1 /*
2 * Core routines and tables shareable across OS platforms.
3 *
4 * Copyright (c) 1994-2002 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41 */
42
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
46
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
49 {
50 "NONE",
51 "aic7901",
52 "aic7902",
53 "aic7901A"
54 };
55
56 /*
57 * Hardware error codes.
58 */
59 struct ahd_hard_error_entry {
60 uint8_t errno;
61 const char *errmesg;
62 };
63
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 { DSCTMOUT, "Discard Timer has timed out" },
66 { ILLOPCODE, "Illegal Opcode in sequencer program" },
67 { SQPARERR, "Sequencer Parity Error" },
68 { DPARERR, "Data-path Parity Error" },
69 { MPARERR, "Scratch or SCB Memory Parity Error" },
70 { CIOPARERR, "CIOBUS Parity Error" },
71 };
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
75 {
76 { P_DATAOUT, NOP, "in Data-out phase" },
77 { P_DATAIN, INITIATOR_ERROR, "in Data-in phase" },
78 { P_DATAOUT_DT, NOP, "in DT Data-out phase" },
79 { P_DATAIN_DT, INITIATOR_ERROR, "in DT Data-in phase" },
80 { P_COMMAND, NOP, "in Command phase" },
81 { P_MESGOUT, NOP, "in Message-out phase" },
82 { P_STATUS, INITIATOR_ERROR, "in Status phase" },
83 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
84 { P_BUSFREE, NOP, "while idle" },
85 { 0, NOP, "in unknown phase" }
86 };
87
88 /*
89 * In most cases we only wish to itterate over real phases, so
90 * exclude the last element from the count.
91 */
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
96
97 /**************************** Function Declarations ***************************/
98 static void ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 u_int lqistat1);
101 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 u_int busfreetime);
103 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void ahd_force_renegotiation(struct ahd_softc *ahd,
106 struct ahd_devinfo *devinfo);
107
108 static struct ahd_tmode_tstate*
109 ahd_alloc_tstate(struct ahd_softc *ahd,
110 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void ahd_free_tstate(struct ahd_softc *ahd,
113 u_int scsi_id, char channel, int force);
114 #endif
115 static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 struct ahd_initiator_tinfo *,
117 u_int *period,
118 u_int *ppr_options,
119 role_t role);
120 static void ahd_update_neg_table(struct ahd_softc *ahd,
121 struct ahd_devinfo *devinfo,
122 struct ahd_transinfo *tinfo);
123 static void ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void ahd_fetch_devinfo(struct ahd_softc *ahd,
125 struct ahd_devinfo *devinfo);
126 static void ahd_scb_devinfo(struct ahd_softc *ahd,
127 struct ahd_devinfo *devinfo,
128 struct scb *scb);
129 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 struct ahd_devinfo *devinfo,
131 struct scb *scb);
132 static void ahd_build_transfer_msg(struct ahd_softc *ahd,
133 struct ahd_devinfo *devinfo);
134 static void ahd_construct_sdtr(struct ahd_softc *ahd,
135 struct ahd_devinfo *devinfo,
136 u_int period, u_int offset);
137 static void ahd_construct_wdtr(struct ahd_softc *ahd,
138 struct ahd_devinfo *devinfo,
139 u_int bus_width);
140 static void ahd_construct_ppr(struct ahd_softc *ahd,
141 struct ahd_devinfo *devinfo,
142 u_int period, u_int offset,
143 u_int bus_width, u_int ppr_options);
144 static void ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 AHDMSG_1B,
148 AHDMSG_2B,
149 AHDMSG_EXT
150 } ahd_msgtype;
151 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 u_int msgval, int full);
153 static int ahd_parse_msg(struct ahd_softc *ahd,
154 struct ahd_devinfo *devinfo);
155 static int ahd_handle_msg_reject(struct ahd_softc *ahd,
156 struct ahd_devinfo *devinfo);
157 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 struct ahd_devinfo *devinfo);
159 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void ahd_handle_devreset(struct ahd_softc *ahd,
161 struct ahd_devinfo *devinfo,
162 u_int lun, cam_status status,
163 char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void ahd_setup_target_msgin(struct ahd_softc *ahd,
166 struct ahd_devinfo *devinfo,
167 struct scb *scb);
168 #endif
169
170 static u_int ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 ahd_dmamap_cb;
174 static void ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int ahd_init_scbdata(struct ahd_softc *ahd);
176 static void ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void ahd_add_col_list(struct ahd_softc *ahd,
180 struct scb *scb, u_int col_idx);
181 static void ahd_rem_col_list(struct ahd_softc *ahd,
182 struct scb *scb);
183 static void ahd_chip_init(struct ahd_softc *ahd);
184 static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 struct scb *prev_scb,
186 struct scb *scb);
187 static int ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 char channel, int lun, u_int tag,
190 role_t role, uint32_t status,
191 ahd_search_action action,
192 u_int *list_head, u_int *list_tail,
193 u_int tid);
194 static void ahd_stitch_tid_list(struct ahd_softc *ahd,
195 u_int tid_prev, u_int tid_cur,
196 u_int tid_next);
197 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 u_int scbid);
199 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 u_int prev, u_int next, u_int tid);
201 static void ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void ahd_loadseq(struct ahd_softc *ahd);
207 static int ahd_check_patch(struct ahd_softc *ahd,
208 const struct patch **start_patch,
209 u_int start_instr, u_int *skip_addr);
210 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 u_int address);
212 static void ahd_download_instr(struct ahd_softc *ahd,
213 u_int instrptr, uint8_t *dconsts);
214 static int ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 struct scb *scb);
217 static void ahd_run_data_fifo(struct ahd_softc *ahd,
218 struct scb *scb);
219
220 #ifdef AHD_TARGET_MODE
221 static void ahd_queue_lstate_event(struct ahd_softc *ahd,
222 struct ahd_tmode_lstate *lstate,
223 u_int initiator_id,
224 u_int event_type,
225 u_int event_arg);
226 static void ahd_update_scsiid(struct ahd_softc *ahd,
227 u_int targid_mask);
228 static int ahd_handle_target_cmd(struct ahd_softc *ahd,
229 struct target_cmd *cmd);
230 #endif
231
232 static int ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 char channel, int lun, u_int tag,
234 role_t role, uint32_t status);
235 static void ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 u_int scbid);
238 static void ahd_calc_residual(struct ahd_softc *ahd,
239 struct scb *scb);
240 static void ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void ahd_clear_intstat(struct ahd_softc *ahd);
242 static void ahd_enable_coalescing(struct ahd_softc *ahd,
243 int enable);
244 static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void ahd_freeze_devq(struct ahd_softc *ahd,
246 struct scb *scb);
247 static void ahd_handle_scb_status(struct ahd_softc *ahd,
248 struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void ahd_shutdown(void *arg);
251 static void ahd_update_coalescing_values(struct ahd_softc *ahd,
252 u_int timer,
253 u_int maxcmds,
254 u_int mincmds);
255 static int ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 int target, char channel, int lun,
259 u_int tag, role_t role);
260
261 static void ahd_reset_cmds_pending(struct ahd_softc *ahd);
262
263 /*************************** Interrupt Services *******************************/
264 static void ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void ahd_handle_scsiint(struct ahd_softc *ahd,
271 u_int intstat);
272
273 /************************ Sequencer Execution Control *************************/
274 void
ahd_set_modes(struct ahd_softc * ahd,ahd_mode src,ahd_mode dst)275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276 {
277 if (ahd->src_mode == src && ahd->dst_mode == dst)
278 return;
279 #ifdef AHD_DEBUG
280 if (ahd->src_mode == AHD_MODE_UNKNOWN
281 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 panic("Setting mode prior to saving it.\n");
283 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 ahd_build_mode_state(ahd, src, dst));
286 #endif
287 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 ahd->src_mode = src;
289 ahd->dst_mode = dst;
290 }
291
292 static void
ahd_update_modes(struct ahd_softc * ahd)293 ahd_update_modes(struct ahd_softc *ahd)
294 {
295 ahd_mode_state mode_ptr;
296 ahd_mode src;
297 ahd_mode dst;
298
299 mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 ahd_known_modes(ahd, src, dst);
306 }
307
308 static void
ahd_assert_modes(struct ahd_softc * ahd,ahd_mode srcmode,ahd_mode dstmode,const char * file,int line)309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 ahd_mode dstmode, const char *file, int line)
311 {
312 #ifdef AHD_DEBUG
313 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 panic("%s:%s:%d: Mode assertion failed.\n",
316 ahd_name(ahd), file, line);
317 }
318 #endif
319 }
320
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323
324 ahd_mode_state
ahd_save_modes(struct ahd_softc * ahd)325 ahd_save_modes(struct ahd_softc *ahd)
326 {
327 if (ahd->src_mode == AHD_MODE_UNKNOWN
328 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 ahd_update_modes(ahd);
330
331 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332 }
333
334 void
ahd_restore_modes(struct ahd_softc * ahd,ahd_mode_state state)335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336 {
337 ahd_mode src;
338 ahd_mode dst;
339
340 ahd_extract_mode_state(ahd, state, &src, &dst);
341 ahd_set_modes(ahd, src, dst);
342 }
343
344 /*
345 * Determine whether the sequencer has halted code execution.
346 * Returns non-zero status if the sequencer is stopped.
347 */
348 int
ahd_is_paused(struct ahd_softc * ahd)349 ahd_is_paused(struct ahd_softc *ahd)
350 {
351 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352 }
353
354 /*
355 * Request that the sequencer stop and wait, indefinitely, for it
356 * to stop. The sequencer will only acknowledge that it is paused
357 * once it has reached an instruction boundary and PAUSEDIS is
358 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
359 * for critical sections.
360 */
361 void
ahd_pause(struct ahd_softc * ahd)362 ahd_pause(struct ahd_softc *ahd)
363 {
364 ahd_outb(ahd, HCNTRL, ahd->pause);
365
366 /*
367 * Since the sequencer can disable pausing in a critical section, we
368 * must loop until it actually stops.
369 */
370 while (ahd_is_paused(ahd) == 0)
371 ;
372 }
373
374 /*
375 * Allow the sequencer to continue program execution.
376 * We check here to ensure that no additional interrupt
377 * sources that would cause the sequencer to halt have been
378 * asserted. If, for example, a SCSI bus reset is detected
379 * while we are fielding a different, pausing, interrupt type,
380 * we don't want to release the sequencer before going back
381 * into our interrupt handler and dealing with this new
382 * condition.
383 */
384 void
ahd_unpause(struct ahd_softc * ahd)385 ahd_unpause(struct ahd_softc *ahd)
386 {
387 /*
388 * Automatically restore our modes to those saved
389 * prior to the first change of the mode.
390 */
391 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 ahd_reset_cmds_pending(ahd);
395 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396 }
397
398 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 ahd_outb(ahd, HCNTRL, ahd->unpause);
400
401 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402 }
403
404 /*********************** Scatter Gather List Handling *************************/
405 void *
ahd_sg_setup(struct ahd_softc * ahd,struct scb * scb,void * sgptr,dma_addr_t addr,bus_size_t len,int last)406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408 {
409 scb->sg_count++;
410 if (sizeof(dma_addr_t) > 4
411 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 struct ahd_dma64_seg *sg;
413
414 sg = (struct ahd_dma64_seg *)sgptr;
415 sg->addr = ahd_htole64(addr);
416 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 return (sg + 1);
418 } else {
419 struct ahd_dma_seg *sg;
420
421 sg = (struct ahd_dma_seg *)sgptr;
422 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 | (last ? AHD_DMA_LAST_SEG : 0));
425 return (sg + 1);
426 }
427 }
428
429 static void
ahd_setup_scb_common(struct ahd_softc * ahd,struct scb * scb)430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431 {
432 /* XXX Handle target mode SCBs. */
433 scb->crc_retry_count = 0;
434 if ((scb->flags & SCB_PACKETIZED) != 0) {
435 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
436 scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 } else {
438 if (ahd_get_transfer_length(scb) & 0x01)
439 scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 else
441 scb->hscb->task_attribute = 0;
442 }
443
444 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 ahd_htole32(scb->sense_busaddr);
448 }
449
450 static void
ahd_setup_data_scb(struct ahd_softc * ahd,struct scb * scb)451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452 {
453 /*
454 * Copy the first SG into the "current" data ponter area.
455 */
456 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 struct ahd_dma64_seg *sg;
458
459 sg = (struct ahd_dma64_seg *)scb->sg_list;
460 scb->hscb->dataptr = sg->addr;
461 scb->hscb->datacnt = sg->len;
462 } else {
463 struct ahd_dma_seg *sg;
464 uint32_t *dataptr_words;
465
466 sg = (struct ahd_dma_seg *)scb->sg_list;
467 dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 dataptr_words[0] = sg->addr;
469 dataptr_words[1] = 0;
470 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 uint64_t high_addr;
472
473 high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475 }
476 scb->hscb->datacnt = sg->len;
477 }
478 /*
479 * Note where to find the SG entries in bus space.
480 * We also set the full residual flag which the
481 * sequencer will clear as soon as a data transfer
482 * occurs.
483 */
484 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485 }
486
487 static void
ahd_setup_noxfer_scb(struct ahd_softc * ahd,struct scb * scb)488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489 {
490 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 scb->hscb->dataptr = 0;
492 scb->hscb->datacnt = 0;
493 }
494
495 /************************** Memory mapping routines ***************************/
496 static void *
ahd_sg_bus_to_virt(struct ahd_softc * ahd,struct scb * scb,uint32_t sg_busaddr)497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498 {
499 dma_addr_t sg_offset;
500
501 /* sg_list_phys points to entry 1, not 0 */
502 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 return ((uint8_t *)scb->sg_list + sg_offset);
504 }
505
506 static uint32_t
ahd_sg_virt_to_bus(struct ahd_softc * ahd,struct scb * scb,void * sg)507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508 {
509 dma_addr_t sg_offset;
510
511 /* sg_list_phys points to entry 1, not 0 */
512 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 - ahd_sg_size(ahd);
514
515 return (scb->sg_list_busaddr + sg_offset);
516 }
517
518 static void
ahd_sync_scb(struct ahd_softc * ahd,struct scb * scb,int op)519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520 {
521 ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 scb->hscb_map->dmamap,
523 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 /*len*/sizeof(*scb->hscb), op);
525 }
526
527 void
ahd_sync_sglist(struct ahd_softc * ahd,struct scb * scb,int op)528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529 {
530 if (scb->sg_count == 0)
531 return;
532
533 ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 scb->sg_map->dmamap,
535 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537 }
538
539 static void
ahd_sync_sense(struct ahd_softc * ahd,struct scb * scb,int op)540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541 {
542 ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 scb->sense_map->dmamap,
544 /*offset*/scb->sense_busaddr,
545 /*len*/AHD_SENSE_BUFSIZE, op);
546 }
547
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
ahd_targetcmd_offset(struct ahd_softc * ahd,u_int index)550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551 {
552 return (((uint8_t *)&ahd->targetcmds[index])
553 - (uint8_t *)ahd->qoutfifo);
554 }
555 #endif
556
557 /*********************** Miscellaneous Support Functions ***********************/
558 /*
559 * Return pointers to the transfer negotiation information
560 * for the specified our_id/remote_id pair.
561 */
562 struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc * ahd,char channel,u_int our_id,u_int remote_id,struct ahd_tmode_tstate ** tstate)563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 u_int remote_id, struct ahd_tmode_tstate **tstate)
565 {
566 /*
567 * Transfer data structures are stored from the perspective
568 * of the target role. Since the parameters for a connection
569 * in the initiator role to a given target are the same as
570 * when the roles are reversed, we pretend we are the target.
571 */
572 if (channel == 'B')
573 our_id += 8;
574 *tstate = ahd->enabled_targets[our_id];
575 return (&(*tstate)->transinfo[remote_id]);
576 }
577
578 uint16_t
ahd_inw(struct ahd_softc * ahd,u_int port)579 ahd_inw(struct ahd_softc *ahd, u_int port)
580 {
581 /*
582 * Read high byte first as some registers increment
583 * or have other side effects when the low byte is
584 * read.
585 */
586 uint16_t r = ahd_inb(ahd, port+1) << 8;
587 return r | ahd_inb(ahd, port);
588 }
589
590 void
ahd_outw(struct ahd_softc * ahd,u_int port,u_int value)591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592 {
593 /*
594 * Write low byte first to accommodate registers
595 * such as PRGMCNT where the order maters.
596 */
597 ahd_outb(ahd, port, value & 0xFF);
598 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599 }
600
601 uint32_t
ahd_inl(struct ahd_softc * ahd,u_int port)602 ahd_inl(struct ahd_softc *ahd, u_int port)
603 {
604 return ((ahd_inb(ahd, port))
605 | (ahd_inb(ahd, port+1) << 8)
606 | (ahd_inb(ahd, port+2) << 16)
607 | (ahd_inb(ahd, port+3) << 24));
608 }
609
610 void
ahd_outl(struct ahd_softc * ahd,u_int port,uint32_t value)611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612 {
613 ahd_outb(ahd, port, (value) & 0xFF);
614 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617 }
618
619 uint64_t
ahd_inq(struct ahd_softc * ahd,u_int port)620 ahd_inq(struct ahd_softc *ahd, u_int port)
621 {
622 return ((ahd_inb(ahd, port))
623 | (ahd_inb(ahd, port+1) << 8)
624 | (ahd_inb(ahd, port+2) << 16)
625 | (ahd_inb(ahd, port+3) << 24)
626 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630 }
631
632 void
ahd_outq(struct ahd_softc * ahd,u_int port,uint64_t value)633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634 {
635 ahd_outb(ahd, port, value & 0xFF);
636 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643 }
644
645 u_int
ahd_get_scbptr(struct ahd_softc * ahd)646 ahd_get_scbptr(struct ahd_softc *ahd)
647 {
648 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651 }
652
653 void
ahd_set_scbptr(struct ahd_softc * ahd,u_int scbptr)654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655 {
656 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660 }
661
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665 {
666 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667 }
668 #endif
669
670 static void
ahd_set_hnscb_qoff(struct ahd_softc * ahd,u_int value)671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672 {
673 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674 }
675
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
679 {
680 return (ahd_inb(ahd, HESCB_QOFF));
681 }
682 #endif
683
684 static void
ahd_set_hescb_qoff(struct ahd_softc * ahd,u_int value)685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686 {
687 ahd_outb(ahd, HESCB_QOFF, value);
688 }
689
690 static u_int
ahd_get_snscb_qoff(struct ahd_softc * ahd)691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
692 {
693 u_int oldvalue;
694
695 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 return (oldvalue);
699 }
700
701 static void
ahd_set_snscb_qoff(struct ahd_softc * ahd,u_int value)702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703 {
704 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 ahd_outw(ahd, SNSCB_QOFF, value);
706 }
707
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
711 {
712 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 return (ahd_inb(ahd, SESCB_QOFF));
714 }
715 #endif
716
717 static void
ahd_set_sescb_qoff(struct ahd_softc * ahd,u_int value)718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719 {
720 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 ahd_outb(ahd, SESCB_QOFF, value);
722 }
723
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727 {
728 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730 }
731 #endif
732
733 static void
ahd_set_sdscb_qoff(struct ahd_softc * ahd,u_int value)734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735 {
736 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739 }
740
741 u_int
ahd_inb_scbram(struct ahd_softc * ahd,u_int offset)742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743 {
744 u_int value;
745
746 /*
747 * Workaround PCI-X Rev A. hardware bug.
748 * After a host read of SCB memory, the chip
749 * may become confused into thinking prefetch
750 * was required. This starts the discard timer
751 * running and can cause an unexpected discard
752 * timer interrupt. The work around is to read
753 * a normal register prior to the exhaustion of
754 * the discard timer. The mode pointer register
755 * has no side effects and so serves well for
756 * this purpose.
757 *
758 * Razor #528
759 */
760 value = ahd_inb(ahd, offset);
761 if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 ahd_inb(ahd, MODE_PTR);
763 return (value);
764 }
765
766 u_int
ahd_inw_scbram(struct ahd_softc * ahd,u_int offset)767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768 {
769 return (ahd_inb_scbram(ahd, offset)
770 | (ahd_inb_scbram(ahd, offset+1) << 8));
771 }
772
773 static uint32_t
ahd_inl_scbram(struct ahd_softc * ahd,u_int offset)774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775 {
776 return (ahd_inw_scbram(ahd, offset)
777 | (ahd_inw_scbram(ahd, offset+2) << 16));
778 }
779
780 static uint64_t
ahd_inq_scbram(struct ahd_softc * ahd,u_int offset)781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782 {
783 return (ahd_inl_scbram(ahd, offset)
784 | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785 }
786
787 struct scb *
ahd_lookup_scb(struct ahd_softc * ahd,u_int tag)788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789 {
790 struct scb* scb;
791
792 if (tag >= AHD_SCB_MAX)
793 return (NULL);
794 scb = ahd->scb_data.scbindex[tag];
795 if (scb != NULL)
796 ahd_sync_scb(ahd, scb,
797 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 return (scb);
799 }
800
801 static void
ahd_swap_with_next_hscb(struct ahd_softc * ahd,struct scb * scb)802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803 {
804 struct hardware_scb *q_hscb;
805 struct map_node *q_hscb_map;
806 uint32_t saved_hscb_busaddr;
807
808 /*
809 * Our queuing method is a bit tricky. The card
810 * knows in advance which HSCB (by address) to download,
811 * and we can't disappoint it. To achieve this, the next
812 * HSCB to download is saved off in ahd->next_queued_hscb.
813 * When we are called to queue "an arbitrary scb",
814 * we copy the contents of the incoming HSCB to the one
815 * the sequencer knows about, swap HSCB pointers and
816 * finally assign the SCB to the tag indexed location
817 * in the scb_array. This makes sure that we can still
818 * locate the correct SCB by SCB_TAG.
819 */
820 q_hscb = ahd->next_queued_hscb;
821 q_hscb_map = ahd->next_queued_hscb_map;
822 saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826
827 /* Now swap HSCB pointers. */
828 ahd->next_queued_hscb = scb->hscb;
829 ahd->next_queued_hscb_map = scb->hscb_map;
830 scb->hscb = q_hscb;
831 scb->hscb_map = q_hscb_map;
832
833 /* Now define the mapping from tag to SCB in the scbindex */
834 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835 }
836
837 /*
838 * Tell the sequencer about a new transaction to execute.
839 */
840 void
ahd_queue_scb(struct ahd_softc * ahd,struct scb * scb)841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842 {
843 ahd_swap_with_next_hscb(ahd, scb);
844
845 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 panic("Attempt to queue invalid SCB tag %x\n",
847 SCB_GET_TAG(scb));
848
849 /*
850 * Keep a history of SCBs we've downloaded in the qinfifo.
851 */
852 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 ahd->qinfifonext++;
854
855 if (scb->sg_count != 0)
856 ahd_setup_data_scb(ahd, scb);
857 else
858 ahd_setup_noxfer_scb(ahd, scb);
859 ahd_setup_scb_common(ahd, scb);
860
861 /*
862 * Make sure our data is consistent from the
863 * perspective of the adapter.
864 */
865 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866
867 #ifdef AHD_DEBUG
868 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 uint64_t host_dataptr;
870
871 host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 ahd_name(ahd),
874 SCB_GET_TAG(scb), scb->hscb->scsiid,
875 ahd_le32toh(scb->hscb->hscb_busaddr),
876 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 (u_int)(host_dataptr & 0xFFFFFFFF),
878 ahd_le32toh(scb->hscb->datacnt));
879 }
880 #endif
881 /* Tell the adapter about the newly queued SCB */
882 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883 }
884
885 /************************** Interrupt Processing ******************************/
886 static void
ahd_sync_qoutfifo(struct ahd_softc * ahd,int op)887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888 {
889 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 /*offset*/0,
891 /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892 }
893
894 static void
ahd_sync_tqinfifo(struct ahd_softc * ahd,int op)895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896 {
897 #ifdef AHD_TARGET_MODE
898 if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 ahd->shared_data_map.dmamap,
901 ahd_targetcmd_offset(ahd, 0),
902 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 op);
904 }
905 #endif
906 }
907
908 /*
909 * See if the firmware has posted any completed commands
910 * into our in-core command complete fifos.
911 */
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
ahd_check_cmdcmpltqueues(struct ahd_softc * ahd)915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916 {
917 u_int retval;
918
919 retval = 0;
920 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 == ahd->qoutfifonext_valid_tag)
925 retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 if ((ahd->flags & AHD_TARGETROLE) != 0
928 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 ahd->shared_data_map.dmamap,
931 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 /*len*/sizeof(struct target_cmd),
933 BUS_DMASYNC_POSTREAD);
934 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 retval |= AHD_RUN_TQINFIFO;
936 }
937 #endif
938 return (retval);
939 }
940
941 /*
942 * Catch an interrupt from the adapter
943 */
944 int
ahd_intr(struct ahd_softc * ahd)945 ahd_intr(struct ahd_softc *ahd)
946 {
947 u_int intstat;
948
949 if ((ahd->pause & INTEN) == 0) {
950 /*
951 * Our interrupt is not enabled on the chip
952 * and may be disabled for re-entrancy reasons,
953 * so just return. This is likely just a shared
954 * interrupt.
955 */
956 return (0);
957 }
958
959 /*
960 * Instead of directly reading the interrupt status register,
961 * infer the cause of the interrupt by checking our in-core
962 * completion queues. This avoids a costly PCI bus read in
963 * most cases.
964 */
965 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 intstat = CMDCMPLT;
968 else
969 intstat = ahd_inb(ahd, INTSTAT);
970
971 if ((intstat & INT_PEND) == 0)
972 return (0);
973
974 if (intstat & CMDCMPLT) {
975 ahd_outb(ahd, CLRINT, CLRCMDINT);
976
977 /*
978 * Ensure that the chip sees that we've cleared
979 * this interrupt before we walk the output fifo.
980 * Otherwise, we may, due to posted bus writes,
981 * clear the interrupt after we finish the scan,
982 * and after the sequencer has added new entries
983 * and asserted the interrupt again.
984 */
985 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 if (ahd_is_paused(ahd)) {
987 /*
988 * Potentially lost SEQINT.
989 * If SEQINTCODE is non-zero,
990 * simulate the SEQINT.
991 */
992 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 intstat |= SEQINT;
994 }
995 } else {
996 ahd_flush_device_writes(ahd);
997 }
998 ahd_run_qoutfifo(ahd);
999 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1005 }
1006
1007 /*
1008 * Handle statuses that may invalidate our cached
1009 * copy of INTSTAT separately.
1010 */
1011 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 /* Hot eject. Do nothing */
1013 } else if (intstat & HWERRINT) {
1014 ahd_handle_hwerrint(ahd);
1015 } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 ahd->bus_intr(ahd);
1017 } else {
1018
1019 if ((intstat & SEQINT) != 0)
1020 ahd_handle_seqint(ahd, intstat);
1021
1022 if ((intstat & SCSIINT) != 0)
1023 ahd_handle_scsiint(ahd, intstat);
1024 }
1025 return (1);
1026 }
1027
1028 /******************************** Private Inlines *****************************/
1029 static inline void
ahd_assert_atn(struct ahd_softc * ahd)1030 ahd_assert_atn(struct ahd_softc *ahd)
1031 {
1032 ahd_outb(ahd, SCSISIGO, ATNO);
1033 }
1034
1035 /*
1036 * Determine if the current connection has a packetized
1037 * agreement. This does not necessarily mean that we
1038 * are currently in a packetized transfer. We could
1039 * just as easily be sending or receiving a message.
1040 */
1041 static int
ahd_currently_packetized(struct ahd_softc * ahd)1042 ahd_currently_packetized(struct ahd_softc *ahd)
1043 {
1044 ahd_mode_state saved_modes;
1045 int packetized;
1046
1047 saved_modes = ahd_save_modes(ahd);
1048 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049 /*
1050 * The packetized bit refers to the last
1051 * connection, not the current one. Check
1052 * for non-zero LQISTATE instead.
1053 */
1054 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 } else {
1057 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059 }
1060 ahd_restore_modes(ahd, saved_modes);
1061 return (packetized);
1062 }
1063
1064 static inline int
ahd_set_active_fifo(struct ahd_softc * ahd)1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1066 {
1067 u_int active_fifo;
1068
1069 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 switch (active_fifo) {
1072 case 0:
1073 case 1:
1074 ahd_set_modes(ahd, active_fifo, active_fifo);
1075 return (1);
1076 default:
1077 return (0);
1078 }
1079 }
1080
1081 static inline void
ahd_unbusy_tcl(struct ahd_softc * ahd,u_int tcl)1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083 {
1084 ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085 }
1086
1087 /*
1088 * Determine whether the sequencer reported a residual
1089 * for this SCB/transaction.
1090 */
1091 static inline void
ahd_update_residual(struct ahd_softc * ahd,struct scb * scb)1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093 {
1094 uint32_t sgptr;
1095
1096 sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 if ((sgptr & SG_STATUS_VALID) != 0)
1098 ahd_calc_residual(ahd, scb);
1099 }
1100
1101 static inline void
ahd_complete_scb(struct ahd_softc * ahd,struct scb * scb)1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103 {
1104 uint32_t sgptr;
1105
1106 sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 if ((sgptr & SG_STATUS_VALID) != 0)
1108 ahd_handle_scb_status(ahd, scb);
1109 else
1110 ahd_done(ahd, scb);
1111 }
1112
1113
1114 /************************* Sequencer Execution Control ************************/
1115 /*
1116 * Restart the sequencer program from address zero
1117 */
1118 static void
ahd_restart(struct ahd_softc * ahd)1119 ahd_restart(struct ahd_softc *ahd)
1120 {
1121
1122 ahd_pause(ahd);
1123
1124 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125
1126 /* No more pending messages */
1127 ahd_clear_msg_state(ahd);
1128 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
1129 ahd_outb(ahd, MSG_OUT, NOP); /* No message to send */
1130 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 ahd_outb(ahd, SEQINTCTL, 0);
1132 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 ahd_outb(ahd, SEQ_FLAGS, 0);
1134 ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 ahd_outb(ahd, SAVED_LUN, 0xFF);
1136
1137 /*
1138 * Ensure that the sequencer's idea of TQINPOS
1139 * matches our own. The sequencer increments TQINPOS
1140 * only after it sees a DMA complete and a reset could
1141 * occur before the increment leaving the kernel to believe
1142 * the command arrived but the sequencer to not.
1143 */
1144 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145
1146 /* Always allow reselection */
1147 ahd_outb(ahd, SCSISEQ1,
1148 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150
1151 /*
1152 * Clear any pending sequencer interrupt. It is no
1153 * longer relevant since we're resetting the Program
1154 * Counter.
1155 */
1156 ahd_outb(ahd, CLRINT, CLRSEQINT);
1157
1158 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 ahd_unpause(ahd);
1160 }
1161
1162 static void
ahd_clear_fifo(struct ahd_softc * ahd,u_int fifo)1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164 {
1165 ahd_mode_state saved_modes;
1166
1167 #ifdef AHD_DEBUG
1168 if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 saved_modes = ahd_save_modes(ahd);
1172 ahd_set_modes(ahd, fifo, fifo);
1173 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 ahd_outb(ahd, SG_STATE, 0);
1178 ahd_restore_modes(ahd, saved_modes);
1179 }
1180
1181 /************************* Input/Output Queues ********************************/
1182 /*
1183 * Flush and completed commands that are sitting in the command
1184 * complete queues down on the chip but have yet to be dma'ed back up.
1185 */
1186 static void
ahd_flush_qoutfifo(struct ahd_softc * ahd)1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188 {
1189 struct scb *scb;
1190 ahd_mode_state saved_modes;
1191 u_int saved_scbptr;
1192 u_int ccscbctl;
1193 u_int scbid;
1194 u_int next_scbid;
1195
1196 saved_modes = ahd_save_modes(ahd);
1197
1198 /*
1199 * Flush the good status FIFO for completed packetized commands.
1200 */
1201 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 saved_scbptr = ahd_get_scbptr(ahd);
1203 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 u_int fifo_mode;
1205 u_int i;
1206
1207 scbid = ahd_inw(ahd, GSFIFO);
1208 scb = ahd_lookup_scb(ahd, scbid);
1209 if (scb == NULL) {
1210 printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 ahd_name(ahd), scbid);
1212 continue;
1213 }
1214 /*
1215 * Determine if this transaction is still active in
1216 * any FIFO. If it is, we must flush that FIFO to
1217 * the host before completing the command.
1218 */
1219 fifo_mode = 0;
1220 rescan_fifos:
1221 for (i = 0; i < 2; i++) {
1222 /* Toggle to the other mode. */
1223 fifo_mode ^= 1;
1224 ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225
1226 if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 continue;
1228
1229 ahd_run_data_fifo(ahd, scb);
1230
1231 /*
1232 * Running this FIFO may cause a CFG4DATA for
1233 * this same transaction to assert in the other
1234 * FIFO or a new snapshot SAVEPTRS interrupt
1235 * in this FIFO. Even running a FIFO may not
1236 * clear the transaction if we are still waiting
1237 * for data to drain to the host. We must loop
1238 * until the transaction is not active in either
1239 * FIFO just to be sure. Reset our loop counter
1240 * so we will visit both FIFOs again before
1241 * declaring this transaction finished. We
1242 * also delay a bit so that status has a chance
1243 * to change before we look at this FIFO again.
1244 */
1245 ahd_delay(200);
1246 goto rescan_fifos;
1247 }
1248 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 ahd_set_scbptr(ahd, scbid);
1250 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 & SG_LIST_NULL) != 0)) {
1254 u_int comp_head;
1255
1256 /*
1257 * The transfer completed with a residual.
1258 * Place this SCB on the complete DMA list
1259 * so that we update our in-core copy of the
1260 * SCB before completing the command.
1261 */
1262 ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 ahd_outb(ahd, SCB_SGPTR,
1264 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 | SG_STATUS_VALID);
1266 ahd_outw(ahd, SCB_TAG, scbid);
1267 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 if (SCBID_IS_NULL(comp_head)) {
1270 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 } else {
1273 u_int tail;
1274
1275 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 ahd_set_scbptr(ahd, tail);
1277 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 ahd_set_scbptr(ahd, scbid);
1280 }
1281 } else
1282 ahd_complete_scb(ahd, scb);
1283 }
1284 ahd_set_scbptr(ahd, saved_scbptr);
1285
1286 /*
1287 * Setup for command channel portion of flush.
1288 */
1289 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290
1291 /*
1292 * Wait for any inprogress DMA to complete and clear DMA state
1293 * if this is for an SCB in the qinfifo.
1294 */
1295 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296
1297 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 if ((ccscbctl & ARRDONE) != 0)
1299 break;
1300 } else if ((ccscbctl & CCSCBDONE) != 0)
1301 break;
1302 ahd_delay(200);
1303 }
1304 /*
1305 * We leave the sequencer to cleanup in the case of DMA's to
1306 * update the qoutfifo. In all other cases (DMA's to the
1307 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 * we disable the DMA engine so that the sequencer will not
1309 * attempt to handle the DMA completion.
1310 */
1311 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313
1314 /*
1315 * Complete any SCBs that just finished
1316 * being DMA'ed into the qoutfifo.
1317 */
1318 ahd_run_qoutfifo(ahd);
1319
1320 saved_scbptr = ahd_get_scbptr(ahd);
1321 /*
1322 * Manually update/complete any completed SCBs that are waiting to be
1323 * DMA'ed back up to the host.
1324 */
1325 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 while (!SCBID_IS_NULL(scbid)) {
1327 uint8_t *hscb_ptr;
1328 u_int i;
1329
1330 ahd_set_scbptr(ahd, scbid);
1331 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 scb = ahd_lookup_scb(ahd, scbid);
1333 if (scb == NULL) {
1334 printk("%s: Warning - DMA-up and complete "
1335 "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 continue;
1337 }
1338 hscb_ptr = (uint8_t *)scb->hscb;
1339 for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341
1342 ahd_complete_scb(ahd, scb);
1343 scbid = next_scbid;
1344 }
1345 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347
1348 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 while (!SCBID_IS_NULL(scbid)) {
1350
1351 ahd_set_scbptr(ahd, scbid);
1352 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 scb = ahd_lookup_scb(ahd, scbid);
1354 if (scb == NULL) {
1355 printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 ahd_name(ahd), scbid);
1357 continue;
1358 }
1359
1360 ahd_complete_scb(ahd, scb);
1361 scbid = next_scbid;
1362 }
1363 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364
1365 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 while (!SCBID_IS_NULL(scbid)) {
1367
1368 ahd_set_scbptr(ahd, scbid);
1369 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 scb = ahd_lookup_scb(ahd, scbid);
1371 if (scb == NULL) {
1372 printk("%s: Warning - Complete SCB %d invalid\n",
1373 ahd_name(ahd), scbid);
1374 continue;
1375 }
1376
1377 ahd_complete_scb(ahd, scb);
1378 scbid = next_scbid;
1379 }
1380 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381
1382 /*
1383 * Restore state.
1384 */
1385 ahd_set_scbptr(ahd, saved_scbptr);
1386 ahd_restore_modes(ahd, saved_modes);
1387 ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388 }
1389
1390 /*
1391 * Determine if an SCB for a packetized transaction
1392 * is active in a FIFO.
1393 */
1394 static int
ahd_scb_active_in_fifo(struct ahd_softc * ahd,struct scb * scb)1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396 {
1397
1398 /*
1399 * The FIFO is only active for our transaction if
1400 * the SCBPTR matches the SCB's ID and the firmware
1401 * has installed a handler for the FIFO or we have
1402 * a pending SAVEPTRS or CFG4DATA interrupt.
1403 */
1404 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 return (0);
1408
1409 return (1);
1410 }
1411
1412 /*
1413 * Run a data fifo to completion for a transaction we know
1414 * has completed across the SCSI bus (good status has been
1415 * received). We are already set to the correct FIFO mode
1416 * on entry to this routine.
1417 *
1418 * This function attempts to operate exactly as the firmware
1419 * would when running this FIFO. Care must be taken to update
1420 * this routine any time the firmware's FIFO algorithm is
1421 * changed.
1422 */
1423 static void
ahd_run_data_fifo(struct ahd_softc * ahd,struct scb * scb)1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425 {
1426 u_int seqintsrc;
1427
1428 seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 if ((seqintsrc & CFG4DATA) != 0) {
1430 uint32_t datacnt;
1431 uint32_t sgptr;
1432
1433 /*
1434 * Clear full residual flag.
1435 */
1436 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 ahd_outb(ahd, SCB_SGPTR, sgptr);
1438
1439 /*
1440 * Load datacnt and address.
1441 */
1442 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 sgptr |= LAST_SEG;
1445 ahd_outb(ahd, SG_STATE, 0);
1446 } else
1447 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452
1453 /*
1454 * Initialize Residual Fields.
1455 */
1456 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458
1459 /*
1460 * Mark the SCB as having a FIFO in use.
1461 */
1462 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464
1465 /*
1466 * Install a "fake" handler for this FIFO.
1467 */
1468 ahd_outw(ahd, LONGJMP_ADDR, 0);
1469
1470 /*
1471 * Notify the hardware that we have satisfied
1472 * this sequencer interrupt.
1473 */
1474 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 } else if ((seqintsrc & SAVEPTRS) != 0) {
1476 uint32_t sgptr;
1477 uint32_t resid;
1478
1479 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480 /*
1481 * Snapshot Save Pointers. All that
1482 * is necessary to clear the snapshot
1483 * is a CLRCHN.
1484 */
1485 goto clrchn;
1486 }
1487
1488 /*
1489 * Disable S/G fetch so the DMA engine
1490 * is available to future users.
1491 */
1492 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 ahd_outb(ahd, CCSGCTL, 0);
1494 ahd_outb(ahd, SG_STATE, 0);
1495
1496 /*
1497 * Flush the data FIFO. Strickly only
1498 * necessary for Rev A parts.
1499 */
1500 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501
1502 /*
1503 * Calculate residual.
1504 */
1505 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 resid = ahd_inl(ahd, SHCNT);
1507 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510 /*
1511 * Must back up to the correct S/G element.
1512 * Typically this just means resetting our
1513 * low byte to the offset in the SG_CACHE,
1514 * but if we wrapped, we have to correct
1515 * the other bytes of the sgptr too.
1516 */
1517 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 && (sgptr & 0x80) == 0)
1519 sgptr -= 0x100;
1520 sgptr &= ~0xFF;
1521 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 & SG_ADDR_MASK;
1523 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 } else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 sgptr | SG_LIST_NULL);
1528 }
1529 /*
1530 * Save Pointers.
1531 */
1532 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 ahd_outl(ahd, SCB_DATACNT, resid);
1534 ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 ahd_outb(ahd, SEQIMODE,
1537 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538 /*
1539 * If the data is to the SCSI bus, we are
1540 * done, otherwise wait for FIFOEMP.
1541 */
1542 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 goto clrchn;
1544 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 uint32_t sgptr;
1546 uint64_t data_addr;
1547 uint32_t data_len;
1548 u_int dfcntrl;
1549
1550 /*
1551 * Disable S/G fetch so the DMA engine
1552 * is available to future users. We won't
1553 * be using the DMA engine to load segments.
