xref: /linux/drivers/scsi/aic7xxx/aic79xx_core.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 /*
2  * Core routines and tables shareable across OS platforms.
3  *
4  * Copyright (c) 1994-2002 Justin T. Gibbs.
5  * Copyright (c) 2000-2003 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    substantially similar to the "NO WARRANTY" disclaimer below
16  *    ("Disclaimer") and any redistribution must be conditioned upon
17  *    including a substantially similar Disclaimer requirement for further
18  *    binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  *    of any contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41  */
42 
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
46 
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
49 {
50 	"NONE",
51 	"aic7901",
52 	"aic7902",
53 	"aic7901A"
54 };
55 
56 /*
57  * Hardware error codes.
58  */
59 struct ahd_hard_error_entry {
60 	uint8_t errno;
61 	const char *errmesg;
62 };
63 
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 	{ DSCTMOUT,	"Discard Timer has timed out" },
66 	{ ILLOPCODE,	"Illegal Opcode in sequencer program" },
67 	{ SQPARERR,	"Sequencer Parity Error" },
68 	{ DPARERR,	"Data-path Parity Error" },
69 	{ MPARERR,	"Scratch or SCB Memory Parity Error" },
70 	{ CIOPARERR,	"CIOBUS Parity Error" },
71 };
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73 
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
75 {
76 	{ P_DATAOUT,	NOP,			"in Data-out phase"	},
77 	{ P_DATAIN,	INITIATOR_ERROR,	"in Data-in phase"	},
78 	{ P_DATAOUT_DT,	NOP,			"in DT Data-out phase"	},
79 	{ P_DATAIN_DT,	INITIATOR_ERROR,	"in DT Data-in phase"	},
80 	{ P_COMMAND,	NOP,			"in Command phase"	},
81 	{ P_MESGOUT,	NOP,			"in Message-out phase"	},
82 	{ P_STATUS,	INITIATOR_ERROR,	"in Status phase"	},
83 	{ P_MESGIN,	MSG_PARITY_ERROR,	"in Message-in phase"	},
84 	{ P_BUSFREE,	NOP,			"while idle"		},
85 	{ 0,		NOP,			"in unknown phase"	}
86 };
87 
88 /*
89  * In most cases we only wish to itterate over real phases, so
90  * exclude the last element from the count.
91  */
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93 
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
96 
97 /**************************** Function Declarations ***************************/
98 static void		ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void		ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 						  u_int lqistat1);
101 static int		ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 					       u_int busfreetime);
103 static int		ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void		ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void		ahd_force_renegotiation(struct ahd_softc *ahd,
106 						struct ahd_devinfo *devinfo);
107 
108 static struct ahd_tmode_tstate*
109 			ahd_alloc_tstate(struct ahd_softc *ahd,
110 					 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void		ahd_free_tstate(struct ahd_softc *ahd,
113 					u_int scsi_id, char channel, int force);
114 #endif
115 static void		ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 						struct ahd_initiator_tinfo *,
117 						u_int *period,
118 						u_int *ppr_options,
119 						role_t role);
120 static void		ahd_update_neg_table(struct ahd_softc *ahd,
121 					     struct ahd_devinfo *devinfo,
122 					     struct ahd_transinfo *tinfo);
123 static void		ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void		ahd_fetch_devinfo(struct ahd_softc *ahd,
125 					  struct ahd_devinfo *devinfo);
126 static void		ahd_scb_devinfo(struct ahd_softc *ahd,
127 					struct ahd_devinfo *devinfo,
128 					struct scb *scb);
129 static void		ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 						   struct ahd_devinfo *devinfo,
131 						   struct scb *scb);
132 static void		ahd_build_transfer_msg(struct ahd_softc *ahd,
133 					       struct ahd_devinfo *devinfo);
134 static void		ahd_construct_sdtr(struct ahd_softc *ahd,
135 					   struct ahd_devinfo *devinfo,
136 					   u_int period, u_int offset);
137 static void		ahd_construct_wdtr(struct ahd_softc *ahd,
138 					   struct ahd_devinfo *devinfo,
139 					   u_int bus_width);
140 static void		ahd_construct_ppr(struct ahd_softc *ahd,
141 					  struct ahd_devinfo *devinfo,
142 					  u_int period, u_int offset,
143 					  u_int bus_width, u_int ppr_options);
144 static void		ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void		ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 	AHDMSG_1B,
148 	AHDMSG_2B,
149 	AHDMSG_EXT
150 } ahd_msgtype;
151 static int		ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 				     u_int msgval, int full);
153 static int		ahd_parse_msg(struct ahd_softc *ahd,
154 				      struct ahd_devinfo *devinfo);
155 static int		ahd_handle_msg_reject(struct ahd_softc *ahd,
156 					      struct ahd_devinfo *devinfo);
157 static void		ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 						struct ahd_devinfo *devinfo);
159 static void		ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void		ahd_handle_devreset(struct ahd_softc *ahd,
161 					    struct ahd_devinfo *devinfo,
162 					    u_int lun, cam_status status,
163 					    char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void		ahd_setup_target_msgin(struct ahd_softc *ahd,
166 					       struct ahd_devinfo *devinfo,
167 					       struct scb *scb);
168 #endif
169 
170 static u_int		ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int		ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 			ahd_dmamap_cb;
174 static void		ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int		ahd_init_scbdata(struct ahd_softc *ahd);
176 static void		ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void		ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void		ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void		ahd_add_col_list(struct ahd_softc *ahd,
180 					 struct scb *scb, u_int col_idx);
181 static void		ahd_rem_col_list(struct ahd_softc *ahd,
182 					 struct scb *scb);
183 static void		ahd_chip_init(struct ahd_softc *ahd);
184 static void		ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 					    struct scb *prev_scb,
186 					    struct scb *scb);
187 static int		ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int		ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 					    char channel, int lun, u_int tag,
190 					    role_t role, uint32_t status,
191 					    ahd_search_action action,
192 					    u_int *list_head, u_int *list_tail,
193 					    u_int tid);
194 static void		ahd_stitch_tid_list(struct ahd_softc *ahd,
195 					    u_int tid_prev, u_int tid_cur,
196 					    u_int tid_next);
197 static void		ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 						 u_int scbid);
199 static u_int		ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 				     u_int prev, u_int next, u_int tid);
201 static void		ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void		ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void		ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void		ahd_loadseq(struct ahd_softc *ahd);
207 static int		ahd_check_patch(struct ahd_softc *ahd,
208 					const struct patch **start_patch,
209 					u_int start_instr, u_int *skip_addr);
210 static u_int		ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 					    u_int address);
212 static void		ahd_download_instr(struct ahd_softc *ahd,
213 					   u_int instrptr, uint8_t *dconsts);
214 static int		ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int		ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 					       struct scb *scb);
217 static void		ahd_run_data_fifo(struct ahd_softc *ahd,
218 					  struct scb *scb);
219 
220 #ifdef AHD_TARGET_MODE
221 static void		ahd_queue_lstate_event(struct ahd_softc *ahd,
222 					       struct ahd_tmode_lstate *lstate,
223 					       u_int initiator_id,
224 					       u_int event_type,
225 					       u_int event_arg);
226 static void		ahd_update_scsiid(struct ahd_softc *ahd,
227 					  u_int targid_mask);
228 static int		ahd_handle_target_cmd(struct ahd_softc *ahd,
229 					      struct target_cmd *cmd);
230 #endif
231 
232 static int		ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 				       char channel, int lun, u_int tag,
234 				       role_t role, uint32_t status);
235 static void		ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void		ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 				     u_int scbid);
238 static void		ahd_calc_residual(struct ahd_softc *ahd,
239 					  struct scb *scb);
240 static void		ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void		ahd_clear_intstat(struct ahd_softc *ahd);
242 static void		ahd_enable_coalescing(struct ahd_softc *ahd,
243 					      int enable);
244 static u_int		ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void		ahd_freeze_devq(struct ahd_softc *ahd,
246 					struct scb *scb);
247 static void		ahd_handle_scb_status(struct ahd_softc *ahd,
248 					      struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void		ahd_shutdown(void *arg);
251 static void		ahd_update_coalescing_values(struct ahd_softc *ahd,
252 						     u_int timer,
253 						     u_int maxcmds,
254 						     u_int mincmds);
255 static int		ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int		ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int		ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 				      int target, char channel, int lun,
259 				      u_int tag, role_t role);
260 
261 static void		ahd_reset_cmds_pending(struct ahd_softc *ahd);
262 
263 /*************************** Interrupt Services *******************************/
264 static void		ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void		ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void		ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void		ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void		ahd_handle_scsiint(struct ahd_softc *ahd,
271 					   u_int intstat);
272 
273 /************************ Sequencer Execution Control *************************/
274 void
275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276 {
277 	if (ahd->src_mode == src && ahd->dst_mode == dst)
278 		return;
279 #ifdef AHD_DEBUG
280 	if (ahd->src_mode == AHD_MODE_UNKNOWN
281 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 		panic("Setting mode prior to saving it.\n");
283 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 		printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 		       ahd_build_mode_state(ahd, src, dst));
286 #endif
287 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 	ahd->src_mode = src;
289 	ahd->dst_mode = dst;
290 }
291 
292 static void
293 ahd_update_modes(struct ahd_softc *ahd)
294 {
295 	ahd_mode_state mode_ptr;
296 	ahd_mode src;
297 	ahd_mode dst;
298 
299 	mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 		printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 	ahd_known_modes(ahd, src, dst);
306 }
307 
308 static void
309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 		 ahd_mode dstmode, const char *file, int line)
311 {
312 #ifdef AHD_DEBUG
313 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 		panic("%s:%s:%d: Mode assertion failed.\n",
316 		       ahd_name(ahd), file, line);
317 	}
318 #endif
319 }
320 
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323 
324 ahd_mode_state
325 ahd_save_modes(struct ahd_softc *ahd)
326 {
327 	if (ahd->src_mode == AHD_MODE_UNKNOWN
328 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 		ahd_update_modes(ahd);
330 
331 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332 }
333 
334 void
335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336 {
337 	ahd_mode src;
338 	ahd_mode dst;
339 
340 	ahd_extract_mode_state(ahd, state, &src, &dst);
341 	ahd_set_modes(ahd, src, dst);
342 }
343 
344 /*
345  * Determine whether the sequencer has halted code execution.
346  * Returns non-zero status if the sequencer is stopped.
347  */
348 int
349 ahd_is_paused(struct ahd_softc *ahd)
350 {
351 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352 }
353 
354 /*
355  * Request that the sequencer stop and wait, indefinitely, for it
356  * to stop.  The sequencer will only acknowledge that it is paused
357  * once it has reached an instruction boundary and PAUSEDIS is
358  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
359  * for critical sections.
360  */
361 void
362 ahd_pause(struct ahd_softc *ahd)
363 {
364 	ahd_outb(ahd, HCNTRL, ahd->pause);
365 
366 	/*
367 	 * Since the sequencer can disable pausing in a critical section, we
368 	 * must loop until it actually stops.
369 	 */
370 	while (ahd_is_paused(ahd) == 0)
371 		;
372 }
373 
374 /*
375  * Allow the sequencer to continue program execution.
376  * We check here to ensure that no additional interrupt
377  * sources that would cause the sequencer to halt have been
378  * asserted.  If, for example, a SCSI bus reset is detected
379  * while we are fielding a different, pausing, interrupt type,
380  * we don't want to release the sequencer before going back
381  * into our interrupt handler and dealing with this new
382  * condition.
383  */
384 void
385 ahd_unpause(struct ahd_softc *ahd)
386 {
387 	/*
388 	 * Automatically restore our modes to those saved
389 	 * prior to the first change of the mode.
390 	 */
391 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 			ahd_reset_cmds_pending(ahd);
395 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396 	}
397 
398 	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 		ahd_outb(ahd, HCNTRL, ahd->unpause);
400 
401 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402 }
403 
404 /*********************** Scatter Gather List Handling *************************/
405 void *
406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 	     void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408 {
409 	scb->sg_count++;
410 	if (sizeof(dma_addr_t) > 4
411 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 		struct ahd_dma64_seg *sg;
413 
414 		sg = (struct ahd_dma64_seg *)sgptr;
415 		sg->addr = ahd_htole64(addr);
416 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 		return (sg + 1);
418 	} else {
419 		struct ahd_dma_seg *sg;
420 
421 		sg = (struct ahd_dma_seg *)sgptr;
422 		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 				    | (last ? AHD_DMA_LAST_SEG : 0));
425 		return (sg + 1);
426 	}
427 }
428 
429 static void
430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431 {
432 	/* XXX Handle target mode SCBs. */
433 	scb->crc_retry_count = 0;
434 	if ((scb->flags & SCB_PACKETIZED) != 0) {
435 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
436 		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 	} else {
438 		if (ahd_get_transfer_length(scb) & 0x01)
439 			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 		else
441 			scb->hscb->task_attribute = 0;
442 	}
443 
444 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 		    ahd_htole32(scb->sense_busaddr);
448 }
449 
450 static void
451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452 {
453 	/*
454 	 * Copy the first SG into the "current" data ponter area.
455 	 */
456 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 		struct ahd_dma64_seg *sg;
458 
459 		sg = (struct ahd_dma64_seg *)scb->sg_list;
460 		scb->hscb->dataptr = sg->addr;
461 		scb->hscb->datacnt = sg->len;
462 	} else {
463 		struct ahd_dma_seg *sg;
464 		uint32_t *dataptr_words;
465 
466 		sg = (struct ahd_dma_seg *)scb->sg_list;
467 		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 		dataptr_words[0] = sg->addr;
469 		dataptr_words[1] = 0;
470 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 			uint64_t high_addr;
472 
473 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475 		}
476 		scb->hscb->datacnt = sg->len;
477 	}
478 	/*
479 	 * Note where to find the SG entries in bus space.
480 	 * We also set the full residual flag which the
481 	 * sequencer will clear as soon as a data transfer
482 	 * occurs.
483 	 */
484 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485 }
486 
487 static void
488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489 {
490 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 	scb->hscb->dataptr = 0;
492 	scb->hscb->datacnt = 0;
493 }
494 
495 /************************** Memory mapping routines ***************************/
496 static void *
497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498 {
499 	dma_addr_t sg_offset;
500 
501 	/* sg_list_phys points to entry 1, not 0 */
502 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 	return ((uint8_t *)scb->sg_list + sg_offset);
504 }
505 
506 static uint32_t
507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508 {
509 	dma_addr_t sg_offset;
510 
511 	/* sg_list_phys points to entry 1, not 0 */
512 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 		  - ahd_sg_size(ahd);
514 
515 	return (scb->sg_list_busaddr + sg_offset);
516 }
517 
518 static void
519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520 {
521 	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 			scb->hscb_map->dmamap,
523 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 			/*len*/sizeof(*scb->hscb), op);
525 }
526 
527 void
528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529 {
530 	if (scb->sg_count == 0)
531 		return;
532 
533 	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 			scb->sg_map->dmamap,
535 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537 }
538 
539 static void
540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541 {
542 	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 			scb->sense_map->dmamap,
544 			/*offset*/scb->sense_busaddr,
545 			/*len*/AHD_SENSE_BUFSIZE, op);
546 }
547 
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551 {
552 	return (((uint8_t *)&ahd->targetcmds[index])
553 	       - (uint8_t *)ahd->qoutfifo);
554 }
555 #endif
556 
557 /*********************** Miscellaneous Support Functions ***********************/
558 /*
559  * Return pointers to the transfer negotiation information
560  * for the specified our_id/remote_id pair.
561  */
562 struct ahd_initiator_tinfo *
563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
565 {
566 	/*
567 	 * Transfer data structures are stored from the perspective
568 	 * of the target role.  Since the parameters for a connection
569 	 * in the initiator role to a given target are the same as
570 	 * when the roles are reversed, we pretend we are the target.
571 	 */
572 	if (channel == 'B')
573 		our_id += 8;
574 	*tstate = ahd->enabled_targets[our_id];
575 	return (&(*tstate)->transinfo[remote_id]);
576 }
577 
578 uint16_t
579 ahd_inw(struct ahd_softc *ahd, u_int port)
580 {
581 	/*
582 	 * Read high byte first as some registers increment
583 	 * or have other side effects when the low byte is
584 	 * read.
585 	 */
586 	uint16_t r = ahd_inb(ahd, port+1) << 8;
587 	return r | ahd_inb(ahd, port);
588 }
589 
590 void
591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592 {
593 	/*
594 	 * Write low byte first to accommodate registers
595 	 * such as PRGMCNT where the order maters.
596 	 */
597 	ahd_outb(ahd, port, value & 0xFF);
598 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599 }
600 
601 uint32_t
602 ahd_inl(struct ahd_softc *ahd, u_int port)
603 {
604 	return ((ahd_inb(ahd, port))
605 	      | (ahd_inb(ahd, port+1) << 8)
606 	      | (ahd_inb(ahd, port+2) << 16)
607 	      | (ahd_inb(ahd, port+3) << 24));
608 }
609 
610 void
611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612 {
613 	ahd_outb(ahd, port, (value) & 0xFF);
614 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617 }
618 
619 uint64_t
620 ahd_inq(struct ahd_softc *ahd, u_int port)
621 {
622 	return ((ahd_inb(ahd, port))
623 	      | (ahd_inb(ahd, port+1) << 8)
624 	      | (ahd_inb(ahd, port+2) << 16)
625 	      | (ahd_inb(ahd, port+3) << 24)
626 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630 }
631 
632 void
633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634 {
635 	ahd_outb(ahd, port, value & 0xFF);
636 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643 }
644 
645 u_int
646 ahd_get_scbptr(struct ahd_softc *ahd)
647 {
648 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651 }
652 
653 void
654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655 {
656 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660 }
661 
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665 {
666 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667 }
668 #endif
669 
670 static void
671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672 {
673 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674 }
675 
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
679 {
680 	return (ahd_inb(ahd, HESCB_QOFF));
681 }
682 #endif
683 
684 static void
685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686 {
687 	ahd_outb(ahd, HESCB_QOFF, value);
688 }
689 
690 static u_int
691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
692 {
693 	u_int oldvalue;
694 
695 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 	return (oldvalue);
699 }
700 
701 static void
702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703 {
704 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 	ahd_outw(ahd, SNSCB_QOFF, value);
706 }
707 
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
711 {
712 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 	return (ahd_inb(ahd, SESCB_QOFF));
714 }
715 #endif
716 
717 static void
718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719 {
720 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 	ahd_outb(ahd, SESCB_QOFF, value);
722 }
723 
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727 {
728 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730 }
731 #endif
732 
733 static void
734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735 {
736 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739 }
740 
741 u_int
742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743 {
744 	u_int value;
745 
746 	/*
747 	 * Workaround PCI-X Rev A. hardware bug.
748 	 * After a host read of SCB memory, the chip
749 	 * may become confused into thinking prefetch
750 	 * was required.  This starts the discard timer
751 	 * running and can cause an unexpected discard
752 	 * timer interrupt.  The work around is to read
753 	 * a normal register prior to the exhaustion of
754 	 * the discard timer.  The mode pointer register
755 	 * has no side effects and so serves well for
756 	 * this purpose.
757 	 *
758 	 * Razor #528
759 	 */
760 	value = ahd_inb(ahd, offset);
761 	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 		ahd_inb(ahd, MODE_PTR);
763 	return (value);
764 }
765 
766 u_int
767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768 {
769 	return (ahd_inb_scbram(ahd, offset)
770 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
771 }
772 
773 static uint32_t
774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775 {
776 	return (ahd_inw_scbram(ahd, offset)
777 	      | (ahd_inw_scbram(ahd, offset+2) << 16));
778 }
779 
780 static uint64_t
781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782 {
783 	return (ahd_inl_scbram(ahd, offset)
784 	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785 }
786 
787 struct scb *
788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789 {
790 	struct scb* scb;
791 
792 	if (tag >= AHD_SCB_MAX)
793 		return (NULL);
794 	scb = ahd->scb_data.scbindex[tag];
795 	if (scb != NULL)
796 		ahd_sync_scb(ahd, scb,
797 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 	return (scb);
799 }
800 
801 static void
802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803 {
804 	struct	 hardware_scb *q_hscb;
805 	struct	 map_node *q_hscb_map;
806 	uint32_t saved_hscb_busaddr;
807 
808 	/*
809 	 * Our queuing method is a bit tricky.  The card
810 	 * knows in advance which HSCB (by address) to download,
811 	 * and we can't disappoint it.  To achieve this, the next
812 	 * HSCB to download is saved off in ahd->next_queued_hscb.
813 	 * When we are called to queue "an arbitrary scb",
814 	 * we copy the contents of the incoming HSCB to the one
815 	 * the sequencer knows about, swap HSCB pointers and
816 	 * finally assign the SCB to the tag indexed location
817 	 * in the scb_array.  This makes sure that we can still
818 	 * locate the correct SCB by SCB_TAG.
819 	 */
820 	q_hscb = ahd->next_queued_hscb;
821 	q_hscb_map = ahd->next_queued_hscb_map;
822 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826 
827 	/* Now swap HSCB pointers. */
828 	ahd->next_queued_hscb = scb->hscb;
829 	ahd->next_queued_hscb_map = scb->hscb_map;
830 	scb->hscb = q_hscb;
831 	scb->hscb_map = q_hscb_map;
832 
833 	/* Now define the mapping from tag to SCB in the scbindex */
834 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835 }
836 
837 /*
838  * Tell the sequencer about a new transaction to execute.
839  */
840 void
841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842 {
843 	ahd_swap_with_next_hscb(ahd, scb);
844 
845 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 		panic("Attempt to queue invalid SCB tag %x\n",
847 		      SCB_GET_TAG(scb));
848 
849 	/*
850 	 * Keep a history of SCBs we've downloaded in the qinfifo.
851 	 */
852 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 	ahd->qinfifonext++;
854 
855 	if (scb->sg_count != 0)
856 		ahd_setup_data_scb(ahd, scb);
857 	else
858 		ahd_setup_noxfer_scb(ahd, scb);
859 	ahd_setup_scb_common(ahd, scb);
860 
861 	/*
862 	 * Make sure our data is consistent from the
863 	 * perspective of the adapter.
864 	 */
865 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866 
867 #ifdef AHD_DEBUG
868 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 		uint64_t host_dataptr;
870 
871 		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 		printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 		       ahd_name(ahd),
874 		       SCB_GET_TAG(scb), scb->hscb->scsiid,
875 		       ahd_le32toh(scb->hscb->hscb_busaddr),
876 		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 		       (u_int)(host_dataptr & 0xFFFFFFFF),
878 		       ahd_le32toh(scb->hscb->datacnt));
879 	}
880 #endif
881 	/* Tell the adapter about the newly queued SCB */
882 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883 }
884 
885 /************************** Interrupt Processing ******************************/
886 static void
887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888 {
889 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 			/*offset*/0,
891 			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892 }
893 
894 static void
895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896 {
897 #ifdef AHD_TARGET_MODE
898 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 				ahd->shared_data_map.dmamap,
901 				ahd_targetcmd_offset(ahd, 0),
902 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 				op);
904 	}
905 #endif
906 }
907 
908 /*
909  * See if the firmware has posted any completed commands
910  * into our in-core command complete fifos.
911  */
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916 {
917 	u_int retval;
918 
919 	retval = 0;
920 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 	  == ahd->qoutfifonext_valid_tag)
925 		retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 	if ((ahd->flags & AHD_TARGETROLE) != 0
928 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 				ahd->shared_data_map.dmamap,
931 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 				/*len*/sizeof(struct target_cmd),
933 				BUS_DMASYNC_POSTREAD);
934 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 			retval |= AHD_RUN_TQINFIFO;
936 	}
937 #endif
938 	return (retval);
939 }
940 
941 /*
942  * Catch an interrupt from the adapter
943  */
944 int
945 ahd_intr(struct ahd_softc *ahd)
946 {
947 	u_int	intstat;
948 
949 	if ((ahd->pause & INTEN) == 0) {
950 		/*
951 		 * Our interrupt is not enabled on the chip
952 		 * and may be disabled for re-entrancy reasons,
953 		 * so just return.  This is likely just a shared
954 		 * interrupt.
955 		 */
956 		return (0);
957 	}
958 
959 	/*
960 	 * Instead of directly reading the interrupt status register,
961 	 * infer the cause of the interrupt by checking our in-core
962 	 * completion queues.  This avoids a costly PCI bus read in
963 	 * most cases.
964 	 */
965 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 		intstat = CMDCMPLT;
968 	else
969 		intstat = ahd_inb(ahd, INTSTAT);
970 
971 	if ((intstat & INT_PEND) == 0)
972 		return (0);
973 
974 	if (intstat & CMDCMPLT) {
975 		ahd_outb(ahd, CLRINT, CLRCMDINT);
976 
977 		/*
978 		 * Ensure that the chip sees that we've cleared
979 		 * this interrupt before we walk the output fifo.
980 		 * Otherwise, we may, due to posted bus writes,
981 		 * clear the interrupt after we finish the scan,
982 		 * and after the sequencer has added new entries
983 		 * and asserted the interrupt again.
984 		 */
985 		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 			if (ahd_is_paused(ahd)) {
987 				/*
988 				 * Potentially lost SEQINT.
989 				 * If SEQINTCODE is non-zero,
990 				 * simulate the SEQINT.
991 				 */
992 				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 					intstat |= SEQINT;
994 			}
995 		} else {
996 			ahd_flush_device_writes(ahd);
997 		}
998 		ahd_run_qoutfifo(ahd);
999 		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 		ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 		if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1005 	}
1006 
1007 	/*
1008 	 * Handle statuses that may invalidate our cached
1009 	 * copy of INTSTAT separately.
1010 	 */
1011 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 		/* Hot eject.  Do nothing */
1013 	} else if (intstat & HWERRINT) {
1014 		ahd_handle_hwerrint(ahd);
1015 	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 		ahd->bus_intr(ahd);
1017 	} else {
1018 
1019 		if ((intstat & SEQINT) != 0)
1020 			ahd_handle_seqint(ahd, intstat);
1021 
1022 		if ((intstat & SCSIINT) != 0)
1023 			ahd_handle_scsiint(ahd, intstat);
1024 	}
1025 	return (1);
1026 }
1027 
1028 /******************************** Private Inlines *****************************/
1029 static inline void
1030 ahd_assert_atn(struct ahd_softc *ahd)
1031 {
1032 	ahd_outb(ahd, SCSISIGO, ATNO);
1033 }
1034 
1035 /*
1036  * Determine if the current connection has a packetized
1037  * agreement.  This does not necessarily mean that we
1038  * are currently in a packetized transfer.  We could
1039  * just as easily be sending or receiving a message.
1040  */
1041 static int
1042 ahd_currently_packetized(struct ahd_softc *ahd)
1043 {
1044 	ahd_mode_state	 saved_modes;
1045 	int		 packetized;
1046 
1047 	saved_modes = ahd_save_modes(ahd);
1048 	if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049 		/*
1050 		 * The packetized bit refers to the last
1051 		 * connection, not the current one.  Check
1052 		 * for non-zero LQISTATE instead.
1053 		 */
1054 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 		packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 	} else {
1057 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 		packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059 	}
1060 	ahd_restore_modes(ahd, saved_modes);
1061 	return (packetized);
1062 }
1063 
1064 static inline int
1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1066 {
1067 	u_int active_fifo;
1068 
1069 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 	active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 	switch (active_fifo) {
1072 	case 0:
1073 	case 1:
1074 		ahd_set_modes(ahd, active_fifo, active_fifo);
1075 		return (1);
1076 	default:
1077 		return (0);
1078 	}
1079 }
1080 
1081 static inline void
1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083 {
1084 	ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085 }
1086 
1087 /*
1088  * Determine whether the sequencer reported a residual
1089  * for this SCB/transaction.
1090  */
1091 static inline void
1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093 {
1094 	uint32_t sgptr;
1095 
1096 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 	if ((sgptr & SG_STATUS_VALID) != 0)
1098 		ahd_calc_residual(ahd, scb);
1099 }
1100 
1101 static inline void
1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103 {
1104 	uint32_t sgptr;
1105 
1106 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 	if ((sgptr & SG_STATUS_VALID) != 0)
1108 		ahd_handle_scb_status(ahd, scb);
1109 	else
1110 		ahd_done(ahd, scb);
1111 }
1112 
1113 
1114 /************************* Sequencer Execution Control ************************/
1115 /*
1116  * Restart the sequencer program from address zero
1117  */
1118 static void
1119 ahd_restart(struct ahd_softc *ahd)
1120 {
1121 
1122 	ahd_pause(ahd);
1123 
1124 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125 
1126 	/* No more pending messages */
1127 	ahd_clear_msg_state(ahd);
1128 	ahd_outb(ahd, SCSISIGO, 0);		/* De-assert BSY */
1129 	ahd_outb(ahd, MSG_OUT, NOP);	/* No message to send */
1130 	ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 	ahd_outb(ahd, SEQINTCTL, 0);
1132 	ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 	ahd_outb(ahd, SEQ_FLAGS, 0);
1134 	ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 	ahd_outb(ahd, SAVED_LUN, 0xFF);
1136 
1137 	/*
1138 	 * Ensure that the sequencer's idea of TQINPOS
1139 	 * matches our own.  The sequencer increments TQINPOS
1140 	 * only after it sees a DMA complete and a reset could
1141 	 * occur before the increment leaving the kernel to believe
1142 	 * the command arrived but the sequencer to not.
1143 	 */
1144 	ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145 
1146 	/* Always allow reselection */
1147 	ahd_outb(ahd, SCSISEQ1,
1148 		 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150 
1151 	/*
1152 	 * Clear any pending sequencer interrupt.  It is no
1153 	 * longer relevant since we're resetting the Program
1154 	 * Counter.
1155 	 */
1156 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1157 
1158 	ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 	ahd_unpause(ahd);
1160 }
1161 
1162 static void
1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164 {
1165 	ahd_mode_state	 saved_modes;
1166 
1167 #ifdef AHD_DEBUG
1168 	if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 		printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 	saved_modes = ahd_save_modes(ahd);
1172 	ahd_set_modes(ahd, fifo, fifo);
1173 	ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 	if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 		ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 	ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 	ahd_outb(ahd, SG_STATE, 0);
1178 	ahd_restore_modes(ahd, saved_modes);
1179 }
1180 
1181 /************************* Input/Output Queues ********************************/
1182 /*
1183  * Flush and completed commands that are sitting in the command
1184  * complete queues down on the chip but have yet to be dma'ed back up.
1185  */
1186 static void
1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188 {
1189 	struct		scb *scb;
1190 	ahd_mode_state	saved_modes;
1191 	u_int		saved_scbptr;
1192 	u_int		ccscbctl;
1193 	u_int		scbid;
1194 	u_int		next_scbid;
1195 
1196 	saved_modes = ahd_save_modes(ahd);
1197 
1198 	/*
1199 	 * Flush the good status FIFO for completed packetized commands.
1200 	 */
1201 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 	saved_scbptr = ahd_get_scbptr(ahd);
1203 	while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 		u_int fifo_mode;
1205 		u_int i;
1206 
1207 		scbid = ahd_inw(ahd, GSFIFO);
1208 		scb = ahd_lookup_scb(ahd, scbid);
1209 		if (scb == NULL) {
1210 			printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 			       ahd_name(ahd), scbid);
1212 			continue;
1213 		}
1214 		/*
1215 		 * Determine if this transaction is still active in
1216 		 * any FIFO.  If it is, we must flush that FIFO to
1217 		 * the host before completing the  command.
1218 		 */
1219 		fifo_mode = 0;
1220 rescan_fifos:
1221 		for (i = 0; i < 2; i++) {
1222 			/* Toggle to the other mode. */
1223 			fifo_mode ^= 1;
1224 			ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225 
1226 			if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 				continue;
1228 
1229 			ahd_run_data_fifo(ahd, scb);
1230 
1231 			/*
1232 			 * Running this FIFO may cause a CFG4DATA for
1233 			 * this same transaction to assert in the other
1234 			 * FIFO or a new snapshot SAVEPTRS interrupt
1235 			 * in this FIFO.  Even running a FIFO may not
1236 			 * clear the transaction if we are still waiting
1237 			 * for data to drain to the host. We must loop
1238 			 * until the transaction is not active in either
1239 			 * FIFO just to be sure.  Reset our loop counter
1240 			 * so we will visit both FIFOs again before
1241 			 * declaring this transaction finished.  We
1242 			 * also delay a bit so that status has a chance
1243 			 * to change before we look at this FIFO again.
1244 			 */
1245 			ahd_delay(200);
1246 			goto rescan_fifos;
1247 		}
1248 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 		ahd_set_scbptr(ahd, scbid);
1250 		if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 		 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 		  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 		      & SG_LIST_NULL) != 0)) {
1254 			u_int comp_head;
1255 
1256 			/*
1257 			 * The transfer completed with a residual.
1258 			 * Place this SCB on the complete DMA list
1259 			 * so that we update our in-core copy of the
1260 			 * SCB before completing the command.
1261 			 */
1262 			ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 			ahd_outb(ahd, SCB_SGPTR,
1264 				 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 				 | SG_STATUS_VALID);
1266 			ahd_outw(ahd, SCB_TAG, scbid);
1267 			ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 			comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 			if (SCBID_IS_NULL(comp_head)) {
1270 				ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 			} else {
1273 				u_int tail;
1274 
1275 				tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 				ahd_set_scbptr(ahd, tail);
1277 				ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 				ahd_set_scbptr(ahd, scbid);
1280 			}
1281 		} else
1282 			ahd_complete_scb(ahd, scb);
1283 	}
1284 	ahd_set_scbptr(ahd, saved_scbptr);
1285 
1286 	/*
1287 	 * Setup for command channel portion of flush.
1288 	 */
1289 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290 
1291 	/*
1292 	 * Wait for any inprogress DMA to complete and clear DMA state
1293 	 * if this is for an SCB in the qinfifo.
1294 	 */
1295 	while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296 
1297 		if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 			if ((ccscbctl & ARRDONE) != 0)
1299 				break;
1300 		} else if ((ccscbctl & CCSCBDONE) != 0)
1301 			break;
1302 		ahd_delay(200);
1303 	}
1304 	/*
1305 	 * We leave the sequencer to cleanup in the case of DMA's to
1306 	 * update the qoutfifo.  In all other cases (DMA's to the
1307 	 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 	 * we disable the DMA engine so that the sequencer will not
1309 	 * attempt to handle the DMA completion.
1310 	 */
1311 	if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 		ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313 
1314 	/*
1315 	 * Complete any SCBs that just finished
1316 	 * being DMA'ed into the qoutfifo.
1317 	 */
1318 	ahd_run_qoutfifo(ahd);
1319 
1320 	saved_scbptr = ahd_get_scbptr(ahd);
1321 	/*
1322 	 * Manually update/complete any completed SCBs that are waiting to be
1323 	 * DMA'ed back up to the host.
1324 	 */
1325 	scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 	while (!SCBID_IS_NULL(scbid)) {
1327 		uint8_t *hscb_ptr;
1328 		u_int	 i;
1329 
1330 		ahd_set_scbptr(ahd, scbid);
1331 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 		scb = ahd_lookup_scb(ahd, scbid);
1333 		if (scb == NULL) {
1334 			printk("%s: Warning - DMA-up and complete "
1335 			       "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 			continue;
1337 		}
1338 		hscb_ptr = (uint8_t *)scb->hscb;
1339 		for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 			*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341 
1342 		ahd_complete_scb(ahd, scb);
1343 		scbid = next_scbid;
1344 	}
1345 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347 
1348 	scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 	while (!SCBID_IS_NULL(scbid)) {
1350 
1351 		ahd_set_scbptr(ahd, scbid);
1352 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 		scb = ahd_lookup_scb(ahd, scbid);
1354 		if (scb == NULL) {
1355 			printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 			       ahd_name(ahd), scbid);
1357 			continue;
1358 		}
1359 
1360 		ahd_complete_scb(ahd, scb);
1361 		scbid = next_scbid;
1362 	}
1363 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364 
1365 	scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 	while (!SCBID_IS_NULL(scbid)) {
1367 
1368 		ahd_set_scbptr(ahd, scbid);
1369 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 		scb = ahd_lookup_scb(ahd, scbid);
1371 		if (scb == NULL) {
1372 			printk("%s: Warning - Complete SCB %d invalid\n",
1373 			       ahd_name(ahd), scbid);
1374 			continue;
1375 		}
1376 
1377 		ahd_complete_scb(ahd, scb);
1378 		scbid = next_scbid;
1379 	}
1380 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381 
1382 	/*
1383 	 * Restore state.
1384 	 */
1385 	ahd_set_scbptr(ahd, saved_scbptr);
1386 	ahd_restore_modes(ahd, saved_modes);
1387 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388 }
1389 
1390 /*
1391  * Determine if an SCB for a packetized transaction
1392  * is active in a FIFO.
1393  */
1394 static int
1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396 {
1397 
1398 	/*
1399 	 * The FIFO is only active for our transaction if
1400 	 * the SCBPTR matches the SCB's ID and the firmware
1401 	 * has installed a handler for the FIFO or we have
1402 	 * a pending SAVEPTRS or CFG4DATA interrupt.
1403 	 */
1404 	if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 	 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 	  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 		return (0);
1408 
1409 	return (1);
1410 }
1411 
1412 /*
1413  * Run a data fifo to completion for a transaction we know
1414  * has completed across the SCSI bus (good status has been
1415  * received).  We are already set to the correct FIFO mode
1416  * on entry to this routine.
