730 
6731 		/*
6732 		 * The SCB we might collide with on the next allocation
6733 		 * is still active in a non-packetized, tagged, context.
6734 		 * Put us on the SCB collision list.
6735 		 */
6736 		ahd_add_col_list(ahd, scb,
6737 				 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6738 	} else {
6739 		/*
6740 		 * The SCB we might collide with on the next allocation
6741 		 * is either active in a packetized context, or free.
6742 		 * Since we can't collide, put this SCB on the generic
6743 		 * free list.
6744 		 */
6745 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6746 				 scb, links.le);
6747 	}
6748 
6749 	ahd_platform_scb_free(ahd, scb);
6750 }
6751 
6752 static void
6753 ahd_alloc_scbs(struct ahd_softc *ahd)
6754 {
6755 	struct scb_data *scb_data;
6756 	struct scb	*next_scb;
6757 	struct hardware_scb *hscb;
6758 	struct map_node *hscb_map;
6759 	struct map_node *sg_map;
6760 	struct map_node *sense_map;
6761 	uint8_t		*segs;
6762 	uint8_t		*sense_data;
6763 	dma_addr_t	 hscb_busaddr;
6764 	dma_addr_t	 sg_busaddr;
6765 	dma_addr_t	 sense_busaddr;
6766 	int		 newcount;
6767 	int		 i;
6768 
6769 	scb_data = &ahd->scb_data;
6770 	if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6771 		/* Can't allocate any more */
6772 		return;
6773 
6774 	if (scb_data->scbs_left != 0) {
6775 		int offset;
6776 
6777 		offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6778 		hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6779 		hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6780 		hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6781 	} else {
6782 		hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6783 
6784 		if (hscb_map == NULL)
6785 			return;
6786 
6787 		/* Allocate the next batch of hardware SCBs */
6788 		if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6789 				     (void **)&hscb_map->vaddr,
6790 				     BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6791 			kfree(hscb_map);
6792 			return;
6793 		}
6794 
6795 		SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6796 
6797 		ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6798 				hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6799 				&hscb_map->physaddr, /*flags*/0);
6800 
6801 		hscb = (struct hardware_scb *)hscb_map->vaddr;
6802 		hscb_busaddr = hscb_map->physaddr;
6803 		scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6804 	}
6805 
6806 	if (scb_data->sgs_left != 0) {
6807 		int offset;
6808 
6809 		offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6810 		       - scb_data->sgs_left) * ahd_sglist_size(ahd);
6811 		sg_map = SLIST_FIRST(&scb_data->sg_maps);
6812 		segs = sg_map->vaddr + offset;
6813 		sg_busaddr = sg_map->physaddr + offset;
6814 	} else {
6815 		sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6816 
6817 		if (sg_map == NULL)
6818 			return;
6819 
6820 		/* Allocate the next batch of S/G lists */
6821 		if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6822 				     (void **)&sg_map->vaddr,
6823 				     BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6824 			kfree(sg_map);
6825 			return;
6826 		}
6827 
6828 		SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6829 
6830 		ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6831 				sg_map->vaddr, ahd_sglist_allocsize(ahd),
6832 				ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6833 
6834 		segs = sg_map->vaddr;
6835 		sg_busaddr = sg_map->physaddr;
6836 		scb_data->sgs_left =
6837 		    ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6838 #ifdef AHD_DEBUG
6839 		if (ahd_debug & AHD_SHOW_MEMORY)
6840 			printk("Mapped SG data\n");
6841 #endif
6842 	}
6843 
6844 	if (scb_data->sense_left != 0) {
6845 		int offset;
6846 
6847 		offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6848 		sense_map = SLIST_FIRST(&scb_data->sense_maps);
6849 		sense_data = sense_map->vaddr + offset;
6850 		sense_busaddr = sense_map->physaddr + offset;
6851 	} else {
6852 		sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6853 
6854 		if (sense_map == NULL)
6855 			return;
6856 
6857 		/* Allocate the next batch of sense buffers */
6858 		if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6859 				     (void **)&sense_map->vaddr,
6860 				     BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6861 			kfree(sense_map);
6862 			return;
6863 		}
6864 
6865 		SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6866 
6867 		ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6868 				sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6869 				&sense_map->physaddr, /*flags*/0);
6870 
6871 		sense_data = sense_map->vaddr;
6872 		sense_busaddr = sense_map->physaddr;
6873 		scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6874 #ifdef AHD_DEBUG
6875 		if (ahd_debug & AHD_SHOW_MEMORY)
6876 			printk("Mapped sense data\n");
6877 #endif
6878 	}
6879 
6880 	newcount = min(scb_data->sense_left, scb_data->scbs_left);
6881 	newcount = min(newcount, scb_data->sgs_left);
6882 	newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6883 	for (i = 0; i < newcount; i++) {
6884 		struct scb_platform_data *pdata;
6885 		u_int col_tag;
6886 
6887 		next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6888 		if (next_scb == NULL)
6889 			break;
6890 
6891 		pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6892 		if (pdata == NULL) {
6893 			kfree(next_scb);
6894 			break;
6895 		}
6896 		next_scb->platform_data = pdata;
6897 		next_scb->hscb_map = hscb_map;
6898 		next_scb->sg_map = sg_map;
6899 		next_scb->sense_map = sense_map;
6900 		next_scb->sg_list = segs;
6901 		next_scb->sense_data = sense_data;
6902 		next_scb->sense_busaddr = sense_busaddr;
6903 		memset(hscb, 0, sizeof(*hscb));
6904 		next_scb->hscb = hscb;
6905 		hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6906 
6907 		/*
6908 		 * The sequencer always starts with the second entry.
6909 		 * The first entry is embedded in the scb.
6910 		 */
6911 		next_scb->sg_list_busaddr = sg_busaddr;
6912 		if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6913 			next_scb->sg_list_busaddr
6914 			    += sizeof(struct ahd_dma64_seg);
6915 		else
6916 			next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6917 		next_scb->ahd_softc = ahd;
6918 		next_scb->flags = SCB_FLAG_NONE;
6919 		next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6920 		col_tag = scb_data->numscbs ^ 0x100;
6921 		next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6922 		if (next_scb->col_scb != NULL)
6923 			next_scb->col_scb->col_scb = next_scb;
6924 		ahd_free_scb(ahd, next_scb);
6925 		hscb++;
6926 		hscb_busaddr += sizeof(*hscb);
6927 		segs += ahd_sglist_size(ahd);
6928 		sg_busaddr += ahd_sglist_size(ahd);
6929 		sense_data += AHD_SENSE_BUFSIZE;
6930 		sense_busaddr += AHD_SENSE_BUFSIZE;
6931 		scb_data->numscbs++;
6932 		scb_data->sense_left--;
6933 		scb_data->scbs_left--;
6934 		scb_data->sgs_left--;
6935 	}
6936 }
6937 
6938 void
6939 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6940 {
6941 	const char *speed;
6942 	const char *type;
6943 	int len;
6944 
6945 	len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6946 	buf += len;
6947 
6948 	speed = "Ultra320 ";
6949 	if ((ahd->features & AHD_WIDE) != 0) {
6950 		type = "Wide ";
6951 	} else {
6952 		type = "Single ";
6953 	}
6954 	len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6955 		      speed, type, ahd->channel, ahd->our_id);
6956 	buf += len;
6957 
6958 	sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6959 		ahd->scb_data.maxhscbs);
6960 }
6961 
6962 static const char *channel_strings[] = {
6963 	"Primary Low",
6964 	"Primary High",
6965 	"Secondary Low",
6966 	"Secondary High"
6967 };
6968 
6969 static const char *termstat_strings[] = {
6970 	"Terminated Correctly",
6971 	"Over Terminated",
6972 	"Under Terminated",
6973 	"Not Configured"
6974 };
6975 
6976 /***************************** Timer Facilities *******************************/
6977 static void
6978 ahd_timer_reset(struct timer_list *timer, int usec)
6979 {
6980 	del_timer(timer);
6981 	timer->expires = jiffies + (usec * HZ)/1000000;
6982 	add_timer(timer);
6983 }
6984 
6985 /*
6986  * Start the board, ready for normal operation
6987  */
6988 int
6989 ahd_init(struct ahd_softc *ahd)
6990 {
6991 	uint8_t		*next_vaddr;
6992 	dma_addr_t	 next_baddr;
6993 	size_t		 driver_data_size;
6994 	int		 i;
6995 	int		 error;
6996 	u_int		 warn_user;
6997 	uint8_t		 current_sensing;
6998 	uint8_t		 fstat;
6999 
7000 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7001 
7002 	ahd->stack_size = ahd_probe_stack_size(ahd);
7003 	ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7004 					 GFP_ATOMIC);
7005 	if (ahd->saved_stack == NULL)
7006 		return (ENOMEM);
7007 
7008 	/*
7009 	 * Verify that the compiler hasn't over-aggressively
7010 	 * padded important structures.
7011 	 */
7012 	if (sizeof(struct hardware_scb) != 64)
7013 		panic("Hardware SCB size is incorrect");
7014 
7015 #ifdef AHD_DEBUG
7016 	if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7017 		ahd->flags |= AHD_SEQUENCER_DEBUG;
7018 #endif
7019 
7020 	/*
7021 	 * Default to allowing initiator operations.
7022 	 */
7023 	ahd->flags |= AHD_INITIATORROLE;
7024 
7025 	/*
7026 	 * Only allow target mode features if this unit has them enabled.
7027 	 */
7028 	if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7029 		ahd->features &= ~AHD_TARGETMODE;
7030 
7031 	ahd->init_level++;
7032 
7033 	/*
7034 	 * DMA tag for our command fifos and other data in system memory
7035 	 * the card's sequencer must be able to access.  For initiator
7036 	 * roles, we need to allocate space for the qoutfifo.  When providing
7037 	 * for the target mode role, we must additionally provide space for
7038 	 * the incoming target command fifo.
7039 	 */
7040 	driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7041 			 + sizeof(struct hardware_scb);
7042 	if ((ahd->features & AHD_TARGETMODE) != 0)
7043 		driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7044 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7045 		driver_data_size += PKT_OVERRUN_BUFSIZE;
7046 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7047 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7048 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7049 			       /*highaddr*/BUS_SPACE_MAXADDR,
7050 			       /*filter*/NULL, /*filterarg*/NULL,
7051 			       driver_data_size,
7052 			       /*nsegments*/1,
7053 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7054 			       /*flags*/0, &ahd->shared_data_dmat) != 0) {
7055 		return (ENOMEM);
7056 	}
7057 
7058 	ahd->init_level++;
7059 
7060 	/* Allocation of driver data */
7061 	if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7062 			     (void **)&ahd->shared_data_map.vaddr,
7063 			     BUS_DMA_NOWAIT,
7064 			     &ahd->shared_data_map.dmamap) != 0) {
7065 		return (ENOMEM);
7066 	}
7067 
7068 	ahd->init_level++;
7069 
7070 	/* And permanently map it in */
7071 	ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7072 			ahd->shared_data_map.vaddr, driver_data_size,
7073 			ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7074 			/*flags*/0);
7075 	ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7076 	next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7077 	next_baddr = ahd->shared_data_map.physaddr
7078 		   + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7079 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7080 		ahd->targetcmds = (struct target_cmd *)next_vaddr;
7081 		next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7082 		next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7083 	}
7084 
7085 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7086 		ahd->overrun_buf = next_vaddr;
7087 		next_vaddr += PKT_OVERRUN_BUFSIZE;
7088 		next_baddr += PKT_OVERRUN_BUFSIZE;
7089 	}
7090 
7091 	/*
7092 	 * We need one SCB to serve as the "next SCB".  Since the
7093 	 * tag identifier in this SCB will never be used, there is
7094 	 * no point in using a valid HSCB tag from an SCB pulled from
7095 	 * the standard free pool.  So, we allocate this "sentinel"
7096 	 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7097 	 */
7098 	ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7099 	ahd->next_queued_hscb_map = &ahd->shared_data_map;
7100 	ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7101 
7102 	ahd->init_level++;
7103 
7104 	/* Allocate SCB data now that buffer_dmat is initialized */
7105 	if (ahd_init_scbdata(ahd) != 0)
7106 		return (ENOMEM);
7107 
7108 	if ((ahd->flags & AHD_INITIATORROLE) == 0)
7109 		ahd->flags &= ~AHD_RESET_BUS_A;
7110 
7111 	/*
7112 	 * Before committing these settings to the chip, give
7113 	 * the OSM one last chance to modify our configuration.
7114 	 */
7115 	ahd_platform_init(ahd);
7116 
7117 	/* Bring up the chip. */
7118 	ahd_chip_init(ahd);
7119 
7120 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7121 
7122 	if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7123 		goto init_done;
7124 
7125 	/*
7126 	 * Verify termination based on current draw and
7127 	 * warn user if the bus is over/under terminated.
7128 	 */
7129 	error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7130 				   CURSENSE_ENB);
7131 	if (error != 0) {
7132 		printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7133 		goto init_done;
7134 	}
7135 	for (i = 20, fstat = FLX_FSTAT_BUSY;
7136 	     (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7137 		error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7138 		if (error != 0) {
7139 			printk("%s: current sensing timeout 2\n",
7140 			       ahd_name(ahd));
7141 			goto init_done;
7142 		}
7143 	}
7144 	if (i == 0) {
7145 		printk("%s: Timedout during current-sensing test\n",
7146 		       ahd_name(ahd));
7147 		goto init_done;
7148 	}
7149 
7150 	/* Latch Current Sensing status. */
7151 	error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7152 	if (error != 0) {
7153 		printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7154 		goto init_done;
7155 	}
7156 
7157 	/* Diable current sensing. */
7158 	ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7159 
7160 #ifdef AHD_DEBUG
7161 	if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7162 		printk("%s: current_sensing == 0x%x\n",
7163 		       ahd_name(ahd), current_sensing);
7164 	}
7165 #endif
7166 	warn_user = 0;
7167 	for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7168 		u_int term_stat;
7169 
7170 		term_stat = (current_sensing & FLX_CSTAT_MASK);
7171 		switch (term_stat) {
7172 		case FLX_CSTAT_OVER:
7173 		case FLX_CSTAT_UNDER:
7174 			warn_user++;
7175 			fallthrough;
7176 		case FLX_CSTAT_INVALID:
7177 		case FLX_CSTAT_OKAY:
7178 			if (warn_user == 0 && bootverbose == 0)
7179 				break;
7180 			printk("%s: %s Channel %s\n", ahd_name(ahd),
7181 			       channel_strings[i], termstat_strings[term_stat]);
7182 			break;
7183 		}
7184 	}
7185 	if (warn_user) {
7186 		printk("%s: WARNING. Termination is not configured correctly.\n"
7187 		       "%s: WARNING. SCSI bus operations may FAIL.\n",
7188 		       ahd_name(ahd), ahd_name(ahd));
7189 	}
7190 init_done:
7191 	ahd_restart(ahd);
7192 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7193 	return (0);
7194 }
7195 
7196 /*
7197  * (Re)initialize chip state after a chip reset.
7198  */
7199 static void
7200 ahd_chip_init(struct ahd_softc *ahd)
7201 {
7202 	uint32_t busaddr;
7203 	u_int	 sxfrctl1;
7204 	u_int	 scsiseq_template;
7205 	u_int	 wait;
7206 	u_int	 i;
7207 	u_int	 target;
7208 
7209 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7210 	/*
7211 	 * Take the LED out of diagnostic mode
7212 	 */
7213 	ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7214 
7215 	/*
7216 	 * Return HS_MAILBOX to its default value.
7217 	 */
7218 	ahd->hs_mailbox = 0;
7219 	ahd_outb(ahd, HS_MAILBOX, 0);
7220 
7221 	/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7222 	ahd_outb(ahd, IOWNID, ahd->our_id);
7223 	ahd_outb(ahd, TOWNID, ahd->our_id);
7224 	sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7225 	sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7226 	if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7227 	 && (ahd->seltime != STIMESEL_MIN)) {
7228 		/*
7229 		 * The selection timer duration is twice as long
7230 		 * as it should be.  Halve it by adding "1" to
7231 		 * the user specified setting.