1554 */
1555 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 ahd_outb(ahd, CCSGCTL, 0);
1557 ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558 }
1559
1560 /*
1561 * Wait for the DMA engine to notice that the
1562 * host transfer is enabled and that there is
1563 * space in the S/G FIFO for new segments before
1564 * loading more segments.
1565 */
1566 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568
1569 /*
1570 * Determine the offset of the next S/G
1571 * element to load.
1572 */
1573 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 sgptr &= SG_PTR_MASK;
1575 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 struct ahd_dma64_seg *sg;
1577
1578 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 data_addr = sg->addr;
1580 data_len = sg->len;
1581 sgptr += sizeof(*sg);
1582 } else {
1583 struct ahd_dma_seg *sg;
1584
1585 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 data_addr <<= 8;
1588 data_addr |= sg->addr;
1589 data_len = sg->len;
1590 sgptr += sizeof(*sg);
1591 }
1592
1593 /*
1594 * Update residual information.
1595 */
1596 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598
1599 /*
1600 * Load the S/G.
1601 */
1602 if (data_len & AHD_DMA_LAST_SEG) {
1603 sgptr |= LAST_SEG;
1604 ahd_outb(ahd, SG_STATE, 0);
1605 }
1606 ahd_outq(ahd, HADDR, data_addr);
1607 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609
1610 /*
1611 * Advertise the segment to the hardware.
1612 */
1613 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615 /*
1616 * Use SCSIENWRDIS so that SCSIEN
1617 * is never modified by this
1618 * operation.
1619 */
1620 dfcntrl |= SCSIENWRDIS;
1621 }
1622 ahd_outb(ahd, DFCNTRL, dfcntrl);
1623 }
1624 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625
1626 /*
1627 * Transfer completed to the end of SG list
1628 * and has flushed to the host.
1629 */
1630 ahd_outb(ahd, SCB_SGPTR,
1631 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 goto clrchn;
1633 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1635 /*
1636 * Clear any handler for this FIFO, decrement
1637 * the FIFO use count for the SCB, and release
1638 * the FIFO.
1639 */
1640 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644 }
1645 }
1646
1647 /*
1648 * Look for entries in the QoutFIFO that have completed.
1649 * The valid_tag completion field indicates the validity
1650 * of the entry - the valid value toggles each time through
1651 * the queue. We use the sg_status field in the completion
1652 * entry to avoid referencing the hscb if the completion
1653 * occurred with no errors and no residual. sg_status is
1654 * a copy of the first byte (little endian) of the sgptr
1655 * hscb field.
1656 */
1657 static void
ahd_run_qoutfifo(struct ahd_softc * ahd)1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1659 {
1660 struct ahd_completion *completion;
1661 struct scb *scb;
1662 u_int scb_index;
1663
1664 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 panic("ahd_run_qoutfifo recursion");
1666 ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 for (;;) {
1669 completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670
1671 if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 break;
1673
1674 scb_index = ahd_le16toh(completion->tag);
1675 scb = ahd_lookup_scb(ahd, scb_index);
1676 if (scb == NULL) {
1677 printk("%s: WARNING no command for scb %d "
1678 "(cmdcmplt)\nQOUTPOS = %d\n",
1679 ahd_name(ahd), scb_index,
1680 ahd->qoutfifonext);
1681 ahd_dump_card_state(ahd);
1682 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 ahd_handle_scb_status(ahd, scb);
1684 } else {
1685 ahd_done(ahd, scb);
1686 }
1687
1688 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 if (ahd->qoutfifonext == 0)
1690 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691 }
1692 ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693 }
1694
1695 /************************* Interrupt Handling *********************************/
1696 static void
ahd_handle_hwerrint(struct ahd_softc * ahd)1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1698 {
1699 /*
1700 * Some catastrophic hardware error has occurred.
1701 * Print it for the user and disable the controller.
1702 */
1703 int i;
1704 int error;
1705
1706 error = ahd_inb(ahd, ERROR);
1707 for (i = 0; i < num_errors; i++) {
1708 if ((error & ahd_hard_errors[i].errno) != 0)
1709 printk("%s: hwerrint, %s\n",
1710 ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711 }
1712
1713 ahd_dump_card_state(ahd);
1714 panic("BRKADRINT");
1715
1716 /* Tell everyone that this HBA is no longer available */
1717 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 CAM_NO_HBA);
1720
1721 /* Tell the system that this controller has gone away. */
1722 ahd_free(ahd);
1723 }
1724
1725 #ifdef AHD_DEBUG
1726 static void
ahd_dump_sglist(struct scb * scb)1727 ahd_dump_sglist(struct scb *scb)
1728 {
1729 int i;
1730
1731 if (scb->sg_count > 0) {
1732 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 struct ahd_dma64_seg *sg_list;
1734
1735 sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 for (i = 0; i < scb->sg_count; i++) {
1737 uint64_t addr;
1738
1739 addr = ahd_le64toh(sg_list[i].addr);
1740 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1741 i,
1742 (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1743 (uint32_t)(addr & 0xFFFFFFFF),
1744 sg_list[i].len & AHD_SG_LEN_MASK,
1745 (sg_list[i].len & AHD_DMA_LAST_SEG)
1746 ? " Last" : "");
1747 }
1748 } else {
1749 struct ahd_dma_seg *sg_list;
1750
1751 sg_list = (struct ahd_dma_seg*)scb->sg_list;
1752 for (i = 0; i < scb->sg_count; i++) {
1753 uint32_t len;
1754
1755 len = ahd_le32toh(sg_list[i].len);
1756 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1757 i,
1758 (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1759 ahd_le32toh(sg_list[i].addr),
1760 len & AHD_SG_LEN_MASK,
1761 len & AHD_DMA_LAST_SEG ? " Last" : "");
1762 }
1763 }
1764 }
1765 }
1766 #endif /* AHD_DEBUG */
1767
1768 static void
ahd_handle_seqint(struct ahd_softc * ahd,u_int intstat)1769 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1770 {
1771 u_int seqintcode;
1772
1773 /*
1774 * Save the sequencer interrupt code and clear the SEQINT
1775 * bit. We will unpause the sequencer, if appropriate,
1776 * after servicing the request.
1777 */
1778 seqintcode = ahd_inb(ahd, SEQINTCODE);
1779 ahd_outb(ahd, CLRINT, CLRSEQINT);
1780 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1781 /*
1782 * Unpause the sequencer and let it clear
1783 * SEQINT by writing NO_SEQINT to it. This
1784 * will cause the sequencer to be paused again,
1785 * which is the expected state of this routine.
1786 */
1787 ahd_unpause(ahd);
1788 while (!ahd_is_paused(ahd))
1789 ;
1790 ahd_outb(ahd, CLRINT, CLRSEQINT);
1791 }
1792 ahd_update_modes(ahd);
1793 #ifdef AHD_DEBUG
1794 if ((ahd_debug & AHD_SHOW_MISC) != 0)
1795 printk("%s: Handle Seqint Called for code %d\n",
1796 ahd_name(ahd), seqintcode);
1797 #endif
1798 switch (seqintcode) {
1799 case ENTERING_NONPACK:
1800 {
1801 struct scb *scb;
1802 u_int scbid;
1803
1804 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1805 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1806 scbid = ahd_get_scbptr(ahd);
1807 scb = ahd_lookup_scb(ahd, scbid);
1808 if (scb == NULL) {
1809 /*
1810 * Somehow need to know if this
1811 * is from a selection or reselection.
1812 * From that, we can determine target
1813 * ID so we at least have an I_T nexus.
1814 */
1815 } else {
1816 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1817 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1818 ahd_outb(ahd, SEQ_FLAGS, 0x0);
1819 }
1820 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1821 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1822 /*
1823 * Phase change after read stream with
1824 * CRC error with P0 asserted on last
1825 * packet.
1826 */
1827 #ifdef AHD_DEBUG
1828 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1829 printk("%s: Assuming LQIPHASE_NLQ with "
1830 "P0 assertion\n", ahd_name(ahd));
1831 #endif
1832 }
1833 #ifdef AHD_DEBUG
1834 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1835 printk("%s: Entering NONPACK\n", ahd_name(ahd));
1836 #endif
1837 break;
1838 }
1839 case INVALID_SEQINT:
1840 printk("%s: Invalid Sequencer interrupt occurred, "
1841 "resetting channel.\n",
1842 ahd_name(ahd));
1843 #ifdef AHD_DEBUG
1844 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845 ahd_dump_card_state(ahd);
1846 #endif
1847 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1848 break;
1849 case STATUS_OVERRUN:
1850 {
1851 struct scb *scb;
1852 u_int scbid;
1853
1854 scbid = ahd_get_scbptr(ahd);
1855 scb = ahd_lookup_scb(ahd, scbid);
1856 if (scb != NULL)
1857 ahd_print_path(ahd, scb);
1858 else
1859 printk("%s: ", ahd_name(ahd));
1860 printk("SCB %d Packetized Status Overrun", scbid);
1861 ahd_dump_card_state(ahd);
1862 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1863 break;
1864 }
1865 case CFG4ISTAT_INTR:
1866 {
1867 struct scb *scb;
1868 u_int scbid;
1869
1870 scbid = ahd_get_scbptr(ahd);
1871 scb = ahd_lookup_scb(ahd, scbid);
1872 if (scb == NULL) {
1873 ahd_dump_card_state(ahd);
1874 printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1875 panic("For safety");
1876 }
1877 ahd_outq(ahd, HADDR, scb->sense_busaddr);
1878 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1879 ahd_outb(ahd, HCNT + 2, 0);
1880 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1881 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1882 break;
1883 }
1884 case ILLEGAL_PHASE:
1885 {
1886 u_int bus_phase;
1887
1888 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1889 printk("%s: ILLEGAL_PHASE 0x%x\n",
1890 ahd_name(ahd), bus_phase);
1891
1892 switch (bus_phase) {
1893 case P_DATAOUT:
1894 case P_DATAIN:
1895 case P_DATAOUT_DT:
1896 case P_DATAIN_DT:
1897 case P_MESGOUT:
1898 case P_STATUS:
1899 case P_MESGIN:
1900 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1901 printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1902 break;
1903 case P_COMMAND:
1904 {
1905 struct ahd_devinfo devinfo;
1906 struct scb *scb;
1907 u_int scbid;
1908
1909 /*
1910 * If a target takes us into the command phase
1911 * assume that it has been externally reset and
1912 * has thus lost our previous packetized negotiation
1913 * agreement. Since we have not sent an identify
1914 * message and may not have fully qualified the
1915 * connection, we change our command to TUR, assert
1916 * ATN and ABORT the task when we go to message in
1917 * phase. The OSM will see the REQUEUE_REQUEST
1918 * status and retry the command.
1919 */
1920 scbid = ahd_get_scbptr(ahd);
1921 scb = ahd_lookup_scb(ahd, scbid);
1922 if (scb == NULL) {
1923 printk("Invalid phase with no valid SCB. "
1924 "Resetting bus.\n");
1925 ahd_reset_channel(ahd, 'A',
1926 /*Initiate Reset*/TRUE);
1927 break;
1928 }
1929 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1930 SCB_GET_TARGET(ahd, scb),
1931 SCB_GET_LUN(scb),
1932 SCB_GET_CHANNEL(ahd, scb),
1933 ROLE_INITIATOR);
1934 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1935 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1936 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1937 /*offset*/0, /*ppr_options*/0,
1938 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1939 /* Hand-craft TUR command */
1940 ahd_outb(ahd, SCB_CDB_STORE, 0);
1941 ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1942 ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1943 ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1944 ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1945 ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1946 ahd_outb(ahd, SCB_CDB_LEN, 6);
1947 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1948 scb->hscb->control |= MK_MESSAGE;
1949 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1950 ahd_outb(ahd, MSG_OUT, HOST_MSG);
1951 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1952 /*
1953 * The lun is 0, regardless of the SCB's lun
1954 * as we have not sent an identify message.
1955 */
1956 ahd_outb(ahd, SAVED_LUN, 0);
1957 ahd_outb(ahd, SEQ_FLAGS, 0);
1958 ahd_assert_atn(ahd);
1959 scb->flags &= ~SCB_PACKETIZED;
1960 scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1961 ahd_freeze_devq(ahd, scb);
1962 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1963 ahd_freeze_scb(scb);
1964
1965 /* Notify XPT */
1966 ahd_send_async(ahd, devinfo.channel, devinfo.target,
1967 CAM_LUN_WILDCARD, AC_SENT_BDR);
1968
1969 /*
1970 * Allow the sequencer to continue with
1971 * non-pack processing.
1972 */
1973 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1974 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1975 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1976 ahd_outb(ahd, CLRLQOINT1, 0);
1977 }
1978 #ifdef AHD_DEBUG
1979 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1980 ahd_print_path(ahd, scb);
1981 printk("Unexpected command phase from "
1982 "packetized target\n");
1983 }
1984 #endif
1985 break;
1986 }
1987 }
1988 break;
1989 }
1990 case CFG4OVERRUN:
1991 {
1992 struct scb *scb;
1993 u_int scb_index;
1994
1995 #ifdef AHD_DEBUG
1996 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1997 printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
1998 ahd_inb(ahd, MODE_PTR));
1999 }
2000 #endif
2001 scb_index = ahd_get_scbptr(ahd);
2002 scb = ahd_lookup_scb(ahd, scb_index);
2003 if (scb == NULL) {
2004 /*
2005 * Attempt to transfer to an SCB that is
2006 * not outstanding.
2007 */
2008 ahd_assert_atn(ahd);
2009 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2010 ahd->msgout_buf[0] = ABORT_TASK;
2011 ahd->msgout_len = 1;
2012 ahd->msgout_index = 0;
2013 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2014 /*
2015 * Clear status received flag to prevent any
2016 * attempt to complete this bogus SCB.
2017 */
2018 ahd_outb(ahd, SCB_CONTROL,
2019 ahd_inb_scbram(ahd, SCB_CONTROL)
2020 & ~STATUS_RCVD);
2021 }
2022 break;
2023 }
2024 case DUMP_CARD_STATE:
2025 {
2026 ahd_dump_card_state(ahd);
2027 break;
2028 }
2029 case PDATA_REINIT:
2030 {
2031 #ifdef AHD_DEBUG
2032 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2033 printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2034 "SG_CACHE_SHADOW = 0x%x\n",
2035 ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2036 ahd_inb(ahd, SG_CACHE_SHADOW));
2037 }
2038 #endif
2039 ahd_reinitialize_dataptrs(ahd);
2040 break;
2041 }
2042 case HOST_MSG_LOOP:
2043 {
2044 struct ahd_devinfo devinfo;
2045
2046 /*
2047 * The sequencer has encountered a message phase
2048 * that requires host assistance for completion.
2049 * While handling the message phase(s), we will be
2050 * notified by the sequencer after each byte is
2051 * transferred so we can track bus phase changes.
2052 *
2053 * If this is the first time we've seen a HOST_MSG_LOOP
2054 * interrupt, initialize the state of the host message
2055 * loop.
2056 */
2057 ahd_fetch_devinfo(ahd, &devinfo);
2058 if (ahd->msg_type == MSG_TYPE_NONE) {
2059 struct scb *scb;
2060 u_int scb_index;
2061 u_int bus_phase;
2062
2063 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2064 if (bus_phase != P_MESGIN
2065 && bus_phase != P_MESGOUT) {
2066 printk("ahd_intr: HOST_MSG_LOOP bad "
2067 "phase 0x%x\n", bus_phase);
2068 /*
2069 * Probably transitioned to bus free before
2070 * we got here. Just punt the message.
2071 */
2072 ahd_dump_card_state(ahd);
2073 ahd_clear_intstat(ahd);
2074 ahd_restart(ahd);
2075 return;
2076 }
2077
2078 scb_index = ahd_get_scbptr(ahd);
2079 scb = ahd_lookup_scb(ahd, scb_index);
2080 if (devinfo.role == ROLE_INITIATOR) {
2081 if (bus_phase == P_MESGOUT)
2082 ahd_setup_initiator_msgout(ahd,
2083 &devinfo,
2084 scb);
2085 else {
2086 ahd->msg_type =
2087 MSG_TYPE_INITIATOR_MSGIN;
2088 ahd->msgin_index = 0;
2089 }
2090 }
2091 #ifdef AHD_TARGET_MODE
2092 else {
2093 if (bus_phase == P_MESGOUT) {
2094 ahd->msg_type =
2095 MSG_TYPE_TARGET_MSGOUT;
2096 ahd->msgin_index = 0;
2097 } else
2098 ahd_setup_target_msgin(ahd,
2099 &devinfo,
2100 scb);
2101 }
2102 #endif
2103 }
2104
2105 ahd_handle_message_phase(ahd);
2106 break;
2107 }
2108 case NO_MATCH:
2109 {
2110 /* Ensure we don't leave the selection hardware on */
2111 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2112 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2113
2114 printk("%s:%c:%d: no active SCB for reconnecting "
2115 "target - issuing BUS DEVICE RESET\n",
2116 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2117 printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2118 "REG0 == 0x%x ACCUM = 0x%x\n",
2119 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2120 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2121 printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2122 "SINDEX == 0x%x\n",
2123 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2124 ahd_find_busy_tcl(ahd,
2125 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2126 ahd_inb(ahd, SAVED_LUN))),
2127 ahd_inw(ahd, SINDEX));
2128 printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2129 "SCB_CONTROL == 0x%x\n",
2130 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2131 ahd_inb_scbram(ahd, SCB_LUN),
2132 ahd_inb_scbram(ahd, SCB_CONTROL));
2133 printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2134 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2135 printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2136 printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2137 ahd_dump_card_state(ahd);
2138 ahd->msgout_buf[0] = TARGET_RESET;
2139 ahd->msgout_len = 1;
2140 ahd->msgout_index = 0;
2141 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2142 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2143 ahd_assert_atn(ahd);
2144 break;
2145 }
2146 case PROTO_VIOLATION:
2147 {
2148 ahd_handle_proto_violation(ahd);
2149 break;
2150 }
2151 case IGN_WIDE_RES:
2152 {
2153 struct ahd_devinfo devinfo;
2154
2155 ahd_fetch_devinfo(ahd, &devinfo);
2156 ahd_handle_ign_wide_residue(ahd, &devinfo);
2157 break;
2158 }
2159 case BAD_PHASE:
2160 {
2161 u_int lastphase;
2162
2163 lastphase = ahd_inb(ahd, LASTPHASE);
2164 printk("%s:%c:%d: unknown scsi bus phase %x, "
2165 "lastphase = 0x%x. Attempting to continue\n",
2166 ahd_name(ahd), 'A',
2167 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2168 lastphase, ahd_inb(ahd, SCSISIGI));
2169 break;
2170 }
2171 case MISSED_BUSFREE:
2172 {
2173 u_int lastphase;
2174
2175 lastphase = ahd_inb(ahd, LASTPHASE);
2176 printk("%s:%c:%d: Missed busfree. "
2177 "Lastphase = 0x%x, Curphase = 0x%x\n",
2178 ahd_name(ahd), 'A',
2179 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2180 lastphase, ahd_inb(ahd, SCSISIGI));
2181 ahd_restart(ahd);
2182 return;
2183 }
2184 case DATA_OVERRUN:
2185 {
2186 /*
2187 * When the sequencer detects an overrun, it
2188 * places the controller in "BITBUCKET" mode
2189 * and allows the target to complete its transfer.
2190 * Unfortunately, none of the counters get updated
2191 * when the controller is in this mode, so we have
2192 * no way of knowing how large the overrun was.
2193 */
2194 struct scb *scb;
2195 u_int scbindex;
2196 #ifdef AHD_DEBUG
2197 u_int lastphase;
2198 #endif
2199
2200 scbindex = ahd_get_scbptr(ahd);
2201 scb = ahd_lookup_scb(ahd, scbindex);
2202 #ifdef AHD_DEBUG
2203 lastphase = ahd_inb(ahd, LASTPHASE);
2204 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2205 ahd_print_path(ahd, scb);
2206 printk("data overrun detected %s. Tag == 0x%x.\n",
2207 ahd_lookup_phase_entry(lastphase)->phasemsg,
2208 SCB_GET_TAG(scb));
2209 ahd_print_path(ahd, scb);
2210 printk("%s seen Data Phase. Length = %ld. "
2211 "NumSGs = %d.\n",
2212 ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2213 ? "Have" : "Haven't",
2214 ahd_get_transfer_length(scb), scb->sg_count);
2215 ahd_dump_sglist(scb);
2216 }
2217 #endif
2218
2219 /*
2220 * Set this and it will take effect when the
2221 * target does a command complete.
2222 */
2223 ahd_freeze_devq(ahd, scb);
2224 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2225 ahd_freeze_scb(scb);
2226 break;
2227 }
2228 case MKMSG_FAILED:
2229 {
2230 struct ahd_devinfo devinfo;
2231 struct scb *scb;
2232 u_int scbid;
2233
2234 ahd_fetch_devinfo(ahd, &devinfo);
2235 printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2236 ahd_name(ahd), devinfo.channel, devinfo.target,
2237 devinfo.lun);
2238 scbid = ahd_get_scbptr(ahd);
2239 scb = ahd_lookup_scb(ahd, scbid);
2240 if (scb != NULL
2241 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2242 /*
2243 * Ensure that we didn't put a second instance of this
2244 * SCB into the QINFIFO.
2245 */
2246 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2247 SCB_GET_CHANNEL(ahd, scb),
2248 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2249 ROLE_INITIATOR, /*status*/0,
2250 SEARCH_REMOVE);
2251 ahd_outb(ahd, SCB_CONTROL,
2252 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2253 break;
2254 }
2255 case TASKMGMT_FUNC_COMPLETE:
2256 {
2257 u_int scbid;
2258 struct scb *scb;
2259
2260 scbid = ahd_get_scbptr(ahd);
2261 scb = ahd_lookup_scb(ahd, scbid);
2262 if (scb != NULL) {
2263 u_int lun;
2264 u_int tag;
2265 cam_status error;
2266
2267 ahd_print_path(ahd, scb);
2268 printk("Task Management Func 0x%x Complete\n",
2269 scb->hscb->task_management);
2270 lun = CAM_LUN_WILDCARD;
2271 tag = SCB_LIST_NULL;
2272
2273 switch (scb->hscb->task_management) {
2274 case SIU_TASKMGMT_ABORT_TASK:
2275 tag = SCB_GET_TAG(scb);
2276 fallthrough;
2277 case SIU_TASKMGMT_ABORT_TASK_SET:
2278 case SIU_TASKMGMT_CLEAR_TASK_SET:
2279 lun = scb->hscb->lun;
2280 error = CAM_REQ_ABORTED;
2281 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2282 'A', lun, tag, ROLE_INITIATOR,
2283 error);
2284 break;
2285 case SIU_TASKMGMT_LUN_RESET:
2286 lun = scb->hscb->lun;
2287 fallthrough;
2288 case SIU_TASKMGMT_TARGET_RESET:
2289 {
2290 struct ahd_devinfo devinfo;
2291
2292 ahd_scb_devinfo(ahd, &devinfo, scb);
2293 error = CAM_BDR_SENT;
2294 ahd_handle_devreset(ahd, &devinfo, lun,
2295 CAM_BDR_SENT,
2296 lun != CAM_LUN_WILDCARD
2297 ? "Lun Reset"
2298 : "Target Reset",
2299 /*verbose_level*/0);
2300 break;
2301 }
2302 default:
2303 panic("Unexpected TaskMgmt Func\n");
2304 break;
2305 }
2306 }
2307 break;
2308 }
2309 case TASKMGMT_CMD_CMPLT_OKAY:
2310 {
2311 u_int scbid;
2312 struct scb *scb;
2313
2314 /*
2315 * An ABORT TASK TMF failed to be delivered before
2316 * the targeted command completed normally.
2317 */
2318 scbid = ahd_get_scbptr(ahd);
2319 scb = ahd_lookup_scb(ahd, scbid);
2320 if (scb != NULL) {
2321 /*
2322 * Remove the second instance of this SCB from
2323 * the QINFIFO if it is still there.
2324 */
2325 ahd_print_path(ahd, scb);
2326 printk("SCB completes before TMF\n");
2327 /*
2328 * Handle losing the race. Wait until any
2329 * current selection completes. We will then
2330 * set the TMF back to zero in this SCB so that
2331 * the sequencer doesn't bother to issue another
2332 * sequencer interrupt for its completion.
2333 */
2334 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2335 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2336 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2337 ;
2338 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2339 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2340 SCB_GET_CHANNEL(ahd, scb),
2341 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2342 ROLE_INITIATOR, /*status*/0,
2343 SEARCH_REMOVE);
2344 }
2345 break;
2346 }
2347 case TRACEPOINT0:
2348 case TRACEPOINT1:
2349 case TRACEPOINT2:
2350 case TRACEPOINT3:
2351 printk("%s: Tracepoint %d\n", ahd_name(ahd),
2352 seqintcode - TRACEPOINT0);
2353 break;
2354 case NO_SEQINT:
2355 break;
2356 case SAW_HWERR:
2357 ahd_handle_hwerrint(ahd);
2358 break;
2359 default:
2360 printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2361 seqintcode);
2362 break;
2363 }
2364 /*
2365 * The sequencer is paused immediately on
2366 * a SEQINT, so we should restart it when
2367 * we're done.
2368 */
2369 ahd_unpause(ahd);
2370 }
2371
2372 static void
ahd_handle_scsiint(struct ahd_softc * ahd,u_int intstat)2373 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2374 {
2375 struct scb *scb;
2376 u_int status0;
2377 u_int status3;
2378 u_int status;
2379 u_int lqistat1;
2380 u_int lqostat0;
2381 u_int scbid;
2382 u_int busfreetime;
2383
2384 ahd_update_modes(ahd);
2385 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2386
2387 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2388 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2389 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2390 lqistat1 = ahd_inb(ahd, LQISTAT1);
2391 lqostat0 = ahd_inb(ahd, LQOSTAT0);
2392 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2393
2394 /*
2395 * Ignore external resets after a bus reset.
2396 */
2397 if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2398 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2399 return;
2400 }
2401
2402 /*
2403 * Clear bus reset flag
2404 */
2405 ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2406
2407 if ((status0 & (SELDI|SELDO)) != 0) {
2408 u_int simode0;
2409
2410 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2411 simode0 = ahd_inb(ahd, SIMODE0);
2412 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2413 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2414 }
2415 scbid = ahd_get_scbptr(ahd);
2416 scb = ahd_lookup_scb(ahd, scbid);
2417 if (scb != NULL
2418 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2419 scb = NULL;
2420
2421 if ((status0 & IOERR) != 0) {
2422 u_int now_lvd;
2423
2424 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2425 printk("%s: Transceiver State Has Changed to %s mode\n",
2426 ahd_name(ahd), now_lvd ? "LVD" : "SE");
2427 ahd_outb(ahd, CLRSINT0, CLRIOERR);
2428 /*
2429 * A change in I/O mode is equivalent to a bus reset.
2430 */
2431 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2432 ahd_pause(ahd);
2433 ahd_setup_iocell_workaround(ahd);
2434 ahd_unpause(ahd);
2435 } else if ((status0 & OVERRUN) != 0) {
2436
2437 printk("%s: SCSI offset overrun detected. Resetting bus.\n",
2438 ahd_name(ahd));
2439 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2440 } else if ((status & SCSIRSTI) != 0) {
2441
2442 printk("%s: Someone reset channel A\n", ahd_name(ahd));
2443 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2444 } else if ((status & SCSIPERR) != 0) {
2445
2446 /* Make sure the sequencer is in a safe location. */
2447 ahd_clear_critical_section(ahd);
2448
2449 ahd_handle_transmission_error(ahd);
2450 } else if (lqostat0 != 0) {
2451
2452 printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2453 ahd_outb(ahd, CLRLQOINT0, lqostat0);
2454 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2455 ahd_outb(ahd, CLRLQOINT1, 0);
2456 } else if ((status & SELTO) != 0) {
2457 /* Stop the selection */
2458 ahd_outb(ahd, SCSISEQ0, 0);
2459
2460 /* Make sure the sequencer is in a safe location. */
2461 ahd_clear_critical_section(ahd);
2462
2463 /* No more pending messages */
2464 ahd_clear_msg_state(ahd);
2465
2466 /* Clear interrupt state */
2467 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2468
2469 /*
2470 * Although the driver does not care about the
2471 * 'Selection in Progress' status bit, the busy
2472 * LED does. SELINGO is only cleared by a successful
2473 * selection, so we must manually clear it to insure
2474 * the LED turns off just incase no future successful
2475 * selections occur (e.g. no devices on the bus).
2476 */
2477 ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2478
2479 scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2480 scb = ahd_lookup_scb(ahd, scbid);
2481 if (scb == NULL) {
2482 printk("%s: ahd_intr - referenced scb not "
2483 "valid during SELTO scb(0x%x)\n",
2484 ahd_name(ahd), scbid);
2485 ahd_dump_card_state(ahd);
2486 } else {
2487 struct ahd_devinfo devinfo;
2488 #ifdef AHD_DEBUG
2489 if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2490 ahd_print_path(ahd, scb);
2491 printk("Saw Selection Timeout for SCB 0x%x\n",
2492 scbid);
2493 }
2494 #endif
2495 ahd_scb_devinfo(ahd, &devinfo, scb);
2496 ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2497 ahd_freeze_devq(ahd, scb);
2498
2499 /*
2500 * Cancel any pending transactions on the device
2501 * now that it seems to be missing. This will
2502 * also revert us to async/narrow transfers until
2503 * we can renegotiate with the device.
2504 */
2505 ahd_handle_devreset(ahd, &devinfo,
2506 CAM_LUN_WILDCARD,
2507 CAM_SEL_TIMEOUT,
2508 "Selection Timeout",
2509 /*verbose_level*/1);
2510 }
2511 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2512 ahd_iocell_first_selection(ahd);
2513 ahd_unpause(ahd);
2514 } else if ((status0 & (SELDI|SELDO)) != 0) {
2515
2516 ahd_iocell_first_selection(ahd);
2517 ahd_unpause(ahd);
2518 } else if (status3 != 0) {
2519 printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2520 ahd_name(ahd), status3);
2521 ahd_outb(ahd, CLRSINT3, status3);
2522 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2523
2524 /* Make sure the sequencer is in a safe location. */
2525 ahd_clear_critical_section(ahd);
2526
2527 ahd_handle_lqiphase_error(ahd, lqistat1);
2528 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2529 /*
2530 * This status can be delayed during some
2531 * streaming operations. The SCSIPHASE
2532 * handler has already dealt with this case
2533 * so just clear the error.
2534 */
2535 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2536 } else if ((status & BUSFREE) != 0
2537 || (lqistat1 & LQOBUSFREE) != 0) {
2538 u_int lqostat1;
2539 int restart;
2540 int clear_fifo;
2541 int packetized;
2542 u_int mode;
2543
2544 /*
2545 * Clear our selection hardware as soon as possible.
2546 * We may have an entry in the waiting Q for this target,
2547 * that is affected by this busfree and we don't want to
2548 * go about selecting the target while we handle the event.
2549 */
2550 ahd_outb(ahd, SCSISEQ0, 0);
2551
2552 /* Make sure the sequencer is in a safe location. */
2553 ahd_clear_critical_section(ahd);
2554
2555 /*
2556 * Determine what we were up to at the time of
2557 * the busfree.
2558 */
2559 mode = AHD_MODE_SCSI;
2560 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2561 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2562 switch (busfreetime) {
2563 case BUSFREE_DFF0:
2564 case BUSFREE_DFF1:
2565 {
2566 mode = busfreetime == BUSFREE_DFF0
2567 ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2568 ahd_set_modes(ahd, mode, mode);
2569 scbid = ahd_get_scbptr(ahd);
2570 scb = ahd_lookup_scb(ahd, scbid);
2571 if (scb == NULL) {
2572 printk("%s: Invalid SCB %d in DFF%d "
2573 "during unexpected busfree\n",
2574 ahd_name(ahd), scbid, mode);
2575 packetized = 0;
2576 } else
2577 packetized = (scb->flags & SCB_PACKETIZED) != 0;
2578 clear_fifo = 1;
2579 break;
2580 }
2581 case BUSFREE_LQO:
2582 clear_fifo = 0;
2583 packetized = 1;
2584 break;
2585 default:
2586 clear_fifo = 0;
2587 packetized = (lqostat1 & LQOBUSFREE) != 0;
2588 if (!packetized
2589 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2590 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2591 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2592 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2593 /*
2594 * Assume packetized if we are not
2595 * on the bus in a non-packetized
2596 * capacity and any pending selection
2597 * was a packetized selection.
2598 */
2599 packetized = 1;
2600 break;
2601 }
2602
2603 #ifdef AHD_DEBUG
2604 if ((ahd_debug & AHD_SHOW_MISC) != 0)
2605 printk("Saw Busfree. Busfreetime = 0x%x.\n",
2606 busfreetime);
2607 #endif
2608 /*
2609 * Busfrees that occur in non-packetized phases are
2610 * handled by the nonpkt_busfree handler.
2611 */
2612 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2613 restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2614 } else {
2615 packetized = 0;
2616 restart = ahd_handle_nonpkt_busfree(ahd);
2617 }
2618 /*
2619 * Clear the busfree interrupt status. The setting of
2620 * the interrupt is a pulse, so in a perfect world, we
2621 * would not need to muck with the ENBUSFREE logic. This
2622 * would ensure that if the bus moves on to another
2623 * connection, busfree protection is still in force. If
2624 * BUSFREEREV is broken, however, we must manually clear
2625 * the ENBUSFREE if the busfree occurred during a non-pack
2626 * connection so that we don't get false positives during
2627 * future, packetized, connections.
2628 */
2629 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2630 if (packetized == 0
2631 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2632 ahd_outb(ahd, SIMODE1,
2633 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2634
2635 if (clear_fifo)
2636 ahd_clear_fifo(ahd, mode);
2637
2638 ahd_clear_msg_state(ahd);
2639 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2640 if (restart) {
2641 ahd_restart(ahd);
2642 } else {
2643 ahd_unpause(ahd);
2644 }
2645 } else {
2646 printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2647 ahd_name(ahd), status);
2648 ahd_dump_card_state(ahd);
2649 ahd_clear_intstat(ahd);
2650 ahd_unpause(ahd);
2651 }
2652 }
2653
2654 static void
ahd_handle_transmission_error(struct ahd_softc * ahd)2655 ahd_handle_transmission_error(struct ahd_softc *ahd)
2656 {
2657 struct scb *scb;
2658 u_int scbid;
2659 u_int lqistat1;
2660 u_int msg_out;
2661 u_int curphase;
2662 u_int lastphase;
2663 u_int perrdiag;
2664 u_int cur_col;
2665 int silent;
2666
2667 scb = NULL;
2668 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2669 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2670 ahd_inb(ahd, LQISTAT2);
2671 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2672 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2673 u_int lqistate;
2674
2675 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2676 lqistate = ahd_inb(ahd, LQISTATE);
2677 if ((lqistate >= 0x1E && lqistate <= 0x24)
2678 || (lqistate == 0x29)) {
2679 #ifdef AHD_DEBUG
2680 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2681 printk("%s: NLQCRC found via LQISTATE\n",
2682 ahd_name(ahd));
2683 }
2684 #endif
2685 lqistat1 |= LQICRCI_NLQ;
2686 }
2687 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2688 }
2689
2690 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2691 lastphase = ahd_inb(ahd, LASTPHASE);
2692 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2693 perrdiag = ahd_inb(ahd, PERRDIAG);
2694 msg_out = INITIATOR_ERROR;
2695 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2696
2697 /*
2698 * Try to find the SCB associated with this error.
2699 */
2700 silent = FALSE;
2701 if (lqistat1 == 0
2702 || (lqistat1 & LQICRCI_NLQ) != 0) {
2703 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2704 ahd_set_active_fifo(ahd);
2705 scbid = ahd_get_scbptr(ahd);
2706 scb = ahd_lookup_scb(ahd, scbid);
2707 if (scb != NULL && SCB_IS_SILENT(scb))
2708 silent = TRUE;
2709 }
2710
2711 cur_col = 0;
2712 if (silent == FALSE) {
2713 printk("%s: Transmission error detected\n", ahd_name(ahd));
2714 ahd_lqistat1_print(lqistat1, &cur_col, 50);
2715 ahd_lastphase_print(lastphase, &cur_col, 50);
2716 ahd_scsisigi_print(curphase, &cur_col, 50);
2717 ahd_perrdiag_print(perrdiag, &cur_col, 50);
2718 printk("\n");
2719 ahd_dump_card_state(ahd);
2720 }
2721
2722 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2723 if (silent == FALSE) {
2724 printk("%s: Gross protocol error during incoming "
2725 "packet. lqistat1 == 0x%x. Resetting bus.\n",
2726 ahd_name(ahd), lqistat1);
2727 }
2728 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2729 return;
2730 } else if ((lqistat1 & LQICRCI_LQ) != 0) {
2731 /*
2732 * A CRC error has been detected on an incoming LQ.
2733 * The bus is currently hung on the last ACK.
2734 * Hit LQIRETRY to release the last ack, and
2735 * wait for the sequencer to determine that ATNO
2736 * is asserted while in message out to take us
2737 * to our host message loop. No NONPACKREQ or
2738 * LQIPHASE type errors will occur in this
2739 * scenario. After this first LQIRETRY, the LQI
2740 * manager will be in ISELO where it will
2741 * happily sit until another packet phase begins.
2742 * Unexpected bus free detection is enabled
2743 * through any phases that occur after we release
2744 * this last ack until the LQI manager sees a
2745 * packet phase. This implies we may have to
2746 * ignore a perfectly valid "unexected busfree"
2747 * after our "initiator detected error" message is
2748 * sent. A busfree is the expected response after
2749 * we tell the target that it's L_Q was corrupted.
2750 * (SPI4R09 10.7.3.3.3)
2751 */
2752 ahd_outb(ahd, LQCTL2, LQIRETRY);
2753 printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2754 } else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2755 /*
2756 * We detected a CRC error in a NON-LQ packet.
2757 * The hardware has varying behavior in this situation
2758 * depending on whether this packet was part of a
2759 * stream or not.
2760 *
2761 * PKT by PKT mode:
2762 * The hardware has already acked the complete packet.
2763 * If the target honors our outstanding ATN condition,
2764 * we should be (or soon will be) in MSGOUT phase.
2765 * This will trigger the LQIPHASE_LQ status bit as the
2766 * hardware was expecting another LQ. Unexpected
2767 * busfree detection is enabled. Once LQIPHASE_LQ is
2768 * true (first entry into host message loop is much
2769 * the same), we must clear LQIPHASE_LQ and hit
2770 * LQIRETRY so the hardware is ready to handle
2771 * a future LQ. NONPACKREQ will not be asserted again
2772 * once we hit LQIRETRY until another packet is
2773 * processed. The target may either go busfree
2774 * or start another packet in response to our message.
2775 *
2776 * Read Streaming P0 asserted:
2777 * If we raise ATN and the target completes the entire
2778 * stream (P0 asserted during the last packet), the
2779 * hardware will ack all data and return to the ISTART
2780 * state. When the target reponds to our ATN condition,
2781 * LQIPHASE_LQ will be asserted. We should respond to
2782 * this with an LQIRETRY to prepare for any future
2783 * packets. NONPACKREQ will not be asserted again
2784 * once we hit LQIRETRY until another packet is
2785 * processed. The target may either go busfree or
2786 * start another packet in response to our message.
2787 * Busfree detection is enabled.
2788 *
2789 * Read Streaming P0 not asserted:
2790 * If we raise ATN and the target transitions to
2791 * MSGOUT in or after a packet where P0 is not
2792 * asserted, the hardware will assert LQIPHASE_NLQ.
2793 * We should respond to the LQIPHASE_NLQ with an
2794 * LQIRETRY. Should the target stay in a non-pkt
2795 * phase after we send our message, the hardware
2796 * will assert LQIPHASE_LQ. Recovery is then just as
2797 * listed above for the read streaming with P0 asserted.
2798 * Busfree detection is enabled.
2799 */
2800 if (silent == FALSE)
2801 printk("LQICRC_NLQ\n");
2802 if (scb == NULL) {
2803 printk("%s: No SCB valid for LQICRC_NLQ. "
2804 "Resetting bus\n", ahd_name(ahd));
2805 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2806 return;
2807 }
2808 } else if ((lqistat1 & LQIBADLQI) != 0) {
2809 printk("Need to handle BADLQI!\n");
2810 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2811 return;
2812 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2813 if ((curphase & ~P_DATAIN_DT) != 0) {
2814 /* Ack the byte. So we can continue. */
2815 if (silent == FALSE)
2816 printk("Acking %s to clear perror\n",
2817 ahd_lookup_phase_entry(curphase)->phasemsg);
2818 ahd_inb(ahd, SCSIDAT);
2819 }
2820
2821 if (curphase == P_MESGIN)
2822 msg_out = MSG_PARITY_ERROR;
2823 }
2824
2825 /*
2826 * We've set the hardware to assert ATN if we
2827 * get a parity error on "in" phases, so all we
2828 * need to do is stuff the message buffer with
2829 * the appropriate message. "In" phases have set
2830 * mesg_out to something other than NOP.