1417  *
1418  * This function attempts to operate exactly as the firmware
1419  * would when running this FIFO.  Care must be taken to update
1420  * this routine any time the firmware's FIFO algorithm is
1421  * changed.
1422  */
1423 static void
1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425 {
1426 	u_int seqintsrc;
1427 
1428 	seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 	if ((seqintsrc & CFG4DATA) != 0) {
1430 		uint32_t datacnt;
1431 		uint32_t sgptr;
1432 
1433 		/*
1434 		 * Clear full residual flag.
1435 		 */
1436 		sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 		ahd_outb(ahd, SCB_SGPTR, sgptr);
1438 
1439 		/*
1440 		 * Load datacnt and address.
1441 		 */
1442 		datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 		if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 			sgptr |= LAST_SEG;
1445 			ahd_outb(ahd, SG_STATE, 0);
1446 		} else
1447 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 		ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 		ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 		ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452 
1453 		/*
1454 		 * Initialize Residual Fields.
1455 		 */
1456 		ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 		ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458 
1459 		/*
1460 		 * Mark the SCB as having a FIFO in use.
1461 		 */
1462 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464 
1465 		/*
1466 		 * Install a "fake" handler for this FIFO.
1467 		 */
1468 		ahd_outw(ahd, LONGJMP_ADDR, 0);
1469 
1470 		/*
1471 		 * Notify the hardware that we have satisfied
1472 		 * this sequencer interrupt.
1473 		 */
1474 		ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 	} else if ((seqintsrc & SAVEPTRS) != 0) {
1476 		uint32_t sgptr;
1477 		uint32_t resid;
1478 
1479 		if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480 			/*
1481 			 * Snapshot Save Pointers.  All that
1482 			 * is necessary to clear the snapshot
1483 			 * is a CLRCHN.
1484 			 */
1485 			goto clrchn;
1486 		}
1487 
1488 		/*
1489 		 * Disable S/G fetch so the DMA engine
1490 		 * is available to future users.
1491 		 */
1492 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 			ahd_outb(ahd, CCSGCTL, 0);
1494 		ahd_outb(ahd, SG_STATE, 0);
1495 
1496 		/*
1497 		 * Flush the data FIFO.  Strickly only
1498 		 * necessary for Rev A parts.
1499 		 */
1500 		ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501 
1502 		/*
1503 		 * Calculate residual.
1504 		 */
1505 		sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 		resid = ahd_inl(ahd, SHCNT);
1507 		resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 		ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 		if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510 			/*
1511 			 * Must back up to the correct S/G element.
1512 			 * Typically this just means resetting our
1513 			 * low byte to the offset in the SG_CACHE,
1514 			 * but if we wrapped, we have to correct
1515 			 * the other bytes of the sgptr too.
1516 			 */
1517 			if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 			 && (sgptr & 0x80) == 0)
1519 				sgptr -= 0x100;
1520 			sgptr &= ~0xFF;
1521 			sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 			       & SG_ADDR_MASK;
1523 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 		} else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 			ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 				 sgptr | SG_LIST_NULL);
1528 		}
1529 		/*
1530 		 * Save Pointers.
1531 		 */
1532 		ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 		ahd_outl(ahd, SCB_DATACNT, resid);
1534 		ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 		ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 		ahd_outb(ahd, SEQIMODE,
1537 			 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538 		/*
1539 		 * If the data is to the SCSI bus, we are
1540 		 * done, otherwise wait for FIFOEMP.
1541 		 */
1542 		if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 			goto clrchn;
1544 	} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 		uint32_t sgptr;
1546 		uint64_t data_addr;
1547 		uint32_t data_len;
1548 		u_int	 dfcntrl;
1549 
1550 		/*
1551 		 * Disable S/G fetch so the DMA engine
1552 		 * is available to future users.  We won't
1553 		 * be using the DMA engine to load segments.
1554 		 */
1555 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 			ahd_outb(ahd, CCSGCTL, 0);
1557 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558 		}
1559 
1560 		/*
1561 		 * Wait for the DMA engine to notice that the
1562 		 * host transfer is enabled and that there is
1563 		 * space in the S/G FIFO for new segments before
1564 		 * loading more segments.
1565 		 */
1566 		if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 		 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568 
1569 			/*
1570 			 * Determine the offset of the next S/G
1571 			 * element to load.
1572 			 */
1573 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 			sgptr &= SG_PTR_MASK;
1575 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 				struct ahd_dma64_seg *sg;
1577 
1578 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 				data_addr = sg->addr;
1580 				data_len = sg->len;
1581 				sgptr += sizeof(*sg);
1582 			} else {
1583 				struct	ahd_dma_seg *sg;
1584 
1585 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 				data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 				data_addr <<= 8;
1588 				data_addr |= sg->addr;
1589 				data_len = sg->len;
1590 				sgptr += sizeof(*sg);
1591 			}
1592 
1593 			/*
1594 			 * Update residual information.
1595 			 */
1596 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598 
1599 			/*
1600 			 * Load the S/G.
1601 			 */
1602 			if (data_len & AHD_DMA_LAST_SEG) {
1603 				sgptr |= LAST_SEG;
1604 				ahd_outb(ahd, SG_STATE, 0);
1605 			}
1606 			ahd_outq(ahd, HADDR, data_addr);
1607 			ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 			ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609 
1610 			/*
1611 			 * Advertise the segment to the hardware.
1612 			 */
1613 			dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 			if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615 				/*
1616 				 * Use SCSIENWRDIS so that SCSIEN
1617 				 * is never modified by this
1618 				 * operation.
1619 				 */
1620 				dfcntrl |= SCSIENWRDIS;
1621 			}
1622 			ahd_outb(ahd, DFCNTRL, dfcntrl);
1623 		}
1624 	} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625 
1626 		/*
1627 		 * Transfer completed to the end of SG list
1628 		 * and has flushed to the host.
1629 		 */
1630 		ahd_outb(ahd, SCB_SGPTR,
1631 			 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 		goto clrchn;
1633 	} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1635 		/*
1636 		 * Clear any handler for this FIFO, decrement
1637 		 * the FIFO use count for the SCB, and release
1638 		 * the FIFO.
1639 		 */
1640 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 		ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644 	}
1645 }
1646 
1647 /*
1648  * Look for entries in the QoutFIFO that have completed.
1649  * The valid_tag completion field indicates the validity
1650  * of the entry - the valid value toggles each time through
1651  * the queue. We use the sg_status field in the completion
1652  * entry to avoid referencing the hscb if the completion
1653  * occurred with no errors and no residual.  sg_status is
1654  * a copy of the first byte (little endian) of the sgptr
1655  * hscb field.
1656  */
1657 static void
1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1659 {
1660 	struct ahd_completion *completion;
1661 	struct scb *scb;
1662 	u_int  scb_index;
1663 
1664 	if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 		panic("ahd_run_qoutfifo recursion");
1666 	ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 	for (;;) {
1669 		completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670 
1671 		if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 			break;
1673 
1674 		scb_index = ahd_le16toh(completion->tag);
1675 		scb = ahd_lookup_scb(ahd, scb_index);
1676 		if (scb == NULL) {
1677 			printk("%s: WARNING no command for scb %d "
1678 			       "(cmdcmplt)\nQOUTPOS = %d\n",
1679 			       ahd_name(ahd), scb_index,
1680 			       ahd->qoutfifonext);
1681 			ahd_dump_card_state(ahd);
1682 		} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 			ahd_handle_scb_status(ahd, scb);
1684 		} else {
1685 			ahd_done(ahd, scb);
1686 		}
1687 
1688 		ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 		if (ahd->qoutfifonext == 0)
1690 			ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691 	}
1692 	ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693 }
1694 
1695 /************************* Interrupt Handling *********************************/
1696 static void
1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1698 {
1699 	/*
1700 	 * Some catastrophic hardware error has occurred.
1701 	 * Print it for the user and disable the controller.
1702 	 */
1703 	int i;
1704 	int error;
1705 
1706 	error = ahd_inb(ahd, ERROR);
1707 	for (i = 0; i < num_errors; i++) {
1708 		if ((error & ahd_hard_errors[i].errno) != 0)
1709 			printk("%s: hwerrint, %s\n",
1710 			       ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711 	}
1712 
1713 	ahd_dump_card_state(ahd);
1714 	panic("BRKADRINT");
1715 
1716 	/* Tell everyone that this HBA is no longer available */
1717 	ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 		       CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 		       CAM_NO_HBA);
1720 
1721 	/* Tell the system that this controller has gone away. */
1722 	ahd_free(ahd);
1723 }
1724 
1725 #ifdef AHD_DEBUG
1726 static void
1727 ahd_dump_sglist(struct scb *scb)
1728 {
1729 	int i;
1730 
1731 	if (scb->sg_count > 0) {
1732 		if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 			struct ahd_dma64_seg *sg_list;
1734 
1735 			sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 			for (i = 0; i < scb->sg_count; i++) {
1737 				uint64_t addr;
1738 
1739 				addr = ahd_le64toh(sg_list[i].addr);
1740 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1741 				       i,
1742 				       (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1743 				       (uint32_t)(addr & 0xFFFFFFFF),
1744 				       sg_list[i].len & AHD_SG_LEN_MASK,
1745 				       (sg_list[i].len & AHD_DMA_LAST_SEG)
1746 				     ? " Last" : "");
1747 			}
1748 		} else {
1749 			struct ahd_dma_seg *sg_list;
1750 
1751 			sg_list = (struct ahd_dma_seg*)scb->sg_list;
1752 			for (i = 0; i < scb->sg_count; i++) {
1753 				uint32_t len;
1754 
1755 				len = ahd_le32toh(sg_list[i].len);
1756 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1757 				       i,
1758 				       (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1759 				       ahd_le32toh(sg_list[i].addr),
1760 				       len & AHD_SG_LEN_MASK,
1761 				       len & AHD_DMA_LAST_SEG ? " Last" : "");
1762 			}
1763 		}
1764 	}
1765 }
1766 #endif  /*  AHD_DEBUG  */
1767 
1768 static void
1769 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1770 {
1771 	u_int seqintcode;
1772 
1773 	/*
1774 	 * Save the sequencer interrupt code and clear the SEQINT
1775 	 * bit. We will unpause the sequencer, if appropriate,
1776 	 * after servicing the request.
1777 	 */
1778 	seqintcode = ahd_inb(ahd, SEQINTCODE);
1779 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1780 	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1781 		/*
1782 		 * Unpause the sequencer and let it clear
1783 		 * SEQINT by writing NO_SEQINT to it.  This
1784 		 * will cause the sequencer to be paused again,
1785 		 * which is the expected state of this routine.
1786 		 */
1787 		ahd_unpause(ahd);
1788 		while (!ahd_is_paused(ahd))
1789 			;
1790 		ahd_outb(ahd, CLRINT, CLRSEQINT);
1791 	}
1792 	ahd_update_modes(ahd);
1793 #ifdef AHD_DEBUG
1794 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
1795 		printk("%s: Handle Seqint Called for code %d\n",
1796 		       ahd_name(ahd), seqintcode);
1797 #endif
1798 	switch (seqintcode) {
1799 	case ENTERING_NONPACK:
1800 	{
1801 		struct	scb *scb;
1802 		u_int	scbid;
1803 
1804 		AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1805 				 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1806 		scbid = ahd_get_scbptr(ahd);
1807 		scb = ahd_lookup_scb(ahd, scbid);
1808 		if (scb == NULL) {
1809 			/*
1810 			 * Somehow need to know if this
1811 			 * is from a selection or reselection.
1812 			 * From that, we can determine target
1813 			 * ID so we at least have an I_T nexus.
1814 			 */
1815 		} else {
1816 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1817 			ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1818 			ahd_outb(ahd, SEQ_FLAGS, 0x0);
1819 		}
1820 		if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1821 		 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1822 			/*
1823 			 * Phase change after read stream with
1824 			 * CRC error with P0 asserted on last
1825 			 * packet.
1826 			 */
1827 #ifdef AHD_DEBUG
1828 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1829 				printk("%s: Assuming LQIPHASE_NLQ with "
1830 				       "P0 assertion\n", ahd_name(ahd));
1831 #endif
1832 		}
1833 #ifdef AHD_DEBUG
1834 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1835 			printk("%s: Entering NONPACK\n", ahd_name(ahd));
1836 #endif
1837 		break;
1838 	}
1839 	case INVALID_SEQINT:
1840 		printk("%s: Invalid Sequencer interrupt occurred, "
1841 		       "resetting channel.\n",
1842 		       ahd_name(ahd));
1843 #ifdef AHD_DEBUG
1844 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1845 			ahd_dump_card_state(ahd);
1846 #endif
1847 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1848 		break;
1849 	case STATUS_OVERRUN:
1850 	{
1851 		struct	scb *scb;
1852 		u_int	scbid;
1853 
1854 		scbid = ahd_get_scbptr(ahd);
1855 		scb = ahd_lookup_scb(ahd, scbid);
1856 		if (scb != NULL)
1857 			ahd_print_path(ahd, scb);
1858 		else
1859 			printk("%s: ", ahd_name(ahd));
1860 		printk("SCB %d Packetized Status Overrun", scbid);
1861 		ahd_dump_card_state(ahd);
1862 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1863 		break;
1864 	}
1865 	case CFG4ISTAT_INTR:
1866 	{
1867 		struct	scb *scb;
1868 		u_int	scbid;
1869 
1870 		scbid = ahd_get_scbptr(ahd);
1871 		scb = ahd_lookup_scb(ahd, scbid);
1872 		if (scb == NULL) {
1873 			ahd_dump_card_state(ahd);
1874 			printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1875 			panic("For safety");
1876 		}
1877 		ahd_outq(ahd, HADDR, scb->sense_busaddr);
1878 		ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1879 		ahd_outb(ahd, HCNT + 2, 0);
1880 		ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1881 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1882 		break;
1883 	}
1884 	case ILLEGAL_PHASE:
1885 	{
1886 		u_int bus_phase;
1887 
1888 		bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1889 		printk("%s: ILLEGAL_PHASE 0x%x\n",
1890 		       ahd_name(ahd), bus_phase);
1891 
1892 		switch (bus_phase) {
1893 		case P_DATAOUT:
1894 		case P_DATAIN:
1895 		case P_DATAOUT_DT:
1896 		case P_DATAIN_DT:
1897 		case P_MESGOUT:
1898 		case P_STATUS:
1899 		case P_MESGIN:
1900 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1901 			printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1902 			break;
1903 		case P_COMMAND:
1904 		{
1905 			struct	ahd_devinfo devinfo;
1906 			struct	scb *scb;
1907 			u_int	scbid;
1908 
1909 			/*
1910 			 * If a target takes us into the command phase
1911 			 * assume that it has been externally reset and
1912 			 * has thus lost our previous packetized negotiation
1913 			 * agreement.  Since we have not sent an identify
1914 			 * message and may not have fully qualified the
1915 			 * connection, we change our command to TUR, assert
1916 			 * ATN and ABORT the task when we go to message in
1917 			 * phase.  The OSM will see the REQUEUE_REQUEST
1918 			 * status and retry the command.
1919 			 */
1920 			scbid = ahd_get_scbptr(ahd);
1921 			scb = ahd_lookup_scb(ahd, scbid);
1922 			if (scb == NULL) {
1923 				printk("Invalid phase with no valid SCB.  "
1924 				       "Resetting bus.\n");
1925 				ahd_reset_channel(ahd, 'A',
1926 						  /*Initiate Reset*/TRUE);
1927 				break;
1928 			}
1929 			ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1930 					    SCB_GET_TARGET(ahd, scb),
1931 					    SCB_GET_LUN(scb),
1932 					    SCB_GET_CHANNEL(ahd, scb),
1933 					    ROLE_INITIATOR);
1934 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1935 				      AHD_TRANS_ACTIVE, /*paused*/TRUE);
1936 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1937 					 /*offset*/0, /*ppr_options*/0,
1938 					 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1939 			/* Hand-craft TUR command */
1940 			ahd_outb(ahd, SCB_CDB_STORE, 0);
1941 			ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1942 			ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1943 			ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1944 			ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1945 			ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1946 			ahd_outb(ahd, SCB_CDB_LEN, 6);
1947 			scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1948 			scb->hscb->control |= MK_MESSAGE;
1949 			ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1950 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
1951 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1952 			/*
1953 			 * The lun is 0, regardless of the SCB's lun
1954 			 * as we have not sent an identify message.
1955 			 */
1956 			ahd_outb(ahd, SAVED_LUN, 0);
1957 			ahd_outb(ahd, SEQ_FLAGS, 0);
1958 			ahd_assert_atn(ahd);
1959 			scb->flags &= ~SCB_PACKETIZED;
1960 			scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1961 			ahd_freeze_devq(ahd, scb);
1962 			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1963 			ahd_freeze_scb(scb);
1964 
1965 			/* Notify XPT */
1966 			ahd_send_async(ahd, devinfo.channel, devinfo.target,
1967 				       CAM_LUN_WILDCARD, AC_SENT_BDR);
1968 
1969 			/*
1970 			 * Allow the sequencer to continue with
1971 			 * non-pack processing.
1972 			 */
1973 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1974 			ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1975 			if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1976 				ahd_outb(ahd, CLRLQOINT1, 0);
1977 			}
1978 #ifdef AHD_DEBUG
1979 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1980 				ahd_print_path(ahd, scb);
1981 				printk("Unexpected command phase from "
1982 				       "packetized target\n");
1983 			}
1984 #endif
1985 			break;
1986 		}
1987 		}
1988 		break;
1989 	}
1990 	case CFG4OVERRUN:
1991 	{
1992 		struct	scb *scb;
1993 		u_int	scb_index;
1994 
1995 #ifdef AHD_DEBUG
1996 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1997 			printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
1998 			       ahd_inb(ahd, MODE_PTR));
1999 		}
2000 #endif
2001 		scb_index = ahd_get_scbptr(ahd);
2002 		scb = ahd_lookup_scb(ahd, scb_index);
2003 		if (scb == NULL) {
2004 			/*
2005 			 * Attempt to transfer to an SCB that is
2006 			 * not outstanding.
2007 			 */
2008 			ahd_assert_atn(ahd);
2009 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
2010 			ahd->msgout_buf[0] = ABORT_TASK;
2011 			ahd->msgout_len = 1;
2012 			ahd->msgout_index = 0;
2013 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2014 			/*
2015 			 * Clear status received flag to prevent any
2016 			 * attempt to complete this bogus SCB.
2017 			 */
2018 			ahd_outb(ahd, SCB_CONTROL,
2019 				 ahd_inb_scbram(ahd, SCB_CONTROL)
2020 				 & ~STATUS_RCVD);
2021 		}
2022 		break;
2023 	}
2024 	case DUMP_CARD_STATE:
2025 	{
2026 		ahd_dump_card_state(ahd);
2027 		break;
2028 	}
2029 	case PDATA_REINIT:
2030 	{
2031 #ifdef AHD_DEBUG
2032 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2033 			printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2034 			       "SG_CACHE_SHADOW = 0x%x\n",
2035 			       ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2036 			       ahd_inb(ahd, SG_CACHE_SHADOW));
2037 		}
2038 #endif
2039 		ahd_reinitialize_dataptrs(ahd);
2040 		break;
2041 	}
2042 	case HOST_MSG_LOOP:
2043 	{
2044 		struct ahd_devinfo devinfo;
2045 
2046 		/*
2047 		 * The sequencer has encountered a message phase
2048 		 * that requires host assistance for completion.
2049 		 * While handling the message phase(s), we will be
2050 		 * notified by the sequencer after each byte is
2051 		 * transferred so we can track bus phase changes.
2052 		 *
2053 		 * If this is the first time we've seen a HOST_MSG_LOOP
2054 		 * interrupt, initialize the state of the host message
2055 		 * loop.
2056 		 */
2057 		ahd_fetch_devinfo(ahd, &devinfo);
2058 		if (ahd->msg_type == MSG_TYPE_NONE) {
2059 			struct scb *scb;
2060 			u_int scb_index;
2061 			u_int bus_phase;
2062 
2063 			bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2064 			if (bus_phase != P_MESGIN
2065 			 && bus_phase != P_MESGOUT) {
2066 				printk("ahd_intr: HOST_MSG_LOOP bad "
2067 				       "phase 0x%x\n", bus_phase);
2068 				/*
2069 				 * Probably transitioned to bus free before
2070 				 * we got here.  Just punt the message.
2071 				 */
2072 				ahd_dump_card_state(ahd);
2073 				ahd_clear_intstat(ahd);
2074 				ahd_restart(ahd);
2075 				return;
2076 			}
2077 
2078 			scb_index = ahd_get_scbptr(ahd);
2079 			scb = ahd_lookup_scb(ahd, scb_index);
2080 			if (devinfo.role == ROLE_INITIATOR) {
2081 				if (bus_phase == P_MESGOUT)
2082 					ahd_setup_initiator_msgout(ahd,
2083 								   &devinfo,
2084 								   scb);
2085 				else {
2086 					ahd->msg_type =
2087 					    MSG_TYPE_INITIATOR_MSGIN;
2088 					ahd->msgin_index = 0;
2089 				}
2090 			}
2091 #ifdef AHD_TARGET_MODE
2092 			else {
2093 				if (bus_phase == P_MESGOUT) {
2094 					ahd->msg_type =
2095 					    MSG_TYPE_TARGET_MSGOUT;
2096 					ahd->msgin_index = 0;
2097 				} else
2098 					ahd_setup_target_msgin(ahd,
2099 							       &devinfo,
2100 							       scb);
2101 			}
2102 #endif
2103 		}
2104 
2105 		ahd_handle_message_phase(ahd);
2106 		break;
2107 	}
2108 	case NO_MATCH:
2109 	{
2110 		/* Ensure we don't leave the selection hardware on */
2111 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2112 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2113 
2114 		printk("%s:%c:%d: no active SCB for reconnecting "
2115 		       "target - issuing BUS DEVICE RESET\n",
2116 		       ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2117 		printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2118 		       "REG0 == 0x%x ACCUM = 0x%x\n",
2119 		       ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2120 		       ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2121 		printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2122 		       "SINDEX == 0x%x\n",
2123 		       ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2124 		       ahd_find_busy_tcl(ahd,
2125 					 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2126 						   ahd_inb(ahd, SAVED_LUN))),
2127 		       ahd_inw(ahd, SINDEX));
2128 		printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2129 		       "SCB_CONTROL == 0x%x\n",
2130 		       ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2131 		       ahd_inb_scbram(ahd, SCB_LUN),
2132 		       ahd_inb_scbram(ahd, SCB_CONTROL));
2133 		printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2134 		       ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2135 		printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2136 		printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2137 		ahd_dump_card_state(ahd);
2138 		ahd->msgout_buf[0] = TARGET_RESET;
2139 		ahd->msgout_len = 1;
2140 		ahd->msgout_index = 0;
2141 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2142 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
2143 		ahd_assert_atn(ahd);
2144 		break;
2145 	}
2146 	case PROTO_VIOLATION:
2147 	{
2148 		ahd_handle_proto_violation(ahd);
2149 		break;
2150 	}
2151 	case IGN_WIDE_RES:
2152 	{
2153 		struct ahd_devinfo devinfo;
2154 
2155 		ahd_fetch_devinfo(ahd, &devinfo);
2156 		ahd_handle_ign_wide_residue(ahd, &devinfo);
2157 		break;
2158 	}
2159 	case BAD_PHASE:
2160 	{
2161 		u_int lastphase;
2162 
2163 		lastphase = ahd_inb(ahd, LASTPHASE);
2164 		printk("%s:%c:%d: unknown scsi bus phase %x, "
2165 		       "lastphase = 0x%x.  Attempting to continue\n",
2166 		       ahd_name(ahd), 'A',
2167 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2168 		       lastphase, ahd_inb(ahd, SCSISIGI));
2169 		break;
2170 	}
2171 	case MISSED_BUSFREE:
2172 	{
2173 		u_int lastphase;
2174 
2175 		lastphase = ahd_inb(ahd, LASTPHASE);
2176 		printk("%s:%c:%d: Missed busfree. "
2177 		       "Lastphase = 0x%x, Curphase = 0x%x\n",
2178 		       ahd_name(ahd), 'A',
2179 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2180 		       lastphase, ahd_inb(ahd, SCSISIGI));
2181 		ahd_restart(ahd);
2182 		return;
2183 	}
2184 	case DATA_OVERRUN:
2185 	{
2186 		/*
2187 		 * When the sequencer detects an overrun, it
2188 		 * places the controller in "BITBUCKET" mode
2189 		 * and allows the target to complete its transfer.
2190 		 * Unfortunately, none of the counters get updated
2191 		 * when the controller is in this mode, so we have
2192 		 * no way of knowing how large the overrun was.
2193 		 */
2194 		struct	scb *scb;
2195 		u_int	scbindex;
2196 #ifdef AHD_DEBUG
2197 		u_int	lastphase;
2198 #endif
2199 
2200 		scbindex = ahd_get_scbptr(ahd);
2201 		scb = ahd_lookup_scb(ahd, scbindex);
2202 #ifdef AHD_DEBUG
2203 		lastphase = ahd_inb(ahd, LASTPHASE);
2204 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2205 			ahd_print_path(ahd, scb);
2206 			printk("data overrun detected %s.  Tag == 0x%x.\n",
2207 			       ahd_lookup_phase_entry(lastphase)->phasemsg,
2208 			       SCB_GET_TAG(scb));
2209 			ahd_print_path(ahd, scb);
2210 			printk("%s seen Data Phase.  Length = %ld.  "
2211 			       "NumSGs = %d.\n",
2212 			       ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2213 			       ? "Have" : "Haven't",
2214 			       ahd_get_transfer_length(scb), scb->sg_count);
2215 			ahd_dump_sglist(scb);
2216 		}
2217 #endif
2218 
2219 		/*
2220 		 * Set this and it will take effect when the
2221 		 * target does a command complete.
2222 		 */
2223 		ahd_freeze_devq(ahd, scb);
2224 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2225 		ahd_freeze_scb(scb);
2226 		break;
2227 	}
2228 	case MKMSG_FAILED:
2229 	{
2230 		struct ahd_devinfo devinfo;
2231 		struct scb *scb;
2232 		u_int scbid;
2233 
2234 		ahd_fetch_devinfo(ahd, &devinfo);
2235 		printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2236 		       ahd_name(ahd), devinfo.channel, devinfo.target,
2237 		       devinfo.lun);
2238 		scbid = ahd_get_scbptr(ahd);
2239 		scb = ahd_lookup_scb(ahd, scbid);
2240 		if (scb != NULL
2241 		 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2242 			/*
2243 			 * Ensure that we didn't put a second instance of this
2244 			 * SCB into the QINFIFO.
2245 			 */
2246 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2247 					   SCB_GET_CHANNEL(ahd, scb),
2248 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2249 					   ROLE_INITIATOR, /*status*/0,
2250 					   SEARCH_REMOVE);
2251 		ahd_outb(ahd, SCB_CONTROL,
2252 			 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2253 		break;
2254 	}
2255 	case TASKMGMT_FUNC_COMPLETE:
2256 	{
2257 		u_int	scbid;
2258 		struct	scb *scb;
2259 
2260 		scbid = ahd_get_scbptr(ahd);
2261 		scb = ahd_lookup_scb(ahd, scbid);
2262 		if (scb != NULL) {
2263 			u_int	   lun;
2264 			u_int	   tag;
2265 			cam_status error;
2266 
2267 			ahd_print_path(ahd, scb);
2268 			printk("Task Management Func 0x%x Complete\n",
2269 			       scb->hscb->task_management);
2270 			lun = CAM_LUN_WILDCARD;
2271 			tag = SCB_LIST_NULL;
2272 
2273 			switch (scb->hscb->task_management) {
2274 			case SIU_TASKMGMT_ABORT_TASK:
2275 				tag = SCB_GET_TAG(scb);
2276 				fallthrough;
2277 			case SIU_TASKMGMT_ABORT_TASK_SET:
2278 			case SIU_TASKMGMT_CLEAR_TASK_SET:
2279 				lun = scb->hscb->lun;
2280 				error = CAM_REQ_ABORTED;
2281 				ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2282 					       'A', lun, tag, ROLE_INITIATOR,
2283 					       error);
2284 				break;
2285 			case SIU_TASKMGMT_LUN_RESET:
2286 				lun = scb->hscb->lun;
2287 				fallthrough;
2288 			case SIU_TASKMGMT_TARGET_RESET:
2289 			{
2290 				struct ahd_devinfo devinfo;
2291 
2292 				ahd_scb_devinfo(ahd, &devinfo, scb);
2293 				error = CAM_BDR_SENT;
2294 				ahd_handle_devreset(ahd, &devinfo, lun,
2295 						    CAM_BDR_SENT,
2296 						    lun != CAM_LUN_WILDCARD
2297 						    ? "Lun Reset"
2298 						    : "Target Reset",
2299 						    /*verbose_level*/0);
2300 				break;
2301 			}
2302 			default:
2303 				panic("Unexpected TaskMgmt Func\n");
2304 				break;
2305 			}
2306 		}
2307 		break;
2308 	}
2309 	case TASKMGMT_CMD_CMPLT_OKAY:
2310 	{
2311 		u_int	scbid;
2312 		struct	scb *scb;
2313 
2314 		/*
2315 		 * An ABORT TASK TMF failed to be delivered before
2316 		 * the targeted command completed normally.
2317 		 */
2318 		scbid = ahd_get_scbptr(ahd);
2319 		scb = ahd_lookup_scb(ahd, scbid);
2320 		if (scb != NULL) {
2321 			/*
2322 			 * Remove the second instance of this SCB from
2323 			 * the QINFIFO if it is still there.
2324                          */
2325 			ahd_print_path(ahd, scb);
2326 			printk("SCB completes before TMF\n");
2327 			/*
2328 			 * Handle losing the race.  Wait until any
2329 			 * current selection completes.  We will then
2330 			 * set the TMF back to zero in this SCB so that
2331 			 * the sequencer doesn't bother to issue another
2332 			 * sequencer interrupt for its completion.
2333 			 */
2334 			while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2335 			    && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2336 			    && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2337 				;
2338 			ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2339 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2340 					   SCB_GET_CHANNEL(ahd, scb),
2341 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2342 					   ROLE_INITIATOR, /*status*/0,
2343 					   SEARCH_REMOVE);
2344 		}
2345 		break;
2346 	}
2347 	case TRACEPOINT0:
2348 	case TRACEPOINT1:
2349 	case TRACEPOINT2:
2350 	case TRACEPOINT3:
2351 		printk("%s: Tracepoint %d\n", ahd_name(ahd),
2352 		       seqintcode - TRACEPOINT0);
2353 		break;
2354 	case NO_SEQINT:
2355 		break;
2356 	case SAW_HWERR:
2357 		ahd_handle_hwerrint(ahd);
2358 		break;
2359 	default:
2360 		printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2361 		       seqintcode);
2362 		break;
2363 	}
2364 	/*
2365 	 *  The sequencer is paused immediately on
2366 	 *  a SEQINT, so we should restart it when
2367 	 *  we're done.
2368 	 */
2369 	ahd_unpause(ahd);
2370 }
2371 
2372 static void
2373 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2374 {
2375 	struct scb	*scb;
2376 	u_int		 status0;
2377 	u_int		 status3;
2378 	u_int		 status;
2379 	u_int		 lqistat1;
2380 	u_int		 lqostat0;
2381 	u_int		 scbid;
2382 	u_int		 busfreetime;
2383 
2384 	ahd_update_modes(ahd);
2385 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2386 
2387 	status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2388 	status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2389 	status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2390 	lqistat1 = ahd_inb(ahd, LQISTAT1);
2391 	lqostat0 = ahd_inb(ahd, LQOSTAT0);
2392 	busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2393 
2394 	/*
2395 	 * Ignore external resets after a bus reset.
2396 	 */
2397 	if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2398 		ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2399 		return;
2400 	}
2401 
2402 	/*
2403 	 * Clear bus reset flag
2404 	 */
2405 	ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2406 
2407 	if ((status0 & (SELDI|SELDO)) != 0) {
2408 		u_int simode0;
2409 
2410 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2411 		simode0 = ahd_inb(ahd, SIMODE0);
2412 		status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2413 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2414 	}
2415 	scbid = ahd_get_scbptr(ahd);
2416 	scb = ahd_lookup_scb(ahd, scbid);
2417 	if (scb != NULL
2418 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2419 		scb = NULL;
2420 
2421 	if ((status0 & IOERR) != 0) {
2422 		u_int now_lvd;
2423 
2424 		now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2425 		printk("%s: Transceiver State Has Changed to %s mode\n",
2426 		       ahd_name(ahd), now_lvd ? "LVD" : "SE");
2427 		ahd_outb(ahd, CLRSINT0, CLRIOERR);
2428 		/*
2429 		 * A change in I/O mode is equivalent to a bus reset.
2430 		 */
2431 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2432 		ahd_pause(ahd);
2433 		ahd_setup_iocell_workaround(ahd);
2434 		ahd_unpause(ahd);
2435 	} else if ((status0 & OVERRUN) != 0) {
2436 
2437 		printk("%s: SCSI offset overrun detected.  Resetting bus.\n",
2438 		       ahd_name(ahd));
2439 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2440 	} else if ((status & SCSIRSTI) != 0) {
2441 
2442 		printk("%s: Someone reset channel A\n", ahd_name(ahd));
2443 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2444 	} else if ((status & SCSIPERR) != 0) {
2445 
2446 		/* Make sure the sequencer is in a safe location. */
2447 		ahd_clear_critical_section(ahd);
2448 
2449 		ahd_handle_transmission_error(ahd);
2450 	} else if (lqostat0 != 0) {
2451 
2452 		printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2453 		ahd_outb(ahd, CLRLQOINT0, lqostat0);
2454 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2455 			ahd_outb(ahd, CLRLQOINT1, 0);
2456 	} else if ((status & SELTO) != 0) {
2457 		/* Stop the selection */
2458 		ahd_outb(ahd, SCSISEQ0, 0);
2459 
2460 		/* Make sure the sequencer is in a safe location. */
2461 		ahd_clear_critical_section(ahd);
2462 
2463 		/* No more pending messages */
2464 		ahd_clear_msg_state(ahd);
2465 
2466 		/* Clear interrupt state */
2467 		ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2468 
2469 		/*
2470 		 * Although the driver does not care about the
2471 		 * 'Selection in Progress' status bit, the busy
2472 		 * LED does.  SELINGO is only cleared by a successful
2473 		 * selection, so we must manually clear it to insure
2474 		 * the LED turns off just incase no future successful
2475 		 * selections occur (e.g. no devices on the bus).
2476 		 */
2477 		ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2478 
2479 		scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2480 		scb = ahd_lookup_scb(ahd, scbid);
2481 		if (scb == NULL) {
2482 			printk("%s: ahd_intr - referenced scb not "
2483 			       "valid during SELTO scb(0x%x)\n",
2484 			       ahd_name(ahd), scbid);
2485 			ahd_dump_card_state(ahd);
2486 		} else {
2487 			struct ahd_devinfo devinfo;
2488 #ifdef AHD_DEBUG
2489 			if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2490 				ahd_print_path(ahd, scb);
2491 				printk("Saw Selection Timeout for SCB 0x%x\n",
2492 				       scbid);
2493 			}
2494 #endif
2495 			ahd_scb_devinfo(ahd, &devinfo, scb);
2496 			ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2497 			ahd_freeze_devq(ahd, scb);
2498 
2499 			/*
2500 			 * Cancel any pending transactions on the device
2501 			 * now that it seems to be missing.  This will
2502 			 * also revert us to async/narrow transfers until
2503 			 * we can renegotiate with the device.
2504 			 */
2505 			ahd_handle_devreset(ahd, &devinfo,
2506 					    CAM_LUN_WILDCARD,
2507 					    CAM_SEL_TIMEOUT,
2508 					    "Selection Timeout",
2509 					    /*verbose_level*/1);
2510 		}
2511 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2512 		ahd_iocell_first_selection(ahd);
2513 		ahd_unpause(ahd);
2514 	} else if ((status0 & (SELDI|SELDO)) != 0) {
2515 
2516 		ahd_iocell_first_selection(ahd);
2517 		ahd_unpause(ahd);
2518 	} else if (status3 != 0) {
2519 		printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2520 		       ahd_name(ahd), status3);
2521 		ahd_outb(ahd, CLRSINT3, status3);
2522 	} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2523 
2524 		/* Make sure the sequencer is in a safe location. */
2525 		ahd_clear_critical_section(ahd);
2526 
2527 		ahd_handle_lqiphase_error(ahd, lqistat1);
2528 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2529 		/*
2530 		 * This status can be delayed during some
2531 		 * streaming operations.  The SCSIPHASE
2532 		 * handler has already dealt with this case
2533 		 * so just clear the error.
2534 		 */
2535 		ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2536 	} else if ((status & BUSFREE) != 0
2537 		|| (lqistat1 & LQOBUSFREE) != 0) {
2538 		u_int lqostat1;
2539 		int   restart;
2540 		int   clear_fifo;
2541 		int   packetized;
2542 		u_int mode;
2543 
2544 		/*
2545 		 * Clear our selection hardware as soon as possible.
2546 		 * We may have an entry in the waiting Q for this target,
2547 		 * that is affected by this busfree and we don't want to
2548 		 * go about selecting the target while we handle the event.
2549 		 */
2550 		ahd_outb(ahd, SCSISEQ0, 0);
2551 
2552 		/* Make sure the sequencer is in a safe location. */
2553 		ahd_clear_critical_section(ahd);
2554 
2555 		/*
2556 		 * Determine what we were up to at the time of
2557 		 * the busfree.