7232 		 */
7233 		sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7234 	} else {
7235 		sxfrctl1 |= ahd->seltime;
7236 	}
7237 
7238 	ahd_outb(ahd, SXFRCTL0, DFON);
7239 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7240 	ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7241 
7242 	/*
7243 	 * Now that termination is set, wait for up
7244 	 * to 500ms for our transceivers to settle.  If
7245 	 * the adapter does not have a cable attached,
7246 	 * the transceivers may never settle, so don't
7247 	 * complain if we fail here.
7248 	 */
7249 	for (wait = 10000;
7250 	     (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7251 	     wait--)
7252 		ahd_delay(100);
7253 
7254 	/* Clear any false bus resets due to the transceivers settling */
7255 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7256 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7257 
7258 	/* Initialize mode specific S/G state. */
7259 	for (i = 0; i < 2; i++) {
7260 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7261 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7262 		ahd_outb(ahd, SG_STATE, 0);
7263 		ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7264 		ahd_outb(ahd, SEQIMODE,
7265 			 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7266 			|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7267 	}
7268 
7269 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7270 	ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7271 	ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7272 	ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7273 	ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7274 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7275 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7276 	} else {
7277 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7278 	}
7279 	ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7280 	if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7281 		/*
7282 		 * Do not issue a target abort when a split completion
7283 		 * error occurs.  Let our PCIX interrupt handler deal
7284 		 * with it instead. H2A4 Razor #625
7285 		 */
7286 		ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7287 
7288 	if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7289 		ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7290 
7291 	/*
7292 	 * Tweak IOCELL settings.
7293 	 */
7294 	if ((ahd->flags & AHD_HP_BOARD) != 0) {
7295 		for (i = 0; i < NUMDSPS; i++) {
7296 			ahd_outb(ahd, DSPSELECT, i);
7297 			ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7298 		}
7299 #ifdef AHD_DEBUG
7300 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7301 			printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7302 			       WRTBIASCTL_HP_DEFAULT);
7303 #endif
7304 	}
7305 	ahd_setup_iocell_workaround(ahd);
7306 
7307 	/*
7308 	 * Enable LQI Manager interrupts.
7309 	 */
7310 	ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7311 			      | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7312 			      | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7313 	ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7314 	/*
7315 	 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7316 	 * manually for the command phase at the start of a packetized
7317 	 * selection case.  ENLQOBUSFREE should be made redundant by
7318 	 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7319 	 * events fail to assert the BUSFREE interrupt so we must
7320 	 * also enable LQOBUSFREE interrupts.
7321 	 */
7322 	ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7323 
7324 	/*
7325 	 * Setup sequencer interrupt handlers.
7326 	 */
7327 	ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7328 	ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7329 
7330 	/*
7331 	 * Setup SCB Offset registers.
7332 	 */
7333 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7334 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7335 			 pkt_long_lun));
7336 	} else {
7337 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7338 	}
7339 	ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7340 	ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7341 	ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7342 	ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7343 				       shared_data.idata.cdb));
7344 	ahd_outb(ahd, QNEXTPTR,
7345 		 offsetof(struct hardware_scb, next_hscb_busaddr));
7346 	ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7347 	ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7348 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7349 		ahd_outb(ahd, LUNLEN,
7350 			 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7351 	} else {
7352 		ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7353 	}
7354 	ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7355 	ahd_outb(ahd, MAXCMD, 0xFF);
7356 	ahd_outb(ahd, SCBAUTOPTR,
7357 		 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7358 
7359 	/* We haven't been enabled for target mode yet. */
7360 	ahd_outb(ahd, MULTARGID, 0);
7361 	ahd_outb(ahd, MULTARGID + 1, 0);
7362 
7363 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7364 	/* Initialize the negotiation table. */
7365 	if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7366 		/*
7367 		 * Clear the spare bytes in the neg table to avoid
7368 		 * spurious parity errors.
7369 		 */
7370 		for (target = 0; target < AHD_NUM_TARGETS; target++) {
7371 			ahd_outb(ahd, NEGOADDR, target);
7372 			ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7373 			for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7374 				ahd_outb(ahd, ANNEXDAT, 0);
7375 		}
7376 	}
7377 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7378 		struct	 ahd_devinfo devinfo;
7379 		struct	 ahd_initiator_tinfo *tinfo;
7380 		struct	 ahd_tmode_tstate *tstate;
7381 
7382 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7383 					    target, &tstate);
7384 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7385 				    target, CAM_LUN_WILDCARD,
7386 				    'A', ROLE_INITIATOR);
7387 		ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7388 	}
7389 
7390 	ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7391 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7392 
7393 #ifdef NEEDS_MORE_TESTING
7394 	/*
7395 	 * Always enable abort on incoming L_Qs if this feature is
7396 	 * supported.  We use this to catch invalid SCB references.
7397 	 */
7398 	if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7399 		ahd_outb(ahd, LQCTL1, ABORTPENDING);
7400 	else
7401 #endif
7402 		ahd_outb(ahd, LQCTL1, 0);
7403 
7404 	/* All of our queues are empty */
7405 	ahd->qoutfifonext = 0;
7406 	ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7407 	ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7408 	for (i = 0; i < AHD_QOUT_SIZE; i++)
7409 		ahd->qoutfifo[i].valid_tag = 0;
7410 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7411 
7412 	ahd->qinfifonext = 0;
7413 	for (i = 0; i < AHD_QIN_SIZE; i++)
7414 		ahd->qinfifo[i] = SCB_LIST_NULL;
7415 
7416 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7417 		/* All target command blocks start out invalid. */
7418 		for (i = 0; i < AHD_TMODE_CMDS; i++)
7419 			ahd->targetcmds[i].cmd_valid = 0;
7420 		ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7421 		ahd->tqinfifonext = 1;
7422 		ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7423 		ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7424 	}
7425 
7426 	/* Initialize Scratch Ram. */
7427 	ahd_outb(ahd, SEQ_FLAGS, 0);
7428 	ahd_outb(ahd, SEQ_FLAGS2, 0);
7429 
7430 	/* We don't have any waiting selections */
7431 	ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7432 	ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7433 	ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7434 	ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7435 	for (i = 0; i < AHD_NUM_TARGETS; i++)
7436 		ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7437 
7438 	/*
7439 	 * Nobody is waiting to be DMAed into the QOUTFIFO.
7440 	 */
7441 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7442 	ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7443 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7444 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7445 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7446 
7447 	/*
7448 	 * The Freeze Count is 0.
7449 	 */
7450 	ahd->qfreeze_cnt = 0;
7451 	ahd_outw(ahd, QFREEZE_COUNT, 0);
7452 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7453 
7454 	/*
7455 	 * Tell the sequencer where it can find our arrays in memory.
7456 	 */
7457 	busaddr = ahd->shared_data_map.physaddr;
7458 	ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7459 	ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7460 
7461 	/*
7462 	 * Setup the allowed SCSI Sequences based on operational mode.
7463 	 * If we are a target, we'll enable select in operations once
7464 	 * we've had a lun enabled.
7465 	 */
7466 	scsiseq_template = ENAUTOATNP;
7467 	if ((ahd->flags & AHD_INITIATORROLE) != 0)
7468 		scsiseq_template |= ENRSELI;
7469 	ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7470 
7471 	/* There are no busy SCBs yet. */
7472 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7473 		int lun;
7474 
7475 		for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7476 			ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7477 	}
7478 
7479 	/*
7480 	 * Initialize the group code to command length table.
7481 	 * Vendor Unique codes are set to 0 so we only capture
7482 	 * the first byte of the cdb.  These can be overridden
7483 	 * when target mode is enabled.
7484 	 */
7485 	ahd_outb(ahd, CMDSIZE_TABLE, 5);
7486 	ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7487 	ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7488 	ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7489 	ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7490 	ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7491 	ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7492 	ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7493 
7494 	/* Tell the sequencer of our initial queue positions */
7495 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7496 	ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7497 	ahd->qinfifonext = 0;
7498 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7499 	ahd_set_hescb_qoff(ahd, 0);
7500 	ahd_set_snscb_qoff(ahd, 0);
7501 	ahd_set_sescb_qoff(ahd, 0);
7502 	ahd_set_sdscb_qoff(ahd, 0);
7503 
7504 	/*
7505 	 * Tell the sequencer which SCB will be the next one it receives.
7506 	 */
7507 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7508 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7509 
7510 	/*
7511 	 * Default to coalescing disabled.
7512 	 */
7513 	ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7514 	ahd_outw(ahd, CMDS_PENDING, 0);
7515 	ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7516 				     ahd->int_coalescing_maxcmds,
7517 				     ahd->int_coalescing_mincmds);
7518 	ahd_enable_coalescing(ahd, FALSE);
7519 
7520 	ahd_loadseq(ahd);
7521 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7522 
7523 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7524 		u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7525 
7526 		negodat3 |= ENSLOWCRC;
7527 		ahd_outb(ahd, NEGCONOPTS, negodat3);
7528 		negodat3 = ahd_inb(ahd, NEGCONOPTS);
7529 		if (!(negodat3 & ENSLOWCRC))
7530 			printk("aic79xx: failed to set the SLOWCRC bit\n");
7531 		else
7532 			printk("aic79xx: SLOWCRC bit set\n");
7533 	}
7534 }
7535 
7536 /*
7537  * Setup default device and controller settings.
7538  * This should only be called if our probe has
7539  * determined that no configuration data is available.
7540  */
7541 int
7542 ahd_default_config(struct ahd_softc *ahd)
7543 {
7544 	int	targ;
7545 
7546 	ahd->our_id = 7;
7547 
7548 	/*
7549 	 * Allocate a tstate to house information for our
7550 	 * initiator presence on the bus as well as the user
7551 	 * data for any target mode initiator.
7552 	 */
7553 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7554 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7555 		       "Failing attach\n", ahd_name(ahd));
7556 		return (ENOMEM);
7557 	}
7558 
7559 	for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7560 		struct	 ahd_devinfo devinfo;
7561 		struct	 ahd_initiator_tinfo *tinfo;
7562 		struct	 ahd_tmode_tstate *tstate;
7563 		uint16_t target_mask;
7564 
7565 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7566 					    targ, &tstate);
7567 		/*
7568 		 * We support SPC2 and SPI4.
7569 		 */
7570 		tinfo->user.protocol_version = 4;
7571 		tinfo->user.transport_version = 4;
7572 
7573 		target_mask = 0x01 << targ;
7574 		ahd->user_discenable |= target_mask;
7575 		tstate->discenable |= target_mask;
7576 		ahd->user_tagenable |= target_mask;
7577 #ifdef AHD_FORCE_160
7578 		tinfo->user.period = AHD_SYNCRATE_DT;
7579 #else
7580 		tinfo->user.period = AHD_SYNCRATE_160;
7581 #endif
7582 		tinfo->user.offset = MAX_OFFSET;
7583 		tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7584 					| MSG_EXT_PPR_WR_FLOW
7585 					| MSG_EXT_PPR_HOLD_MCS
7586 					| MSG_EXT_PPR_IU_REQ
7587 					| MSG_EXT_PPR_QAS_REQ
7588 					| MSG_EXT_PPR_DT_REQ;
7589 		if ((ahd->features & AHD_RTI) != 0)
7590 			tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7591 
7592 		tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7593 
7594 		/*
7595 		 * Start out Async/Narrow/Untagged and with
7596 		 * conservative protocol support.
7597 		 */
7598 		tinfo->goal.protocol_version = 2;
7599 		tinfo->goal.transport_version = 2;
7600 		tinfo->curr.protocol_version = 2;
7601 		tinfo->curr.transport_version = 2;
7602 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7603 				    targ, CAM_LUN_WILDCARD,
7604 				    'A', ROLE_INITIATOR);
7605 		tstate->tagenable &= ~target_mask;
7606 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7607 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7608 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7609 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7610 				 /*paused*/TRUE);
7611 	}
7612 	return (0);
7613 }
7614 
7615 /*
7616  * Parse device configuration information.
7617  */
7618 int
7619 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7620 {
7621 	int targ;
7622 	int max_targ;
7623 
7624 	max_targ = sc->max_targets & CFMAXTARG;
7625 	ahd->our_id = sc->brtime_id & CFSCSIID;
7626 
7627 	/*
7628 	 * Allocate a tstate to house information for our
7629 	 * initiator presence on the bus as well as the user
7630 	 * data for any target mode initiator.
7631 	 */
7632 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7633 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7634 		       "Failing attach\n", ahd_name(ahd));
7635 		return (ENOMEM);
7636 	}
7637 
7638 	for (targ = 0; targ < max_targ; targ++) {
7639 		struct	 ahd_devinfo devinfo;
7640 		struct	 ahd_initiator_tinfo *tinfo;
7641 		struct	 ahd_transinfo *user_tinfo;
7642 		struct	 ahd_tmode_tstate *tstate;
7643 		uint16_t target_mask;
7644 
7645 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7646 					    targ, &tstate);
7647 		user_tinfo = &tinfo->user;
7648 
7649 		/*
7650 		 * We support SPC2 and SPI4.
7651 		 */
7652 		tinfo->user.protocol_version = 4;
7653 		tinfo->user.transport_version = 4;
7654 
7655 		target_mask = 0x01 << targ;
7656 		ahd->user_discenable &= ~target_mask;
7657 		tstate->discenable &= ~target_mask;
7658 		ahd->user_tagenable &= ~target_mask;
7659 		if (sc->device_flags[targ] & CFDISC) {
7660 			tstate->discenable |= target_mask;
7661 			ahd->user_discenable |= target_mask;
7662 			ahd->user_tagenable |= target_mask;
7663 		} else {
7664 			/*
7665 			 * Cannot be packetized without disconnection.
7666 			 */
7667 			sc->device_flags[targ] &= ~CFPACKETIZED;
7668 		}
7669 
7670 		user_tinfo->ppr_options = 0;
7671 		user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7672 		if (user_tinfo->period < CFXFER_ASYNC) {
7673 			if (user_tinfo->period <= AHD_PERIOD_10MHz)
7674 				user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7675 			user_tinfo->offset = MAX_OFFSET;
7676 		} else  {
7677 			user_tinfo->offset = 0;
7678 			user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7679 		}
7680 #ifdef AHD_FORCE_160
7681 		if (user_tinfo->period <= AHD_SYNCRATE_160)
7682 			user_tinfo->period = AHD_SYNCRATE_DT;
7683 #endif
7684 
7685 		if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7686 			user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7687 						|  MSG_EXT_PPR_WR_FLOW
7688 						|  MSG_EXT_PPR_HOLD_MCS
7689 						|  MSG_EXT_PPR_IU_REQ;
7690 			if ((ahd->features & AHD_RTI) != 0)
7691 				user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7692 		}
7693 
7694 		if ((sc->device_flags[targ] & CFQAS) != 0)
7695 			user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7696 
7697 		if ((sc->device_flags[targ] & CFWIDEB) != 0)
7698 			user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7699 		else
7700 			user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7701 #ifdef AHD_DEBUG
7702 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7703 			printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7704 			       user_tinfo->period, user_tinfo->offset,
7705 			       user_tinfo->ppr_options);
7706 #endif
7707 		/*
7708 		 * Start out Async/Narrow/Untagged and with
7709 		 * conservative protocol support.
7710 		 */
7711 		tstate->tagenable &= ~target_mask;
7712 		tinfo->goal.protocol_version = 2;
7713 		tinfo->goal.transport_version = 2;
7714 		tinfo->curr.protocol_version = 2;
7715 		tinfo->curr.transport_version = 2;
7716 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7717 				    targ, CAM_LUN_WILDCARD,
7718 				    'A', ROLE_INITIATOR);
7719 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7720 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7721 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7722 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7723 				 /*paused*/TRUE);
7724 	}
7725 
7726 	ahd->flags &= ~AHD_SPCHK_ENB_A;
7727 	if (sc->bios_control & CFSPARITY)
7728 		ahd->flags |= AHD_SPCHK_ENB_A;
7729 
7730 	ahd->flags &= ~AHD_RESET_BUS_A;
7731 	if (sc->bios_control & CFRESETB)
7732 		ahd->flags |= AHD_RESET_BUS_A;
7733 
7734 	ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7735 	if (sc->bios_control & CFEXTEND)
7736 		ahd->flags |= AHD_EXTENDED_TRANS_A;
7737 
7738 	ahd->flags &= ~AHD_BIOS_ENABLED;
7739 	if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7740 		ahd->flags |= AHD_BIOS_ENABLED;
7741 
7742 	ahd->flags &= ~AHD_STPWLEVEL_A;
7743 	if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7744 		ahd->flags |= AHD_STPWLEVEL_A;
7745 
7746 	return (0);
7747 }
7748 
7749 /*
7750  * Parse device configuration information.