2831 */
2832 ahd->send_msg_perror = msg_out;
2833 if (scb != NULL && msg_out == INITIATOR_ERROR)
2834 scb->flags |= SCB_TRANSMISSION_ERROR;
2835 ahd_outb(ahd, MSG_OUT, HOST_MSG);
2836 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2837 ahd_unpause(ahd);
2838 }
2839
2840 static void
ahd_handle_lqiphase_error(struct ahd_softc * ahd,u_int lqistat1)2841 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2842 {
2843 /*
2844 * Clear the sources of the interrupts.
2845 */
2846 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2847 ahd_outb(ahd, CLRLQIINT1, lqistat1);
2848
2849 /*
2850 * If the "illegal" phase changes were in response
2851 * to our ATN to flag a CRC error, AND we ended up
2852 * on packet boundaries, clear the error, restart the
2853 * LQI manager as appropriate, and go on our merry
2854 * way toward sending the message. Otherwise, reset
2855 * the bus to clear the error.
2856 */
2857 ahd_set_active_fifo(ahd);
2858 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2859 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2860 if ((lqistat1 & LQIPHASE_LQ) != 0) {
2861 printk("LQIRETRY for LQIPHASE_LQ\n");
2862 ahd_outb(ahd, LQCTL2, LQIRETRY);
2863 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2864 printk("LQIRETRY for LQIPHASE_NLQ\n");
2865 ahd_outb(ahd, LQCTL2, LQIRETRY);
2866 } else
2867 panic("ahd_handle_lqiphase_error: No phase errors\n");
2868 ahd_dump_card_state(ahd);
2869 ahd_outb(ahd, CLRINT, CLRSCSIINT);
2870 ahd_unpause(ahd);
2871 } else {
2872 printk("Resetting Channel for LQI Phase error\n");
2873 ahd_dump_card_state(ahd);
2874 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2875 }
2876 }
2877
2878 /*
2879 * Packetized unexpected or expected busfree.
2880 * Entered in mode based on busfreetime.
2881 */
2882 static int
ahd_handle_pkt_busfree(struct ahd_softc * ahd,u_int busfreetime)2883 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2884 {
2885 u_int lqostat1;
2886
2887 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2888 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2889 lqostat1 = ahd_inb(ahd, LQOSTAT1);
2890 if ((lqostat1 & LQOBUSFREE) != 0) {
2891 struct scb *scb;
2892 u_int scbid;
2893 u_int saved_scbptr;
2894 u_int waiting_h;
2895 u_int waiting_t;
2896 u_int next;
2897
2898 /*
2899 * The LQO manager detected an unexpected busfree
2900 * either:
2901 *
2902 * 1) During an outgoing LQ.
2903 * 2) After an outgoing LQ but before the first
2904 * REQ of the command packet.
2905 * 3) During an outgoing command packet.
2906 *
2907 * In all cases, CURRSCB is pointing to the
2908 * SCB that encountered the failure. Clean
2909 * up the queue, clear SELDO and LQOBUSFREE,
2910 * and allow the sequencer to restart the select
2911 * out at its lesure.
2912 */
2913 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2914 scbid = ahd_inw(ahd, CURRSCB);
2915 scb = ahd_lookup_scb(ahd, scbid);
2916 if (scb == NULL)
2917 panic("SCB not valid during LQOBUSFREE");
2918 /*
2919 * Clear the status.
2920 */
2921 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2922 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2923 ahd_outb(ahd, CLRLQOINT1, 0);
2924 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2925 ahd_flush_device_writes(ahd);
2926 ahd_outb(ahd, CLRSINT0, CLRSELDO);
2927
2928 /*
2929 * Return the LQO manager to its idle loop. It will
2930 * not do this automatically if the busfree occurs
2931 * after the first REQ of either the LQ or command
2932 * packet or between the LQ and command packet.
2933 */
2934 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2935
2936 /*
2937 * Update the waiting for selection queue so
2938 * we restart on the correct SCB.
2939 */
2940 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2941 saved_scbptr = ahd_get_scbptr(ahd);
2942 if (waiting_h != scbid) {
2943
2944 ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2945 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2946 if (waiting_t == waiting_h) {
2947 ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2948 next = SCB_LIST_NULL;
2949 } else {
2950 ahd_set_scbptr(ahd, waiting_h);
2951 next = ahd_inw_scbram(ahd, SCB_NEXT2);
2952 }
2953 ahd_set_scbptr(ahd, scbid);
2954 ahd_outw(ahd, SCB_NEXT2, next);
2955 }
2956 ahd_set_scbptr(ahd, saved_scbptr);
2957 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2958 if (SCB_IS_SILENT(scb) == FALSE) {
2959 ahd_print_path(ahd, scb);
2960 printk("Probable outgoing LQ CRC error. "
2961 "Retrying command\n");
2962 }
2963 scb->crc_retry_count++;
2964 } else {
2965 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2966 ahd_freeze_scb(scb);
2967 ahd_freeze_devq(ahd, scb);
2968 }
2969 /* Return unpausing the sequencer. */
2970 return (0);
2971 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2972 /*
2973 * Ignore what are really parity errors that
2974 * occur on the last REQ of a free running
2975 * clock prior to going busfree. Some drives
2976 * do not properly active negate just before
2977 * going busfree resulting in a parity glitch.
2978 */
2979 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2980 #ifdef AHD_DEBUG
2981 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2982 printk("%s: Parity on last REQ detected "
2983 "during busfree phase.\n",
2984 ahd_name(ahd));
2985 #endif
2986 /* Return unpausing the sequencer. */
2987 return (0);
2988 }
2989 if (ahd->src_mode != AHD_MODE_SCSI) {
2990 u_int scbid;
2991 struct scb *scb;
2992
2993 scbid = ahd_get_scbptr(ahd);
2994 scb = ahd_lookup_scb(ahd, scbid);
2995 ahd_print_path(ahd, scb);
2996 printk("Unexpected PKT busfree condition\n");
2997 ahd_dump_card_state(ahd);
2998 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
2999 SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3000 ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3001
3002 /* Return restarting the sequencer. */
3003 return (1);
3004 }
3005 printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3006 ahd_dump_card_state(ahd);
3007 /* Restart the sequencer. */
3008 return (1);
3009 }
3010
3011 /*
3012 * Non-packetized unexpected or expected busfree.
3013 */
3014 static int
ahd_handle_nonpkt_busfree(struct ahd_softc * ahd)3015 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3016 {
3017 struct ahd_devinfo devinfo;
3018 struct scb *scb;
3019 u_int lastphase;
3020 u_int saved_scsiid;
3021 u_int saved_lun;
3022 u_int target;
3023 u_int initiator_role_id;
3024 u_int scbid;
3025 u_int ppr_busfree;
3026 int printerror;
3027
3028 /*
3029 * Look at what phase we were last in. If its message out,
3030 * chances are pretty good that the busfree was in response
3031 * to one of our abort requests.
3032 */
3033 lastphase = ahd_inb(ahd, LASTPHASE);
3034 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3035 saved_lun = ahd_inb(ahd, SAVED_LUN);
3036 target = SCSIID_TARGET(ahd, saved_scsiid);
3037 initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3038 ahd_compile_devinfo(&devinfo, initiator_role_id,
3039 target, saved_lun, 'A', ROLE_INITIATOR);
3040 printerror = 1;
3041
3042 scbid = ahd_get_scbptr(ahd);
3043 scb = ahd_lookup_scb(ahd, scbid);
3044 if (scb != NULL
3045 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3046 scb = NULL;
3047
3048 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3049 if (lastphase == P_MESGOUT) {
3050 u_int tag;
3051
3052 tag = SCB_LIST_NULL;
3053 if (ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK, TRUE)
3054 || ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK_SET, TRUE)) {
3055 int found;
3056 int sent_msg;
3057
3058 if (scb == NULL) {
3059 ahd_print_devinfo(ahd, &devinfo);
3060 printk("Abort for unidentified "
3061 "connection completed.\n");
3062 /* restart the sequencer. */
3063 return (1);
3064 }
3065 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3066 ahd_print_path(ahd, scb);
3067 printk("SCB %d - Abort%s Completed.\n",
3068 SCB_GET_TAG(scb),
3069 sent_msg == ABORT_TASK ? "" : " Tag");
3070
3071 if (sent_msg == ABORT_TASK)
3072 tag = SCB_GET_TAG(scb);
3073
3074 if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3075 /*
3076 * This abort is in response to an
3077 * unexpected switch to command phase
3078 * for a packetized connection. Since
3079 * the identify message was never sent,
3080 * "saved lun" is 0. We really want to
3081 * abort only the SCB that encountered
3082 * this error, which could have a different
3083 * lun. The SCB will be retried so the OS
3084 * will see the UA after renegotiating to
3085 * packetized.
3086 */
3087 tag = SCB_GET_TAG(scb);
3088 saved_lun = scb->hscb->lun;
3089 }
3090 found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3091 tag, ROLE_INITIATOR,
3092 CAM_REQ_ABORTED);
3093 printk("found == 0x%x\n", found);
3094 printerror = 0;
3095 } else if (ahd_sent_msg(ahd, AHDMSG_1B,
3096 TARGET_RESET, TRUE)) {
3097 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3098 CAM_BDR_SENT, "Bus Device Reset",
3099 /*verbose_level*/0);
3100 printerror = 0;
3101 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, FALSE)
3102 && ppr_busfree == 0) {
3103 struct ahd_initiator_tinfo *tinfo;
3104 struct ahd_tmode_tstate *tstate;
3105
3106 /*
3107 * PPR Rejected.
3108 *
3109 * If the previous negotiation was packetized,
3110 * this could be because the device has been
3111 * reset without our knowledge. Force our
3112 * current negotiation to async and retry the
3113 * negotiation. Otherwise retry the command
3114 * with non-ppr negotiation.
3115 */
3116 #ifdef AHD_DEBUG
3117 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3118 printk("PPR negotiation rejected busfree.\n");
3119 #endif
3120 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3121 devinfo.our_scsiid,
3122 devinfo.target, &tstate);
3123 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3124 ahd_set_width(ahd, &devinfo,
3125 MSG_EXT_WDTR_BUS_8_BIT,
3126 AHD_TRANS_CUR,
3127 /*paused*/TRUE);
3128 ahd_set_syncrate(ahd, &devinfo,
3129 /*period*/0, /*offset*/0,
3130 /*ppr_options*/0,
3131 AHD_TRANS_CUR,
3132 /*paused*/TRUE);
3133 /*
3134 * The expect PPR busfree handler below
3135 * will effect the retry and necessary
3136 * abort.
3137 */
3138 } else {
3139 tinfo->curr.transport_version = 2;
3140 tinfo->goal.transport_version = 2;
3141 tinfo->goal.ppr_options = 0;
3142 if (scb != NULL) {
3143 /*
3144 * Remove any SCBs in the waiting
3145 * for selection queue that may
3146 * also be for this target so that
3147 * command ordering is preserved.
3148 */
3149 ahd_freeze_devq(ahd, scb);
3150 ahd_qinfifo_requeue_tail(ahd, scb);
3151 }
3152 printerror = 0;
3153 }
3154 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, FALSE)
3155 && ppr_busfree == 0) {
3156 /*
3157 * Negotiation Rejected. Go-narrow and
3158 * retry command.
3159 */
3160 #ifdef AHD_DEBUG
3161 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3162 printk("WDTR negotiation rejected busfree.\n");
3163 #endif
3164 ahd_set_width(ahd, &devinfo,
3165 MSG_EXT_WDTR_BUS_8_BIT,
3166 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3167 /*paused*/TRUE);
3168 if (scb != NULL) {
3169 /*
3170 * Remove any SCBs in the waiting for
3171 * selection queue that may also be for
3172 * this target so that command ordering
3173 * is preserved.
3174 */
3175 ahd_freeze_devq(ahd, scb);
3176 ahd_qinfifo_requeue_tail(ahd, scb);
3177 }
3178 printerror = 0;
3179 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, FALSE)
3180 && ppr_busfree == 0) {
3181 /*
3182 * Negotiation Rejected. Go-async and
3183 * retry command.
3184 */
3185 #ifdef AHD_DEBUG
3186 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3187 printk("SDTR negotiation rejected busfree.\n");
3188 #endif
3189 ahd_set_syncrate(ahd, &devinfo,
3190 /*period*/0, /*offset*/0,
3191 /*ppr_options*/0,
3192 AHD_TRANS_CUR|AHD_TRANS_GOAL,
3193 /*paused*/TRUE);
3194 if (scb != NULL) {
3195 /*
3196 * Remove any SCBs in the waiting for
3197 * selection queue that may also be for
3198 * this target so that command ordering
3199 * is preserved.
3200 */
3201 ahd_freeze_devq(ahd, scb);
3202 ahd_qinfifo_requeue_tail(ahd, scb);
3203 }
3204 printerror = 0;
3205 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3206 && ahd_sent_msg(ahd, AHDMSG_1B,
3207 INITIATOR_ERROR, TRUE)) {
3208
3209 #ifdef AHD_DEBUG
3210 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3211 printk("Expected IDE Busfree\n");
3212 #endif
3213 printerror = 0;
3214 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3215 && ahd_sent_msg(ahd, AHDMSG_1B,
3216 MESSAGE_REJECT, TRUE)) {
3217
3218 #ifdef AHD_DEBUG
3219 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3220 printk("Expected QAS Reject Busfree\n");
3221 #endif
3222 printerror = 0;
3223 }
3224 }
3225
3226 /*
3227 * The busfree required flag is honored at the end of
3228 * the message phases. We check it last in case we
3229 * had to send some other message that caused a busfree.
3230 */
3231 if (scb != NULL && printerror != 0
3232 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3233 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3234
3235 ahd_freeze_devq(ahd, scb);
3236 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3237 ahd_freeze_scb(scb);
3238 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3239 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3240 SCB_GET_CHANNEL(ahd, scb),
3241 SCB_GET_LUN(scb), SCB_LIST_NULL,
3242 ROLE_INITIATOR, CAM_REQ_ABORTED);
3243 } else {
3244 #ifdef AHD_DEBUG
3245 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3246 printk("PPR Negotiation Busfree.\n");
3247 #endif
3248 ahd_done(ahd, scb);
3249 }
3250 printerror = 0;
3251 }
3252 if (printerror != 0) {
3253 int aborted;
3254
3255 aborted = 0;
3256 if (scb != NULL) {
3257 u_int tag;
3258
3259 if ((scb->hscb->control & TAG_ENB) != 0)
3260 tag = SCB_GET_TAG(scb);
3261 else
3262 tag = SCB_LIST_NULL;
3263 ahd_print_path(ahd, scb);
3264 aborted = ahd_abort_scbs(ahd, target, 'A',
3265 SCB_GET_LUN(scb), tag,
3266 ROLE_INITIATOR,
3267 CAM_UNEXP_BUSFREE);
3268 } else {
3269 /*
3270 * We had not fully identified this connection,
3271 * so we cannot abort anything.
3272 */
3273 printk("%s: ", ahd_name(ahd));
3274 }
3275 printk("Unexpected busfree %s, %d SCBs aborted, "
3276 "PRGMCNT == 0x%x\n",
3277 ahd_lookup_phase_entry(lastphase)->phasemsg,
3278 aborted,
3279 ahd_inw(ahd, PRGMCNT));
3280 ahd_dump_card_state(ahd);
3281 if (lastphase != P_BUSFREE)
3282 ahd_force_renegotiation(ahd, &devinfo);
3283 }
3284 /* Always restart the sequencer. */
3285 return (1);
3286 }
3287
3288 static void
ahd_handle_proto_violation(struct ahd_softc * ahd)3289 ahd_handle_proto_violation(struct ahd_softc *ahd)
3290 {
3291 struct ahd_devinfo devinfo;
3292 struct scb *scb;
3293 u_int scbid;
3294 u_int seq_flags;
3295 u_int curphase;
3296 u_int lastphase;
3297 int found;
3298
3299 ahd_fetch_devinfo(ahd, &devinfo);
3300 scbid = ahd_get_scbptr(ahd);
3301 scb = ahd_lookup_scb(ahd, scbid);
3302 seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3303 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3304 lastphase = ahd_inb(ahd, LASTPHASE);
3305 if ((seq_flags & NOT_IDENTIFIED) != 0) {
3306
3307 /*
3308 * The reconnecting target either did not send an
3309 * identify message, or did, but we didn't find an SCB
3310 * to match.
3311 */
3312 ahd_print_devinfo(ahd, &devinfo);
3313 printk("Target did not send an IDENTIFY message. "
3314 "LASTPHASE = 0x%x.\n", lastphase);
3315 scb = NULL;
3316 } else if (scb == NULL) {
3317 /*
3318 * We don't seem to have an SCB active for this
3319 * transaction. Print an error and reset the bus.
3320 */
3321 ahd_print_devinfo(ahd, &devinfo);
3322 printk("No SCB found during protocol violation\n");
3323 goto proto_violation_reset;
3324 } else {
3325 ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3326 if ((seq_flags & NO_CDB_SENT) != 0) {
3327 ahd_print_path(ahd, scb);
3328 printk("No or incomplete CDB sent to device.\n");
3329 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3330 & STATUS_RCVD) == 0) {
3331 /*
3332 * The target never bothered to provide status to
3333 * us prior to completing the command. Since we don't
3334 * know the disposition of this command, we must attempt
3335 * to abort it. Assert ATN and prepare to send an abort
3336 * message.
3337 */
3338 ahd_print_path(ahd, scb);
3339 printk("Completed command without status.\n");
3340 } else {
3341 ahd_print_path(ahd, scb);
3342 printk("Unknown protocol violation.\n");
3343 ahd_dump_card_state(ahd);
3344 }
3345 }
3346 if ((lastphase & ~P_DATAIN_DT) == 0
3347 || lastphase == P_COMMAND) {
3348 proto_violation_reset:
3349 /*
3350 * Target either went directly to data
3351 * phase or didn't respond to our ATN.
3352 * The only safe thing to do is to blow
3353 * it away with a bus reset.
3354 */
3355 found = ahd_reset_channel(ahd, 'A', TRUE);
3356 printk("%s: Issued Channel %c Bus Reset. "
3357 "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3358 } else {
3359 /*
3360 * Leave the selection hardware off in case
3361 * this abort attempt will affect yet to
3362 * be sent commands.
3363 */
3364 ahd_outb(ahd, SCSISEQ0,
3365 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3366 ahd_assert_atn(ahd);
3367 ahd_outb(ahd, MSG_OUT, HOST_MSG);
3368 if (scb == NULL) {
3369 ahd_print_devinfo(ahd, &devinfo);
3370 ahd->msgout_buf[0] = ABORT_TASK;
3371 ahd->msgout_len = 1;
3372 ahd->msgout_index = 0;
3373 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3374 } else {
3375 ahd_print_path(ahd, scb);
3376 scb->flags |= SCB_ABORT;
3377 }
3378 printk("Protocol violation %s. Attempting to abort.\n",
3379 ahd_lookup_phase_entry(curphase)->phasemsg);
3380 }
3381 }
3382
3383 /*
3384 * Force renegotiation to occur the next time we initiate
3385 * a command to the current device.
3386 */
3387 static void
ahd_force_renegotiation(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)3388 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3389 {
3390 struct ahd_initiator_tinfo *targ_info;
3391 struct ahd_tmode_tstate *tstate;
3392
3393 #ifdef AHD_DEBUG
3394 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3395 ahd_print_devinfo(ahd, devinfo);
3396 printk("Forcing renegotiation\n");
3397 }
3398 #endif
3399 targ_info = ahd_fetch_transinfo(ahd,
3400 devinfo->channel,
3401 devinfo->our_scsiid,
3402 devinfo->target,
3403 &tstate);
3404 ahd_update_neg_request(ahd, devinfo, tstate,
3405 targ_info, AHD_NEG_IF_NON_ASYNC);
3406 }
3407
3408 #define AHD_MAX_STEPS 2000
3409 static void
ahd_clear_critical_section(struct ahd_softc * ahd)3410 ahd_clear_critical_section(struct ahd_softc *ahd)
3411 {
3412 ahd_mode_state saved_modes;
3413 int stepping;
3414 int steps;
3415 int first_instr;
3416 u_int simode0;
3417 u_int simode1;
3418 u_int simode3;
3419 u_int lqimode0;
3420 u_int lqimode1;
3421 u_int lqomode0;
3422 u_int lqomode1;
3423
3424 if (ahd->num_critical_sections == 0)
3425 return;
3426
3427 stepping = FALSE;
3428 steps = 0;
3429 first_instr = 0;
3430 simode0 = 0;
3431 simode1 = 0;
3432 simode3 = 0;
3433 lqimode0 = 0;
3434 lqimode1 = 0;
3435 lqomode0 = 0;
3436 lqomode1 = 0;
3437 saved_modes = ahd_save_modes(ahd);
3438 for (;;) {
3439 struct cs *cs;
3440 u_int seqaddr;
3441 u_int i;
3442
3443 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3444 seqaddr = ahd_inw(ahd, CURADDR);
3445
3446 cs = ahd->critical_sections;
3447 for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3448 if (cs->begin < seqaddr && cs->end >= seqaddr)
3449 break;
3450 }
3451
3452 if (i == ahd->num_critical_sections)
3453 break;
3454
3455 if (steps > AHD_MAX_STEPS) {
3456 printk("%s: Infinite loop in critical section\n"
3457 "%s: First Instruction 0x%x now 0x%x\n",
3458 ahd_name(ahd), ahd_name(ahd), first_instr,
3459 seqaddr);
3460 ahd_dump_card_state(ahd);
3461 panic("critical section loop");
3462 }
3463
3464 steps++;
3465 #ifdef AHD_DEBUG
3466 if ((ahd_debug & AHD_SHOW_MISC) != 0)
3467 printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3468 seqaddr);
3469 #endif
3470 if (stepping == FALSE) {
3471
3472 first_instr = seqaddr;
3473 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3474 simode0 = ahd_inb(ahd, SIMODE0);
3475 simode3 = ahd_inb(ahd, SIMODE3);
3476 lqimode0 = ahd_inb(ahd, LQIMODE0);
3477 lqimode1 = ahd_inb(ahd, LQIMODE1);
3478 lqomode0 = ahd_inb(ahd, LQOMODE0);
3479 lqomode1 = ahd_inb(ahd, LQOMODE1);
3480 ahd_outb(ahd, SIMODE0, 0);
3481 ahd_outb(ahd, SIMODE3, 0);
3482 ahd_outb(ahd, LQIMODE0, 0);
3483 ahd_outb(ahd, LQIMODE1, 0);
3484 ahd_outb(ahd, LQOMODE0, 0);
3485 ahd_outb(ahd, LQOMODE1, 0);
3486 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3487 simode1 = ahd_inb(ahd, SIMODE1);
3488 /*
3489 * We don't clear ENBUSFREE. Unfortunately
3490 * we cannot re-enable busfree detection within
3491 * the current connection, so we must leave it
3492 * on while single stepping.
3493 */
3494 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3495 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3496 stepping = TRUE;
3497 }
3498 ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3499 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3500 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3501 ahd_outb(ahd, HCNTRL, ahd->unpause);
3502 while (!ahd_is_paused(ahd))
3503 ahd_delay(200);
3504 ahd_update_modes(ahd);
3505 }
3506 if (stepping) {
3507 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3508 ahd_outb(ahd, SIMODE0, simode0);
3509 ahd_outb(ahd, SIMODE3, simode3);
3510 ahd_outb(ahd, LQIMODE0, lqimode0);
3511 ahd_outb(ahd, LQIMODE1, lqimode1);
3512 ahd_outb(ahd, LQOMODE0, lqomode0);
3513 ahd_outb(ahd, LQOMODE1, lqomode1);
3514 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3515 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3516 ahd_outb(ahd, SIMODE1, simode1);
3517 /*
3518 * SCSIINT seems to glitch occasionally when
3519 * the interrupt masks are restored. Clear SCSIINT
3520 * one more time so that only persistent errors
3521 * are seen as a real interrupt.
3522 */
3523 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3524 }
3525 ahd_restore_modes(ahd, saved_modes);
3526 }
3527
3528 /*
3529 * Clear any pending interrupt status.
3530 */
3531 static void
ahd_clear_intstat(struct ahd_softc * ahd)3532 ahd_clear_intstat(struct ahd_softc *ahd)
3533 {
3534 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3535 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3536 /* Clear any interrupt conditions this may have caused */
3537 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3538 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3539 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3540 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3541 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3542 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3543 |CLRLQOATNPKT|CLRLQOTCRC);
3544 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3545 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3546 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3547 ahd_outb(ahd, CLRLQOINT0, 0);
3548 ahd_outb(ahd, CLRLQOINT1, 0);
3549 }
3550 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3551 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3552 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3553 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3554 |CLRIOERR|CLROVERRUN);
3555 ahd_outb(ahd, CLRINT, CLRSCSIINT);
3556 }
3557
3558 /**************************** Debugging Routines ******************************/
3559 #ifdef AHD_DEBUG
3560 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3561 #endif
3562
3563 #if 0
3564 void
3565 ahd_print_scb(struct scb *scb)
3566 {
3567 struct hardware_scb *hscb;
3568 int i;
3569
3570 hscb = scb->hscb;
3571 printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3572 (void *)scb,
3573 hscb->control,
3574 hscb->scsiid,
3575 hscb->lun,
3576 hscb->cdb_len);
3577 printk("Shared Data: ");
3578 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3579 printk("%#02x", hscb->shared_data.idata.cdb[i]);
3580 printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3581 (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3582 (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3583 ahd_le32toh(hscb->datacnt),
3584 ahd_le32toh(hscb->sgptr),
3585 SCB_GET_TAG(scb));
3586 ahd_dump_sglist(scb);
3587 }
3588 #endif /* 0 */
3589
3590 /************************* Transfer Negotiation *******************************/
3591 /*
3592 * Allocate per target mode instance (ID we respond to as a target)
3593 * transfer negotiation data structures.
3594 */
3595 static struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel)3596 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3597 {
3598 struct ahd_tmode_tstate *master_tstate;
3599 struct ahd_tmode_tstate *tstate;
3600 int i;
3601
3602 master_tstate = ahd->enabled_targets[ahd->our_id];
3603 if (ahd->enabled_targets[scsi_id] != NULL
3604 && ahd->enabled_targets[scsi_id] != master_tstate)
3605 panic("%s: ahd_alloc_tstate - Target already allocated",
3606 ahd_name(ahd));
3607 tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3608 if (tstate == NULL)
3609 return (NULL);
3610
3611 /*
3612 * If we have allocated a master tstate, copy user settings from
3613 * the master tstate (taken from SRAM or the EEPROM) for this
3614 * channel, but reset our current and goal settings to async/narrow
3615 * until an initiator talks to us.
3616 */
3617 if (master_tstate != NULL) {
3618 memcpy(tstate, master_tstate, sizeof(*tstate));
3619 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3620 for (i = 0; i < 16; i++) {
3621 memset(&tstate->transinfo[i].curr, 0,
3622 sizeof(tstate->transinfo[i].curr));
3623 memset(&tstate->transinfo[i].goal, 0,
3624 sizeof(tstate->transinfo[i].goal));
3625 }
3626 } else
3627 memset(tstate, 0, sizeof(*tstate));
3628 ahd->enabled_targets[scsi_id] = tstate;
3629 return (tstate);
3630 }
3631
3632 #ifdef AHD_TARGET_MODE
3633 /*
3634 * Free per target mode instance (ID we respond to as a target)
3635 * transfer negotiation data structures.
3636 */
3637 static void
ahd_free_tstate(struct ahd_softc * ahd,u_int scsi_id,char channel,int force)3638 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3639 {
3640 struct ahd_tmode_tstate *tstate;
3641
3642 /*
3643 * Don't clean up our "master" tstate.
3644 * It has our default user settings.
3645 */
3646 if (scsi_id == ahd->our_id
3647 && force == FALSE)
3648 return;
3649
3650 tstate = ahd->enabled_targets[scsi_id];
3651 kfree(tstate);
3652 ahd->enabled_targets[scsi_id] = NULL;
3653 }
3654 #endif
3655
3656 /*
3657 * Called when we have an active connection to a target on the bus,
3658 * this function finds the nearest period to the input period limited
3659 * by the capabilities of the bus connectivity of and sync settings for
3660 * the target.
3661 */
3662 static void
ahd_devlimited_syncrate(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * period,u_int * ppr_options,role_t role)3663 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3664 struct ahd_initiator_tinfo *tinfo,
3665 u_int *period, u_int *ppr_options, role_t role)
3666 {
3667 struct ahd_transinfo *transinfo;
3668 u_int maxsync;
3669
3670 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3671 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3672 maxsync = AHD_SYNCRATE_PACED;
3673 } else {
3674 maxsync = AHD_SYNCRATE_ULTRA;
3675 /* Can't do DT related options on an SE bus */
3676 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3677 }
3678 /*
3679 * Never allow a value higher than our current goal
3680 * period otherwise we may allow a target initiated
3681 * negotiation to go above the limit as set by the
3682 * user. In the case of an initiator initiated
3683 * sync negotiation, we limit based on the user
3684 * setting. This allows the system to still accept
3685 * incoming negotiations even if target initiated
3686 * negotiation is not performed.
3687 */
3688 if (role == ROLE_TARGET)
3689 transinfo = &tinfo->user;
3690 else
3691 transinfo = &tinfo->goal;
3692 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3693 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3694 maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3695 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3696 }
3697 if (transinfo->period == 0) {
3698 *period = 0;
3699 *ppr_options = 0;
3700 } else {
3701 *period = max(*period, (u_int)transinfo->period);
3702 ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3703 }
3704 }
3705
3706 /*
3707 * Look up the valid period to SCSIRATE conversion in our table.
3708 * Return the period and offset that should be sent to the target
3709 * if this was the beginning of an SDTR.
3710 */
3711 void
ahd_find_syncrate(struct ahd_softc * ahd,u_int * period,u_int * ppr_options,u_int maxsync)3712 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3713 u_int *ppr_options, u_int maxsync)
3714 {
3715 if (*period < maxsync)
3716 *period = maxsync;
3717
3718 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3719 && *period > AHD_SYNCRATE_MIN_DT)
3720 *ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3721
3722 if (*period > AHD_SYNCRATE_MIN)
3723 *period = 0;
3724
3725 /* Honor PPR option conformance rules. */
3726 if (*period > AHD_SYNCRATE_PACED)
3727 *ppr_options &= ~MSG_EXT_PPR_RTI;
3728
3729 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3730 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3731
3732 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3733 *ppr_options &= MSG_EXT_PPR_QAS_REQ;
3734
3735 /* Skip all PACED only entries if IU is not available */
3736 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3737 && *period < AHD_SYNCRATE_DT)
3738 *period = AHD_SYNCRATE_DT;
3739
3740 /* Skip all DT only entries if DT is not available */
3741 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3742 && *period < AHD_SYNCRATE_ULTRA2)
3743 *period = AHD_SYNCRATE_ULTRA2;
3744 }
3745
3746 /*
3747 * Truncate the given synchronous offset to a value the
3748 * current adapter type and syncrate are capable of.
3749 */
3750 static void
ahd_validate_offset(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int period,u_int * offset,int wide,role_t role)3751 ahd_validate_offset(struct ahd_softc *ahd,
3752 struct ahd_initiator_tinfo *tinfo,
3753 u_int period, u_int *offset, int wide,
3754 role_t role)
3755 {
3756 u_int maxoffset;
3757
3758 /* Limit offset to what we can do */
3759 if (period == 0)
3760 maxoffset = 0;
3761 else if (period <= AHD_SYNCRATE_PACED) {
3762 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3763 maxoffset = MAX_OFFSET_PACED_BUG;
3764 else
3765 maxoffset = MAX_OFFSET_PACED;
3766 } else
3767 maxoffset = MAX_OFFSET_NON_PACED;
3768 *offset = min(*offset, maxoffset);
3769 if (tinfo != NULL) {
3770 if (role == ROLE_TARGET)
3771 *offset = min(*offset, (u_int)tinfo->user.offset);
3772 else
3773 *offset = min(*offset, (u_int)tinfo->goal.offset);
3774 }
3775 }
3776
3777 /*
3778 * Truncate the given transfer width parameter to a value the
3779 * current adapter type is capable of.
3780 */
3781 static void
ahd_validate_width(struct ahd_softc * ahd,struct ahd_initiator_tinfo * tinfo,u_int * bus_width,role_t role)3782 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3783 u_int *bus_width, role_t role)
3784 {
3785 switch (*bus_width) {
3786 default:
3787 if (ahd->features & AHD_WIDE) {
3788 /* Respond Wide */
3789 *bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3790 break;
3791 }
3792 fallthrough;
3793 case MSG_EXT_WDTR_BUS_8_BIT:
3794 *bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3795 break;
3796 }
3797 if (tinfo != NULL) {
3798 if (role == ROLE_TARGET)
3799 *bus_width = min((u_int)tinfo->user.width, *bus_width);
3800 else
3801 *bus_width = min((u_int)tinfo->goal.width, *bus_width);
3802 }
3803 }
3804
3805 /*
3806 * Update the bitmask of targets for which the controller should
3807 * negotiate with at the next convenient opportunity. This currently
3808 * means the next time we send the initial identify messages for
3809 * a new transaction.
3810 */
3811 int
ahd_update_neg_request(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_tmode_tstate * tstate,struct ahd_initiator_tinfo * tinfo,ahd_neg_type neg_type)3812 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3813 struct ahd_tmode_tstate *tstate,
3814 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3815 {
3816 u_int auto_negotiate_orig;
3817
3818 auto_negotiate_orig = tstate->auto_negotiate;
3819 if (neg_type == AHD_NEG_ALWAYS) {
3820 /*
3821 * Force our "current" settings to be
3822 * unknown so that unless a bus reset
3823 * occurs the need to renegotiate is
3824 * recorded persistently.
3825 */
3826 if ((ahd->features & AHD_WIDE) != 0)
3827 tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3828 tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3829 tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3830 }
3831 if (tinfo->curr.period != tinfo->goal.period
3832 || tinfo->curr.width != tinfo->goal.width
3833 || tinfo->curr.offset != tinfo->goal.offset
3834 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3835 || (neg_type == AHD_NEG_IF_NON_ASYNC
3836 && (tinfo->goal.offset != 0
3837 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3838 || tinfo->goal.ppr_options != 0)))
3839 tstate->auto_negotiate |= devinfo->target_mask;
3840 else
3841 tstate->auto_negotiate &= ~devinfo->target_mask;
3842
3843 return (auto_negotiate_orig != tstate->auto_negotiate);
3844 }
3845
3846 /*
3847 * Update the user/goal/curr tables of synchronous negotiation
3848 * parameters as well as, in the case of a current or active update,
3849 * any data structures on the host controller. In the case of an
3850 * active update, the specified target is currently talking to us on
3851 * the bus, so the transfer parameter update must take effect
3852 * immediately.
3853 */
3854 void
ahd_set_syncrate(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int ppr_options,u_int type,int paused)3855 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3856 u_int period, u_int offset, u_int ppr_options,
3857 u_int type, int paused)
3858 {
3859 struct ahd_initiator_tinfo *tinfo;
3860 struct ahd_tmode_tstate *tstate;
3861 u_int old_period;
3862 u_int old_offset;
3863 u_int old_ppr;
3864 int active;
3865 int update_needed;
3866
3867 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3868 update_needed = 0;
3869
3870 if (period == 0 || offset == 0) {
3871 period = 0;
3872 offset = 0;
3873 }
3874
3875 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3876 devinfo->target, &tstate);
3877
3878 if ((type & AHD_TRANS_USER) != 0) {
3879 tinfo->user.period = period;
3880 tinfo->user.offset = offset;
3881 tinfo->user.ppr_options = ppr_options;
3882 }
3883
3884 if ((type & AHD_TRANS_GOAL) != 0) {
3885 tinfo->goal.period = period;
3886 tinfo->goal.offset = offset;
3887 tinfo->goal.ppr_options = ppr_options;
3888 }
3889
3890 old_period = tinfo->curr.period;
3891 old_offset = tinfo->curr.offset;
3892 old_ppr = tinfo->curr.ppr_options;
3893
3894 if ((type & AHD_TRANS_CUR) != 0
3895 && (old_period != period
3896 || old_offset != offset
3897 || old_ppr != ppr_options)) {
3898
3899 update_needed++;
3900
3901 tinfo->curr.period = period;
3902 tinfo->curr.offset = offset;
3903 tinfo->curr.ppr_options = ppr_options;
3904
3905 ahd_send_async(ahd, devinfo->channel, devinfo->target,
3906 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3907 if (bootverbose) {
3908 if (offset != 0) {
3909 int options;
3910
3911 printk("%s: target %d synchronous with "
3912 "period = 0x%x, offset = 0x%x",
3913 ahd_name(ahd), devinfo->target,
3914 period, offset);
3915 options = 0;
3916 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3917 printk("(RDSTRM");
3918 options++;
3919 }
3920 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3921 printk("%s", options ? "|DT" : "(DT");
3922 options++;
3923 }
3924 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3925 printk("%s", options ? "|IU" : "(IU");
3926 options++;
3927 }
3928 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3929 printk("%s", options ? "|RTI" : "(RTI");
3930 options++;
3931 }
3932 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3933 printk("%s", options ? "|QAS" : "(QAS");
3934 options++;
3935 }
3936 if (options != 0)
3937 printk(")\n");
3938 else
3939 printk("\n");
3940 } else {
3941 printk("%s: target %d using "
3942 "asynchronous transfers%s\n",
3943 ahd_name(ahd), devinfo->target,
3944 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3945 ? "(QAS)" : "");
3946 }
3947 }
3948 }
3949 /*
3950 * Always refresh the neg-table to handle the case of the
3951 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3952 * We will always renegotiate in that case if this is a
3953 * packetized request. Also manage the busfree expected flag
3954 * from this common routine so that we catch changes due to
3955 * WDTR or SDTR messages.
3956 */
3957 if ((type & AHD_TRANS_CUR) != 0) {
3958 if (!paused)
3959 ahd_pause(ahd);
3960 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3961 if (!paused)
3962 ahd_unpause(ahd);
3963 if (ahd->msg_type != MSG_TYPE_NONE) {
3964 if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3965 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3966 #ifdef AHD_DEBUG
3967 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3968 ahd_print_devinfo(ahd, devinfo);
3969 printk("Expecting IU Change busfree\n");
3970 }
3971 #endif
3972 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3973 | MSG_FLAG_IU_REQ_CHANGED;
3974 }
3975 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3976 #ifdef AHD_DEBUG
3977 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3978 printk("PPR with IU_REQ outstanding\n");
3979 #endif
3980 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3981 }
3982 }
3983 }
3984
3985 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3986 tinfo, AHD_NEG_TO_GOAL);
3987
3988 if (update_needed && active)
3989 ahd_update_pending_scbs(ahd);
3990 }
3991
3992 /*
3993 * Update the user/goal/curr tables of wide negotiation
3994 * parameters as well as, in the case of a current or active update,
3995 * any data structures on the host controller. In the case of an
3996 * active update, the specified target is currently talking to us on
3997 * the bus, so the transfer parameter update must take effect
3998 * immediately.
3999 */
4000 void
ahd_set_width(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int width,u_int type,int paused)4001 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4002 u_int width, u_int type, int paused)
4003 {
4004 struct ahd_initiator_tinfo *tinfo;
4005 struct ahd_tmode_tstate *tstate;
4006 u_int oldwidth;
4007 int active;
4008 int update_needed;
4009
4010 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4011 update_needed = 0;
4012 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4013 devinfo->target, &tstate);
4014
4015 if ((type & AHD_TRANS_USER) != 0)
4016 tinfo->user.width = width;
4017
4018 if ((type & AHD_TRANS_GOAL) != 0)
4019 tinfo->goal.width = width;
4020
4021 oldwidth = tinfo->curr.width;
4022 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4023
4024 update_needed++;
4025
4026 tinfo->curr.width = width;
4027 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4028 CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4029 if (bootverbose) {
4030 printk("%s: target %d using %dbit transfers\n",
4031 ahd_name(ahd), devinfo->target,
4032 8 * (0x01 << width));
4033 }
4034 }
4035
4036 if ((type & AHD_TRANS_CUR) != 0) {
4037 if (!paused)
4038 ahd_pause(ahd);
4039 ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4040 if (!paused)
4041 ahd_unpause(ahd);
4042 }
4043
4044 update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4045 tinfo, AHD_NEG_TO_GOAL);
4046 if (update_needed && active)
4047 ahd_update_pending_scbs(ahd);
4048
4049 }
4050
4051 /*
4052 * Update the current state of tagged queuing for a given target.