2558 		 */
2559 		mode = AHD_MODE_SCSI;
2560 		busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2561 		lqostat1 = ahd_inb(ahd, LQOSTAT1);
2562 		switch (busfreetime) {
2563 		case BUSFREE_DFF0:
2564 		case BUSFREE_DFF1:
2565 		{
2566 			mode = busfreetime == BUSFREE_DFF0
2567 			     ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2568 			ahd_set_modes(ahd, mode, mode);
2569 			scbid = ahd_get_scbptr(ahd);
2570 			scb = ahd_lookup_scb(ahd, scbid);
2571 			if (scb == NULL) {
2572 				printk("%s: Invalid SCB %d in DFF%d "
2573 				       "during unexpected busfree\n",
2574 				       ahd_name(ahd), scbid, mode);
2575 				packetized = 0;
2576 			} else
2577 				packetized = (scb->flags & SCB_PACKETIZED) != 0;
2578 			clear_fifo = 1;
2579 			break;
2580 		}
2581 		case BUSFREE_LQO:
2582 			clear_fifo = 0;
2583 			packetized = 1;
2584 			break;
2585 		default:
2586 			clear_fifo = 0;
2587 			packetized =  (lqostat1 & LQOBUSFREE) != 0;
2588 			if (!packetized
2589 			 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2590 			 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2591 			 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2592 			  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2593 				/*
2594 				 * Assume packetized if we are not
2595 				 * on the bus in a non-packetized
2596 				 * capacity and any pending selection
2597 				 * was a packetized selection.
2598 				 */
2599 				packetized = 1;
2600 			break;
2601 		}
2602 
2603 #ifdef AHD_DEBUG
2604 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
2605 			printk("Saw Busfree.  Busfreetime = 0x%x.\n",
2606 			       busfreetime);
2607 #endif
2608 		/*
2609 		 * Busfrees that occur in non-packetized phases are
2610 		 * handled by the nonpkt_busfree handler.
2611 		 */
2612 		if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2613 			restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2614 		} else {
2615 			packetized = 0;
2616 			restart = ahd_handle_nonpkt_busfree(ahd);
2617 		}
2618 		/*
2619 		 * Clear the busfree interrupt status.  The setting of
2620 		 * the interrupt is a pulse, so in a perfect world, we
2621 		 * would not need to muck with the ENBUSFREE logic.  This
2622 		 * would ensure that if the bus moves on to another
2623 		 * connection, busfree protection is still in force.  If
2624 		 * BUSFREEREV is broken, however, we must manually clear
2625 		 * the ENBUSFREE if the busfree occurred during a non-pack
2626 		 * connection so that we don't get false positives during
2627 		 * future, packetized, connections.
2628 		 */
2629 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2630 		if (packetized == 0
2631 		 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2632 			ahd_outb(ahd, SIMODE1,
2633 				 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2634 
2635 		if (clear_fifo)
2636 			ahd_clear_fifo(ahd, mode);
2637 
2638 		ahd_clear_msg_state(ahd);
2639 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2640 		if (restart) {
2641 			ahd_restart(ahd);
2642 		} else {
2643 			ahd_unpause(ahd);
2644 		}
2645 	} else {
2646 		printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2647 		       ahd_name(ahd), status);
2648 		ahd_dump_card_state(ahd);
2649 		ahd_clear_intstat(ahd);
2650 		ahd_unpause(ahd);
2651 	}
2652 }
2653 
2654 static void
2655 ahd_handle_transmission_error(struct ahd_softc *ahd)
2656 {
2657 	struct	scb *scb;
2658 	u_int	scbid;
2659 	u_int	lqistat1;
2660 	u_int	msg_out;
2661 	u_int	curphase;
2662 	u_int	lastphase;
2663 	u_int	perrdiag;
2664 	u_int	cur_col;
2665 	int	silent;
2666 
2667 	scb = NULL;
2668 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2669 	lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2670 	ahd_inb(ahd, LQISTAT2);
2671 	if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2672 	 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2673 		u_int lqistate;
2674 
2675 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2676 		lqistate = ahd_inb(ahd, LQISTATE);
2677 		if ((lqistate >= 0x1E && lqistate <= 0x24)
2678 		 || (lqistate == 0x29)) {
2679 #ifdef AHD_DEBUG
2680 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2681 				printk("%s: NLQCRC found via LQISTATE\n",
2682 				       ahd_name(ahd));
2683 			}
2684 #endif
2685 			lqistat1 |= LQICRCI_NLQ;
2686 		}
2687 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2688 	}
2689 
2690 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2691 	lastphase = ahd_inb(ahd, LASTPHASE);
2692 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2693 	perrdiag = ahd_inb(ahd, PERRDIAG);
2694 	msg_out = INITIATOR_ERROR;
2695 	ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2696 
2697 	/*
2698 	 * Try to find the SCB associated with this error.
2699 	 */
2700 	silent = FALSE;
2701 	if (lqistat1 == 0
2702 	 || (lqistat1 & LQICRCI_NLQ) != 0) {
2703 		if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2704 			ahd_set_active_fifo(ahd);
2705 		scbid = ahd_get_scbptr(ahd);
2706 		scb = ahd_lookup_scb(ahd, scbid);
2707 		if (scb != NULL && SCB_IS_SILENT(scb))
2708 			silent = TRUE;
2709 	}
2710 
2711 	cur_col = 0;
2712 	if (silent == FALSE) {
2713 		printk("%s: Transmission error detected\n", ahd_name(ahd));
2714 		ahd_lqistat1_print(lqistat1, &cur_col, 50);
2715 		ahd_lastphase_print(lastphase, &cur_col, 50);
2716 		ahd_scsisigi_print(curphase, &cur_col, 50);
2717 		ahd_perrdiag_print(perrdiag, &cur_col, 50);
2718 		printk("\n");
2719 		ahd_dump_card_state(ahd);
2720 	}
2721 
2722 	if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2723 		if (silent == FALSE) {
2724 			printk("%s: Gross protocol error during incoming "
2725 			       "packet.  lqistat1 == 0x%x.  Resetting bus.\n",
2726 			       ahd_name(ahd), lqistat1);
2727 		}
2728 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2729 		return;
2730 	} else if ((lqistat1 & LQICRCI_LQ) != 0) {
2731 		/*
2732 		 * A CRC error has been detected on an incoming LQ.
2733 		 * The bus is currently hung on the last ACK.
2734 		 * Hit LQIRETRY to release the last ack, and
2735 		 * wait for the sequencer to determine that ATNO
2736 		 * is asserted while in message out to take us
2737 		 * to our host message loop.  No NONPACKREQ or
2738 		 * LQIPHASE type errors will occur in this
2739 		 * scenario.  After this first LQIRETRY, the LQI
2740 		 * manager will be in ISELO where it will
2741 		 * happily sit until another packet phase begins.
2742 		 * Unexpected bus free detection is enabled
2743 		 * through any phases that occur after we release
2744 		 * this last ack until the LQI manager sees a
2745 		 * packet phase.  This implies we may have to
2746 		 * ignore a perfectly valid "unexected busfree"
2747 		 * after our "initiator detected error" message is
2748 		 * sent.  A busfree is the expected response after
2749 		 * we tell the target that it's L_Q was corrupted.
2750 		 * (SPI4R09 10.7.3.3.3)
2751 		 */
2752 		ahd_outb(ahd, LQCTL2, LQIRETRY);
2753 		printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2754 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2755 		/*
2756 		 * We detected a CRC error in a NON-LQ packet.
2757 		 * The hardware has varying behavior in this situation
2758 		 * depending on whether this packet was part of a
2759 		 * stream or not.
2760 		 *
2761 		 * PKT by PKT mode:
2762 		 * The hardware has already acked the complete packet.
2763 		 * If the target honors our outstanding ATN condition,
2764 		 * we should be (or soon will be) in MSGOUT phase.
2765 		 * This will trigger the LQIPHASE_LQ status bit as the
2766 		 * hardware was expecting another LQ.  Unexpected
2767 		 * busfree detection is enabled.  Once LQIPHASE_LQ is
2768 		 * true (first entry into host message loop is much
2769 		 * the same), we must clear LQIPHASE_LQ and hit
2770 		 * LQIRETRY so the hardware is ready to handle
2771 		 * a future LQ.  NONPACKREQ will not be asserted again
2772 		 * once we hit LQIRETRY until another packet is
2773 		 * processed.  The target may either go busfree
2774 		 * or start another packet in response to our message.
2775 		 *
2776 		 * Read Streaming P0 asserted:
2777 		 * If we raise ATN and the target completes the entire
2778 		 * stream (P0 asserted during the last packet), the
2779 		 * hardware will ack all data and return to the ISTART
2780 		 * state.  When the target reponds to our ATN condition,
2781 		 * LQIPHASE_LQ will be asserted.  We should respond to
2782 		 * this with an LQIRETRY to prepare for any future
2783 		 * packets.  NONPACKREQ will not be asserted again
2784 		 * once we hit LQIRETRY until another packet is
2785 		 * processed.  The target may either go busfree or
2786 		 * start another packet in response to our message.
2787 		 * Busfree detection is enabled.
2788 		 *
2789 		 * Read Streaming P0 not asserted:
2790 		 * If we raise ATN and the target transitions to
2791 		 * MSGOUT in or after a packet where P0 is not
2792 		 * asserted, the hardware will assert LQIPHASE_NLQ.
2793 		 * We should respond to the LQIPHASE_NLQ with an
2794 		 * LQIRETRY.  Should the target stay in a non-pkt
2795 		 * phase after we send our message, the hardware
2796 		 * will assert LQIPHASE_LQ.  Recovery is then just as
2797 		 * listed above for the read streaming with P0 asserted.
2798 		 * Busfree detection is enabled.
2799 		 */
2800 		if (silent == FALSE)
2801 			printk("LQICRC_NLQ\n");
2802 		if (scb == NULL) {
2803 			printk("%s: No SCB valid for LQICRC_NLQ.  "
2804 			       "Resetting bus\n", ahd_name(ahd));
2805 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2806 			return;
2807 		}
2808 	} else if ((lqistat1 & LQIBADLQI) != 0) {
2809 		printk("Need to handle BADLQI!\n");
2810 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2811 		return;
2812 	} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2813 		if ((curphase & ~P_DATAIN_DT) != 0) {
2814 			/* Ack the byte.  So we can continue. */
2815 			if (silent == FALSE)
2816 				printk("Acking %s to clear perror\n",
2817 				    ahd_lookup_phase_entry(curphase)->phasemsg);
2818 			ahd_inb(ahd, SCSIDAT);
2819 		}
2820 
2821 		if (curphase == P_MESGIN)
2822 			msg_out = MSG_PARITY_ERROR;
2823 	}
2824 
2825 	/*
2826 	 * We've set the hardware to assert ATN if we
2827 	 * get a parity error on "in" phases, so all we
2828 	 * need to do is stuff the message buffer with
2829 	 * the appropriate message.  "In" phases have set
2830 	 * mesg_out to something other than NOP.
2831 	 */
2832 	ahd->send_msg_perror = msg_out;
2833 	if (scb != NULL && msg_out == INITIATOR_ERROR)
2834 		scb->flags |= SCB_TRANSMISSION_ERROR;
2835 	ahd_outb(ahd, MSG_OUT, HOST_MSG);
2836 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
2837 	ahd_unpause(ahd);
2838 }
2839 
2840 static void
2841 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2842 {
2843 	/*
2844 	 * Clear the sources of the interrupts.
2845 	 */
2846 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2847 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2848 
2849 	/*
2850 	 * If the "illegal" phase changes were in response
2851 	 * to our ATN to flag a CRC error, AND we ended up
2852 	 * on packet boundaries, clear the error, restart the
2853 	 * LQI manager as appropriate, and go on our merry
2854 	 * way toward sending the message.  Otherwise, reset
2855 	 * the bus to clear the error.
2856 	 */
2857 	ahd_set_active_fifo(ahd);
2858 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2859 	 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2860 		if ((lqistat1 & LQIPHASE_LQ) != 0) {
2861 			printk("LQIRETRY for LQIPHASE_LQ\n");
2862 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2863 		} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2864 			printk("LQIRETRY for LQIPHASE_NLQ\n");
2865 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2866 		} else
2867 			panic("ahd_handle_lqiphase_error: No phase errors\n");
2868 		ahd_dump_card_state(ahd);
2869 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2870 		ahd_unpause(ahd);
2871 	} else {
2872 		printk("Resetting Channel for LQI Phase error\n");
2873 		ahd_dump_card_state(ahd);
2874 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2875 	}
2876 }
2877 
2878 /*
2879  * Packetized unexpected or expected busfree.
2880  * Entered in mode based on busfreetime.
2881  */
2882 static int
2883 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2884 {
2885 	u_int lqostat1;
2886 
2887 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2888 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2889 	lqostat1 = ahd_inb(ahd, LQOSTAT1);
2890 	if ((lqostat1 & LQOBUSFREE) != 0) {
2891 		struct scb *scb;
2892 		u_int scbid;
2893 		u_int saved_scbptr;
2894 		u_int waiting_h;
2895 		u_int waiting_t;
2896 		u_int next;
2897 
2898 		/*
2899 		 * The LQO manager detected an unexpected busfree
2900 		 * either:
2901 		 *
2902 		 * 1) During an outgoing LQ.
2903 		 * 2) After an outgoing LQ but before the first
2904 		 *    REQ of the command packet.
2905 		 * 3) During an outgoing command packet.
2906 		 *
2907 		 * In all cases, CURRSCB is pointing to the
2908 		 * SCB that encountered the failure.  Clean
2909 		 * up the queue, clear SELDO and LQOBUSFREE,
2910 		 * and allow the sequencer to restart the select
2911 		 * out at its lesure.
2912 		 */
2913 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2914 		scbid = ahd_inw(ahd, CURRSCB);
2915 		scb = ahd_lookup_scb(ahd, scbid);
2916 		if (scb == NULL)
2917 		       panic("SCB not valid during LQOBUSFREE");
2918 		/*
2919 		 * Clear the status.
2920 		 */
2921 		ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2922 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2923 			ahd_outb(ahd, CLRLQOINT1, 0);
2924 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2925 		ahd_flush_device_writes(ahd);
2926 		ahd_outb(ahd, CLRSINT0, CLRSELDO);
2927 
2928 		/*
2929 		 * Return the LQO manager to its idle loop.  It will
2930 		 * not do this automatically if the busfree occurs
2931 		 * after the first REQ of either the LQ or command
2932 		 * packet or between the LQ and command packet.
2933 		 */
2934 		ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2935 
2936 		/*
2937 		 * Update the waiting for selection queue so
2938 		 * we restart on the correct SCB.
2939 		 */
2940 		waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2941 		saved_scbptr = ahd_get_scbptr(ahd);
2942 		if (waiting_h != scbid) {
2943 
2944 			ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2945 			waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2946 			if (waiting_t == waiting_h) {
2947 				ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2948 				next = SCB_LIST_NULL;
2949 			} else {
2950 				ahd_set_scbptr(ahd, waiting_h);
2951 				next = ahd_inw_scbram(ahd, SCB_NEXT2);
2952 			}
2953 			ahd_set_scbptr(ahd, scbid);
2954 			ahd_outw(ahd, SCB_NEXT2, next);
2955 		}
2956 		ahd_set_scbptr(ahd, saved_scbptr);
2957 		if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2958 			if (SCB_IS_SILENT(scb) == FALSE) {
2959 				ahd_print_path(ahd, scb);
2960 				printk("Probable outgoing LQ CRC error.  "
2961 				       "Retrying command\n");
2962 			}
2963 			scb->crc_retry_count++;
2964 		} else {
2965 			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2966 			ahd_freeze_scb(scb);
2967 			ahd_freeze_devq(ahd, scb);
2968 		}
2969 		/* Return unpausing the sequencer. */
2970 		return (0);
2971 	} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2972 		/*
2973 		 * Ignore what are really parity errors that
2974 		 * occur on the last REQ of a free running
2975 		 * clock prior to going busfree.  Some drives
2976 		 * do not properly active negate just before
2977 		 * going busfree resulting in a parity glitch.
2978 		 */
2979 		ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2980 #ifdef AHD_DEBUG
2981 		if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2982 			printk("%s: Parity on last REQ detected "
2983 			       "during busfree phase.\n",
2984 			       ahd_name(ahd));
2985 #endif
2986 		/* Return unpausing the sequencer. */
2987 		return (0);
2988 	}
2989 	if (ahd->src_mode != AHD_MODE_SCSI) {
2990 		u_int	scbid;
2991 		struct	scb *scb;
2992 
2993 		scbid = ahd_get_scbptr(ahd);
2994 		scb = ahd_lookup_scb(ahd, scbid);
2995 		ahd_print_path(ahd, scb);
2996 		printk("Unexpected PKT busfree condition\n");
2997 		ahd_dump_card_state(ahd);
2998 		ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
2999 			       SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3000 			       ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3001 
3002 		/* Return restarting the sequencer. */
3003 		return (1);
3004 	}
3005 	printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3006 	ahd_dump_card_state(ahd);
3007 	/* Restart the sequencer. */
3008 	return (1);
3009 }
3010 
3011 /*
3012  * Non-packetized unexpected or expected busfree.
3013  */
3014 static int
3015 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3016 {
3017 	struct	ahd_devinfo devinfo;
3018 	struct	scb *scb;
3019 	u_int	lastphase;
3020 	u_int	saved_scsiid;
3021 	u_int	saved_lun;
3022 	u_int	target;
3023 	u_int	initiator_role_id;
3024 	u_int	scbid;
3025 	u_int	ppr_busfree;
3026 	int	printerror;
3027 
3028 	/*
3029 	 * Look at what phase we were last in.  If its message out,
3030 	 * chances are pretty good that the busfree was in response
3031 	 * to one of our abort requests.
3032 	 */
3033 	lastphase = ahd_inb(ahd, LASTPHASE);
3034 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3035 	saved_lun = ahd_inb(ahd, SAVED_LUN);
3036 	target = SCSIID_TARGET(ahd, saved_scsiid);
3037 	initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3038 	ahd_compile_devinfo(&devinfo, initiator_role_id,
3039 			    target, saved_lun, 'A', ROLE_INITIATOR);
3040 	printerror = 1;
3041 
3042 	scbid = ahd_get_scbptr(ahd);
3043 	scb = ahd_lookup_scb(ahd, scbid);
3044 	if (scb != NULL
3045 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3046 		scb = NULL;
3047 
3048 	ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3049 	if (lastphase == P_MESGOUT) {
3050 		u_int tag;
3051 
3052 		tag = SCB_LIST_NULL;
3053 		if (ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK, TRUE)
3054 		 || ahd_sent_msg(ahd, AHDMSG_1B, ABORT_TASK_SET, TRUE)) {
3055 			int found;
3056 			int sent_msg;
3057 
3058 			if (scb == NULL) {
3059 				ahd_print_devinfo(ahd, &devinfo);
3060 				printk("Abort for unidentified "
3061 				       "connection completed.\n");
3062 				/* restart the sequencer. */
3063 				return (1);
3064 			}
3065 			sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3066 			ahd_print_path(ahd, scb);
3067 			printk("SCB %d - Abort%s Completed.\n",
3068 			       SCB_GET_TAG(scb),
3069 			       sent_msg == ABORT_TASK ? "" : " Tag");
3070 
3071 			if (sent_msg == ABORT_TASK)
3072 				tag = SCB_GET_TAG(scb);
3073 
3074 			if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3075 				/*
3076 				 * This abort is in response to an
3077 				 * unexpected switch to command phase
3078 				 * for a packetized connection.  Since
3079 				 * the identify message was never sent,
3080 				 * "saved lun" is 0.  We really want to
3081 				 * abort only the SCB that encountered
3082 				 * this error, which could have a different
3083 				 * lun.  The SCB will be retried so the OS
3084 				 * will see the UA after renegotiating to
3085 				 * packetized.
3086 				 */
3087 				tag = SCB_GET_TAG(scb);
3088 				saved_lun = scb->hscb->lun;
3089 			}
3090 			found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3091 					       tag, ROLE_INITIATOR,
3092 					       CAM_REQ_ABORTED);
3093 			printk("found == 0x%x\n", found);
3094 			printerror = 0;
3095 		} else if (ahd_sent_msg(ahd, AHDMSG_1B,
3096 					TARGET_RESET, TRUE)) {
3097 			ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3098 					    CAM_BDR_SENT, "Bus Device Reset",
3099 					    /*verbose_level*/0);
3100 			printerror = 0;
3101 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, FALSE)
3102 			&& ppr_busfree == 0) {
3103 			struct ahd_initiator_tinfo *tinfo;
3104 			struct ahd_tmode_tstate *tstate;
3105 
3106 			/*
3107 			 * PPR Rejected.
3108 			 *
3109 			 * If the previous negotiation was packetized,
3110 			 * this could be because the device has been
3111 			 * reset without our knowledge.  Force our
3112 			 * current negotiation to async and retry the
3113 			 * negotiation.  Otherwise retry the command
3114 			 * with non-ppr negotiation.
3115 			 */
3116 #ifdef AHD_DEBUG
3117 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3118 				printk("PPR negotiation rejected busfree.\n");
3119 #endif
3120 			tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3121 						    devinfo.our_scsiid,
3122 						    devinfo.target, &tstate);
3123 			if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3124 				ahd_set_width(ahd, &devinfo,
3125 					      MSG_EXT_WDTR_BUS_8_BIT,
3126 					      AHD_TRANS_CUR,
3127 					      /*paused*/TRUE);
3128 				ahd_set_syncrate(ahd, &devinfo,
3129 						/*period*/0, /*offset*/0,
3130 						/*ppr_options*/0,
3131 						AHD_TRANS_CUR,
3132 						/*paused*/TRUE);
3133 				/*
3134 				 * The expect PPR busfree handler below
3135 				 * will effect the retry and necessary
3136 				 * abort.
3137 				 */
3138 			} else {
3139 				tinfo->curr.transport_version = 2;
3140 				tinfo->goal.transport_version = 2;
3141 				tinfo->goal.ppr_options = 0;
3142 				if (scb != NULL) {
3143 					/*
3144 					 * Remove any SCBs in the waiting
3145 					 * for selection queue that may
3146 					 * also be for this target so that
3147 					 * command ordering is preserved.
3148 					 */
3149 					ahd_freeze_devq(ahd, scb);
3150 					ahd_qinfifo_requeue_tail(ahd, scb);
3151 				}
3152 				printerror = 0;
3153 			}
3154 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, FALSE)
3155 			&& ppr_busfree == 0) {
3156 			/*
3157 			 * Negotiation Rejected.  Go-narrow and
3158 			 * retry command.
3159 			 */
3160 #ifdef AHD_DEBUG
3161 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3162 				printk("WDTR negotiation rejected busfree.\n");
3163 #endif
3164 			ahd_set_width(ahd, &devinfo,
3165 				      MSG_EXT_WDTR_BUS_8_BIT,
3166 				      AHD_TRANS_CUR|AHD_TRANS_GOAL,
3167 				      /*paused*/TRUE);
3168 			if (scb != NULL) {
3169 				/*
3170 				 * Remove any SCBs in the waiting for
3171 				 * selection queue that may also be for
3172 				 * this target so that command ordering
3173 				 * is preserved.
3174 				 */
3175 				ahd_freeze_devq(ahd, scb);
3176 				ahd_qinfifo_requeue_tail(ahd, scb);
3177 			}
3178 			printerror = 0;
3179 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, FALSE)
3180 			&& ppr_busfree == 0) {
3181 			/*
3182 			 * Negotiation Rejected.  Go-async and
3183 			 * retry command.
3184 			 */
3185 #ifdef AHD_DEBUG
3186 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3187 				printk("SDTR negotiation rejected busfree.\n");
3188 #endif
3189 			ahd_set_syncrate(ahd, &devinfo,
3190 					/*period*/0, /*offset*/0,
3191 					/*ppr_options*/0,
3192 					AHD_TRANS_CUR|AHD_TRANS_GOAL,
3193 					/*paused*/TRUE);
3194 			if (scb != NULL) {
3195 				/*
3196 				 * Remove any SCBs in the waiting for
3197 				 * selection queue that may also be for
3198 				 * this target so that command ordering
3199 				 * is preserved.
3200 				 */
3201 				ahd_freeze_devq(ahd, scb);
3202 				ahd_qinfifo_requeue_tail(ahd, scb);
3203 			}
3204 			printerror = 0;
3205 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3206 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3207 					 INITIATOR_ERROR, TRUE)) {
3208 
3209 #ifdef AHD_DEBUG
3210 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3211 				printk("Expected IDE Busfree\n");
3212 #endif
3213 			printerror = 0;
3214 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3215 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3216 					MESSAGE_REJECT, TRUE)) {
3217 
3218 #ifdef AHD_DEBUG
3219 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3220 				printk("Expected QAS Reject Busfree\n");
3221 #endif
3222 			printerror = 0;
3223 		}
3224 	}
3225 
3226 	/*
3227 	 * The busfree required flag is honored at the end of
3228 	 * the message phases.  We check it last in case we
3229 	 * had to send some other message that caused a busfree.
3230 	 */
3231 	if (scb != NULL && printerror != 0
3232 	 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3233 	 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3234 
3235 		ahd_freeze_devq(ahd, scb);
3236 		ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3237 		ahd_freeze_scb(scb);
3238 		if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3239 			ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3240 				       SCB_GET_CHANNEL(ahd, scb),
3241 				       SCB_GET_LUN(scb), SCB_LIST_NULL,
3242 				       ROLE_INITIATOR, CAM_REQ_ABORTED);
3243 		} else {
3244 #ifdef AHD_DEBUG
3245 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3246 				printk("PPR Negotiation Busfree.\n");
3247 #endif
3248 			ahd_done(ahd, scb);
3249 		}
3250 		printerror = 0;
3251 	}
3252 	if (printerror != 0) {
3253 		int aborted;
3254 
3255 		aborted = 0;
3256 		if (scb != NULL) {
3257 			u_int tag;
3258 
3259 			if ((scb->hscb->control & TAG_ENB) != 0)
3260 				tag = SCB_GET_TAG(scb);
3261 			else
3262 				tag = SCB_LIST_NULL;
3263 			ahd_print_path(ahd, scb);
3264 			aborted = ahd_abort_scbs(ahd, target, 'A',
3265 				       SCB_GET_LUN(scb), tag,
3266 				       ROLE_INITIATOR,
3267 				       CAM_UNEXP_BUSFREE);
3268 		} else {
3269 			/*
3270 			 * We had not fully identified this connection,
3271 			 * so we cannot abort anything.
3272 			 */
3273 			printk("%s: ", ahd_name(ahd));
3274 		}
3275 		printk("Unexpected busfree %s, %d SCBs aborted, "
3276 		       "PRGMCNT == 0x%x\n",
3277 		       ahd_lookup_phase_entry(lastphase)->phasemsg,
3278 		       aborted,
3279 		       ahd_inw(ahd, PRGMCNT));
3280 		ahd_dump_card_state(ahd);
3281 		if (lastphase != P_BUSFREE)
3282 			ahd_force_renegotiation(ahd, &devinfo);
3283 	}
3284 	/* Always restart the sequencer. */
3285 	return (1);
3286 }
3287 
3288 static void
3289 ahd_handle_proto_violation(struct ahd_softc *ahd)
3290 {
3291 	struct	ahd_devinfo devinfo;
3292 	struct	scb *scb;
3293 	u_int	scbid;
3294 	u_int	seq_flags;
3295 	u_int	curphase;
3296 	u_int	lastphase;
3297 	int	found;
3298 
3299 	ahd_fetch_devinfo(ahd, &devinfo);
3300 	scbid = ahd_get_scbptr(ahd);
3301 	scb = ahd_lookup_scb(ahd, scbid);
3302 	seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3303 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3304 	lastphase = ahd_inb(ahd, LASTPHASE);
3305 	if ((seq_flags & NOT_IDENTIFIED) != 0) {
3306 
3307 		/*
3308 		 * The reconnecting target either did not send an
3309 		 * identify message, or did, but we didn't find an SCB
3310 		 * to match.
3311 		 */
3312 		ahd_print_devinfo(ahd, &devinfo);
3313 		printk("Target did not send an IDENTIFY message. "
3314 		       "LASTPHASE = 0x%x.\n", lastphase);
3315 		scb = NULL;
3316 	} else if (scb == NULL) {
3317 		/*
3318 		 * We don't seem to have an SCB active for this
3319 		 * transaction.  Print an error and reset the bus.
3320 		 */
3321 		ahd_print_devinfo(ahd, &devinfo);
3322 		printk("No SCB found during protocol violation\n");
3323 		goto proto_violation_reset;
3324 	} else {
3325 		ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3326 		if ((seq_flags & NO_CDB_SENT) != 0) {
3327 			ahd_print_path(ahd, scb);
3328 			printk("No or incomplete CDB sent to device.\n");
3329 		} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3330 			  & STATUS_RCVD) == 0) {
3331 			/*
3332 			 * The target never bothered to provide status to
3333 			 * us prior to completing the command.  Since we don't
3334 			 * know the disposition of this command, we must attempt
3335 			 * to abort it.  Assert ATN and prepare to send an abort
3336 			 * message.
3337 			 */
3338 			ahd_print_path(ahd, scb);
3339 			printk("Completed command without status.\n");
3340 		} else {
3341 			ahd_print_path(ahd, scb);
3342 			printk("Unknown protocol violation.\n");
3343 			ahd_dump_card_state(ahd);
3344 		}
3345 	}
3346 	if ((lastphase & ~P_DATAIN_DT) == 0
3347 	 || lastphase == P_COMMAND) {
3348 proto_violation_reset:
3349 		/*
3350 		 * Target either went directly to data
3351 		 * phase or didn't respond to our ATN.
3352 		 * The only safe thing to do is to blow
3353 		 * it away with a bus reset.
3354 		 */
3355 		found = ahd_reset_channel(ahd, 'A', TRUE);
3356 		printk("%s: Issued Channel %c Bus Reset. "
3357 		       "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3358 	} else {
3359 		/*
3360 		 * Leave the selection hardware off in case
3361 		 * this abort attempt will affect yet to
3362 		 * be sent commands.
3363 		 */
3364 		ahd_outb(ahd, SCSISEQ0,
3365 			 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3366 		ahd_assert_atn(ahd);
3367 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
3368 		if (scb == NULL) {
3369 			ahd_print_devinfo(ahd, &devinfo);
3370 			ahd->msgout_buf[0] = ABORT_TASK;
3371 			ahd->msgout_len = 1;
3372 			ahd->msgout_index = 0;
3373 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3374 		} else {
3375 			ahd_print_path(ahd, scb);
3376 			scb->flags |= SCB_ABORT;
3377 		}
3378 		printk("Protocol violation %s.  Attempting to abort.\n",
3379 		       ahd_lookup_phase_entry(curphase)->phasemsg);
3380 	}
3381 }
3382 
3383 /*
3384  * Force renegotiation to occur the next time we initiate
3385  * a command to the current device.
3386  */
3387 static void
3388 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3389 {
3390 	struct	ahd_initiator_tinfo *targ_info;
3391 	struct	ahd_tmode_tstate *tstate;
3392 
3393 #ifdef AHD_DEBUG
3394 	if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3395 		ahd_print_devinfo(ahd, devinfo);
3396 		printk("Forcing renegotiation\n");
3397 	}
3398 #endif
3399 	targ_info = ahd_fetch_transinfo(ahd,
3400 					devinfo->channel,
3401 					devinfo->our_scsiid,
3402 					devinfo->target,
3403 					&tstate);
3404 	ahd_update_neg_request(ahd, devinfo, tstate,
3405 			       targ_info, AHD_NEG_IF_NON_ASYNC);
3406 }
3407 
3408 #define AHD_MAX_STEPS 2000
3409 static void
3410 ahd_clear_critical_section(struct ahd_softc *ahd)
3411 {
3412 	ahd_mode_state	saved_modes;
3413 	int		stepping;
3414 	int		steps;
3415 	int		first_instr;
3416 	u_int		simode0;
3417 	u_int		simode1;
3418 	u_int		simode3;
3419 	u_int		lqimode0;
3420 	u_int		lqimode1;
3421 	u_int		lqomode0;
3422 	u_int		lqomode1;
3423 
3424 	if (ahd->num_critical_sections == 0)
3425 		return;
3426 
3427 	stepping = FALSE;
3428 	steps = 0;
3429 	first_instr = 0;
3430 	simode0 = 0;
3431 	simode1 = 0;
3432 	simode3 = 0;
3433 	lqimode0 = 0;
3434 	lqimode1 = 0;
3435 	lqomode0 = 0;
3436 	lqomode1 = 0;
3437 	saved_modes = ahd_save_modes(ahd);
3438 	for (;;) {
3439 		struct	cs *cs;
3440 		u_int	seqaddr;
3441 		u_int	i;
3442 
3443 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3444 		seqaddr = ahd_inw(ahd, CURADDR);
3445 
3446 		cs = ahd->critical_sections;
3447 		for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3448 			if (cs->begin < seqaddr && cs->end >= seqaddr)
3449 				break;
3450 		}
3451 
3452 		if (i == ahd->num_critical_sections)
3453 			break;
3454 
3455 		if (steps > AHD_MAX_STEPS) {
3456 			printk("%s: Infinite loop in critical section\n"
3457 			       "%s: First Instruction 0x%x now 0x%x\n",
3458 			       ahd_name(ahd), ahd_name(ahd), first_instr,
3459 			       seqaddr);
3460 			ahd_dump_card_state(ahd);
3461 			panic("critical section loop");
3462 		}
3463 
3464 		steps++;
3465 #ifdef AHD_DEBUG
3466 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
3467 			printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3468 			       seqaddr);
3469 #endif
3470 		if (stepping == FALSE) {
3471 
3472 			first_instr = seqaddr;
3473 			ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3474 			simode0 = ahd_inb(ahd, SIMODE0);
3475 			simode3 = ahd_inb(ahd, SIMODE3);
3476 			lqimode0 = ahd_inb(ahd, LQIMODE0);
3477 			lqimode1 = ahd_inb(ahd, LQIMODE1);
3478 			lqomode0 = ahd_inb(ahd, LQOMODE0);
3479 			lqomode1 = ahd_inb(ahd, LQOMODE1);
3480 			ahd_outb(ahd, SIMODE0, 0);
3481 			ahd_outb(ahd, SIMODE3, 0);
3482 			ahd_outb(ahd, LQIMODE0, 0);
3483 			ahd_outb(ahd, LQIMODE1, 0);
3484 			ahd_outb(ahd, LQOMODE0, 0);
3485 			ahd_outb(ahd, LQOMODE1, 0);
3486 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3487 			simode1 = ahd_inb(ahd, SIMODE1);
3488 			/*
3489 			 * We don't clear ENBUSFREE.  Unfortunately
3490 			 * we cannot re-enable busfree detection within
3491 			 * the current connection, so we must leave it
3492 			 * on while single stepping.
3493 			 */
3494 			ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3495 			ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3496 			stepping = TRUE;
3497 		}
3498 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3499 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3500 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3501 		ahd_outb(ahd, HCNTRL, ahd->unpause);
3502 		while (!ahd_is_paused(ahd))
3503 			ahd_delay(200);
3504 		ahd_update_modes(ahd);
3505 	}
3506 	if (stepping) {
3507 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3508 		ahd_outb(ahd, SIMODE0, simode0);
3509 		ahd_outb(ahd, SIMODE3, simode3);
3510 		ahd_outb(ahd, LQIMODE0, lqimode0);
3511 		ahd_outb(ahd, LQIMODE1, lqimode1);
3512 		ahd_outb(ahd, LQOMODE0, lqomode0);
3513 		ahd_outb(ahd, LQOMODE1, lqomode1);
3514 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3515 		ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3516 		ahd_outb(ahd, SIMODE1, simode1);
3517 		/*
3518 		 * SCSIINT seems to glitch occasionally when
3519 		 * the interrupt masks are restored.  Clear SCSIINT
3520 		 * one more time so that only persistent errors
3521 		 * are seen as a real interrupt.
3522 		 */
3523 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3524 	}
3525 	ahd_restore_modes(ahd, saved_modes);
3526 }
3527 
3528 /*
3529  * Clear any pending interrupt status.
3530  */
3531 static void
3532 ahd_clear_intstat(struct ahd_softc *ahd)
3533 {
3534 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3535 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3536 	/* Clear any interrupt conditions this may have caused */
3537 	ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3538 				 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3539 	ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3540 				 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3541 				 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3542 	ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3543 				 |CLRLQOATNPKT|CLRLQOTCRC);
3544 	ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3545 				 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3546 	if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3547 		ahd_outb(ahd, CLRLQOINT0, 0);
3548 		ahd_outb(ahd, CLRLQOINT1, 0);
3549 	}
3550 	ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3551 	ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3552 				|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3553 	ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3554 				|CLRIOERR|CLROVERRUN);
3555 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
3556 }
3557 
3558 /**************************** Debugging Routines ******************************/
3559 #ifdef AHD_DEBUG
3560 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3561 #endif
3562 
3563 #if 0
3564 void
3565 ahd_print_scb(struct scb *scb)
3566 {
3567 	struct hardware_scb *hscb;
3568 	int i;
3569 
3570 	hscb = scb->hscb;
3571 	printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3572 	       (void *)scb,
3573 	       hscb->control,
3574 	       hscb->scsiid,
3575 	       hscb->lun,
3576 	       hscb->cdb_len);
3577 	printk("Shared Data: ");
3578 	for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3579 		printk("%#02x", hscb->shared_data.idata.cdb[i]);
3580 	printk("        dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3581 	       (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3582 	       (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3583 	       ahd_le32toh(hscb->datacnt),
3584 	       ahd_le32toh(hscb->sgptr),
3585 	       SCB_GET_TAG(scb));
3586 	ahd_dump_sglist(scb);
3587 }
3588 #endif  /*  0  */
3589 
3590 /************************* Transfer Negotiation *******************************/
3591 /*
3592  * Allocate per target mode instance (ID we respond to as a target)
3593  * transfer negotiation data structures.