7751  */
7752 int
7753 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7754 {
7755 	int error;
7756 
7757 	error = ahd_verify_vpd_cksum(vpd);
7758 	if (error == 0)
7759 		return (EINVAL);
7760 	if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7761 		ahd->flags |= AHD_BOOT_CHANNEL;
7762 	return (0);
7763 }
7764 
7765 void
7766 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7767 {
7768 	u_int hcntrl;
7769 
7770 	hcntrl = ahd_inb(ahd, HCNTRL);
7771 	hcntrl &= ~INTEN;
7772 	ahd->pause &= ~INTEN;
7773 	ahd->unpause &= ~INTEN;
7774 	if (enable) {
7775 		hcntrl |= INTEN;
7776 		ahd->pause |= INTEN;
7777 		ahd->unpause |= INTEN;
7778 	}
7779 	ahd_outb(ahd, HCNTRL, hcntrl);
7780 }
7781 
7782 static void
7783 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7784 			     u_int mincmds)
7785 {
7786 	if (timer > AHD_TIMER_MAX_US)
7787 		timer = AHD_TIMER_MAX_US;
7788 	ahd->int_coalescing_timer = timer;
7789 
7790 	if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7791 		maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7792 	if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7793 		mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7794 	ahd->int_coalescing_maxcmds = maxcmds;
7795 	ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7796 	ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7797 	ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7798 }
7799 
7800 static void
7801 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7802 {
7803 
7804 	ahd->hs_mailbox &= ~ENINT_COALESCE;
7805 	if (enable)
7806 		ahd->hs_mailbox |= ENINT_COALESCE;
7807 	ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7808 	ahd_flush_device_writes(ahd);
7809 	ahd_run_qoutfifo(ahd);
7810 }
7811 
7812 /*
7813  * Ensure that the card is paused in a location
7814  * outside of all critical sections and that all
7815  * pending work is completed prior to returning.
7816  * This routine should only be called from outside
7817  * an interrupt context.
7818  */
7819 void
7820 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7821 {
7822 	u_int intstat;
7823 	u_int maxloops;
7824 
7825 	maxloops = 1000;
7826 	ahd->flags |= AHD_ALL_INTERRUPTS;
7827 	ahd_pause(ahd);
7828 	/*
7829 	 * Freeze the outgoing selections.  We do this only
7830 	 * until we are safely paused without further selections
7831 	 * pending.
7832 	 */
7833 	ahd->qfreeze_cnt--;
7834 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7835 	ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7836 	do {
7837 
7838 		ahd_unpause(ahd);
7839 		/*
7840 		 * Give the sequencer some time to service
7841 		 * any active selections.
7842 		 */
7843 		ahd_delay(500);
7844 
7845 		ahd_intr(ahd);
7846 		ahd_pause(ahd);
7847 		intstat = ahd_inb(ahd, INTSTAT);
7848 		if ((intstat & INT_PEND) == 0) {
7849 			ahd_clear_critical_section(ahd);
7850 			intstat = ahd_inb(ahd, INTSTAT);
7851 		}
7852 	} while (--maxloops
7853 	      && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7854 	      && ((intstat & INT_PEND) != 0
7855 	       || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7856 	       || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7857 
7858 	if (maxloops == 0) {
7859 		printk("Infinite interrupt loop, INTSTAT = %x",
7860 		      ahd_inb(ahd, INTSTAT));
7861 	}
7862 	ahd->qfreeze_cnt++;
7863 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7864 
7865 	ahd_flush_qoutfifo(ahd);
7866 
7867 	ahd->flags &= ~AHD_ALL_INTERRUPTS;
7868 }
7869 
7870 int __maybe_unused
7871 ahd_suspend(struct ahd_softc *ahd)
7872 {
7873 	ahd_pause_and_flushwork(ahd);
7874 
7875 	if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7876 		ahd_unpause(ahd);
7877 		return (EBUSY);
7878 	}
7879 	ahd_shutdown(ahd);
7880 	return (0);
7881 }
7882 
7883 void __maybe_unused
7884 ahd_resume(struct ahd_softc *ahd)
7885 {
7886 	ahd_reset(ahd, /*reinit*/TRUE);
7887 	ahd_intr_enable(ahd, TRUE);
7888 	ahd_restart(ahd);
7889 }
7890 
7891 /************************** Busy Target Table *********************************/
7892 /*
7893  * Set SCBPTR to the SCB that contains the busy
7894  * table entry for TCL.  Return the offset into
7895  * the SCB that contains the entry for TCL.
7896  * saved_scbid is dereferenced and set to the
7897  * scbid that should be restored once manipualtion
7898  * of the TCL entry is complete.
7899  */
7900 static inline u_int
7901 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7902 {
7903 	/*
7904 	 * Index to the SCB that contains the busy entry.
7905 	 */
7906 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7907 	*saved_scbid = ahd_get_scbptr(ahd);
7908 	ahd_set_scbptr(ahd, TCL_LUN(tcl)
7909 		     | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7910 
7911 	/*
7912 	 * And now calculate the SCB offset to the entry.
7913 	 * Each entry is 2 bytes wide, hence the
7914 	 * multiplication by 2.
7915 	 */
7916 	return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7917 }
7918 
7919 /*
7920  * Return the untagged transaction id for a given target/channel lun.
7921  */
7922 static u_int
7923 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7924 {
7925 	u_int scbid;
7926 	u_int scb_offset;
7927 	u_int saved_scbptr;
7928 
7929 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7930 	scbid = ahd_inw_scbram(ahd, scb_offset);
7931 	ahd_set_scbptr(ahd, saved_scbptr);
7932 	return (scbid);
7933 }
7934 
7935 static void
7936 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7937 {
7938 	u_int scb_offset;
7939 	u_int saved_scbptr;
7940 
7941 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7942 	ahd_outw(ahd, scb_offset, scbid);
7943 	ahd_set_scbptr(ahd, saved_scbptr);
7944 }
7945 
7946 /************************** SCB and SCB queue management **********************/
7947 static int
7948 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7949 	      char channel, int lun, u_int tag, role_t role)
7950 {
7951 	int targ = SCB_GET_TARGET(ahd, scb);
7952 	char chan = SCB_GET_CHANNEL(ahd, scb);
7953 	int slun = SCB_GET_LUN(scb);
7954 	int match;
7955 
7956 	match = ((chan == channel) || (channel == ALL_CHANNELS));
7957 	if (match != 0)
7958 		match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7959 	if (match != 0)
7960 		match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7961 	if (match != 0) {
7962 #ifdef AHD_TARGET_MODE
7963 		int group;
7964 
7965 		group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7966 		if (role == ROLE_INITIATOR) {
7967 			match = (group != XPT_FC_GROUP_TMODE)
7968 			      && ((tag == SCB_GET_TAG(scb))
7969 			       || (tag == SCB_LIST_NULL));
7970 		} else if (role == ROLE_TARGET) {
7971 			match = (group == XPT_FC_GROUP_TMODE)
7972 			      && ((tag == scb->io_ctx->csio.tag_id)
7973 			       || (tag == SCB_LIST_NULL));
7974 		}
7975 #else /* !AHD_TARGET_MODE */
7976 		match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
7977 #endif /* AHD_TARGET_MODE */
7978 	}
7979 
7980 	return match;
7981 }
7982 
7983 static void
7984 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
7985 {
7986 	int	target;
7987 	char	channel;
7988 	int	lun;
7989 
7990 	target = SCB_GET_TARGET(ahd, scb);
7991 	lun = SCB_GET_LUN(scb);
7992 	channel = SCB_GET_CHANNEL(ahd, scb);
7993 
7994 	ahd_search_qinfifo(ahd, target, channel, lun,
7995 			   /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
7996 			   CAM_REQUEUE_REQ, SEARCH_COMPLETE);
7997 
7998 	ahd_platform_freeze_devq(ahd, scb);
7999 }
8000 
8001 void
8002 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8003 {
8004 	struct scb	*prev_scb;
8005 	ahd_mode_state	 saved_modes;
8006 
8007 	saved_modes = ahd_save_modes(ahd);
8008 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8009 	prev_scb = NULL;
8010 	if (ahd_qinfifo_count(ahd) != 0) {
8011 		u_int prev_tag;
8012 		u_int prev_pos;
8013 
8014 		prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8015 		prev_tag = ahd->qinfifo[prev_pos];
8016 		prev_scb = ahd_lookup_scb(ahd, prev_tag);
8017 	}
8018 	ahd_qinfifo_requeue(ahd, prev_scb, scb);
8019 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8020 	ahd_restore_modes(ahd, saved_modes);
8021 }
8022 
8023 static void
8024 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8025 		    struct scb *scb)
8026 {
8027 	if (prev_scb == NULL) {
8028 		uint32_t busaddr;
8029 
8030 		busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8031 		ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8032 	} else {
8033 		prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8034 		ahd_sync_scb(ahd, prev_scb,
8035 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8036 	}
8037 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8038 	ahd->qinfifonext++;
8039 	scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8040 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8041 }
8042 
8043 static int
8044 ahd_qinfifo_count(struct ahd_softc *ahd)
8045 {
8046 	u_int qinpos;
8047 	u_int wrap_qinpos;
8048 	u_int wrap_qinfifonext;
8049 
8050 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8051 	qinpos = ahd_get_snscb_qoff(ahd);
8052 	wrap_qinpos = AHD_QIN_WRAP(qinpos);
8053 	wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8054 	if (wrap_qinfifonext >= wrap_qinpos)
8055 		return (wrap_qinfifonext - wrap_qinpos);
8056 	else
8057 		return (wrap_qinfifonext
8058 		      + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8059 }
8060 
8061 static void
8062 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8063 {
8064 	struct		scb *scb;
8065 	ahd_mode_state	saved_modes;
8066 	u_int		pending_cmds;
8067 
8068 	saved_modes = ahd_save_modes(ahd);
8069 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8070 
8071 	/*
8072 	 * Don't count any commands as outstanding that the
8073 	 * sequencer has already marked for completion.
8074 	 */
8075 	ahd_flush_qoutfifo(ahd);
8076 
8077 	pending_cmds = 0;
8078 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8079 		pending_cmds++;
8080 	}
8081 	ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8082 	ahd_restore_modes(ahd, saved_modes);
8083 	ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8084 }
8085 
8086 static void
8087 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8088 {
8089 	cam_status ostat;
8090 	cam_status cstat;
8091 
8092 	ostat = ahd_get_transaction_status(scb);
8093 	if (ostat == CAM_REQ_INPROG)
8094 		ahd_set_transaction_status(scb, status);
8095 	cstat = ahd_get_transaction_status(scb);
8096 	if (cstat != CAM_REQ_CMP)
8097 		ahd_freeze_scb(scb);
8098 	ahd_done(ahd, scb);
8099 }
8100 
8101 int
8102 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8103 		   int lun, u_int tag, role_t role, uint32_t status,
8104 		   ahd_search_action action)
8105 {
8106 	struct scb	*scb;
8107 	struct scb	*mk_msg_scb;
8108 	struct scb	*prev_scb;
8109 	ahd_mode_state	 saved_modes;
8110 	u_int		 qinstart;
8111 	u_int		 qinpos;
8112 	u_int		 qintail;
8113 	u_int		 tid_next;
8114 	u_int		 tid_prev;
8115 	u_int		 scbid;
8116 	u_int		 seq_flags2;
8117 	u_int		 savedscbptr;
8118 	uint32_t	 busaddr;
8119 	int		 found;
8120 	int		 targets;
8121 
8122 	/* Must be in CCHAN mode */
8123 	saved_modes = ahd_save_modes(ahd);
8124 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8125 
8126 	/*
8127 	 * Halt any pending SCB DMA.  The sequencer will reinitiate
8128 	 * this dma if the qinfifo is not empty once we unpause.
8129 	 */
8130 	if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8131 	 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8132 		ahd_outb(ahd, CCSCBCTL,
8133 			 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8134 		while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8135 			;
8136 	}
8137 	/* Determine sequencer's position in the qinfifo. */
8138 	qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8139 	qinstart = ahd_get_snscb_qoff(ahd);
8140 	qinpos = AHD_QIN_WRAP(qinstart);
8141 	found = 0;
8142 	prev_scb = NULL;
8143 
8144 	if (action == SEARCH_PRINT) {
8145 		printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8146 		       qinstart, ahd->qinfifonext);
8147 	}
8148 
8149 	/*
8150 	 * Start with an empty queue.  Entries that are not chosen
8151 	 * for removal will be re-added to the queue as we go.
8152 	 */
8153 	ahd->qinfifonext = qinstart;
8154 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8155 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8156 
8157 	while (qinpos != qintail) {
8158 		scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8159 		if (scb == NULL) {
8160 			printk("qinpos = %d, SCB index = %d\n",
8161 				qinpos, ahd->qinfifo[qinpos]);
8162 			panic("Loop 1\n");
8163 		}
8164 
8165 		if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8166 			/*
8167 			 * We found an scb that needs to be acted on.
8168 			 */
8169 			found++;
8170 			switch (action) {
8171 			case SEARCH_COMPLETE:
8172 				if ((scb->flags & SCB_ACTIVE) == 0)
8173 					printk("Inactive SCB in qinfifo\n");
8174 				ahd_done_with_status(ahd, scb, status);
8175 				fallthrough;
8176 			case SEARCH_REMOVE:
8177 				break;
8178 			case SEARCH_PRINT:
8179 				printk(" 0x%x", ahd->qinfifo[qinpos]);
8180 				fallthrough;
8181 			case SEARCH_COUNT:
8182 				ahd_qinfifo_requeue(ahd, prev_scb, scb);
8183 				prev_scb = scb;
8184 				break;
8185 			}
8186 		} else {
8187 			ahd_qinfifo_requeue(ahd, prev_scb, scb);
8188 			prev_scb = scb;
8189 		}
8190 		qinpos = AHD_QIN_WRAP(qinpos+1);
8191 	}
8192 
8193 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8194 
8195 	if (action == SEARCH_PRINT)
8196 		printk("\nWAITING_TID_QUEUES:\n");
8197 
8198 	/*
8199 	 * Search waiting for selection lists.  We traverse the
8200 	 * list of "their ids" waiting for selection and, if
8201 	 * appropriate, traverse the SCBs of each "their id"
8202 	 * looking for matches.
8203 	 */
8204 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8205 	seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8206 	if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8207 		scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8208 		mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8209 	} else
8210 		mk_msg_scb = NULL;
8211 	savedscbptr = ahd_get_scbptr(ahd);
8212 	tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8213 	tid_prev = SCB_LIST_NULL;
8214 	targets = 0;
8215 	for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8216 		u_int tid_head;
8217 		u_int tid_tail;
8218 
8219 		targets++;
8220 		if (targets > AHD_NUM_TARGETS)
8221 			panic("TID LIST LOOP");
8222 
8223 		if (scbid >= ahd->scb_data.numscbs) {
8224 			printk("%s: Waiting TID List inconsistency. "
8225 			       "SCB index == 0x%x, yet numscbs == 0x%x.",
8226 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8227 			ahd_dump_card_state(ahd);
8228 			panic("for safety");
8229 		}
8230 		scb = ahd_lookup_scb(ahd, scbid);
8231 		if (scb == NULL) {
8232 			printk("%s: SCB = 0x%x Not Active!\n",
8233 			       ahd_name(ahd), scbid);
8234 			panic("Waiting TID List traversal\n");
8235 		}
8236 		ahd_set_scbptr(ahd, scbid);
8237 		tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8238 		if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8239 				  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8240 			tid_prev = scbid;
8241 			continue;
8242 		}
8243 
8244 		/*
8245 		 * We found a list of scbs that needs to be searched.
8246 		 */
8247 		if (action == SEARCH_PRINT)
8248 			printk("       %d ( ", SCB_GET_TARGET(ahd, scb));
8249 		tid_head = scbid;
8250 		found += ahd_search_scb_list(ahd, target, channel,
8251 					     lun, tag, role, status,
8252 					     action, &tid_head, &tid_tail,
8253 					     SCB_GET_TARGET(ahd, scb));
8254 		/*
8255 		 * Check any MK_MESSAGE SCB that is still waiting to
8256 		 * enter this target's waiting for selection queue.
8257 		 */
8258 		if (mk_msg_scb != NULL
8259 		 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8260 				  lun, tag, role)) {
8261 
8262 			/*
8263 			 * We found an scb that needs to be acted on.