4053 */
4054 static void
ahd_set_tags(struct ahd_softc * ahd,struct scsi_cmnd * cmd,struct ahd_devinfo * devinfo,ahd_queue_alg alg)4055 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4056 struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4057 {
4058 struct scsi_device *sdev = cmd->device;
4059
4060 ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4061 ahd_send_async(ahd, devinfo->channel, devinfo->target,
4062 devinfo->lun, AC_TRANSFER_NEG);
4063 }
4064
4065 static void
ahd_update_neg_table(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct ahd_transinfo * tinfo)4066 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4067 struct ahd_transinfo *tinfo)
4068 {
4069 ahd_mode_state saved_modes;
4070 u_int period;
4071 u_int ppr_opts;
4072 u_int con_opts;
4073 u_int offset;
4074 u_int saved_negoaddr;
4075 uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
4076
4077 saved_modes = ahd_save_modes(ahd);
4078 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4079
4080 saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4081 ahd_outb(ahd, NEGOADDR, devinfo->target);
4082 period = tinfo->period;
4083 offset = tinfo->offset;
4084 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4085 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4086 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4087 con_opts = 0;
4088 if (period == 0)
4089 period = AHD_SYNCRATE_ASYNC;
4090 if (period == AHD_SYNCRATE_160) {
4091
4092 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4093 /*
4094 * When the SPI4 spec was finalized, PACE transfers
4095 * was not made a configurable option in the PPR
4096 * message. Instead it is assumed to be enabled for
4097 * any syncrate faster than 80MHz. Nevertheless,
4098 * Harpoon2A4 allows this to be configurable.
4099 *
4100 * Harpoon2A4 also assumes at most 2 data bytes per
4101 * negotiated REQ/ACK offset. Paced transfers take
4102 * 4, so we must adjust our offset.
4103 */
4104 ppr_opts |= PPROPT_PACE;
4105 offset *= 2;
4106
4107 /*
4108 * Harpoon2A assumed that there would be a
4109 * fallback rate between 160MHz and 80MHz,
4110 * so 7 is used as the period factor rather
4111 * than 8 for 160MHz.
4112 */
4113 period = AHD_SYNCRATE_REVA_160;
4114 }
4115 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4116 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4117 ~AHD_PRECOMP_MASK;
4118 } else {
4119 /*
4120 * Precomp should be disabled for non-paced transfers.
4121 */
4122 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4123
4124 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4125 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4126 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4127 /*
4128 * Slow down our CRC interval to be
4129 * compatible with non-packetized
4130 * U160 devices that can't handle a
4131 * CRC at full speed.
4132 */
4133 con_opts |= ENSLOWCRC;
4134 }
4135
4136 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4137 /*
4138 * On H2A4, revert to a slower slewrate
4139 * on non-paced transfers.
4140 */
4141 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4142 ~AHD_SLEWRATE_MASK;
4143 }
4144 }
4145
4146 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4147 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4148 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4149 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4150
4151 ahd_outb(ahd, NEGPERIOD, period);
4152 ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4153 ahd_outb(ahd, NEGOFFSET, offset);
4154
4155 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4156 con_opts |= WIDEXFER;
4157
4158 /*
4159 * Slow down our CRC interval to be
4160 * compatible with packetized U320 devices
4161 * that can't handle a CRC at full speed
4162 */
4163 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4164 con_opts |= ENSLOWCRC;
4165 }
4166
4167 /*
4168 * During packetized transfers, the target will
4169 * give us the opportunity to send command packets
4170 * without us asserting attention.
4171 */
4172 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4173 con_opts |= ENAUTOATNO;
4174 ahd_outb(ahd, NEGCONOPTS, con_opts);
4175 ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4176 ahd_restore_modes(ahd, saved_modes);
4177 }
4178
4179 /*
4180 * When the transfer settings for a connection change, setup for
4181 * negotiation in pending SCBs to effect the change as quickly as
4182 * possible. We also cancel any negotiations that are scheduled
4183 * for inflight SCBs that have not been started yet.
4184 */
4185 static void
ahd_update_pending_scbs(struct ahd_softc * ahd)4186 ahd_update_pending_scbs(struct ahd_softc *ahd)
4187 {
4188 struct scb *pending_scb;
4189 int pending_scb_count;
4190 int paused;
4191 u_int saved_scbptr;
4192 ahd_mode_state saved_modes;
4193
4194 /*
4195 * Traverse the pending SCB list and ensure that all of the
4196 * SCBs there have the proper settings. We can only safely
4197 * clear the negotiation required flag (setting requires the
4198 * execution queue to be modified) and this is only possible
4199 * if we are not already attempting to select out for this
4200 * SCB. For this reason, all callers only call this routine
4201 * if we are changing the negotiation settings for the currently
4202 * active transaction on the bus.
4203 */
4204 pending_scb_count = 0;
4205 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4206 struct ahd_devinfo devinfo;
4207 struct ahd_tmode_tstate *tstate;
4208
4209 ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4210 ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid,
4211 devinfo.target, &tstate);
4212 if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4213 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4214 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4215 pending_scb->hscb->control &= ~MK_MESSAGE;
4216 }
4217 ahd_sync_scb(ahd, pending_scb,
4218 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4219 pending_scb_count++;
4220 }
4221
4222 if (pending_scb_count == 0)
4223 return;
4224
4225 if (ahd_is_paused(ahd)) {
4226 paused = 1;
4227 } else {
4228 paused = 0;
4229 ahd_pause(ahd);
4230 }
4231
4232 /*
4233 * Force the sequencer to reinitialize the selection for
4234 * the command at the head of the execution queue if it
4235 * has already been setup. The negotiation changes may
4236 * effect whether we select-out with ATN. It is only
4237 * safe to clear ENSELO when the bus is not free and no
4238 * selection is in progres or completed.
4239 */
4240 saved_modes = ahd_save_modes(ahd);
4241 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4242 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4243 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4244 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4245 saved_scbptr = ahd_get_scbptr(ahd);
4246 /* Ensure that the hscbs down on the card match the new information */
4247 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4248 u_int scb_tag;
4249 u_int control;
4250
4251 scb_tag = SCB_GET_TAG(pending_scb);
4252 ahd_set_scbptr(ahd, scb_tag);
4253 control = ahd_inb_scbram(ahd, SCB_CONTROL);
4254 control &= ~MK_MESSAGE;
4255 control |= pending_scb->hscb->control & MK_MESSAGE;
4256 ahd_outb(ahd, SCB_CONTROL, control);
4257 }
4258 ahd_set_scbptr(ahd, saved_scbptr);
4259 ahd_restore_modes(ahd, saved_modes);
4260
4261 if (paused == 0)
4262 ahd_unpause(ahd);
4263 }
4264
4265 /**************************** Pathing Information *****************************/
4266 static void
ahd_fetch_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4267 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4268 {
4269 ahd_mode_state saved_modes;
4270 u_int saved_scsiid;
4271 role_t role;
4272 int our_id;
4273
4274 saved_modes = ahd_save_modes(ahd);
4275 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4276
4277 if (ahd_inb(ahd, SSTAT0) & TARGET)
4278 role = ROLE_TARGET;
4279 else
4280 role = ROLE_INITIATOR;
4281
4282 if (role == ROLE_TARGET
4283 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4284 /* We were selected, so pull our id from TARGIDIN */
4285 our_id = ahd_inb(ahd, TARGIDIN) & OID;
4286 } else if (role == ROLE_TARGET)
4287 our_id = ahd_inb(ahd, TOWNID);
4288 else
4289 our_id = ahd_inb(ahd, IOWNID);
4290
4291 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4292 ahd_compile_devinfo(devinfo,
4293 our_id,
4294 SCSIID_TARGET(ahd, saved_scsiid),
4295 ahd_inb(ahd, SAVED_LUN),
4296 SCSIID_CHANNEL(ahd, saved_scsiid),
4297 role);
4298 ahd_restore_modes(ahd, saved_modes);
4299 }
4300
4301 void
ahd_print_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4302 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4303 {
4304 printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4305 devinfo->target, devinfo->lun);
4306 }
4307
4308 static const struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)4309 ahd_lookup_phase_entry(int phase)
4310 {
4311 const struct ahd_phase_table_entry *entry;
4312 const struct ahd_phase_table_entry *last_entry;
4313
4314 /*
4315 * num_phases doesn't include the default entry which
4316 * will be returned if the phase doesn't match.
4317 */
4318 last_entry = &ahd_phase_table[num_phases];
4319 for (entry = ahd_phase_table; entry < last_entry; entry++) {
4320 if (phase == entry->phase)
4321 break;
4322 }
4323 return (entry);
4324 }
4325
4326 void
ahd_compile_devinfo(struct ahd_devinfo * devinfo,u_int our_id,u_int target,u_int lun,char channel,role_t role)4327 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4328 u_int lun, char channel, role_t role)
4329 {
4330 devinfo->our_scsiid = our_id;
4331 devinfo->target = target;
4332 devinfo->lun = lun;
4333 devinfo->target_offset = target;
4334 devinfo->channel = channel;
4335 devinfo->role = role;
4336 if (channel == 'B')
4337 devinfo->target_offset += 8;
4338 devinfo->target_mask = (0x01 << devinfo->target_offset);
4339 }
4340
4341 static void
ahd_scb_devinfo(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4342 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4343 struct scb *scb)
4344 {
4345 role_t role;
4346 int our_id;
4347
4348 our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4349 role = ROLE_INITIATOR;
4350 if ((scb->hscb->control & TARGET_SCB) != 0)
4351 role = ROLE_TARGET;
4352 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4353 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4354 }
4355
4356
4357 /************************ Message Phase Processing ****************************/
4358 /*
4359 * When an initiator transaction with the MK_MESSAGE flag either reconnects
4360 * or enters the initial message out phase, we are interrupted. Fill our
4361 * outgoing message buffer with the appropriate message and beging handing
4362 * the message phase(s) manually.
4363 */
4364 static void
ahd_setup_initiator_msgout(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)4365 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4366 struct scb *scb)
4367 {
4368 /*
4369 * To facilitate adding multiple messages together,
4370 * each routine should increment the index and len
4371 * variables instead of setting them explicitly.
4372 */
4373 ahd->msgout_index = 0;
4374 ahd->msgout_len = 0;
4375
4376 if (ahd_currently_packetized(ahd))
4377 ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4378
4379 if (ahd->send_msg_perror
4380 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4381 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4382 ahd->msgout_len++;
4383 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4384 #ifdef AHD_DEBUG
4385 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4386 printk("Setting up for Parity Error delivery\n");
4387 #endif
4388 return;
4389 } else if (scb == NULL) {
4390 printk("%s: WARNING. No pending message for "
4391 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
4392 ahd->msgout_buf[ahd->msgout_index++] = NOP;
4393 ahd->msgout_len++;
4394 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4395 return;
4396 }
4397
4398 if ((scb->flags & SCB_DEVICE_RESET) == 0
4399 && (scb->flags & SCB_PACKETIZED) == 0
4400 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4401 u_int identify_msg;
4402
4403 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4404 if ((scb->hscb->control & DISCENB) != 0)
4405 identify_msg |= MSG_IDENTIFY_DISCFLAG;
4406 ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4407 ahd->msgout_len++;
4408
4409 if ((scb->hscb->control & TAG_ENB) != 0) {
4410 ahd->msgout_buf[ahd->msgout_index++] =
4411 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4412 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4413 ahd->msgout_len += 2;
4414 }
4415 }
4416
4417 if (scb->flags & SCB_DEVICE_RESET) {
4418 ahd->msgout_buf[ahd->msgout_index++] = TARGET_RESET;
4419 ahd->msgout_len++;
4420 ahd_print_path(ahd, scb);
4421 printk("Bus Device Reset Message Sent\n");
4422 /*
4423 * Clear our selection hardware in advance of
4424 * the busfree. We may have an entry in the waiting
4425 * Q for this target, and we don't want to go about
4426 * selecting while we handle the busfree and blow it
4427 * away.
4428 */
4429 ahd_outb(ahd, SCSISEQ0, 0);
4430 } else if ((scb->flags & SCB_ABORT) != 0) {
4431
4432 if ((scb->hscb->control & TAG_ENB) != 0) {
4433 ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK;
4434 } else {
4435 ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK_SET;
4436 }
4437 ahd->msgout_len++;
4438 ahd_print_path(ahd, scb);
4439 printk("Abort%s Message Sent\n",
4440 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4441 /*
4442 * Clear our selection hardware in advance of
4443 * the busfree. We may have an entry in the waiting
4444 * Q for this target, and we don't want to go about
4445 * selecting while we handle the busfree and blow it
4446 * away.
4447 */
4448 ahd_outb(ahd, SCSISEQ0, 0);
4449 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4450 ahd_build_transfer_msg(ahd, devinfo);
4451 /*
4452 * Clear our selection hardware in advance of potential
4453 * PPR IU status change busfree. We may have an entry in
4454 * the waiting Q for this target, and we don't want to go
4455 * about selecting while we handle the busfree and blow
4456 * it away.
4457 */
4458 ahd_outb(ahd, SCSISEQ0, 0);
4459 } else {
4460 printk("ahd_intr: AWAITING_MSG for an SCB that "
4461 "does not have a waiting message\n");
4462 printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4463 devinfo->target_mask);
4464 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4465 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4466 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4467 scb->flags);
4468 }
4469
4470 /*
4471 * Clear the MK_MESSAGE flag from the SCB so we aren't
4472 * asked to send this message again.
4473 */
4474 ahd_outb(ahd, SCB_CONTROL,
4475 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4476 scb->hscb->control &= ~MK_MESSAGE;
4477 ahd->msgout_index = 0;
4478 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4479 }
4480
4481 /*
4482 * Build an appropriate transfer negotiation message for the
4483 * currently active target.
4484 */
4485 static void
ahd_build_transfer_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)4486 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4487 {
4488 /*
4489 * We need to initiate transfer negotiations.
4490 * If our current and goal settings are identical,
4491 * we want to renegotiate due to a check condition.
4492 */
4493 struct ahd_initiator_tinfo *tinfo;
4494 struct ahd_tmode_tstate *tstate;
4495 int dowide;
4496 int dosync;
4497 int doppr;
4498 u_int period;
4499 u_int ppr_options;
4500 u_int offset;
4501
4502 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4503 devinfo->target, &tstate);
4504 /*
4505 * Filter our period based on the current connection.
4506 * If we can't perform DT transfers on this segment (not in LVD
4507 * mode for instance), then our decision to issue a PPR message
4508 * may change.
4509 */
4510 period = tinfo->goal.period;
4511 offset = tinfo->goal.offset;
4512 ppr_options = tinfo->goal.ppr_options;
4513 /* Target initiated PPR is not allowed in the SCSI spec */
4514 if (devinfo->role == ROLE_TARGET)
4515 ppr_options = 0;
4516 ahd_devlimited_syncrate(ahd, tinfo, &period,
4517 &ppr_options, devinfo->role);
4518 dowide = tinfo->curr.width != tinfo->goal.width;
4519 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4520 /*
4521 * Only use PPR if we have options that need it, even if the device
4522 * claims to support it. There might be an expander in the way
4523 * that doesn't.
4524 */
4525 doppr = ppr_options != 0;
4526
4527 if (!dowide && !dosync && !doppr) {
4528 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4529 dosync = tinfo->goal.offset != 0;
4530 }
4531
4532 if (!dowide && !dosync && !doppr) {
4533 /*
4534 * Force async with a WDTR message if we have a wide bus,
4535 * or just issue an SDTR with a 0 offset.
4536 */
4537 if ((ahd->features & AHD_WIDE) != 0)
4538 dowide = 1;
4539 else
4540 dosync = 1;
4541
4542 if (bootverbose) {
4543 ahd_print_devinfo(ahd, devinfo);
4544 printk("Ensuring async\n");
4545 }
4546 }
4547 /* Target initiated PPR is not allowed in the SCSI spec */
4548 if (devinfo->role == ROLE_TARGET)
4549 doppr = 0;
4550
4551 /*
4552 * Both the PPR message and SDTR message require the
4553 * goal syncrate to be limited to what the target device
4554 * is capable of handling (based on whether an LVD->SE
4555 * expander is on the bus), so combine these two cases.
4556 * Regardless, guarantee that if we are using WDTR and SDTR
4557 * messages that WDTR comes first.
4558 */
4559 if (doppr || (dosync && !dowide)) {
4560
4561 offset = tinfo->goal.offset;
4562 ahd_validate_offset(ahd, tinfo, period, &offset,
4563 doppr ? tinfo->goal.width
4564 : tinfo->curr.width,
4565 devinfo->role);
4566 if (doppr) {
4567 ahd_construct_ppr(ahd, devinfo, period, offset,
4568 tinfo->goal.width, ppr_options);
4569 } else {
4570 ahd_construct_sdtr(ahd, devinfo, period, offset);
4571 }
4572 } else {
4573 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4574 }
4575 }
4576
4577 /*
4578 * Build a synchronous negotiation message in our message
4579 * buffer based on the input parameters.
4580 */
4581 static void
ahd_construct_sdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset)4582 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4583 u_int period, u_int offset)
4584 {
4585 if (offset == 0)
4586 period = AHD_ASYNC_XFER_PERIOD;
4587 ahd->msgout_index += spi_populate_sync_msg(
4588 ahd->msgout_buf + ahd->msgout_index, period, offset);
4589 ahd->msgout_len += 5;
4590 if (bootverbose) {
4591 printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4592 ahd_name(ahd), devinfo->channel, devinfo->target,
4593 devinfo->lun, period, offset);
4594 }
4595 }
4596
4597 /*
4598 * Build a wide negotiateion message in our message
4599 * buffer based on the input parameters.
4600 */
4601 static void
ahd_construct_wdtr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int bus_width)4602 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4603 u_int bus_width)
4604 {
4605 ahd->msgout_index += spi_populate_width_msg(
4606 ahd->msgout_buf + ahd->msgout_index, bus_width);
4607 ahd->msgout_len += 4;
4608 if (bootverbose) {
4609 printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4610 ahd_name(ahd), devinfo->channel, devinfo->target,
4611 devinfo->lun, bus_width);
4612 }
4613 }
4614
4615 /*
4616 * Build a parallel protocol request message in our message
4617 * buffer based on the input parameters.
4618 */
4619 static void
ahd_construct_ppr(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int period,u_int offset,u_int bus_width,u_int ppr_options)4620 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4621 u_int period, u_int offset, u_int bus_width,
4622 u_int ppr_options)
4623 {
4624 /*
4625 * Always request precompensation from
4626 * the other target if we are running
4627 * at paced syncrates.
4628 */
4629 if (period <= AHD_SYNCRATE_PACED)
4630 ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4631 if (offset == 0)
4632 period = AHD_ASYNC_XFER_PERIOD;
4633 ahd->msgout_index += spi_populate_ppr_msg(
4634 ahd->msgout_buf + ahd->msgout_index, period, offset,
4635 bus_width, ppr_options);
4636 ahd->msgout_len += 8;
4637 if (bootverbose) {
4638 printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4639 "offset %x, ppr_options %x\n", ahd_name(ahd),
4640 devinfo->channel, devinfo->target, devinfo->lun,
4641 bus_width, period, offset, ppr_options);
4642 }
4643 }
4644
4645 /*
4646 * Clear any active message state.
4647 */
4648 static void
ahd_clear_msg_state(struct ahd_softc * ahd)4649 ahd_clear_msg_state(struct ahd_softc *ahd)
4650 {
4651 ahd_mode_state saved_modes;
4652
4653 saved_modes = ahd_save_modes(ahd);
4654 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4655 ahd->send_msg_perror = 0;
4656 ahd->msg_flags = MSG_FLAG_NONE;
4657 ahd->msgout_len = 0;
4658 ahd->msgin_index = 0;
4659 ahd->msg_type = MSG_TYPE_NONE;
4660 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4661 /*
4662 * The target didn't care to respond to our
4663 * message request, so clear ATN.
4664 */
4665 ahd_outb(ahd, CLRSINT1, CLRATNO);
4666 }
4667 ahd_outb(ahd, MSG_OUT, NOP);
4668 ahd_outb(ahd, SEQ_FLAGS2,
4669 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4670 ahd_restore_modes(ahd, saved_modes);
4671 }
4672
4673 /*
4674 * Manual message loop handler.
4675 */
4676 static void
ahd_handle_message_phase(struct ahd_softc * ahd)4677 ahd_handle_message_phase(struct ahd_softc *ahd)
4678 {
4679 struct ahd_devinfo devinfo;
4680 u_int bus_phase;
4681 int end_session;
4682
4683 ahd_fetch_devinfo(ahd, &devinfo);
4684 end_session = FALSE;
4685 bus_phase = ahd_inb(ahd, LASTPHASE);
4686
4687 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4688 printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4689 ahd_outb(ahd, LQCTL2, LQIRETRY);
4690 }
4691 reswitch:
4692 switch (ahd->msg_type) {
4693 case MSG_TYPE_INITIATOR_MSGOUT:
4694 {
4695 int lastbyte;
4696 int phasemis;
4697 int msgdone;
4698
4699 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4700 panic("HOST_MSG_LOOP interrupt with no active message");
4701
4702 #ifdef AHD_DEBUG
4703 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4704 ahd_print_devinfo(ahd, &devinfo);
4705 printk("INITIATOR_MSG_OUT");
4706 }
4707 #endif
4708 phasemis = bus_phase != P_MESGOUT;
4709 if (phasemis) {
4710 #ifdef AHD_DEBUG
4711 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4712 printk(" PHASEMIS %s\n",
4713 ahd_lookup_phase_entry(bus_phase)
4714 ->phasemsg);
4715 }
4716 #endif
4717 if (bus_phase == P_MESGIN) {
4718 /*
4719 * Change gears and see if
4720 * this messages is of interest to
4721 * us or should be passed back to
4722 * the sequencer.
4723 */
4724 ahd_outb(ahd, CLRSINT1, CLRATNO);
4725 ahd->send_msg_perror = 0;
4726 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4727 ahd->msgin_index = 0;
4728 goto reswitch;
4729 }
4730 end_session = TRUE;
4731 break;
4732 }
4733
4734 if (ahd->send_msg_perror) {
4735 ahd_outb(ahd, CLRSINT1, CLRATNO);
4736 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4737 #ifdef AHD_DEBUG
4738 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4739 printk(" byte 0x%x\n", ahd->send_msg_perror);
4740 #endif
4741 /*
4742 * If we are notifying the target of a CRC error
4743 * during packetized operations, the target is
4744 * within its rights to acknowledge our message
4745 * with a busfree.
4746 */
4747 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4748 && ahd->send_msg_perror == INITIATOR_ERROR)
4749 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4750
4751 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4752 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4753 break;
4754 }
4755
4756 msgdone = ahd->msgout_index == ahd->msgout_len;
4757 if (msgdone) {
4758 /*
4759 * The target has requested a retry.
4760 * Re-assert ATN, reset our message index to
4761 * 0, and try again.
4762 */
4763 ahd->msgout_index = 0;
4764 ahd_assert_atn(ahd);
4765 }
4766
4767 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4768 if (lastbyte) {
4769 /* Last byte is signified by dropping ATN */
4770 ahd_outb(ahd, CLRSINT1, CLRATNO);
4771 }
4772
4773 /*
4774 * Clear our interrupt status and present
4775 * the next byte on the bus.
4776 */
4777 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4778 #ifdef AHD_DEBUG
4779 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4780 printk(" byte 0x%x\n",
4781 ahd->msgout_buf[ahd->msgout_index]);
4782 #endif
4783 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4784 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4785 break;
4786 }
4787 case MSG_TYPE_INITIATOR_MSGIN:
4788 {
4789 int phasemis;
4790 int message_done;
4791
4792 #ifdef AHD_DEBUG
4793 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4794 ahd_print_devinfo(ahd, &devinfo);
4795 printk("INITIATOR_MSG_IN");
4796 }
4797 #endif
4798 phasemis = bus_phase != P_MESGIN;
4799 if (phasemis) {
4800 #ifdef AHD_DEBUG
4801 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4802 printk(" PHASEMIS %s\n",
4803 ahd_lookup_phase_entry(bus_phase)
4804 ->phasemsg);
4805 }
4806 #endif
4807 ahd->msgin_index = 0;
4808 if (bus_phase == P_MESGOUT
4809 && (ahd->send_msg_perror != 0
4810 || (ahd->msgout_len != 0
4811 && ahd->msgout_index == 0))) {
4812 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4813 goto reswitch;
4814 }
4815 end_session = TRUE;
4816 break;
4817 }
4818
4819 /* Pull the byte in without acking it */
4820 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4821 #ifdef AHD_DEBUG
4822 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4823 printk(" byte 0x%x\n",
4824 ahd->msgin_buf[ahd->msgin_index]);
4825 #endif
4826
4827 message_done = ahd_parse_msg(ahd, &devinfo);
4828
4829 if (message_done) {
4830 /*
4831 * Clear our incoming message buffer in case there
4832 * is another message following this one.
4833 */
4834 ahd->msgin_index = 0;
4835
4836 /*
4837 * If this message illicited a response,
4838 * assert ATN so the target takes us to the
4839 * message out phase.
4840 */
4841 if (ahd->msgout_len != 0) {
4842 #ifdef AHD_DEBUG
4843 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4844 ahd_print_devinfo(ahd, &devinfo);
4845 printk("Asserting ATN for response\n");
4846 }
4847 #endif
4848 ahd_assert_atn(ahd);
4849 }
4850 } else
4851 ahd->msgin_index++;
4852
4853 if (message_done == MSGLOOP_TERMINATED) {
4854 end_session = TRUE;
4855 } else {
4856 /* Ack the byte */
4857 ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4858 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4859 }
4860 break;
4861 }
4862 case MSG_TYPE_TARGET_MSGIN:
4863 {
4864 int msgdone;
4865 int msgout_request;
4866
4867 /*
4868 * By default, the message loop will continue.
4869 */
4870 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4871
4872 if (ahd->msgout_len == 0)
4873 panic("Target MSGIN with no active message");
4874
4875 /*
4876 * If we interrupted a mesgout session, the initiator
4877 * will not know this until our first REQ. So, we
4878 * only honor mesgout requests after we've sent our
4879 * first byte.
4880 */
4881 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4882 && ahd->msgout_index > 0)
4883 msgout_request = TRUE;
4884 else
4885 msgout_request = FALSE;
4886
4887 if (msgout_request) {
4888
4889 /*
4890 * Change gears and see if
4891 * this messages is of interest to
4892 * us or should be passed back to
4893 * the sequencer.
4894 */
4895 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4896 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4897 ahd->msgin_index = 0;
4898 /* Dummy read to REQ for first byte */
4899 ahd_inb(ahd, SCSIDAT);
4900 ahd_outb(ahd, SXFRCTL0,
4901 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4902 break;
4903 }
4904
4905 msgdone = ahd->msgout_index == ahd->msgout_len;
4906 if (msgdone) {
4907 ahd_outb(ahd, SXFRCTL0,
4908 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4909 end_session = TRUE;
4910 break;
4911 }
4912
4913 /*
4914 * Present the next byte on the bus.
4915 */
4916 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4917 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4918 break;
4919 }
4920 case MSG_TYPE_TARGET_MSGOUT:
4921 {
4922 int lastbyte;
4923 int msgdone;
4924
4925 /*
4926 * By default, the message loop will continue.
4927 */
4928 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4929
4930 /*
4931 * The initiator signals that this is
4932 * the last byte by dropping ATN.
4933 */
4934 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4935
4936 /*
4937 * Read the latched byte, but turn off SPIOEN first
4938 * so that we don't inadvertently cause a REQ for the
4939 * next byte.
4940 */
4941 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4942 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4943 msgdone = ahd_parse_msg(ahd, &devinfo);
4944 if (msgdone == MSGLOOP_TERMINATED) {
4945 /*
4946 * The message is *really* done in that it caused
4947 * us to go to bus free. The sequencer has already
4948 * been reset at this point, so pull the ejection
4949 * handle.
4950 */
4951 return;
4952 }
4953
4954 ahd->msgin_index++;
4955
4956 /*
4957 * XXX Read spec about initiator dropping ATN too soon
4958 * and use msgdone to detect it.
4959 */
4960 if (msgdone == MSGLOOP_MSGCOMPLETE) {
4961 ahd->msgin_index = 0;
4962
4963 /*
4964 * If this message illicited a response, transition
4965 * to the Message in phase and send it.
4966 */
4967 if (ahd->msgout_len != 0) {
4968 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4969 ahd_outb(ahd, SXFRCTL0,
4970 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4971 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4972 ahd->msgin_index = 0;
4973 break;
4974 }
4975 }
4976
4977 if (lastbyte)
4978 end_session = TRUE;
4979 else {
4980 /* Ask for the next byte. */
4981 ahd_outb(ahd, SXFRCTL0,
4982 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4983 }
4984
4985 break;
4986 }
4987 default:
4988 panic("Unknown REQINIT message type");
4989 }
4990
4991 if (end_session) {
4992 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
4993 printk("%s: Returning to Idle Loop\n",
4994 ahd_name(ahd));
4995 ahd_clear_msg_state(ahd);
4996
4997 /*
4998 * Perform the equivalent of a clear_target_state.
4999 */
5000 ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5001 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5002 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5003 } else {
5004 ahd_clear_msg_state(ahd);
5005 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5006 }
5007 }
5008 }
5009
5010 /*
5011 * See if we sent a particular extended message to the target.
5012 * If "full" is true, return true only if the target saw the full
5013 * message. If "full" is false, return true if the target saw at
5014 * least the first byte of the message.
5015 */
5016 static int
ahd_sent_msg(struct ahd_softc * ahd,ahd_msgtype type,u_int msgval,int full)5017 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5018 {
5019 int found;
5020 u_int index;
5021
5022 found = FALSE;
5023 index = 0;
5024
5025 while (index < ahd->msgout_len) {
5026 if (ahd->msgout_buf[index] == EXTENDED_MESSAGE) {
5027 u_int end_index;
5028
5029 end_index = index + 1 + ahd->msgout_buf[index + 1];
5030 if (ahd->msgout_buf[index+2] == msgval
5031 && type == AHDMSG_EXT) {
5032
5033 if (full) {
5034 if (ahd->msgout_index > end_index)
5035 found = TRUE;
5036 } else if (ahd->msgout_index > index)
5037 found = TRUE;
5038 }
5039 index = end_index;
5040 } else if (ahd->msgout_buf[index] >= SIMPLE_QUEUE_TAG
5041 && ahd->msgout_buf[index] <= IGNORE_WIDE_RESIDUE) {
5042
5043 /* Skip tag type and tag id or residue param*/
5044 index += 2;
5045 } else {
5046 /* Single byte message */
5047 if (type == AHDMSG_1B
5048 && ahd->msgout_index > index
5049 && (ahd->msgout_buf[index] == msgval
5050 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5051 && msgval == MSG_IDENTIFYFLAG)))
5052 found = TRUE;
5053 index++;
5054 }
5055
5056 if (found)
5057 break;
5058 }
5059 return (found);
5060 }
5061
5062 /*
5063 * Wait for a complete incoming message, parse it, and respond accordingly.
5064 */
5065 static int
ahd_parse_msg(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5066 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5067 {
5068 struct ahd_initiator_tinfo *tinfo;
5069 struct ahd_tmode_tstate *tstate;
5070 int reject;
5071 int done;
5072 int response;
5073
5074 done = MSGLOOP_IN_PROG;
5075 response = FALSE;
5076 reject = FALSE;
5077 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5078 devinfo->target, &tstate);
5079
5080 /*
5081 * Parse as much of the message as is available,
5082 * rejecting it if we don't support it. When
5083 * the entire message is available and has been
5084 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5085 * that we have parsed an entire message.
5086 *
5087 * In the case of extended messages, we accept the length
5088 * byte outright and perform more checking once we know the
5089 * extended message type.
5090 */
5091 switch (ahd->msgin_buf[0]) {
5092 case DISCONNECT:
5093 case SAVE_POINTERS:
5094 case COMMAND_COMPLETE:
5095 case RESTORE_POINTERS:
5096 case IGNORE_WIDE_RESIDUE:
5097 /*
5098 * End our message loop as these are messages
5099 * the sequencer handles on its own.
5100 */
5101 done = MSGLOOP_TERMINATED;
5102 break;
5103 case MESSAGE_REJECT:
5104 response = ahd_handle_msg_reject(ahd, devinfo);
5105 fallthrough;
5106 case NOP:
5107 done = MSGLOOP_MSGCOMPLETE;
5108 break;
5109 case EXTENDED_MESSAGE:
5110 {
5111 /* Wait for enough of the message to begin validation */
5112 if (ahd->msgin_index < 2)
5113 break;
5114 switch (ahd->msgin_buf[2]) {
5115 case EXTENDED_SDTR:
5116 {
5117 u_int period;
5118 u_int ppr_options;
5119 u_int offset;
5120 u_int saved_offset;
5121
5122 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5123 reject = TRUE;
5124 break;
5125 }
5126
5127 /*
5128 * Wait until we have both args before validating
5129 * and acting on this message.
5130 *
5131 * Add one to MSG_EXT_SDTR_LEN to account for
5132 * the extended message preamble.
5133 */
5134 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5135 break;
5136
5137 period = ahd->msgin_buf[3];
5138 ppr_options = 0;
5139 saved_offset = offset = ahd->msgin_buf[4];
5140 ahd_devlimited_syncrate(ahd, tinfo, &period,
5141 &ppr_options, devinfo->role);
5142 ahd_validate_offset(ahd, tinfo, period, &offset,
5143 tinfo->curr.width, devinfo->role);
5144 if (bootverbose) {
5145 printk("(%s:%c:%d:%d): Received "
5146 "SDTR period %x, offset %x\n\t"
5147 "Filtered to period %x, offset %x\n",
5148 ahd_name(ahd), devinfo->channel,
5149 devinfo->target, devinfo->lun,
5150 ahd->msgin_buf[3], saved_offset,
5151 period, offset);
5152 }
5153 ahd_set_syncrate(ahd, devinfo, period,
5154 offset, ppr_options,
5155 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5156 /*paused*/TRUE);
5157
5158 /*
5159 * See if we initiated Sync Negotiation
5160 * and didn't have to fall down to async
5161 * transfers.
5162 */
5163 if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, TRUE)) {
5164 /* We started it */
5165 if (saved_offset != offset) {
5166 /* Went too low - force async */
5167 reject = TRUE;
5168 }
5169 } else {
5170 /*
5171 * Send our own SDTR in reply
5172 */
5173 if (bootverbose
5174 && devinfo->role == ROLE_INITIATOR) {
5175 printk("(%s:%c:%d:%d): Target "
5176 "Initiated SDTR\n",
5177 ahd_name(ahd), devinfo->channel,
5178 devinfo->target, devinfo->lun);
5179 }
5180 ahd->msgout_index = 0;
5181 ahd->msgout_len = 0;
5182 ahd_construct_sdtr(ahd, devinfo,
5183 period, offset);
5184 ahd->msgout_index = 0;
5185 response = TRUE;
5186 }
5187 done = MSGLOOP_MSGCOMPLETE;
5188 break;
5189 }
5190 case EXTENDED_WDTR:
5191 {
5192 u_int bus_width;
5193 u_int saved_width;
5194 u_int sending_reply;
5195
5196 sending_reply = FALSE;
5197 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5198 reject = TRUE;
5199 break;
5200 }
5201
5202 /*
5203 * Wait until we have our arg before validating
5204 * and acting on this message.
5205 *
5206 * Add one to MSG_EXT_WDTR_LEN to account for
5207 * the extended message preamble.
5208 */
5209 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5210 break;
5211
5212 bus_width = ahd->msgin_buf[3];
5213 saved_width = bus_width;
5214 ahd_validate_width(ahd, tinfo, &bus_width,
5215 devinfo->role);
5216 if (bootverbose) {
5217 printk("(%s:%c:%d:%d): Received WDTR "
5218 "%x filtered to %x\n",
5219 ahd_name(ahd), devinfo->channel,
5220 devinfo->target, devinfo->lun,
5221 saved_width, bus_width);
5222 }
5223
5224 if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, TRUE)) {
5225 /*
5226 * Don't send a WDTR back to the
5227 * target, since we asked first.
5228 * If the width went higher than our
5229 * request, reject it.
5230 */
5231 if (saved_width > bus_width) {
5232 reject = TRUE;
5233 printk("(%s:%c:%d:%d): requested %dBit "
5234 "transfers. Rejecting...\n",
5235 ahd_name(ahd), devinfo->channel,
5236 devinfo->target, devinfo->lun,
5237 8 * (0x01 << bus_width));
5238 bus_width = 0;
5239 }
5240 } else {
5241 /*
5242 * Send our own WDTR in reply
5243 */
5244 if (bootverbose
5245 && devinfo->role == ROLE_INITIATOR) {
5246 printk("(%s:%c:%d:%d): Target "
5247 "Initiated WDTR\n",
5248 ahd_name(ahd), devinfo->channel,
5249 devinfo->target, devinfo->lun);
5250 }
5251 ahd->msgout_index = 0;
5252 ahd->msgout_len = 0;
5253 ahd_construct_wdtr(ahd, devinfo, bus_width);
5254 ahd->msgout_index = 0;
5255 response = TRUE;
5256 sending_reply = TRUE;
5257 }
5258 /*
5259 * After a wide message, we are async, but
5260 * some devices don't seem to honor this portion
5261 * of the spec. Force a renegotiation of the
5262 * sync component of our transfer agreement even
5263 * if our goal is async. By updating our width
5264 * after forcing the negotiation, we avoid
5265 * renegotiating for width.
5266 */
5267 ahd_update_neg_request(ahd, devinfo, tstate,
5268 tinfo, AHD_NEG_ALWAYS);
5269 ahd_set_width(ahd, devinfo, bus_width,
5270 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5271 /*paused*/TRUE);
5272 if (sending_reply == FALSE && reject == FALSE) {
5273
5274 /*
5275 * We will always have an SDTR to send.
5276 */
5277 ahd->msgout_index = 0;
5278 ahd->msgout_len = 0;
5279 ahd_build_transfer_msg(ahd, devinfo);
5280 ahd->msgout_index = 0;
5281 response = TRUE;
5282 }
5283 done = MSGLOOP_MSGCOMPLETE;
5284 break;
5285 }
5286 case EXTENDED_PPR:
5287 {
5288 u_int period;
5289 u_int offset;
5290 u_int bus_width;
5291 u_int ppr_options;
5292 u_int saved_width;
5293 u_int saved_offset;
5294 u_int saved_ppr_options;
5295
5296 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5297 reject = TRUE;
5298 break;
5299 }
5300
5301 /*
5302 * Wait until we have all args before validating
5303 * and acting on this message.
5304 *
5305 * Add one to MSG_EXT_PPR_LEN to account for
5306 * the extended message preamble.
5307 */
5308 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5309 break;
5310
5311 period = ahd->msgin_buf[3];
5312 offset = ahd->msgin_buf[5];
5313 bus_width = ahd->msgin_buf[6];
5314 saved_width = bus_width;
5315 ppr_options = ahd->msgin_buf[7];
5316 /*
5317 * According to the spec, a DT only
5318 * period factor with no DT option
5319 * set implies async.
5320 */
5321 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5322 && period <= 9)
5323 offset = 0;
5324 saved_ppr_options = ppr_options;
5325 saved_offset = offset;
5326
5327 /*
5328 * Transfer options are only available if we
5329 * are negotiating wide.
5330 */
5331 if (bus_width == 0)
5332 ppr_options &= MSG_EXT_PPR_QAS_REQ;
5333
5334 ahd_validate_width(ahd, tinfo, &bus_width,
5335 devinfo->role);
5336 ahd_devlimited_syncrate(ahd, tinfo, &period,
5337 &ppr_options, devinfo->role);
5338 ahd_validate_offset(ahd, tinfo, period, &offset,
5339 bus_width, devinfo->role);
5340
5341 if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, TRUE)) {
5342 /*
5343 * If we are unable to do any of the
5344 * requested options (we went too low),
5345 * then we'll have to reject the message.