3594  */
3595 static struct ahd_tmode_tstate *
3596 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3597 {
3598 	struct ahd_tmode_tstate *master_tstate;
3599 	struct ahd_tmode_tstate *tstate;
3600 	int i;
3601 
3602 	master_tstate = ahd->enabled_targets[ahd->our_id];
3603 	if (ahd->enabled_targets[scsi_id] != NULL
3604 	 && ahd->enabled_targets[scsi_id] != master_tstate)
3605 		panic("%s: ahd_alloc_tstate - Target already allocated",
3606 		      ahd_name(ahd));
3607 	tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3608 	if (tstate == NULL)
3609 		return (NULL);
3610 
3611 	/*
3612 	 * If we have allocated a master tstate, copy user settings from
3613 	 * the master tstate (taken from SRAM or the EEPROM) for this
3614 	 * channel, but reset our current and goal settings to async/narrow
3615 	 * until an initiator talks to us.
3616 	 */
3617 	if (master_tstate != NULL) {
3618 		memcpy(tstate, master_tstate, sizeof(*tstate));
3619 		memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3620 		for (i = 0; i < 16; i++) {
3621 			memset(&tstate->transinfo[i].curr, 0,
3622 			      sizeof(tstate->transinfo[i].curr));
3623 			memset(&tstate->transinfo[i].goal, 0,
3624 			      sizeof(tstate->transinfo[i].goal));
3625 		}
3626 	} else
3627 		memset(tstate, 0, sizeof(*tstate));
3628 	ahd->enabled_targets[scsi_id] = tstate;
3629 	return (tstate);
3630 }
3631 
3632 #ifdef AHD_TARGET_MODE
3633 /*
3634  * Free per target mode instance (ID we respond to as a target)
3635  * transfer negotiation data structures.
3636  */
3637 static void
3638 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3639 {
3640 	struct ahd_tmode_tstate *tstate;
3641 
3642 	/*
3643 	 * Don't clean up our "master" tstate.
3644 	 * It has our default user settings.
3645 	 */
3646 	if (scsi_id == ahd->our_id
3647 	 && force == FALSE)
3648 		return;
3649 
3650 	tstate = ahd->enabled_targets[scsi_id];
3651 	kfree(tstate);
3652 	ahd->enabled_targets[scsi_id] = NULL;
3653 }
3654 #endif
3655 
3656 /*
3657  * Called when we have an active connection to a target on the bus,
3658  * this function finds the nearest period to the input period limited
3659  * by the capabilities of the bus connectivity of and sync settings for
3660  * the target.
3661  */
3662 static void
3663 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3664 			struct ahd_initiator_tinfo *tinfo,
3665 			u_int *period, u_int *ppr_options, role_t role)
3666 {
3667 	struct	ahd_transinfo *transinfo;
3668 	u_int	maxsync;
3669 
3670 	if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3671 	 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3672 		maxsync = AHD_SYNCRATE_PACED;
3673 	} else {
3674 		maxsync = AHD_SYNCRATE_ULTRA;
3675 		/* Can't do DT related options on an SE bus */
3676 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3677 	}
3678 	/*
3679 	 * Never allow a value higher than our current goal
3680 	 * period otherwise we may allow a target initiated
3681 	 * negotiation to go above the limit as set by the
3682 	 * user.  In the case of an initiator initiated
3683 	 * sync negotiation, we limit based on the user
3684 	 * setting.  This allows the system to still accept
3685 	 * incoming negotiations even if target initiated
3686 	 * negotiation is not performed.
3687 	 */
3688 	if (role == ROLE_TARGET)
3689 		transinfo = &tinfo->user;
3690 	else
3691 		transinfo = &tinfo->goal;
3692 	*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3693 	if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3694 		maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3695 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3696 	}
3697 	if (transinfo->period == 0) {
3698 		*period = 0;
3699 		*ppr_options = 0;
3700 	} else {
3701 		*period = max(*period, (u_int)transinfo->period);
3702 		ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3703 	}
3704 }
3705 
3706 /*
3707  * Look up the valid period to SCSIRATE conversion in our table.
3708  * Return the period and offset that should be sent to the target
3709  * if this was the beginning of an SDTR.
3710  */
3711 void
3712 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3713 		  u_int *ppr_options, u_int maxsync)
3714 {
3715 	if (*period < maxsync)
3716 		*period = maxsync;
3717 
3718 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3719 	 && *period > AHD_SYNCRATE_MIN_DT)
3720 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3721 
3722 	if (*period > AHD_SYNCRATE_MIN)
3723 		*period = 0;
3724 
3725 	/* Honor PPR option conformance rules. */
3726 	if (*period > AHD_SYNCRATE_PACED)
3727 		*ppr_options &= ~MSG_EXT_PPR_RTI;
3728 
3729 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3730 		*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3731 
3732 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3733 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3734 
3735 	/* Skip all PACED only entries if IU is not available */
3736 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3737 	 && *period < AHD_SYNCRATE_DT)
3738 		*period = AHD_SYNCRATE_DT;
3739 
3740 	/* Skip all DT only entries if DT is not available */
3741 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3742 	 && *period < AHD_SYNCRATE_ULTRA2)
3743 		*period = AHD_SYNCRATE_ULTRA2;
3744 }
3745 
3746 /*
3747  * Truncate the given synchronous offset to a value the
3748  * current adapter type and syncrate are capable of.
3749  */
3750 static void
3751 ahd_validate_offset(struct ahd_softc *ahd,
3752 		    struct ahd_initiator_tinfo *tinfo,
3753 		    u_int period, u_int *offset, int wide,
3754 		    role_t role)
3755 {
3756 	u_int maxoffset;
3757 
3758 	/* Limit offset to what we can do */
3759 	if (period == 0)
3760 		maxoffset = 0;
3761 	else if (period <= AHD_SYNCRATE_PACED) {
3762 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3763 			maxoffset = MAX_OFFSET_PACED_BUG;
3764 		else
3765 			maxoffset = MAX_OFFSET_PACED;
3766 	} else
3767 		maxoffset = MAX_OFFSET_NON_PACED;
3768 	*offset = min(*offset, maxoffset);
3769 	if (tinfo != NULL) {
3770 		if (role == ROLE_TARGET)
3771 			*offset = min(*offset, (u_int)tinfo->user.offset);
3772 		else
3773 			*offset = min(*offset, (u_int)tinfo->goal.offset);
3774 	}
3775 }
3776 
3777 /*
3778  * Truncate the given transfer width parameter to a value the
3779  * current adapter type is capable of.
3780  */
3781 static void
3782 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3783 		   u_int *bus_width, role_t role)
3784 {
3785 	switch (*bus_width) {
3786 	default:
3787 		if (ahd->features & AHD_WIDE) {
3788 			/* Respond Wide */
3789 			*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3790 			break;
3791 		}
3792 		fallthrough;
3793 	case MSG_EXT_WDTR_BUS_8_BIT:
3794 		*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3795 		break;
3796 	}
3797 	if (tinfo != NULL) {
3798 		if (role == ROLE_TARGET)
3799 			*bus_width = min((u_int)tinfo->user.width, *bus_width);
3800 		else
3801 			*bus_width = min((u_int)tinfo->goal.width, *bus_width);
3802 	}
3803 }
3804 
3805 /*
3806  * Update the bitmask of targets for which the controller should
3807  * negotiate with at the next convenient opportunity.  This currently
3808  * means the next time we send the initial identify messages for
3809  * a new transaction.
3810  */
3811 int
3812 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3813 		       struct ahd_tmode_tstate *tstate,
3814 		       struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3815 {
3816 	u_int auto_negotiate_orig;
3817 
3818 	auto_negotiate_orig = tstate->auto_negotiate;
3819 	if (neg_type == AHD_NEG_ALWAYS) {
3820 		/*
3821 		 * Force our "current" settings to be
3822 		 * unknown so that unless a bus reset
3823 		 * occurs the need to renegotiate is
3824 		 * recorded persistently.
3825 		 */
3826 		if ((ahd->features & AHD_WIDE) != 0)
3827 			tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3828 		tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3829 		tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3830 	}
3831 	if (tinfo->curr.period != tinfo->goal.period
3832 	 || tinfo->curr.width != tinfo->goal.width
3833 	 || tinfo->curr.offset != tinfo->goal.offset
3834 	 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3835 	 || (neg_type == AHD_NEG_IF_NON_ASYNC
3836 	  && (tinfo->goal.offset != 0
3837 	   || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3838 	   || tinfo->goal.ppr_options != 0)))
3839 		tstate->auto_negotiate |= devinfo->target_mask;
3840 	else
3841 		tstate->auto_negotiate &= ~devinfo->target_mask;
3842 
3843 	return (auto_negotiate_orig != tstate->auto_negotiate);
3844 }
3845 
3846 /*
3847  * Update the user/goal/curr tables of synchronous negotiation
3848  * parameters as well as, in the case of a current or active update,
3849  * any data structures on the host controller.  In the case of an
3850  * active update, the specified target is currently talking to us on
3851  * the bus, so the transfer parameter update must take effect
3852  * immediately.
3853  */
3854 void
3855 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3856 		 u_int period, u_int offset, u_int ppr_options,
3857 		 u_int type, int paused)
3858 {
3859 	struct	ahd_initiator_tinfo *tinfo;
3860 	struct	ahd_tmode_tstate *tstate;
3861 	u_int	old_period;
3862 	u_int	old_offset;
3863 	u_int	old_ppr;
3864 	int	active;
3865 	int	update_needed;
3866 
3867 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3868 	update_needed = 0;
3869 
3870 	if (period == 0 || offset == 0) {
3871 		period = 0;
3872 		offset = 0;
3873 	}
3874 
3875 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3876 				    devinfo->target, &tstate);
3877 
3878 	if ((type & AHD_TRANS_USER) != 0) {
3879 		tinfo->user.period = period;
3880 		tinfo->user.offset = offset;
3881 		tinfo->user.ppr_options = ppr_options;
3882 	}
3883 
3884 	if ((type & AHD_TRANS_GOAL) != 0) {
3885 		tinfo->goal.period = period;
3886 		tinfo->goal.offset = offset;
3887 		tinfo->goal.ppr_options = ppr_options;
3888 	}
3889 
3890 	old_period = tinfo->curr.period;
3891 	old_offset = tinfo->curr.offset;
3892 	old_ppr	   = tinfo->curr.ppr_options;
3893 
3894 	if ((type & AHD_TRANS_CUR) != 0
3895 	 && (old_period != period
3896 	  || old_offset != offset
3897 	  || old_ppr != ppr_options)) {
3898 
3899 		update_needed++;
3900 
3901 		tinfo->curr.period = period;
3902 		tinfo->curr.offset = offset;
3903 		tinfo->curr.ppr_options = ppr_options;
3904 
3905 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
3906 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3907 		if (bootverbose) {
3908 			if (offset != 0) {
3909 				int options;
3910 
3911 				printk("%s: target %d synchronous with "
3912 				       "period = 0x%x, offset = 0x%x",
3913 				       ahd_name(ahd), devinfo->target,
3914 				       period, offset);
3915 				options = 0;
3916 				if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3917 					printk("(RDSTRM");
3918 					options++;
3919 				}
3920 				if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3921 					printk("%s", options ? "|DT" : "(DT");
3922 					options++;
3923 				}
3924 				if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3925 					printk("%s", options ? "|IU" : "(IU");
3926 					options++;
3927 				}
3928 				if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3929 					printk("%s", options ? "|RTI" : "(RTI");
3930 					options++;
3931 				}
3932 				if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3933 					printk("%s", options ? "|QAS" : "(QAS");
3934 					options++;
3935 				}
3936 				if (options != 0)
3937 					printk(")\n");
3938 				else
3939 					printk("\n");
3940 			} else {
3941 				printk("%s: target %d using "
3942 				       "asynchronous transfers%s\n",
3943 				       ahd_name(ahd), devinfo->target,
3944 				       (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3945 				     ?  "(QAS)" : "");
3946 			}
3947 		}
3948 	}
3949 	/*
3950 	 * Always refresh the neg-table to handle the case of the
3951 	 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3952 	 * We will always renegotiate in that case if this is a
3953 	 * packetized request.  Also manage the busfree expected flag
3954 	 * from this common routine so that we catch changes due to
3955 	 * WDTR or SDTR messages.
3956 	 */
3957 	if ((type & AHD_TRANS_CUR) != 0) {
3958 		if (!paused)
3959 			ahd_pause(ahd);
3960 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3961 		if (!paused)
3962 			ahd_unpause(ahd);
3963 		if (ahd->msg_type != MSG_TYPE_NONE) {
3964 			if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3965 			 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3966 #ifdef AHD_DEBUG
3967 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3968 					ahd_print_devinfo(ahd, devinfo);
3969 					printk("Expecting IU Change busfree\n");
3970 				}
3971 #endif
3972 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3973 					       |  MSG_FLAG_IU_REQ_CHANGED;
3974 			}
3975 			if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3976 #ifdef AHD_DEBUG
3977 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3978 					printk("PPR with IU_REQ outstanding\n");
3979 #endif
3980 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3981 			}
3982 		}
3983 	}
3984 
3985 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
3986 						tinfo, AHD_NEG_TO_GOAL);
3987 
3988 	if (update_needed && active)
3989 		ahd_update_pending_scbs(ahd);
3990 }
3991 
3992 /*
3993  * Update the user/goal/curr tables of wide negotiation
3994  * parameters as well as, in the case of a current or active update,
3995  * any data structures on the host controller.  In the case of an
3996  * active update, the specified target is currently talking to us on
3997  * the bus, so the transfer parameter update must take effect
3998  * immediately.
3999  */
4000 void
4001 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4002 	      u_int width, u_int type, int paused)
4003 {
4004 	struct	ahd_initiator_tinfo *tinfo;
4005 	struct	ahd_tmode_tstate *tstate;
4006 	u_int	oldwidth;
4007 	int	active;
4008 	int	update_needed;
4009 
4010 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4011 	update_needed = 0;
4012 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4013 				    devinfo->target, &tstate);
4014 
4015 	if ((type & AHD_TRANS_USER) != 0)
4016 		tinfo->user.width = width;
4017 
4018 	if ((type & AHD_TRANS_GOAL) != 0)
4019 		tinfo->goal.width = width;
4020 
4021 	oldwidth = tinfo->curr.width;
4022 	if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4023 
4024 		update_needed++;
4025 
4026 		tinfo->curr.width = width;
4027 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
4028 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4029 		if (bootverbose) {
4030 			printk("%s: target %d using %dbit transfers\n",
4031 			       ahd_name(ahd), devinfo->target,
4032 			       8 * (0x01 << width));
4033 		}
4034 	}
4035 
4036 	if ((type & AHD_TRANS_CUR) != 0) {
4037 		if (!paused)
4038 			ahd_pause(ahd);
4039 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4040 		if (!paused)
4041 			ahd_unpause(ahd);
4042 	}
4043 
4044 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4045 						tinfo, AHD_NEG_TO_GOAL);
4046 	if (update_needed && active)
4047 		ahd_update_pending_scbs(ahd);
4048 
4049 }
4050 
4051 /*
4052  * Update the current state of tagged queuing for a given target.
4053  */
4054 static void
4055 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4056 	     struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4057 {
4058 	struct scsi_device *sdev = cmd->device;
4059 
4060 	ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4061 	ahd_send_async(ahd, devinfo->channel, devinfo->target,
4062 		       devinfo->lun, AC_TRANSFER_NEG);
4063 }
4064 
4065 static void
4066 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4067 		     struct ahd_transinfo *tinfo)
4068 {
4069 	ahd_mode_state	saved_modes;
4070 	u_int		period;
4071 	u_int		ppr_opts;
4072 	u_int		con_opts;
4073 	u_int		offset;
4074 	u_int		saved_negoaddr;
4075 	uint8_t		iocell_opts[sizeof(ahd->iocell_opts)];
4076 
4077 	saved_modes = ahd_save_modes(ahd);
4078 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4079 
4080 	saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4081 	ahd_outb(ahd, NEGOADDR, devinfo->target);
4082 	period = tinfo->period;
4083 	offset = tinfo->offset;
4084 	memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4085 	ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4086 					|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4087 	con_opts = 0;
4088 	if (period == 0)
4089 		period = AHD_SYNCRATE_ASYNC;
4090 	if (period == AHD_SYNCRATE_160) {
4091 
4092 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4093 			/*
4094 			 * When the SPI4 spec was finalized, PACE transfers
4095 			 * was not made a configurable option in the PPR
4096 			 * message.  Instead it is assumed to be enabled for
4097 			 * any syncrate faster than 80MHz.  Nevertheless,
4098 			 * Harpoon2A4 allows this to be configurable.
4099 			 *
4100 			 * Harpoon2A4 also assumes at most 2 data bytes per
4101 			 * negotiated REQ/ACK offset.  Paced transfers take
4102 			 * 4, so we must adjust our offset.
4103 			 */
4104 			ppr_opts |= PPROPT_PACE;
4105 			offset *= 2;
4106 
4107 			/*
4108 			 * Harpoon2A assumed that there would be a
4109 			 * fallback rate between 160MHz and 80MHz,
4110 			 * so 7 is used as the period factor rather
4111 			 * than 8 for 160MHz.
4112 			 */
4113 			period = AHD_SYNCRATE_REVA_160;
4114 		}
4115 		if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4116 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4117 			    ~AHD_PRECOMP_MASK;
4118 	} else {
4119 		/*
4120 		 * Precomp should be disabled for non-paced transfers.
4121 		 */
4122 		iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4123 
4124 		if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4125 		 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4126 		 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4127 			/*
4128 			 * Slow down our CRC interval to be
4129 			 * compatible with non-packetized
4130 			 * U160 devices that can't handle a
4131 			 * CRC at full speed.
4132 			 */
4133 			con_opts |= ENSLOWCRC;
4134 		}
4135 
4136 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4137 			/*
4138 			 * On H2A4, revert to a slower slewrate
4139 			 * on non-paced transfers.
4140 			 */
4141 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4142 			    ~AHD_SLEWRATE_MASK;
4143 		}
4144 	}
4145 
4146 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4147 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4148 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4149 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4150 
4151 	ahd_outb(ahd, NEGPERIOD, period);
4152 	ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4153 	ahd_outb(ahd, NEGOFFSET, offset);
4154 
4155 	if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4156 		con_opts |= WIDEXFER;
4157 
4158 	/*
4159 	 * Slow down our CRC interval to be
4160 	 * compatible with packetized U320 devices
4161 	 * that can't handle a CRC at full speed
4162 	 */
4163 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4164 		con_opts |= ENSLOWCRC;
4165 	}
4166 
4167 	/*
4168 	 * During packetized transfers, the target will
4169 	 * give us the opportunity to send command packets
4170 	 * without us asserting attention.
4171 	 */
4172 	if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4173 		con_opts |= ENAUTOATNO;
4174 	ahd_outb(ahd, NEGCONOPTS, con_opts);
4175 	ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4176 	ahd_restore_modes(ahd, saved_modes);
4177 }
4178 
4179 /*
4180  * When the transfer settings for a connection change, setup for
4181  * negotiation in pending SCBs to effect the change as quickly as
4182  * possible.  We also cancel any negotiations that are scheduled
4183  * for inflight SCBs that have not been started yet.
4184  */
4185 static void
4186 ahd_update_pending_scbs(struct ahd_softc *ahd)
4187 {
4188 	struct		scb *pending_scb;
4189 	int		pending_scb_count;
4190 	int		paused;
4191 	u_int		saved_scbptr;
4192 	ahd_mode_state	saved_modes;
4193 
4194 	/*
4195 	 * Traverse the pending SCB list and ensure that all of the
4196 	 * SCBs there have the proper settings.  We can only safely
4197 	 * clear the negotiation required flag (setting requires the
4198 	 * execution queue to be modified) and this is only possible
4199 	 * if we are not already attempting to select out for this
4200 	 * SCB.  For this reason, all callers only call this routine
4201 	 * if we are changing the negotiation settings for the currently
4202 	 * active transaction on the bus.
4203 	 */
4204 	pending_scb_count = 0;
4205 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4206 		struct ahd_devinfo devinfo;
4207 		struct ahd_tmode_tstate *tstate;
4208 
4209 		ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4210 		ahd_fetch_transinfo(ahd, devinfo.channel, devinfo.our_scsiid,
4211 				    devinfo.target, &tstate);
4212 		if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4213 		 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4214 			pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4215 			pending_scb->hscb->control &= ~MK_MESSAGE;
4216 		}
4217 		ahd_sync_scb(ahd, pending_scb,
4218 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4219 		pending_scb_count++;
4220 	}
4221 
4222 	if (pending_scb_count == 0)
4223 		return;
4224 
4225 	if (ahd_is_paused(ahd)) {
4226 		paused = 1;
4227 	} else {
4228 		paused = 0;
4229 		ahd_pause(ahd);
4230 	}
4231 
4232 	/*
4233 	 * Force the sequencer to reinitialize the selection for
4234 	 * the command at the head of the execution queue if it
4235 	 * has already been setup.  The negotiation changes may
4236 	 * effect whether we select-out with ATN.  It is only
4237 	 * safe to clear ENSELO when the bus is not free and no
4238 	 * selection is in progres or completed.
4239 	 */
4240 	saved_modes = ahd_save_modes(ahd);
4241 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4242 	if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4243 	 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4244 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4245 	saved_scbptr = ahd_get_scbptr(ahd);
4246 	/* Ensure that the hscbs down on the card match the new information */
4247 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4248 		u_int	scb_tag;
4249 		u_int	control;
4250 
4251 		scb_tag = SCB_GET_TAG(pending_scb);
4252 		ahd_set_scbptr(ahd, scb_tag);
4253 		control = ahd_inb_scbram(ahd, SCB_CONTROL);
4254 		control &= ~MK_MESSAGE;
4255 		control |= pending_scb->hscb->control & MK_MESSAGE;
4256 		ahd_outb(ahd, SCB_CONTROL, control);
4257 	}
4258 	ahd_set_scbptr(ahd, saved_scbptr);
4259 	ahd_restore_modes(ahd, saved_modes);
4260 
4261 	if (paused == 0)
4262 		ahd_unpause(ahd);
4263 }
4264 
4265 /**************************** Pathing Information *****************************/
4266 static void
4267 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4268 {
4269 	ahd_mode_state	saved_modes;
4270 	u_int		saved_scsiid;
4271 	role_t		role;
4272 	int		our_id;
4273 
4274 	saved_modes = ahd_save_modes(ahd);
4275 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4276 
4277 	if (ahd_inb(ahd, SSTAT0) & TARGET)
4278 		role = ROLE_TARGET;
4279 	else
4280 		role = ROLE_INITIATOR;
4281 
4282 	if (role == ROLE_TARGET
4283 	 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4284 		/* We were selected, so pull our id from TARGIDIN */
4285 		our_id = ahd_inb(ahd, TARGIDIN) & OID;
4286 	} else if (role == ROLE_TARGET)
4287 		our_id = ahd_inb(ahd, TOWNID);
4288 	else
4289 		our_id = ahd_inb(ahd, IOWNID);
4290 
4291 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4292 	ahd_compile_devinfo(devinfo,
4293 			    our_id,
4294 			    SCSIID_TARGET(ahd, saved_scsiid),
4295 			    ahd_inb(ahd, SAVED_LUN),
4296 			    SCSIID_CHANNEL(ahd, saved_scsiid),
4297 			    role);
4298 	ahd_restore_modes(ahd, saved_modes);
4299 }
4300 
4301 void
4302 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4303 {
4304 	printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4305 	       devinfo->target, devinfo->lun);
4306 }
4307 
4308 static const struct ahd_phase_table_entry*
4309 ahd_lookup_phase_entry(int phase)
4310 {
4311 	const struct ahd_phase_table_entry *entry;
4312 	const struct ahd_phase_table_entry *last_entry;
4313 
4314 	/*
4315 	 * num_phases doesn't include the default entry which
4316 	 * will be returned if the phase doesn't match.
4317 	 */
4318 	last_entry = &ahd_phase_table[num_phases];
4319 	for (entry = ahd_phase_table; entry < last_entry; entry++) {
4320 		if (phase == entry->phase)
4321 			break;
4322 	}
4323 	return (entry);
4324 }
4325 
4326 void
4327 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4328 		    u_int lun, char channel, role_t role)
4329 {
4330 	devinfo->our_scsiid = our_id;
4331 	devinfo->target = target;
4332 	devinfo->lun = lun;
4333 	devinfo->target_offset = target;
4334 	devinfo->channel = channel;
4335 	devinfo->role = role;
4336 	if (channel == 'B')
4337 		devinfo->target_offset += 8;
4338 	devinfo->target_mask = (0x01 << devinfo->target_offset);
4339 }
4340 
4341 static void
4342 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4343 		struct scb *scb)
4344 {
4345 	role_t	role;
4346 	int	our_id;
4347 
4348 	our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4349 	role = ROLE_INITIATOR;
4350 	if ((scb->hscb->control & TARGET_SCB) != 0)
4351 		role = ROLE_TARGET;
4352 	ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4353 			    SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4354 }
4355 
4356 
4357 /************************ Message Phase Processing ****************************/
4358 /*
4359  * When an initiator transaction with the MK_MESSAGE flag either reconnects
4360  * or enters the initial message out phase, we are interrupted.  Fill our
4361  * outgoing message buffer with the appropriate message and beging handing
4362  * the message phase(s) manually.
4363  */
4364 static void
4365 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4366 			   struct scb *scb)
4367 {
4368 	/*
4369 	 * To facilitate adding multiple messages together,
4370 	 * each routine should increment the index and len
4371 	 * variables instead of setting them explicitly.
4372 	 */
4373 	ahd->msgout_index = 0;
4374 	ahd->msgout_len = 0;
4375 
4376 	if (ahd_currently_packetized(ahd))
4377 		ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4378 
4379 	if (ahd->send_msg_perror
4380 	 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4381 		ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4382 		ahd->msgout_len++;
4383 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4384 #ifdef AHD_DEBUG
4385 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4386 			printk("Setting up for Parity Error delivery\n");
4387 #endif
4388 		return;
4389 	} else if (scb == NULL) {
4390 		printk("%s: WARNING. No pending message for "
4391 		       "I_T msgin.  Issuing NO-OP\n", ahd_name(ahd));
4392 		ahd->msgout_buf[ahd->msgout_index++] = NOP;
4393 		ahd->msgout_len++;
4394 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4395 		return;
4396 	}
4397 
4398 	if ((scb->flags & SCB_DEVICE_RESET) == 0
4399 	 && (scb->flags & SCB_PACKETIZED) == 0
4400 	 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4401 		u_int identify_msg;
4402 
4403 		identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4404 		if ((scb->hscb->control & DISCENB) != 0)
4405 			identify_msg |= MSG_IDENTIFY_DISCFLAG;
4406 		ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4407 		ahd->msgout_len++;
4408 
4409 		if ((scb->hscb->control & TAG_ENB) != 0) {
4410 			ahd->msgout_buf[ahd->msgout_index++] =
4411 			    scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4412 			ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4413 			ahd->msgout_len += 2;
4414 		}
4415 	}
4416 
4417 	if (scb->flags & SCB_DEVICE_RESET) {
4418 		ahd->msgout_buf[ahd->msgout_index++] = TARGET_RESET;
4419 		ahd->msgout_len++;
4420 		ahd_print_path(ahd, scb);
4421 		printk("Bus Device Reset Message Sent\n");
4422 		/*
4423 		 * Clear our selection hardware in advance of
4424 		 * the busfree.  We may have an entry in the waiting
4425 		 * Q for this target, and we don't want to go about
4426 		 * selecting while we handle the busfree and blow it
4427 		 * away.
4428 		 */
4429 		ahd_outb(ahd, SCSISEQ0, 0);
4430 	} else if ((scb->flags & SCB_ABORT) != 0) {
4431 
4432 		if ((scb->hscb->control & TAG_ENB) != 0) {
4433 			ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK;
4434 		} else {
4435 			ahd->msgout_buf[ahd->msgout_index++] = ABORT_TASK_SET;
4436 		}
4437 		ahd->msgout_len++;
4438 		ahd_print_path(ahd, scb);
4439 		printk("Abort%s Message Sent\n",
4440 		       (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4441 		/*
4442 		 * Clear our selection hardware in advance of
4443 		 * the busfree.  We may have an entry in the waiting
4444 		 * Q for this target, and we don't want to go about
4445 		 * selecting while we handle the busfree and blow it
4446 		 * away.
4447 		 */
4448 		ahd_outb(ahd, SCSISEQ0, 0);
4449 	} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4450 		ahd_build_transfer_msg(ahd, devinfo);
4451 		/*
4452 		 * Clear our selection hardware in advance of potential
4453 		 * PPR IU status change busfree.  We may have an entry in
4454 		 * the waiting Q for this target, and we don't want to go
4455 		 * about selecting while we handle the busfree and blow
4456 		 * it away.
4457 		 */
4458 		ahd_outb(ahd, SCSISEQ0, 0);
4459 	} else {
4460 		printk("ahd_intr: AWAITING_MSG for an SCB that "
4461 		       "does not have a waiting message\n");
4462 		printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4463 		       devinfo->target_mask);
4464 		panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4465 		      "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4466 		      ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4467 		      scb->flags);
4468 	}
4469 
4470 	/*
4471 	 * Clear the MK_MESSAGE flag from the SCB so we aren't
4472 	 * asked to send this message again.
4473 	 */
4474 	ahd_outb(ahd, SCB_CONTROL,
4475 		 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4476 	scb->hscb->control &= ~MK_MESSAGE;
4477 	ahd->msgout_index = 0;
4478 	ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4479 }
4480 
4481 /*
4482  * Build an appropriate transfer negotiation message for the
4483  * currently active target.
4484  */
4485 static void
4486 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4487 {
4488 	/*
4489 	 * We need to initiate transfer negotiations.
4490 	 * If our current and goal settings are identical,
4491 	 * we want to renegotiate due to a check condition.
4492 	 */
4493 	struct	ahd_initiator_tinfo *tinfo;
4494 	struct	ahd_tmode_tstate *tstate;
4495 	int	dowide;
4496 	int	dosync;
4497 	int	doppr;
4498 	u_int	period;
4499 	u_int	ppr_options;
4500 	u_int	offset;
4501 
4502 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4503 				    devinfo->target, &tstate);
4504 	/*
4505 	 * Filter our period based on the current connection.
4506 	 * If we can't perform DT transfers on this segment (not in LVD
4507 	 * mode for instance), then our decision to issue a PPR message
4508 	 * may change.
4509 	 */
4510 	period = tinfo->goal.period;
4511 	offset = tinfo->goal.offset;
4512 	ppr_options = tinfo->goal.ppr_options;
4513 	/* Target initiated PPR is not allowed in the SCSI spec */
4514 	if (devinfo->role == ROLE_TARGET)
4515 		ppr_options = 0;
4516 	ahd_devlimited_syncrate(ahd, tinfo, &period,
4517 				&ppr_options, devinfo->role);
4518 	dowide = tinfo->curr.width != tinfo->goal.width;
4519 	dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4520 	/*
4521 	 * Only use PPR if we have options that need it, even if the device
4522 	 * claims to support it.  There might be an expander in the way
4523 	 * that doesn't.
4524 	 */
4525 	doppr = ppr_options != 0;
4526 
4527 	if (!dowide && !dosync && !doppr) {
4528 		dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4529 		dosync = tinfo->goal.offset != 0;
4530 	}
4531 
4532 	if (!dowide && !dosync && !doppr) {
4533 		/*
4534 		 * Force async with a WDTR message if we have a wide bus,
4535 		 * or just issue an SDTR with a 0 offset.
4536 		 */
4537 		if ((ahd->features & AHD_WIDE) != 0)
4538 			dowide = 1;
4539 		else
4540 			dosync = 1;
4541 
4542 		if (bootverbose) {
4543 			ahd_print_devinfo(ahd, devinfo);
4544 			printk("Ensuring async\n");
4545 		}
4546 	}
4547 	/* Target initiated PPR is not allowed in the SCSI spec */
4548 	if (devinfo->role == ROLE_TARGET)
4549 		doppr = 0;
4550 
4551 	/*
4552 	 * Both the PPR message and SDTR message require the
4553 	 * goal syncrate to be limited to what the target device
4554 	 * is capable of handling (based on whether an LVD->SE
4555 	 * expander is on the bus), so combine these two cases.
4556 	 * Regardless, guarantee that if we are using WDTR and SDTR
4557 	 * messages that WDTR comes first.
4558 	 */
4559 	if (doppr || (dosync && !dowide)) {
4560 
4561 		offset = tinfo->goal.offset;
4562 		ahd_validate_offset(ahd, tinfo, period, &offset,
4563 				    doppr ? tinfo->goal.width
4564 					  : tinfo->curr.width,
4565 				    devinfo->role);
4566 		if (doppr) {
4567 			ahd_construct_ppr(ahd, devinfo, period, offset,
4568 					  tinfo->goal.width, ppr_options);
4569 		} else {
4570 			ahd_construct_sdtr(ahd, devinfo, period, offset);
4571 		}
4572 	} else {
4573 		ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4574 	}
4575 }
4576 
4577 /*
4578  * Build a synchronous negotiation message in our message
4579  * buffer based on the input parameters.
4580  */
4581 static void
4582 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4583 		   u_int period, u_int offset)
4584 {
4585 	if (offset == 0)
4586 		period = AHD_ASYNC_XFER_PERIOD;
4587 	ahd->msgout_index += spi_populate_sync_msg(
4588 			ahd->msgout_buf + ahd->msgout_index, period, offset);
4589 	ahd->msgout_len += 5;
4590 	if (bootverbose) {
4591 		printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4592 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4593 		       devinfo->lun, period, offset);
4594 	}
4595 }
4596 
4597 /*
4598  * Build a wide negotiateion message in our message
4599  * buffer based on the input parameters.
4600  */
4601 static void
4602 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4603 		   u_int bus_width)
4604 {
4605 	ahd->msgout_index += spi_populate_width_msg(
4606 			ahd->msgout_buf + ahd->msgout_index, bus_width);
4607 	ahd->msgout_len += 4;
4608 	if (bootverbose) {
4609 		printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4610 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4611 		       devinfo->lun, bus_width);
4612 	}
4613 }
4614 
4615 /*
4616  * Build a parallel protocol request message in our message
4617  * buffer based on the input parameters.
4618  */
4619 static void
4620 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4621 		  u_int period, u_int offset, u_int bus_width,
4622 		  u_int ppr_options)
4623 {
4624 	/*
4625 	 * Always request precompensation from
4626 	 * the other target if we are running
4627 	 * at paced syncrates.
4628 	 */
4629 	if (period <= AHD_SYNCRATE_PACED)
4630 		ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4631 	if (offset == 0)
4632 		period = AHD_ASYNC_XFER_PERIOD;
4633 	ahd->msgout_index += spi_populate_ppr_msg(
4634 			ahd->msgout_buf + ahd->msgout_index, period, offset,
4635 			bus_width, ppr_options);
4636 	ahd->msgout_len += 8;
4637 	if (bootverbose) {
4638 		printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4639 		       "offset %x, ppr_options %x\n", ahd_name(ahd),
4640 		       devinfo->channel, devinfo->target, devinfo->lun,
4641 		       bus_width, period, offset, ppr_options);
4642 	}
4643 }
4644 
4645 /*
4646  * Clear any active message state.
4647  */
4648 static void
4649 ahd_clear_msg_state(struct ahd_softc *ahd)
4650 {
4651 	ahd_mode_state saved_modes;
4652 
4653 	saved_modes = ahd_save_modes(ahd);
4654 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4655 	ahd->send_msg_perror = 0;
4656 	ahd->msg_flags = MSG_FLAG_NONE;
4657 	ahd->msgout_len = 0;
4658 	ahd->msgin_index = 0;
4659 	ahd->msg_type = MSG_TYPE_NONE;
4660 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4661 		/*
4662 		 * The target didn't care to respond to our
4663 		 * message request, so clear ATN.
4664 		 */
4665 		ahd_outb(ahd, CLRSINT1, CLRATNO);
4666 	}
4667 	ahd_outb(ahd, MSG_OUT, NOP);
4668 	ahd_outb(ahd, SEQ_FLAGS2,
4669 		 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4670 	ahd_restore_modes(ahd, saved_modes);
4671 }
4672 
4673 /*
4674  * Manual message loop handler.