8264 			 */
8265 			found++;
8266 			switch (action) {
8267 			case SEARCH_COMPLETE:
8268 				if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8269 					printk("Inactive SCB pending MK_MSG\n");
8270 				ahd_done_with_status(ahd, mk_msg_scb, status);
8271 				fallthrough;
8272 			case SEARCH_REMOVE:
8273 			{
8274 				u_int tail_offset;
8275 
8276 				printk("Removing MK_MSG scb\n");
8277 
8278 				/*
8279 				 * Reset our tail to the tail of the
8280 				 * main per-target list.
8281 				 */
8282 				tail_offset = WAITING_SCB_TAILS
8283 				    + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8284 				ahd_outw(ahd, tail_offset, tid_tail);
8285 
8286 				seq_flags2 &= ~PENDING_MK_MESSAGE;
8287 				ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8288 				ahd_outw(ahd, CMDS_PENDING,
8289 					 ahd_inw(ahd, CMDS_PENDING)-1);
8290 				mk_msg_scb = NULL;
8291 				break;
8292 			}
8293 			case SEARCH_PRINT:
8294 				printk(" 0x%x", SCB_GET_TAG(scb));
8295 				fallthrough;
8296 			case SEARCH_COUNT:
8297 				break;
8298 			}
8299 		}
8300 
8301 		if (mk_msg_scb != NULL
8302 		 && SCBID_IS_NULL(tid_head)
8303 		 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8304 				  SCB_LIST_NULL, ROLE_UNKNOWN)) {
8305 
8306 			/*
8307 			 * When removing the last SCB for a target
8308 			 * queue with a pending MK_MESSAGE scb, we
8309 			 * must queue the MK_MESSAGE scb.
8310 			 */
8311 			printk("Queueing mk_msg_scb\n");
8312 			tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8313 			seq_flags2 &= ~PENDING_MK_MESSAGE;
8314 			ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8315 			mk_msg_scb = NULL;
8316 		}
8317 		if (tid_head != scbid)
8318 			ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8319 		if (!SCBID_IS_NULL(tid_head))
8320 			tid_prev = tid_head;
8321 		if (action == SEARCH_PRINT)
8322 			printk(")\n");
8323 	}
8324 
8325 	/* Restore saved state. */
8326 	ahd_set_scbptr(ahd, savedscbptr);
8327 	ahd_restore_modes(ahd, saved_modes);
8328 	return (found);
8329 }
8330 
8331 static int
8332 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8333 		    int lun, u_int tag, role_t role, uint32_t status,
8334 		    ahd_search_action action, u_int *list_head,
8335 		    u_int *list_tail, u_int tid)
8336 {
8337 	struct	scb *scb;
8338 	u_int	scbid;
8339 	u_int	next;
8340 	u_int	prev;
8341 	int	found;
8342 
8343 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8344 	found = 0;
8345 	prev = SCB_LIST_NULL;
8346 	next = *list_head;
8347 	*list_tail = SCB_LIST_NULL;
8348 	for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8349 		if (scbid >= ahd->scb_data.numscbs) {
8350 			printk("%s:SCB List inconsistency. "
8351 			       "SCB == 0x%x, yet numscbs == 0x%x.",
8352 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8353 			ahd_dump_card_state(ahd);
8354 			panic("for safety");
8355 		}
8356 		scb = ahd_lookup_scb(ahd, scbid);
8357 		if (scb == NULL) {
8358 			printk("%s: SCB = %d Not Active!\n",
8359 			       ahd_name(ahd), scbid);
8360 			panic("Waiting List traversal\n");
8361 		}
8362 		ahd_set_scbptr(ahd, scbid);
8363 		*list_tail = scbid;
8364 		next = ahd_inw_scbram(ahd, SCB_NEXT);
8365 		if (ahd_match_scb(ahd, scb, target, channel,
8366 				  lun, SCB_LIST_NULL, role) == 0) {
8367 			prev = scbid;
8368 			continue;
8369 		}
8370 		found++;
8371 		switch (action) {
8372 		case SEARCH_COMPLETE:
8373 			if ((scb->flags & SCB_ACTIVE) == 0)
8374 				printk("Inactive SCB in Waiting List\n");
8375 			ahd_done_with_status(ahd, scb, status);
8376 			fallthrough;
8377 		case SEARCH_REMOVE:
8378 			ahd_rem_wscb(ahd, scbid, prev, next, tid);
8379 			*list_tail = prev;
8380 			if (SCBID_IS_NULL(prev))
8381 				*list_head = next;
8382 			break;
8383 		case SEARCH_PRINT:
8384 			printk("0x%x ", scbid);
8385 			fallthrough;
8386 		case SEARCH_COUNT:
8387 			prev = scbid;
8388 			break;
8389 		}
8390 		if (found > AHD_SCB_MAX)
8391 			panic("SCB LIST LOOP");
8392 	}
8393 	if (action == SEARCH_COMPLETE
8394 	 || action == SEARCH_REMOVE)
8395 		ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8396 	return (found);
8397 }
8398 
8399 static void
8400 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8401 		    u_int tid_cur, u_int tid_next)
8402 {
8403 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8404 
8405 	if (SCBID_IS_NULL(tid_cur)) {
8406 
8407 		/* Bypass current TID list */
8408 		if (SCBID_IS_NULL(tid_prev)) {
8409 			ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8410 		} else {
8411 			ahd_set_scbptr(ahd, tid_prev);
8412 			ahd_outw(ahd, SCB_NEXT2, tid_next);
8413 		}
8414 		if (SCBID_IS_NULL(tid_next))
8415 			ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8416 	} else {
8417 
8418 		/* Stitch through tid_cur */
8419 		if (SCBID_IS_NULL(tid_prev)) {
8420 			ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8421 		} else {
8422 			ahd_set_scbptr(ahd, tid_prev);
8423 			ahd_outw(ahd, SCB_NEXT2, tid_cur);
8424 		}
8425 		ahd_set_scbptr(ahd, tid_cur);
8426 		ahd_outw(ahd, SCB_NEXT2, tid_next);
8427 
8428 		if (SCBID_IS_NULL(tid_next))
8429 			ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8430 	}
8431 }
8432 
8433 /*
8434  * Manipulate the waiting for selection list and return the
8435  * scb that follows the one that we remove.
8436  */
8437 static u_int
8438 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8439 	     u_int prev, u_int next, u_int tid)
8440 {
8441 	u_int tail_offset;
8442 
8443 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8444 	if (!SCBID_IS_NULL(prev)) {
8445 		ahd_set_scbptr(ahd, prev);
8446 		ahd_outw(ahd, SCB_NEXT, next);
8447 	}
8448 
8449 	/*
8450 	 * SCBs that have MK_MESSAGE set in them may
8451 	 * cause the tail pointer to be updated without
8452 	 * setting the next pointer of the previous tail.
8453 	 * Only clear the tail if the removed SCB was
8454 	 * the tail.
8455 	 */
8456 	tail_offset = WAITING_SCB_TAILS + (2 * tid);
8457 	if (SCBID_IS_NULL(next)
8458 	 && ahd_inw(ahd, tail_offset) == scbid)
8459 		ahd_outw(ahd, tail_offset, prev);
8460 
8461 	ahd_add_scb_to_free_list(ahd, scbid);
8462 	return (next);
8463 }
8464 
8465 /*
8466  * Add the SCB as selected by SCBPTR onto the on chip list of
8467  * free hardware SCBs.  This list is empty/unused if we are not
8468  * performing SCB paging.
8469  */
8470 static void
8471 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8472 {
8473 /* XXX Need some other mechanism to designate "free". */
8474 	/*
8475 	 * Invalidate the tag so that our abort
8476 	 * routines don't think it's active.
8477 	ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8478 	 */
8479 }
8480 
8481 /******************************** Error Handling ******************************/
8482 /*
8483  * Abort all SCBs that match the given description (target/channel/lun/tag),
8484  * setting their status to the passed in status if the status has not already
8485  * been modified from CAM_REQ_INPROG.  This routine assumes that the sequencer
8486  * is paused before it is called.
8487  */
8488 static int
8489 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8490 	       int lun, u_int tag, role_t role, uint32_t status)
8491 {
8492 	struct		scb *scbp;
8493 	struct		scb *scbp_next;
8494 	u_int		i, j;
8495 	u_int		maxtarget;
8496 	u_int		minlun;
8497 	u_int		maxlun;
8498 	int		found;
8499 	ahd_mode_state	saved_modes;
8500 
8501 	/* restore this when we're done */
8502 	saved_modes = ahd_save_modes(ahd);
8503 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8504 
8505 	found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8506 				   role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8507 
8508 	/*
8509 	 * Clean out the busy target table for any untagged commands.
8510 	 */
8511 	i = 0;
8512 	maxtarget = 16;
8513 	if (target != CAM_TARGET_WILDCARD) {
8514 		i = target;
8515 		if (channel == 'B')
8516 			i += 8;
8517 		maxtarget = i + 1;
8518 	}
8519 
8520 	if (lun == CAM_LUN_WILDCARD) {
8521 		minlun = 0;
8522 		maxlun = AHD_NUM_LUNS_NONPKT;
8523 	} else if (lun >= AHD_NUM_LUNS_NONPKT) {
8524 		minlun = maxlun = 0;
8525 	} else {
8526 		minlun = lun;
8527 		maxlun = lun + 1;
8528 	}
8529 
8530 	if (role != ROLE_TARGET) {
8531 		for (;i < maxtarget; i++) {
8532 			for (j = minlun;j < maxlun; j++) {
8533 				u_int scbid;
8534 				u_int tcl;
8535 
8536 				tcl = BUILD_TCL_RAW(i, 'A', j);
8537 				scbid = ahd_find_busy_tcl(ahd, tcl);
8538 				scbp = ahd_lookup_scb(ahd, scbid);
8539 				if (scbp == NULL
8540 				 || ahd_match_scb(ahd, scbp, target, channel,
8541 						  lun, tag, role) == 0)
8542 					continue;
8543 				ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8544 			}
8545 		}
8546 	}
8547 
8548 	/*
8549 	 * Don't abort commands that have already completed,
8550 	 * but haven't quite made it up to the host yet.
8551 	 */
8552 	ahd_flush_qoutfifo(ahd);
8553 
8554 	/*
8555 	 * Go through the pending CCB list and look for
8556 	 * commands for this target that are still active.
8557 	 * These are other tagged commands that were
8558 	 * disconnected when the reset occurred.
8559 	 */
8560 	scbp_next = LIST_FIRST(&ahd->pending_scbs);
8561 	while (scbp_next != NULL) {
8562 		scbp = scbp_next;
8563 		scbp_next = LIST_NEXT(scbp, pending_links);
8564 		if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8565 			cam_status ostat;
8566 
8567 			ostat = ahd_get_transaction_status(scbp);
8568 			if (ostat == CAM_REQ_INPROG)
8569 				ahd_set_transaction_status(scbp, status);
8570 			if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8571 				ahd_freeze_scb(scbp);
8572 			if ((scbp->flags & SCB_ACTIVE) == 0)
8573 				printk("Inactive SCB on pending list\n");
8574 			ahd_done(ahd, scbp);
8575 			found++;
8576 		}
8577 	}
8578 	ahd_restore_modes(ahd, saved_modes);
8579 	ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8580 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
8581 	return found;
8582 }
8583 
8584 static void
8585 ahd_reset_current_bus(struct ahd_softc *ahd)
8586 {
8587 	uint8_t scsiseq;
8588 
8589 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8590 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8591 	scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8592 	ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8593 	ahd_flush_device_writes(ahd);
8594 	ahd_delay(AHD_BUSRESET_DELAY);
8595 	/* Turn off the bus reset */
8596 	ahd_outb(ahd, SCSISEQ0, scsiseq);
8597 	ahd_flush_device_writes(ahd);
8598 	ahd_delay(AHD_BUSRESET_DELAY);
8599 	if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8600 		/*
8601 		 * 2A Razor #474
8602 		 * Certain chip state is not cleared for
8603 		 * SCSI bus resets that we initiate, so
8604 		 * we must reset the chip.
8605 		 */
8606 		ahd_reset(ahd, /*reinit*/TRUE);
8607 		ahd_intr_enable(ahd, /*enable*/TRUE);
8608 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8609 	}
8610 
8611 	ahd_clear_intstat(ahd);
8612 }
8613 
8614 int
8615 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8616 {
8617 	struct	ahd_devinfo caminfo;
8618 	u_int	initiator;
8619 	u_int	target;
8620 	u_int	max_scsiid;
8621 	int	found;
8622 	u_int	fifo;
8623 	u_int	next_fifo;
8624 	uint8_t scsiseq;
8625 
8626 	/*
8627 	 * Check if the last bus reset is cleared
8628 	 */
8629 	if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8630 		printk("%s: bus reset still active\n",
8631 		       ahd_name(ahd));
8632 		return 0;
8633 	}
8634 	ahd->flags |= AHD_BUS_RESET_ACTIVE;
8635 
8636 	ahd->pending_device = NULL;
8637 
8638 	ahd_compile_devinfo(&caminfo,
8639 			    CAM_TARGET_WILDCARD,
8640 			    CAM_TARGET_WILDCARD,
8641 			    CAM_LUN_WILDCARD,
8642 			    channel, ROLE_UNKNOWN);
8643 	ahd_pause(ahd);
8644 
8645 	/* Make sure the sequencer is in a safe location. */
8646 	ahd_clear_critical_section(ahd);
8647 
8648 	/*
8649 	 * Run our command complete fifos to ensure that we perform
8650 	 * completion processing on any commands that 'completed'
8651 	 * before the reset occurred.
8652 	 */
8653 	ahd_run_qoutfifo(ahd);
8654 #ifdef AHD_TARGET_MODE
8655 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
8656 		ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8657 	}
8658 #endif
8659 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8660 
8661 	/*
8662 	 * Disable selections so no automatic hardware
8663 	 * functions will modify chip state.
8664 	 */
8665 	ahd_outb(ahd, SCSISEQ0, 0);
8666 	ahd_outb(ahd, SCSISEQ1, 0);
8667 
8668 	/*
8669 	 * Safely shut down our DMA engines.  Always start with
8670 	 * the FIFO that is not currently active (if any are
8671 	 * actively connected).
8672 	 */
8673 	next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8674 	if (next_fifo > CURRFIFO_1)
8675 		/* If disconneced, arbitrarily start with FIFO1. */
8676 		next_fifo = fifo = 0;
8677 	do {
8678 		next_fifo ^= CURRFIFO_1;
8679 		ahd_set_modes(ahd, next_fifo, next_fifo);
8680 		ahd_outb(ahd, DFCNTRL,
8681 			 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8682 		while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8683 			ahd_delay(10);
8684 		/*
8685 		 * Set CURRFIFO to the now inactive channel.
8686 		 */
8687 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8688 		ahd_outb(ahd, DFFSTAT, next_fifo);
8689 	} while (next_fifo != fifo);
8690 
8691 	/*
8692 	 * Reset the bus if we are initiating this reset
8693 	 */
8694 	ahd_clear_msg_state(ahd);
8695 	ahd_outb(ahd, SIMODE1,
8696 		 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8697 
8698 	if (initiate_reset)
8699 		ahd_reset_current_bus(ahd);
8700 
8701 	ahd_clear_intstat(ahd);
8702 
8703 	/*
8704 	 * Clean up all the state information for the
8705 	 * pending transactions on this bus.
8706 	 */
8707 	found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8708 			       CAM_LUN_WILDCARD, SCB_LIST_NULL,
8709 			       ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8710 
8711 	/*
8712 	 * Cleanup anything left in the FIFOs.
8713 	 */
8714 	ahd_clear_fifo(ahd, 0);
8715 	ahd_clear_fifo(ahd, 1);
8716 
8717 	/*
8718 	 * Clear SCSI interrupt status
8719 	 */
8720 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8721 
8722 	/*
8723 	 * Reenable selections
8724 	 */
8725 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8726 	scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8727 	ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8728 
8729 	max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8730 #ifdef AHD_TARGET_MODE
8731 	/*
8732 	 * Send an immediate notify ccb to all target more peripheral
8733 	 * drivers affected by this action.