5346 */
5347 if (saved_width > bus_width
5348 || saved_offset != offset
5349 || saved_ppr_options != ppr_options) {
5350 reject = TRUE;
5351 period = 0;
5352 offset = 0;
5353 bus_width = 0;
5354 ppr_options = 0;
5355 }
5356 } else {
5357 if (devinfo->role != ROLE_TARGET)
5358 printk("(%s:%c:%d:%d): Target "
5359 "Initiated PPR\n",
5360 ahd_name(ahd), devinfo->channel,
5361 devinfo->target, devinfo->lun);
5362 else
5363 printk("(%s:%c:%d:%d): Initiator "
5364 "Initiated PPR\n",
5365 ahd_name(ahd), devinfo->channel,
5366 devinfo->target, devinfo->lun);
5367 ahd->msgout_index = 0;
5368 ahd->msgout_len = 0;
5369 ahd_construct_ppr(ahd, devinfo, period, offset,
5370 bus_width, ppr_options);
5371 ahd->msgout_index = 0;
5372 response = TRUE;
5373 }
5374 if (bootverbose) {
5375 printk("(%s:%c:%d:%d): Received PPR width %x, "
5376 "period %x, offset %x,options %x\n"
5377 "\tFiltered to width %x, period %x, "
5378 "offset %x, options %x\n",
5379 ahd_name(ahd), devinfo->channel,
5380 devinfo->target, devinfo->lun,
5381 saved_width, ahd->msgin_buf[3],
5382 saved_offset, saved_ppr_options,
5383 bus_width, period, offset, ppr_options);
5384 }
5385 ahd_set_width(ahd, devinfo, bus_width,
5386 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5387 /*paused*/TRUE);
5388 ahd_set_syncrate(ahd, devinfo, period,
5389 offset, ppr_options,
5390 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5391 /*paused*/TRUE);
5392
5393 done = MSGLOOP_MSGCOMPLETE;
5394 break;
5395 }
5396 default:
5397 /* Unknown extended message. Reject it. */
5398 reject = TRUE;
5399 break;
5400 }
5401 break;
5402 }
5403 #ifdef AHD_TARGET_MODE
5404 case TARGET_RESET:
5405 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5406 CAM_BDR_SENT,
5407 "Bus Device Reset Received",
5408 /*verbose_level*/0);
5409 ahd_restart(ahd);
5410 done = MSGLOOP_TERMINATED;
5411 break;
5412 case ABORT_TASK:
5413 case ABORT_TASK_SET:
5414 case CLEAR_TASK_SET:
5415 {
5416 int tag;
5417
5418 /* Target mode messages */
5419 if (devinfo->role != ROLE_TARGET) {
5420 reject = TRUE;
5421 break;
5422 }
5423 tag = SCB_LIST_NULL;
5424 if (ahd->msgin_buf[0] == ABORT_TASK)
5425 tag = ahd_inb(ahd, INITIATOR_TAG);
5426 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5427 devinfo->lun, tag, ROLE_TARGET,
5428 CAM_REQ_ABORTED);
5429
5430 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5431 if (tstate != NULL) {
5432 struct ahd_tmode_lstate* lstate;
5433
5434 lstate = tstate->enabled_luns[devinfo->lun];
5435 if (lstate != NULL) {
5436 ahd_queue_lstate_event(ahd, lstate,
5437 devinfo->our_scsiid,
5438 ahd->msgin_buf[0],
5439 /*arg*/tag);
5440 ahd_send_lstate_events(ahd, lstate);
5441 }
5442 }
5443 ahd_restart(ahd);
5444 done = MSGLOOP_TERMINATED;
5445 break;
5446 }
5447 #endif
5448 case QAS_REQUEST:
5449 #ifdef AHD_DEBUG
5450 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5451 printk("%s: QAS request. SCSISIGI == 0x%x\n",
5452 ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5453 #endif
5454 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5455 fallthrough;
5456 case TERMINATE_IO_PROC:
5457 default:
5458 reject = TRUE;
5459 break;
5460 }
5461
5462 if (reject) {
5463 /*
5464 * Setup to reject the message.
5465 */
5466 ahd->msgout_index = 0;
5467 ahd->msgout_len = 1;
5468 ahd->msgout_buf[0] = MESSAGE_REJECT;
5469 done = MSGLOOP_MSGCOMPLETE;
5470 response = TRUE;
5471 }
5472
5473 if (done != MSGLOOP_IN_PROG && !response)
5474 /* Clear the outgoing message buffer */
5475 ahd->msgout_len = 0;
5476
5477 return (done);
5478 }
5479
5480 /*
5481 * Process a message reject message.
5482 */
5483 static int
ahd_handle_msg_reject(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5484 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5485 {
5486 /*
5487 * What we care about here is if we had an
5488 * outstanding SDTR or WDTR message for this
5489 * target. If we did, this is a signal that
5490 * the target is refusing negotiation.
5491 */
5492 struct scb *scb;
5493 struct ahd_initiator_tinfo *tinfo;
5494 struct ahd_tmode_tstate *tstate;
5495 u_int scb_index;
5496 u_int last_msg;
5497 int response = 0;
5498
5499 scb_index = ahd_get_scbptr(ahd);
5500 scb = ahd_lookup_scb(ahd, scb_index);
5501 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5502 devinfo->our_scsiid,
5503 devinfo->target, &tstate);
5504 /* Might be necessary */
5505 last_msg = ahd_inb(ahd, LAST_MSG);
5506
5507 if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/FALSE)) {
5508 if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/TRUE)
5509 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5510 /*
5511 * Target may not like our SPI-4 PPR Options.
5512 * Attempt to negotiate 80MHz which will turn
5513 * off these options.
5514 */
5515 if (bootverbose) {
5516 printk("(%s:%c:%d:%d): PPR Rejected. "
5517 "Trying simple U160 PPR\n",
5518 ahd_name(ahd), devinfo->channel,
5519 devinfo->target, devinfo->lun);
5520 }
5521 tinfo->goal.period = AHD_SYNCRATE_DT;
5522 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5523 | MSG_EXT_PPR_QAS_REQ
5524 | MSG_EXT_PPR_DT_REQ;
5525 } else {
5526 /*
5527 * Target does not support the PPR message.
5528 * Attempt to negotiate SPI-2 style.
5529 */
5530 if (bootverbose) {
5531 printk("(%s:%c:%d:%d): PPR Rejected. "
5532 "Trying WDTR/SDTR\n",
5533 ahd_name(ahd), devinfo->channel,
5534 devinfo->target, devinfo->lun);
5535 }
5536 tinfo->goal.ppr_options = 0;
5537 tinfo->curr.transport_version = 2;
5538 tinfo->goal.transport_version = 2;
5539 }
5540 ahd->msgout_index = 0;
5541 ahd->msgout_len = 0;
5542 ahd_build_transfer_msg(ahd, devinfo);
5543 ahd->msgout_index = 0;
5544 response = 1;
5545 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, /*full*/FALSE)) {
5546
5547 /* note 8bit xfers */
5548 printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
5549 "8bit transfers\n", ahd_name(ahd),
5550 devinfo->channel, devinfo->target, devinfo->lun);
5551 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5552 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5553 /*paused*/TRUE);
5554 /*
5555 * No need to clear the sync rate. If the target
5556 * did not accept the command, our syncrate is
5557 * unaffected. If the target started the negotiation,
5558 * but rejected our response, we already cleared the
5559 * sync rate before sending our WDTR.
5560 */
5561 if (tinfo->goal.offset != tinfo->curr.offset) {
5562
5563 /* Start the sync negotiation */
5564 ahd->msgout_index = 0;
5565 ahd->msgout_len = 0;
5566 ahd_build_transfer_msg(ahd, devinfo);
5567 ahd->msgout_index = 0;
5568 response = 1;
5569 }
5570 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, /*full*/FALSE)) {
5571 /* note asynch xfers and clear flag */
5572 ahd_set_syncrate(ahd, devinfo, /*period*/0,
5573 /*offset*/0, /*ppr_options*/0,
5574 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5575 /*paused*/TRUE);
5576 printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5577 "Using asynchronous transfers\n",
5578 ahd_name(ahd), devinfo->channel,
5579 devinfo->target, devinfo->lun);
5580 } else if ((scb->hscb->control & SIMPLE_QUEUE_TAG) != 0) {
5581 int tag_type;
5582 int mask;
5583
5584 tag_type = (scb->hscb->control & SIMPLE_QUEUE_TAG);
5585
5586 if (tag_type == SIMPLE_QUEUE_TAG) {
5587 printk("(%s:%c:%d:%d): refuses tagged commands. "
5588 "Performing non-tagged I/O\n", ahd_name(ahd),
5589 devinfo->channel, devinfo->target, devinfo->lun);
5590 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5591 mask = ~0x23;
5592 } else {
5593 printk("(%s:%c:%d:%d): refuses %s tagged commands. "
5594 "Performing simple queue tagged I/O only\n",
5595 ahd_name(ahd), devinfo->channel, devinfo->target,
5596 devinfo->lun, tag_type == ORDERED_QUEUE_TAG
5597 ? "ordered" : "head of queue");
5598 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5599 mask = ~0x03;
5600 }
5601
5602 /*
5603 * Resend the identify for this CCB as the target
5604 * may believe that the selection is invalid otherwise.
5605 */
5606 ahd_outb(ahd, SCB_CONTROL,
5607 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5608 scb->hscb->control &= mask;
5609 ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5610 /*type*/SIMPLE_QUEUE_TAG);
5611 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5612 ahd_assert_atn(ahd);
5613 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5614 SCB_GET_TAG(scb));
5615
5616 /*
5617 * Requeue all tagged commands for this target
5618 * currently in our possession so they can be
5619 * converted to untagged commands.
5620 */
5621 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5622 SCB_GET_CHANNEL(ahd, scb),
5623 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5624 ROLE_INITIATOR, CAM_REQUEUE_REQ,
5625 SEARCH_COMPLETE);
5626 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5627 /*
5628 * Most likely the device believes that we had
5629 * previously negotiated packetized.
5630 */
5631 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5632 | MSG_FLAG_IU_REQ_CHANGED;
5633
5634 ahd_force_renegotiation(ahd, devinfo);
5635 ahd->msgout_index = 0;
5636 ahd->msgout_len = 0;
5637 ahd_build_transfer_msg(ahd, devinfo);
5638 ahd->msgout_index = 0;
5639 response = 1;
5640 } else {
5641 /*
5642 * Otherwise, we ignore it.
5643 */
5644 printk("%s:%c:%d: Message reject for %x -- ignored\n",
5645 ahd_name(ahd), devinfo->channel, devinfo->target,
5646 last_msg);
5647 }
5648 return (response);
5649 }
5650
5651 /*
5652 * Process an ingnore wide residue message.
5653 */
5654 static void
ahd_handle_ign_wide_residue(struct ahd_softc * ahd,struct ahd_devinfo * devinfo)5655 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5656 {
5657 u_int scb_index;
5658 struct scb *scb;
5659
5660 scb_index = ahd_get_scbptr(ahd);
5661 scb = ahd_lookup_scb(ahd, scb_index);
5662 /*
5663 * XXX Actually check data direction in the sequencer?
5664 * Perhaps add datadir to some spare bits in the hscb?
5665 */
5666 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5667 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5668 /*
5669 * Ignore the message if we haven't
5670 * seen an appropriate data phase yet.
5671 */
5672 } else {
5673 /*
5674 * If the residual occurred on the last
5675 * transfer and the transfer request was
5676 * expected to end on an odd count, do
5677 * nothing. Otherwise, subtract a byte
5678 * and update the residual count accordingly.
5679 */
5680 uint32_t sgptr;
5681
5682 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5683 if ((sgptr & SG_LIST_NULL) != 0
5684 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5685 & SCB_XFERLEN_ODD) != 0) {
5686 /*
5687 * If the residual occurred on the last
5688 * transfer and the transfer request was
5689 * expected to end on an odd count, do
5690 * nothing.
5691 */
5692 } else {
5693 uint32_t data_cnt;
5694 uint64_t data_addr;
5695 uint32_t sglen;
5696
5697 /* Pull in the rest of the sgptr */
5698 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5699 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5700 if ((sgptr & SG_LIST_NULL) != 0) {
5701 /*
5702 * The residual data count is not updated
5703 * for the command run to completion case.
5704 * Explicitly zero the count.
5705 */
5706 data_cnt &= ~AHD_SG_LEN_MASK;
5707 }
5708 data_addr = ahd_inq(ahd, SHADDR);
5709 data_cnt += 1;
5710 data_addr -= 1;
5711 sgptr &= SG_PTR_MASK;
5712 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5713 struct ahd_dma64_seg *sg;
5714
5715 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5716
5717 /*
5718 * The residual sg ptr points to the next S/G
5719 * to load so we must go back one.
5720 */
5721 sg--;
5722 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5723 if (sg != scb->sg_list
5724 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5725
5726 sg--;
5727 sglen = ahd_le32toh(sg->len);
5728 /*
5729 * Preserve High Address and SG_LIST
5730 * bits while setting the count to 1.
5731 */
5732 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5733 data_addr = ahd_le64toh(sg->addr)
5734 + (sglen & AHD_SG_LEN_MASK)
5735 - 1;
5736
5737 /*
5738 * Increment sg so it points to the
5739 * "next" sg.
5740 */
5741 sg++;
5742 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5743 sg);
5744 }
5745 } else {
5746 struct ahd_dma_seg *sg;
5747
5748 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5749
5750 /*
5751 * The residual sg ptr points to the next S/G
5752 * to load so we must go back one.
5753 */
5754 sg--;
5755 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5756 if (sg != scb->sg_list
5757 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5758
5759 sg--;
5760 sglen = ahd_le32toh(sg->len);
5761 /*
5762 * Preserve High Address and SG_LIST
5763 * bits while setting the count to 1.
5764 */
5765 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5766 data_addr = ahd_le32toh(sg->addr)
5767 + (sglen & AHD_SG_LEN_MASK)
5768 - 1;
5769
5770 /*
5771 * Increment sg so it points to the
5772 * "next" sg.
5773 */
5774 sg++;
5775 sgptr = ahd_sg_virt_to_bus(ahd, scb,
5776 sg);
5777 }
5778 }
5779 /*
5780 * Toggle the "oddness" of the transfer length
5781 * to handle this mid-transfer ignore wide
5782 * residue. This ensures that the oddness is
5783 * correct for subsequent data transfers.
5784 */
5785 ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5786 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5787 ^ SCB_XFERLEN_ODD);
5788
5789 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5790 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5791 /*
5792 * The FIFO's pointers will be updated if/when the
5793 * sequencer re-enters a data phase.
5794 */
5795 }
5796 }
5797 }
5798
5799
5800 /*
5801 * Reinitialize the data pointers for the active transfer
5802 * based on its current residual.
5803 */
5804 static void
ahd_reinitialize_dataptrs(struct ahd_softc * ahd)5805 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5806 {
5807 struct scb *scb;
5808 ahd_mode_state saved_modes;
5809 u_int scb_index;
5810 u_int wait;
5811 uint32_t sgptr;
5812 uint32_t resid;
5813 uint64_t dataptr;
5814
5815 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5816 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5817
5818 scb_index = ahd_get_scbptr(ahd);
5819 scb = ahd_lookup_scb(ahd, scb_index);
5820
5821 /*
5822 * Release and reacquire the FIFO so we
5823 * have a clean slate.
5824 */
5825 ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5826 wait = 1000;
5827 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5828 ahd_delay(100);
5829 if (wait == 0) {
5830 ahd_print_path(ahd, scb);
5831 printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5832 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5833 }
5834 saved_modes = ahd_save_modes(ahd);
5835 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5836 ahd_outb(ahd, DFFSTAT,
5837 ahd_inb(ahd, DFFSTAT)
5838 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5839
5840 /*
5841 * Determine initial values for data_addr and data_cnt
5842 * for resuming the data phase.
5843 */
5844 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5845 sgptr &= SG_PTR_MASK;
5846
5847 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5848 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5849 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5850
5851 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5852 struct ahd_dma64_seg *sg;
5853
5854 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5855
5856 /* The residual sg_ptr always points to the next sg */
5857 sg--;
5858
5859 dataptr = ahd_le64toh(sg->addr)
5860 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5861 - resid;
5862 ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5863 } else {
5864 struct ahd_dma_seg *sg;
5865
5866 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5867
5868 /* The residual sg_ptr always points to the next sg */
5869 sg--;
5870
5871 dataptr = ahd_le32toh(sg->addr)
5872 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5873 - resid;
5874 ahd_outb(ahd, HADDR + 4,
5875 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5876 }
5877 ahd_outl(ahd, HADDR, dataptr);
5878 ahd_outb(ahd, HCNT + 2, resid >> 16);
5879 ahd_outb(ahd, HCNT + 1, resid >> 8);
5880 ahd_outb(ahd, HCNT, resid);
5881 }
5882
5883 /*
5884 * Handle the effects of issuing a bus device reset message.
5885 */
5886 static void
ahd_handle_devreset(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,u_int lun,cam_status status,char * message,int verbose_level)5887 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5888 u_int lun, cam_status status, char *message,
5889 int verbose_level)
5890 {
5891 #ifdef AHD_TARGET_MODE
5892 struct ahd_tmode_tstate* tstate;
5893 #endif
5894 int found;
5895
5896 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5897 lun, SCB_LIST_NULL, devinfo->role,
5898 status);
5899
5900 #ifdef AHD_TARGET_MODE
5901 /*
5902 * Send an immediate notify ccb to all target mord peripheral
5903 * drivers affected by this action.
5904 */
5905 tstate = ahd->enabled_targets[devinfo->our_scsiid];
5906 if (tstate != NULL) {
5907 u_int cur_lun;
5908 u_int max_lun;
5909
5910 if (lun != CAM_LUN_WILDCARD) {
5911 cur_lun = 0;
5912 max_lun = AHD_NUM_LUNS - 1;
5913 } else {
5914 cur_lun = lun;
5915 max_lun = lun;
5916 }
5917 for (;cur_lun <= max_lun; cur_lun++) {
5918 struct ahd_tmode_lstate* lstate;
5919
5920 lstate = tstate->enabled_luns[cur_lun];
5921 if (lstate == NULL)
5922 continue;
5923
5924 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5925 TARGET_RESET, /*arg*/0);
5926 ahd_send_lstate_events(ahd, lstate);
5927 }
5928 }
5929 #endif
5930
5931 /*
5932 * Go back to async/narrow transfers and renegotiate.
5933 */
5934 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5935 AHD_TRANS_CUR, /*paused*/TRUE);
5936 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5937 /*ppr_options*/0, AHD_TRANS_CUR,
5938 /*paused*/TRUE);
5939
5940 if (status != CAM_SEL_TIMEOUT)
5941 ahd_send_async(ahd, devinfo->channel, devinfo->target,
5942 CAM_LUN_WILDCARD, AC_SENT_BDR);
5943
5944 if (message != NULL && bootverbose)
5945 printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5946 message, devinfo->channel, devinfo->target, found);
5947 }
5948
5949 #ifdef AHD_TARGET_MODE
5950 static void
ahd_setup_target_msgin(struct ahd_softc * ahd,struct ahd_devinfo * devinfo,struct scb * scb)5951 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5952 struct scb *scb)
5953 {
5954
5955 /*
5956 * To facilitate adding multiple messages together,
5957 * each routine should increment the index and len
5958 * variables instead of setting them explicitly.
5959 */
5960 ahd->msgout_index = 0;
5961 ahd->msgout_len = 0;
5962
5963 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5964 ahd_build_transfer_msg(ahd, devinfo);
5965 else
5966 panic("ahd_intr: AWAITING target message with no message");
5967
5968 ahd->msgout_index = 0;
5969 ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5970 }
5971 #endif
5972 /**************************** Initialization **********************************/
5973 static u_int
ahd_sglist_size(struct ahd_softc * ahd)5974 ahd_sglist_size(struct ahd_softc *ahd)
5975 {
5976 bus_size_t list_size;
5977
5978 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5979 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5980 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5981 return (list_size);
5982 }
5983
5984 /*
5985 * Calculate the optimum S/G List allocation size. S/G elements used
5986 * for a given transaction must be physically contiguous. Assume the
5987 * OS will allocate full pages to us, so it doesn't make sense to request
5988 * less than a page.
5989 */
5990 static u_int
ahd_sglist_allocsize(struct ahd_softc * ahd)5991 ahd_sglist_allocsize(struct ahd_softc *ahd)
5992 {
5993 bus_size_t sg_list_increment;
5994 bus_size_t sg_list_size;
5995 bus_size_t max_list_size;
5996 bus_size_t best_list_size;
5997
5998 /* Start out with the minimum required for AHD_NSEG. */
5999 sg_list_increment = ahd_sglist_size(ahd);
6000 sg_list_size = sg_list_increment;
6001
6002 /* Get us as close as possible to a page in size. */
6003 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6004 sg_list_size += sg_list_increment;
6005
6006 /*
6007 * Try to reduce the amount of wastage by allocating
6008 * multiple pages.
6009 */
6010 best_list_size = sg_list_size;
6011 max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6012 if (max_list_size < 4 * PAGE_SIZE)
6013 max_list_size = 4 * PAGE_SIZE;
6014 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6015 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6016 while ((sg_list_size + sg_list_increment) <= max_list_size
6017 && (sg_list_size % PAGE_SIZE) != 0) {
6018 bus_size_t new_mod;
6019 bus_size_t best_mod;
6020
6021 sg_list_size += sg_list_increment;
6022 new_mod = sg_list_size % PAGE_SIZE;
6023 best_mod = best_list_size % PAGE_SIZE;
6024 if (new_mod > best_mod || new_mod == 0) {
6025 best_list_size = sg_list_size;
6026 }
6027 }
6028 return (best_list_size);
6029 }
6030
6031 /*
6032 * Allocate a controller structure for a new device
6033 * and perform initial initializion.
6034 */
6035 struct ahd_softc *
ahd_alloc(void * platform_arg,char * name)6036 ahd_alloc(void *platform_arg, char *name)
6037 {
6038 struct ahd_softc *ahd;
6039
6040 ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC);
6041 if (!ahd) {
6042 printk("aic7xxx: cannot malloc softc!\n");
6043 kfree(name);
6044 return NULL;
6045 }
6046
6047 ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6048 if (ahd->seep_config == NULL) {
6049 kfree(ahd);
6050 kfree(name);
6051 return (NULL);
6052 }
6053 LIST_INIT(&ahd->pending_scbs);
6054 /* We don't know our unit number until the OSM sets it */
6055 ahd->name = name;
6056 ahd->unit = -1;
6057 ahd->description = NULL;
6058 ahd->bus_description = NULL;
6059 ahd->channel = 'A';
6060 ahd->chip = AHD_NONE;
6061 ahd->features = AHD_FENONE;
6062 ahd->bugs = AHD_BUGNONE;
6063 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6064 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6065 timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6066 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6067 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6068 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6069 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6070 ahd->int_coalescing_stop_threshold =
6071 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6072
6073 #ifdef AHD_DEBUG
6074 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6075 printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6076 ahd_name(ahd), (u_int)sizeof(struct scb),
6077 (u_int)sizeof(struct hardware_scb));
6078 }
6079 #endif
6080 if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6081 ahd_free(ahd);
6082 ahd = NULL;
6083 }
6084 return (ahd);
6085 }
6086
6087 int
ahd_softc_init(struct ahd_softc * ahd)6088 ahd_softc_init(struct ahd_softc *ahd)
6089 {
6090
6091 ahd->unpause = 0;
6092 ahd->pause = PAUSE;
6093 return (0);
6094 }
6095
6096 void
ahd_set_unit(struct ahd_softc * ahd,int unit)6097 ahd_set_unit(struct ahd_softc *ahd, int unit)
6098 {
6099 ahd->unit = unit;
6100 }
6101
6102 void
ahd_set_name(struct ahd_softc * ahd,char * name)6103 ahd_set_name(struct ahd_softc *ahd, char *name)
6104 {
6105 kfree(ahd->name);
6106 ahd->name = name;
6107 }
6108
6109 void
ahd_free(struct ahd_softc * ahd)6110 ahd_free(struct ahd_softc *ahd)
6111 {
6112 int i;
6113
6114 switch (ahd->init_level) {
6115 default:
6116 case 5:
6117 ahd_shutdown(ahd);
6118 fallthrough;
6119 case 4:
6120 ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6121 ahd->shared_data_map.dmamap);
6122 fallthrough;
6123 case 3:
6124 ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6125 ahd->shared_data_map.dmamap);
6126 ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6127 ahd->shared_data_map.dmamap);
6128 fallthrough;
6129 case 2:
6130 ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6131 break;
6132 case 1:
6133 break;
6134 case 0:
6135 break;
6136 }
6137
6138 ahd_platform_free(ahd);
6139 ahd_fini_scbdata(ahd);
6140 for (i = 0; i < AHD_NUM_TARGETS; i++) {
6141 struct ahd_tmode_tstate *tstate;
6142
6143 tstate = ahd->enabled_targets[i];
6144 if (tstate != NULL) {
6145 #ifdef AHD_TARGET_MODE
6146 int j;
6147
6148 for (j = 0; j < AHD_NUM_LUNS; j++) {
6149 struct ahd_tmode_lstate *lstate;
6150
6151 lstate = tstate->enabled_luns[j];
6152 if (lstate != NULL) {
6153 xpt_free_path(lstate->path);
6154 kfree(lstate);
6155 }
6156 }
6157 #endif
6158 kfree(tstate);
6159 }
6160 }
6161 #ifdef AHD_TARGET_MODE
6162 if (ahd->black_hole != NULL) {
6163 xpt_free_path(ahd->black_hole->path);
6164 kfree(ahd->black_hole);
6165 }
6166 #endif
6167 kfree(ahd->name);
6168 kfree(ahd->seep_config);
6169 kfree(ahd->saved_stack);
6170 kfree(ahd);
6171 return;
6172 }
6173
6174 static void
ahd_shutdown(void * arg)6175 ahd_shutdown(void *arg)
6176 {
6177 struct ahd_softc *ahd;
6178
6179 ahd = (struct ahd_softc *)arg;
6180
6181 /*
6182 * Stop periodic timer callbacks.
6183 */
6184 del_timer_sync(&ahd->stat_timer);
6185
6186 /* This will reset most registers to 0, but not all */
6187 ahd_reset(ahd, /*reinit*/FALSE);
6188 }
6189
6190 /*
6191 * Reset the controller and record some information about it
6192 * that is only available just after a reset. If "reinit" is
6193 * non-zero, this reset occurred after initial configuration
6194 * and the caller requests that the chip be fully reinitialized
6195 * to a runable state. Chip interrupts are *not* enabled after
6196 * a reinitialization. The caller must enable interrupts via
6197 * ahd_intr_enable().
6198 */
6199 int
ahd_reset(struct ahd_softc * ahd,int reinit)6200 ahd_reset(struct ahd_softc *ahd, int reinit)
6201 {
6202 u_int sxfrctl1;
6203 int wait;
6204 uint32_t cmd;
6205
6206 /*
6207 * Preserve the value of the SXFRCTL1 register for all channels.
6208 * It contains settings that affect termination and we don't want
6209 * to disturb the integrity of the bus.
6210 */
6211 ahd_pause(ahd);
6212 ahd_update_modes(ahd);
6213 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6214 sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6215
6216 cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6217 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6218 uint32_t mod_cmd;
6219
6220 /*
6221 * A4 Razor #632
6222 * During the assertion of CHIPRST, the chip
6223 * does not disable its parity logic prior to
6224 * the start of the reset. This may cause a
6225 * parity error to be detected and thus a
6226 * spurious SERR or PERR assertion. Disable
6227 * PERR and SERR responses during the CHIPRST.
6228 */
6229 mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6230 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6231 mod_cmd, /*bytes*/2);
6232 }
6233 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6234
6235 /*
6236 * Ensure that the reset has finished. We delay 1000us
6237 * prior to reading the register to make sure the chip
6238 * has sufficiently completed its reset to handle register
6239 * accesses.
6240 */
6241 wait = 1000;
6242 do {
6243 ahd_delay(1000);
6244 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6245
6246 if (wait == 0) {
6247 printk("%s: WARNING - Failed chip reset! "
6248 "Trying to initialize anyway.\n", ahd_name(ahd));
6249 }
6250 ahd_outb(ahd, HCNTRL, ahd->pause);
6251
6252 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6253 /*
6254 * Clear any latched PCI error status and restore
6255 * previous SERR and PERR response enables.
6256 */
6257 ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6258 0xFF, /*bytes*/1);
6259 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6260 cmd, /*bytes*/2);
6261 }
6262
6263 /*
6264 * Mode should be SCSI after a chip reset, but lets
6265 * set it just to be safe. We touch the MODE_PTR
6266 * register directly so as to bypass the lazy update
6267 * code in ahd_set_modes().
6268 */
6269 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6270 ahd_outb(ahd, MODE_PTR,
6271 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6272
6273 /*
6274 * Restore SXFRCTL1.
6275 *
6276 * We must always initialize STPWEN to 1 before we
6277 * restore the saved values. STPWEN is initialized
6278 * to a tri-state condition which can only be cleared
6279 * by turning it on.
6280 */
6281 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6282 ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6283
6284 /* Determine chip configuration */
6285 ahd->features &= ~AHD_WIDE;
6286 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6287 ahd->features |= AHD_WIDE;
6288
6289 /*
6290 * If a recovery action has forced a chip reset,
6291 * re-initialize the chip to our liking.
6292 */
6293 if (reinit != 0)
6294 ahd_chip_init(ahd);
6295
6296 return (0);
6297 }
6298
6299 /*
6300 * Determine the number of SCBs available on the controller
6301 */
6302 static int
ahd_probe_scbs(struct ahd_softc * ahd)6303 ahd_probe_scbs(struct ahd_softc *ahd) {
6304 int i;
6305
6306 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6307 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6308 for (i = 0; i < AHD_SCB_MAX; i++) {
6309 int j;
6310
6311 ahd_set_scbptr(ahd, i);
6312 ahd_outw(ahd, SCB_BASE, i);
6313 for (j = 2; j < 64; j++)
6314 ahd_outb(ahd, SCB_BASE+j, 0);
6315 /* Start out life as unallocated (needing an abort) */
6316 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6317 if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6318 break;
6319 ahd_set_scbptr(ahd, 0);
6320 if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6321 break;
6322 }
6323 return (i);
6324 }
6325
6326 static void
ahd_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)6327 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6328 {
6329 dma_addr_t *baddr;
6330
6331 baddr = (dma_addr_t *)arg;
6332 *baddr = segs->ds_addr;
6333 }
6334
6335 static void
ahd_initialize_hscbs(struct ahd_softc * ahd)6336 ahd_initialize_hscbs(struct ahd_softc *ahd)
6337 {
6338 int i;
6339
6340 for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6341 ahd_set_scbptr(ahd, i);
6342
6343 /* Clear the control byte. */
6344 ahd_outb(ahd, SCB_CONTROL, 0);
6345
6346 /* Set the next pointer */
6347 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6348 }
6349 }
6350
6351 static int
ahd_init_scbdata(struct ahd_softc * ahd)6352 ahd_init_scbdata(struct ahd_softc *ahd)
6353 {
6354 struct scb_data *scb_data;
6355 int i;
6356
6357 scb_data = &ahd->scb_data;
6358 TAILQ_INIT(&scb_data->free_scbs);
6359 for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6360 LIST_INIT(&scb_data->free_scb_lists[i]);
6361 LIST_INIT(&scb_data->any_dev_free_scb_list);
6362 SLIST_INIT(&scb_data->hscb_maps);
6363 SLIST_INIT(&scb_data->sg_maps);
6364 SLIST_INIT(&scb_data->sense_maps);
6365
6366 /* Determine the number of hardware SCBs and initialize them */
6367 scb_data->maxhscbs = ahd_probe_scbs(ahd);
6368 if (scb_data->maxhscbs == 0) {
6369 printk("%s: No SCB space found\n", ahd_name(ahd));
6370 return (ENXIO);
6371 }
6372
6373 ahd_initialize_hscbs(ahd);
6374
6375 /*
6376 * Create our DMA tags. These tags define the kinds of device
6377 * accessible memory allocations and memory mappings we will
6378 * need to perform during normal operation.
6379 *
6380 * Unless we need to further restrict the allocation, we rely
6381 * on the restrictions of the parent dmat, hence the common
6382 * use of MAXADDR and MAXSIZE.
6383 */
6384
6385 /* DMA tag for our hardware scb structures */
6386 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6387 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6388 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6389 /*highaddr*/BUS_SPACE_MAXADDR,
6390 /*filter*/NULL, /*filterarg*/NULL,
6391 PAGE_SIZE, /*nsegments*/1,
6392 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6393 /*flags*/0, &scb_data->hscb_dmat) != 0) {
6394 goto error_exit;
6395 }
6396
6397 scb_data->init_level++;
6398
6399 /* DMA tag for our S/G structures. */
6400 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6401 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6402 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6403 /*highaddr*/BUS_SPACE_MAXADDR,
6404 /*filter*/NULL, /*filterarg*/NULL,
6405 ahd_sglist_allocsize(ahd), /*nsegments*/1,
6406 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6407 /*flags*/0, &scb_data->sg_dmat) != 0) {
6408 goto error_exit;
6409 }
6410 #ifdef AHD_DEBUG
6411 if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6412 printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6413 ahd_sglist_allocsize(ahd));
6414 #endif
6415
6416 scb_data->init_level++;
6417
6418 /* DMA tag for our sense buffers. We allocate in page sized chunks */
6419 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6420 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6421 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6422 /*highaddr*/BUS_SPACE_MAXADDR,
6423 /*filter*/NULL, /*filterarg*/NULL,
6424 PAGE_SIZE, /*nsegments*/1,
6425 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6426 /*flags*/0, &scb_data->sense_dmat) != 0) {
6427 goto error_exit;
6428 }
6429
6430 scb_data->init_level++;
6431
6432 /* Perform initial CCB allocation */
6433 ahd_alloc_scbs(ahd);
6434
6435 if (scb_data->numscbs == 0) {
6436 printk("%s: ahd_init_scbdata - "
6437 "Unable to allocate initial scbs\n",
6438 ahd_name(ahd));
6439 goto error_exit;
6440 }
6441
6442 /*
6443 * Note that we were successful
6444 */
6445 return (0);
6446
6447 error_exit:
6448
6449 return (ENOMEM);
6450 }
6451
6452 static struct scb *
ahd_find_scb_by_tag(struct ahd_softc * ahd,u_int tag)6453 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6454 {
6455 struct scb *scb;
6456
6457 /*
6458 * Look on the pending list.
6459 */
6460 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6461 if (SCB_GET_TAG(scb) == tag)
6462 return (scb);
6463 }
6464
6465 /*
6466 * Then on all of the collision free lists.
6467 */
6468 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6469 struct scb *list_scb;
6470
6471 list_scb = scb;
6472 do {
6473 if (SCB_GET_TAG(list_scb) == tag)
6474 return (list_scb);
6475 list_scb = LIST_NEXT(list_scb, collision_links);
6476 } while (list_scb);
6477 }
6478
6479 /*
6480 * And finally on the generic free list.
6481 */
6482 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6483 if (SCB_GET_TAG(scb) == tag)
6484 return (scb);
6485 }
6486
6487 return (NULL);
6488 }
6489
6490 static void
ahd_fini_scbdata(struct ahd_softc * ahd)6491 ahd_fini_scbdata(struct ahd_softc *ahd)
6492 {
6493 struct scb_data *scb_data;
6494
6495 scb_data = &ahd->scb_data;
6496 if (scb_data == NULL)
6497 return;
6498
6499 switch (scb_data->init_level) {
6500 default:
6501 case 7:
6502 {
6503 struct map_node *sns_map;
6504
6505 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6506 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6507 ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6508 sns_map->dmamap);
6509 ahd_dmamem_free(ahd, scb_data->sense_dmat,
6510 sns_map->vaddr, sns_map->dmamap);
6511 kfree(sns_map);
6512 }
6513 ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6514 }
6515 fallthrough;
6516 case 6:
6517 {
6518 struct map_node *sg_map;
6519
6520 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6521 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6522 ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6523 sg_map->dmamap);
6524 ahd_dmamem_free(ahd, scb_data->sg_dmat,
6525 sg_map->vaddr, sg_map->dmamap);
6526 kfree(sg_map);
6527 }
6528 ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6529 }
6530 fallthrough;
6531 case 5:
6532 {
6533 struct map_node *hscb_map;
6534
6535 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6536 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6537 ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6538 hscb_map->dmamap);
6539 ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6540 hscb_map->vaddr, hscb_map->dmamap);
6541 kfree(hscb_map);
6542 }
6543 ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6544 }
6545 fallthrough;
6546 case 4:
6547 case 3:
6548 case 2:
6549 case 1:
6550 case 0:
6551 break;
6552 }
6553 }
6554
6555 /*
6556 * DSP filter Bypass must be enabled until the first selection
6557 * after a change in bus mode (Razor #491 and #493).
6558 */
6559 static void
ahd_setup_iocell_workaround(struct ahd_softc * ahd)6560 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6561 {
6562 ahd_mode_state saved_modes;
6563
6564 saved_modes = ahd_save_modes(ahd);
6565 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6566 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6567 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6568 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6569 #ifdef AHD_DEBUG
6570 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6571 printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6572 #endif
6573 ahd_restore_modes(ahd, saved_modes);
6574 ahd->flags &= ~AHD_HAD_FIRST_SEL;
6575 }
6576
6577 static void
ahd_iocell_first_selection(struct ahd_softc * ahd)6578 ahd_iocell_first_selection(struct ahd_softc *ahd)
6579 {
6580 ahd_mode_state saved_modes;
6581 u_int sblkctl;
6582
6583 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6584 return;
6585 saved_modes = ahd_save_modes(ahd);
6586 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6587 sblkctl = ahd_inb(ahd, SBLKCTL);
6588 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6589 #ifdef AHD_DEBUG
6590 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6591 printk("%s: iocell first selection\n", ahd_name(ahd));
6592 #endif
6593 if ((sblkctl & ENAB40) != 0) {
6594 ahd_outb(ahd, DSPDATACTL,
6595 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6596 #ifdef AHD_DEBUG
6597 if ((ahd_debug & AHD_SHOW_MISC) != 0)
6598 printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6599 #endif
6600 }
6601 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6602 ahd_outb(ahd, CLRINT, CLRSCSIINT);
6603 ahd_restore_modes(ahd, saved_modes);
6604 ahd->flags |= AHD_HAD_FIRST_SEL;
6605 }
6606
6607 /*************************** SCB Management ***********************************/
6608 static void
ahd_add_col_list(struct ahd_softc * ahd,struct scb * scb,u_int col_idx)6609 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6610 {
6611 struct scb_list *free_list;
6612 struct scb_tailq *free_tailq;
6613 struct scb *first_scb;
6614
6615 scb->flags |= SCB_ON_COL_LIST;
6616 AHD_SET_SCB_COL_IDX(scb, col_idx);
6617 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6618 free_tailq = &ahd->scb_data.free_scbs;
6619 first_scb = LIST_FIRST(free_list);
6620 if (first_scb != NULL) {
6621 LIST_INSERT_AFTER(first_scb, scb, collision_links);
6622 } else {
6623 LIST_INSERT_HEAD(free_list, scb, collision_links);
6624 TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6625 }
6626 }
6627
6628 static void
ahd_rem_col_list(struct ahd_softc * ahd,struct scb * scb)6629 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6630 {
6631 struct scb_list *free_list;
6632 struct scb_tailq *free_tailq;
6633 struct scb *first_scb;
6634 u_int col_idx;
6635
6636 scb->flags &= ~SCB_ON_COL_LIST;
6637 col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6638 free_list = &ahd->scb_data.free_scb_lists[col_idx];
6639 free_tailq = &ahd->scb_data.free_scbs;
6640 first_scb = LIST_FIRST(free_list);
6641 if (first_scb == scb) {
6642 struct scb *next_scb;
6643
6644 /*
6645 * Maintain order in the collision free
6646 * lists for fairness if this device has
6647 * other colliding tags active.
6648 */
6649 next_scb = LIST_NEXT(scb, collision_links);
6650 if (next_scb != NULL) {
6651 TAILQ_INSERT_AFTER(free_tailq, scb,
6652 next_scb, links.tqe);
6653 }
6654 TAILQ_REMOVE(free_tailq, scb, links.tqe);
6655 }
6656 LIST_REMOVE(scb, collision_links);
6657 }
6658
6659 /*
6660 * Get a free scb. If there are none, see if we can allocate a new SCB.
6661 */
6662 struct scb *
ahd_get_scb(struct ahd_softc * ahd,u_int col_idx)6663 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6664 {
6665 struct scb *scb;
6666 int tries;
6667
6668 tries = 0;
6669 look_again:
6670 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6671 if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6672 ahd_rem_col_list(ahd, scb);
6673 goto found;
6674 }
6675 }
6676 if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6677
6678 if (tries++ != 0)
6679 return (NULL);
6680 ahd_alloc_scbs(ahd);
6681 goto look_again;
6682 }
6683 LIST_REMOVE(scb, links.le);
6684 if (col_idx != AHD_NEVER_COL_IDX
6685 && (scb->col_scb != NULL)
6686 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6687 LIST_REMOVE(scb->col_scb, links.le);
6688 ahd_add_col_list(ahd, scb->col_scb, col_idx);
6689 }
6690 found:
6691 scb->flags |= SCB_ACTIVE;
6692 return (scb);
6693 }
6694
6695 /*
6696 * Return an SCB resource to the free list.
6697 */
6698 void
ahd_free_scb(struct ahd_softc * ahd,struct scb * scb)6699 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6700 {
6701 /* Clean up for the next user */
6702 scb->flags = SCB_FLAG_NONE;
6703 scb->hscb->control = 0;
6704 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6705
6706 if (scb->col_scb == NULL) {
6707
6708 /*
6709 * No collision possible. Just free normally.
6710 */
6711 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6712 scb, links.le);
6713 } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6714
6715 /*
6716 * The SCB we might have collided with is on
6717 * a free collision list. Put both SCBs on
6718 * the generic list.
6719 */
6720 ahd_rem_col_list(ahd, scb->col_scb);
6721 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6722 scb, links.le);
6723 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6724 scb->col_scb, links.le);
6725 } else if ((scb->col_scb->flags
6726 & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6727 && (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6728
6729 /*
6730 * The SCB we might collide with on the next allocation
6731 * is still active in a non-packetized, tagged, context.
6732 * Put us on the SCB collision list.
6733 */
6734 ahd_add_col_list(ahd, scb,
6735 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6736 } else {
6737 /*
6738 * The SCB we might collide with on the next allocation
6739 * is either active in a packetized context, or free.
6740 * Since we can't collide, put this SCB on the generic
6741 * free list.