4675  */
4676 static void
4677 ahd_handle_message_phase(struct ahd_softc *ahd)
4678 {
4679 	struct	ahd_devinfo devinfo;
4680 	u_int	bus_phase;
4681 	int	end_session;
4682 
4683 	ahd_fetch_devinfo(ahd, &devinfo);
4684 	end_session = FALSE;
4685 	bus_phase = ahd_inb(ahd, LASTPHASE);
4686 
4687 	if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4688 		printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4689 		ahd_outb(ahd, LQCTL2, LQIRETRY);
4690 	}
4691 reswitch:
4692 	switch (ahd->msg_type) {
4693 	case MSG_TYPE_INITIATOR_MSGOUT:
4694 	{
4695 		int lastbyte;
4696 		int phasemis;
4697 		int msgdone;
4698 
4699 		if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4700 			panic("HOST_MSG_LOOP interrupt with no active message");
4701 
4702 #ifdef AHD_DEBUG
4703 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4704 			ahd_print_devinfo(ahd, &devinfo);
4705 			printk("INITIATOR_MSG_OUT");
4706 		}
4707 #endif
4708 		phasemis = bus_phase != P_MESGOUT;
4709 		if (phasemis) {
4710 #ifdef AHD_DEBUG
4711 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4712 				printk(" PHASEMIS %s\n",
4713 				       ahd_lookup_phase_entry(bus_phase)
4714 							     ->phasemsg);
4715 			}
4716 #endif
4717 			if (bus_phase == P_MESGIN) {
4718 				/*
4719 				 * Change gears and see if
4720 				 * this messages is of interest to
4721 				 * us or should be passed back to
4722 				 * the sequencer.
4723 				 */
4724 				ahd_outb(ahd, CLRSINT1, CLRATNO);
4725 				ahd->send_msg_perror = 0;
4726 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4727 				ahd->msgin_index = 0;
4728 				goto reswitch;
4729 			}
4730 			end_session = TRUE;
4731 			break;
4732 		}
4733 
4734 		if (ahd->send_msg_perror) {
4735 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4736 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4737 #ifdef AHD_DEBUG
4738 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4739 				printk(" byte 0x%x\n", ahd->send_msg_perror);
4740 #endif
4741 			/*
4742 			 * If we are notifying the target of a CRC error
4743 			 * during packetized operations, the target is
4744 			 * within its rights to acknowledge our message
4745 			 * with a busfree.
4746 			 */
4747 			if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4748 			 && ahd->send_msg_perror == INITIATOR_ERROR)
4749 				ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4750 
4751 			ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4752 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4753 			break;
4754 		}
4755 
4756 		msgdone	= ahd->msgout_index == ahd->msgout_len;
4757 		if (msgdone) {
4758 			/*
4759 			 * The target has requested a retry.
4760 			 * Re-assert ATN, reset our message index to
4761 			 * 0, and try again.
4762 			 */
4763 			ahd->msgout_index = 0;
4764 			ahd_assert_atn(ahd);
4765 		}
4766 
4767 		lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4768 		if (lastbyte) {
4769 			/* Last byte is signified by dropping ATN */
4770 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4771 		}
4772 
4773 		/*
4774 		 * Clear our interrupt status and present
4775 		 * the next byte on the bus.
4776 		 */
4777 		ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4778 #ifdef AHD_DEBUG
4779 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4780 			printk(" byte 0x%x\n",
4781 			       ahd->msgout_buf[ahd->msgout_index]);
4782 #endif
4783 		ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4784 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4785 		break;
4786 	}
4787 	case MSG_TYPE_INITIATOR_MSGIN:
4788 	{
4789 		int phasemis;
4790 		int message_done;
4791 
4792 #ifdef AHD_DEBUG
4793 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4794 			ahd_print_devinfo(ahd, &devinfo);
4795 			printk("INITIATOR_MSG_IN");
4796 		}
4797 #endif
4798 		phasemis = bus_phase != P_MESGIN;
4799 		if (phasemis) {
4800 #ifdef AHD_DEBUG
4801 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4802 				printk(" PHASEMIS %s\n",
4803 				       ahd_lookup_phase_entry(bus_phase)
4804 							     ->phasemsg);
4805 			}
4806 #endif
4807 			ahd->msgin_index = 0;
4808 			if (bus_phase == P_MESGOUT
4809 			 && (ahd->send_msg_perror != 0
4810 			  || (ahd->msgout_len != 0
4811 			   && ahd->msgout_index == 0))) {
4812 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4813 				goto reswitch;
4814 			}
4815 			end_session = TRUE;
4816 			break;
4817 		}
4818 
4819 		/* Pull the byte in without acking it */
4820 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4821 #ifdef AHD_DEBUG
4822 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4823 			printk(" byte 0x%x\n",
4824 			       ahd->msgin_buf[ahd->msgin_index]);
4825 #endif
4826 
4827 		message_done = ahd_parse_msg(ahd, &devinfo);
4828 
4829 		if (message_done) {
4830 			/*
4831 			 * Clear our incoming message buffer in case there
4832 			 * is another message following this one.
4833 			 */
4834 			ahd->msgin_index = 0;
4835 
4836 			/*
4837 			 * If this message illicited a response,
4838 			 * assert ATN so the target takes us to the
4839 			 * message out phase.
4840 			 */
4841 			if (ahd->msgout_len != 0) {
4842 #ifdef AHD_DEBUG
4843 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4844 					ahd_print_devinfo(ahd, &devinfo);
4845 					printk("Asserting ATN for response\n");
4846 				}
4847 #endif
4848 				ahd_assert_atn(ahd);
4849 			}
4850 		} else
4851 			ahd->msgin_index++;
4852 
4853 		if (message_done == MSGLOOP_TERMINATED) {
4854 			end_session = TRUE;
4855 		} else {
4856 			/* Ack the byte */
4857 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4858 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4859 		}
4860 		break;
4861 	}
4862 	case MSG_TYPE_TARGET_MSGIN:
4863 	{
4864 		int msgdone;
4865 		int msgout_request;
4866 
4867 		/*
4868 		 * By default, the message loop will continue.
4869 		 */
4870 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4871 
4872 		if (ahd->msgout_len == 0)
4873 			panic("Target MSGIN with no active message");
4874 
4875 		/*
4876 		 * If we interrupted a mesgout session, the initiator
4877 		 * will not know this until our first REQ.  So, we
4878 		 * only honor mesgout requests after we've sent our
4879 		 * first byte.
4880 		 */
4881 		if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4882 		 && ahd->msgout_index > 0)
4883 			msgout_request = TRUE;
4884 		else
4885 			msgout_request = FALSE;
4886 
4887 		if (msgout_request) {
4888 
4889 			/*
4890 			 * Change gears and see if
4891 			 * this messages is of interest to
4892 			 * us or should be passed back to
4893 			 * the sequencer.
4894 			 */
4895 			ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4896 			ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4897 			ahd->msgin_index = 0;
4898 			/* Dummy read to REQ for first byte */
4899 			ahd_inb(ahd, SCSIDAT);
4900 			ahd_outb(ahd, SXFRCTL0,
4901 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4902 			break;
4903 		}
4904 
4905 		msgdone = ahd->msgout_index == ahd->msgout_len;
4906 		if (msgdone) {
4907 			ahd_outb(ahd, SXFRCTL0,
4908 				 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4909 			end_session = TRUE;
4910 			break;
4911 		}
4912 
4913 		/*
4914 		 * Present the next byte on the bus.
4915 		 */
4916 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4917 		ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4918 		break;
4919 	}
4920 	case MSG_TYPE_TARGET_MSGOUT:
4921 	{
4922 		int lastbyte;
4923 		int msgdone;
4924 
4925 		/*
4926 		 * By default, the message loop will continue.
4927 		 */
4928 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4929 
4930 		/*
4931 		 * The initiator signals that this is
4932 		 * the last byte by dropping ATN.
4933 		 */
4934 		lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4935 
4936 		/*
4937 		 * Read the latched byte, but turn off SPIOEN first
4938 		 * so that we don't inadvertently cause a REQ for the
4939 		 * next byte.
4940 		 */
4941 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4942 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4943 		msgdone = ahd_parse_msg(ahd, &devinfo);
4944 		if (msgdone == MSGLOOP_TERMINATED) {
4945 			/*
4946 			 * The message is *really* done in that it caused
4947 			 * us to go to bus free.  The sequencer has already
4948 			 * been reset at this point, so pull the ejection
4949 			 * handle.
4950 			 */
4951 			return;
4952 		}
4953 
4954 		ahd->msgin_index++;
4955 
4956 		/*
4957 		 * XXX Read spec about initiator dropping ATN too soon
4958 		 *     and use msgdone to detect it.
4959 		 */
4960 		if (msgdone == MSGLOOP_MSGCOMPLETE) {
4961 			ahd->msgin_index = 0;
4962 
4963 			/*
4964 			 * If this message illicited a response, transition
4965 			 * to the Message in phase and send it.
4966 			 */
4967 			if (ahd->msgout_len != 0) {
4968 				ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4969 				ahd_outb(ahd, SXFRCTL0,
4970 					 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4971 				ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4972 				ahd->msgin_index = 0;
4973 				break;
4974 			}
4975 		}
4976 
4977 		if (lastbyte)
4978 			end_session = TRUE;
4979 		else {
4980 			/* Ask for the next byte. */
4981 			ahd_outb(ahd, SXFRCTL0,
4982 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4983 		}
4984 
4985 		break;
4986 	}
4987 	default:
4988 		panic("Unknown REQINIT message type");
4989 	}
4990 
4991 	if (end_session) {
4992 		if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
4993 			printk("%s: Returning to Idle Loop\n",
4994 			       ahd_name(ahd));
4995 			ahd_clear_msg_state(ahd);
4996 
4997 			/*
4998 			 * Perform the equivalent of a clear_target_state.
4999 			 */
5000 			ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5001 			ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5002 			ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5003 		} else {
5004 			ahd_clear_msg_state(ahd);
5005 			ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5006 		}
5007 	}
5008 }
5009 
5010 /*
5011  * See if we sent a particular extended message to the target.
5012  * If "full" is true, return true only if the target saw the full
5013  * message.  If "full" is false, return true if the target saw at
5014  * least the first byte of the message.
5015  */
5016 static int
5017 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5018 {
5019 	int found;
5020 	u_int index;
5021 
5022 	found = FALSE;
5023 	index = 0;
5024 
5025 	while (index < ahd->msgout_len) {
5026 		if (ahd->msgout_buf[index] == EXTENDED_MESSAGE) {
5027 			u_int end_index;
5028 
5029 			end_index = index + 1 + ahd->msgout_buf[index + 1];
5030 			if (ahd->msgout_buf[index+2] == msgval
5031 			 && type == AHDMSG_EXT) {
5032 
5033 				if (full) {
5034 					if (ahd->msgout_index > end_index)
5035 						found = TRUE;
5036 				} else if (ahd->msgout_index > index)
5037 					found = TRUE;
5038 			}
5039 			index = end_index;
5040 		} else if (ahd->msgout_buf[index] >= SIMPLE_QUEUE_TAG
5041 			&& ahd->msgout_buf[index] <= IGNORE_WIDE_RESIDUE) {
5042 
5043 			/* Skip tag type and tag id or residue param*/
5044 			index += 2;
5045 		} else {
5046 			/* Single byte message */
5047 			if (type == AHDMSG_1B
5048 			 && ahd->msgout_index > index
5049 			 && (ahd->msgout_buf[index] == msgval
5050 			  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5051 			   && msgval == MSG_IDENTIFYFLAG)))
5052 				found = TRUE;
5053 			index++;
5054 		}
5055 
5056 		if (found)
5057 			break;
5058 	}
5059 	return (found);
5060 }
5061 
5062 /*
5063  * Wait for a complete incoming message, parse it, and respond accordingly.
5064  */
5065 static int
5066 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5067 {
5068 	struct	ahd_initiator_tinfo *tinfo;
5069 	struct	ahd_tmode_tstate *tstate;
5070 	int	reject;
5071 	int	done;
5072 	int	response;
5073 
5074 	done = MSGLOOP_IN_PROG;
5075 	response = FALSE;
5076 	reject = FALSE;
5077 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5078 				    devinfo->target, &tstate);
5079 
5080 	/*
5081 	 * Parse as much of the message as is available,
5082 	 * rejecting it if we don't support it.  When
5083 	 * the entire message is available and has been
5084 	 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5085 	 * that we have parsed an entire message.
5086 	 *
5087 	 * In the case of extended messages, we accept the length
5088 	 * byte outright and perform more checking once we know the
5089 	 * extended message type.
5090 	 */
5091 	switch (ahd->msgin_buf[0]) {
5092 	case DISCONNECT:
5093 	case SAVE_POINTERS:
5094 	case COMMAND_COMPLETE:
5095 	case RESTORE_POINTERS:
5096 	case IGNORE_WIDE_RESIDUE:
5097 		/*
5098 		 * End our message loop as these are messages
5099 		 * the sequencer handles on its own.
5100 		 */
5101 		done = MSGLOOP_TERMINATED;
5102 		break;
5103 	case MESSAGE_REJECT:
5104 		response = ahd_handle_msg_reject(ahd, devinfo);
5105 		fallthrough;
5106 	case NOP:
5107 		done = MSGLOOP_MSGCOMPLETE;
5108 		break;
5109 	case EXTENDED_MESSAGE:
5110 	{
5111 		/* Wait for enough of the message to begin validation */
5112 		if (ahd->msgin_index < 2)
5113 			break;
5114 		switch (ahd->msgin_buf[2]) {
5115 		case EXTENDED_SDTR:
5116 		{
5117 			u_int	 period;
5118 			u_int	 ppr_options;
5119 			u_int	 offset;
5120 			u_int	 saved_offset;
5121 
5122 			if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5123 				reject = TRUE;
5124 				break;
5125 			}
5126 
5127 			/*
5128 			 * Wait until we have both args before validating
5129 			 * and acting on this message.
5130 			 *
5131 			 * Add one to MSG_EXT_SDTR_LEN to account for
5132 			 * the extended message preamble.
5133 			 */
5134 			if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5135 				break;
5136 
5137 			period = ahd->msgin_buf[3];
5138 			ppr_options = 0;
5139 			saved_offset = offset = ahd->msgin_buf[4];
5140 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5141 						&ppr_options, devinfo->role);
5142 			ahd_validate_offset(ahd, tinfo, period, &offset,
5143 					    tinfo->curr.width, devinfo->role);
5144 			if (bootverbose) {
5145 				printk("(%s:%c:%d:%d): Received "
5146 				       "SDTR period %x, offset %x\n\t"
5147 				       "Filtered to period %x, offset %x\n",
5148 				       ahd_name(ahd), devinfo->channel,
5149 				       devinfo->target, devinfo->lun,
5150 				       ahd->msgin_buf[3], saved_offset,
5151 				       period, offset);
5152 			}
5153 			ahd_set_syncrate(ahd, devinfo, period,
5154 					 offset, ppr_options,
5155 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5156 					 /*paused*/TRUE);
5157 
5158 			/*
5159 			 * See if we initiated Sync Negotiation
5160 			 * and didn't have to fall down to async
5161 			 * transfers.
5162 			 */
5163 			if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, TRUE)) {
5164 				/* We started it */
5165 				if (saved_offset != offset) {
5166 					/* Went too low - force async */
5167 					reject = TRUE;
5168 				}
5169 			} else {
5170 				/*
5171 				 * Send our own SDTR in reply
5172 				 */
5173 				if (bootverbose
5174 				 && devinfo->role == ROLE_INITIATOR) {
5175 					printk("(%s:%c:%d:%d): Target "
5176 					       "Initiated SDTR\n",
5177 					       ahd_name(ahd), devinfo->channel,
5178 					       devinfo->target, devinfo->lun);
5179 				}
5180 				ahd->msgout_index = 0;
5181 				ahd->msgout_len = 0;
5182 				ahd_construct_sdtr(ahd, devinfo,
5183 						   period, offset);
5184 				ahd->msgout_index = 0;
5185 				response = TRUE;
5186 			}
5187 			done = MSGLOOP_MSGCOMPLETE;
5188 			break;
5189 		}
5190 		case EXTENDED_WDTR:
5191 		{
5192 			u_int bus_width;
5193 			u_int saved_width;
5194 			u_int sending_reply;
5195 
5196 			sending_reply = FALSE;
5197 			if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5198 				reject = TRUE;
5199 				break;
5200 			}
5201 
5202 			/*
5203 			 * Wait until we have our arg before validating
5204 			 * and acting on this message.
5205 			 *
5206 			 * Add one to MSG_EXT_WDTR_LEN to account for
5207 			 * the extended message preamble.
5208 			 */
5209 			if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5210 				break;
5211 
5212 			bus_width = ahd->msgin_buf[3];
5213 			saved_width = bus_width;
5214 			ahd_validate_width(ahd, tinfo, &bus_width,
5215 					   devinfo->role);
5216 			if (bootverbose) {
5217 				printk("(%s:%c:%d:%d): Received WDTR "
5218 				       "%x filtered to %x\n",
5219 				       ahd_name(ahd), devinfo->channel,
5220 				       devinfo->target, devinfo->lun,
5221 				       saved_width, bus_width);
5222 			}
5223 
5224 			if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, TRUE)) {
5225 				/*
5226 				 * Don't send a WDTR back to the
5227 				 * target, since we asked first.
5228 				 * If the width went higher than our
5229 				 * request, reject it.
5230 				 */
5231 				if (saved_width > bus_width) {
5232 					reject = TRUE;
5233 					printk("(%s:%c:%d:%d): requested %dBit "
5234 					       "transfers.  Rejecting...\n",
5235 					       ahd_name(ahd), devinfo->channel,
5236 					       devinfo->target, devinfo->lun,
5237 					       8 * (0x01 << bus_width));
5238 					bus_width = 0;
5239 				}
5240 			} else {
5241 				/*
5242 				 * Send our own WDTR in reply
5243 				 */
5244 				if (bootverbose
5245 				 && devinfo->role == ROLE_INITIATOR) {
5246 					printk("(%s:%c:%d:%d): Target "
5247 					       "Initiated WDTR\n",
5248 					       ahd_name(ahd), devinfo->channel,
5249 					       devinfo->target, devinfo->lun);
5250 				}
5251 				ahd->msgout_index = 0;
5252 				ahd->msgout_len = 0;
5253 				ahd_construct_wdtr(ahd, devinfo, bus_width);
5254 				ahd->msgout_index = 0;
5255 				response = TRUE;
5256 				sending_reply = TRUE;
5257 			}
5258 			/*
5259 			 * After a wide message, we are async, but
5260 			 * some devices don't seem to honor this portion
5261 			 * of the spec.  Force a renegotiation of the
5262 			 * sync component of our transfer agreement even
5263 			 * if our goal is async.  By updating our width
5264 			 * after forcing the negotiation, we avoid
5265 			 * renegotiating for width.
5266 			 */
5267 			ahd_update_neg_request(ahd, devinfo, tstate,
5268 					       tinfo, AHD_NEG_ALWAYS);
5269 			ahd_set_width(ahd, devinfo, bus_width,
5270 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5271 				      /*paused*/TRUE);
5272 			if (sending_reply == FALSE && reject == FALSE) {
5273 
5274 				/*
5275 				 * We will always have an SDTR to send.
5276 				 */
5277 				ahd->msgout_index = 0;
5278 				ahd->msgout_len = 0;
5279 				ahd_build_transfer_msg(ahd, devinfo);
5280 				ahd->msgout_index = 0;
5281 				response = TRUE;
5282 			}
5283 			done = MSGLOOP_MSGCOMPLETE;
5284 			break;
5285 		}
5286 		case EXTENDED_PPR:
5287 		{
5288 			u_int	period;
5289 			u_int	offset;
5290 			u_int	bus_width;
5291 			u_int	ppr_options;
5292 			u_int	saved_width;
5293 			u_int	saved_offset;
5294 			u_int	saved_ppr_options;
5295 
5296 			if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5297 				reject = TRUE;
5298 				break;
5299 			}
5300 
5301 			/*
5302 			 * Wait until we have all args before validating
5303 			 * and acting on this message.
5304 			 *
5305 			 * Add one to MSG_EXT_PPR_LEN to account for
5306 			 * the extended message preamble.
5307 			 */
5308 			if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5309 				break;
5310 
5311 			period = ahd->msgin_buf[3];
5312 			offset = ahd->msgin_buf[5];
5313 			bus_width = ahd->msgin_buf[6];
5314 			saved_width = bus_width;
5315 			ppr_options = ahd->msgin_buf[7];
5316 			/*
5317 			 * According to the spec, a DT only
5318 			 * period factor with no DT option
5319 			 * set implies async.
5320 			 */
5321 			if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5322 			 && period <= 9)
5323 				offset = 0;
5324 			saved_ppr_options = ppr_options;
5325 			saved_offset = offset;
5326 
5327 			/*
5328 			 * Transfer options are only available if we
5329 			 * are negotiating wide.
5330 			 */
5331 			if (bus_width == 0)
5332 				ppr_options &= MSG_EXT_PPR_QAS_REQ;
5333 
5334 			ahd_validate_width(ahd, tinfo, &bus_width,
5335 					   devinfo->role);
5336 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5337 						&ppr_options, devinfo->role);
5338 			ahd_validate_offset(ahd, tinfo, period, &offset,
5339 					    bus_width, devinfo->role);
5340 
5341 			if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, TRUE)) {
5342 				/*
5343 				 * If we are unable to do any of the
5344 				 * requested options (we went too low),
5345 				 * then we'll have to reject the message.
5346 				 */
5347 				if (saved_width > bus_width
5348 				 || saved_offset != offset
5349 				 || saved_ppr_options != ppr_options) {
5350 					reject = TRUE;
5351 					period = 0;
5352 					offset = 0;
5353 					bus_width = 0;
5354 					ppr_options = 0;
5355 				}
5356 			} else {
5357 				if (devinfo->role != ROLE_TARGET)
5358 					printk("(%s:%c:%d:%d): Target "
5359 					       "Initiated PPR\n",
5360 					       ahd_name(ahd), devinfo->channel,
5361 					       devinfo->target, devinfo->lun);
5362 				else
5363 					printk("(%s:%c:%d:%d): Initiator "
5364 					       "Initiated PPR\n",
5365 					       ahd_name(ahd), devinfo->channel,
5366 					       devinfo->target, devinfo->lun);
5367 				ahd->msgout_index = 0;
5368 				ahd->msgout_len = 0;
5369 				ahd_construct_ppr(ahd, devinfo, period, offset,
5370 						  bus_width, ppr_options);
5371 				ahd->msgout_index = 0;
5372 				response = TRUE;
5373 			}
5374 			if (bootverbose) {
5375 				printk("(%s:%c:%d:%d): Received PPR width %x, "
5376 				       "period %x, offset %x,options %x\n"
5377 				       "\tFiltered to width %x, period %x, "
5378 				       "offset %x, options %x\n",
5379 				       ahd_name(ahd), devinfo->channel,
5380 				       devinfo->target, devinfo->lun,
5381 				       saved_width, ahd->msgin_buf[3],
5382 				       saved_offset, saved_ppr_options,
5383 				       bus_width, period, offset, ppr_options);
5384 			}
5385 			ahd_set_width(ahd, devinfo, bus_width,
5386 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5387 				      /*paused*/TRUE);
5388 			ahd_set_syncrate(ahd, devinfo, period,
5389 					 offset, ppr_options,
5390 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5391 					 /*paused*/TRUE);
5392 
5393 			done = MSGLOOP_MSGCOMPLETE;
5394 			break;
5395 		}
5396 		default:
5397 			/* Unknown extended message.  Reject it. */
5398 			reject = TRUE;
5399 			break;
5400 		}
5401 		break;
5402 	}
5403 #ifdef AHD_TARGET_MODE
5404 	case TARGET_RESET:
5405 		ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5406 				    CAM_BDR_SENT,
5407 				    "Bus Device Reset Received",
5408 				    /*verbose_level*/0);
5409 		ahd_restart(ahd);
5410 		done = MSGLOOP_TERMINATED;
5411 		break;
5412 	case ABORT_TASK:
5413 	case ABORT_TASK_SET:
5414 	case CLEAR_TASK_SET:
5415 	{
5416 		int tag;
5417 
5418 		/* Target mode messages */
5419 		if (devinfo->role != ROLE_TARGET) {
5420 			reject = TRUE;
5421 			break;
5422 		}
5423 		tag = SCB_LIST_NULL;
5424 		if (ahd->msgin_buf[0] == ABORT_TASK)
5425 			tag = ahd_inb(ahd, INITIATOR_TAG);
5426 		ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5427 			       devinfo->lun, tag, ROLE_TARGET,
5428 			       CAM_REQ_ABORTED);
5429 
5430 		tstate = ahd->enabled_targets[devinfo->our_scsiid];
5431 		if (tstate != NULL) {
5432 			struct ahd_tmode_lstate* lstate;
5433 
5434 			lstate = tstate->enabled_luns[devinfo->lun];
5435 			if (lstate != NULL) {
5436 				ahd_queue_lstate_event(ahd, lstate,
5437 						       devinfo->our_scsiid,
5438 						       ahd->msgin_buf[0],
5439 						       /*arg*/tag);
5440 				ahd_send_lstate_events(ahd, lstate);
5441 			}
5442 		}
5443 		ahd_restart(ahd);
5444 		done = MSGLOOP_TERMINATED;
5445 		break;
5446 	}
5447 #endif
5448 	case QAS_REQUEST:
5449 #ifdef AHD_DEBUG
5450 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5451 			printk("%s: QAS request.  SCSISIGI == 0x%x\n",
5452 			       ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5453 #endif
5454 		ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5455 		fallthrough;
5456 	case TERMINATE_IO_PROC:
5457 	default:
5458 		reject = TRUE;
5459 		break;
5460 	}
5461 
5462 	if (reject) {
5463 		/*
5464 		 * Setup to reject the message.
5465 		 */
5466 		ahd->msgout_index = 0;
5467 		ahd->msgout_len = 1;
5468 		ahd->msgout_buf[0] = MESSAGE_REJECT;
5469 		done = MSGLOOP_MSGCOMPLETE;
5470 		response = TRUE;
5471 	}
5472 
5473 	if (done != MSGLOOP_IN_PROG && !response)
5474 		/* Clear the outgoing message buffer */
5475 		ahd->msgout_len = 0;
5476 
5477 	return (done);
5478 }
5479 
5480 /*
5481  * Process a message reject message.
5482  */
5483 static int
5484 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5485 {
5486 	/*
5487 	 * What we care about here is if we had an
5488 	 * outstanding SDTR or WDTR message for this
5489 	 * target.  If we did, this is a signal that
5490 	 * the target is refusing negotiation.
5491 	 */
5492 	struct scb *scb;
5493 	struct ahd_initiator_tinfo *tinfo;
5494 	struct ahd_tmode_tstate *tstate;
5495 	u_int scb_index;
5496 	u_int last_msg;
5497 	int   response = 0;
5498 
5499 	scb_index = ahd_get_scbptr(ahd);
5500 	scb = ahd_lookup_scb(ahd, scb_index);
5501 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5502 				    devinfo->our_scsiid,
5503 				    devinfo->target, &tstate);
5504 	/* Might be necessary */
5505 	last_msg = ahd_inb(ahd, LAST_MSG);
5506 
5507 	if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/FALSE)) {
5508 		if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_PPR, /*full*/TRUE)
5509 		 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5510 			/*
5511 			 * Target may not like our SPI-4 PPR Options.
5512 			 * Attempt to negotiate 80MHz which will turn
5513 			 * off these options.
5514 			 */
5515 			if (bootverbose) {
5516 				printk("(%s:%c:%d:%d): PPR Rejected. "
5517 				       "Trying simple U160 PPR\n",
5518 				       ahd_name(ahd), devinfo->channel,
5519 				       devinfo->target, devinfo->lun);
5520 			}
5521 			tinfo->goal.period = AHD_SYNCRATE_DT;
5522 			tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5523 						|  MSG_EXT_PPR_QAS_REQ
5524 						|  MSG_EXT_PPR_DT_REQ;
5525 		} else {
5526 			/*
5527 			 * Target does not support the PPR message.
5528 			 * Attempt to negotiate SPI-2 style.
5529 			 */
5530 			if (bootverbose) {
5531 				printk("(%s:%c:%d:%d): PPR Rejected. "
5532 				       "Trying WDTR/SDTR\n",
5533 				       ahd_name(ahd), devinfo->channel,
5534 				       devinfo->target, devinfo->lun);
5535 			}
5536 			tinfo->goal.ppr_options = 0;
5537 			tinfo->curr.transport_version = 2;
5538 			tinfo->goal.transport_version = 2;
5539 		}
5540 		ahd->msgout_index = 0;
5541 		ahd->msgout_len = 0;
5542 		ahd_build_transfer_msg(ahd, devinfo);
5543 		ahd->msgout_index = 0;
5544 		response = 1;
5545 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_WDTR, /*full*/FALSE)) {
5546 
5547 		/* note 8bit xfers */
5548 		printk("(%s:%c:%d:%d): refuses WIDE negotiation.  Using "
5549 		       "8bit transfers\n", ahd_name(ahd),
5550 		       devinfo->channel, devinfo->target, devinfo->lun);
5551 		ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5552 			      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5553 			      /*paused*/TRUE);
5554 		/*
5555 		 * No need to clear the sync rate.  If the target
5556 		 * did not accept the command, our syncrate is
5557 		 * unaffected.  If the target started the negotiation,
5558 		 * but rejected our response, we already cleared the
5559 		 * sync rate before sending our WDTR.
5560 		 */
5561 		if (tinfo->goal.offset != tinfo->curr.offset) {
5562 
5563 			/* Start the sync negotiation */
5564 			ahd->msgout_index = 0;
5565 			ahd->msgout_len = 0;
5566 			ahd_build_transfer_msg(ahd, devinfo);
5567 			ahd->msgout_index = 0;
5568 			response = 1;
5569 		}
5570 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, EXTENDED_SDTR, /*full*/FALSE)) {
5571 		/* note asynch xfers and clear flag */
5572 		ahd_set_syncrate(ahd, devinfo, /*period*/0,
5573 				 /*offset*/0, /*ppr_options*/0,
5574 				 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5575 				 /*paused*/TRUE);
5576 		printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5577 		       "Using asynchronous transfers\n",
5578 		       ahd_name(ahd), devinfo->channel,
5579 		       devinfo->target, devinfo->lun);
5580 	} else if ((scb->hscb->control & SIMPLE_QUEUE_TAG) != 0) {
5581 		int tag_type;
5582 		int mask;
5583 
5584 		tag_type = (scb->hscb->control & SIMPLE_QUEUE_TAG);
5585 
5586 		if (tag_type == SIMPLE_QUEUE_TAG) {
5587 			printk("(%s:%c:%d:%d): refuses tagged commands.  "
5588 			       "Performing non-tagged I/O\n", ahd_name(ahd),
5589 			       devinfo->channel, devinfo->target, devinfo->lun);
5590 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5591 			mask = ~0x23;
5592 		} else {
5593 			printk("(%s:%c:%d:%d): refuses %s tagged commands.  "
5594 			       "Performing simple queue tagged I/O only\n",
5595 			       ahd_name(ahd), devinfo->channel, devinfo->target,
5596 			       devinfo->lun, tag_type == ORDERED_QUEUE_TAG
5597 			       ? "ordered" : "head of queue");
5598 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5599 			mask = ~0x03;
5600 		}
5601 
5602 		/*
5603 		 * Resend the identify for this CCB as the target
5604 		 * may believe that the selection is invalid otherwise.
5605 		 */
5606 		ahd_outb(ahd, SCB_CONTROL,
5607 			 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5608 		scb->hscb->control &= mask;
5609 		ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5610 					/*type*/SIMPLE_QUEUE_TAG);
5611 		ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5612 		ahd_assert_atn(ahd);
5613 		ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5614 			     SCB_GET_TAG(scb));
5615 
5616 		/*
5617 		 * Requeue all tagged commands for this target
5618 		 * currently in our possession so they can be
5619 		 * converted to untagged commands.
5620 		 */
5621 		ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5622 				   SCB_GET_CHANNEL(ahd, scb),
5623 				   SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5624 				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
5625 				   SEARCH_COMPLETE);
5626 	} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5627 		/*
5628 		 * Most likely the device believes that we had
5629 		 * previously negotiated packetized.
5630 		 */
5631 		ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5632 			       |  MSG_FLAG_IU_REQ_CHANGED;
5633 
5634 		ahd_force_renegotiation(ahd, devinfo);
5635 		ahd->msgout_index = 0;
5636 		ahd->msgout_len = 0;
5637 		ahd_build_transfer_msg(ahd, devinfo);
5638 		ahd->msgout_index = 0;
5639 		response = 1;
5640 	} else {
5641 		/*
5642 		 * Otherwise, we ignore it.
5643 		 */
5644 		printk("%s:%c:%d: Message reject for %x -- ignored\n",
5645 		       ahd_name(ahd), devinfo->channel, devinfo->target,
5646 		       last_msg);
5647 	}
5648 	return (response);
5649 }
5650 
5651 /*
5652  * Process an ingnore wide residue message.
5653  */
5654 static void
5655 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5656 {
5657 	u_int scb_index;
5658 	struct scb *scb;
5659 
5660 	scb_index = ahd_get_scbptr(ahd);
5661 	scb = ahd_lookup_scb(ahd, scb_index);
5662 	/*
5663 	 * XXX Actually check data direction in the sequencer?
5664 	 * Perhaps add datadir to some spare bits in the hscb?
5665 	 */
5666 	if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5667 	 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5668 		/*
5669 		 * Ignore the message if we haven't
5670 		 * seen an appropriate data phase yet.
5671 		 */
5672 	} else {
5673 		/*
5674 		 * If the residual occurred on the last
5675 		 * transfer and the transfer request was
5676 		 * expected to end on an odd count, do
5677 		 * nothing.  Otherwise, subtract a byte
5678 		 * and update the residual count accordingly.
5679 		 */
5680 		uint32_t sgptr;
5681 
5682 		sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5683 		if ((sgptr & SG_LIST_NULL) != 0
5684 		 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5685 		     & SCB_XFERLEN_ODD) != 0) {
5686 			/*
5687 			 * If the residual occurred on the last
5688 			 * transfer and the transfer request was
5689 			 * expected to end on an odd count, do
5690 			 * nothing.
5691 			 */
5692 		} else {
5693 			uint32_t data_cnt;
5694 			uint64_t data_addr;
5695 			uint32_t sglen;
5696 
5697 			/* Pull in the rest of the sgptr */
5698 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5699 			data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5700 			if ((sgptr & SG_LIST_NULL) != 0) {
5701 				/*
5702 				 * The residual data count is not updated
5703 				 * for the command run to completion case.
5704 				 * Explicitly zero the count.
5705 				 */
5706 				data_cnt &= ~AHD_SG_LEN_MASK;
5707 			}
5708 			data_addr = ahd_inq(ahd, SHADDR);
5709 			data_cnt += 1;
5710 			data_addr -= 1;
5711 			sgptr &= SG_PTR_MASK;
5712 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5713 				struct ahd_dma64_seg *sg;
5714 
5715 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5716 
5717 				/*
5718 				 * The residual sg ptr points to the next S/G
5719 				 * to load so we must go back one.
5720 				 */
5721 				sg--;
5722 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5723 				if (sg != scb->sg_list
5724 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5725 
5726 					sg--;
5727 					sglen = ahd_le32toh(sg->len);
5728 					/*
5729 					 * Preserve High Address and SG_LIST
5730 					 * bits while setting the count to 1.
5731 					 */
5732 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5733 					data_addr = ahd_le64toh(sg->addr)
5734 						  + (sglen & AHD_SG_LEN_MASK)
5735 						  - 1;
5736 
5737 					/*
5738 					 * Increment sg so it points to the
5739 					 * "next" sg.
5740 					 */
5741 					sg++;
5742 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5743 								   sg);
5744 				}
5745 			} else {
5746 				struct ahd_dma_seg *sg;
5747 
5748 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5749 
5750 				/*
5751 				 * The residual sg ptr points to the next S/G
5752 				 * to load so we must go back one.
5753 				 */
5754 				sg--;
5755 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5756 				if (sg != scb->sg_list
5757 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5758 
5759 					sg--;
5760 					sglen = ahd_le32toh(sg->len);
5761 					/*
5762 					 * Preserve High Address and SG_LIST
5763 					 * bits while setting the count to 1.
5764 					 */
5765 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5766 					data_addr = ahd_le32toh(sg->addr)
5767 						  + (sglen & AHD_SG_LEN_MASK)
5768 						  - 1;
5769 
5770 					/*
5771 					 * Increment sg so it points to the
5772 					 * "next" sg.
5773 					 */
5774 					sg++;
5775 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5776 								  sg);
5777 				}
5778 			}
5779 			/*
5780 			 * Toggle the "oddness" of the transfer length
5781 			 * to handle this mid-transfer ignore wide
5782 			 * residue.  This ensures that the oddness is
5783 			 * correct for subsequent data transfers.
5784 			 */
5785 			ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5786 			    ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5787 			    ^ SCB_XFERLEN_ODD);
5788 
5789 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5790 			ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5791 			/*
5792 			 * The FIFO's pointers will be updated if/when the
5793 			 * sequencer re-enters a data phase.
5794 			 */
5795 		}
5796 	}
5797 }
5798 
5799 
5800 /*
5801  * Reinitialize the data pointers for the active transfer
5802  * based on its current residual.