8734 	 */
8735 	for (target = 0; target <= max_scsiid; target++) {
8736 		struct ahd_tmode_tstate* tstate;
8737 		u_int lun;
8738 
8739 		tstate = ahd->enabled_targets[target];
8740 		if (tstate == NULL)
8741 			continue;
8742 		for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8743 			struct ahd_tmode_lstate* lstate;
8744 
8745 			lstate = tstate->enabled_luns[lun];
8746 			if (lstate == NULL)
8747 				continue;
8748 
8749 			ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8750 					       EVENT_TYPE_BUS_RESET, /*arg*/0);
8751 			ahd_send_lstate_events(ahd, lstate);
8752 		}
8753 	}
8754 #endif
8755 	/*
8756 	 * Revert to async/narrow transfers until we renegotiate.
8757 	 */
8758 	for (target = 0; target <= max_scsiid; target++) {
8759 
8760 		if (ahd->enabled_targets[target] == NULL)
8761 			continue;
8762 		for (initiator = 0; initiator <= max_scsiid; initiator++) {
8763 			struct ahd_devinfo devinfo;
8764 
8765 			ahd_compile_devinfo(&devinfo, target, initiator,
8766 					    CAM_LUN_WILDCARD,
8767 					    'A', ROLE_UNKNOWN);
8768 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8769 				      AHD_TRANS_CUR, /*paused*/TRUE);
8770 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8771 					 /*offset*/0, /*ppr_options*/0,
8772 					 AHD_TRANS_CUR, /*paused*/TRUE);
8773 		}
8774 	}
8775 
8776 	/* Notify the XPT that a bus reset occurred */
8777 	ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8778 		       CAM_LUN_WILDCARD, AC_BUS_RESET);
8779 
8780 	ahd_restart(ahd);
8781 
8782 	return (found);
8783 }
8784 
8785 /**************************** Statistics Processing ***************************/
8786 static void
8787 ahd_stat_timer(struct timer_list *t)
8788 {
8789 	struct	ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8790 	u_long	s;
8791 	int	enint_coal;
8792 
8793 	ahd_lock(ahd, &s);
8794 
8795 	enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8796 	if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8797 		enint_coal |= ENINT_COALESCE;
8798 	else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8799 		enint_coal &= ~ENINT_COALESCE;
8800 
8801 	if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8802 		ahd_enable_coalescing(ahd, enint_coal);
8803 #ifdef AHD_DEBUG
8804 		if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8805 			printk("%s: Interrupt coalescing "
8806 			       "now %sabled. Cmds %d\n",
8807 			       ahd_name(ahd),
8808 			       (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8809 			       ahd->cmdcmplt_total);
8810 #endif
8811 	}
8812 
8813 	ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8814 	ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8815 	ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8816 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8817 	ahd_unlock(ahd, &s);
8818 }
8819 
8820 /****************************** Status Processing *****************************/
8821 
8822 static void
8823 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8824 {
8825 	struct	hardware_scb *hscb;
8826 	int	paused;
8827 
8828 	/*
8829 	 * The sequencer freezes its select-out queue
8830 	 * anytime a SCSI status error occurs.  We must
8831 	 * handle the error and increment our qfreeze count
8832 	 * to allow the sequencer to continue.  We don't
8833 	 * bother clearing critical sections here since all
8834 	 * operations are on data structures that the sequencer
8835 	 * is not touching once the queue is frozen.
8836 	 */
8837 	hscb = scb->hscb;
8838 
8839 	if (ahd_is_paused(ahd)) {
8840 		paused = 1;
8841 	} else {
8842 		paused = 0;
8843 		ahd_pause(ahd);
8844 	}
8845 
8846 	/* Freeze the queue until the client sees the error. */
8847 	ahd_freeze_devq(ahd, scb);
8848 	ahd_freeze_scb(scb);
8849 	ahd->qfreeze_cnt++;
8850 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8851 
8852 	if (paused == 0)
8853 		ahd_unpause(ahd);
8854 
8855 	/* Don't want to clobber the original sense code */
8856 	if ((scb->flags & SCB_SENSE) != 0) {
8857 		/*
8858 		 * Clear the SCB_SENSE Flag and perform
8859 		 * a normal command completion.
8860 		 */
8861 		scb->flags &= ~SCB_SENSE;
8862 		ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8863 		ahd_done(ahd, scb);
8864 		return;
8865 	}
8866 	ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8867 	ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8868 	switch (hscb->shared_data.istatus.scsi_status) {
8869 	case STATUS_PKT_SENSE:
8870 	{
8871 		struct scsi_status_iu_header *siu;
8872 
8873 		ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8874 		siu = (struct scsi_status_iu_header *)scb->sense_data;
8875 		ahd_set_scsi_status(scb, siu->status);
8876 #ifdef AHD_DEBUG
8877 		if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8878 			ahd_print_path(ahd, scb);
8879 			printk("SCB 0x%x Received PKT Status of 0x%x\n",
8880 			       SCB_GET_TAG(scb), siu->status);
8881 			printk("\tflags = 0x%x, sense len = 0x%x, "
8882 			       "pktfail = 0x%x\n",
8883 			       siu->flags, scsi_4btoul(siu->sense_length),
8884 			       scsi_4btoul(siu->pkt_failures_length));
8885 		}
8886 #endif
8887 		if ((siu->flags & SIU_RSPVALID) != 0) {
8888 			ahd_print_path(ahd, scb);
8889 			if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8890 				printk("Unable to parse pkt_failures\n");
8891 			} else {
8892 
8893 				switch (SIU_PKTFAIL_CODE(siu)) {
8894 				case SIU_PFC_NONE:
8895 					printk("No packet failure found\n");
8896 					break;
8897 				case SIU_PFC_CIU_FIELDS_INVALID:
8898 					printk("Invalid Command IU Field\n");
8899 					break;
8900 				case SIU_PFC_TMF_NOT_SUPPORTED:
8901 					printk("TMF not supported\n");
8902 					break;
8903 				case SIU_PFC_TMF_FAILED:
8904 					printk("TMF failed\n");
8905 					break;
8906 				case SIU_PFC_INVALID_TYPE_CODE:
8907 					printk("Invalid L_Q Type code\n");
8908 					break;
8909 				case SIU_PFC_ILLEGAL_REQUEST:
8910 					printk("Illegal request\n");
8911 					break;
8912 				default:
8913 					break;
8914 				}
8915 			}
8916 			if (siu->status == SCSI_STATUS_OK)
8917 				ahd_set_transaction_status(scb,
8918 							   CAM_REQ_CMP_ERR);
8919 		}
8920 		if ((siu->flags & SIU_SNSVALID) != 0) {
8921 			scb->flags |= SCB_PKT_SENSE;
8922 #ifdef AHD_DEBUG
8923 			if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8924 				printk("Sense data available\n");
8925 #endif
8926 		}
8927 		ahd_done(ahd, scb);
8928 		break;
8929 	}
8930 	case SCSI_STATUS_CMD_TERMINATED:
8931 	case SCSI_STATUS_CHECK_COND:
8932 	{
8933 		struct ahd_devinfo devinfo;
8934 		struct ahd_dma_seg *sg;
8935 		struct scsi_sense *sc;
8936 		struct ahd_initiator_tinfo *targ_info;
8937 		struct ahd_tmode_tstate *tstate;
8938 		struct ahd_transinfo *tinfo;
8939 #ifdef AHD_DEBUG
8940 		if (ahd_debug & AHD_SHOW_SENSE) {
8941 			ahd_print_path(ahd, scb);
8942 			printk("SCB %d: requests Check Status\n",
8943 			       SCB_GET_TAG(scb));
8944 		}
8945 #endif
8946 
8947 		if (ahd_perform_autosense(scb) == 0)
8948 			break;
8949 
8950 		ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8951 				    SCB_GET_TARGET(ahd, scb),
8952 				    SCB_GET_LUN(scb),
8953 				    SCB_GET_CHANNEL(ahd, scb),
8954 				    ROLE_INITIATOR);
8955 		targ_info = ahd_fetch_transinfo(ahd,
8956 						devinfo.channel,
8957 						devinfo.our_scsiid,
8958 						devinfo.target,
8959 						&tstate);
8960 		tinfo = &targ_info->curr;
8961 		sg = scb->sg_list;
8962 		sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8963 		/*
8964 		 * Save off the residual if there is one.
8965 		 */
8966 		ahd_update_residual(ahd, scb);
8967 #ifdef AHD_DEBUG
8968 		if (ahd_debug & AHD_SHOW_SENSE) {
8969 			ahd_print_path(ahd, scb);
8970 			printk("Sending Sense\n");
8971 		}
8972 #endif
8973 		scb->sg_count = 0;
8974 		sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8975 				  ahd_get_sense_bufsize(ahd, scb),
8976 				  /*last*/TRUE);
8977 		sc->opcode = REQUEST_SENSE;
8978 		sc->byte2 = 0;
8979 		if (tinfo->protocol_version <= SCSI_REV_2
8980 		 && SCB_GET_LUN(scb) < 8)
8981 			sc->byte2 = SCB_GET_LUN(scb) << 5;
8982 		sc->unused[0] = 0;
8983 		sc->unused[1] = 0;
8984 		sc->length = ahd_get_sense_bufsize(ahd, scb);
8985 		sc->control = 0;
8986 
8987 		/*
8988 		 * We can't allow the target to disconnect.
8989 		 * This will be an untagged transaction and
8990 		 * having the target disconnect will make this
8991 		 * transaction indestinguishable from outstanding
8992 		 * tagged transactions.
8993 		 */
8994 		hscb->control = 0;
8995 
8996 		/*
8997 		 * This request sense could be because the
8998 		 * the device lost power or in some other
8999 		 * way has lost our transfer negotiations.
9000 		 * Renegotiate if appropriate.  Unit attention
9001 		 * errors will be reported before any data
9002 		 * phases occur.
9003 		 */
9004 		if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9005 			ahd_update_neg_request(ahd, &devinfo,
9006 					       tstate, targ_info,
9007 					       AHD_NEG_IF_NON_ASYNC);
9008 		}
9009 		if (tstate->auto_negotiate & devinfo.target_mask) {
9010 			hscb->control |= MK_MESSAGE;
9011 			scb->flags &=
9012 			    ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9013 			scb->flags |= SCB_AUTO_NEGOTIATE;
9014 		}
9015 		hscb->cdb_len = sizeof(*sc);
9016 		ahd_setup_data_scb(ahd, scb);
9017 		scb->flags |= SCB_SENSE;
9018 		ahd_queue_scb(ahd, scb);
9019 		break;
9020 	}
9021 	case SCSI_STATUS_OK:
9022 		printk("%s: Interrupted for status of 0???\n",
9023 		       ahd_name(ahd));
9024 		fallthrough;
9025 	default:
9026 		ahd_done(ahd, scb);
9027 		break;
9028 	}
9029 }
9030 
9031 static void
9032 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9033 {
9034 	if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9035 		ahd_handle_scsi_status(ahd, scb);
9036 	} else {
9037 		ahd_calc_residual(ahd, scb);
9038 		ahd_done(ahd, scb);
9039 	}
9040 }
9041 
9042 /*
9043  * Calculate the residual for a just completed SCB.
9044  */
9045 static void
9046 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9047 {
9048 	struct hardware_scb *hscb;
9049 	struct initiator_status *spkt;
9050 	uint32_t sgptr;
9051 	uint32_t resid_sgptr;
9052 	uint32_t resid;
9053 
9054 	/*
9055 	 * 5 cases.
9056 	 * 1) No residual.
9057 	 *    SG_STATUS_VALID clear in sgptr.
9058 	 * 2) Transferless command
9059 	 * 3) Never performed any transfers.
9060 	 *    sgptr has SG_FULL_RESID set.
9061 	 * 4) No residual but target did not
9062 	 *    save data pointers after the
9063 	 *    last transfer, so sgptr was
9064 	 *    never updated.
9065 	 * 5) We have a partial residual.
9066 	 *    Use residual_sgptr to determine
9067 	 *    where we are.
9068 	 */
9069 
9070 	hscb = scb->hscb;
9071 	sgptr = ahd_le32toh(hscb->sgptr);
9072 	if ((sgptr & SG_STATUS_VALID) == 0)
9073 		/* Case 1 */
9074 		return;
9075 	sgptr &= ~SG_STATUS_VALID;
9076 
9077 	if ((sgptr & SG_LIST_NULL) != 0)
9078 		/* Case 2 */
9079 		return;
9080 
9081 	/*
9082 	 * Residual fields are the same in both
9083 	 * target and initiator status packets,
9084 	 * so we can always use the initiator fields
9085 	 * regardless of the role for this SCB.
9086 	 */
9087 	spkt = &hscb->shared_data.istatus;
9088 	resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9089 	if ((sgptr & SG_FULL_RESID) != 0) {
9090 		/* Case 3 */
9091 		resid = ahd_get_transfer_length(scb);
9092 	} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9093 		/* Case 4 */
9094 		return;
9095 	} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9096 		ahd_print_path(ahd, scb);
9097 		printk("data overrun detected Tag == 0x%x.\n",
9098 		       SCB_GET_TAG(scb));
9099 		ahd_freeze_devq(ahd, scb);
9100 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9101 		ahd_freeze_scb(scb);
9102 		return;
9103 	} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9104 		panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9105 		/* NOTREACHED */
9106 	} else {
9107 		struct ahd_dma_seg *sg;
9108 
9109 		/*
9110 		 * Remainder of the SG where the transfer
9111 		 * stopped.
9112 		 */
9113 		resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9114 		sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9115 
9116 		/* The residual sg_ptr always points to the next sg */
9117 		sg--;
9118 
9119 		/*
9120 		 * Add up the contents of all residual
9121 		 * SG segments that are after the SG where
9122 		 * the transfer stopped.
9123 		 */
9124 		while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9125 			sg++;
9126 			resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9127 		}
9128 	}
9129 	if ((scb->flags & SCB_SENSE) == 0)
9130 		ahd_set_residual(scb, resid);
9131 	else
9132 		ahd_set_sense_residual(scb, resid);
9133 
9134 #ifdef AHD_DEBUG
9135 	if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9136 		ahd_print_path(ahd, scb);
9137 		printk("Handled %sResidual of %d bytes\n",
9138 		       (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9139 	}
9140 #endif
9141 }
9142 
9143 /******************************* Target Mode **********************************/
9144 #ifdef AHD_TARGET_MODE
9145 /*
9146  * Add a target mode event to this lun's queue
9147  */
9148 static void
9149 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9150 		       u_int initiator_id, u_int event_type, u_int event_arg)
9151 {
9152 	struct ahd_tmode_event *event;
9153 	int pending;
9154 
9155 	xpt_freeze_devq(lstate->path, /*count*/1);
9156 	if (lstate->event_w_idx >= lstate->event_r_idx)
9157 		pending = lstate->event_w_idx - lstate->event_r_idx;
9158 	else
9159 		pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9160 			- (lstate->event_r_idx - lstate->event_w_idx);
9161 
9162 	if (event_type == EVENT_TYPE_BUS_RESET
9163 	 || event_type == MSG_BUS_DEV_RESET) {
9164 		/*
9165 		 * Any earlier events are irrelevant, so reset our buffer.
9166 		 * This has the effect of allowing us to deal with reset
9167 		 * floods (an external device holding down the reset line)
9168 		 * without losing the event that is really interesting.
9169 		 */
9170 		lstate->event_r_idx = 0;
9171 		lstate->event_w_idx = 0;
9172 		xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9173 	}
9174 
9175 	if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9176 		xpt_print_path(lstate->path);
9177 		printk("immediate event %x:%x lost\n",
9178 		       lstate->event_buffer[lstate->event_r_idx].event_type,
9179 		       lstate->event_buffer[lstate->event_r_idx].event_arg);
9180 		lstate->event_r_idx++;
9181 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9182 			lstate->event_r_idx = 0;
9183 		xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9184 	}
9185 
9186 	event = &lstate->event_buffer[lstate->event_w_idx];
9187 	event->initiator_id = initiator_id;
9188 	event->event_type = event_type;
9189 	event->event_arg = event_arg;
9190 	lstate->event_w_idx++;
9191 	if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9192 		lstate->event_w_idx = 0;
9193 }
9194 
9195 /*
9196  * Send any target mode events queued up waiting
9197  * for immediate notify resources.