6742 */
6743 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6744 scb, links.le);
6745 }
6746
6747 ahd_platform_scb_free(ahd, scb);
6748 }
6749
6750 static void
ahd_alloc_scbs(struct ahd_softc * ahd)6751 ahd_alloc_scbs(struct ahd_softc *ahd)
6752 {
6753 struct scb_data *scb_data;
6754 struct scb *next_scb;
6755 struct hardware_scb *hscb;
6756 struct map_node *hscb_map;
6757 struct map_node *sg_map;
6758 struct map_node *sense_map;
6759 uint8_t *segs;
6760 uint8_t *sense_data;
6761 dma_addr_t hscb_busaddr;
6762 dma_addr_t sg_busaddr;
6763 dma_addr_t sense_busaddr;
6764 int newcount;
6765 int i;
6766
6767 scb_data = &ahd->scb_data;
6768 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6769 /* Can't allocate any more */
6770 return;
6771
6772 if (scb_data->scbs_left != 0) {
6773 int offset;
6774
6775 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6776 hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6777 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6778 hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6779 } else {
6780 hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6781
6782 if (hscb_map == NULL)
6783 return;
6784
6785 /* Allocate the next batch of hardware SCBs */
6786 if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6787 (void **)&hscb_map->vaddr,
6788 BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6789 kfree(hscb_map);
6790 return;
6791 }
6792
6793 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6794
6795 ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6796 hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6797 &hscb_map->physaddr, /*flags*/0);
6798
6799 hscb = (struct hardware_scb *)hscb_map->vaddr;
6800 hscb_busaddr = hscb_map->physaddr;
6801 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6802 }
6803
6804 if (scb_data->sgs_left != 0) {
6805 int offset;
6806
6807 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6808 - scb_data->sgs_left) * ahd_sglist_size(ahd);
6809 sg_map = SLIST_FIRST(&scb_data->sg_maps);
6810 segs = sg_map->vaddr + offset;
6811 sg_busaddr = sg_map->physaddr + offset;
6812 } else {
6813 sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6814
6815 if (sg_map == NULL)
6816 return;
6817
6818 /* Allocate the next batch of S/G lists */
6819 if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6820 (void **)&sg_map->vaddr,
6821 BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6822 kfree(sg_map);
6823 return;
6824 }
6825
6826 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6827
6828 ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6829 sg_map->vaddr, ahd_sglist_allocsize(ahd),
6830 ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6831
6832 segs = sg_map->vaddr;
6833 sg_busaddr = sg_map->physaddr;
6834 scb_data->sgs_left =
6835 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6836 #ifdef AHD_DEBUG
6837 if (ahd_debug & AHD_SHOW_MEMORY)
6838 printk("Mapped SG data\n");
6839 #endif
6840 }
6841
6842 if (scb_data->sense_left != 0) {
6843 int offset;
6844
6845 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6846 sense_map = SLIST_FIRST(&scb_data->sense_maps);
6847 sense_data = sense_map->vaddr + offset;
6848 sense_busaddr = sense_map->physaddr + offset;
6849 } else {
6850 sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6851
6852 if (sense_map == NULL)
6853 return;
6854
6855 /* Allocate the next batch of sense buffers */
6856 if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6857 (void **)&sense_map->vaddr,
6858 BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6859 kfree(sense_map);
6860 return;
6861 }
6862
6863 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6864
6865 ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6866 sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6867 &sense_map->physaddr, /*flags*/0);
6868
6869 sense_data = sense_map->vaddr;
6870 sense_busaddr = sense_map->physaddr;
6871 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6872 #ifdef AHD_DEBUG
6873 if (ahd_debug & AHD_SHOW_MEMORY)
6874 printk("Mapped sense data\n");
6875 #endif
6876 }
6877
6878 newcount = min(scb_data->sense_left, scb_data->scbs_left);
6879 newcount = min(newcount, scb_data->sgs_left);
6880 newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6881 for (i = 0; i < newcount; i++) {
6882 struct scb_platform_data *pdata;
6883 u_int col_tag;
6884
6885 next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6886 if (next_scb == NULL)
6887 break;
6888
6889 pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6890 if (pdata == NULL) {
6891 kfree(next_scb);
6892 break;
6893 }
6894 next_scb->platform_data = pdata;
6895 next_scb->hscb_map = hscb_map;
6896 next_scb->sg_map = sg_map;
6897 next_scb->sense_map = sense_map;
6898 next_scb->sg_list = segs;
6899 next_scb->sense_data = sense_data;
6900 next_scb->sense_busaddr = sense_busaddr;
6901 memset(hscb, 0, sizeof(*hscb));
6902 next_scb->hscb = hscb;
6903 hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6904
6905 /*
6906 * The sequencer always starts with the second entry.
6907 * The first entry is embedded in the scb.
6908 */
6909 next_scb->sg_list_busaddr = sg_busaddr;
6910 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6911 next_scb->sg_list_busaddr
6912 += sizeof(struct ahd_dma64_seg);
6913 else
6914 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6915 next_scb->ahd_softc = ahd;
6916 next_scb->flags = SCB_FLAG_NONE;
6917 next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6918 col_tag = scb_data->numscbs ^ 0x100;
6919 next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6920 if (next_scb->col_scb != NULL)
6921 next_scb->col_scb->col_scb = next_scb;
6922 ahd_free_scb(ahd, next_scb);
6923 hscb++;
6924 hscb_busaddr += sizeof(*hscb);
6925 segs += ahd_sglist_size(ahd);
6926 sg_busaddr += ahd_sglist_size(ahd);
6927 sense_data += AHD_SENSE_BUFSIZE;
6928 sense_busaddr += AHD_SENSE_BUFSIZE;
6929 scb_data->numscbs++;
6930 scb_data->sense_left--;
6931 scb_data->scbs_left--;
6932 scb_data->sgs_left--;
6933 }
6934 }
6935
6936 void
ahd_controller_info(struct ahd_softc * ahd,char * buf)6937 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6938 {
6939 const char *speed;
6940 const char *type;
6941 int len;
6942
6943 len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6944 buf += len;
6945
6946 speed = "Ultra320 ";
6947 if ((ahd->features & AHD_WIDE) != 0) {
6948 type = "Wide ";
6949 } else {
6950 type = "Single ";
6951 }
6952 len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6953 speed, type, ahd->channel, ahd->our_id);
6954 buf += len;
6955
6956 sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6957 ahd->scb_data.maxhscbs);
6958 }
6959
6960 static const char *channel_strings[] = {
6961 "Primary Low",
6962 "Primary High",
6963 "Secondary Low",
6964 "Secondary High"
6965 };
6966
6967 static const char *termstat_strings[] = {
6968 "Terminated Correctly",
6969 "Over Terminated",
6970 "Under Terminated",
6971 "Not Configured"
6972 };
6973
6974 /***************************** Timer Facilities *******************************/
6975 static void
ahd_timer_reset(struct timer_list * timer,int usec)6976 ahd_timer_reset(struct timer_list *timer, int usec)
6977 {
6978 del_timer(timer);
6979 timer->expires = jiffies + (usec * HZ)/1000000;
6980 add_timer(timer);
6981 }
6982
6983 /*
6984 * Start the board, ready for normal operation
6985 */
6986 int
ahd_init(struct ahd_softc * ahd)6987 ahd_init(struct ahd_softc *ahd)
6988 {
6989 uint8_t *next_vaddr;
6990 dma_addr_t next_baddr;
6991 size_t driver_data_size;
6992 int i;
6993 int error;
6994 u_int warn_user;
6995 uint8_t current_sensing;
6996 uint8_t fstat;
6997
6998 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6999
7000 ahd->stack_size = ahd_probe_stack_size(ahd);
7001 ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7002 GFP_ATOMIC);
7003 if (ahd->saved_stack == NULL)
7004 return (ENOMEM);
7005
7006 /*
7007 * Verify that the compiler hasn't over-aggressively
7008 * padded important structures.
7009 */
7010 if (sizeof(struct hardware_scb) != 64)
7011 panic("Hardware SCB size is incorrect");
7012
7013 #ifdef AHD_DEBUG
7014 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7015 ahd->flags |= AHD_SEQUENCER_DEBUG;
7016 #endif
7017
7018 /*
7019 * Default to allowing initiator operations.
7020 */
7021 ahd->flags |= AHD_INITIATORROLE;
7022
7023 /*
7024 * Only allow target mode features if this unit has them enabled.
7025 */
7026 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7027 ahd->features &= ~AHD_TARGETMODE;
7028
7029 ahd->init_level++;
7030
7031 /*
7032 * DMA tag for our command fifos and other data in system memory
7033 * the card's sequencer must be able to access. For initiator
7034 * roles, we need to allocate space for the qoutfifo. When providing
7035 * for the target mode role, we must additionally provide space for
7036 * the incoming target command fifo.
7037 */
7038 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7039 + sizeof(struct hardware_scb);
7040 if ((ahd->features & AHD_TARGETMODE) != 0)
7041 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7042 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7043 driver_data_size += PKT_OVERRUN_BUFSIZE;
7044 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7045 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7046 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7047 /*highaddr*/BUS_SPACE_MAXADDR,
7048 /*filter*/NULL, /*filterarg*/NULL,
7049 driver_data_size,
7050 /*nsegments*/1,
7051 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7052 /*flags*/0, &ahd->shared_data_dmat) != 0) {
7053 return (ENOMEM);
7054 }
7055
7056 ahd->init_level++;
7057
7058 /* Allocation of driver data */
7059 if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7060 (void **)&ahd->shared_data_map.vaddr,
7061 BUS_DMA_NOWAIT,
7062 &ahd->shared_data_map.dmamap) != 0) {
7063 return (ENOMEM);
7064 }
7065
7066 ahd->init_level++;
7067
7068 /* And permanently map it in */
7069 ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7070 ahd->shared_data_map.vaddr, driver_data_size,
7071 ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7072 /*flags*/0);
7073 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7074 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7075 next_baddr = ahd->shared_data_map.physaddr
7076 + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7077 if ((ahd->features & AHD_TARGETMODE) != 0) {
7078 ahd->targetcmds = (struct target_cmd *)next_vaddr;
7079 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7080 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7081 }
7082
7083 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7084 ahd->overrun_buf = next_vaddr;
7085 next_vaddr += PKT_OVERRUN_BUFSIZE;
7086 next_baddr += PKT_OVERRUN_BUFSIZE;
7087 }
7088
7089 /*
7090 * We need one SCB to serve as the "next SCB". Since the
7091 * tag identifier in this SCB will never be used, there is
7092 * no point in using a valid HSCB tag from an SCB pulled from
7093 * the standard free pool. So, we allocate this "sentinel"
7094 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7095 */
7096 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7097 ahd->next_queued_hscb_map = &ahd->shared_data_map;
7098 ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7099
7100 ahd->init_level++;
7101
7102 /* Allocate SCB data now that buffer_dmat is initialized */
7103 if (ahd_init_scbdata(ahd) != 0)
7104 return (ENOMEM);
7105
7106 if ((ahd->flags & AHD_INITIATORROLE) == 0)
7107 ahd->flags &= ~AHD_RESET_BUS_A;
7108
7109 /*
7110 * Before committing these settings to the chip, give
7111 * the OSM one last chance to modify our configuration.
7112 */
7113 ahd_platform_init(ahd);
7114
7115 /* Bring up the chip. */
7116 ahd_chip_init(ahd);
7117
7118 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7119
7120 if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7121 goto init_done;
7122
7123 /*
7124 * Verify termination based on current draw and
7125 * warn user if the bus is over/under terminated.
7126 */
7127 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7128 CURSENSE_ENB);
7129 if (error != 0) {
7130 printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7131 goto init_done;
7132 }
7133 for (i = 20, fstat = FLX_FSTAT_BUSY;
7134 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7135 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7136 if (error != 0) {
7137 printk("%s: current sensing timeout 2\n",
7138 ahd_name(ahd));
7139 goto init_done;
7140 }
7141 }
7142 if (i == 0) {
7143 printk("%s: Timedout during current-sensing test\n",
7144 ahd_name(ahd));
7145 goto init_done;
7146 }
7147
7148 /* Latch Current Sensing status. */
7149 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing);
7150 if (error != 0) {
7151 printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7152 goto init_done;
7153 }
7154
7155 /* Diable current sensing. */
7156 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7157
7158 #ifdef AHD_DEBUG
7159 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7160 printk("%s: current_sensing == 0x%x\n",
7161 ahd_name(ahd), current_sensing);
7162 }
7163 #endif
7164 warn_user = 0;
7165 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7166 u_int term_stat;
7167
7168 term_stat = (current_sensing & FLX_CSTAT_MASK);
7169 switch (term_stat) {
7170 case FLX_CSTAT_OVER:
7171 case FLX_CSTAT_UNDER:
7172 warn_user++;
7173 fallthrough;
7174 case FLX_CSTAT_INVALID:
7175 case FLX_CSTAT_OKAY:
7176 if (warn_user == 0 && bootverbose == 0)
7177 break;
7178 printk("%s: %s Channel %s\n", ahd_name(ahd),
7179 channel_strings[i], termstat_strings[term_stat]);
7180 break;
7181 }
7182 }
7183 if (warn_user) {
7184 printk("%s: WARNING. Termination is not configured correctly.\n"
7185 "%s: WARNING. SCSI bus operations may FAIL.\n",
7186 ahd_name(ahd), ahd_name(ahd));
7187 }
7188 init_done:
7189 ahd_restart(ahd);
7190 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7191 return (0);
7192 }
7193
7194 /*
7195 * (Re)initialize chip state after a chip reset.
7196 */
7197 static void
ahd_chip_init(struct ahd_softc * ahd)7198 ahd_chip_init(struct ahd_softc *ahd)
7199 {
7200 uint32_t busaddr;
7201 u_int sxfrctl1;
7202 u_int scsiseq_template;
7203 u_int wait;
7204 u_int i;
7205 u_int target;
7206
7207 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7208 /*
7209 * Take the LED out of diagnostic mode
7210 */
7211 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7212
7213 /*
7214 * Return HS_MAILBOX to its default value.
7215 */
7216 ahd->hs_mailbox = 0;
7217 ahd_outb(ahd, HS_MAILBOX, 0);
7218
7219 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7220 ahd_outb(ahd, IOWNID, ahd->our_id);
7221 ahd_outb(ahd, TOWNID, ahd->our_id);
7222 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7223 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7224 if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7225 && (ahd->seltime != STIMESEL_MIN)) {
7226 /*
7227 * The selection timer duration is twice as long
7228 * as it should be. Halve it by adding "1" to
7229 * the user specified setting.
7230 */
7231 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7232 } else {
7233 sxfrctl1 |= ahd->seltime;
7234 }
7235
7236 ahd_outb(ahd, SXFRCTL0, DFON);
7237 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7238 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7239
7240 /*
7241 * Now that termination is set, wait for up
7242 * to 500ms for our transceivers to settle. If
7243 * the adapter does not have a cable attached,
7244 * the transceivers may never settle, so don't
7245 * complain if we fail here.
7246 */
7247 for (wait = 10000;
7248 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7249 wait--)
7250 ahd_delay(100);
7251
7252 /* Clear any false bus resets due to the transceivers settling */
7253 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7254 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7255
7256 /* Initialize mode specific S/G state. */
7257 for (i = 0; i < 2; i++) {
7258 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7259 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7260 ahd_outb(ahd, SG_STATE, 0);
7261 ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7262 ahd_outb(ahd, SEQIMODE,
7263 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7264 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7265 }
7266
7267 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7268 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7269 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7270 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7271 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7272 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7273 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7274 } else {
7275 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7276 }
7277 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7278 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7279 /*
7280 * Do not issue a target abort when a split completion
7281 * error occurs. Let our PCIX interrupt handler deal
7282 * with it instead. H2A4 Razor #625
7283 */
7284 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7285
7286 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7287 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7288
7289 /*
7290 * Tweak IOCELL settings.
7291 */
7292 if ((ahd->flags & AHD_HP_BOARD) != 0) {
7293 for (i = 0; i < NUMDSPS; i++) {
7294 ahd_outb(ahd, DSPSELECT, i);
7295 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7296 }
7297 #ifdef AHD_DEBUG
7298 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7299 printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7300 WRTBIASCTL_HP_DEFAULT);
7301 #endif
7302 }
7303 ahd_setup_iocell_workaround(ahd);
7304
7305 /*
7306 * Enable LQI Manager interrupts.
7307 */
7308 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7309 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7310 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7311 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7312 /*
7313 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7314 * manually for the command phase at the start of a packetized
7315 * selection case. ENLQOBUSFREE should be made redundant by
7316 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7317 * events fail to assert the BUSFREE interrupt so we must
7318 * also enable LQOBUSFREE interrupts.
7319 */
7320 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7321
7322 /*
7323 * Setup sequencer interrupt handlers.
7324 */
7325 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7326 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7327
7328 /*
7329 * Setup SCB Offset registers.
7330 */
7331 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7332 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7333 pkt_long_lun));
7334 } else {
7335 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7336 }
7337 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7338 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7339 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7340 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7341 shared_data.idata.cdb));
7342 ahd_outb(ahd, QNEXTPTR,
7343 offsetof(struct hardware_scb, next_hscb_busaddr));
7344 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7345 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7346 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7347 ahd_outb(ahd, LUNLEN,
7348 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7349 } else {
7350 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7351 }
7352 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7353 ahd_outb(ahd, MAXCMD, 0xFF);
7354 ahd_outb(ahd, SCBAUTOPTR,
7355 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7356
7357 /* We haven't been enabled for target mode yet. */
7358 ahd_outb(ahd, MULTARGID, 0);
7359 ahd_outb(ahd, MULTARGID + 1, 0);
7360
7361 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7362 /* Initialize the negotiation table. */
7363 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7364 /*
7365 * Clear the spare bytes in the neg table to avoid
7366 * spurious parity errors.
7367 */
7368 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7369 ahd_outb(ahd, NEGOADDR, target);
7370 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7371 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7372 ahd_outb(ahd, ANNEXDAT, 0);
7373 }
7374 }
7375 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7376 struct ahd_devinfo devinfo;
7377 struct ahd_initiator_tinfo *tinfo;
7378 struct ahd_tmode_tstate *tstate;
7379
7380 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7381 target, &tstate);
7382 ahd_compile_devinfo(&devinfo, ahd->our_id,
7383 target, CAM_LUN_WILDCARD,
7384 'A', ROLE_INITIATOR);
7385 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7386 }
7387
7388 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7389 ahd_outb(ahd, CLRINT, CLRSCSIINT);
7390
7391 #ifdef NEEDS_MORE_TESTING
7392 /*
7393 * Always enable abort on incoming L_Qs if this feature is
7394 * supported. We use this to catch invalid SCB references.
7395 */
7396 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7397 ahd_outb(ahd, LQCTL1, ABORTPENDING);
7398 else
7399 #endif
7400 ahd_outb(ahd, LQCTL1, 0);
7401
7402 /* All of our queues are empty */
7403 ahd->qoutfifonext = 0;
7404 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7405 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7406 for (i = 0; i < AHD_QOUT_SIZE; i++)
7407 ahd->qoutfifo[i].valid_tag = 0;
7408 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7409
7410 ahd->qinfifonext = 0;
7411 for (i = 0; i < AHD_QIN_SIZE; i++)
7412 ahd->qinfifo[i] = SCB_LIST_NULL;
7413
7414 if ((ahd->features & AHD_TARGETMODE) != 0) {
7415 /* All target command blocks start out invalid. */
7416 for (i = 0; i < AHD_TMODE_CMDS; i++)
7417 ahd->targetcmds[i].cmd_valid = 0;
7418 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7419 ahd->tqinfifonext = 1;
7420 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7421 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7422 }
7423
7424 /* Initialize Scratch Ram. */
7425 ahd_outb(ahd, SEQ_FLAGS, 0);
7426 ahd_outb(ahd, SEQ_FLAGS2, 0);
7427
7428 /* We don't have any waiting selections */
7429 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7430 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7431 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7432 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7433 for (i = 0; i < AHD_NUM_TARGETS; i++)
7434 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7435
7436 /*
7437 * Nobody is waiting to be DMAed into the QOUTFIFO.
7438 */
7439 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7440 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7441 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7442 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7443 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7444
7445 /*
7446 * The Freeze Count is 0.
7447 */
7448 ahd->qfreeze_cnt = 0;
7449 ahd_outw(ahd, QFREEZE_COUNT, 0);
7450 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7451
7452 /*
7453 * Tell the sequencer where it can find our arrays in memory.
7454 */
7455 busaddr = ahd->shared_data_map.physaddr;
7456 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7457 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7458
7459 /*
7460 * Setup the allowed SCSI Sequences based on operational mode.
7461 * If we are a target, we'll enable select in operations once
7462 * we've had a lun enabled.
7463 */
7464 scsiseq_template = ENAUTOATNP;
7465 if ((ahd->flags & AHD_INITIATORROLE) != 0)
7466 scsiseq_template |= ENRSELI;
7467 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7468
7469 /* There are no busy SCBs yet. */
7470 for (target = 0; target < AHD_NUM_TARGETS; target++) {
7471 int lun;
7472
7473 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7474 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7475 }
7476
7477 /*
7478 * Initialize the group code to command length table.
7479 * Vendor Unique codes are set to 0 so we only capture
7480 * the first byte of the cdb. These can be overridden
7481 * when target mode is enabled.
7482 */
7483 ahd_outb(ahd, CMDSIZE_TABLE, 5);
7484 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7485 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7486 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7487 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7488 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7489 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7490 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7491
7492 /* Tell the sequencer of our initial queue positions */
7493 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7494 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7495 ahd->qinfifonext = 0;
7496 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7497 ahd_set_hescb_qoff(ahd, 0);
7498 ahd_set_snscb_qoff(ahd, 0);
7499 ahd_set_sescb_qoff(ahd, 0);
7500 ahd_set_sdscb_qoff(ahd, 0);
7501
7502 /*
7503 * Tell the sequencer which SCB will be the next one it receives.
7504 */
7505 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7506 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7507
7508 /*
7509 * Default to coalescing disabled.
7510 */
7511 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7512 ahd_outw(ahd, CMDS_PENDING, 0);
7513 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7514 ahd->int_coalescing_maxcmds,
7515 ahd->int_coalescing_mincmds);
7516 ahd_enable_coalescing(ahd, FALSE);
7517
7518 ahd_loadseq(ahd);
7519 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7520
7521 if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7522 u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7523
7524 negodat3 |= ENSLOWCRC;
7525 ahd_outb(ahd, NEGCONOPTS, negodat3);
7526 negodat3 = ahd_inb(ahd, NEGCONOPTS);
7527 if (!(negodat3 & ENSLOWCRC))
7528 printk("aic79xx: failed to set the SLOWCRC bit\n");
7529 else
7530 printk("aic79xx: SLOWCRC bit set\n");
7531 }
7532 }
7533
7534 /*
7535 * Setup default device and controller settings.
7536 * This should only be called if our probe has
7537 * determined that no configuration data is available.
7538 */
7539 int
ahd_default_config(struct ahd_softc * ahd)7540 ahd_default_config(struct ahd_softc *ahd)
7541 {
7542 int targ;
7543
7544 ahd->our_id = 7;
7545
7546 /*
7547 * Allocate a tstate to house information for our
7548 * initiator presence on the bus as well as the user
7549 * data for any target mode initiator.
7550 */
7551 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7552 printk("%s: unable to allocate ahd_tmode_tstate. "
7553 "Failing attach\n", ahd_name(ahd));
7554 return (ENOMEM);
7555 }
7556
7557 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7558 struct ahd_devinfo devinfo;
7559 struct ahd_initiator_tinfo *tinfo;
7560 struct ahd_tmode_tstate *tstate;
7561 uint16_t target_mask;
7562
7563 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7564 targ, &tstate);
7565 /*
7566 * We support SPC2 and SPI4.
7567 */
7568 tinfo->user.protocol_version = 4;
7569 tinfo->user.transport_version = 4;
7570
7571 target_mask = 0x01 << targ;
7572 ahd->user_discenable |= target_mask;
7573 tstate->discenable |= target_mask;
7574 ahd->user_tagenable |= target_mask;
7575 #ifdef AHD_FORCE_160
7576 tinfo->user.period = AHD_SYNCRATE_DT;
7577 #else
7578 tinfo->user.period = AHD_SYNCRATE_160;
7579 #endif
7580 tinfo->user.offset = MAX_OFFSET;
7581 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7582 | MSG_EXT_PPR_WR_FLOW
7583 | MSG_EXT_PPR_HOLD_MCS
7584 | MSG_EXT_PPR_IU_REQ
7585 | MSG_EXT_PPR_QAS_REQ
7586 | MSG_EXT_PPR_DT_REQ;
7587 if ((ahd->features & AHD_RTI) != 0)
7588 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7589
7590 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7591
7592 /*
7593 * Start out Async/Narrow/Untagged and with
7594 * conservative protocol support.
7595 */
7596 tinfo->goal.protocol_version = 2;
7597 tinfo->goal.transport_version = 2;
7598 tinfo->curr.protocol_version = 2;
7599 tinfo->curr.transport_version = 2;
7600 ahd_compile_devinfo(&devinfo, ahd->our_id,
7601 targ, CAM_LUN_WILDCARD,
7602 'A', ROLE_INITIATOR);
7603 tstate->tagenable &= ~target_mask;
7604 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7605 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7606 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7607 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7608 /*paused*/TRUE);
7609 }
7610 return (0);
7611 }
7612
7613 /*
7614 * Parse device configuration information.
7615 */
7616 int
ahd_parse_cfgdata(struct ahd_softc * ahd,struct seeprom_config * sc)7617 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7618 {
7619 int targ;
7620 int max_targ;
7621
7622 max_targ = sc->max_targets & CFMAXTARG;
7623 ahd->our_id = sc->brtime_id & CFSCSIID;
7624
7625 /*
7626 * Allocate a tstate to house information for our
7627 * initiator presence on the bus as well as the user
7628 * data for any target mode initiator.
7629 */
7630 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7631 printk("%s: unable to allocate ahd_tmode_tstate. "
7632 "Failing attach\n", ahd_name(ahd));
7633 return (ENOMEM);
7634 }
7635
7636 for (targ = 0; targ < max_targ; targ++) {
7637 struct ahd_devinfo devinfo;
7638 struct ahd_initiator_tinfo *tinfo;
7639 struct ahd_transinfo *user_tinfo;
7640 struct ahd_tmode_tstate *tstate;
7641 uint16_t target_mask;
7642
7643 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7644 targ, &tstate);
7645 user_tinfo = &tinfo->user;
7646
7647 /*
7648 * We support SPC2 and SPI4.
7649 */
7650 tinfo->user.protocol_version = 4;
7651 tinfo->user.transport_version = 4;
7652
7653 target_mask = 0x01 << targ;
7654 ahd->user_discenable &= ~target_mask;
7655 tstate->discenable &= ~target_mask;
7656 ahd->user_tagenable &= ~target_mask;
7657 if (sc->device_flags[targ] & CFDISC) {
7658 tstate->discenable |= target_mask;
7659 ahd->user_discenable |= target_mask;
7660 ahd->user_tagenable |= target_mask;
7661 } else {
7662 /*
7663 * Cannot be packetized without disconnection.
7664 */
7665 sc->device_flags[targ] &= ~CFPACKETIZED;
7666 }
7667
7668 user_tinfo->ppr_options = 0;
7669 user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7670 if (user_tinfo->period < CFXFER_ASYNC) {
7671 if (user_tinfo->period <= AHD_PERIOD_10MHz)
7672 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7673 user_tinfo->offset = MAX_OFFSET;
7674 } else {
7675 user_tinfo->offset = 0;
7676 user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7677 }
7678 #ifdef AHD_FORCE_160
7679 if (user_tinfo->period <= AHD_SYNCRATE_160)
7680 user_tinfo->period = AHD_SYNCRATE_DT;
7681 #endif
7682
7683 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7684 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7685 | MSG_EXT_PPR_WR_FLOW
7686 | MSG_EXT_PPR_HOLD_MCS
7687 | MSG_EXT_PPR_IU_REQ;
7688 if ((ahd->features & AHD_RTI) != 0)
7689 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7690 }
7691
7692 if ((sc->device_flags[targ] & CFQAS) != 0)
7693 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7694
7695 if ((sc->device_flags[targ] & CFWIDEB) != 0)
7696 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7697 else
7698 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7699 #ifdef AHD_DEBUG
7700 if ((ahd_debug & AHD_SHOW_MISC) != 0)
7701 printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7702 user_tinfo->period, user_tinfo->offset,
7703 user_tinfo->ppr_options);
7704 #endif
7705 /*
7706 * Start out Async/Narrow/Untagged and with
7707 * conservative protocol support.
7708 */
7709 tstate->tagenable &= ~target_mask;
7710 tinfo->goal.protocol_version = 2;
7711 tinfo->goal.transport_version = 2;
7712 tinfo->curr.protocol_version = 2;
7713 tinfo->curr.transport_version = 2;
7714 ahd_compile_devinfo(&devinfo, ahd->our_id,
7715 targ, CAM_LUN_WILDCARD,
7716 'A', ROLE_INITIATOR);
7717 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7718 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7719 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7720 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7721 /*paused*/TRUE);
7722 }
7723
7724 ahd->flags &= ~AHD_SPCHK_ENB_A;
7725 if (sc->bios_control & CFSPARITY)
7726 ahd->flags |= AHD_SPCHK_ENB_A;
7727
7728 ahd->flags &= ~AHD_RESET_BUS_A;
7729 if (sc->bios_control & CFRESETB)
7730 ahd->flags |= AHD_RESET_BUS_A;
7731
7732 ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7733 if (sc->bios_control & CFEXTEND)
7734 ahd->flags |= AHD_EXTENDED_TRANS_A;
7735
7736 ahd->flags &= ~AHD_BIOS_ENABLED;
7737 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7738 ahd->flags |= AHD_BIOS_ENABLED;
7739
7740 ahd->flags &= ~AHD_STPWLEVEL_A;
7741 if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7742 ahd->flags |= AHD_STPWLEVEL_A;
7743
7744 return (0);
7745 }
7746
7747 /*
7748 * Parse device configuration information.
7749 */
7750 int
ahd_parse_vpddata(struct ahd_softc * ahd,struct vpd_config * vpd)7751 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7752 {
7753 int error;
7754
7755 error = ahd_verify_vpd_cksum(vpd);
7756 if (error == 0)
7757 return (EINVAL);
7758 if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7759 ahd->flags |= AHD_BOOT_CHANNEL;
7760 return (0);
7761 }
7762
7763 void
ahd_intr_enable(struct ahd_softc * ahd,int enable)7764 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7765 {
7766 u_int hcntrl;
7767
7768 hcntrl = ahd_inb(ahd, HCNTRL);
7769 hcntrl &= ~INTEN;
7770 ahd->pause &= ~INTEN;
7771 ahd->unpause &= ~INTEN;
7772 if (enable) {
7773 hcntrl |= INTEN;
7774 ahd->pause |= INTEN;
7775 ahd->unpause |= INTEN;
7776 }
7777 ahd_outb(ahd, HCNTRL, hcntrl);
7778 }
7779
7780 static void
ahd_update_coalescing_values(struct ahd_softc * ahd,u_int timer,u_int maxcmds,u_int mincmds)7781 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7782 u_int mincmds)
7783 {
7784 if (timer > AHD_TIMER_MAX_US)
7785 timer = AHD_TIMER_MAX_US;
7786 ahd->int_coalescing_timer = timer;
7787
7788 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7789 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7790 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7791 mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7792 ahd->int_coalescing_maxcmds = maxcmds;
7793 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7794 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7795 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7796 }
7797
7798 static void
ahd_enable_coalescing(struct ahd_softc * ahd,int enable)7799 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7800 {
7801
7802 ahd->hs_mailbox &= ~ENINT_COALESCE;
7803 if (enable)
7804 ahd->hs_mailbox |= ENINT_COALESCE;
7805 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7806 ahd_flush_device_writes(ahd);
7807 ahd_run_qoutfifo(ahd);
7808 }
7809
7810 /*
7811 * Ensure that the card is paused in a location
7812 * outside of all critical sections and that all
7813 * pending work is completed prior to returning.
7814 * This routine should only be called from outside
7815 * an interrupt context.
7816 */
7817 void
ahd_pause_and_flushwork(struct ahd_softc * ahd)7818 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7819 {
7820 u_int intstat;
7821 u_int maxloops;
7822
7823 maxloops = 1000;
7824 ahd->flags |= AHD_ALL_INTERRUPTS;
7825 ahd_pause(ahd);
7826 /*
7827 * Freeze the outgoing selections. We do this only
7828 * until we are safely paused without further selections
7829 * pending.
7830 */
7831 ahd->qfreeze_cnt--;
7832 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7833 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7834 do {
7835
7836 ahd_unpause(ahd);
7837 /*
7838 * Give the sequencer some time to service
7839 * any active selections.
7840 */
7841 ahd_delay(500);
7842
7843 ahd_intr(ahd);
7844 ahd_pause(ahd);
7845 intstat = ahd_inb(ahd, INTSTAT);
7846 if ((intstat & INT_PEND) == 0) {
7847 ahd_clear_critical_section(ahd);
7848 intstat = ahd_inb(ahd, INTSTAT);
7849 }
7850 } while (--maxloops
7851 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7852 && ((intstat & INT_PEND) != 0
7853 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7854 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7855
7856 if (maxloops == 0) {
7857 printk("Infinite interrupt loop, INTSTAT = %x",
7858 ahd_inb(ahd, INTSTAT));
7859 }
7860 ahd->qfreeze_cnt++;
7861 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7862
7863 ahd_flush_qoutfifo(ahd);
7864
7865 ahd->flags &= ~AHD_ALL_INTERRUPTS;
7866 }
7867
7868 int __maybe_unused
ahd_suspend(struct ahd_softc * ahd)7869 ahd_suspend(struct ahd_softc *ahd)
7870 {
7871 ahd_pause_and_flushwork(ahd);
7872
7873 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7874 ahd_unpause(ahd);
7875 return (EBUSY);
7876 }
7877 ahd_shutdown(ahd);
7878 return (0);
7879 }
7880
7881 void __maybe_unused
ahd_resume(struct ahd_softc * ahd)7882 ahd_resume(struct ahd_softc *ahd)
7883 {
7884 ahd_reset(ahd, /*reinit*/TRUE);
7885 ahd_intr_enable(ahd, TRUE);
7886 ahd_restart(ahd);
7887 }
7888
7889 /************************** Busy Target Table *********************************/
7890 /*
7891 * Set SCBPTR to the SCB that contains the busy
7892 * table entry for TCL. Return the offset into
7893 * the SCB that contains the entry for TCL.
7894 * saved_scbid is dereferenced and set to the
7895 * scbid that should be restored once manipualtion
7896 * of the TCL entry is complete.
7897 */
7898 static inline u_int
ahd_index_busy_tcl(struct ahd_softc * ahd,u_int * saved_scbid,u_int tcl)7899 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7900 {
7901 /*
7902 * Index to the SCB that contains the busy entry.
7903 */
7904 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7905 *saved_scbid = ahd_get_scbptr(ahd);
7906 ahd_set_scbptr(ahd, TCL_LUN(tcl)
7907 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7908
7909 /*
7910 * And now calculate the SCB offset to the entry.
7911 * Each entry is 2 bytes wide, hence the
7912 * multiplication by 2.
7913 */
7914 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7915 }
7916
7917 /*
7918 * Return the untagged transaction id for a given target/channel lun.
7919 */
7920 static u_int
ahd_find_busy_tcl(struct ahd_softc * ahd,u_int tcl)7921 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7922 {
7923 u_int scbid;
7924 u_int scb_offset;
7925 u_int saved_scbptr;
7926
7927 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7928 scbid = ahd_inw_scbram(ahd, scb_offset);
7929 ahd_set_scbptr(ahd, saved_scbptr);
7930 return (scbid);
7931 }
7932
7933 static void
ahd_busy_tcl(struct ahd_softc * ahd,u_int tcl,u_int scbid)7934 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7935 {
7936 u_int scb_offset;
7937 u_int saved_scbptr;
7938
7939 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7940 ahd_outw(ahd, scb_offset, scbid);
7941 ahd_set_scbptr(ahd, saved_scbptr);
7942 }
7943
7944 /************************** SCB and SCB queue management **********************/
7945 static int
ahd_match_scb(struct ahd_softc * ahd,struct scb * scb,int target,char channel,int lun,u_int tag,role_t role)7946 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7947 char channel, int lun, u_int tag, role_t role)
7948 {
7949 int targ = SCB_GET_TARGET(ahd, scb);
7950 char chan = SCB_GET_CHANNEL(ahd, scb);
7951 int slun = SCB_GET_LUN(scb);
7952 int match;
7953
7954 match = ((chan == channel) || (channel == ALL_CHANNELS));
7955 if (match != 0)
7956 match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7957 if (match != 0)
7958 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7959 if (match != 0) {
7960 #ifdef AHD_TARGET_MODE
7961 int group;
7962
7963 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7964 if (role == ROLE_INITIATOR) {
7965 match = (group != XPT_FC_GROUP_TMODE)
7966 && ((tag == SCB_GET_TAG(scb))
7967 || (tag == SCB_LIST_NULL));
7968 } else if (role == ROLE_TARGET) {
7969 match = (group == XPT_FC_GROUP_TMODE)
7970 && ((tag == scb->io_ctx->csio.tag_id)
7971 || (tag == SCB_LIST_NULL));
7972 }
7973 #else /* !AHD_TARGET_MODE */
7974 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
7975 #endif /* AHD_TARGET_MODE */
7976 }
7977
7978 return match;
7979 }
7980
7981 static void
ahd_freeze_devq(struct ahd_softc * ahd,struct scb * scb)7982 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
7983 {
7984 int target;
7985 char channel;
7986 int lun;
7987
7988 target = SCB_GET_TARGET(ahd, scb);
7989 lun = SCB_GET_LUN(scb);
7990 channel = SCB_GET_CHANNEL(ahd, scb);
7991
7992 ahd_search_qinfifo(ahd, target, channel, lun,
7993 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
7994 CAM_REQUEUE_REQ, SEARCH_COMPLETE);
7995
7996 ahd_platform_freeze_devq(ahd, scb);
7997 }
7998
7999 void
ahd_qinfifo_requeue_tail(struct ahd_softc * ahd,struct scb * scb)8000 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8001 {
8002 struct scb *prev_scb;
8003 ahd_mode_state saved_modes;
8004
8005 saved_modes = ahd_save_modes(ahd);
8006 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8007 prev_scb = NULL;
8008 if (ahd_qinfifo_count(ahd) != 0) {
8009 u_int prev_tag;
8010 u_int prev_pos;
8011
8012 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8013 prev_tag = ahd->qinfifo[prev_pos];
8014 prev_scb = ahd_lookup_scb(ahd, prev_tag);
8015 }
8016 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8017 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8018 ahd_restore_modes(ahd, saved_modes);
8019 }
8020
8021 static void
ahd_qinfifo_requeue(struct ahd_softc * ahd,struct scb * prev_scb,struct scb * scb)8022 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8023 struct scb *scb)
8024 {
8025 if (prev_scb == NULL) {
8026 uint32_t busaddr;
8027
8028 busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8029 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8030 } else {
8031 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8032 ahd_sync_scb(ahd, prev_scb,
8033 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8034 }
8035 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8036 ahd->qinfifonext++;
8037 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8038 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8039 }
8040
8041 static int
ahd_qinfifo_count(struct ahd_softc * ahd)8042 ahd_qinfifo_count(struct ahd_softc *ahd)
8043 {
8044 u_int qinpos;
8045 u_int wrap_qinpos;
8046 u_int wrap_qinfifonext;
8047
8048 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8049 qinpos = ahd_get_snscb_qoff(ahd);
8050 wrap_qinpos = AHD_QIN_WRAP(qinpos);
8051 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8052 if (wrap_qinfifonext >= wrap_qinpos)
8053 return (wrap_qinfifonext - wrap_qinpos);
8054 else
8055 return (wrap_qinfifonext
8056 + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8057 }
8058
8059 static void
ahd_reset_cmds_pending(struct ahd_softc * ahd)8060 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8061 {
8062 struct scb *scb;
8063 ahd_mode_state saved_modes;
8064 u_int pending_cmds;
8065
8066 saved_modes = ahd_save_modes(ahd);
8067 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8068
8069 /*
8070 * Don't count any commands as outstanding that the
8071 * sequencer has already marked for completion.