5803  */
5804 static void
5805 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5806 {
5807 	struct		 scb *scb;
5808 	ahd_mode_state	 saved_modes;
5809 	u_int		 scb_index;
5810 	u_int		 wait;
5811 	uint32_t	 sgptr;
5812 	uint32_t	 resid;
5813 	uint64_t	 dataptr;
5814 
5815 	AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5816 			 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5817 
5818 	scb_index = ahd_get_scbptr(ahd);
5819 	scb = ahd_lookup_scb(ahd, scb_index);
5820 
5821 	/*
5822 	 * Release and reacquire the FIFO so we
5823 	 * have a clean slate.
5824 	 */
5825 	ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5826 	wait = 1000;
5827 	while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5828 		ahd_delay(100);
5829 	if (wait == 0) {
5830 		ahd_print_path(ahd, scb);
5831 		printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5832 		ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5833 	}
5834 	saved_modes = ahd_save_modes(ahd);
5835 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5836 	ahd_outb(ahd, DFFSTAT,
5837 		 ahd_inb(ahd, DFFSTAT)
5838 		| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5839 
5840 	/*
5841 	 * Determine initial values for data_addr and data_cnt
5842 	 * for resuming the data phase.
5843 	 */
5844 	sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5845 	sgptr &= SG_PTR_MASK;
5846 
5847 	resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5848 	      | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5849 	      | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5850 
5851 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5852 		struct ahd_dma64_seg *sg;
5853 
5854 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5855 
5856 		/* The residual sg_ptr always points to the next sg */
5857 		sg--;
5858 
5859 		dataptr = ahd_le64toh(sg->addr)
5860 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5861 			- resid;
5862 		ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5863 	} else {
5864 		struct	 ahd_dma_seg *sg;
5865 
5866 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5867 
5868 		/* The residual sg_ptr always points to the next sg */
5869 		sg--;
5870 
5871 		dataptr = ahd_le32toh(sg->addr)
5872 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5873 			- resid;
5874 		ahd_outb(ahd, HADDR + 4,
5875 			 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5876 	}
5877 	ahd_outl(ahd, HADDR, dataptr);
5878 	ahd_outb(ahd, HCNT + 2, resid >> 16);
5879 	ahd_outb(ahd, HCNT + 1, resid >> 8);
5880 	ahd_outb(ahd, HCNT, resid);
5881 }
5882 
5883 /*
5884  * Handle the effects of issuing a bus device reset message.
5885  */
5886 static void
5887 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5888 		    u_int lun, cam_status status, char *message,
5889 		    int verbose_level)
5890 {
5891 #ifdef AHD_TARGET_MODE
5892 	struct ahd_tmode_tstate* tstate;
5893 #endif
5894 	int found;
5895 
5896 	found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5897 			       lun, SCB_LIST_NULL, devinfo->role,
5898 			       status);
5899 
5900 #ifdef AHD_TARGET_MODE
5901 	/*
5902 	 * Send an immediate notify ccb to all target mord peripheral
5903 	 * drivers affected by this action.
5904 	 */
5905 	tstate = ahd->enabled_targets[devinfo->our_scsiid];
5906 	if (tstate != NULL) {
5907 		u_int cur_lun;
5908 		u_int max_lun;
5909 
5910 		if (lun != CAM_LUN_WILDCARD) {
5911 			cur_lun = 0;
5912 			max_lun = AHD_NUM_LUNS - 1;
5913 		} else {
5914 			cur_lun = lun;
5915 			max_lun = lun;
5916 		}
5917 		for (;cur_lun <= max_lun; cur_lun++) {
5918 			struct ahd_tmode_lstate* lstate;
5919 
5920 			lstate = tstate->enabled_luns[cur_lun];
5921 			if (lstate == NULL)
5922 				continue;
5923 
5924 			ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5925 					       TARGET_RESET, /*arg*/0);
5926 			ahd_send_lstate_events(ahd, lstate);
5927 		}
5928 	}
5929 #endif
5930 
5931 	/*
5932 	 * Go back to async/narrow transfers and renegotiate.
5933 	 */
5934 	ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5935 		      AHD_TRANS_CUR, /*paused*/TRUE);
5936 	ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5937 			 /*ppr_options*/0, AHD_TRANS_CUR,
5938 			 /*paused*/TRUE);
5939 
5940 	if (status != CAM_SEL_TIMEOUT)
5941 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
5942 			       CAM_LUN_WILDCARD, AC_SENT_BDR);
5943 
5944 	if (message != NULL && bootverbose)
5945 		printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5946 		       message, devinfo->channel, devinfo->target, found);
5947 }
5948 
5949 #ifdef AHD_TARGET_MODE
5950 static void
5951 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5952 		       struct scb *scb)
5953 {
5954 
5955 	/*
5956 	 * To facilitate adding multiple messages together,
5957 	 * each routine should increment the index and len
5958 	 * variables instead of setting them explicitly.
5959 	 */
5960 	ahd->msgout_index = 0;
5961 	ahd->msgout_len = 0;
5962 
5963 	if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5964 		ahd_build_transfer_msg(ahd, devinfo);
5965 	else
5966 		panic("ahd_intr: AWAITING target message with no message");
5967 
5968 	ahd->msgout_index = 0;
5969 	ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5970 }
5971 #endif
5972 /**************************** Initialization **********************************/
5973 static u_int
5974 ahd_sglist_size(struct ahd_softc *ahd)
5975 {
5976 	bus_size_t list_size;
5977 
5978 	list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5979 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5980 		list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5981 	return (list_size);
5982 }
5983 
5984 /*
5985  * Calculate the optimum S/G List allocation size.  S/G elements used
5986  * for a given transaction must be physically contiguous.  Assume the
5987  * OS will allocate full pages to us, so it doesn't make sense to request
5988  * less than a page.
5989  */
5990 static u_int
5991 ahd_sglist_allocsize(struct ahd_softc *ahd)
5992 {
5993 	bus_size_t sg_list_increment;
5994 	bus_size_t sg_list_size;
5995 	bus_size_t max_list_size;
5996 	bus_size_t best_list_size;
5997 
5998 	/* Start out with the minimum required for AHD_NSEG. */
5999 	sg_list_increment = ahd_sglist_size(ahd);
6000 	sg_list_size = sg_list_increment;
6001 
6002 	/* Get us as close as possible to a page in size. */
6003 	while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6004 		sg_list_size += sg_list_increment;
6005 
6006 	/*
6007 	 * Try to reduce the amount of wastage by allocating
6008 	 * multiple pages.
6009 	 */
6010 	best_list_size = sg_list_size;
6011 	max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6012 	if (max_list_size < 4 * PAGE_SIZE)
6013 		max_list_size = 4 * PAGE_SIZE;
6014 	if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6015 		max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6016 	while ((sg_list_size + sg_list_increment) <= max_list_size
6017 	   &&  (sg_list_size % PAGE_SIZE) != 0) {
6018 		bus_size_t new_mod;
6019 		bus_size_t best_mod;
6020 
6021 		sg_list_size += sg_list_increment;
6022 		new_mod = sg_list_size % PAGE_SIZE;
6023 		best_mod = best_list_size % PAGE_SIZE;
6024 		if (new_mod > best_mod || new_mod == 0) {
6025 			best_list_size = sg_list_size;
6026 		}
6027 	}
6028 	return (best_list_size);
6029 }
6030 
6031 /*
6032  * Allocate a controller structure for a new device
6033  * and perform initial initializion.
6034  */
6035 struct ahd_softc *
6036 ahd_alloc(void *platform_arg, char *name)
6037 {
6038 	struct  ahd_softc *ahd;
6039 
6040 	ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC);
6041 	if (!ahd) {
6042 		printk("aic7xxx: cannot malloc softc!\n");
6043 		kfree(name);
6044 		return NULL;
6045 	}
6046 
6047 	ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6048 	if (ahd->seep_config == NULL) {
6049 		kfree(ahd);
6050 		kfree(name);
6051 		return (NULL);
6052 	}
6053 	LIST_INIT(&ahd->pending_scbs);
6054 	/* We don't know our unit number until the OSM sets it */
6055 	ahd->name = name;
6056 	ahd->unit = -1;
6057 	ahd->description = NULL;
6058 	ahd->bus_description = NULL;
6059 	ahd->channel = 'A';
6060 	ahd->chip = AHD_NONE;
6061 	ahd->features = AHD_FENONE;
6062 	ahd->bugs = AHD_BUGNONE;
6063 	ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6064 		   | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6065 	timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6066 	ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6067 	ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6068 	ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6069 	ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6070 	ahd->int_coalescing_stop_threshold =
6071 	    AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6072 
6073 #ifdef AHD_DEBUG
6074 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6075 		printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6076 		       ahd_name(ahd), (u_int)sizeof(struct scb),
6077 		       (u_int)sizeof(struct hardware_scb));
6078 	}
6079 #endif
6080 	if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6081 		ahd_free(ahd);
6082 		ahd = NULL;
6083 	}
6084 	return (ahd);
6085 }
6086 
6087 int
6088 ahd_softc_init(struct ahd_softc *ahd)
6089 {
6090 
6091 	ahd->unpause = 0;
6092 	ahd->pause = PAUSE;
6093 	return (0);
6094 }
6095 
6096 void
6097 ahd_set_unit(struct ahd_softc *ahd, int unit)
6098 {
6099 	ahd->unit = unit;
6100 }
6101 
6102 void
6103 ahd_set_name(struct ahd_softc *ahd, char *name)
6104 {
6105 	kfree(ahd->name);
6106 	ahd->name = name;
6107 }
6108 
6109 void
6110 ahd_free(struct ahd_softc *ahd)
6111 {
6112 	int i;
6113 
6114 	switch (ahd->init_level) {
6115 	default:
6116 	case 5:
6117 		ahd_shutdown(ahd);
6118 		fallthrough;
6119 	case 4:
6120 		ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6121 				  ahd->shared_data_map.dmamap);
6122 		fallthrough;
6123 	case 3:
6124 		ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6125 				ahd->shared_data_map.dmamap);
6126 		ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6127 				   ahd->shared_data_map.dmamap);
6128 		fallthrough;
6129 	case 2:
6130 		ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6131 		break;
6132 	case 1:
6133 		break;
6134 	case 0:
6135 		break;
6136 	}
6137 
6138 	ahd_platform_free(ahd);
6139 	ahd_fini_scbdata(ahd);
6140 	for (i = 0; i < AHD_NUM_TARGETS; i++) {
6141 		struct ahd_tmode_tstate *tstate;
6142 
6143 		tstate = ahd->enabled_targets[i];
6144 		if (tstate != NULL) {
6145 #ifdef AHD_TARGET_MODE
6146 			int j;
6147 
6148 			for (j = 0; j < AHD_NUM_LUNS; j++) {
6149 				struct ahd_tmode_lstate *lstate;
6150 
6151 				lstate = tstate->enabled_luns[j];
6152 				if (lstate != NULL) {
6153 					xpt_free_path(lstate->path);
6154 					kfree(lstate);
6155 				}
6156 			}
6157 #endif
6158 			kfree(tstate);
6159 		}
6160 	}
6161 #ifdef AHD_TARGET_MODE
6162 	if (ahd->black_hole != NULL) {
6163 		xpt_free_path(ahd->black_hole->path);
6164 		kfree(ahd->black_hole);
6165 	}
6166 #endif
6167 	kfree(ahd->name);
6168 	kfree(ahd->seep_config);
6169 	kfree(ahd->saved_stack);
6170 	kfree(ahd);
6171 	return;
6172 }
6173 
6174 static void
6175 ahd_shutdown(void *arg)
6176 {
6177 	struct	ahd_softc *ahd;
6178 
6179 	ahd = (struct ahd_softc *)arg;
6180 
6181 	/*
6182 	 * Stop periodic timer callbacks.
6183 	 */
6184 	del_timer_sync(&ahd->stat_timer);
6185 
6186 	/* This will reset most registers to 0, but not all */
6187 	ahd_reset(ahd, /*reinit*/FALSE);
6188 }
6189 
6190 /*
6191  * Reset the controller and record some information about it
6192  * that is only available just after a reset.  If "reinit" is
6193  * non-zero, this reset occurred after initial configuration
6194  * and the caller requests that the chip be fully reinitialized
6195  * to a runable state.  Chip interrupts are *not* enabled after
6196  * a reinitialization.  The caller must enable interrupts via
6197  * ahd_intr_enable().
6198  */
6199 int
6200 ahd_reset(struct ahd_softc *ahd, int reinit)
6201 {
6202 	u_int	 sxfrctl1;
6203 	int	 wait;
6204 	uint32_t cmd;
6205 
6206 	/*
6207 	 * Preserve the value of the SXFRCTL1 register for all channels.
6208 	 * It contains settings that affect termination and we don't want
6209 	 * to disturb the integrity of the bus.
6210 	 */
6211 	ahd_pause(ahd);
6212 	ahd_update_modes(ahd);
6213 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6214 	sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6215 
6216 	cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6217 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6218 		uint32_t mod_cmd;
6219 
6220 		/*
6221 		 * A4 Razor #632
6222 		 * During the assertion of CHIPRST, the chip
6223 		 * does not disable its parity logic prior to
6224 		 * the start of the reset.  This may cause a
6225 		 * parity error to be detected and thus a
6226 		 * spurious SERR or PERR assertion.  Disable
6227 		 * PERR and SERR responses during the CHIPRST.
6228 		 */
6229 		mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6230 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6231 				     mod_cmd, /*bytes*/2);
6232 	}
6233 	ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6234 
6235 	/*
6236 	 * Ensure that the reset has finished.  We delay 1000us
6237 	 * prior to reading the register to make sure the chip
6238 	 * has sufficiently completed its reset to handle register
6239 	 * accesses.
6240 	 */
6241 	wait = 1000;
6242 	do {
6243 		ahd_delay(1000);
6244 	} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6245 
6246 	if (wait == 0) {
6247 		printk("%s: WARNING - Failed chip reset!  "
6248 		       "Trying to initialize anyway.\n", ahd_name(ahd));
6249 	}
6250 	ahd_outb(ahd, HCNTRL, ahd->pause);
6251 
6252 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6253 		/*
6254 		 * Clear any latched PCI error status and restore
6255 		 * previous SERR and PERR response enables.
6256 		 */
6257 		ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6258 				     0xFF, /*bytes*/1);
6259 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6260 				     cmd, /*bytes*/2);
6261 	}
6262 
6263 	/*
6264 	 * Mode should be SCSI after a chip reset, but lets
6265 	 * set it just to be safe.  We touch the MODE_PTR
6266 	 * register directly so as to bypass the lazy update
6267 	 * code in ahd_set_modes().
6268 	 */
6269 	ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6270 	ahd_outb(ahd, MODE_PTR,
6271 		 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6272 
6273 	/*
6274 	 * Restore SXFRCTL1.
6275 	 *
6276 	 * We must always initialize STPWEN to 1 before we
6277 	 * restore the saved values.  STPWEN is initialized
6278 	 * to a tri-state condition which can only be cleared
6279 	 * by turning it on.
6280 	 */
6281 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6282 	ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6283 
6284 	/* Determine chip configuration */
6285 	ahd->features &= ~AHD_WIDE;
6286 	if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6287 		ahd->features |= AHD_WIDE;
6288 
6289 	/*
6290 	 * If a recovery action has forced a chip reset,
6291 	 * re-initialize the chip to our liking.
6292 	 */
6293 	if (reinit != 0)
6294 		ahd_chip_init(ahd);
6295 
6296 	return (0);
6297 }
6298 
6299 /*
6300  * Determine the number of SCBs available on the controller
6301  */
6302 static int
6303 ahd_probe_scbs(struct ahd_softc *ahd) {
6304 	int i;
6305 
6306 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6307 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6308 	for (i = 0; i < AHD_SCB_MAX; i++) {
6309 		int j;
6310 
6311 		ahd_set_scbptr(ahd, i);
6312 		ahd_outw(ahd, SCB_BASE, i);
6313 		for (j = 2; j < 64; j++)
6314 			ahd_outb(ahd, SCB_BASE+j, 0);
6315 		/* Start out life as unallocated (needing an abort) */
6316 		ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6317 		if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6318 			break;
6319 		ahd_set_scbptr(ahd, 0);
6320 		if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6321 			break;
6322 	}
6323 	return (i);
6324 }
6325 
6326 static void
6327 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6328 {
6329 	dma_addr_t *baddr;
6330 
6331 	baddr = (dma_addr_t *)arg;
6332 	*baddr = segs->ds_addr;
6333 }
6334 
6335 static void
6336 ahd_initialize_hscbs(struct ahd_softc *ahd)
6337 {
6338 	int i;
6339 
6340 	for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6341 		ahd_set_scbptr(ahd, i);
6342 
6343 		/* Clear the control byte. */
6344 		ahd_outb(ahd, SCB_CONTROL, 0);
6345 
6346 		/* Set the next pointer */
6347 		ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6348 	}
6349 }
6350 
6351 static int
6352 ahd_init_scbdata(struct ahd_softc *ahd)
6353 {
6354 	struct	scb_data *scb_data;
6355 	int	i;
6356 
6357 	scb_data = &ahd->scb_data;
6358 	TAILQ_INIT(&scb_data->free_scbs);
6359 	for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6360 		LIST_INIT(&scb_data->free_scb_lists[i]);
6361 	LIST_INIT(&scb_data->any_dev_free_scb_list);
6362 	SLIST_INIT(&scb_data->hscb_maps);
6363 	SLIST_INIT(&scb_data->sg_maps);
6364 	SLIST_INIT(&scb_data->sense_maps);
6365 
6366 	/* Determine the number of hardware SCBs and initialize them */
6367 	scb_data->maxhscbs = ahd_probe_scbs(ahd);
6368 	if (scb_data->maxhscbs == 0) {
6369 		printk("%s: No SCB space found\n", ahd_name(ahd));
6370 		return (ENXIO);
6371 	}
6372 
6373 	ahd_initialize_hscbs(ahd);
6374 
6375 	/*
6376 	 * Create our DMA tags.  These tags define the kinds of device
6377 	 * accessible memory allocations and memory mappings we will
6378 	 * need to perform during normal operation.
6379 	 *
6380 	 * Unless we need to further restrict the allocation, we rely
6381 	 * on the restrictions of the parent dmat, hence the common
6382 	 * use of MAXADDR and MAXSIZE.
6383 	 */
6384 
6385 	/* DMA tag for our hardware scb structures */
6386 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6387 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6388 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6389 			       /*highaddr*/BUS_SPACE_MAXADDR,
6390 			       /*filter*/NULL, /*filterarg*/NULL,
6391 			       PAGE_SIZE, /*nsegments*/1,
6392 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6393 			       /*flags*/0, &scb_data->hscb_dmat) != 0) {
6394 		goto error_exit;
6395 	}
6396 
6397 	scb_data->init_level++;
6398 
6399 	/* DMA tag for our S/G structures. */
6400 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6401 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6402 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6403 			       /*highaddr*/BUS_SPACE_MAXADDR,
6404 			       /*filter*/NULL, /*filterarg*/NULL,
6405 			       ahd_sglist_allocsize(ahd), /*nsegments*/1,
6406 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6407 			       /*flags*/0, &scb_data->sg_dmat) != 0) {
6408 		goto error_exit;
6409 	}
6410 #ifdef AHD_DEBUG
6411 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6412 		printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6413 		       ahd_sglist_allocsize(ahd));
6414 #endif
6415 
6416 	scb_data->init_level++;
6417 
6418 	/* DMA tag for our sense buffers.  We allocate in page sized chunks */
6419 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6420 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6421 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6422 			       /*highaddr*/BUS_SPACE_MAXADDR,
6423 			       /*filter*/NULL, /*filterarg*/NULL,
6424 			       PAGE_SIZE, /*nsegments*/1,
6425 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6426 			       /*flags*/0, &scb_data->sense_dmat) != 0) {
6427 		goto error_exit;
6428 	}
6429 
6430 	scb_data->init_level++;
6431 
6432 	/* Perform initial CCB allocation */
6433 	ahd_alloc_scbs(ahd);
6434 
6435 	if (scb_data->numscbs == 0) {
6436 		printk("%s: ahd_init_scbdata - "
6437 		       "Unable to allocate initial scbs\n",
6438 		       ahd_name(ahd));
6439 		goto error_exit;
6440 	}
6441 
6442 	/*
6443 	 * Note that we were successful
6444 	 */
6445 	return (0);
6446 
6447 error_exit:
6448 
6449 	return (ENOMEM);
6450 }
6451 
6452 static struct scb *
6453 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6454 {
6455 	struct scb *scb;
6456 
6457 	/*
6458 	 * Look on the pending list.
6459 	 */
6460 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6461 		if (SCB_GET_TAG(scb) == tag)
6462 			return (scb);
6463 	}
6464 
6465 	/*
6466 	 * Then on all of the collision free lists.
6467 	 */
6468 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6469 		struct scb *list_scb;
6470 
6471 		list_scb = scb;
6472 		do {
6473 			if (SCB_GET_TAG(list_scb) == tag)
6474 				return (list_scb);
6475 			list_scb = LIST_NEXT(list_scb, collision_links);
6476 		} while (list_scb);
6477 	}
6478 
6479 	/*
6480 	 * And finally on the generic free list.
6481 	 */
6482 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6483 		if (SCB_GET_TAG(scb) == tag)
6484 			return (scb);
6485 	}
6486 
6487 	return (NULL);
6488 }
6489 
6490 static void
6491 ahd_fini_scbdata(struct ahd_softc *ahd)
6492 {
6493 	struct scb_data *scb_data;
6494 
6495 	scb_data = &ahd->scb_data;
6496 	if (scb_data == NULL)
6497 		return;
6498 
6499 	switch (scb_data->init_level) {
6500 	default:
6501 	case 7:
6502 	{
6503 		struct map_node *sns_map;
6504 
6505 		while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6506 			SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6507 			ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6508 					  sns_map->dmamap);
6509 			ahd_dmamem_free(ahd, scb_data->sense_dmat,
6510 					sns_map->vaddr, sns_map->dmamap);
6511 			kfree(sns_map);
6512 		}
6513 		ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6514 	}
6515 		fallthrough;
6516 	case 6:
6517 	{
6518 		struct map_node *sg_map;
6519 
6520 		while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6521 			SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6522 			ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6523 					  sg_map->dmamap);
6524 			ahd_dmamem_free(ahd, scb_data->sg_dmat,
6525 					sg_map->vaddr, sg_map->dmamap);
6526 			kfree(sg_map);
6527 		}
6528 		ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6529 	}
6530 		fallthrough;
6531 	case 5:
6532 	{
6533 		struct map_node *hscb_map;
6534 
6535 		while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6536 			SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6537 			ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6538 					  hscb_map->dmamap);
6539 			ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6540 					hscb_map->vaddr, hscb_map->dmamap);
6541 			kfree(hscb_map);
6542 		}
6543 		ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6544 	}
6545 		fallthrough;
6546 	case 4:
6547 	case 3:
6548 	case 2:
6549 	case 1:
6550 	case 0:
6551 		break;
6552 	}
6553 }
6554 
6555 /*
6556  * DSP filter Bypass must be enabled until the first selection
6557  * after a change in bus mode (Razor #491 and #493).
6558  */
6559 static void
6560 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6561 {
6562 	ahd_mode_state saved_modes;
6563 
6564 	saved_modes = ahd_save_modes(ahd);
6565 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6566 	ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6567 	       | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6568 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6569 #ifdef AHD_DEBUG
6570 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6571 		printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6572 #endif
6573 	ahd_restore_modes(ahd, saved_modes);
6574 	ahd->flags &= ~AHD_HAD_FIRST_SEL;
6575 }
6576 
6577 static void
6578 ahd_iocell_first_selection(struct ahd_softc *ahd)
6579 {
6580 	ahd_mode_state	saved_modes;
6581 	u_int		sblkctl;
6582 
6583 	if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6584 		return;
6585 	saved_modes = ahd_save_modes(ahd);
6586 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6587 	sblkctl = ahd_inb(ahd, SBLKCTL);
6588 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6589 #ifdef AHD_DEBUG
6590 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6591 		printk("%s: iocell first selection\n", ahd_name(ahd));
6592 #endif
6593 	if ((sblkctl & ENAB40) != 0) {
6594 		ahd_outb(ahd, DSPDATACTL,
6595 			 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6596 #ifdef AHD_DEBUG
6597 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
6598 			printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6599 #endif
6600 	}
6601 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6602 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
6603 	ahd_restore_modes(ahd, saved_modes);
6604 	ahd->flags |= AHD_HAD_FIRST_SEL;
6605 }
6606 
6607 /*************************** SCB Management ***********************************/
6608 static void
6609 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6610 {
6611 	struct	scb_list *free_list;
6612 	struct	scb_tailq *free_tailq;
6613 	struct	scb *first_scb;
6614 
6615 	scb->flags |= SCB_ON_COL_LIST;
6616 	AHD_SET_SCB_COL_IDX(scb, col_idx);
6617 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6618 	free_tailq = &ahd->scb_data.free_scbs;
6619 	first_scb = LIST_FIRST(free_list);
6620 	if (first_scb != NULL) {
6621 		LIST_INSERT_AFTER(first_scb, scb, collision_links);
6622 	} else {
6623 		LIST_INSERT_HEAD(free_list, scb, collision_links);
6624 		TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6625 	}
6626 }
6627 
6628 static void
6629 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6630 {
6631 	struct	scb_list *free_list;
6632 	struct	scb_tailq *free_tailq;
6633 	struct	scb *first_scb;
6634 	u_int	col_idx;
6635 
6636 	scb->flags &= ~SCB_ON_COL_LIST;
6637 	col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6638 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6639 	free_tailq = &ahd->scb_data.free_scbs;
6640 	first_scb = LIST_FIRST(free_list);
6641 	if (first_scb == scb) {
6642 		struct scb *next_scb;
6643 
6644 		/*
6645 		 * Maintain order in the collision free
6646 		 * lists for fairness if this device has
6647 		 * other colliding tags active.
6648 		 */
6649 		next_scb = LIST_NEXT(scb, collision_links);
6650 		if (next_scb != NULL) {
6651 			TAILQ_INSERT_AFTER(free_tailq, scb,
6652 					   next_scb, links.tqe);
6653 		}
6654 		TAILQ_REMOVE(free_tailq, scb, links.tqe);
6655 	}
6656 	LIST_REMOVE(scb, collision_links);
6657 }
6658 
6659 /*
6660  * Get a free scb. If there are none, see if we can allocate a new SCB.
6661  */
6662 struct scb *
6663 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6664 {
6665 	struct scb *scb;
6666 	int tries;
6667 
6668 	tries = 0;
6669 look_again:
6670 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6671 		if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6672 			ahd_rem_col_list(ahd, scb);
6673 			goto found;
6674 		}
6675 	}
6676 	if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6677 
6678 		if (tries++ != 0)
6679 			return (NULL);
6680 		ahd_alloc_scbs(ahd);
6681 		goto look_again;
6682 	}
6683 	LIST_REMOVE(scb, links.le);
6684 	if (col_idx != AHD_NEVER_COL_IDX
6685 	 && (scb->col_scb != NULL)
6686 	 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6687 		LIST_REMOVE(scb->col_scb, links.le);
6688 		ahd_add_col_list(ahd, scb->col_scb, col_idx);
6689 	}
6690 found:
6691 	scb->flags |= SCB_ACTIVE;
6692 	return (scb);
6693 }
6694 
6695 /*
6696  * Return an SCB resource to the free list.
6697  */
6698 void
6699 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6700 {
6701 	/* Clean up for the next user */
6702 	scb->flags = SCB_FLAG_NONE;
6703 	scb->hscb->control = 0;
6704 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6705 
6706 	if (scb->col_scb == NULL) {
6707 
6708 		/*
6709 		 * No collision possible.  Just free normally.
6710 		 */
6711 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6712 				 scb, links.le);
6713 	} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6714 
6715 		/*
6716 		 * The SCB we might have collided with is on
6717 		 * a free collision list.  Put both SCBs on
6718 		 * the generic list.
6719 		 */
6720 		ahd_rem_col_list(ahd, scb->col_scb);
6721 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6722 				 scb, links.le);
6723 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6724 				 scb->col_scb, links.le);
6725 	} else if ((scb->col_scb->flags
6726 		  & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6727 		&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6728 
6729 		/*
6730 		 * The SCB we might collide with on the next allocation
6731 		 * is still active in a non-packetized, tagged, context.
6732 		 * Put us on the SCB collision list.
6733 		 */
6734 		ahd_add_col_list(ahd, scb,
6735 				 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6736 	} else {
6737 		/*
6738 		 * The SCB we might collide with on the next allocation
6739 		 * is either active in a packetized context, or free.
6740 		 * Since we can't collide, put this SCB on the generic
6741 		 * free list.
6742 		 */
6743 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6744 				 scb, links.le);
6745 	}
6746 
6747 	ahd_platform_scb_free(ahd, scb);
6748 }
6749 
6750 static void
6751 ahd_alloc_scbs(struct ahd_softc *ahd)
6752 {
6753 	struct scb_data *scb_data;
6754 	struct scb	*next_scb;
6755 	struct hardware_scb *hscb;
6756 	struct map_node *hscb_map;
6757 	struct map_node *sg_map;
6758 	struct map_node *sense_map;
6759 	uint8_t		*segs;
6760 	uint8_t		*sense_data;
6761 	dma_addr_t	 hscb_busaddr;
6762 	dma_addr_t	 sg_busaddr;
6763 	dma_addr_t	 sense_busaddr;
6764 	int		 newcount;
6765 	int		 i;
6766 
6767 	scb_data = &ahd->scb_data;
6768 	if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6769 		/* Can't allocate any more */
6770 		return;
6771 
6772 	if (scb_data->scbs_left != 0) {
6773 		int offset;
6774 
6775 		offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6776 		hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6777 		hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6778 		hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6779 	} else {
6780 		hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6781 
6782 		if (hscb_map == NULL)
6783 			return;
6784 
6785 		/* Allocate the next batch of hardware SCBs */
6786 		if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6787 				     (void **)&hscb_map->vaddr,
6788 				     BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6789 			kfree(hscb_map);
6790 			return;
6791 		}
6792 
6793 		SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6794 
6795 		ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6796 				hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6797 				&hscb_map->physaddr, /*flags*/0);
6798 
6799 		hscb = (struct hardware_scb *)hscb_map->vaddr;
6800 		hscb_busaddr = hscb_map->physaddr;
6801 		scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6802 	}
6803 
6804 	if (scb_data->sgs_left != 0) {
6805 		int offset;
6806 
6807 		offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6808 		       - scb_data->sgs_left) * ahd_sglist_size(ahd);
6809 		sg_map = SLIST_FIRST(&scb_data->sg_maps);
6810 		segs = sg_map->vaddr + offset;
6811 		sg_busaddr = sg_map->physaddr + offset;
6812 	} else {
6813 		sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6814 
6815 		if (sg_map == NULL)
6816 			return;
6817 
6818 		/* Allocate the next batch of S/G lists */
6819 		if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6820 				     (void **)&sg_map->vaddr,
6821 				     BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6822 			kfree(sg_map);
6823 			return;
6824 		}
6825 
6826 		SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6827 
6828 		ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6829 				sg_map->vaddr, ahd_sglist_allocsize(ahd),
6830 				ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6831 
6832 		segs = sg_map->vaddr;
6833 		sg_busaddr = sg_map->physaddr;
6834 		scb_data->sgs_left =
6835 		    ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6836 #ifdef AHD_DEBUG
6837 		if (ahd_debug & AHD_SHOW_MEMORY)
6838 			printk("Mapped SG data\n");
6839 #endif
6840 	}
6841 
6842 	if (scb_data->sense_left != 0) {
6843 		int offset;
6844 
6845 		offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6846 		sense_map = SLIST_FIRST(&scb_data->sense_maps);
6847 		sense_data = sense_map->vaddr + offset;
6848 		sense_busaddr = sense_map->physaddr + offset;
6849 	} else {
6850 		sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6851 
6852 		if (sense_map == NULL)
6853 			return;
6854 
6855 		/* Allocate the next batch of sense buffers */
6856 		if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6857 				     (void **)&sense_map->vaddr,
6858 				     BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6859 			kfree(sense_map);
6860 			return;
6861 		}
6862 
6863 		SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6864 
6865 		ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6866 				sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6867 				&sense_map->physaddr, /*flags*/0);
6868 
6869 		sense_data = sense_map->vaddr;
6870 		sense_busaddr = sense_map->physaddr;
6871 		scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6872 #ifdef AHD_DEBUG
6873 		if (ahd_debug & AHD_SHOW_MEMORY)
6874 			printk("Mapped sense data\n");
6875 #endif
6876 	}
6877 
6878 	newcount = min(scb_data->sense_left, scb_data->scbs_left);
6879 	newcount = min(newcount, scb_data->sgs_left);
6880 	newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6881 	for (i = 0; i < newcount; i++) {
6882 		struct scb_platform_data *pdata;
6883 		u_int col_tag;
6884 
6885 		next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6886 		if (next_scb == NULL)
6887 			break;
6888 
6889 		pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6890 		if (pdata == NULL) {
6891 			kfree(next_scb);
6892 			break;
6893 		}
6894 		next_scb->platform_data = pdata;
6895 		next_scb->hscb_map = hscb_map;
6896 		next_scb->sg_map = sg_map;
6897 		next_scb->sense_map = sense_map;
6898 		next_scb->sg_list = segs;
6899 		next_scb->sense_data = sense_data;
6900 		next_scb->sense_busaddr = sense_busaddr;
6901 		memset(hscb, 0, sizeof(*hscb));
6902 		next_scb->hscb = hscb;
6903 		hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6904 
6905 		/*
6906 		 * The sequencer always starts with the second entry.
6907 		 * The first entry is embedded in the scb.
6908 		 */
6909 		next_scb->sg_list_busaddr = sg_busaddr;
6910 		if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6911 			next_scb->sg_list_busaddr
6912 			    += sizeof(struct ahd_dma64_seg);
6913 		else
6914 			next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6915 		next_scb->ahd_softc = ahd;
6916 		next_scb->flags = SCB_FLAG_NONE;
6917 		next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6918 		col_tag = scb_data->numscbs ^ 0x100;
6919 		next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6920 		if (next_scb->col_scb != NULL)
6921 			next_scb->col_scb->col_scb = next_scb;
6922 		ahd_free_scb(ahd, next_scb);
6923 		hscb++;
6924 		hscb_busaddr += sizeof(*hscb);
6925 		segs += ahd_sglist_size(ahd);
6926 		sg_busaddr += ahd_sglist_size(ahd);
6927 		sense_data += AHD_SENSE_BUFSIZE;
6928 		sense_busaddr += AHD_SENSE_BUFSIZE;
6929 		scb_data->numscbs++;
6930 		scb_data->sense_left--;
6931 		scb_data->scbs_left--;
6932 		scb_data->sgs_left--;
6933 	}
6934 }
6935 
6936 void
6937 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6938 {
6939 	const char *speed;
6940 	const char *type;
6941 	int len;
6942 
6943 	len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6944 	buf += len;
6945 
6946 	speed = "Ultra320 ";
6947 	if ((ahd->features & AHD_WIDE) != 0) {
6948 		type = "Wide ";
6949 	} else {
6950 		type = "Single ";
6951 	}
6952 	len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6953 		      speed, type, ahd->channel, ahd->our_id);
6954 	buf += len;
6955 
6956 	sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6957 		ahd->scb_data.maxhscbs);
6958 }
6959 
6960 static const char *channel_strings[] = {
6961 	"Primary Low",
6962 	"Primary High",
6963 	"Secondary Low",
6964 	"Secondary High"
6965 };
6966 
6967 static const char *termstat_strings[] = {
6968 	"Terminated Correctly",
6969 	"Over Terminated",
6970 	"Under Terminated",
6971 	"Not Configured"
6972 };
6973 
6974 /***************************** Timer Facilities *******************************/
6975 static void
6976 ahd_timer_reset(struct timer_list *timer, int usec)
6977 {
6978 	del_timer(timer);
6979 	timer->expires = jiffies + (usec * HZ)/1000000;
6980 	add_timer(timer);
6981 }
6982 
6983 /*
6984  * Start the board, ready for normal operation
6985  */
6986 int
6987 ahd_init(struct ahd_softc *ahd)
6988 {
6989 	uint8_t		*next_vaddr;
6990 	dma_addr_t	 next_baddr;
6991 	size_t		 driver_data_size;
6992 	int		 i;
6993 	int		 error;
6994 	u_int		 warn_user;
6995 	uint8_t		 current_sensing;
6996 	uint8_t		 fstat;
6997 
6998 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
6999 
7000 	ahd->stack_size = ahd_probe_stack_size(ahd);
7001 	ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7002 					 GFP_ATOMIC);
7003 	if (ahd->saved_stack == NULL)
7004 		return (ENOMEM);
7005 
7006 	/*
7007 	 * Verify that the compiler hasn't over-aggressively
7008 	 * padded important structures.
7009 	 */
7010 	if (sizeof(struct hardware_scb) != 64)
7011 		panic("Hardware SCB size is incorrect");
7012 
7013 #ifdef AHD_DEBUG
7014 	if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7015 		ahd->flags |= AHD_SEQUENCER_DEBUG;
7016 #endif
7017 
7018 	/*
7019 	 * Default to allowing initiator operations.
7020 	 */
7021 	ahd->flags |= AHD_INITIATORROLE;
7022 
7023 	/*
7024 	 * Only allow target mode features if this unit has them enabled.
7025 	 */
7026 	if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7027 		ahd->features &= ~AHD_TARGETMODE;
7028 
7029 	ahd->init_level++;
7030 
7031 	/*
7032 	 * DMA tag for our command fifos and other data in system memory
7033 	 * the card's sequencer must be able to access.  For initiator
7034 	 * roles, we need to allocate space for the qoutfifo.  When providing
7035 	 * for the target mode role, we must additionally provide space for
7036 	 * the incoming target command fifo.