9198  */
9199 void
9200 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9201 {
9202 	struct ccb_hdr *ccbh;
9203 	struct ccb_immed_notify *inot;
9204 
9205 	while (lstate->event_r_idx != lstate->event_w_idx
9206 	    && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9207 		struct ahd_tmode_event *event;
9208 
9209 		event = &lstate->event_buffer[lstate->event_r_idx];
9210 		SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9211 		inot = (struct ccb_immed_notify *)ccbh;
9212 		switch (event->event_type) {
9213 		case EVENT_TYPE_BUS_RESET:
9214 			ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9215 			break;
9216 		default:
9217 			ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9218 			inot->message_args[0] = event->event_type;
9219 			inot->message_args[1] = event->event_arg;
9220 			break;
9221 		}
9222 		inot->initiator_id = event->initiator_id;
9223 		inot->sense_len = 0;
9224 		xpt_done((union ccb *)inot);
9225 		lstate->event_r_idx++;
9226 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9227 			lstate->event_r_idx = 0;
9228 	}
9229 }
9230 #endif
9231 
9232 /******************** Sequencer Program Patching/Download *********************/
9233 
9234 #ifdef AHD_DUMP_SEQ
9235 void
9236 ahd_dumpseq(struct ahd_softc* ahd)
9237 {
9238 	int i;
9239 	int max_prog;
9240 
9241 	max_prog = 2048;
9242 
9243 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9244 	ahd_outw(ahd, PRGMCNT, 0);
9245 	for (i = 0; i < max_prog; i++) {
9246 		uint8_t ins_bytes[4];
9247 
9248 		ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9249 		printk("0x%08x\n", ins_bytes[0] << 24
9250 				 | ins_bytes[1] << 16
9251 				 | ins_bytes[2] << 8
9252 				 | ins_bytes[3]);
9253 	}
9254 }
9255 #endif
9256 
9257 static void
9258 ahd_loadseq(struct ahd_softc *ahd)
9259 {
9260 	struct	cs cs_table[NUM_CRITICAL_SECTIONS];
9261 	u_int	begin_set[NUM_CRITICAL_SECTIONS];
9262 	u_int	end_set[NUM_CRITICAL_SECTIONS];
9263 	const struct patch *cur_patch;
9264 	u_int	cs_count;
9265 	u_int	cur_cs;
9266 	u_int	i;
9267 	int	downloaded;
9268 	u_int	skip_addr;
9269 	u_int	sg_prefetch_cnt;
9270 	u_int	sg_prefetch_cnt_limit;
9271 	u_int	sg_prefetch_align;
9272 	u_int	sg_size;
9273 	u_int	cacheline_mask;
9274 	uint8_t	download_consts[DOWNLOAD_CONST_COUNT];
9275 
9276 	if (bootverbose)
9277 		printk("%s: Downloading Sequencer Program...",
9278 		       ahd_name(ahd));
9279 
9280 #if DOWNLOAD_CONST_COUNT != 8
9281 #error "Download Const Mismatch"
9282 #endif
9283 	/*
9284 	 * Start out with 0 critical sections
9285 	 * that apply to this firmware load.
9286 	 */
9287 	cs_count = 0;
9288 	cur_cs = 0;
9289 	memset(begin_set, 0, sizeof(begin_set));
9290 	memset(end_set, 0, sizeof(end_set));
9291 
9292 	/*
9293 	 * Setup downloadable constant table.
9294 	 *
9295 	 * The computation for the S/G prefetch variables is
9296 	 * a bit complicated.  We would like to always fetch
9297 	 * in terms of cachelined sized increments.  However,
9298 	 * if the cacheline is not an even multiple of the
9299 	 * SG element size or is larger than our SG RAM, using
9300 	 * just the cache size might leave us with only a portion
9301 	 * of an SG element at the tail of a prefetch.  If the
9302 	 * cacheline is larger than our S/G prefetch buffer less
9303 	 * the size of an SG element, we may round down to a cacheline
9304 	 * that doesn't contain any or all of the S/G of interest
9305 	 * within the bounds of our S/G ram.  Provide variables to
9306 	 * the sequencer that will allow it to handle these edge
9307 	 * cases.
9308 	 */
9309 	/* Start by aligning to the nearest cacheline. */
9310 	sg_prefetch_align = ahd->pci_cachesize;
9311 	if (sg_prefetch_align == 0)
9312 		sg_prefetch_align = 8;
9313 	/* Round down to the nearest power of 2. */
9314 	while (powerof2(sg_prefetch_align) == 0)
9315 		sg_prefetch_align--;
9316 
9317 	cacheline_mask = sg_prefetch_align - 1;
9318 
9319 	/*
9320 	 * If the cacheline boundary is greater than half our prefetch RAM
9321 	 * we risk not being able to fetch even a single complete S/G
9322 	 * segment if we align to that boundary.
9323 	 */
9324 	if (sg_prefetch_align > CCSGADDR_MAX/2)
9325 		sg_prefetch_align = CCSGADDR_MAX/2;
9326 	/* Start by fetching a single cacheline. */
9327 	sg_prefetch_cnt = sg_prefetch_align;
9328 	/*
9329 	 * Increment the prefetch count by cachelines until
9330 	 * at least one S/G element will fit.
9331 	 */
9332 	sg_size = sizeof(struct ahd_dma_seg);
9333 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9334 		sg_size = sizeof(struct ahd_dma64_seg);
9335 	while (sg_prefetch_cnt < sg_size)
9336 		sg_prefetch_cnt += sg_prefetch_align;
9337 	/*
9338 	 * If the cacheline is not an even multiple of
9339 	 * the S/G size, we may only get a partial S/G when
9340 	 * we align. Add a cacheline if this is the case.
9341 	 */
9342 	if ((sg_prefetch_align % sg_size) != 0
9343 	 && (sg_prefetch_cnt < CCSGADDR_MAX))
9344 		sg_prefetch_cnt += sg_prefetch_align;
9345 	/*
9346 	 * Lastly, compute a value that the sequencer can use
9347 	 * to determine if the remainder of the CCSGRAM buffer
9348 	 * has a full S/G element in it.
9349 	 */
9350 	sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9351 	download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9352 	download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9353 	download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9354 	download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9355 	download_consts[SG_SIZEOF] = sg_size;
9356 	download_consts[PKT_OVERRUN_BUFOFFSET] =
9357 		(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9358 	download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9359 	download_consts[CACHELINE_MASK] = cacheline_mask;
9360 	cur_patch = patches;
9361 	downloaded = 0;
9362 	skip_addr = 0;
9363 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9364 	ahd_outw(ahd, PRGMCNT, 0);
9365 
9366 	for (i = 0; i < sizeof(seqprog)/4; i++) {
9367 		if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9368 			/*
9369 			 * Don't download this instruction as it
9370 			 * is in a patch that was removed.
9371 			 */
9372 			continue;
9373 		}
9374 		/*
9375 		 * Move through the CS table until we find a CS
9376 		 * that might apply to this instruction.
9377 		 */
9378 		for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9379 			if (critical_sections[cur_cs].end <= i) {
9380 				if (begin_set[cs_count] == TRUE
9381 				 && end_set[cs_count] == FALSE) {
9382 					cs_table[cs_count].end = downloaded;
9383 				 	end_set[cs_count] = TRUE;
9384 					cs_count++;
9385 				}
9386 				continue;
9387 			}
9388 			if (critical_sections[cur_cs].begin <= i
9389 			 && begin_set[cs_count] == FALSE) {
9390 				cs_table[cs_count].begin = downloaded;
9391 				begin_set[cs_count] = TRUE;
9392 			}
9393 			break;
9394 		}
9395 		ahd_download_instr(ahd, i, download_consts);
9396 		downloaded++;
9397 	}
9398 
9399 	ahd->num_critical_sections = cs_count;
9400 	if (cs_count != 0) {
9401 
9402 		cs_count *= sizeof(struct cs);
9403 		ahd->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
9404 		if (ahd->critical_sections == NULL)
9405 			panic("ahd_loadseq: Could not malloc");
9406 	}
9407 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9408 
9409 	if (bootverbose) {
9410 		printk(" %d instructions downloaded\n", downloaded);
9411 		printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9412 		       ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9413 	}
9414 }
9415 
9416 static int
9417 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9418 		u_int start_instr, u_int *skip_addr)
9419 {
9420 	const struct patch *cur_patch;
9421 	const struct patch *last_patch;
9422 	u_int	num_patches;
9423 
9424 	num_patches = ARRAY_SIZE(patches);
9425 	last_patch = &patches[num_patches];
9426 	cur_patch = *start_patch;
9427 
9428 	while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9429 
9430 		if (cur_patch->patch_func(ahd) == 0) {
9431 
9432 			/* Start rejecting code */
9433 			*skip_addr = start_instr + cur_patch->skip_instr;
9434 			cur_patch += cur_patch->skip_patch;
9435 		} else {
9436 			/* Accepted this patch.  Advance to the next
9437 			 * one and wait for our intruction pointer to
9438 			 * hit this point.
9439 			 */
9440 			cur_patch++;
9441 		}
9442 	}
9443 
9444 	*start_patch = cur_patch;
9445 	if (start_instr < *skip_addr)
9446 		/* Still skipping */
9447 		return (0);
9448 
9449 	return (1);
9450 }
9451 
9452 static u_int
9453 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9454 {
9455 	const struct patch *cur_patch;
9456 	int address_offset;
9457 	u_int skip_addr;
9458 	u_int i;
9459 
9460 	address_offset = 0;
9461 	cur_patch = patches;
9462 	skip_addr = 0;
9463 
9464 	for (i = 0; i < address;) {
9465 
9466 		ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9467 
9468 		if (skip_addr > i) {
9469 			int end_addr;
9470 
9471 			end_addr = min(address, skip_addr);
9472 			address_offset += end_addr - i;
9473 			i = skip_addr;
9474 		} else {
9475 			i++;
9476 		}
9477 	}
9478 	return (address - address_offset);
9479 }
9480 
9481 static void
9482 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9483 {
9484 	union	ins_formats instr;
9485 	struct	ins_format1 *fmt1_ins;
9486 	struct	ins_format3 *fmt3_ins;
9487 	u_int	opcode;
9488 
9489 	/*
9490 	 * The firmware is always compiled into a little endian format.
9491 	 */
9492 	instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9493 
9494 	fmt1_ins = &instr.format1;
9495 	fmt3_ins = NULL;
9496 
9497 	/* Pull the opcode */
9498 	opcode = instr.format1.opcode;
9499 	switch (opcode) {
9500 	case AIC_OP_JMP:
9501 	case AIC_OP_JC:
9502 	case AIC_OP_JNC:
9503 	case AIC_OP_CALL:
9504 	case AIC_OP_JNE:
9505 	case AIC_OP_JNZ:
9506 	case AIC_OP_JE:
9507 	case AIC_OP_JZ:
9508 	{
9509 		fmt3_ins = &instr.format3;
9510 		fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9511 	}
9512 		fallthrough;
9513 	case AIC_OP_OR:
9514 	case AIC_OP_AND:
9515 	case AIC_OP_XOR:
9516 	case AIC_OP_ADD:
9517 	case AIC_OP_ADC:
9518 	case AIC_OP_BMOV:
9519 		if (fmt1_ins->parity != 0) {
9520 			fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9521 		}
9522 		fmt1_ins->parity = 0;
9523 		fallthrough;
9524 	case AIC_OP_ROL:
9525 	{
9526 		int i, count;
9527 
9528 		/* Calculate odd parity for the instruction */
9529 		for (i = 0, count = 0; i < 31; i++) {
9530 			uint32_t mask;
9531 
9532 			mask = 0x01 << i;
9533 			if ((instr.integer & mask) != 0)
9534 				count++;
9535 		}
9536 		if ((count & 0x01) == 0)
9537 			instr.format1.parity = 1;
9538 
9539 		/* The sequencer is a little endian cpu */
9540 		instr.integer = ahd_htole32(instr.integer);
9541 		ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9542 		break;
9543 	}
9544 	default:
9545 		panic("Unknown opcode encountered in seq program");
9546 		break;
9547 	}
9548 }
9549 
9550 static int
9551 ahd_probe_stack_size(struct ahd_softc *ahd)
9552 {
9553 	int last_probe;
9554 
9555 	last_probe = 0;
9556 	while (1) {
9557 		int i;
9558 
9559 		/*
9560 		 * We avoid using 0 as a pattern to avoid
9561 		 * confusion if the stack implementation
9562 		 * "back-fills" with zeros when "poping'
9563 		 * entries.
9564 		 */
9565 		for (i = 1; i <= last_probe+1; i++) {
9566 		       ahd_outb(ahd, STACK, i & 0xFF);
9567 		       ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9568 		}
9569 
9570 		/* Verify */
9571 		for (i = last_probe+1; i > 0; i--) {
9572 			u_int stack_entry;
9573 
9574 			stack_entry = ahd_inb(ahd, STACK)
9575 				    |(ahd_inb(ahd, STACK) << 8);
9576 			if (stack_entry != i)
9577 				goto sized;
9578 		}
9579 		last_probe++;
9580 	}
9581 sized:
9582 	return (last_probe);
9583 }
9584 
9585 int
9586 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9587 		   const char *name, u_int address, u_int value,
9588 		   u_int *cur_column, u_int wrap_point)
9589 {
9590 	int	printed;
9591 	u_int	printed_mask;
9592 
9593 	if (cur_column != NULL && *cur_column >= wrap_point) {
9594 		printk("\n");
9595 		*cur_column = 0;
9596 	}
9597 	printed = printk("%s[0x%x]", name, value);
9598 	if (table == NULL) {
9599 		printed += printk(" ");
9600 		*cur_column += printed;
9601 		return (printed);
9602 	}
9603 	printed_mask = 0;
9604 	while (printed_mask != 0xFF) {
9605 		int entry;
9606 
9607 		for (entry = 0; entry < num_entries; entry++) {
9608 			if (((value & table[entry].mask)
9609 			  != table[entry].value)
9610 			 || ((printed_mask & table[entry].mask)
9611 			  == table[entry].mask))
9612 				continue;
9613 
9614 			printed += printk("%s%s",
9615 					  printed_mask == 0 ? ":(" : "|",
9616 					  table[entry].name);
9617 			printed_mask |= table[entry].mask;
9618 
9619 			break;
9620 		}
9621 		if (entry >= num_entries)
9622 			break;
9623 	}
9624 	if (printed_mask != 0)
9625 		printed += printk(") ");
9626 	else
9627 		printed += printk(" ");
9628 	if (cur_column != NULL)
9629 		*cur_column += printed;
9630 	return (printed);
9631 }
9632 
9633 void
9634 ahd_dump_card_state(struct ahd_softc *ahd)
9635 {
9636 	struct scb	*scb;
9637 	ahd_mode_state	 saved_modes;
9638 	u_int		 dffstat;
9639 	int		 paused;
9640 	u_int		 scb_index;
9641 	u_int		 saved_scb_index;
9642 	u_int		 cur_col;
9643 	int		 i;
9644 
9645 	if (ahd_is_paused(ahd)) {
9646 		paused = 1;
9647 	} else {
9648 		paused = 0;
9649 		ahd_pause(ahd);
9650 	}
9651 	saved_modes = ahd_save_modes(ahd);
9652 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9653 	printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9654 	       "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9655 	       ahd_name(ahd),
9656 	       ahd_inw(ahd, CURADDR),
9657 	       ahd_build_mode_state(ahd, ahd->saved_src_mode,
9658 				    ahd->saved_dst_mode));
9659 	if (paused)
9660 		printk("Card was paused\n");
9661 
9662 	if (ahd_check_cmdcmpltqueues(ahd))
9663 		printk("Completions are pending\n");
9664 
9665 	/*
9666 	 * Mode independent registers.