8072 */
8073 ahd_flush_qoutfifo(ahd);
8074
8075 pending_cmds = 0;
8076 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8077 pending_cmds++;
8078 }
8079 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8080 ahd_restore_modes(ahd, saved_modes);
8081 ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8082 }
8083
8084 static void
ahd_done_with_status(struct ahd_softc * ahd,struct scb * scb,uint32_t status)8085 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8086 {
8087 cam_status ostat;
8088 cam_status cstat;
8089
8090 ostat = ahd_get_transaction_status(scb);
8091 if (ostat == CAM_REQ_INPROG)
8092 ahd_set_transaction_status(scb, status);
8093 cstat = ahd_get_transaction_status(scb);
8094 if (cstat != CAM_REQ_CMP)
8095 ahd_freeze_scb(scb);
8096 ahd_done(ahd, scb);
8097 }
8098
8099 int
ahd_search_qinfifo(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action)8100 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8101 int lun, u_int tag, role_t role, uint32_t status,
8102 ahd_search_action action)
8103 {
8104 struct scb *scb;
8105 struct scb *mk_msg_scb;
8106 struct scb *prev_scb;
8107 ahd_mode_state saved_modes;
8108 u_int qinstart;
8109 u_int qinpos;
8110 u_int qintail;
8111 u_int tid_next;
8112 u_int tid_prev;
8113 u_int scbid;
8114 u_int seq_flags2;
8115 u_int savedscbptr;
8116 uint32_t busaddr;
8117 int found;
8118 int targets;
8119
8120 /* Must be in CCHAN mode */
8121 saved_modes = ahd_save_modes(ahd);
8122 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8123
8124 /*
8125 * Halt any pending SCB DMA. The sequencer will reinitiate
8126 * this dma if the qinfifo is not empty once we unpause.
8127 */
8128 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8129 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8130 ahd_outb(ahd, CCSCBCTL,
8131 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8132 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8133 ;
8134 }
8135 /* Determine sequencer's position in the qinfifo. */
8136 qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8137 qinstart = ahd_get_snscb_qoff(ahd);
8138 qinpos = AHD_QIN_WRAP(qinstart);
8139 found = 0;
8140 prev_scb = NULL;
8141
8142 if (action == SEARCH_PRINT) {
8143 printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8144 qinstart, ahd->qinfifonext);
8145 }
8146
8147 /*
8148 * Start with an empty queue. Entries that are not chosen
8149 * for removal will be re-added to the queue as we go.
8150 */
8151 ahd->qinfifonext = qinstart;
8152 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8153 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8154
8155 while (qinpos != qintail) {
8156 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8157 if (scb == NULL) {
8158 printk("qinpos = %d, SCB index = %d\n",
8159 qinpos, ahd->qinfifo[qinpos]);
8160 panic("Loop 1\n");
8161 }
8162
8163 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8164 /*
8165 * We found an scb that needs to be acted on.
8166 */
8167 found++;
8168 switch (action) {
8169 case SEARCH_COMPLETE:
8170 if ((scb->flags & SCB_ACTIVE) == 0)
8171 printk("Inactive SCB in qinfifo\n");
8172 ahd_done_with_status(ahd, scb, status);
8173 fallthrough;
8174 case SEARCH_REMOVE:
8175 break;
8176 case SEARCH_PRINT:
8177 printk(" 0x%x", ahd->qinfifo[qinpos]);
8178 fallthrough;
8179 case SEARCH_COUNT:
8180 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8181 prev_scb = scb;
8182 break;
8183 }
8184 } else {
8185 ahd_qinfifo_requeue(ahd, prev_scb, scb);
8186 prev_scb = scb;
8187 }
8188 qinpos = AHD_QIN_WRAP(qinpos+1);
8189 }
8190
8191 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8192
8193 if (action == SEARCH_PRINT)
8194 printk("\nWAITING_TID_QUEUES:\n");
8195
8196 /*
8197 * Search waiting for selection lists. We traverse the
8198 * list of "their ids" waiting for selection and, if
8199 * appropriate, traverse the SCBs of each "their id"
8200 * looking for matches.
8201 */
8202 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8203 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8204 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8205 scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8206 mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8207 } else
8208 mk_msg_scb = NULL;
8209 savedscbptr = ahd_get_scbptr(ahd);
8210 tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8211 tid_prev = SCB_LIST_NULL;
8212 targets = 0;
8213 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8214 u_int tid_head;
8215 u_int tid_tail;
8216
8217 targets++;
8218 if (targets > AHD_NUM_TARGETS)
8219 panic("TID LIST LOOP");
8220
8221 if (scbid >= ahd->scb_data.numscbs) {
8222 printk("%s: Waiting TID List inconsistency. "
8223 "SCB index == 0x%x, yet numscbs == 0x%x.",
8224 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8225 ahd_dump_card_state(ahd);
8226 panic("for safety");
8227 }
8228 scb = ahd_lookup_scb(ahd, scbid);
8229 if (scb == NULL) {
8230 printk("%s: SCB = 0x%x Not Active!\n",
8231 ahd_name(ahd), scbid);
8232 panic("Waiting TID List traversal\n");
8233 }
8234 ahd_set_scbptr(ahd, scbid);
8235 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8236 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8237 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8238 tid_prev = scbid;
8239 continue;
8240 }
8241
8242 /*
8243 * We found a list of scbs that needs to be searched.
8244 */
8245 if (action == SEARCH_PRINT)
8246 printk(" %d ( ", SCB_GET_TARGET(ahd, scb));
8247 tid_head = scbid;
8248 found += ahd_search_scb_list(ahd, target, channel,
8249 lun, tag, role, status,
8250 action, &tid_head, &tid_tail,
8251 SCB_GET_TARGET(ahd, scb));
8252 /*
8253 * Check any MK_MESSAGE SCB that is still waiting to
8254 * enter this target's waiting for selection queue.
8255 */
8256 if (mk_msg_scb != NULL
8257 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8258 lun, tag, role)) {
8259
8260 /*
8261 * We found an scb that needs to be acted on.
8262 */
8263 found++;
8264 switch (action) {
8265 case SEARCH_COMPLETE:
8266 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8267 printk("Inactive SCB pending MK_MSG\n");
8268 ahd_done_with_status(ahd, mk_msg_scb, status);
8269 fallthrough;
8270 case SEARCH_REMOVE:
8271 {
8272 u_int tail_offset;
8273
8274 printk("Removing MK_MSG scb\n");
8275
8276 /*
8277 * Reset our tail to the tail of the
8278 * main per-target list.
8279 */
8280 tail_offset = WAITING_SCB_TAILS
8281 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8282 ahd_outw(ahd, tail_offset, tid_tail);
8283
8284 seq_flags2 &= ~PENDING_MK_MESSAGE;
8285 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8286 ahd_outw(ahd, CMDS_PENDING,
8287 ahd_inw(ahd, CMDS_PENDING)-1);
8288 mk_msg_scb = NULL;
8289 break;
8290 }
8291 case SEARCH_PRINT:
8292 printk(" 0x%x", SCB_GET_TAG(scb));
8293 fallthrough;
8294 case SEARCH_COUNT:
8295 break;
8296 }
8297 }
8298
8299 if (mk_msg_scb != NULL
8300 && SCBID_IS_NULL(tid_head)
8301 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8302 SCB_LIST_NULL, ROLE_UNKNOWN)) {
8303
8304 /*
8305 * When removing the last SCB for a target
8306 * queue with a pending MK_MESSAGE scb, we
8307 * must queue the MK_MESSAGE scb.
8308 */
8309 printk("Queueing mk_msg_scb\n");
8310 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8311 seq_flags2 &= ~PENDING_MK_MESSAGE;
8312 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8313 mk_msg_scb = NULL;
8314 }
8315 if (tid_head != scbid)
8316 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8317 if (!SCBID_IS_NULL(tid_head))
8318 tid_prev = tid_head;
8319 if (action == SEARCH_PRINT)
8320 printk(")\n");
8321 }
8322
8323 /* Restore saved state. */
8324 ahd_set_scbptr(ahd, savedscbptr);
8325 ahd_restore_modes(ahd, saved_modes);
8326 return (found);
8327 }
8328
8329 static int
ahd_search_scb_list(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status,ahd_search_action action,u_int * list_head,u_int * list_tail,u_int tid)8330 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8331 int lun, u_int tag, role_t role, uint32_t status,
8332 ahd_search_action action, u_int *list_head,
8333 u_int *list_tail, u_int tid)
8334 {
8335 struct scb *scb;
8336 u_int scbid;
8337 u_int next;
8338 u_int prev;
8339 int found;
8340
8341 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8342 found = 0;
8343 prev = SCB_LIST_NULL;
8344 next = *list_head;
8345 *list_tail = SCB_LIST_NULL;
8346 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8347 if (scbid >= ahd->scb_data.numscbs) {
8348 printk("%s:SCB List inconsistency. "
8349 "SCB == 0x%x, yet numscbs == 0x%x.",
8350 ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8351 ahd_dump_card_state(ahd);
8352 panic("for safety");
8353 }
8354 scb = ahd_lookup_scb(ahd, scbid);
8355 if (scb == NULL) {
8356 printk("%s: SCB = %d Not Active!\n",
8357 ahd_name(ahd), scbid);
8358 panic("Waiting List traversal\n");
8359 }
8360 ahd_set_scbptr(ahd, scbid);
8361 *list_tail = scbid;
8362 next = ahd_inw_scbram(ahd, SCB_NEXT);
8363 if (ahd_match_scb(ahd, scb, target, channel,
8364 lun, SCB_LIST_NULL, role) == 0) {
8365 prev = scbid;
8366 continue;
8367 }
8368 found++;
8369 switch (action) {
8370 case SEARCH_COMPLETE:
8371 if ((scb->flags & SCB_ACTIVE) == 0)
8372 printk("Inactive SCB in Waiting List\n");
8373 ahd_done_with_status(ahd, scb, status);
8374 fallthrough;
8375 case SEARCH_REMOVE:
8376 ahd_rem_wscb(ahd, scbid, prev, next, tid);
8377 *list_tail = prev;
8378 if (SCBID_IS_NULL(prev))
8379 *list_head = next;
8380 break;
8381 case SEARCH_PRINT:
8382 printk("0x%x ", scbid);
8383 fallthrough;
8384 case SEARCH_COUNT:
8385 prev = scbid;
8386 break;
8387 }
8388 if (found > AHD_SCB_MAX)
8389 panic("SCB LIST LOOP");
8390 }
8391 if (action == SEARCH_COMPLETE
8392 || action == SEARCH_REMOVE)
8393 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8394 return (found);
8395 }
8396
8397 static void
ahd_stitch_tid_list(struct ahd_softc * ahd,u_int tid_prev,u_int tid_cur,u_int tid_next)8398 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8399 u_int tid_cur, u_int tid_next)
8400 {
8401 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8402
8403 if (SCBID_IS_NULL(tid_cur)) {
8404
8405 /* Bypass current TID list */
8406 if (SCBID_IS_NULL(tid_prev)) {
8407 ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8408 } else {
8409 ahd_set_scbptr(ahd, tid_prev);
8410 ahd_outw(ahd, SCB_NEXT2, tid_next);
8411 }
8412 if (SCBID_IS_NULL(tid_next))
8413 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8414 } else {
8415
8416 /* Stitch through tid_cur */
8417 if (SCBID_IS_NULL(tid_prev)) {
8418 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8419 } else {
8420 ahd_set_scbptr(ahd, tid_prev);
8421 ahd_outw(ahd, SCB_NEXT2, tid_cur);
8422 }
8423 ahd_set_scbptr(ahd, tid_cur);
8424 ahd_outw(ahd, SCB_NEXT2, tid_next);
8425
8426 if (SCBID_IS_NULL(tid_next))
8427 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8428 }
8429 }
8430
8431 /*
8432 * Manipulate the waiting for selection list and return the
8433 * scb that follows the one that we remove.
8434 */
8435 static u_int
ahd_rem_wscb(struct ahd_softc * ahd,u_int scbid,u_int prev,u_int next,u_int tid)8436 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8437 u_int prev, u_int next, u_int tid)
8438 {
8439 u_int tail_offset;
8440
8441 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8442 if (!SCBID_IS_NULL(prev)) {
8443 ahd_set_scbptr(ahd, prev);
8444 ahd_outw(ahd, SCB_NEXT, next);
8445 }
8446
8447 /*
8448 * SCBs that have MK_MESSAGE set in them may
8449 * cause the tail pointer to be updated without
8450 * setting the next pointer of the previous tail.
8451 * Only clear the tail if the removed SCB was
8452 * the tail.
8453 */
8454 tail_offset = WAITING_SCB_TAILS + (2 * tid);
8455 if (SCBID_IS_NULL(next)
8456 && ahd_inw(ahd, tail_offset) == scbid)
8457 ahd_outw(ahd, tail_offset, prev);
8458
8459 ahd_add_scb_to_free_list(ahd, scbid);
8460 return (next);
8461 }
8462
8463 /*
8464 * Add the SCB as selected by SCBPTR onto the on chip list of
8465 * free hardware SCBs. This list is empty/unused if we are not
8466 * performing SCB paging.
8467 */
8468 static void
ahd_add_scb_to_free_list(struct ahd_softc * ahd,u_int scbid)8469 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8470 {
8471 /* XXX Need some other mechanism to designate "free". */
8472 /*
8473 * Invalidate the tag so that our abort
8474 * routines don't think it's active.
8475 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8476 */
8477 }
8478
8479 /******************************** Error Handling ******************************/
8480 /*
8481 * Abort all SCBs that match the given description (target/channel/lun/tag),
8482 * setting their status to the passed in status if the status has not already
8483 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
8484 * is paused before it is called.
8485 */
8486 static int
ahd_abort_scbs(struct ahd_softc * ahd,int target,char channel,int lun,u_int tag,role_t role,uint32_t status)8487 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8488 int lun, u_int tag, role_t role, uint32_t status)
8489 {
8490 struct scb *scbp;
8491 struct scb *scbp_next;
8492 u_int i, j;
8493 u_int maxtarget;
8494 u_int minlun;
8495 u_int maxlun;
8496 int found;
8497 ahd_mode_state saved_modes;
8498
8499 /* restore this when we're done */
8500 saved_modes = ahd_save_modes(ahd);
8501 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8502
8503 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8504 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8505
8506 /*
8507 * Clean out the busy target table for any untagged commands.
8508 */
8509 i = 0;
8510 maxtarget = 16;
8511 if (target != CAM_TARGET_WILDCARD) {
8512 i = target;
8513 if (channel == 'B')
8514 i += 8;
8515 maxtarget = i + 1;
8516 }
8517
8518 if (lun == CAM_LUN_WILDCARD) {
8519 minlun = 0;
8520 maxlun = AHD_NUM_LUNS_NONPKT;
8521 } else if (lun >= AHD_NUM_LUNS_NONPKT) {
8522 minlun = maxlun = 0;
8523 } else {
8524 minlun = lun;
8525 maxlun = lun + 1;
8526 }
8527
8528 if (role != ROLE_TARGET) {
8529 for (;i < maxtarget; i++) {
8530 for (j = minlun;j < maxlun; j++) {
8531 u_int scbid;
8532 u_int tcl;
8533
8534 tcl = BUILD_TCL_RAW(i, 'A', j);
8535 scbid = ahd_find_busy_tcl(ahd, tcl);
8536 scbp = ahd_lookup_scb(ahd, scbid);
8537 if (scbp == NULL
8538 || ahd_match_scb(ahd, scbp, target, channel,
8539 lun, tag, role) == 0)
8540 continue;
8541 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8542 }
8543 }
8544 }
8545
8546 /*
8547 * Don't abort commands that have already completed,
8548 * but haven't quite made it up to the host yet.
8549 */
8550 ahd_flush_qoutfifo(ahd);
8551
8552 /*
8553 * Go through the pending CCB list and look for
8554 * commands for this target that are still active.
8555 * These are other tagged commands that were
8556 * disconnected when the reset occurred.
8557 */
8558 scbp_next = LIST_FIRST(&ahd->pending_scbs);
8559 while (scbp_next != NULL) {
8560 scbp = scbp_next;
8561 scbp_next = LIST_NEXT(scbp, pending_links);
8562 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8563 cam_status ostat;
8564
8565 ostat = ahd_get_transaction_status(scbp);
8566 if (ostat == CAM_REQ_INPROG)
8567 ahd_set_transaction_status(scbp, status);
8568 if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8569 ahd_freeze_scb(scbp);
8570 if ((scbp->flags & SCB_ACTIVE) == 0)
8571 printk("Inactive SCB on pending list\n");
8572 ahd_done(ahd, scbp);
8573 found++;
8574 }
8575 }
8576 ahd_restore_modes(ahd, saved_modes);
8577 ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8578 ahd->flags |= AHD_UPDATE_PEND_CMDS;
8579 return found;
8580 }
8581
8582 static void
ahd_reset_current_bus(struct ahd_softc * ahd)8583 ahd_reset_current_bus(struct ahd_softc *ahd)
8584 {
8585 uint8_t scsiseq;
8586
8587 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8588 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8589 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8590 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8591 ahd_flush_device_writes(ahd);
8592 ahd_delay(AHD_BUSRESET_DELAY);
8593 /* Turn off the bus reset */
8594 ahd_outb(ahd, SCSISEQ0, scsiseq);
8595 ahd_flush_device_writes(ahd);
8596 ahd_delay(AHD_BUSRESET_DELAY);
8597 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8598 /*
8599 * 2A Razor #474
8600 * Certain chip state is not cleared for
8601 * SCSI bus resets that we initiate, so
8602 * we must reset the chip.
8603 */
8604 ahd_reset(ahd, /*reinit*/TRUE);
8605 ahd_intr_enable(ahd, /*enable*/TRUE);
8606 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8607 }
8608
8609 ahd_clear_intstat(ahd);
8610 }
8611
8612 int
ahd_reset_channel(struct ahd_softc * ahd,char channel,int initiate_reset)8613 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8614 {
8615 struct ahd_devinfo caminfo;
8616 u_int initiator;
8617 u_int target;
8618 u_int max_scsiid;
8619 int found;
8620 u_int fifo;
8621 u_int next_fifo;
8622 uint8_t scsiseq;
8623
8624 /*
8625 * Check if the last bus reset is cleared
8626 */
8627 if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8628 printk("%s: bus reset still active\n",
8629 ahd_name(ahd));
8630 return 0;
8631 }
8632 ahd->flags |= AHD_BUS_RESET_ACTIVE;
8633
8634 ahd->pending_device = NULL;
8635
8636 ahd_compile_devinfo(&caminfo,
8637 CAM_TARGET_WILDCARD,
8638 CAM_TARGET_WILDCARD,
8639 CAM_LUN_WILDCARD,
8640 channel, ROLE_UNKNOWN);
8641 ahd_pause(ahd);
8642
8643 /* Make sure the sequencer is in a safe location. */
8644 ahd_clear_critical_section(ahd);
8645
8646 /*
8647 * Run our command complete fifos to ensure that we perform
8648 * completion processing on any commands that 'completed'
8649 * before the reset occurred.
8650 */
8651 ahd_run_qoutfifo(ahd);
8652 #ifdef AHD_TARGET_MODE
8653 if ((ahd->flags & AHD_TARGETROLE) != 0) {
8654 ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8655 }
8656 #endif
8657 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8658
8659 /*
8660 * Disable selections so no automatic hardware
8661 * functions will modify chip state.
8662 */
8663 ahd_outb(ahd, SCSISEQ0, 0);
8664 ahd_outb(ahd, SCSISEQ1, 0);
8665
8666 /*
8667 * Safely shut down our DMA engines. Always start with
8668 * the FIFO that is not currently active (if any are
8669 * actively connected).
8670 */
8671 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8672 if (next_fifo > CURRFIFO_1)
8673 /* If disconneced, arbitrarily start with FIFO1. */
8674 next_fifo = fifo = 0;
8675 do {
8676 next_fifo ^= CURRFIFO_1;
8677 ahd_set_modes(ahd, next_fifo, next_fifo);
8678 ahd_outb(ahd, DFCNTRL,
8679 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8680 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8681 ahd_delay(10);
8682 /*
8683 * Set CURRFIFO to the now inactive channel.
8684 */
8685 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8686 ahd_outb(ahd, DFFSTAT, next_fifo);
8687 } while (next_fifo != fifo);
8688
8689 /*
8690 * Reset the bus if we are initiating this reset
8691 */
8692 ahd_clear_msg_state(ahd);
8693 ahd_outb(ahd, SIMODE1,
8694 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8695
8696 if (initiate_reset)
8697 ahd_reset_current_bus(ahd);
8698
8699 ahd_clear_intstat(ahd);
8700
8701 /*
8702 * Clean up all the state information for the
8703 * pending transactions on this bus.
8704 */
8705 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8706 CAM_LUN_WILDCARD, SCB_LIST_NULL,
8707 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8708
8709 /*
8710 * Cleanup anything left in the FIFOs.
8711 */
8712 ahd_clear_fifo(ahd, 0);
8713 ahd_clear_fifo(ahd, 1);
8714
8715 /*
8716 * Clear SCSI interrupt status
8717 */
8718 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8719
8720 /*
8721 * Reenable selections
8722 */
8723 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8724 scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8725 ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8726
8727 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8728 #ifdef AHD_TARGET_MODE
8729 /*
8730 * Send an immediate notify ccb to all target more peripheral
8731 * drivers affected by this action.
8732 */
8733 for (target = 0; target <= max_scsiid; target++) {
8734 struct ahd_tmode_tstate* tstate;
8735 u_int lun;
8736
8737 tstate = ahd->enabled_targets[target];
8738 if (tstate == NULL)
8739 continue;
8740 for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8741 struct ahd_tmode_lstate* lstate;
8742
8743 lstate = tstate->enabled_luns[lun];
8744 if (lstate == NULL)
8745 continue;
8746
8747 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8748 EVENT_TYPE_BUS_RESET, /*arg*/0);
8749 ahd_send_lstate_events(ahd, lstate);
8750 }
8751 }
8752 #endif
8753 /*
8754 * Revert to async/narrow transfers until we renegotiate.
8755 */
8756 for (target = 0; target <= max_scsiid; target++) {
8757
8758 if (ahd->enabled_targets[target] == NULL)
8759 continue;
8760 for (initiator = 0; initiator <= max_scsiid; initiator++) {
8761 struct ahd_devinfo devinfo;
8762
8763 ahd_compile_devinfo(&devinfo, target, initiator,
8764 CAM_LUN_WILDCARD,
8765 'A', ROLE_UNKNOWN);
8766 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8767 AHD_TRANS_CUR, /*paused*/TRUE);
8768 ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8769 /*offset*/0, /*ppr_options*/0,
8770 AHD_TRANS_CUR, /*paused*/TRUE);
8771 }
8772 }
8773
8774 /* Notify the XPT that a bus reset occurred */
8775 ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8776 CAM_LUN_WILDCARD, AC_BUS_RESET);
8777
8778 ahd_restart(ahd);
8779
8780 return (found);
8781 }
8782
8783 /**************************** Statistics Processing ***************************/
8784 static void
ahd_stat_timer(struct timer_list * t)8785 ahd_stat_timer(struct timer_list *t)
8786 {
8787 struct ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8788 u_long s;
8789 int enint_coal;
8790
8791 ahd_lock(ahd, &s);
8792
8793 enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8794 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8795 enint_coal |= ENINT_COALESCE;
8796 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8797 enint_coal &= ~ENINT_COALESCE;
8798
8799 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8800 ahd_enable_coalescing(ahd, enint_coal);
8801 #ifdef AHD_DEBUG
8802 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8803 printk("%s: Interrupt coalescing "
8804 "now %sabled. Cmds %d\n",
8805 ahd_name(ahd),
8806 (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8807 ahd->cmdcmplt_total);
8808 #endif
8809 }
8810
8811 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8812 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8813 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8814 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8815 ahd_unlock(ahd, &s);
8816 }
8817
8818 /****************************** Status Processing *****************************/
8819
8820 static void
ahd_handle_scsi_status(struct ahd_softc * ahd,struct scb * scb)8821 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8822 {
8823 struct hardware_scb *hscb;
8824 int paused;
8825
8826 /*
8827 * The sequencer freezes its select-out queue
8828 * anytime a SCSI status error occurs. We must
8829 * handle the error and increment our qfreeze count
8830 * to allow the sequencer to continue. We don't
8831 * bother clearing critical sections here since all
8832 * operations are on data structures that the sequencer
8833 * is not touching once the queue is frozen.
8834 */
8835 hscb = scb->hscb;
8836
8837 if (ahd_is_paused(ahd)) {
8838 paused = 1;
8839 } else {
8840 paused = 0;
8841 ahd_pause(ahd);
8842 }
8843
8844 /* Freeze the queue until the client sees the error. */
8845 ahd_freeze_devq(ahd, scb);
8846 ahd_freeze_scb(scb);
8847 ahd->qfreeze_cnt++;
8848 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8849
8850 if (paused == 0)
8851 ahd_unpause(ahd);
8852
8853 /* Don't want to clobber the original sense code */
8854 if ((scb->flags & SCB_SENSE) != 0) {
8855 /*
8856 * Clear the SCB_SENSE Flag and perform
8857 * a normal command completion.
8858 */
8859 scb->flags &= ~SCB_SENSE;
8860 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8861 ahd_done(ahd, scb);
8862 return;
8863 }
8864 ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8865 ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8866 switch (hscb->shared_data.istatus.scsi_status) {
8867 case STATUS_PKT_SENSE:
8868 {
8869 struct scsi_status_iu_header *siu;
8870
8871 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8872 siu = (struct scsi_status_iu_header *)scb->sense_data;
8873 ahd_set_scsi_status(scb, siu->status);
8874 #ifdef AHD_DEBUG
8875 if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8876 ahd_print_path(ahd, scb);
8877 printk("SCB 0x%x Received PKT Status of 0x%x\n",
8878 SCB_GET_TAG(scb), siu->status);
8879 printk("\tflags = 0x%x, sense len = 0x%x, "
8880 "pktfail = 0x%x\n",
8881 siu->flags, scsi_4btoul(siu->sense_length),
8882 scsi_4btoul(siu->pkt_failures_length));
8883 }
8884 #endif
8885 if ((siu->flags & SIU_RSPVALID) != 0) {
8886 ahd_print_path(ahd, scb);
8887 if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8888 printk("Unable to parse pkt_failures\n");
8889 } else {
8890
8891 switch (SIU_PKTFAIL_CODE(siu)) {
8892 case SIU_PFC_NONE:
8893 printk("No packet failure found\n");
8894 break;
8895 case SIU_PFC_CIU_FIELDS_INVALID:
8896 printk("Invalid Command IU Field\n");
8897 break;
8898 case SIU_PFC_TMF_NOT_SUPPORTED:
8899 printk("TMF not supported\n");
8900 break;
8901 case SIU_PFC_TMF_FAILED:
8902 printk("TMF failed\n");
8903 break;
8904 case SIU_PFC_INVALID_TYPE_CODE:
8905 printk("Invalid L_Q Type code\n");
8906 break;
8907 case SIU_PFC_ILLEGAL_REQUEST:
8908 printk("Illegal request\n");
8909 break;
8910 default:
8911 break;
8912 }
8913 }
8914 if (siu->status == SAM_STAT_GOOD)
8915 ahd_set_transaction_status(scb,
8916 CAM_REQ_CMP_ERR);
8917 }
8918 if ((siu->flags & SIU_SNSVALID) != 0) {
8919 scb->flags |= SCB_PKT_SENSE;
8920 #ifdef AHD_DEBUG
8921 if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8922 printk("Sense data available\n");
8923 #endif
8924 }
8925 ahd_done(ahd, scb);
8926 break;
8927 }
8928 case SAM_STAT_COMMAND_TERMINATED:
8929 case SAM_STAT_CHECK_CONDITION:
8930 {
8931 struct ahd_devinfo devinfo;
8932 struct ahd_dma_seg *sg;
8933 struct scsi_sense *sc;
8934 struct ahd_initiator_tinfo *targ_info;
8935 struct ahd_tmode_tstate *tstate;
8936 struct ahd_transinfo *tinfo;
8937 #ifdef AHD_DEBUG
8938 if (ahd_debug & AHD_SHOW_SENSE) {
8939 ahd_print_path(ahd, scb);
8940 printk("SCB %d: requests Check Status\n",
8941 SCB_GET_TAG(scb));
8942 }
8943 #endif
8944
8945 if (ahd_perform_autosense(scb) == 0)
8946 break;
8947
8948 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8949 SCB_GET_TARGET(ahd, scb),
8950 SCB_GET_LUN(scb),
8951 SCB_GET_CHANNEL(ahd, scb),
8952 ROLE_INITIATOR);
8953 targ_info = ahd_fetch_transinfo(ahd,
8954 devinfo.channel,
8955 devinfo.our_scsiid,
8956 devinfo.target,
8957 &tstate);
8958 tinfo = &targ_info->curr;
8959 sg = scb->sg_list;
8960 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8961 /*
8962 * Save off the residual if there is one.
8963 */
8964 ahd_update_residual(ahd, scb);
8965 #ifdef AHD_DEBUG
8966 if (ahd_debug & AHD_SHOW_SENSE) {
8967 ahd_print_path(ahd, scb);
8968 printk("Sending Sense\n");
8969 }
8970 #endif
8971 scb->sg_count = 0;
8972 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8973 ahd_get_sense_bufsize(ahd, scb),
8974 /*last*/TRUE);
8975 sc->opcode = REQUEST_SENSE;
8976 sc->byte2 = 0;
8977 if (tinfo->protocol_version <= SCSI_REV_2
8978 && SCB_GET_LUN(scb) < 8)
8979 sc->byte2 = SCB_GET_LUN(scb) << 5;
8980 sc->unused[0] = 0;
8981 sc->unused[1] = 0;
8982 sc->length = ahd_get_sense_bufsize(ahd, scb);
8983 sc->control = 0;
8984
8985 /*
8986 * We can't allow the target to disconnect.
8987 * This will be an untagged transaction and
8988 * having the target disconnect will make this
8989 * transaction indestinguishable from outstanding
8990 * tagged transactions.
8991 */
8992 hscb->control = 0;
8993
8994 /*
8995 * This request sense could be because the
8996 * the device lost power or in some other
8997 * way has lost our transfer negotiations.
8998 * Renegotiate if appropriate. Unit attention
8999 * errors will be reported before any data
9000 * phases occur.
9001 */
9002 if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9003 ahd_update_neg_request(ahd, &devinfo,
9004 tstate, targ_info,
9005 AHD_NEG_IF_NON_ASYNC);
9006 }
9007 if (tstate->auto_negotiate & devinfo.target_mask) {
9008 hscb->control |= MK_MESSAGE;
9009 scb->flags &=
9010 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9011 scb->flags |= SCB_AUTO_NEGOTIATE;
9012 }
9013 hscb->cdb_len = sizeof(*sc);
9014 ahd_setup_data_scb(ahd, scb);
9015 scb->flags |= SCB_SENSE;
9016 ahd_queue_scb(ahd, scb);
9017 break;
9018 }
9019 case SAM_STAT_GOOD:
9020 printk("%s: Interrupted for status of 0???\n",
9021 ahd_name(ahd));
9022 fallthrough;
9023 default:
9024 ahd_done(ahd, scb);
9025 break;
9026 }
9027 }
9028
9029 static void
ahd_handle_scb_status(struct ahd_softc * ahd,struct scb * scb)9030 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9031 {
9032 if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9033 ahd_handle_scsi_status(ahd, scb);
9034 } else {
9035 ahd_calc_residual(ahd, scb);
9036 ahd_done(ahd, scb);
9037 }
9038 }
9039
9040 /*
9041 * Calculate the residual for a just completed SCB.
9042 */
9043 static void
ahd_calc_residual(struct ahd_softc * ahd,struct scb * scb)9044 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9045 {
9046 struct hardware_scb *hscb;
9047 struct initiator_status *spkt;
9048 uint32_t sgptr;
9049 uint32_t resid_sgptr;
9050 uint32_t resid;
9051
9052 /*
9053 * 5 cases.
9054 * 1) No residual.
9055 * SG_STATUS_VALID clear in sgptr.
9056 * 2) Transferless command
9057 * 3) Never performed any transfers.
9058 * sgptr has SG_FULL_RESID set.
9059 * 4) No residual but target did not
9060 * save data pointers after the
9061 * last transfer, so sgptr was
9062 * never updated.
9063 * 5) We have a partial residual.
9064 * Use residual_sgptr to determine
9065 * where we are.
9066 */
9067
9068 hscb = scb->hscb;
9069 sgptr = ahd_le32toh(hscb->sgptr);
9070 if ((sgptr & SG_STATUS_VALID) == 0)
9071 /* Case 1 */
9072 return;
9073 sgptr &= ~SG_STATUS_VALID;
9074
9075 if ((sgptr & SG_LIST_NULL) != 0)
9076 /* Case 2 */
9077 return;
9078
9079 /*
9080 * Residual fields are the same in both
9081 * target and initiator status packets,
9082 * so we can always use the initiator fields
9083 * regardless of the role for this SCB.
9084 */
9085 spkt = &hscb->shared_data.istatus;
9086 resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9087 if ((sgptr & SG_FULL_RESID) != 0) {
9088 /* Case 3 */
9089 resid = ahd_get_transfer_length(scb);
9090 } else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9091 /* Case 4 */
9092 return;
9093 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9094 ahd_print_path(ahd, scb);
9095 printk("data overrun detected Tag == 0x%x.\n",
9096 SCB_GET_TAG(scb));
9097 ahd_freeze_devq(ahd, scb);
9098 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9099 ahd_freeze_scb(scb);
9100 return;
9101 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9102 panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9103 /* NOTREACHED */
9104 } else {
9105 struct ahd_dma_seg *sg;
9106
9107 /*
9108 * Remainder of the SG where the transfer
9109 * stopped.
9110 */
9111 resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9112 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9113
9114 /* The residual sg_ptr always points to the next sg */
9115 sg--;
9116
9117 /*
9118 * Add up the contents of all residual
9119 * SG segments that are after the SG where
9120 * the transfer stopped.
9121 */
9122 while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9123 sg++;
9124 resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9125 }
9126 }
9127 if ((scb->flags & SCB_SENSE) == 0)
9128 ahd_set_residual(scb, resid);
9129 else
9130 ahd_set_sense_residual(scb, resid);
9131
9132 #ifdef AHD_DEBUG
9133 if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9134 ahd_print_path(ahd, scb);
9135 printk("Handled %sResidual of %d bytes\n",
9136 (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9137 }
9138 #endif
9139 }
9140
9141 /******************************* Target Mode **********************************/
9142 #ifdef AHD_TARGET_MODE
9143 /*
9144 * Add a target mode event to this lun's queue
9145 */
9146 static void
ahd_queue_lstate_event(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate,u_int initiator_id,u_int event_type,u_int event_arg)9147 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9148 u_int initiator_id, u_int event_type, u_int event_arg)
9149 {
9150 struct ahd_tmode_event *event;
9151 int pending;
9152
9153 xpt_freeze_devq(lstate->path, /*count*/1);
9154 if (lstate->event_w_idx >= lstate->event_r_idx)
9155 pending = lstate->event_w_idx - lstate->event_r_idx;
9156 else
9157 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9158 - (lstate->event_r_idx - lstate->event_w_idx);
9159
9160 if (event_type == EVENT_TYPE_BUS_RESET
9161 || event_type == TARGET_RESET) {
9162 /*
9163 * Any earlier events are irrelevant, so reset our buffer.
9164 * This has the effect of allowing us to deal with reset
9165 * floods (an external device holding down the reset line)
9166 * without losing the event that is really interesting.
9167 */
9168 lstate->event_r_idx = 0;
9169 lstate->event_w_idx = 0;
9170 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9171 }
9172
9173 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9174 xpt_print_path(lstate->path);
9175 printk("immediate event %x:%x lost\n",
9176 lstate->event_buffer[lstate->event_r_idx].event_type,
9177 lstate->event_buffer[lstate->event_r_idx].event_arg);
9178 lstate->event_r_idx++;
9179 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9180 lstate->event_r_idx = 0;
9181 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9182 }
9183
9184 event = &lstate->event_buffer[lstate->event_w_idx];
9185 event->initiator_id = initiator_id;
9186 event->event_type = event_type;
9187 event->event_arg = event_arg;
9188 lstate->event_w_idx++;
9189 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9190 lstate->event_w_idx = 0;
9191 }
9192
9193 /*
9194 * Send any target mode events queued up waiting
9195 * for immediate notify resources.
9196 */
9197 void
ahd_send_lstate_events(struct ahd_softc * ahd,struct ahd_tmode_lstate * lstate)9198 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9199 {
9200 struct ccb_hdr *ccbh;
9201 struct ccb_immed_notify *inot;
9202
9203 while (lstate->event_r_idx != lstate->event_w_idx
9204 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9205 struct ahd_tmode_event *event;
9206
9207 event = &lstate->event_buffer[lstate->event_r_idx];
9208 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9209 inot = (struct ccb_immed_notify *)ccbh;
9210 switch (event->event_type) {
9211 case EVENT_TYPE_BUS_RESET:
9212 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9213 break;
9214 default:
9215 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9216 inot->message_args[0] = event->event_type;
9217 inot->message_args[1] = event->event_arg;
9218 break;
9219 }
9220 inot->initiator_id = event->initiator_id;
9221 inot->sense_len = 0;
9222 xpt_done((union ccb *)inot);
9223 lstate->event_r_idx++;
9224 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9225 lstate->event_r_idx = 0;
9226 }
9227 }
9228 #endif
9229
9230 /******************** Sequencer Program Patching/Download *********************/
9231
9232 #ifdef AHD_DUMP_SEQ
9233 void
ahd_dumpseq(struct ahd_softc * ahd)9234 ahd_dumpseq(struct ahd_softc* ahd)
9235 {
9236 int i;
9237 int max_prog;
9238
9239 max_prog = 2048;
9240
9241 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9242 ahd_outw(ahd, PRGMCNT, 0);
9243 for (i = 0; i < max_prog; i++) {
9244 uint8_t ins_bytes[4];
9245
9246 ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9247 printk("0x%08x\n", ins_bytes[0] << 24
9248 | ins_bytes[1] << 16
9249 | ins_bytes[2] << 8
9250 | ins_bytes[3]);
9251 }
9252 }
9253 #endif
9254
9255 static void
ahd_loadseq(struct ahd_softc * ahd)9256 ahd_loadseq(struct ahd_softc *ahd)
9257 {
9258 struct cs cs_table[NUM_CRITICAL_SECTIONS];
9259 u_int begin_set[NUM_CRITICAL_SECTIONS];
9260 u_int end_set[NUM_CRITICAL_SECTIONS];
9261 const struct patch *cur_patch;
9262 u_int cs_count;
9263 u_int cur_cs;
9264 u_int i;
9265 int downloaded;
9266 u_int skip_addr;
9267 u_int sg_prefetch_cnt;
9268 u_int sg_prefetch_cnt_limit;
9269 u_int sg_prefetch_align;
9270 u_int sg_size;
9271 u_int cacheline_mask;
9272 uint8_t download_consts[DOWNLOAD_CONST_COUNT];
9273
9274 if (bootverbose)
9275 printk("%s: Downloading Sequencer Program...",
9276 ahd_name(ahd));
9277
9278 #if DOWNLOAD_CONST_COUNT != 8
9279 #error "Download Const Mismatch"
9280 #endif
9281 /*
9282 * Start out with 0 critical sections
9283 * that apply to this firmware load.
9284 */
9285 cs_count = 0;
9286 cur_cs = 0;
9287 memset(begin_set, 0, sizeof(begin_set));
9288 memset(end_set, 0, sizeof(end_set));
9289
9290 /*
9291 * Setup downloadable constant table.
9292 *
9293 * The computation for the S/G prefetch variables is
9294 * a bit complicated. We would like to always fetch
9295 * in terms of cachelined sized increments. However,
9296 * if the cacheline is not an even multiple of the
9297 * SG element size or is larger than our SG RAM, using
9298 * just the cache size might leave us with only a portion
9299 * of an SG element at the tail of a prefetch. If the
9300 * cacheline is larger than our S/G prefetch buffer less
9301 * the size of an SG element, we may round down to a cacheline
9302 * that doesn't contain any or all of the S/G of interest
9303 * within the bounds of our S/G ram. Provide variables to
9304 * the sequencer that will allow it to handle these edge
9305 * cases.
9306 */
9307 /* Start by aligning to the nearest cacheline. */
9308 sg_prefetch_align = ahd->pci_cachesize;
9309 if (sg_prefetch_align == 0)
9310 sg_prefetch_align = 8;
9311 /* Round down to the nearest power of 2. */
9312 while (powerof2(sg_prefetch_align) == 0)
9313 sg_prefetch_align--;
9314
9315 cacheline_mask = sg_prefetch_align - 1;
9316
9317 /*
9318 * If the cacheline boundary is greater than half our prefetch RAM
9319 * we risk not being able to fetch even a single complete S/G
9320 * segment if we align to that boundary.
9321 */
9322 if (sg_prefetch_align > CCSGADDR_MAX/2)
9323 sg_prefetch_align = CCSGADDR_MAX/2;
9324 /* Start by fetching a single cacheline. */
9325 sg_prefetch_cnt = sg_prefetch_align;
9326 /*
9327 * Increment the prefetch count by cachelines until
9328 * at least one S/G element will fit.
9329 */
9330 sg_size = sizeof(struct ahd_dma_seg);
9331 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9332 sg_size = sizeof(struct ahd_dma64_seg);
9333 while (sg_prefetch_cnt < sg_size)
9334 sg_prefetch_cnt += sg_prefetch_align;
9335 /*
9336 * If the cacheline is not an even multiple of
9337 * the S/G size, we may only get a partial S/G when
9338 * we align. Add a cacheline if this is the case.
9339 */
9340 if ((sg_prefetch_align % sg_size) != 0
9341 && (sg_prefetch_cnt < CCSGADDR_MAX))
9342 sg_prefetch_cnt += sg_prefetch_align;
9343 /*
9344 * Lastly, compute a value that the sequencer can use
9345 * to determine if the remainder of the CCSGRAM buffer
9346 * has a full S/G element in it.