7037 	 */
7038 	driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7039 			 + sizeof(struct hardware_scb);
7040 	if ((ahd->features & AHD_TARGETMODE) != 0)
7041 		driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7042 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7043 		driver_data_size += PKT_OVERRUN_BUFSIZE;
7044 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7045 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7046 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7047 			       /*highaddr*/BUS_SPACE_MAXADDR,
7048 			       /*filter*/NULL, /*filterarg*/NULL,
7049 			       driver_data_size,
7050 			       /*nsegments*/1,
7051 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7052 			       /*flags*/0, &ahd->shared_data_dmat) != 0) {
7053 		return (ENOMEM);
7054 	}
7055 
7056 	ahd->init_level++;
7057 
7058 	/* Allocation of driver data */
7059 	if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7060 			     (void **)&ahd->shared_data_map.vaddr,
7061 			     BUS_DMA_NOWAIT,
7062 			     &ahd->shared_data_map.dmamap) != 0) {
7063 		return (ENOMEM);
7064 	}
7065 
7066 	ahd->init_level++;
7067 
7068 	/* And permanently map it in */
7069 	ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7070 			ahd->shared_data_map.vaddr, driver_data_size,
7071 			ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7072 			/*flags*/0);
7073 	ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7074 	next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7075 	next_baddr = ahd->shared_data_map.physaddr
7076 		   + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7077 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7078 		ahd->targetcmds = (struct target_cmd *)next_vaddr;
7079 		next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7080 		next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7081 	}
7082 
7083 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7084 		ahd->overrun_buf = next_vaddr;
7085 		next_vaddr += PKT_OVERRUN_BUFSIZE;
7086 		next_baddr += PKT_OVERRUN_BUFSIZE;
7087 	}
7088 
7089 	/*
7090 	 * We need one SCB to serve as the "next SCB".  Since the
7091 	 * tag identifier in this SCB will never be used, there is
7092 	 * no point in using a valid HSCB tag from an SCB pulled from
7093 	 * the standard free pool.  So, we allocate this "sentinel"
7094 	 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7095 	 */
7096 	ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7097 	ahd->next_queued_hscb_map = &ahd->shared_data_map;
7098 	ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7099 
7100 	ahd->init_level++;
7101 
7102 	/* Allocate SCB data now that buffer_dmat is initialized */
7103 	if (ahd_init_scbdata(ahd) != 0)
7104 		return (ENOMEM);
7105 
7106 	if ((ahd->flags & AHD_INITIATORROLE) == 0)
7107 		ahd->flags &= ~AHD_RESET_BUS_A;
7108 
7109 	/*
7110 	 * Before committing these settings to the chip, give
7111 	 * the OSM one last chance to modify our configuration.
7112 	 */
7113 	ahd_platform_init(ahd);
7114 
7115 	/* Bring up the chip. */
7116 	ahd_chip_init(ahd);
7117 
7118 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7119 
7120 	if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7121 		goto init_done;
7122 
7123 	/*
7124 	 * Verify termination based on current draw and
7125 	 * warn user if the bus is over/under terminated.
7126 	 */
7127 	error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7128 				   CURSENSE_ENB);
7129 	if (error != 0) {
7130 		printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7131 		goto init_done;
7132 	}
7133 	for (i = 20, fstat = FLX_FSTAT_BUSY;
7134 	     (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7135 		error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7136 		if (error != 0) {
7137 			printk("%s: current sensing timeout 2\n",
7138 			       ahd_name(ahd));
7139 			goto init_done;
7140 		}
7141 	}
7142 	if (i == 0) {
7143 		printk("%s: Timedout during current-sensing test\n",
7144 		       ahd_name(ahd));
7145 		goto init_done;
7146 	}
7147 
7148 	/* Latch Current Sensing status. */
7149 	error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7150 	if (error != 0) {
7151 		printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7152 		goto init_done;
7153 	}
7154 
7155 	/* Diable current sensing. */
7156 	ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7157 
7158 #ifdef AHD_DEBUG
7159 	if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7160 		printk("%s: current_sensing == 0x%x\n",
7161 		       ahd_name(ahd), current_sensing);
7162 	}
7163 #endif
7164 	warn_user = 0;
7165 	for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7166 		u_int term_stat;
7167 
7168 		term_stat = (current_sensing & FLX_CSTAT_MASK);
7169 		switch (term_stat) {
7170 		case FLX_CSTAT_OVER:
7171 		case FLX_CSTAT_UNDER:
7172 			warn_user++;
7173 			fallthrough;
7174 		case FLX_CSTAT_INVALID:
7175 		case FLX_CSTAT_OKAY:
7176 			if (warn_user == 0 && bootverbose == 0)
7177 				break;
7178 			printk("%s: %s Channel %s\n", ahd_name(ahd),
7179 			       channel_strings[i], termstat_strings[term_stat]);
7180 			break;
7181 		}
7182 	}
7183 	if (warn_user) {
7184 		printk("%s: WARNING. Termination is not configured correctly.\n"
7185 		       "%s: WARNING. SCSI bus operations may FAIL.\n",
7186 		       ahd_name(ahd), ahd_name(ahd));
7187 	}
7188 init_done:
7189 	ahd_restart(ahd);
7190 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7191 	return (0);
7192 }
7193 
7194 /*
7195  * (Re)initialize chip state after a chip reset.
7196  */
7197 static void
7198 ahd_chip_init(struct ahd_softc *ahd)
7199 {
7200 	uint32_t busaddr;
7201 	u_int	 sxfrctl1;
7202 	u_int	 scsiseq_template;
7203 	u_int	 wait;
7204 	u_int	 i;
7205 	u_int	 target;
7206 
7207 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7208 	/*
7209 	 * Take the LED out of diagnostic mode
7210 	 */
7211 	ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7212 
7213 	/*
7214 	 * Return HS_MAILBOX to its default value.
7215 	 */
7216 	ahd->hs_mailbox = 0;
7217 	ahd_outb(ahd, HS_MAILBOX, 0);
7218 
7219 	/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7220 	ahd_outb(ahd, IOWNID, ahd->our_id);
7221 	ahd_outb(ahd, TOWNID, ahd->our_id);
7222 	sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7223 	sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7224 	if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7225 	 && (ahd->seltime != STIMESEL_MIN)) {
7226 		/*
7227 		 * The selection timer duration is twice as long
7228 		 * as it should be.  Halve it by adding "1" to
7229 		 * the user specified setting.
7230 		 */
7231 		sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7232 	} else {
7233 		sxfrctl1 |= ahd->seltime;
7234 	}
7235 
7236 	ahd_outb(ahd, SXFRCTL0, DFON);
7237 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7238 	ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7239 
7240 	/*
7241 	 * Now that termination is set, wait for up
7242 	 * to 500ms for our transceivers to settle.  If
7243 	 * the adapter does not have a cable attached,
7244 	 * the transceivers may never settle, so don't
7245 	 * complain if we fail here.
7246 	 */
7247 	for (wait = 10000;
7248 	     (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7249 	     wait--)
7250 		ahd_delay(100);
7251 
7252 	/* Clear any false bus resets due to the transceivers settling */
7253 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7254 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7255 
7256 	/* Initialize mode specific S/G state. */
7257 	for (i = 0; i < 2; i++) {
7258 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7259 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7260 		ahd_outb(ahd, SG_STATE, 0);
7261 		ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7262 		ahd_outb(ahd, SEQIMODE,
7263 			 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7264 			|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7265 	}
7266 
7267 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7268 	ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7269 	ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7270 	ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7271 	ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7272 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7273 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7274 	} else {
7275 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7276 	}
7277 	ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7278 	if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7279 		/*
7280 		 * Do not issue a target abort when a split completion
7281 		 * error occurs.  Let our PCIX interrupt handler deal
7282 		 * with it instead. H2A4 Razor #625
7283 		 */
7284 		ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7285 
7286 	if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7287 		ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7288 
7289 	/*
7290 	 * Tweak IOCELL settings.
7291 	 */
7292 	if ((ahd->flags & AHD_HP_BOARD) != 0) {
7293 		for (i = 0; i < NUMDSPS; i++) {
7294 			ahd_outb(ahd, DSPSELECT, i);
7295 			ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7296 		}
7297 #ifdef AHD_DEBUG
7298 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7299 			printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7300 			       WRTBIASCTL_HP_DEFAULT);
7301 #endif
7302 	}
7303 	ahd_setup_iocell_workaround(ahd);
7304 
7305 	/*
7306 	 * Enable LQI Manager interrupts.
7307 	 */
7308 	ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7309 			      | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7310 			      | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7311 	ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7312 	/*
7313 	 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7314 	 * manually for the command phase at the start of a packetized
7315 	 * selection case.  ENLQOBUSFREE should be made redundant by
7316 	 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7317 	 * events fail to assert the BUSFREE interrupt so we must
7318 	 * also enable LQOBUSFREE interrupts.
7319 	 */
7320 	ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7321 
7322 	/*
7323 	 * Setup sequencer interrupt handlers.
7324 	 */
7325 	ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7326 	ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7327 
7328 	/*
7329 	 * Setup SCB Offset registers.
7330 	 */
7331 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7332 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7333 			 pkt_long_lun));
7334 	} else {
7335 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7336 	}
7337 	ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7338 	ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7339 	ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7340 	ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7341 				       shared_data.idata.cdb));
7342 	ahd_outb(ahd, QNEXTPTR,
7343 		 offsetof(struct hardware_scb, next_hscb_busaddr));
7344 	ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7345 	ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7346 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7347 		ahd_outb(ahd, LUNLEN,
7348 			 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7349 	} else {
7350 		ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7351 	}
7352 	ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7353 	ahd_outb(ahd, MAXCMD, 0xFF);
7354 	ahd_outb(ahd, SCBAUTOPTR,
7355 		 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7356 
7357 	/* We haven't been enabled for target mode yet. */
7358 	ahd_outb(ahd, MULTARGID, 0);
7359 	ahd_outb(ahd, MULTARGID + 1, 0);
7360 
7361 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7362 	/* Initialize the negotiation table. */
7363 	if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7364 		/*
7365 		 * Clear the spare bytes in the neg table to avoid
7366 		 * spurious parity errors.
7367 		 */
7368 		for (target = 0; target < AHD_NUM_TARGETS; target++) {
7369 			ahd_outb(ahd, NEGOADDR, target);
7370 			ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7371 			for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7372 				ahd_outb(ahd, ANNEXDAT, 0);
7373 		}
7374 	}
7375 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7376 		struct	 ahd_devinfo devinfo;
7377 		struct	 ahd_initiator_tinfo *tinfo;
7378 		struct	 ahd_tmode_tstate *tstate;
7379 
7380 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7381 					    target, &tstate);
7382 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7383 				    target, CAM_LUN_WILDCARD,
7384 				    'A', ROLE_INITIATOR);
7385 		ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7386 	}
7387 
7388 	ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7389 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7390 
7391 #ifdef NEEDS_MORE_TESTING
7392 	/*
7393 	 * Always enable abort on incoming L_Qs if this feature is
7394 	 * supported.  We use this to catch invalid SCB references.
7395 	 */
7396 	if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7397 		ahd_outb(ahd, LQCTL1, ABORTPENDING);
7398 	else
7399 #endif
7400 		ahd_outb(ahd, LQCTL1, 0);
7401 
7402 	/* All of our queues are empty */
7403 	ahd->qoutfifonext = 0;
7404 	ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7405 	ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7406 	for (i = 0; i < AHD_QOUT_SIZE; i++)
7407 		ahd->qoutfifo[i].valid_tag = 0;
7408 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7409 
7410 	ahd->qinfifonext = 0;
7411 	for (i = 0; i < AHD_QIN_SIZE; i++)
7412 		ahd->qinfifo[i] = SCB_LIST_NULL;
7413 
7414 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7415 		/* All target command blocks start out invalid. */
7416 		for (i = 0; i < AHD_TMODE_CMDS; i++)
7417 			ahd->targetcmds[i].cmd_valid = 0;
7418 		ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7419 		ahd->tqinfifonext = 1;
7420 		ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7421 		ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7422 	}
7423 
7424 	/* Initialize Scratch Ram. */
7425 	ahd_outb(ahd, SEQ_FLAGS, 0);
7426 	ahd_outb(ahd, SEQ_FLAGS2, 0);
7427 
7428 	/* We don't have any waiting selections */
7429 	ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7430 	ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7431 	ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7432 	ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7433 	for (i = 0; i < AHD_NUM_TARGETS; i++)
7434 		ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7435 
7436 	/*
7437 	 * Nobody is waiting to be DMAed into the QOUTFIFO.
7438 	 */
7439 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7440 	ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7441 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7442 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7443 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7444 
7445 	/*
7446 	 * The Freeze Count is 0.
7447 	 */
7448 	ahd->qfreeze_cnt = 0;
7449 	ahd_outw(ahd, QFREEZE_COUNT, 0);
7450 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7451 
7452 	/*
7453 	 * Tell the sequencer where it can find our arrays in memory.
7454 	 */
7455 	busaddr = ahd->shared_data_map.physaddr;
7456 	ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7457 	ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7458 
7459 	/*
7460 	 * Setup the allowed SCSI Sequences based on operational mode.
7461 	 * If we are a target, we'll enable select in operations once
7462 	 * we've had a lun enabled.
7463 	 */
7464 	scsiseq_template = ENAUTOATNP;
7465 	if ((ahd->flags & AHD_INITIATORROLE) != 0)
7466 		scsiseq_template |= ENRSELI;
7467 	ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7468 
7469 	/* There are no busy SCBs yet. */
7470 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7471 		int lun;
7472 
7473 		for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7474 			ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7475 	}
7476 
7477 	/*
7478 	 * Initialize the group code to command length table.
7479 	 * Vendor Unique codes are set to 0 so we only capture
7480 	 * the first byte of the cdb.  These can be overridden
7481 	 * when target mode is enabled.
7482 	 */
7483 	ahd_outb(ahd, CMDSIZE_TABLE, 5);
7484 	ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7485 	ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7486 	ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7487 	ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7488 	ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7489 	ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7490 	ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7491 
7492 	/* Tell the sequencer of our initial queue positions */
7493 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7494 	ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7495 	ahd->qinfifonext = 0;
7496 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7497 	ahd_set_hescb_qoff(ahd, 0);
7498 	ahd_set_snscb_qoff(ahd, 0);
7499 	ahd_set_sescb_qoff(ahd, 0);
7500 	ahd_set_sdscb_qoff(ahd, 0);
7501 
7502 	/*
7503 	 * Tell the sequencer which SCB will be the next one it receives.
7504 	 */
7505 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7506 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7507 
7508 	/*
7509 	 * Default to coalescing disabled.
7510 	 */
7511 	ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7512 	ahd_outw(ahd, CMDS_PENDING, 0);
7513 	ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7514 				     ahd->int_coalescing_maxcmds,
7515 				     ahd->int_coalescing_mincmds);
7516 	ahd_enable_coalescing(ahd, FALSE);
7517 
7518 	ahd_loadseq(ahd);
7519 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7520 
7521 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7522 		u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7523 
7524 		negodat3 |= ENSLOWCRC;
7525 		ahd_outb(ahd, NEGCONOPTS, negodat3);
7526 		negodat3 = ahd_inb(ahd, NEGCONOPTS);
7527 		if (!(negodat3 & ENSLOWCRC))
7528 			printk("aic79xx: failed to set the SLOWCRC bit\n");
7529 		else
7530 			printk("aic79xx: SLOWCRC bit set\n");
7531 	}
7532 }
7533 
7534 /*
7535  * Setup default device and controller settings.
7536  * This should only be called if our probe has
7537  * determined that no configuration data is available.
7538  */
7539 int
7540 ahd_default_config(struct ahd_softc *ahd)
7541 {
7542 	int	targ;
7543 
7544 	ahd->our_id = 7;
7545 
7546 	/*
7547 	 * Allocate a tstate to house information for our
7548 	 * initiator presence on the bus as well as the user
7549 	 * data for any target mode initiator.
7550 	 */
7551 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7552 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7553 		       "Failing attach\n", ahd_name(ahd));
7554 		return (ENOMEM);
7555 	}
7556 
7557 	for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7558 		struct	 ahd_devinfo devinfo;
7559 		struct	 ahd_initiator_tinfo *tinfo;
7560 		struct	 ahd_tmode_tstate *tstate;
7561 		uint16_t target_mask;
7562 
7563 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7564 					    targ, &tstate);
7565 		/*
7566 		 * We support SPC2 and SPI4.
7567 		 */
7568 		tinfo->user.protocol_version = 4;
7569 		tinfo->user.transport_version = 4;
7570 
7571 		target_mask = 0x01 << targ;
7572 		ahd->user_discenable |= target_mask;
7573 		tstate->discenable |= target_mask;
7574 		ahd->user_tagenable |= target_mask;
7575 #ifdef AHD_FORCE_160
7576 		tinfo->user.period = AHD_SYNCRATE_DT;
7577 #else
7578 		tinfo->user.period = AHD_SYNCRATE_160;
7579 #endif
7580 		tinfo->user.offset = MAX_OFFSET;
7581 		tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7582 					| MSG_EXT_PPR_WR_FLOW
7583 					| MSG_EXT_PPR_HOLD_MCS
7584 					| MSG_EXT_PPR_IU_REQ
7585 					| MSG_EXT_PPR_QAS_REQ
7586 					| MSG_EXT_PPR_DT_REQ;
7587 		if ((ahd->features & AHD_RTI) != 0)
7588 			tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7589 
7590 		tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7591 
7592 		/*
7593 		 * Start out Async/Narrow/Untagged and with
7594 		 * conservative protocol support.
7595 		 */
7596 		tinfo->goal.protocol_version = 2;
7597 		tinfo->goal.transport_version = 2;
7598 		tinfo->curr.protocol_version = 2;
7599 		tinfo->curr.transport_version = 2;
7600 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7601 				    targ, CAM_LUN_WILDCARD,
7602 				    'A', ROLE_INITIATOR);
7603 		tstate->tagenable &= ~target_mask;
7604 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7605 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7606 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7607 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7608 				 /*paused*/TRUE);
7609 	}
7610 	return (0);
7611 }
7612 
7613 /*
7614  * Parse device configuration information.
7615  */
7616 int
7617 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7618 {
7619 	int targ;
7620 	int max_targ;
7621 
7622 	max_targ = sc->max_targets & CFMAXTARG;
7623 	ahd->our_id = sc->brtime_id & CFSCSIID;
7624 
7625 	/*
7626 	 * Allocate a tstate to house information for our
7627 	 * initiator presence on the bus as well as the user
7628 	 * data for any target mode initiator.
7629 	 */
7630 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7631 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7632 		       "Failing attach\n", ahd_name(ahd));
7633 		return (ENOMEM);
7634 	}
7635 
7636 	for (targ = 0; targ < max_targ; targ++) {
7637 		struct	 ahd_devinfo devinfo;
7638 		struct	 ahd_initiator_tinfo *tinfo;
7639 		struct	 ahd_transinfo *user_tinfo;
7640 		struct	 ahd_tmode_tstate *tstate;
7641 		uint16_t target_mask;
7642 
7643 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7644 					    targ, &tstate);
7645 		user_tinfo = &tinfo->user;
7646 
7647 		/*
7648 		 * We support SPC2 and SPI4.
7649 		 */
7650 		tinfo->user.protocol_version = 4;
7651 		tinfo->user.transport_version = 4;
7652 
7653 		target_mask = 0x01 << targ;
7654 		ahd->user_discenable &= ~target_mask;
7655 		tstate->discenable &= ~target_mask;
7656 		ahd->user_tagenable &= ~target_mask;
7657 		if (sc->device_flags[targ] & CFDISC) {
7658 			tstate->discenable |= target_mask;
7659 			ahd->user_discenable |= target_mask;
7660 			ahd->user_tagenable |= target_mask;
7661 		} else {
7662 			/*
7663 			 * Cannot be packetized without disconnection.
7664 			 */
7665 			sc->device_flags[targ] &= ~CFPACKETIZED;
7666 		}
7667 
7668 		user_tinfo->ppr_options = 0;
7669 		user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7670 		if (user_tinfo->period < CFXFER_ASYNC) {
7671 			if (user_tinfo->period <= AHD_PERIOD_10MHz)
7672 				user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7673 			user_tinfo->offset = MAX_OFFSET;
7674 		} else  {
7675 			user_tinfo->offset = 0;
7676 			user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7677 		}
7678 #ifdef AHD_FORCE_160
7679 		if (user_tinfo->period <= AHD_SYNCRATE_160)
7680 			user_tinfo->period = AHD_SYNCRATE_DT;
7681 #endif
7682 
7683 		if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7684 			user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7685 						|  MSG_EXT_PPR_WR_FLOW
7686 						|  MSG_EXT_PPR_HOLD_MCS
7687 						|  MSG_EXT_PPR_IU_REQ;
7688 			if ((ahd->features & AHD_RTI) != 0)
7689 				user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7690 		}
7691 
7692 		if ((sc->device_flags[targ] & CFQAS) != 0)
7693 			user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7694 
7695 		if ((sc->device_flags[targ] & CFWIDEB) != 0)
7696 			user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7697 		else
7698 			user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7699 #ifdef AHD_DEBUG
7700 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7701 			printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7702 			       user_tinfo->period, user_tinfo->offset,
7703 			       user_tinfo->ppr_options);
7704 #endif
7705 		/*
7706 		 * Start out Async/Narrow/Untagged and with
7707 		 * conservative protocol support.
7708 		 */
7709 		tstate->tagenable &= ~target_mask;
7710 		tinfo->goal.protocol_version = 2;
7711 		tinfo->goal.transport_version = 2;
7712 		tinfo->curr.protocol_version = 2;
7713 		tinfo->curr.transport_version = 2;
7714 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7715 				    targ, CAM_LUN_WILDCARD,
7716 				    'A', ROLE_INITIATOR);
7717 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7718 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7719 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7720 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7721 				 /*paused*/TRUE);
7722 	}
7723 
7724 	ahd->flags &= ~AHD_SPCHK_ENB_A;
7725 	if (sc->bios_control & CFSPARITY)
7726 		ahd->flags |= AHD_SPCHK_ENB_A;
7727 
7728 	ahd->flags &= ~AHD_RESET_BUS_A;
7729 	if (sc->bios_control & CFRESETB)
7730 		ahd->flags |= AHD_RESET_BUS_A;
7731 
7732 	ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7733 	if (sc->bios_control & CFEXTEND)
7734 		ahd->flags |= AHD_EXTENDED_TRANS_A;
7735 
7736 	ahd->flags &= ~AHD_BIOS_ENABLED;
7737 	if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7738 		ahd->flags |= AHD_BIOS_ENABLED;
7739 
7740 	ahd->flags &= ~AHD_STPWLEVEL_A;
7741 	if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7742 		ahd->flags |= AHD_STPWLEVEL_A;
7743 
7744 	return (0);
7745 }
7746 
7747 /*
7748  * Parse device configuration information.
7749  */
7750 int
7751 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7752 {
7753 	int error;
7754 
7755 	error = ahd_verify_vpd_cksum(vpd);
7756 	if (error == 0)
7757 		return (EINVAL);
7758 	if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7759 		ahd->flags |= AHD_BOOT_CHANNEL;
7760 	return (0);
7761 }
7762 
7763 void
7764 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7765 {
7766 	u_int hcntrl;
7767 
7768 	hcntrl = ahd_inb(ahd, HCNTRL);
7769 	hcntrl &= ~INTEN;
7770 	ahd->pause &= ~INTEN;
7771 	ahd->unpause &= ~INTEN;
7772 	if (enable) {
7773 		hcntrl |= INTEN;
7774 		ahd->pause |= INTEN;
7775 		ahd->unpause |= INTEN;
7776 	}
7777 	ahd_outb(ahd, HCNTRL, hcntrl);
7778 }
7779 
7780 static void
7781 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7782 			     u_int mincmds)
7783 {
7784 	if (timer > AHD_TIMER_MAX_US)
7785 		timer = AHD_TIMER_MAX_US;
7786 	ahd->int_coalescing_timer = timer;
7787 
7788 	if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7789 		maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7790 	if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7791 		mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7792 	ahd->int_coalescing_maxcmds = maxcmds;
7793 	ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7794 	ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7795 	ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7796 }
7797 
7798 static void
7799 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7800 {
7801 
7802 	ahd->hs_mailbox &= ~ENINT_COALESCE;
7803 	if (enable)
7804 		ahd->hs_mailbox |= ENINT_COALESCE;
7805 	ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7806 	ahd_flush_device_writes(ahd);
7807 	ahd_run_qoutfifo(ahd);
7808 }
7809 
7810 /*
7811  * Ensure that the card is paused in a location
7812  * outside of all critical sections and that all
7813  * pending work is completed prior to returning.
7814  * This routine should only be called from outside
7815  * an interrupt context.
7816  */
7817 void
7818 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7819 {
7820 	u_int intstat;
7821 	u_int maxloops;
7822 
7823 	maxloops = 1000;
7824 	ahd->flags |= AHD_ALL_INTERRUPTS;
7825 	ahd_pause(ahd);
7826 	/*
7827 	 * Freeze the outgoing selections.  We do this only
7828 	 * until we are safely paused without further selections
7829 	 * pending.
7830 	 */
7831 	ahd->qfreeze_cnt--;
7832 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7833 	ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7834 	do {
7835 
7836 		ahd_unpause(ahd);
7837 		/*
7838 		 * Give the sequencer some time to service
7839 		 * any active selections.
7840 		 */
7841 		ahd_delay(500);
7842 
7843 		ahd_intr(ahd);
7844 		ahd_pause(ahd);
7845 		intstat = ahd_inb(ahd, INTSTAT);
7846 		if ((intstat & INT_PEND) == 0) {
7847 			ahd_clear_critical_section(ahd);
7848 			intstat = ahd_inb(ahd, INTSTAT);
7849 		}
7850 	} while (--maxloops
7851 	      && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7852 	      && ((intstat & INT_PEND) != 0
7853 	       || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7854 	       || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7855 
7856 	if (maxloops == 0) {
7857 		printk("Infinite interrupt loop, INTSTAT = %x",
7858 		      ahd_inb(ahd, INTSTAT));
7859 	}
7860 	ahd->qfreeze_cnt++;
7861 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7862 
7863 	ahd_flush_qoutfifo(ahd);
7864 
7865 	ahd->flags &= ~AHD_ALL_INTERRUPTS;
7866 }
7867 
7868 int __maybe_unused
7869 ahd_suspend(struct ahd_softc *ahd)
7870 {
7871 	ahd_pause_and_flushwork(ahd);
7872 
7873 	if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7874 		ahd_unpause(ahd);
7875 		return (EBUSY);
7876 	}
7877 	ahd_shutdown(ahd);
7878 	return (0);
7879 }
7880 
7881 void __maybe_unused
7882 ahd_resume(struct ahd_softc *ahd)
7883 {
7884 	ahd_reset(ahd, /*reinit*/TRUE);
7885 	ahd_intr_enable(ahd, TRUE);
7886 	ahd_restart(ahd);
7887 }
7888 
7889 /************************** Busy Target Table *********************************/
7890 /*
7891  * Set SCBPTR to the SCB that contains the busy
7892  * table entry for TCL.  Return the offset into
7893  * the SCB that contains the entry for TCL.
7894  * saved_scbid is dereferenced and set to the
7895  * scbid that should be restored once manipualtion
7896  * of the TCL entry is complete.
7897  */
7898 static inline u_int
7899 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7900 {
7901 	/*
7902 	 * Index to the SCB that contains the busy entry.
7903 	 */
7904 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7905 	*saved_scbid = ahd_get_scbptr(ahd);
7906 	ahd_set_scbptr(ahd, TCL_LUN(tcl)
7907 		     | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7908 
7909 	/*
7910 	 * And now calculate the SCB offset to the entry.
7911 	 * Each entry is 2 bytes wide, hence the
7912 	 * multiplication by 2.
7913 	 */
7914 	return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7915 }
7916 
7917 /*
7918  * Return the untagged transaction id for a given target/channel lun.
7919  */
7920 static u_int
7921 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7922 {
7923 	u_int scbid;
7924 	u_int scb_offset;
7925 	u_int saved_scbptr;
7926 
7927 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7928 	scbid = ahd_inw_scbram(ahd, scb_offset);
7929 	ahd_set_scbptr(ahd, saved_scbptr);
7930 	return (scbid);
7931 }
7932 
7933 static void
7934 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7935 {
7936 	u_int scb_offset;
7937 	u_int saved_scbptr;
7938 
7939 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7940 	ahd_outw(ahd, scb_offset, scbid);
7941 	ahd_set_scbptr(ahd, saved_scbptr);
7942 }
7943 
7944 /************************** SCB and SCB queue management **********************/
7945 static int
7946 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7947 	      char channel, int lun, u_int tag, role_t role)
7948 {
7949 	int targ = SCB_GET_TARGET(ahd, scb);
7950 	char chan = SCB_GET_CHANNEL(ahd, scb);
7951 	int slun = SCB_GET_LUN(scb);
7952 	int match;
7953 
7954 	match = ((chan == channel) || (channel == ALL_CHANNELS));
7955 	if (match != 0)
7956 		match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7957 	if (match != 0)
7958 		match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7959 	if (match != 0) {
7960 #ifdef AHD_TARGET_MODE
7961 		int group;
7962 
7963 		group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7964 		if (role == ROLE_INITIATOR) {
7965 			match = (group != XPT_FC_GROUP_TMODE)
7966 			      && ((tag == SCB_GET_TAG(scb))
7967 			       || (tag == SCB_LIST_NULL));
7968 		} else if (role == ROLE_TARGET) {
7969 			match = (group == XPT_FC_GROUP_TMODE)
7970 			      && ((tag == scb->io_ctx->csio.tag_id)
7971 			       || (tag == SCB_LIST_NULL));
7972 		}
7973 #else /* !AHD_TARGET_MODE */
7974 		match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
7975 #endif /* AHD_TARGET_MODE */
7976 	}
7977 
7978 	return match;
7979 }
7980 
7981 static void
7982 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
7983 {
7984 	int	target;
7985 	char	channel;
7986 	int	lun;
7987 
7988 	target = SCB_GET_TARGET(ahd, scb);
7989 	lun = SCB_GET_LUN(scb);
7990 	channel = SCB_GET_CHANNEL(ahd, scb);
7991 
7992 	ahd_search_qinfifo(ahd, target, channel, lun,
7993 			   /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
7994 			   CAM_REQUEUE_REQ, SEARCH_COMPLETE);
7995 
7996 	ahd_platform_freeze_devq(ahd, scb);
7997 }
7998 
7999 void
8000 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8001 {
8002 	struct scb	*prev_scb;
8003 	ahd_mode_state	 saved_modes;
8004 
8005 	saved_modes = ahd_save_modes(ahd);
8006 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8007 	prev_scb = NULL;
8008 	if (ahd_qinfifo_count(ahd) != 0) {
8009 		u_int prev_tag;
8010 		u_int prev_pos;
8011 
8012 		prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8013 		prev_tag = ahd->qinfifo[prev_pos];
8014 		prev_scb = ahd_lookup_scb(ahd, prev_tag);
8015 	}
8016 	ahd_qinfifo_requeue(ahd, prev_scb, scb);
8017 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8018 	ahd_restore_modes(ahd, saved_modes);
8019 }
8020 
8021 static void
8022 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8023 		    struct scb *scb)
8024 {
8025 	if (prev_scb == NULL) {
8026 		uint32_t busaddr;
8027 
8028 		busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8029 		ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8030 	} else {
8031 		prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8032 		ahd_sync_scb(ahd, prev_scb,
8033 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8034 	}
8035 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8036 	ahd->qinfifonext++;
8037 	scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8038 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8039 }
8040 
8041 static int
8042 ahd_qinfifo_count(struct ahd_softc *ahd)
8043 {
8044 	u_int qinpos;
8045 	u_int wrap_qinpos;
8046 	u_int wrap_qinfifonext;
8047 
8048 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8049 	qinpos = ahd_get_snscb_qoff(ahd);
8050 	wrap_qinpos = AHD_QIN_WRAP(qinpos);
8051 	wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8052 	if (wrap_qinfifonext >= wrap_qinpos)
8053 		return (wrap_qinfifonext - wrap_qinpos);
8054 	else
8055 		return (wrap_qinfifonext
8056 		      + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8057 }
8058 
8059 static void
8060 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8061 {
8062 	struct		scb *scb;
8063 	ahd_mode_state	saved_modes;
8064 	u_int		pending_cmds;
8065 
8066 	saved_modes = ahd_save_modes(ahd);
8067 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8068 
8069 	/*
8070 	 * Don't count any commands as outstanding that the
8071 	 * sequencer has already marked for completion.
8072 	 */
8073 	ahd_flush_qoutfifo(ahd);
8074 
8075 	pending_cmds = 0;
8076 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8077 		pending_cmds++;
8078 	}
8079 	ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8080 	ahd_restore_modes(ahd, saved_modes);
8081 	ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8082 }
8083 
8084 static void
8085 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8086 {
8087 	cam_status ostat;
8088 	cam_status cstat;
8089 
8090 	ostat = ahd_get_transaction_status(scb);
8091 	if (ostat == CAM_REQ_INPROG)
8092 		ahd_set_transaction_status(scb, status);
8093 	cstat = ahd_get_transaction_status(scb);
8094 	if (cstat != CAM_REQ_CMP)
8095 		ahd_freeze_scb(scb);
8096 	ahd_done(ahd, scb);
8097 }
8098 
8099 int
8100 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8101 		   int lun, u_int tag, role_t role, uint32_t status,
8102 		   ahd_search_action action)
8103 {
8104 	struct scb	*scb;
8105 	struct scb	*mk_msg_scb;
8106 	struct scb	*prev_scb;
8107 	ahd_mode_state	 saved_modes;
8108 	u_int		 qinstart;
8109 	u_int		 qinpos;
8110 	u_int		 qintail;
8111 	u_int		 tid_next;
8112 	u_int		 tid_prev;
8113 	u_int		 scbid;
8114 	u_int		 seq_flags2;
8115 	u_int		 savedscbptr;
8116 	uint32_t	 busaddr;
8117 	int		 found;
8118 	int		 targets;
8119 
8120 	/* Must be in CCHAN mode */
8121 	saved_modes = ahd_save_modes(ahd);
8122 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8123 
8124 	/*
8125 	 * Halt any pending SCB DMA.  The sequencer will reinitiate
8126 	 * this dma if the qinfifo is not empty once we unpause.
8127 	 */
8128 	if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8129 	 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8130 		ahd_outb(ahd, CCSCBCTL,
8131 			 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8132 		while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8133 			;
8134 	}
8135 	/* Determine sequencer's position in the qinfifo. */
8136 	qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8137 	qinstart = ahd_get_snscb_qoff(ahd);
8138 	qinpos = AHD_QIN_WRAP(qinstart);
8139 	found = 0;
8140 	prev_scb = NULL;
8141 
8142 	if (action == SEARCH_PRINT) {
8143 		printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8144 		       qinstart, ahd->qinfifonext);
8145 	}
8146 
8147 	/*
8148 	 * Start with an empty queue.  Entries that are not chosen
8149 	 * for removal will be re-added to the queue as we go.
8150 	 */
8151 	ahd->qinfifonext = qinstart;
8152 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8153 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8154 
8155 	while (qinpos != qintail) {
8156 		scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8157 		if (scb == NULL) {
8158 			printk("qinpos = %d, SCB index = %d\n",
8159 				qinpos, ahd->qinfifo[qinpos]);
8160 			panic("Loop 1\n");
8161 		}
8162 
8163 		if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8164 			/*
8165 			 * We found an scb that needs to be acted on.
8166 			 */
8167 			found++;
8168 			switch (action) {
8169 			case SEARCH_COMPLETE:
8170 				if ((scb->flags & SCB_ACTIVE) == 0)
8171 					printk("Inactive SCB in qinfifo\n");
8172 				ahd_done_with_status(ahd, scb, status);
8173 				fallthrough;
8174 			case SEARCH_REMOVE:
8175 				break;
8176 			case SEARCH_PRINT:
8177 				printk(" 0x%x", ahd->qinfifo[qinpos]);
8178 				fallthrough;
8179 			case SEARCH_COUNT:
8180 				ahd_qinfifo_requeue(ahd, prev_scb, scb);
8181 				prev_scb = scb;
8182 				break;
8183 			}
8184 		} else {
8185 			ahd_qinfifo_requeue(ahd, prev_scb, scb);
8186 			prev_scb = scb;
8187 		}
8188 		qinpos = AHD_QIN_WRAP(qinpos+1);
8189 	}
8190 
8191 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8192 
8193 	if (action == SEARCH_PRINT)
8194 		printk("\nWAITING_TID_QUEUES:\n");
8195 
8196 	/*
8197 	 * Search waiting for selection lists.  We traverse the
8198 	 * list of "their ids" waiting for selection and, if
8199 	 * appropriate, traverse the SCBs of each "their id"
8200 	 * looking for matches.