9667 	 */
9668 	cur_col = 0;
9669 	ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9670 	ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9671 	ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9672 	ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9673 	ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9674 	ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9675 	ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9676 	ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9677 	ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9678 	ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9679 	ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9680 	ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9681 	ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9682 	ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9683 	ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9684 	ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9685 	ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9686 	ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9687 	ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9688 	ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9689 				       &cur_col, 50);
9690 	ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9691 	ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9692 				    &cur_col, 50);
9693 	ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9694 	ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9695 	ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9696 	ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9697 	ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9698 	ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9699 	ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9700 	ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9701 	ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9702 	ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9703 	ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9704 	ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9705 	printk("\n");
9706 	printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9707 	       "CURRSCB 0x%x NEXTSCB 0x%x\n",
9708 	       ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9709 	       ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9710 	       ahd_inw(ahd, NEXTSCB));
9711 	cur_col = 0;
9712 	/* QINFIFO */
9713 	ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9714 			   CAM_LUN_WILDCARD, SCB_LIST_NULL,
9715 			   ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9716 	saved_scb_index = ahd_get_scbptr(ahd);
9717 	printk("Pending list:");
9718 	i = 0;
9719 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9720 		if (i++ > AHD_SCB_MAX)
9721 			break;
9722 		cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9723 				 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9724 		ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9725 		ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9726 				      &cur_col, 60);
9727 		ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9728 				     &cur_col, 60);
9729 	}
9730 	printk("\nTotal %d\n", i);
9731 
9732 	printk("Kernel Free SCB list: ");
9733 	i = 0;
9734 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9735 		struct scb *list_scb;
9736 
9737 		list_scb = scb;
9738 		do {
9739 			printk("%d ", SCB_GET_TAG(list_scb));
9740 			list_scb = LIST_NEXT(list_scb, collision_links);
9741 		} while (list_scb && i++ < AHD_SCB_MAX);
9742 	}
9743 
9744 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9745 		if (i++ > AHD_SCB_MAX)
9746 			break;
9747 		printk("%d ", SCB_GET_TAG(scb));
9748 	}
9749 	printk("\n");
9750 
9751 	printk("Sequencer Complete DMA-inprog list: ");
9752 	scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9753 	i = 0;
9754 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9755 		ahd_set_scbptr(ahd, scb_index);
9756 		printk("%d ", scb_index);
9757 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9758 	}
9759 	printk("\n");
9760 
9761 	printk("Sequencer Complete list: ");
9762 	scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9763 	i = 0;
9764 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9765 		ahd_set_scbptr(ahd, scb_index);
9766 		printk("%d ", scb_index);
9767 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9768 	}
9769 	printk("\n");
9770 
9771 
9772 	printk("Sequencer DMA-Up and Complete list: ");
9773 	scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9774 	i = 0;
9775 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9776 		ahd_set_scbptr(ahd, scb_index);
9777 		printk("%d ", scb_index);
9778 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9779 	}
9780 	printk("\n");
9781 	printk("Sequencer On QFreeze and Complete list: ");
9782 	scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9783 	i = 0;
9784 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9785 		ahd_set_scbptr(ahd, scb_index);
9786 		printk("%d ", scb_index);
9787 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9788 	}
9789 	printk("\n");
9790 	ahd_set_scbptr(ahd, saved_scb_index);
9791 	dffstat = ahd_inb(ahd, DFFSTAT);
9792 	for (i = 0; i < 2; i++) {
9793 #ifdef AHD_DEBUG
9794 		struct scb *fifo_scb;
9795 #endif
9796 		u_int	    fifo_scbptr;
9797 
9798 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9799 		fifo_scbptr = ahd_get_scbptr(ahd);
9800 		printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9801 		       ahd_name(ahd), i,
9802 		       (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9803 		       ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9804 		cur_col = 0;
9805 		ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9806 		ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9807 		ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9808 		ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9809 		ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9810 					  &cur_col, 50);
9811 		ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9812 		ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9813 		ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9814 		ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9815 		if (cur_col > 50) {
9816 			printk("\n");
9817 			cur_col = 0;
9818 		}
9819 		cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9820 				  ahd_inl(ahd, SHADDR+4),
9821 				  ahd_inl(ahd, SHADDR),
9822 				  (ahd_inb(ahd, SHCNT)
9823 				| (ahd_inb(ahd, SHCNT + 1) << 8)
9824 				| (ahd_inb(ahd, SHCNT + 2) << 16)));
9825 		if (cur_col > 50) {
9826 			printk("\n");
9827 			cur_col = 0;
9828 		}
9829 		cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9830 				  ahd_inl(ahd, HADDR+4),
9831 				  ahd_inl(ahd, HADDR),
9832 				  (ahd_inb(ahd, HCNT)
9833 				| (ahd_inb(ahd, HCNT + 1) << 8)
9834 				| (ahd_inb(ahd, HCNT + 2) << 16)));
9835 		ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9836 #ifdef AHD_DEBUG
9837 		if ((ahd_debug & AHD_SHOW_SG) != 0) {
9838 			fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9839 			if (fifo_scb != NULL)
9840 				ahd_dump_sglist(fifo_scb);
9841 		}
9842 #endif
9843 	}
9844 	printk("\nLQIN: ");
9845 	for (i = 0; i < 20; i++)
9846 		printk("0x%x ", ahd_inb(ahd, LQIN + i));
9847 	printk("\n");
9848 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9849 	printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9850 	       ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9851 	       ahd_inb(ahd, OPTIONMODE));
9852 	printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9853 	       ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9854 	       ahd_inb(ahd, MAXCMDCNT));
9855 	printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9856 	       ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9857 	       ahd_inb(ahd, SAVED_LUN));
9858 	ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9859 	printk("\n");
9860 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9861 	cur_col = 0;
9862 	ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9863 	printk("\n");
9864 	ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9865 	printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9866 	       ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9867 	       ahd_inw(ahd, DINDEX));
9868 	printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9869 	       ahd_name(ahd), ahd_get_scbptr(ahd),
9870 	       ahd_inw_scbram(ahd, SCB_NEXT),
9871 	       ahd_inw_scbram(ahd, SCB_NEXT2));
9872 	printk("CDB %x %x %x %x %x %x\n",
9873 	       ahd_inb_scbram(ahd, SCB_CDB_STORE),
9874 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9875 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9876 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9877 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9878 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9879 	printk("STACK:");
9880 	for (i = 0; i < ahd->stack_size; i++) {
9881 		ahd->saved_stack[i] =
9882 		    ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9883 		printk(" 0x%x", ahd->saved_stack[i]);
9884 	}
9885 	for (i = ahd->stack_size-1; i >= 0; i--) {
9886 		ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9887 		ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9888 	}
9889 	printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9890 	ahd_restore_modes(ahd, saved_modes);
9891 	if (paused == 0)
9892 		ahd_unpause(ahd);
9893 }
9894 
9895 #if 0
9896 void
9897 ahd_dump_scbs(struct ahd_softc *ahd)
9898 {
9899 	ahd_mode_state saved_modes;
9900 	u_int	       saved_scb_index;
9901 	int	       i;
9902 
9903 	saved_modes = ahd_save_modes(ahd);
9904 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9905 	saved_scb_index = ahd_get_scbptr(ahd);
9906 	for (i = 0; i < AHD_SCB_MAX; i++) {
9907 		ahd_set_scbptr(ahd, i);
9908 		printk("%3d", i);
9909 		printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9910 		       ahd_inb_scbram(ahd, SCB_CONTROL),
9911 		       ahd_inb_scbram(ahd, SCB_SCSIID),
9912 		       ahd_inw_scbram(ahd, SCB_NEXT),
9913 		       ahd_inw_scbram(ahd, SCB_NEXT2),
9914 		       ahd_inl_scbram(ahd, SCB_SGPTR),
9915 		       ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9916 	}
9917 	printk("\n");
9918 	ahd_set_scbptr(ahd, saved_scb_index);
9919 	ahd_restore_modes(ahd, saved_modes);
9920 }
9921 #endif  /*  0  */
9922 
9923 /**************************** Flexport Logic **********************************/
9924 /*
9925  * Read count 16bit words from 16bit word address start_addr from the
9926  * SEEPROM attached to the controller, into buf, using the controller's
9927  * SEEPROM reading state machine.  Optionally treat the data as a byte
9928  * stream in terms of byte order.
9929  */
9930 int
9931 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9932 		 u_int start_addr, u_int count, int bytestream)
9933 {
9934 	u_int cur_addr;
9935 	u_int end_addr;
9936 	int   error;
9937 
9938 	/*
9939 	 * If we never make it through the loop even once,
9940 	 * we were passed invalid arguments.
9941 	 */
9942 	error = EINVAL;
9943 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9944 	end_addr = start_addr + count;
9945 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9946 
9947 		ahd_outb(ahd, SEEADR, cur_addr);
9948 		ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9949 
9950 		error = ahd_wait_seeprom(ahd);
9951 		if (error)
9952 			break;
9953 		if (bytestream != 0) {
9954 			uint8_t *bytestream_ptr;
9955 
9956 			bytestream_ptr = (uint8_t *)buf;
9957 			*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9958 			*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9959 		} else {
9960 			/*
9961 			 * ahd_inw() already handles machine byte order.
9962 			 */
9963 			*buf = ahd_inw(ahd, SEEDAT);
9964 		}
9965 		buf++;
9966 	}
9967 	return (error);
9968 }
9969 
9970 /*
9971  * Write count 16bit words from buf, into SEEPROM attache to the
9972  * controller starting at 16bit word address start_addr, using the
9973  * controller's SEEPROM writing state machine.
9974  */
9975 int
9976 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9977 		  u_int start_addr, u_int count)
9978 {
9979 	u_int cur_addr;
9980 	u_int end_addr;
9981 	int   error;
9982 	int   retval;
9983 
9984 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9985 	error = ENOENT;
9986 
9987 	/* Place the chip into write-enable mode */
9988 	ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
9989 	ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
9990 	error = ahd_wait_seeprom(ahd);
9991 	if (error)
9992 		return (error);
9993 
9994 	/*
9995 	 * Write the data.  If we don't get through the loop at
9996 	 * least once, the arguments were invalid.
9997 	 */
9998 	retval = EINVAL;
9999 	end_addr = start_addr + count;
10000 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10001 		ahd_outw(ahd, SEEDAT, *buf++);
10002 		ahd_outb(ahd, SEEADR, cur_addr);
10003 		ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10004 
10005 		retval = ahd_wait_seeprom(ahd);
10006 		if (retval)
10007 			break;
10008 	}
10009 
10010 	/*
10011 	 * Disable writes.
10012 	 */
10013 	ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10014 	ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10015 	error = ahd_wait_seeprom(ahd);
10016 	if (error)
10017 		return (error);
10018 	return (retval);
10019 }
10020 
10021 /*
10022  * Wait ~100us for the serial eeprom to satisfy our request.
10023  */
10024 static int
10025 ahd_wait_seeprom(struct ahd_softc *ahd)
10026 {
10027 	int cnt;
10028 
10029 	cnt = 5000;
10030 	while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10031 		ahd_delay(5);
10032 
10033 	if (cnt == 0)
10034 		return (ETIMEDOUT);
10035 	return (0);
10036 }
10037 
10038 /*
10039  * Validate the two checksums in the per_channel
10040  * vital product data struct.
10041  */
10042 static int
10043 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10044 {
10045 	int i;
10046 	int maxaddr;
10047 	uint32_t checksum;
10048 	uint8_t *vpdarray;
10049 
10050 	vpdarray = (uint8_t *)vpd;
10051 	maxaddr = offsetof(struct vpd_config, vpd_checksum);
10052 	checksum = 0;
10053 	for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10054 		checksum = checksum + vpdarray[i];
10055 	if (checksum == 0
10056 	 || (-checksum & 0xFF) != vpd->vpd_checksum)
10057 		return (0);
10058 
10059 	checksum = 0;
10060 	maxaddr = offsetof(struct vpd_config, checksum);
10061 	for (i = offsetof(struct vpd_config, default_target_flags);
10062 	     i < maxaddr; i++)
10063 		checksum = checksum + vpdarray[i];
10064 	if (checksum == 0
10065 	 || (-checksum & 0xFF) != vpd->checksum)
10066 		return (0);
10067 	return (1);
10068 }
10069 
10070 int
10071 ahd_verify_cksum(struct seeprom_config *sc)
10072 {
10073 	int i;
10074 	int maxaddr;
10075 	uint32_t checksum;
10076 	uint16_t *scarray;
10077 
10078 	maxaddr = (sizeof(*sc)/2) - 1;
10079 	checksum = 0;
10080 	scarray = (uint16_t *)sc;
10081 
10082 	for (i = 0; i < maxaddr; i++)
10083 		checksum = checksum + scarray[i];
10084 	if (checksum == 0
10085 	 || (checksum & 0xFFFF) != sc->checksum) {
10086 		return (0);
10087 	} else {
10088 		return (1);
10089 	}
10090 }
10091 
10092 int
10093 ahd_acquire_seeprom(struct ahd_softc *ahd)
10094 {
10095 	/*
10096 	 * We should be able to determine the SEEPROM type
10097 	 * from the flexport logic, but unfortunately not
10098 	 * all implementations have this logic and there is
10099 	 * no programatic method for determining if the logic
10100 	 * is present.
10101 	 */
10102 	return (1);
10103 #if 0
10104 	uint8_t	seetype;
10105 	int	error;
10106 
10107 	error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10108 	if (error != 0
10109          || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10110 		return (0);
10111 	return (1);
10112 #endif
10113 }
10114 
10115 void
10116 ahd_release_seeprom(struct ahd_softc *ahd)
10117 {
10118 	/* Currently a no-op */
10119 }
10120 
10121 /*
10122  * Wait at most 2 seconds for flexport arbitration to succeed.
10123  */
10124 static int
10125 ahd_wait_flexport(struct ahd_softc *ahd)
10126 {
10127 	int cnt;
10128 
10129 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10130 	cnt = 1000000 * 2 / 5;
10131 	while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10132 		ahd_delay(5);
10133 
10134 	if (cnt == 0)
10135 		return (ETIMEDOUT);
10136 	return (0);
10137 }
10138 
10139 int
10140 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10141 {
10142 	int error;
10143 
10144 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10145 	if (addr > 7)
10146 		panic("ahd_write_flexport: address out of range");
10147 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10148 	error = ahd_wait_flexport(ahd);
10149 	if (error != 0)
10150 		return (error);
10151 	ahd_outb(ahd, BRDDAT, value);
10152 	ahd_flush_device_writes(ahd);
10153 	ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10154 	ahd_flush_device_writes(ahd);
10155 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10156 	ahd_flush_device_writes(ahd);
10157 	ahd_outb(ahd, BRDCTL, 0);
10158 	ahd_flush_device_writes(ahd);
10159 	return (0);
10160 }
10161 
10162 int
10163 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10164 {
10165 	int	error;
10166 
10167 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10168 	if (addr > 7)
10169 		panic("ahd_read_flexport: address out of range");
10170 	ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10171 	error = ahd_wait_flexport(ahd);
10172 	if (error != 0)
10173 		return (error);
10174 	*value = ahd_inb(ahd, BRDDAT);
10175 	ahd_outb(ahd, BRDCTL, 0);
10176 	ahd_flush_device_writes(ahd);
10177 	return (0);
10178 }
10179 
10180 /************************* Target Mode ****************************************/
10181 #ifdef AHD_TARGET_MODE
10182 cam_status
10183 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10184 		    struct ahd_tmode_tstate **tstate,
10185 		    struct ahd_tmode_lstate **lstate,
10186 		    int notfound_failure)
10187 {
10188 
10189 	if ((ahd->features & AHD_TARGETMODE) == 0)
10190 		return (CAM_REQ_INVALID);
10191 
10192 	/*
10193 	 * Handle the 'black hole' device that sucks up
10194 	 * requests to unattached luns on enabled targets.
10195 	 */
10196 	if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10197 	 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10198 		*tstate = NULL;
10199 		*lstate = ahd->black_hole;
10200 	} else {
10201 		u_int max_id;
10202 
10203 		max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10204 		if (ccb->ccb_h.target_id >= max_id)
10205 			return (CAM_TID_INVALID);
10206 
10207 		if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10208 			return (CAM_LUN_INVALID);
10209 
10210 		*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10211 		*lstate = NULL;
10212 		if (*tstate != NULL)
10213 			*lstate =
10214 			    (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10215 	}
10216 
10217 	if (notfound_failure != 0 && *lstate == NULL)
10218 		return (CAM_PATH_INVALID);
10219 
10220 	return (CAM_REQ_CMP);
10221 }
10222 
10223 void
10224 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10225 {
10226 #if NOT_YET
10227 	struct	   ahd_tmode_tstate *tstate;
10228 	struct	   ahd_tmode_lstate *lstate;
10229 	struct	   ccb_en_lun *cel;
10230 	cam_status status;
10231 	u_int	   target;
10232 	u_int	   lun;
10233 	u_int	   target_mask;
10234 	u_long	   s;
10235 	char	   channel;
10236 
10237 	status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10238 				     /*notfound_failure*/FALSE);
10239 
10240 	if (status != CAM_REQ_CMP) {
10241 		ccb->ccb_h.status = status;
10242 		return;
10243 	}
10244 
10245 	if ((ahd->features & AHD_MULTIROLE) != 0) {
10246 		u_int	   our_id;
10247 
10248 		our_id = ahd->our_id;
10249 		if (ccb->ccb_h.target_id != our_id) {
10250 			if ((ahd->features & AHD_MULTI_TID) != 0
10251 		   	 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10252 				/*
10253 				 * Only allow additional targets if
10254 				 * the initiator role is disabled.