9347 */
9348 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9349 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9350 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9351 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9352 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9353 download_consts[SG_SIZEOF] = sg_size;
9354 download_consts[PKT_OVERRUN_BUFOFFSET] =
9355 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9356 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9357 download_consts[CACHELINE_MASK] = cacheline_mask;
9358 cur_patch = patches;
9359 downloaded = 0;
9360 skip_addr = 0;
9361 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9362 ahd_outw(ahd, PRGMCNT, 0);
9363
9364 for (i = 0; i < sizeof(seqprog)/4; i++) {
9365 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9366 /*
9367 * Don't download this instruction as it
9368 * is in a patch that was removed.
9369 */
9370 continue;
9371 }
9372 /*
9373 * Move through the CS table until we find a CS
9374 * that might apply to this instruction.
9375 */
9376 for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9377 if (critical_sections[cur_cs].end <= i) {
9378 if (begin_set[cs_count] == TRUE
9379 && end_set[cs_count] == FALSE) {
9380 cs_table[cs_count].end = downloaded;
9381 end_set[cs_count] = TRUE;
9382 cs_count++;
9383 }
9384 continue;
9385 }
9386 if (critical_sections[cur_cs].begin <= i
9387 && begin_set[cs_count] == FALSE) {
9388 cs_table[cs_count].begin = downloaded;
9389 begin_set[cs_count] = TRUE;
9390 }
9391 break;
9392 }
9393 ahd_download_instr(ahd, i, download_consts);
9394 downloaded++;
9395 }
9396
9397 ahd->num_critical_sections = cs_count;
9398 if (cs_count != 0) {
9399
9400 cs_count *= sizeof(struct cs);
9401 ahd->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
9402 if (ahd->critical_sections == NULL)
9403 panic("ahd_loadseq: Could not malloc");
9404 }
9405 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9406
9407 if (bootverbose) {
9408 printk(" %d instructions downloaded\n", downloaded);
9409 printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9410 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9411 }
9412 }
9413
9414 static int
ahd_check_patch(struct ahd_softc * ahd,const struct patch ** start_patch,u_int start_instr,u_int * skip_addr)9415 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9416 u_int start_instr, u_int *skip_addr)
9417 {
9418 const struct patch *cur_patch;
9419 const struct patch *last_patch;
9420 u_int num_patches;
9421
9422 num_patches = ARRAY_SIZE(patches);
9423 last_patch = &patches[num_patches];
9424 cur_patch = *start_patch;
9425
9426 while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9427
9428 if (cur_patch->patch_func(ahd) == 0) {
9429
9430 /* Start rejecting code */
9431 *skip_addr = start_instr + cur_patch->skip_instr;
9432 cur_patch += cur_patch->skip_patch;
9433 } else {
9434 /* Accepted this patch. Advance to the next
9435 * one and wait for our intruction pointer to
9436 * hit this point.
9437 */
9438 cur_patch++;
9439 }
9440 }
9441
9442 *start_patch = cur_patch;
9443 if (start_instr < *skip_addr)
9444 /* Still skipping */
9445 return (0);
9446
9447 return (1);
9448 }
9449
9450 static u_int
ahd_resolve_seqaddr(struct ahd_softc * ahd,u_int address)9451 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9452 {
9453 const struct patch *cur_patch;
9454 int address_offset;
9455 u_int skip_addr;
9456 u_int i;
9457
9458 address_offset = 0;
9459 cur_patch = patches;
9460 skip_addr = 0;
9461
9462 for (i = 0; i < address;) {
9463
9464 ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9465
9466 if (skip_addr > i) {
9467 int end_addr;
9468
9469 end_addr = min(address, skip_addr);
9470 address_offset += end_addr - i;
9471 i = skip_addr;
9472 } else {
9473 i++;
9474 }
9475 }
9476 return (address - address_offset);
9477 }
9478
9479 static void
ahd_download_instr(struct ahd_softc * ahd,u_int instrptr,uint8_t * dconsts)9480 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9481 {
9482 union ins_formats instr;
9483 struct ins_format1 *fmt1_ins;
9484 struct ins_format3 *fmt3_ins;
9485 u_int opcode;
9486
9487 /*
9488 * The firmware is always compiled into a little endian format.
9489 */
9490 instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9491
9492 fmt1_ins = &instr.format1;
9493 fmt3_ins = NULL;
9494
9495 /* Pull the opcode */
9496 opcode = instr.format1.opcode;
9497 switch (opcode) {
9498 case AIC_OP_JMP:
9499 case AIC_OP_JC:
9500 case AIC_OP_JNC:
9501 case AIC_OP_CALL:
9502 case AIC_OP_JNE:
9503 case AIC_OP_JNZ:
9504 case AIC_OP_JE:
9505 case AIC_OP_JZ:
9506 {
9507 fmt3_ins = &instr.format3;
9508 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9509 }
9510 fallthrough;
9511 case AIC_OP_OR:
9512 case AIC_OP_AND:
9513 case AIC_OP_XOR:
9514 case AIC_OP_ADD:
9515 case AIC_OP_ADC:
9516 case AIC_OP_BMOV:
9517 if (fmt1_ins->parity != 0) {
9518 fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9519 }
9520 fmt1_ins->parity = 0;
9521 fallthrough;
9522 case AIC_OP_ROL:
9523 {
9524 int i, count;
9525
9526 /* Calculate odd parity for the instruction */
9527 for (i = 0, count = 0; i < 31; i++) {
9528 uint32_t mask;
9529
9530 mask = 0x01 << i;
9531 if ((instr.integer & mask) != 0)
9532 count++;
9533 }
9534 if ((count & 0x01) == 0)
9535 instr.format1.parity = 1;
9536
9537 /* The sequencer is a little endian cpu */
9538 instr.integer = ahd_htole32(instr.integer);
9539 ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9540 break;
9541 }
9542 default:
9543 panic("Unknown opcode encountered in seq program");
9544 break;
9545 }
9546 }
9547
9548 static int
ahd_probe_stack_size(struct ahd_softc * ahd)9549 ahd_probe_stack_size(struct ahd_softc *ahd)
9550 {
9551 int last_probe;
9552
9553 last_probe = 0;
9554 while (1) {
9555 int i;
9556
9557 /*
9558 * We avoid using 0 as a pattern to avoid
9559 * confusion if the stack implementation
9560 * "back-fills" with zeros when "poping'
9561 * entries.
9562 */
9563 for (i = 1; i <= last_probe+1; i++) {
9564 ahd_outb(ahd, STACK, i & 0xFF);
9565 ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9566 }
9567
9568 /* Verify */
9569 for (i = last_probe+1; i > 0; i--) {
9570 u_int stack_entry;
9571
9572 stack_entry = ahd_inb(ahd, STACK)
9573 |(ahd_inb(ahd, STACK) << 8);
9574 if (stack_entry != i)
9575 goto sized;
9576 }
9577 last_probe++;
9578 }
9579 sized:
9580 return (last_probe);
9581 }
9582
9583 int
ahd_print_register(const ahd_reg_parse_entry_t * table,u_int num_entries,const char * name,u_int address,u_int value,u_int * cur_column,u_int wrap_point)9584 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9585 const char *name, u_int address, u_int value,
9586 u_int *cur_column, u_int wrap_point)
9587 {
9588 int printed;
9589 u_int printed_mask;
9590
9591 if (cur_column != NULL && *cur_column >= wrap_point) {
9592 printk("\n");
9593 *cur_column = 0;
9594 }
9595 printed = printk("%s[0x%x]", name, value);
9596 if (table == NULL) {
9597 printed += printk(" ");
9598 *cur_column += printed;
9599 return (printed);
9600 }
9601 printed_mask = 0;
9602 while (printed_mask != 0xFF) {
9603 int entry;
9604
9605 for (entry = 0; entry < num_entries; entry++) {
9606 if (((value & table[entry].mask)
9607 != table[entry].value)
9608 || ((printed_mask & table[entry].mask)
9609 == table[entry].mask))
9610 continue;
9611
9612 printed += printk("%s%s",
9613 printed_mask == 0 ? ":(" : "|",
9614 table[entry].name);
9615 printed_mask |= table[entry].mask;
9616
9617 break;
9618 }
9619 if (entry >= num_entries)
9620 break;
9621 }
9622 if (printed_mask != 0)
9623 printed += printk(") ");
9624 else
9625 printed += printk(" ");
9626 if (cur_column != NULL)
9627 *cur_column += printed;
9628 return (printed);
9629 }
9630
9631 void
ahd_dump_card_state(struct ahd_softc * ahd)9632 ahd_dump_card_state(struct ahd_softc *ahd)
9633 {
9634 struct scb *scb;
9635 ahd_mode_state saved_modes;
9636 u_int dffstat;
9637 int paused;
9638 u_int scb_index;
9639 u_int saved_scb_index;
9640 u_int cur_col;
9641 int i;
9642
9643 if (ahd_is_paused(ahd)) {
9644 paused = 1;
9645 } else {
9646 paused = 0;
9647 ahd_pause(ahd);
9648 }
9649 saved_modes = ahd_save_modes(ahd);
9650 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9651 printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9652 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9653 ahd_name(ahd),
9654 ahd_inw(ahd, CURADDR),
9655 ahd_build_mode_state(ahd, ahd->saved_src_mode,
9656 ahd->saved_dst_mode));
9657 if (paused)
9658 printk("Card was paused\n");
9659
9660 if (ahd_check_cmdcmpltqueues(ahd))
9661 printk("Completions are pending\n");
9662
9663 /*
9664 * Mode independent registers.
9665 */
9666 cur_col = 0;
9667 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9668 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9669 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9670 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9671 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9672 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9673 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9674 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9675 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9676 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9677 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9678 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9679 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9680 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9681 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9682 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9683 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9684 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9685 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9686 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9687 &cur_col, 50);
9688 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9689 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9690 &cur_col, 50);
9691 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9692 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9693 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9694 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9695 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9696 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9697 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9698 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9699 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9700 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9701 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9702 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9703 printk("\n");
9704 printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9705 "CURRSCB 0x%x NEXTSCB 0x%x\n",
9706 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9707 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9708 ahd_inw(ahd, NEXTSCB));
9709 cur_col = 0;
9710 /* QINFIFO */
9711 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9712 CAM_LUN_WILDCARD, SCB_LIST_NULL,
9713 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9714 saved_scb_index = ahd_get_scbptr(ahd);
9715 printk("Pending list:");
9716 i = 0;
9717 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9718 if (i++ > AHD_SCB_MAX)
9719 break;
9720 cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9721 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9722 ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9723 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9724 &cur_col, 60);
9725 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9726 &cur_col, 60);
9727 }
9728 printk("\nTotal %d\n", i);
9729
9730 printk("Kernel Free SCB list: ");
9731 i = 0;
9732 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9733 struct scb *list_scb;
9734
9735 list_scb = scb;
9736 do {
9737 printk("%d ", SCB_GET_TAG(list_scb));
9738 list_scb = LIST_NEXT(list_scb, collision_links);
9739 } while (list_scb && i++ < AHD_SCB_MAX);
9740 }
9741
9742 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9743 if (i++ > AHD_SCB_MAX)
9744 break;
9745 printk("%d ", SCB_GET_TAG(scb));
9746 }
9747 printk("\n");
9748
9749 printk("Sequencer Complete DMA-inprog list: ");
9750 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9751 i = 0;
9752 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9753 ahd_set_scbptr(ahd, scb_index);
9754 printk("%d ", scb_index);
9755 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9756 }
9757 printk("\n");
9758
9759 printk("Sequencer Complete list: ");
9760 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9761 i = 0;
9762 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9763 ahd_set_scbptr(ahd, scb_index);
9764 printk("%d ", scb_index);
9765 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9766 }
9767 printk("\n");
9768
9769 printk("Sequencer DMA-Up and Complete list: ");
9770 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9771 i = 0;
9772 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9773 ahd_set_scbptr(ahd, scb_index);
9774 printk("%d ", scb_index);
9775 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9776 }
9777 printk("\n");
9778 printk("Sequencer On QFreeze and Complete list: ");
9779 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9780 i = 0;
9781 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9782 ahd_set_scbptr(ahd, scb_index);
9783 printk("%d ", scb_index);
9784 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9785 }
9786 printk("\n");
9787 ahd_set_scbptr(ahd, saved_scb_index);
9788 dffstat = ahd_inb(ahd, DFFSTAT);
9789 for (i = 0; i < 2; i++) {
9790 #ifdef AHD_DEBUG
9791 struct scb *fifo_scb;
9792 #endif
9793 u_int fifo_scbptr;
9794
9795 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9796 fifo_scbptr = ahd_get_scbptr(ahd);
9797 printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9798 ahd_name(ahd), i,
9799 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9800 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9801 cur_col = 0;
9802 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9803 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9804 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9805 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9806 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9807 &cur_col, 50);
9808 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9809 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9810 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9811 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9812 if (cur_col > 50) {
9813 printk("\n");
9814 cur_col = 0;
9815 }
9816 cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9817 ahd_inl(ahd, SHADDR+4),
9818 ahd_inl(ahd, SHADDR),
9819 (ahd_inb(ahd, SHCNT)
9820 | (ahd_inb(ahd, SHCNT + 1) << 8)
9821 | (ahd_inb(ahd, SHCNT + 2) << 16)));
9822 if (cur_col > 50) {
9823 printk("\n");
9824 cur_col = 0;
9825 }
9826 cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9827 ahd_inl(ahd, HADDR+4),
9828 ahd_inl(ahd, HADDR),
9829 (ahd_inb(ahd, HCNT)
9830 | (ahd_inb(ahd, HCNT + 1) << 8)
9831 | (ahd_inb(ahd, HCNT + 2) << 16)));
9832 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9833 #ifdef AHD_DEBUG
9834 if ((ahd_debug & AHD_SHOW_SG) != 0) {
9835 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9836 if (fifo_scb != NULL)
9837 ahd_dump_sglist(fifo_scb);
9838 }
9839 #endif
9840 }
9841 printk("\nLQIN: ");
9842 for (i = 0; i < 20; i++)
9843 printk("0x%x ", ahd_inb(ahd, LQIN + i));
9844 printk("\n");
9845 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9846 printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9847 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9848 ahd_inb(ahd, OPTIONMODE));
9849 printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9850 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9851 ahd_inb(ahd, MAXCMDCNT));
9852 printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9853 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9854 ahd_inb(ahd, SAVED_LUN));
9855 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9856 printk("\n");
9857 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9858 cur_col = 0;
9859 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9860 printk("\n");
9861 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9862 printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9863 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9864 ahd_inw(ahd, DINDEX));
9865 printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9866 ahd_name(ahd), ahd_get_scbptr(ahd),
9867 ahd_inw_scbram(ahd, SCB_NEXT),
9868 ahd_inw_scbram(ahd, SCB_NEXT2));
9869 printk("CDB %x %x %x %x %x %x\n",
9870 ahd_inb_scbram(ahd, SCB_CDB_STORE),
9871 ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9872 ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9873 ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9874 ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9875 ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9876 printk("STACK:");
9877 for (i = 0; i < ahd->stack_size; i++) {
9878 ahd->saved_stack[i] =
9879 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9880 printk(" 0x%x", ahd->saved_stack[i]);
9881 }
9882 for (i = ahd->stack_size-1; i >= 0; i--) {
9883 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9884 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9885 }
9886 printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9887 ahd_restore_modes(ahd, saved_modes);
9888 if (paused == 0)
9889 ahd_unpause(ahd);
9890 }
9891
9892 #if 0
9893 void
9894 ahd_dump_scbs(struct ahd_softc *ahd)
9895 {
9896 ahd_mode_state saved_modes;
9897 u_int saved_scb_index;
9898 int i;
9899
9900 saved_modes = ahd_save_modes(ahd);
9901 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9902 saved_scb_index = ahd_get_scbptr(ahd);
9903 for (i = 0; i < AHD_SCB_MAX; i++) {
9904 ahd_set_scbptr(ahd, i);
9905 printk("%3d", i);
9906 printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9907 ahd_inb_scbram(ahd, SCB_CONTROL),
9908 ahd_inb_scbram(ahd, SCB_SCSIID),
9909 ahd_inw_scbram(ahd, SCB_NEXT),
9910 ahd_inw_scbram(ahd, SCB_NEXT2),
9911 ahd_inl_scbram(ahd, SCB_SGPTR),
9912 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9913 }
9914 printk("\n");
9915 ahd_set_scbptr(ahd, saved_scb_index);
9916 ahd_restore_modes(ahd, saved_modes);
9917 }
9918 #endif /* 0 */
9919
9920 /**************************** Flexport Logic **********************************/
9921 /*
9922 * Read count 16bit words from 16bit word address start_addr from the
9923 * SEEPROM attached to the controller, into buf, using the controller's
9924 * SEEPROM reading state machine. Optionally treat the data as a byte
9925 * stream in terms of byte order.
9926 */
9927 int
ahd_read_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count,int bytestream)9928 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9929 u_int start_addr, u_int count, int bytestream)
9930 {
9931 u_int cur_addr;
9932 u_int end_addr;
9933 int error;
9934
9935 /*
9936 * If we never make it through the loop even once,
9937 * we were passed invalid arguments.
9938 */
9939 error = EINVAL;
9940 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9941 end_addr = start_addr + count;
9942 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9943
9944 ahd_outb(ahd, SEEADR, cur_addr);
9945 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9946
9947 error = ahd_wait_seeprom(ahd);
9948 if (error)
9949 break;
9950 if (bytestream != 0) {
9951 uint8_t *bytestream_ptr;
9952
9953 bytestream_ptr = (uint8_t *)buf;
9954 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9955 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9956 } else {
9957 /*
9958 * ahd_inw() already handles machine byte order.
9959 */
9960 *buf = ahd_inw(ahd, SEEDAT);
9961 }
9962 buf++;
9963 }
9964 return (error);
9965 }
9966
9967 /*
9968 * Write count 16bit words from buf, into SEEPROM attache to the
9969 * controller starting at 16bit word address start_addr, using the
9970 * controller's SEEPROM writing state machine.
9971 */
9972 int
ahd_write_seeprom(struct ahd_softc * ahd,uint16_t * buf,u_int start_addr,u_int count)9973 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9974 u_int start_addr, u_int count)
9975 {
9976 u_int cur_addr;
9977 u_int end_addr;
9978 int error;
9979 int retval;
9980
9981 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9982 error = ENOENT;
9983
9984 /* Place the chip into write-enable mode */
9985 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
9986 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
9987 error = ahd_wait_seeprom(ahd);
9988 if (error)
9989 return (error);
9990
9991 /*
9992 * Write the data. If we don't get through the loop at
9993 * least once, the arguments were invalid.
9994 */
9995 retval = EINVAL;
9996 end_addr = start_addr + count;
9997 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9998 ahd_outw(ahd, SEEDAT, *buf++);
9999 ahd_outb(ahd, SEEADR, cur_addr);
10000 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10001
10002 retval = ahd_wait_seeprom(ahd);
10003 if (retval)
10004 break;
10005 }
10006
10007 /*
10008 * Disable writes.
10009 */
10010 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10011 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10012 error = ahd_wait_seeprom(ahd);
10013 if (error)
10014 return (error);
10015 return (retval);
10016 }
10017
10018 /*
10019 * Wait ~100us for the serial eeprom to satisfy our request.
10020 */
10021 static int
ahd_wait_seeprom(struct ahd_softc * ahd)10022 ahd_wait_seeprom(struct ahd_softc *ahd)
10023 {
10024 int cnt;
10025
10026 cnt = 5000;
10027 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10028 ahd_delay(5);
10029
10030 if (cnt == 0)
10031 return (ETIMEDOUT);
10032 return (0);
10033 }
10034
10035 /*
10036 * Validate the two checksums in the per_channel
10037 * vital product data struct.
10038 */
10039 static int
ahd_verify_vpd_cksum(struct vpd_config * vpd)10040 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10041 {
10042 int i;
10043 int maxaddr;
10044 uint32_t checksum;
10045 uint8_t *vpdarray;
10046
10047 vpdarray = (uint8_t *)vpd;
10048 maxaddr = offsetof(struct vpd_config, vpd_checksum);
10049 checksum = 0;
10050 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10051 checksum = checksum + vpdarray[i];
10052 if (checksum == 0
10053 || (-checksum & 0xFF) != vpd->vpd_checksum)
10054 return (0);
10055
10056 checksum = 0;
10057 maxaddr = offsetof(struct vpd_config, checksum);
10058 for (i = offsetof(struct vpd_config, default_target_flags);
10059 i < maxaddr; i++)
10060 checksum = checksum + vpdarray[i];
10061 if (checksum == 0
10062 || (-checksum & 0xFF) != vpd->checksum)
10063 return (0);
10064 return (1);
10065 }
10066
10067 int
ahd_verify_cksum(struct seeprom_config * sc)10068 ahd_verify_cksum(struct seeprom_config *sc)
10069 {
10070 int i;
10071 int maxaddr;
10072 uint32_t checksum;
10073 uint16_t *scarray;
10074
10075 maxaddr = (sizeof(*sc)/2) - 1;
10076 checksum = 0;
10077 scarray = (uint16_t *)sc;
10078
10079 for (i = 0; i < maxaddr; i++)
10080 checksum = checksum + scarray[i];
10081 if (checksum == 0
10082 || (checksum & 0xFFFF) != sc->checksum) {
10083 return (0);
10084 } else {
10085 return (1);
10086 }
10087 }
10088
10089 int
ahd_acquire_seeprom(struct ahd_softc * ahd)10090 ahd_acquire_seeprom(struct ahd_softc *ahd)
10091 {
10092 /*
10093 * We should be able to determine the SEEPROM type
10094 * from the flexport logic, but unfortunately not
10095 * all implementations have this logic and there is
10096 * no programatic method for determining if the logic
10097 * is present.
10098 */
10099 return (1);
10100 #if 0
10101 uint8_t seetype;
10102 int error;
10103
10104 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10105 if (error != 0
10106 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10107 return (0);
10108 return (1);
10109 #endif
10110 }
10111
10112 void
ahd_release_seeprom(struct ahd_softc * ahd)10113 ahd_release_seeprom(struct ahd_softc *ahd)
10114 {
10115 /* Currently a no-op */
10116 }
10117
10118 /*
10119 * Wait at most 2 seconds for flexport arbitration to succeed.
10120 */
10121 static int
ahd_wait_flexport(struct ahd_softc * ahd)10122 ahd_wait_flexport(struct ahd_softc *ahd)
10123 {
10124 int cnt;
10125
10126 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10127 cnt = 1000000 * 2 / 5;
10128 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10129 ahd_delay(5);
10130
10131 if (cnt == 0)
10132 return (ETIMEDOUT);
10133 return (0);
10134 }
10135
10136 int
ahd_write_flexport(struct ahd_softc * ahd,u_int addr,u_int value)10137 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10138 {
10139 int error;
10140
10141 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10142 if (addr > 7)
10143 panic("ahd_write_flexport: address out of range");
10144 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10145 error = ahd_wait_flexport(ahd);
10146 if (error != 0)
10147 return (error);
10148 ahd_outb(ahd, BRDDAT, value);
10149 ahd_flush_device_writes(ahd);
10150 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10151 ahd_flush_device_writes(ahd);
10152 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10153 ahd_flush_device_writes(ahd);
10154 ahd_outb(ahd, BRDCTL, 0);
10155 ahd_flush_device_writes(ahd);
10156 return (0);
10157 }
10158
10159 int
ahd_read_flexport(struct ahd_softc * ahd,u_int addr,uint8_t * value)10160 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10161 {
10162 int error;
10163
10164 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10165 if (addr > 7)
10166 panic("ahd_read_flexport: address out of range");
10167 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10168 error = ahd_wait_flexport(ahd);
10169 if (error != 0)
10170 return (error);
10171 *value = ahd_inb(ahd, BRDDAT);
10172 ahd_outb(ahd, BRDCTL, 0);
10173 ahd_flush_device_writes(ahd);
10174 return (0);
10175 }
10176
10177 /************************* Target Mode ****************************************/
10178 #ifdef AHD_TARGET_MODE
10179 cam_status
ahd_find_tmode_devs(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb,struct ahd_tmode_tstate ** tstate,struct ahd_tmode_lstate ** lstate,int notfound_failure)10180 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10181 struct ahd_tmode_tstate **tstate,
10182 struct ahd_tmode_lstate **lstate,
10183 int notfound_failure)
10184 {
10185
10186 if ((ahd->features & AHD_TARGETMODE) == 0)
10187 return (CAM_REQ_INVALID);
10188
10189 /*
10190 * Handle the 'black hole' device that sucks up
10191 * requests to unattached luns on enabled targets.
10192 */
10193 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10194 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10195 *tstate = NULL;
10196 *lstate = ahd->black_hole;
10197 } else {
10198 u_int max_id;
10199
10200 max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10201 if (ccb->ccb_h.target_id >= max_id)
10202 return (CAM_TID_INVALID);
10203
10204 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10205 return (CAM_LUN_INVALID);
10206
10207 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10208 *lstate = NULL;
10209 if (*tstate != NULL)
10210 *lstate =
10211 (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10212 }
10213
10214 if (notfound_failure != 0 && *lstate == NULL)
10215 return (CAM_PATH_INVALID);
10216
10217 return (CAM_REQ_CMP);
10218 }
10219
10220 void
ahd_handle_en_lun(struct ahd_softc * ahd,struct cam_sim * sim,union ccb * ccb)10221 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10222 {
10223 #if NOT_YET
10224 struct ahd_tmode_tstate *tstate;
10225 struct ahd_tmode_lstate *lstate;
10226 struct ccb_en_lun *cel;
10227 cam_status status;
10228 u_int target;
10229 u_int lun;
10230 u_int target_mask;
10231 u_long s;
10232 char channel;
10233
10234 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10235 /*notfound_failure*/FALSE);
10236
10237 if (status != CAM_REQ_CMP) {
10238 ccb->ccb_h.status = status;
10239 return;
10240 }
10241
10242 if ((ahd->features & AHD_MULTIROLE) != 0) {
10243 u_int our_id;
10244
10245 our_id = ahd->our_id;
10246 if (ccb->ccb_h.target_id != our_id) {
10247 if ((ahd->features & AHD_MULTI_TID) != 0
10248 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10249 /*
10250 * Only allow additional targets if
10251 * the initiator role is disabled.
10252 * The hardware cannot handle a re-select-in
10253 * on the initiator id during a re-select-out
10254 * on a different target id.
10255 */
10256 status = CAM_TID_INVALID;
10257 } else if ((ahd->flags & AHD_INITIATORROLE) != 0
10258 || ahd->enabled_luns > 0) {
10259 /*
10260 * Only allow our target id to change
10261 * if the initiator role is not configured
10262 * and there are no enabled luns which
10263 * are attached to the currently registered
10264 * scsi id.
10265 */
10266 status = CAM_TID_INVALID;
10267 }
10268 }
10269 }
10270
10271 if (status != CAM_REQ_CMP) {
10272 ccb->ccb_h.status = status;
10273 return;
10274 }
10275
10276 /*
10277 * We now have an id that is valid.
10278 * If we aren't in target mode, switch modes.
10279 */
10280 if ((ahd->flags & AHD_TARGETROLE) == 0
10281 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10282 u_long s;
10283
10284 printk("Configuring Target Mode\n");
10285 ahd_lock(ahd, &s);
10286 if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10287 ccb->ccb_h.status = CAM_BUSY;
10288 ahd_unlock(ahd, &s);
10289 return;
10290 }
10291 ahd->flags |= AHD_TARGETROLE;
10292 if ((ahd->features & AHD_MULTIROLE) == 0)
10293 ahd->flags &= ~AHD_INITIATORROLE;
10294 ahd_pause(ahd);
10295 ahd_loadseq(ahd);
10296 ahd_restart(ahd);
10297 ahd_unlock(ahd, &s);
10298 }
10299 cel = &ccb->cel;
10300 target = ccb->ccb_h.target_id;
10301 lun = ccb->ccb_h.target_lun;
10302 channel = SIM_CHANNEL(ahd, sim);
10303 target_mask = 0x01 << target;
10304 if (channel == 'B')
10305 target_mask <<= 8;
10306
10307 if (cel->enable != 0) {
10308 u_int scsiseq1;
10309
10310 /* Are we already enabled?? */
10311 if (lstate != NULL) {
10312 xpt_print_path(ccb->ccb_h.path);
10313 printk("Lun already enabled\n");
10314 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10315 return;
10316 }
10317
10318 if (cel->grp6_len != 0
10319 || cel->grp7_len != 0) {
10320 /*
10321 * Don't (yet?) support vendor
10322 * specific commands.
10323 */
10324 ccb->ccb_h.status = CAM_REQ_INVALID;
10325 printk("Non-zero Group Codes\n");
10326 return;
10327 }
10328
10329 /*
10330 * Seems to be okay.
10331 * Setup our data structures.
10332 */
10333 if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10334 tstate = ahd_alloc_tstate(ahd, target, channel);
10335 if (tstate == NULL) {
10336 xpt_print_path(ccb->ccb_h.path);
10337 printk("Couldn't allocate tstate\n");
10338 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10339 return;
10340 }
10341 }
10342 lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10343 if (lstate == NULL) {
10344 xpt_print_path(ccb->ccb_h.path);
10345 printk("Couldn't allocate lstate\n");
10346 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10347 return;
10348 }
10349 status = xpt_create_path(&lstate->path, /*periph*/NULL,
10350 xpt_path_path_id(ccb->ccb_h.path),
10351 xpt_path_target_id(ccb->ccb_h.path),
10352 xpt_path_lun_id(ccb->ccb_h.path));
10353 if (status != CAM_REQ_CMP) {
10354 kfree(lstate);
10355 xpt_print_path(ccb->ccb_h.path);
10356 printk("Couldn't allocate path\n");
10357 ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10358 return;
10359 }
10360 SLIST_INIT(&lstate->accept_tios);
10361 SLIST_INIT(&lstate->immed_notifies);
10362 ahd_lock(ahd, &s);
10363 ahd_pause(ahd);
10364 if (target != CAM_TARGET_WILDCARD) {
10365 tstate->enabled_luns[lun] = lstate;
10366 ahd->enabled_luns++;
10367
10368 if ((ahd->features & AHD_MULTI_TID) != 0) {
10369 u_int targid_mask;
10370
10371 targid_mask = ahd_inw(ahd, TARGID);
10372 targid_mask |= target_mask;
10373 ahd_outw(ahd, TARGID, targid_mask);
10374 ahd_update_scsiid(ahd, targid_mask);
10375 } else {
10376 u_int our_id;
10377 char channel;
10378
10379 channel = SIM_CHANNEL(ahd, sim);
10380 our_id = SIM_SCSI_ID(ahd, sim);
10381
10382 /*
10383 * This can only happen if selections
10384 * are not enabled
10385 */
10386 if (target != our_id) {
10387 u_int sblkctl;
10388 char cur_channel;
10389 int swap;
10390
10391 sblkctl = ahd_inb(ahd, SBLKCTL);
10392 cur_channel = (sblkctl & SELBUSB)
10393 ? 'B' : 'A';
10394 if ((ahd->features & AHD_TWIN) == 0)
10395 cur_channel = 'A';
10396 swap = cur_channel != channel;
10397 ahd->our_id = target;
10398
10399 if (swap)
10400 ahd_outb(ahd, SBLKCTL,
10401 sblkctl ^ SELBUSB);
10402
10403 ahd_outb(ahd, SCSIID, target);
10404
10405 if (swap)
10406 ahd_outb(ahd, SBLKCTL, sblkctl);
10407 }
10408 }
10409 } else
10410 ahd->black_hole = lstate;
10411 /* Allow select-in operations */
10412 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10413 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10414 scsiseq1 |= ENSELI;
10415 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10416 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10417 scsiseq1 |= ENSELI;
10418 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10419 }
10420 ahd_unpause(ahd);
10421 ahd_unlock(ahd, &s);
10422 ccb->ccb_h.status = CAM_REQ_CMP;
10423 xpt_print_path(ccb->ccb_h.path);
10424 printk("Lun now enabled for target mode\n");
10425 } else {
10426 struct scb *scb;
10427 int i, empty;
10428
10429 if (lstate == NULL) {
10430 ccb->ccb_h.status = CAM_LUN_INVALID;
10431 return;
10432 }
10433
10434 ahd_lock(ahd, &s);
10435
10436 ccb->ccb_h.status = CAM_REQ_CMP;
10437 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10438 struct ccb_hdr *ccbh;
10439
10440 ccbh = &scb->io_ctx->ccb_h;
10441 if (ccbh->func_code == XPT_CONT_TARGET_IO
10442 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10443 printk("CTIO pending\n");
10444 ccb->ccb_h.status = CAM_REQ_INVALID;
10445 ahd_unlock(ahd, &s);
10446 return;
10447 }
10448 }
10449
10450 if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10451 printk("ATIOs pending\n");
10452 ccb->ccb_h.status = CAM_REQ_INVALID;
10453 }
10454
10455 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10456 printk("INOTs pending\n");
10457 ccb->ccb_h.status = CAM_REQ_INVALID;
10458 }
10459
10460 if (ccb->ccb_h.status != CAM_REQ_CMP) {
10461 ahd_unlock(ahd, &s);
10462 return;
10463 }
10464
10465 xpt_print_path(ccb->ccb_h.path);
10466 printk("Target mode disabled\n");
10467 xpt_free_path(lstate->path);
10468 kfree(lstate);
10469
10470 ahd_pause(ahd);
10471 /* Can we clean up the target too? */
10472 if (target != CAM_TARGET_WILDCARD) {
10473 tstate->enabled_luns[lun] = NULL;
10474 ahd->enabled_luns--;
10475 for (empty = 1, i = 0; i < 8; i++)
10476 if (tstate->enabled_luns[i] != NULL) {
10477 empty = 0;
10478 break;
10479 }
10480
10481 if (empty) {
10482 ahd_free_tstate(ahd, target, channel,
10483 /*force*/FALSE);
10484 if (ahd->features & AHD_MULTI_TID) {
10485 u_int targid_mask;
10486
10487 targid_mask = ahd_inw(ahd, TARGID);
10488 targid_mask &= ~target_mask;
10489 ahd_outw(ahd, TARGID, targid_mask);
10490 ahd_update_scsiid(ahd, targid_mask);
10491 }
10492 }
10493 } else {
10494
10495 ahd->black_hole = NULL;
10496
10497 /*
10498 * We can't allow selections without
10499 * our black hole device.
10500 */
10501 empty = TRUE;
10502 }
10503 if (ahd->enabled_luns == 0) {
10504 /* Disallow select-in */
10505 u_int scsiseq1;
10506
10507 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10508 scsiseq1 &= ~ENSELI;
10509 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10510 scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10511 scsiseq1 &= ~ENSELI;
10512 ahd_outb(ahd, SCSISEQ1, scsiseq1);
10513
10514 if ((ahd->features & AHD_MULTIROLE) == 0) {
10515 printk("Configuring Initiator Mode\n");
10516 ahd->flags &= ~AHD_TARGETROLE;
10517 ahd->flags |= AHD_INITIATORROLE;
10518 ahd_pause(ahd);
10519 ahd_loadseq(ahd);
10520 ahd_restart(ahd);
10521 /*
10522 * Unpaused. The extra unpause
10523 * that follows is harmless.
10524 */
10525 }
10526 }
10527 ahd_unpause(ahd);
10528 ahd_unlock(ahd, &s);
10529 }
10530 #endif
10531 }
10532
10533 static void
ahd_update_scsiid(struct ahd_softc * ahd,u_int targid_mask)10534 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10535 {
10536 #if NOT_YET
10537 u_int scsiid_mask;
10538 u_int scsiid;
10539
10540 if ((ahd->features & AHD_MULTI_TID) == 0)
10541 panic("ahd_update_scsiid called on non-multitid unit\n");
10542
10543 /*
10544 * Since we will rely on the TARGID mask
10545 * for selection enables, ensure that OID
10546 * in SCSIID is not set to some other ID
10547 * that we don't want to allow selections on.
10548 */
10549 if ((ahd->features & AHD_ULTRA2) != 0)
10550 scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10551 else
10552 scsiid = ahd_inb(ahd, SCSIID);
10553 scsiid_mask = 0x1 << (scsiid & OID);
10554 if ((targid_mask & scsiid_mask) == 0) {
10555 u_int our_id;
10556
10557 /* ffs counts from 1 */
10558 our_id = ffs(targid_mask);
10559 if (our_id == 0)
10560 our_id = ahd->our_id;
10561 else
10562 our_id--;
10563 scsiid &= TID;
10564 scsiid |= our_id;
10565 }
10566 if ((ahd->features & AHD_ULTRA2) != 0)
10567 ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10568 else
10569 ahd_outb(ahd, SCSIID, scsiid);
10570 #endif
10571 }
10572
10573 static void
ahd_run_tqinfifo(struct ahd_softc * ahd,int paused)10574 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10575 {
10576 struct target_cmd *cmd;
10577
10578 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10579 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10580
10581 /*
10582 * Only advance through the queue if we
10583 * have the resources to process the command.
10584 */
10585 if (ahd_handle_target_cmd(ahd, cmd) != 0)
10586 break;
10587
10588 cmd->cmd_valid = 0;
10589 ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10590 ahd->shared_data_map.dmamap,
10591 ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10592 sizeof(struct target_cmd),
10593 BUS_DMASYNC_PREREAD);
10594 ahd->tqinfifonext++;
10595
10596 /*
10597 * Lazily update our position in the target mode incoming
10598 * command queue as seen by the sequencer.
10599 */
10600 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10601 u_int hs_mailbox;
10602
10603 hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10604 hs_mailbox &= ~HOST_TQINPOS;
10605 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10606 ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10607 }
10608 }
10609 }
10610
10611 static int
ahd_handle_target_cmd(struct ahd_softc * ahd,struct target_cmd * cmd)10612 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10613 {
10614 struct ahd_tmode_tstate *tstate;
10615 struct ahd_tmode_lstate *lstate;
10616 struct ccb_accept_tio *atio;
10617 uint8_t *byte;
10618 int initiator;
10619 int target;
10620 int lun;
10621
10622 initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10623 target = SCSIID_OUR_ID(cmd->scsiid);
10624 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10625
10626 byte = cmd->bytes;
10627 tstate = ahd->enabled_targets[target];
10628 lstate = NULL;
10629 if (tstate != NULL)
10630 lstate = tstate->enabled_luns[lun];
10631
10632 /*
10633 * Commands for disabled luns go to the black hole driver.
10634 */
10635 if (lstate == NULL)
10636 lstate = ahd->black_hole;
10637
10638 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10639 if (atio == NULL) {
10640 ahd->flags |= AHD_TQINFIFO_BLOCKED;
10641 /*
10642 * Wait for more ATIOs from the peripheral driver for this lun.
10643 */
10644 return (1);
10645 } else
10646 ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10647 #ifdef AHD_DEBUG
10648 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10649 printk("Incoming command from %d for %d:%d%s\n",
10650 initiator, target, lun,
10651 lstate == ahd->black_hole ? "(Black Holed)" : "");
10652 #endif
10653 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10654
10655 if (lstate == ahd->black_hole) {
10656 /* Fill in the wildcards */
10657 atio->ccb_h.target_id = target;
10658 atio->ccb_h.target_lun = lun;
10659 }
10660
10661 /*
10662 * Package it up and send it off to
10663 * whomever has this lun enabled.
10664 */
10665 atio->sense_len = 0;
10666 atio->init_id = initiator;
10667 if (byte[0] != 0xFF) {
10668 /* Tag was included */
10669 atio->tag_action = *byte++;
10670 atio->tag_id = *byte++;
10671 atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10672 } else {
10673 atio->ccb_h.flags = 0;
10674 }
10675 byte++;
10676
10677 /* Okay. Now determine the cdb size based on the command code */
10678 switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10679 case 0:
10680 atio->cdb_len = 6;
10681 break;
10682 case 1:
10683 case 2:
10684 atio->cdb_len = 10;
10685 break;
10686 case 4:
10687 atio->cdb_len = 16;
10688 break;
10689 case 5:
10690 atio->cdb_len = 12;
10691 break;
10692 case 3:
10693 default:
10694 /* Only copy the opcode. */
10695 atio->cdb_len = 1;
10696 printk("Reserved or VU command code type encountered\n");
10697 break;
10698 }
10699
10700 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10701
10702 atio->ccb_h.status |= CAM_CDB_RECVD;
10703
10704 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10705 /*
10706 * We weren't allowed to disconnect.
10707 * We're hanging on the bus until a
10708 * continue target I/O comes in response
10709 * to this accept tio.
10710 */
10711 #ifdef AHD_DEBUG
10712 if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10713 printk("Received Immediate Command %d:%d:%d - %p\n",
10714 initiator, target, lun, ahd->pending_device);
10715 #endif
10716 ahd->pending_device = lstate;
10717 ahd_freeze_ccb((union ccb *)atio);
10718 atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10719 }
10720 xpt_done((union ccb*)atio);
10721 return (0);
10722 }
10723
10724 #endif
10725