10255 				 * The hardware cannot handle a re-select-in
10256 				 * on the initiator id during a re-select-out
10257 				 * on a different target id.
10258 				 */
10259 				status = CAM_TID_INVALID;
10260 			} else if ((ahd->flags & AHD_INITIATORROLE) != 0
10261 				|| ahd->enabled_luns > 0) {
10262 				/*
10263 				 * Only allow our target id to change
10264 				 * if the initiator role is not configured
10265 				 * and there are no enabled luns which
10266 				 * are attached to the currently registered
10267 				 * scsi id.
10268 				 */
10269 				status = CAM_TID_INVALID;
10270 			}
10271 		}
10272 	}
10273 
10274 	if (status != CAM_REQ_CMP) {
10275 		ccb->ccb_h.status = status;
10276 		return;
10277 	}
10278 
10279 	/*
10280 	 * We now have an id that is valid.
10281 	 * If we aren't in target mode, switch modes.
10282 	 */
10283 	if ((ahd->flags & AHD_TARGETROLE) == 0
10284 	 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10285 		u_long	s;
10286 
10287 		printk("Configuring Target Mode\n");
10288 		ahd_lock(ahd, &s);
10289 		if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10290 			ccb->ccb_h.status = CAM_BUSY;
10291 			ahd_unlock(ahd, &s);
10292 			return;
10293 		}
10294 		ahd->flags |= AHD_TARGETROLE;
10295 		if ((ahd->features & AHD_MULTIROLE) == 0)
10296 			ahd->flags &= ~AHD_INITIATORROLE;
10297 		ahd_pause(ahd);
10298 		ahd_loadseq(ahd);
10299 		ahd_restart(ahd);
10300 		ahd_unlock(ahd, &s);
10301 	}
10302 	cel = &ccb->cel;
10303 	target = ccb->ccb_h.target_id;
10304 	lun = ccb->ccb_h.target_lun;
10305 	channel = SIM_CHANNEL(ahd, sim);
10306 	target_mask = 0x01 << target;
10307 	if (channel == 'B')
10308 		target_mask <<= 8;
10309 
10310 	if (cel->enable != 0) {
10311 		u_int scsiseq1;
10312 
10313 		/* Are we already enabled?? */
10314 		if (lstate != NULL) {
10315 			xpt_print_path(ccb->ccb_h.path);
10316 			printk("Lun already enabled\n");
10317 			ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10318 			return;
10319 		}
10320 
10321 		if (cel->grp6_len != 0
10322 		 || cel->grp7_len != 0) {
10323 			/*
10324 			 * Don't (yet?) support vendor
10325 			 * specific commands.
10326 			 */
10327 			ccb->ccb_h.status = CAM_REQ_INVALID;
10328 			printk("Non-zero Group Codes\n");
10329 			return;
10330 		}
10331 
10332 		/*
10333 		 * Seems to be okay.
10334 		 * Setup our data structures.
10335 		 */
10336 		if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10337 			tstate = ahd_alloc_tstate(ahd, target, channel);
10338 			if (tstate == NULL) {
10339 				xpt_print_path(ccb->ccb_h.path);
10340 				printk("Couldn't allocate tstate\n");
10341 				ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10342 				return;
10343 			}
10344 		}
10345 		lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10346 		if (lstate == NULL) {
10347 			xpt_print_path(ccb->ccb_h.path);
10348 			printk("Couldn't allocate lstate\n");
10349 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10350 			return;
10351 		}
10352 		status = xpt_create_path(&lstate->path, /*periph*/NULL,
10353 					 xpt_path_path_id(ccb->ccb_h.path),
10354 					 xpt_path_target_id(ccb->ccb_h.path),
10355 					 xpt_path_lun_id(ccb->ccb_h.path));
10356 		if (status != CAM_REQ_CMP) {
10357 			kfree(lstate);
10358 			xpt_print_path(ccb->ccb_h.path);
10359 			printk("Couldn't allocate path\n");
10360 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10361 			return;
10362 		}
10363 		SLIST_INIT(&lstate->accept_tios);
10364 		SLIST_INIT(&lstate->immed_notifies);
10365 		ahd_lock(ahd, &s);
10366 		ahd_pause(ahd);
10367 		if (target != CAM_TARGET_WILDCARD) {
10368 			tstate->enabled_luns[lun] = lstate;
10369 			ahd->enabled_luns++;
10370 
10371 			if ((ahd->features & AHD_MULTI_TID) != 0) {
10372 				u_int targid_mask;
10373 
10374 				targid_mask = ahd_inw(ahd, TARGID);
10375 				targid_mask |= target_mask;
10376 				ahd_outw(ahd, TARGID, targid_mask);
10377 				ahd_update_scsiid(ahd, targid_mask);
10378 			} else {
10379 				u_int our_id;
10380 				char  channel;
10381 
10382 				channel = SIM_CHANNEL(ahd, sim);
10383 				our_id = SIM_SCSI_ID(ahd, sim);
10384 
10385 				/*
10386 				 * This can only happen if selections
10387 				 * are not enabled
10388 				 */
10389 				if (target != our_id) {
10390 					u_int sblkctl;
10391 					char  cur_channel;
10392 					int   swap;
10393 
10394 					sblkctl = ahd_inb(ahd, SBLKCTL);
10395 					cur_channel = (sblkctl & SELBUSB)
10396 						    ? 'B' : 'A';
10397 					if ((ahd->features & AHD_TWIN) == 0)
10398 						cur_channel = 'A';
10399 					swap = cur_channel != channel;
10400 					ahd->our_id = target;
10401 
10402 					if (swap)
10403 						ahd_outb(ahd, SBLKCTL,
10404 							 sblkctl ^ SELBUSB);
10405 
10406 					ahd_outb(ahd, SCSIID, target);
10407 
10408 					if (swap)
10409 						ahd_outb(ahd, SBLKCTL, sblkctl);
10410 				}
10411 			}
10412 		} else
10413 			ahd->black_hole = lstate;
10414 		/* Allow select-in operations */
10415 		if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10416 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10417 			scsiseq1 |= ENSELI;
10418 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10419 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10420 			scsiseq1 |= ENSELI;
10421 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10422 		}
10423 		ahd_unpause(ahd);
10424 		ahd_unlock(ahd, &s);
10425 		ccb->ccb_h.status = CAM_REQ_CMP;
10426 		xpt_print_path(ccb->ccb_h.path);
10427 		printk("Lun now enabled for target mode\n");
10428 	} else {
10429 		struct scb *scb;
10430 		int i, empty;
10431 
10432 		if (lstate == NULL) {
10433 			ccb->ccb_h.status = CAM_LUN_INVALID;
10434 			return;
10435 		}
10436 
10437 		ahd_lock(ahd, &s);
10438 
10439 		ccb->ccb_h.status = CAM_REQ_CMP;
10440 		LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10441 			struct ccb_hdr *ccbh;
10442 
10443 			ccbh = &scb->io_ctx->ccb_h;
10444 			if (ccbh->func_code == XPT_CONT_TARGET_IO
10445 			 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10446 				printk("CTIO pending\n");
10447 				ccb->ccb_h.status = CAM_REQ_INVALID;
10448 				ahd_unlock(ahd, &s);
10449 				return;
10450 			}
10451 		}
10452 
10453 		if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10454 			printk("ATIOs pending\n");
10455 			ccb->ccb_h.status = CAM_REQ_INVALID;
10456 		}
10457 
10458 		if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10459 			printk("INOTs pending\n");
10460 			ccb->ccb_h.status = CAM_REQ_INVALID;
10461 		}
10462 
10463 		if (ccb->ccb_h.status != CAM_REQ_CMP) {
10464 			ahd_unlock(ahd, &s);
10465 			return;
10466 		}
10467 
10468 		xpt_print_path(ccb->ccb_h.path);
10469 		printk("Target mode disabled\n");
10470 		xpt_free_path(lstate->path);
10471 		kfree(lstate);
10472 
10473 		ahd_pause(ahd);
10474 		/* Can we clean up the target too? */
10475 		if (target != CAM_TARGET_WILDCARD) {
10476 			tstate->enabled_luns[lun] = NULL;
10477 			ahd->enabled_luns--;
10478 			for (empty = 1, i = 0; i < 8; i++)
10479 				if (tstate->enabled_luns[i] != NULL) {
10480 					empty = 0;
10481 					break;
10482 				}
10483 
10484 			if (empty) {
10485 				ahd_free_tstate(ahd, target, channel,
10486 						/*force*/FALSE);
10487 				if (ahd->features & AHD_MULTI_TID) {
10488 					u_int targid_mask;
10489 
10490 					targid_mask = ahd_inw(ahd, TARGID);
10491 					targid_mask &= ~target_mask;
10492 					ahd_outw(ahd, TARGID, targid_mask);
10493 					ahd_update_scsiid(ahd, targid_mask);
10494 				}
10495 			}
10496 		} else {
10497 
10498 			ahd->black_hole = NULL;
10499 
10500 			/*
10501 			 * We can't allow selections without
10502 			 * our black hole device.
10503 			 */
10504 			empty = TRUE;
10505 		}
10506 		if (ahd->enabled_luns == 0) {
10507 			/* Disallow select-in */
10508 			u_int scsiseq1;
10509 
10510 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10511 			scsiseq1 &= ~ENSELI;
10512 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10513 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10514 			scsiseq1 &= ~ENSELI;
10515 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10516 
10517 			if ((ahd->features & AHD_MULTIROLE) == 0) {
10518 				printk("Configuring Initiator Mode\n");
10519 				ahd->flags &= ~AHD_TARGETROLE;
10520 				ahd->flags |= AHD_INITIATORROLE;
10521 				ahd_pause(ahd);
10522 				ahd_loadseq(ahd);
10523 				ahd_restart(ahd);
10524 				/*
10525 				 * Unpaused.  The extra unpause
10526 				 * that follows is harmless.
10527 				 */
10528 			}
10529 		}
10530 		ahd_unpause(ahd);
10531 		ahd_unlock(ahd, &s);
10532 	}
10533 #endif
10534 }
10535 
10536 static void
10537 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10538 {
10539 #if NOT_YET
10540 	u_int scsiid_mask;
10541 	u_int scsiid;
10542 
10543 	if ((ahd->features & AHD_MULTI_TID) == 0)
10544 		panic("ahd_update_scsiid called on non-multitid unit\n");
10545 
10546 	/*
10547 	 * Since we will rely on the TARGID mask
10548 	 * for selection enables, ensure that OID
10549 	 * in SCSIID is not set to some other ID
10550 	 * that we don't want to allow selections on.
10551 	 */
10552 	if ((ahd->features & AHD_ULTRA2) != 0)
10553 		scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10554 	else
10555 		scsiid = ahd_inb(ahd, SCSIID);
10556 	scsiid_mask = 0x1 << (scsiid & OID);
10557 	if ((targid_mask & scsiid_mask) == 0) {
10558 		u_int our_id;
10559 
10560 		/* ffs counts from 1 */
10561 		our_id = ffs(targid_mask);
10562 		if (our_id == 0)
10563 			our_id = ahd->our_id;
10564 		else
10565 			our_id--;
10566 		scsiid &= TID;
10567 		scsiid |= our_id;
10568 	}
10569 	if ((ahd->features & AHD_ULTRA2) != 0)
10570 		ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10571 	else
10572 		ahd_outb(ahd, SCSIID, scsiid);
10573 #endif
10574 }
10575 
10576 static void
10577 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10578 {
10579 	struct target_cmd *cmd;
10580 
10581 	ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10582 	while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10583 
10584 		/*
10585 		 * Only advance through the queue if we
10586 		 * have the resources to process the command.
10587 		 */
10588 		if (ahd_handle_target_cmd(ahd, cmd) != 0)
10589 			break;
10590 
10591 		cmd->cmd_valid = 0;
10592 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10593 				ahd->shared_data_map.dmamap,
10594 				ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10595 				sizeof(struct target_cmd),
10596 				BUS_DMASYNC_PREREAD);
10597 		ahd->tqinfifonext++;
10598 
10599 		/*
10600 		 * Lazily update our position in the target mode incoming
10601 		 * command queue as seen by the sequencer.
10602 		 */
10603 		if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10604 			u_int hs_mailbox;
10605 
10606 			hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10607 			hs_mailbox &= ~HOST_TQINPOS;
10608 			hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10609 			ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10610 		}
10611 	}
10612 }
10613 
10614 static int
10615 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10616 {
10617 	struct	  ahd_tmode_tstate *tstate;
10618 	struct	  ahd_tmode_lstate *lstate;
10619 	struct	  ccb_accept_tio *atio;
10620 	uint8_t *byte;
10621 	int	  initiator;
10622 	int	  target;
10623 	int	  lun;
10624 
10625 	initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10626 	target = SCSIID_OUR_ID(cmd->scsiid);
10627 	lun    = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10628 
10629 	byte = cmd->bytes;
10630 	tstate = ahd->enabled_targets[target];
10631 	lstate = NULL;
10632 	if (tstate != NULL)
10633 		lstate = tstate->enabled_luns[lun];
10634 
10635 	/*
10636 	 * Commands for disabled luns go to the black hole driver.
10637 	 */
10638 	if (lstate == NULL)
10639 		lstate = ahd->black_hole;
10640 
10641 	atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10642 	if (atio == NULL) {
10643 		ahd->flags |= AHD_TQINFIFO_BLOCKED;
10644 		/*
10645 		 * Wait for more ATIOs from the peripheral driver for this lun.
10646 		 */
10647 		return (1);
10648 	} else
10649 		ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10650 #ifdef AHD_DEBUG
10651 	if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10652 		printk("Incoming command from %d for %d:%d%s\n",
10653 		       initiator, target, lun,
10654 		       lstate == ahd->black_hole ? "(Black Holed)" : "");
10655 #endif
10656 	SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10657 
10658 	if (lstate == ahd->black_hole) {
10659 		/* Fill in the wildcards */
10660 		atio->ccb_h.target_id = target;
10661 		atio->ccb_h.target_lun = lun;
10662 	}
10663 
10664 	/*
10665 	 * Package it up and send it off to
10666 	 * whomever has this lun enabled.
10667 	 */
10668 	atio->sense_len = 0;
10669 	atio->init_id = initiator;
10670 	if (byte[0] != 0xFF) {
10671 		/* Tag was included */
10672 		atio->tag_action = *byte++;
10673 		atio->tag_id = *byte++;
10674 		atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10675 	} else {
10676 		atio->ccb_h.flags = 0;
10677 	}
10678 	byte++;
10679 
10680 	/* Okay.  Now determine the cdb size based on the command code */
10681 	switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10682 	case 0:
10683 		atio->cdb_len = 6;
10684 		break;
10685 	case 1:
10686 	case 2:
10687 		atio->cdb_len = 10;
10688 		break;
10689 	case 4:
10690 		atio->cdb_len = 16;
10691 		break;
10692 	case 5:
10693 		atio->cdb_len = 12;
10694 		break;
10695 	case 3:
10696 	default:
10697 		/* Only copy the opcode. */
10698 		atio->cdb_len = 1;
10699 		printk("Reserved or VU command code type encountered\n");
10700 		break;
10701 	}
10702 
10703 	memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10704 
10705 	atio->ccb_h.status |= CAM_CDB_RECVD;
10706 
10707 	if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10708 		/*
10709 		 * We weren't allowed to disconnect.
10710 		 * We're hanging on the bus until a
10711 		 * continue target I/O comes in response
10712 		 * to this accept tio.
10713 		 */
10714 #ifdef AHD_DEBUG
10715 		if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10716 			printk("Received Immediate Command %d:%d:%d - %p\n",
10717 			       initiator, target, lun, ahd->pending_device);
10718 #endif
10719 		ahd->pending_device = lstate;
10720 		ahd_freeze_ccb((union ccb *)atio);
10721 		atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10722 	}
10723 	xpt_done((union ccb*)atio);
10724 	return (0);
10725 }
10726 
10727 #endif
10728