8201 	 */
8202 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8203 	seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8204 	if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8205 		scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8206 		mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8207 	} else
8208 		mk_msg_scb = NULL;
8209 	savedscbptr = ahd_get_scbptr(ahd);
8210 	tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8211 	tid_prev = SCB_LIST_NULL;
8212 	targets = 0;
8213 	for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8214 		u_int tid_head;
8215 		u_int tid_tail;
8216 
8217 		targets++;
8218 		if (targets > AHD_NUM_TARGETS)
8219 			panic("TID LIST LOOP");
8220 
8221 		if (scbid >= ahd->scb_data.numscbs) {
8222 			printk("%s: Waiting TID List inconsistency. "
8223 			       "SCB index == 0x%x, yet numscbs == 0x%x.",
8224 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8225 			ahd_dump_card_state(ahd);
8226 			panic("for safety");
8227 		}
8228 		scb = ahd_lookup_scb(ahd, scbid);
8229 		if (scb == NULL) {
8230 			printk("%s: SCB = 0x%x Not Active!\n",
8231 			       ahd_name(ahd), scbid);
8232 			panic("Waiting TID List traversal\n");
8233 		}
8234 		ahd_set_scbptr(ahd, scbid);
8235 		tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8236 		if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8237 				  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8238 			tid_prev = scbid;
8239 			continue;
8240 		}
8241 
8242 		/*
8243 		 * We found a list of scbs that needs to be searched.
8244 		 */
8245 		if (action == SEARCH_PRINT)
8246 			printk("       %d ( ", SCB_GET_TARGET(ahd, scb));
8247 		tid_head = scbid;
8248 		found += ahd_search_scb_list(ahd, target, channel,
8249 					     lun, tag, role, status,
8250 					     action, &tid_head, &tid_tail,
8251 					     SCB_GET_TARGET(ahd, scb));
8252 		/*
8253 		 * Check any MK_MESSAGE SCB that is still waiting to
8254 		 * enter this target's waiting for selection queue.
8255 		 */
8256 		if (mk_msg_scb != NULL
8257 		 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8258 				  lun, tag, role)) {
8259 
8260 			/*
8261 			 * We found an scb that needs to be acted on.
8262 			 */
8263 			found++;
8264 			switch (action) {
8265 			case SEARCH_COMPLETE:
8266 				if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8267 					printk("Inactive SCB pending MK_MSG\n");
8268 				ahd_done_with_status(ahd, mk_msg_scb, status);
8269 				fallthrough;
8270 			case SEARCH_REMOVE:
8271 			{
8272 				u_int tail_offset;
8273 
8274 				printk("Removing MK_MSG scb\n");
8275 
8276 				/*
8277 				 * Reset our tail to the tail of the
8278 				 * main per-target list.
8279 				 */
8280 				tail_offset = WAITING_SCB_TAILS
8281 				    + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8282 				ahd_outw(ahd, tail_offset, tid_tail);
8283 
8284 				seq_flags2 &= ~PENDING_MK_MESSAGE;
8285 				ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8286 				ahd_outw(ahd, CMDS_PENDING,
8287 					 ahd_inw(ahd, CMDS_PENDING)-1);
8288 				mk_msg_scb = NULL;
8289 				break;
8290 			}
8291 			case SEARCH_PRINT:
8292 				printk(" 0x%x", SCB_GET_TAG(scb));
8293 				fallthrough;
8294 			case SEARCH_COUNT:
8295 				break;
8296 			}
8297 		}
8298 
8299 		if (mk_msg_scb != NULL
8300 		 && SCBID_IS_NULL(tid_head)
8301 		 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8302 				  SCB_LIST_NULL, ROLE_UNKNOWN)) {
8303 
8304 			/*
8305 			 * When removing the last SCB for a target
8306 			 * queue with a pending MK_MESSAGE scb, we
8307 			 * must queue the MK_MESSAGE scb.
8308 			 */
8309 			printk("Queueing mk_msg_scb\n");
8310 			tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8311 			seq_flags2 &= ~PENDING_MK_MESSAGE;
8312 			ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8313 			mk_msg_scb = NULL;
8314 		}
8315 		if (tid_head != scbid)
8316 			ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8317 		if (!SCBID_IS_NULL(tid_head))
8318 			tid_prev = tid_head;
8319 		if (action == SEARCH_PRINT)
8320 			printk(")\n");
8321 	}
8322 
8323 	/* Restore saved state. */
8324 	ahd_set_scbptr(ahd, savedscbptr);
8325 	ahd_restore_modes(ahd, saved_modes);
8326 	return (found);
8327 }
8328 
8329 static int
8330 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8331 		    int lun, u_int tag, role_t role, uint32_t status,
8332 		    ahd_search_action action, u_int *list_head,
8333 		    u_int *list_tail, u_int tid)
8334 {
8335 	struct	scb *scb;
8336 	u_int	scbid;
8337 	u_int	next;
8338 	u_int	prev;
8339 	int	found;
8340 
8341 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8342 	found = 0;
8343 	prev = SCB_LIST_NULL;
8344 	next = *list_head;
8345 	*list_tail = SCB_LIST_NULL;
8346 	for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8347 		if (scbid >= ahd->scb_data.numscbs) {
8348 			printk("%s:SCB List inconsistency. "
8349 			       "SCB == 0x%x, yet numscbs == 0x%x.",
8350 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8351 			ahd_dump_card_state(ahd);
8352 			panic("for safety");
8353 		}
8354 		scb = ahd_lookup_scb(ahd, scbid);
8355 		if (scb == NULL) {
8356 			printk("%s: SCB = %d Not Active!\n",
8357 			       ahd_name(ahd), scbid);
8358 			panic("Waiting List traversal\n");
8359 		}
8360 		ahd_set_scbptr(ahd, scbid);
8361 		*list_tail = scbid;
8362 		next = ahd_inw_scbram(ahd, SCB_NEXT);
8363 		if (ahd_match_scb(ahd, scb, target, channel,
8364 				  lun, SCB_LIST_NULL, role) == 0) {
8365 			prev = scbid;
8366 			continue;
8367 		}
8368 		found++;
8369 		switch (action) {
8370 		case SEARCH_COMPLETE:
8371 			if ((scb->flags & SCB_ACTIVE) == 0)
8372 				printk("Inactive SCB in Waiting List\n");
8373 			ahd_done_with_status(ahd, scb, status);
8374 			fallthrough;
8375 		case SEARCH_REMOVE:
8376 			ahd_rem_wscb(ahd, scbid, prev, next, tid);
8377 			*list_tail = prev;
8378 			if (SCBID_IS_NULL(prev))
8379 				*list_head = next;
8380 			break;
8381 		case SEARCH_PRINT:
8382 			printk("0x%x ", scbid);
8383 			fallthrough;
8384 		case SEARCH_COUNT:
8385 			prev = scbid;
8386 			break;
8387 		}
8388 		if (found > AHD_SCB_MAX)
8389 			panic("SCB LIST LOOP");
8390 	}
8391 	if (action == SEARCH_COMPLETE
8392 	 || action == SEARCH_REMOVE)
8393 		ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8394 	return (found);
8395 }
8396 
8397 static void
8398 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8399 		    u_int tid_cur, u_int tid_next)
8400 {
8401 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8402 
8403 	if (SCBID_IS_NULL(tid_cur)) {
8404 
8405 		/* Bypass current TID list */
8406 		if (SCBID_IS_NULL(tid_prev)) {
8407 			ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8408 		} else {
8409 			ahd_set_scbptr(ahd, tid_prev);
8410 			ahd_outw(ahd, SCB_NEXT2, tid_next);
8411 		}
8412 		if (SCBID_IS_NULL(tid_next))
8413 			ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8414 	} else {
8415 
8416 		/* Stitch through tid_cur */
8417 		if (SCBID_IS_NULL(tid_prev)) {
8418 			ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8419 		} else {
8420 			ahd_set_scbptr(ahd, tid_prev);
8421 			ahd_outw(ahd, SCB_NEXT2, tid_cur);
8422 		}
8423 		ahd_set_scbptr(ahd, tid_cur);
8424 		ahd_outw(ahd, SCB_NEXT2, tid_next);
8425 
8426 		if (SCBID_IS_NULL(tid_next))
8427 			ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8428 	}
8429 }
8430 
8431 /*
8432  * Manipulate the waiting for selection list and return the
8433  * scb that follows the one that we remove.
8434  */
8435 static u_int
8436 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8437 	     u_int prev, u_int next, u_int tid)
8438 {
8439 	u_int tail_offset;
8440 
8441 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8442 	if (!SCBID_IS_NULL(prev)) {
8443 		ahd_set_scbptr(ahd, prev);
8444 		ahd_outw(ahd, SCB_NEXT, next);
8445 	}
8446 
8447 	/*
8448 	 * SCBs that have MK_MESSAGE set in them may
8449 	 * cause the tail pointer to be updated without
8450 	 * setting the next pointer of the previous tail.
8451 	 * Only clear the tail if the removed SCB was
8452 	 * the tail.
8453 	 */
8454 	tail_offset = WAITING_SCB_TAILS + (2 * tid);
8455 	if (SCBID_IS_NULL(next)
8456 	 && ahd_inw(ahd, tail_offset) == scbid)
8457 		ahd_outw(ahd, tail_offset, prev);
8458 
8459 	ahd_add_scb_to_free_list(ahd, scbid);
8460 	return (next);
8461 }
8462 
8463 /*
8464  * Add the SCB as selected by SCBPTR onto the on chip list of
8465  * free hardware SCBs.  This list is empty/unused if we are not
8466  * performing SCB paging.
8467  */
8468 static void
8469 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8470 {
8471 /* XXX Need some other mechanism to designate "free". */
8472 	/*
8473 	 * Invalidate the tag so that our abort
8474 	 * routines don't think it's active.
8475 	ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8476 	 */
8477 }
8478 
8479 /******************************** Error Handling ******************************/
8480 /*
8481  * Abort all SCBs that match the given description (target/channel/lun/tag),
8482  * setting their status to the passed in status if the status has not already
8483  * been modified from CAM_REQ_INPROG.  This routine assumes that the sequencer
8484  * is paused before it is called.
8485  */
8486 static int
8487 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8488 	       int lun, u_int tag, role_t role, uint32_t status)
8489 {
8490 	struct		scb *scbp;
8491 	struct		scb *scbp_next;
8492 	u_int		i, j;
8493 	u_int		maxtarget;
8494 	u_int		minlun;
8495 	u_int		maxlun;
8496 	int		found;
8497 	ahd_mode_state	saved_modes;
8498 
8499 	/* restore this when we're done */
8500 	saved_modes = ahd_save_modes(ahd);
8501 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8502 
8503 	found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8504 				   role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8505 
8506 	/*
8507 	 * Clean out the busy target table for any untagged commands.
8508 	 */
8509 	i = 0;
8510 	maxtarget = 16;
8511 	if (target != CAM_TARGET_WILDCARD) {
8512 		i = target;
8513 		if (channel == 'B')
8514 			i += 8;
8515 		maxtarget = i + 1;
8516 	}
8517 
8518 	if (lun == CAM_LUN_WILDCARD) {
8519 		minlun = 0;
8520 		maxlun = AHD_NUM_LUNS_NONPKT;
8521 	} else if (lun >= AHD_NUM_LUNS_NONPKT) {
8522 		minlun = maxlun = 0;
8523 	} else {
8524 		minlun = lun;
8525 		maxlun = lun + 1;
8526 	}
8527 
8528 	if (role != ROLE_TARGET) {
8529 		for (;i < maxtarget; i++) {
8530 			for (j = minlun;j < maxlun; j++) {
8531 				u_int scbid;
8532 				u_int tcl;
8533 
8534 				tcl = BUILD_TCL_RAW(i, 'A', j);
8535 				scbid = ahd_find_busy_tcl(ahd, tcl);
8536 				scbp = ahd_lookup_scb(ahd, scbid);
8537 				if (scbp == NULL
8538 				 || ahd_match_scb(ahd, scbp, target, channel,
8539 						  lun, tag, role) == 0)
8540 					continue;
8541 				ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8542 			}
8543 		}
8544 	}
8545 
8546 	/*
8547 	 * Don't abort commands that have already completed,
8548 	 * but haven't quite made it up to the host yet.
8549 	 */
8550 	ahd_flush_qoutfifo(ahd);
8551 
8552 	/*
8553 	 * Go through the pending CCB list and look for
8554 	 * commands for this target that are still active.
8555 	 * These are other tagged commands that were
8556 	 * disconnected when the reset occurred.
8557 	 */
8558 	scbp_next = LIST_FIRST(&ahd->pending_scbs);
8559 	while (scbp_next != NULL) {
8560 		scbp = scbp_next;
8561 		scbp_next = LIST_NEXT(scbp, pending_links);
8562 		if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8563 			cam_status ostat;
8564 
8565 			ostat = ahd_get_transaction_status(scbp);
8566 			if (ostat == CAM_REQ_INPROG)
8567 				ahd_set_transaction_status(scbp, status);
8568 			if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8569 				ahd_freeze_scb(scbp);
8570 			if ((scbp->flags & SCB_ACTIVE) == 0)
8571 				printk("Inactive SCB on pending list\n");
8572 			ahd_done(ahd, scbp);
8573 			found++;
8574 		}
8575 	}
8576 	ahd_restore_modes(ahd, saved_modes);
8577 	ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8578 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
8579 	return found;
8580 }
8581 
8582 static void
8583 ahd_reset_current_bus(struct ahd_softc *ahd)
8584 {
8585 	uint8_t scsiseq;
8586 
8587 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8588 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8589 	scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8590 	ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8591 	ahd_flush_device_writes(ahd);
8592 	ahd_delay(AHD_BUSRESET_DELAY);
8593 	/* Turn off the bus reset */
8594 	ahd_outb(ahd, SCSISEQ0, scsiseq);
8595 	ahd_flush_device_writes(ahd);
8596 	ahd_delay(AHD_BUSRESET_DELAY);
8597 	if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8598 		/*
8599 		 * 2A Razor #474
8600 		 * Certain chip state is not cleared for
8601 		 * SCSI bus resets that we initiate, so
8602 		 * we must reset the chip.
8603 		 */
8604 		ahd_reset(ahd, /*reinit*/TRUE);
8605 		ahd_intr_enable(ahd, /*enable*/TRUE);
8606 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8607 	}
8608 
8609 	ahd_clear_intstat(ahd);
8610 }
8611 
8612 int
8613 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8614 {
8615 	struct	ahd_devinfo caminfo;
8616 	u_int	initiator;
8617 	u_int	target;
8618 	u_int	max_scsiid;
8619 	int	found;
8620 	u_int	fifo;
8621 	u_int	next_fifo;
8622 	uint8_t scsiseq;
8623 
8624 	/*
8625 	 * Check if the last bus reset is cleared
8626 	 */
8627 	if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8628 		printk("%s: bus reset still active\n",
8629 		       ahd_name(ahd));
8630 		return 0;
8631 	}
8632 	ahd->flags |= AHD_BUS_RESET_ACTIVE;
8633 
8634 	ahd->pending_device = NULL;
8635 
8636 	ahd_compile_devinfo(&caminfo,
8637 			    CAM_TARGET_WILDCARD,
8638 			    CAM_TARGET_WILDCARD,
8639 			    CAM_LUN_WILDCARD,
8640 			    channel, ROLE_UNKNOWN);
8641 	ahd_pause(ahd);
8642 
8643 	/* Make sure the sequencer is in a safe location. */
8644 	ahd_clear_critical_section(ahd);
8645 
8646 	/*
8647 	 * Run our command complete fifos to ensure that we perform
8648 	 * completion processing on any commands that 'completed'
8649 	 * before the reset occurred.
8650 	 */
8651 	ahd_run_qoutfifo(ahd);
8652 #ifdef AHD_TARGET_MODE
8653 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
8654 		ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8655 	}
8656 #endif
8657 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8658 
8659 	/*
8660 	 * Disable selections so no automatic hardware
8661 	 * functions will modify chip state.
8662 	 */
8663 	ahd_outb(ahd, SCSISEQ0, 0);
8664 	ahd_outb(ahd, SCSISEQ1, 0);
8665 
8666 	/*
8667 	 * Safely shut down our DMA engines.  Always start with
8668 	 * the FIFO that is not currently active (if any are
8669 	 * actively connected).
8670 	 */
8671 	next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8672 	if (next_fifo > CURRFIFO_1)
8673 		/* If disconneced, arbitrarily start with FIFO1. */
8674 		next_fifo = fifo = 0;
8675 	do {
8676 		next_fifo ^= CURRFIFO_1;
8677 		ahd_set_modes(ahd, next_fifo, next_fifo);
8678 		ahd_outb(ahd, DFCNTRL,
8679 			 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8680 		while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8681 			ahd_delay(10);
8682 		/*
8683 		 * Set CURRFIFO to the now inactive channel.
8684 		 */
8685 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8686 		ahd_outb(ahd, DFFSTAT, next_fifo);
8687 	} while (next_fifo != fifo);
8688 
8689 	/*
8690 	 * Reset the bus if we are initiating this reset
8691 	 */
8692 	ahd_clear_msg_state(ahd);
8693 	ahd_outb(ahd, SIMODE1,
8694 		 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8695 
8696 	if (initiate_reset)
8697 		ahd_reset_current_bus(ahd);
8698 
8699 	ahd_clear_intstat(ahd);
8700 
8701 	/*
8702 	 * Clean up all the state information for the
8703 	 * pending transactions on this bus.
8704 	 */
8705 	found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8706 			       CAM_LUN_WILDCARD, SCB_LIST_NULL,
8707 			       ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8708 
8709 	/*
8710 	 * Cleanup anything left in the FIFOs.
8711 	 */
8712 	ahd_clear_fifo(ahd, 0);
8713 	ahd_clear_fifo(ahd, 1);
8714 
8715 	/*
8716 	 * Clear SCSI interrupt status
8717 	 */
8718 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8719 
8720 	/*
8721 	 * Reenable selections
8722 	 */
8723 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8724 	scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8725 	ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8726 
8727 	max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8728 #ifdef AHD_TARGET_MODE
8729 	/*
8730 	 * Send an immediate notify ccb to all target more peripheral
8731 	 * drivers affected by this action.
8732 	 */
8733 	for (target = 0; target <= max_scsiid; target++) {
8734 		struct ahd_tmode_tstate* tstate;
8735 		u_int lun;
8736 
8737 		tstate = ahd->enabled_targets[target];
8738 		if (tstate == NULL)
8739 			continue;
8740 		for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8741 			struct ahd_tmode_lstate* lstate;
8742 
8743 			lstate = tstate->enabled_luns[lun];
8744 			if (lstate == NULL)
8745 				continue;
8746 
8747 			ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8748 					       EVENT_TYPE_BUS_RESET, /*arg*/0);
8749 			ahd_send_lstate_events(ahd, lstate);
8750 		}
8751 	}
8752 #endif
8753 	/*
8754 	 * Revert to async/narrow transfers until we renegotiate.
8755 	 */
8756 	for (target = 0; target <= max_scsiid; target++) {
8757 
8758 		if (ahd->enabled_targets[target] == NULL)
8759 			continue;
8760 		for (initiator = 0; initiator <= max_scsiid; initiator++) {
8761 			struct ahd_devinfo devinfo;
8762 
8763 			ahd_compile_devinfo(&devinfo, target, initiator,
8764 					    CAM_LUN_WILDCARD,
8765 					    'A', ROLE_UNKNOWN);
8766 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8767 				      AHD_TRANS_CUR, /*paused*/TRUE);
8768 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8769 					 /*offset*/0, /*ppr_options*/0,
8770 					 AHD_TRANS_CUR, /*paused*/TRUE);
8771 		}
8772 	}
8773 
8774 	/* Notify the XPT that a bus reset occurred */
8775 	ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8776 		       CAM_LUN_WILDCARD, AC_BUS_RESET);
8777 
8778 	ahd_restart(ahd);
8779 
8780 	return (found);
8781 }
8782 
8783 /**************************** Statistics Processing ***************************/
8784 static void
8785 ahd_stat_timer(struct timer_list *t)
8786 {
8787 	struct	ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8788 	u_long	s;
8789 	int	enint_coal;
8790 
8791 	ahd_lock(ahd, &s);
8792 
8793 	enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8794 	if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8795 		enint_coal |= ENINT_COALESCE;
8796 	else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8797 		enint_coal &= ~ENINT_COALESCE;
8798 
8799 	if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8800 		ahd_enable_coalescing(ahd, enint_coal);
8801 #ifdef AHD_DEBUG
8802 		if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8803 			printk("%s: Interrupt coalescing "
8804 			       "now %sabled. Cmds %d\n",
8805 			       ahd_name(ahd),
8806 			       (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8807 			       ahd->cmdcmplt_total);
8808 #endif
8809 	}
8810 
8811 	ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8812 	ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8813 	ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8814 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8815 	ahd_unlock(ahd, &s);
8816 }
8817 
8818 /****************************** Status Processing *****************************/
8819 
8820 static void
8821 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8822 {
8823 	struct	hardware_scb *hscb;
8824 	int	paused;
8825 
8826 	/*
8827 	 * The sequencer freezes its select-out queue
8828 	 * anytime a SCSI status error occurs.  We must
8829 	 * handle the error and increment our qfreeze count
8830 	 * to allow the sequencer to continue.  We don't
8831 	 * bother clearing critical sections here since all
8832 	 * operations are on data structures that the sequencer
8833 	 * is not touching once the queue is frozen.
8834 	 */
8835 	hscb = scb->hscb;
8836 
8837 	if (ahd_is_paused(ahd)) {
8838 		paused = 1;
8839 	} else {
8840 		paused = 0;
8841 		ahd_pause(ahd);
8842 	}
8843 
8844 	/* Freeze the queue until the client sees the error. */
8845 	ahd_freeze_devq(ahd, scb);
8846 	ahd_freeze_scb(scb);
8847 	ahd->qfreeze_cnt++;
8848 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8849 
8850 	if (paused == 0)
8851 		ahd_unpause(ahd);
8852 
8853 	/* Don't want to clobber the original sense code */
8854 	if ((scb->flags & SCB_SENSE) != 0) {
8855 		/*
8856 		 * Clear the SCB_SENSE Flag and perform
8857 		 * a normal command completion.
8858 		 */
8859 		scb->flags &= ~SCB_SENSE;
8860 		ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8861 		ahd_done(ahd, scb);
8862 		return;
8863 	}
8864 	ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8865 	ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8866 	switch (hscb->shared_data.istatus.scsi_status) {
8867 	case STATUS_PKT_SENSE:
8868 	{
8869 		struct scsi_status_iu_header *siu;
8870 
8871 		ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8872 		siu = (struct scsi_status_iu_header *)scb->sense_data;
8873 		ahd_set_scsi_status(scb, siu->status);
8874 #ifdef AHD_DEBUG
8875 		if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8876 			ahd_print_path(ahd, scb);
8877 			printk("SCB 0x%x Received PKT Status of 0x%x\n",
8878 			       SCB_GET_TAG(scb), siu->status);
8879 			printk("\tflags = 0x%x, sense len = 0x%x, "
8880 			       "pktfail = 0x%x\n",
8881 			       siu->flags, scsi_4btoul(siu->sense_length),
8882 			       scsi_4btoul(siu->pkt_failures_length));
8883 		}
8884 #endif
8885 		if ((siu->flags & SIU_RSPVALID) != 0) {
8886 			ahd_print_path(ahd, scb);
8887 			if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8888 				printk("Unable to parse pkt_failures\n");
8889 			} else {
8890 
8891 				switch (SIU_PKTFAIL_CODE(siu)) {
8892 				case SIU_PFC_NONE:
8893 					printk("No packet failure found\n");
8894 					break;
8895 				case SIU_PFC_CIU_FIELDS_INVALID:
8896 					printk("Invalid Command IU Field\n");
8897 					break;
8898 				case SIU_PFC_TMF_NOT_SUPPORTED:
8899 					printk("TMF not supported\n");
8900 					break;
8901 				case SIU_PFC_TMF_FAILED:
8902 					printk("TMF failed\n");
8903 					break;
8904 				case SIU_PFC_INVALID_TYPE_CODE:
8905 					printk("Invalid L_Q Type code\n");
8906 					break;
8907 				case SIU_PFC_ILLEGAL_REQUEST:
8908 					printk("Illegal request\n");
8909 					break;
8910 				default:
8911 					break;
8912 				}
8913 			}
8914 			if (siu->status == SAM_STAT_GOOD)
8915 				ahd_set_transaction_status(scb,
8916 							   CAM_REQ_CMP_ERR);
8917 		}
8918 		if ((siu->flags & SIU_SNSVALID) != 0) {
8919 			scb->flags |= SCB_PKT_SENSE;
8920 #ifdef AHD_DEBUG
8921 			if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8922 				printk("Sense data available\n");
8923 #endif
8924 		}
8925 		ahd_done(ahd, scb);
8926 		break;
8927 	}
8928 	case SAM_STAT_COMMAND_TERMINATED:
8929 	case SAM_STAT_CHECK_CONDITION:
8930 	{
8931 		struct ahd_devinfo devinfo;
8932 		struct ahd_dma_seg *sg;
8933 		struct scsi_sense *sc;
8934 		struct ahd_initiator_tinfo *targ_info;
8935 		struct ahd_tmode_tstate *tstate;
8936 		struct ahd_transinfo *tinfo;
8937 #ifdef AHD_DEBUG
8938 		if (ahd_debug & AHD_SHOW_SENSE) {
8939 			ahd_print_path(ahd, scb);
8940 			printk("SCB %d: requests Check Status\n",
8941 			       SCB_GET_TAG(scb));
8942 		}
8943 #endif
8944 
8945 		if (ahd_perform_autosense(scb) == 0)
8946 			break;
8947 
8948 		ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8949 				    SCB_GET_TARGET(ahd, scb),
8950 				    SCB_GET_LUN(scb),
8951 				    SCB_GET_CHANNEL(ahd, scb),
8952 				    ROLE_INITIATOR);
8953 		targ_info = ahd_fetch_transinfo(ahd,
8954 						devinfo.channel,
8955 						devinfo.our_scsiid,
8956 						devinfo.target,
8957 						&tstate);
8958 		tinfo = &targ_info->curr;
8959 		sg = scb->sg_list;
8960 		sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8961 		/*
8962 		 * Save off the residual if there is one.
8963 		 */
8964 		ahd_update_residual(ahd, scb);
8965 #ifdef AHD_DEBUG
8966 		if (ahd_debug & AHD_SHOW_SENSE) {
8967 			ahd_print_path(ahd, scb);
8968 			printk("Sending Sense\n");
8969 		}
8970 #endif
8971 		scb->sg_count = 0;
8972 		sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8973 				  ahd_get_sense_bufsize(ahd, scb),
8974 				  /*last*/TRUE);
8975 		sc->opcode = REQUEST_SENSE;
8976 		sc->byte2 = 0;
8977 		if (tinfo->protocol_version <= SCSI_REV_2
8978 		 && SCB_GET_LUN(scb) < 8)
8979 			sc->byte2 = SCB_GET_LUN(scb) << 5;
8980 		sc->unused[0] = 0;
8981 		sc->unused[1] = 0;
8982 		sc->length = ahd_get_sense_bufsize(ahd, scb);
8983 		sc->control = 0;
8984 
8985 		/*
8986 		 * We can't allow the target to disconnect.
8987 		 * This will be an untagged transaction and
8988 		 * having the target disconnect will make this
8989 		 * transaction indestinguishable from outstanding
8990 		 * tagged transactions.
8991 		 */
8992 		hscb->control = 0;
8993 
8994 		/*
8995 		 * This request sense could be because the
8996 		 * the device lost power or in some other
8997 		 * way has lost our transfer negotiations.
8998 		 * Renegotiate if appropriate.  Unit attention
8999 		 * errors will be reported before any data
9000 		 * phases occur.
9001 		 */
9002 		if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9003 			ahd_update_neg_request(ahd, &devinfo,
9004 					       tstate, targ_info,
9005 					       AHD_NEG_IF_NON_ASYNC);
9006 		}
9007 		if (tstate->auto_negotiate & devinfo.target_mask) {
9008 			hscb->control |= MK_MESSAGE;
9009 			scb->flags &=
9010 			    ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9011 			scb->flags |= SCB_AUTO_NEGOTIATE;
9012 		}
9013 		hscb->cdb_len = sizeof(*sc);
9014 		ahd_setup_data_scb(ahd, scb);
9015 		scb->flags |= SCB_SENSE;
9016 		ahd_queue_scb(ahd, scb);
9017 		break;
9018 	}
9019 	case SAM_STAT_GOOD:
9020 		printk("%s: Interrupted for status of 0???\n",
9021 		       ahd_name(ahd));
9022 		fallthrough;
9023 	default:
9024 		ahd_done(ahd, scb);
9025 		break;
9026 	}
9027 }
9028 
9029 static void
9030 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9031 {
9032 	if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9033 		ahd_handle_scsi_status(ahd, scb);
9034 	} else {
9035 		ahd_calc_residual(ahd, scb);
9036 		ahd_done(ahd, scb);
9037 	}
9038 }
9039 
9040 /*
9041  * Calculate the residual for a just completed SCB.
9042  */
9043 static void
9044 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9045 {
9046 	struct hardware_scb *hscb;
9047 	struct initiator_status *spkt;
9048 	uint32_t sgptr;
9049 	uint32_t resid_sgptr;
9050 	uint32_t resid;
9051 
9052 	/*
9053 	 * 5 cases.
9054 	 * 1) No residual.
9055 	 *    SG_STATUS_VALID clear in sgptr.
9056 	 * 2) Transferless command
9057 	 * 3) Never performed any transfers.
9058 	 *    sgptr has SG_FULL_RESID set.
9059 	 * 4) No residual but target did not
9060 	 *    save data pointers after the
9061 	 *    last transfer, so sgptr was
9062 	 *    never updated.
9063 	 * 5) We have a partial residual.
9064 	 *    Use residual_sgptr to determine
9065 	 *    where we are.
9066 	 */
9067 
9068 	hscb = scb->hscb;
9069 	sgptr = ahd_le32toh(hscb->sgptr);
9070 	if ((sgptr & SG_STATUS_VALID) == 0)
9071 		/* Case 1 */
9072 		return;
9073 	sgptr &= ~SG_STATUS_VALID;
9074 
9075 	if ((sgptr & SG_LIST_NULL) != 0)
9076 		/* Case 2 */
9077 		return;
9078 
9079 	/*
9080 	 * Residual fields are the same in both
9081 	 * target and initiator status packets,
9082 	 * so we can always use the initiator fields
9083 	 * regardless of the role for this SCB.
9084 	 */
9085 	spkt = &hscb->shared_data.istatus;
9086 	resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9087 	if ((sgptr & SG_FULL_RESID) != 0) {
9088 		/* Case 3 */
9089 		resid = ahd_get_transfer_length(scb);
9090 	} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9091 		/* Case 4 */
9092 		return;
9093 	} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9094 		ahd_print_path(ahd, scb);
9095 		printk("data overrun detected Tag == 0x%x.\n",
9096 		       SCB_GET_TAG(scb));
9097 		ahd_freeze_devq(ahd, scb);
9098 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9099 		ahd_freeze_scb(scb);
9100 		return;
9101 	} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9102 		panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9103 		/* NOTREACHED */
9104 	} else {
9105 		struct ahd_dma_seg *sg;
9106 
9107 		/*
9108 		 * Remainder of the SG where the transfer
9109 		 * stopped.
9110 		 */
9111 		resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9112 		sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9113 
9114 		/* The residual sg_ptr always points to the next sg */
9115 		sg--;
9116 
9117 		/*
9118 		 * Add up the contents of all residual
9119 		 * SG segments that are after the SG where
9120 		 * the transfer stopped.
9121 		 */
9122 		while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9123 			sg++;
9124 			resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9125 		}
9126 	}
9127 	if ((scb->flags & SCB_SENSE) == 0)
9128 		ahd_set_residual(scb, resid);
9129 	else
9130 		ahd_set_sense_residual(scb, resid);
9131 
9132 #ifdef AHD_DEBUG
9133 	if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9134 		ahd_print_path(ahd, scb);
9135 		printk("Handled %sResidual of %d bytes\n",
9136 		       (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9137 	}
9138 #endif
9139 }
9140 
9141 /******************************* Target Mode **********************************/
9142 #ifdef AHD_TARGET_MODE
9143 /*
9144  * Add a target mode event to this lun's queue
9145  */
9146 static void
9147 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9148 		       u_int initiator_id, u_int event_type, u_int event_arg)
9149 {
9150 	struct ahd_tmode_event *event;
9151 	int pending;
9152 
9153 	xpt_freeze_devq(lstate->path, /*count*/1);
9154 	if (lstate->event_w_idx >= lstate->event_r_idx)
9155 		pending = lstate->event_w_idx - lstate->event_r_idx;
9156 	else
9157 		pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9158 			- (lstate->event_r_idx - lstate->event_w_idx);
9159 
9160 	if (event_type == EVENT_TYPE_BUS_RESET
9161 	 || event_type == TARGET_RESET) {
9162 		/*
9163 		 * Any earlier events are irrelevant, so reset our buffer.
9164 		 * This has the effect of allowing us to deal with reset
9165 		 * floods (an external device holding down the reset line)
9166 		 * without losing the event that is really interesting.
9167 		 */
9168 		lstate->event_r_idx = 0;
9169 		lstate->event_w_idx = 0;
9170 		xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9171 	}
9172 
9173 	if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9174 		xpt_print_path(lstate->path);
9175 		printk("immediate event %x:%x lost\n",
9176 		       lstate->event_buffer[lstate->event_r_idx].event_type,
9177 		       lstate->event_buffer[lstate->event_r_idx].event_arg);
9178 		lstate->event_r_idx++;
9179 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9180 			lstate->event_r_idx = 0;
9181 		xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9182 	}
9183 
9184 	event = &lstate->event_buffer[lstate->event_w_idx];
9185 	event->initiator_id = initiator_id;
9186 	event->event_type = event_type;
9187 	event->event_arg = event_arg;
9188 	lstate->event_w_idx++;
9189 	if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9190 		lstate->event_w_idx = 0;
9191 }
9192 
9193 /*
9194  * Send any target mode events queued up waiting
9195  * for immediate notify resources.
9196  */
9197 void
9198 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9199 {
9200 	struct ccb_hdr *ccbh;
9201 	struct ccb_immed_notify *inot;
9202 
9203 	while (lstate->event_r_idx != lstate->event_w_idx
9204 	    && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9205 		struct ahd_tmode_event *event;
9206 
9207 		event = &lstate->event_buffer[lstate->event_r_idx];
9208 		SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9209 		inot = (struct ccb_immed_notify *)ccbh;
9210 		switch (event->event_type) {
9211 		case EVENT_TYPE_BUS_RESET:
9212 			ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9213 			break;
9214 		default:
9215 			ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9216 			inot->message_args[0] = event->event_type;
9217 			inot->message_args[1] = event->event_arg;
9218 			break;
9219 		}
9220 		inot->initiator_id = event->initiator_id;
9221 		inot->sense_len = 0;
9222 		xpt_done((union ccb *)inot);
9223 		lstate->event_r_idx++;
9224 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9225 			lstate->event_r_idx = 0;
9226 	}
9227 }
9228 #endif
9229 
9230 /******************** Sequencer Program Patching/Download *********************/
9231 
9232 #ifdef AHD_DUMP_SEQ
9233 void
9234 ahd_dumpseq(struct ahd_softc* ahd)
9235 {
9236 	int i;
9237 	int max_prog;
9238 
9239 	max_prog = 2048;
9240 
9241 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9242 	ahd_outw(ahd, PRGMCNT, 0);
9243 	for (i = 0; i < max_prog; i++) {
9244 		uint8_t ins_bytes[4];
9245 
9246 		ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9247 		printk("0x%08x\n", ins_bytes[0] << 24
9248 				 | ins_bytes[1] << 16
9249 				 | ins_bytes[2] << 8
9250 				 | ins_bytes[3]);
9251 	}
9252 }
9253 #endif
9254 
9255 static void
9256 ahd_loadseq(struct ahd_softc *ahd)
9257 {
9258 	struct	cs cs_table[NUM_CRITICAL_SECTIONS];
9259 	u_int	begin_set[NUM_CRITICAL_SECTIONS];
9260 	u_int	end_set[NUM_CRITICAL_SECTIONS];
9261 	const struct patch *cur_patch;
9262 	u_int	cs_count;
9263 	u_int	cur_cs;
9264 	u_int	i;
9265 	int	downloaded;
9266 	u_int	skip_addr;
9267 	u_int	sg_prefetch_cnt;
9268 	u_int	sg_prefetch_cnt_limit;
9269 	u_int	sg_prefetch_align;
9270 	u_int	sg_size;
9271 	u_int	cacheline_mask;
9272 	uint8_t	download_consts[DOWNLOAD_CONST_COUNT];
9273 
9274 	if (bootverbose)
9275 		printk("%s: Downloading Sequencer Program...",
9276 		       ahd_name(ahd));
9277 
9278 #if DOWNLOAD_CONST_COUNT != 8
9279 #error "Download Const Mismatch"
9280 #endif
9281 	/*
9282 	 * Start out with 0 critical sections
9283 	 * that apply to this firmware load.
9284 	 */
9285 	cs_count = 0;
9286 	cur_cs = 0;
9287 	memset(begin_set, 0, sizeof(begin_set));
9288 	memset(end_set, 0, sizeof(end_set));
9289 
9290 	/*
9291 	 * Setup downloadable constant table.
9292 	 *
9293 	 * The computation for the S/G prefetch variables is
9294 	 * a bit complicated.  We would like to always fetch
9295 	 * in terms of cachelined sized increments.  However,
9296 	 * if the cacheline is not an even multiple of the
9297 	 * SG element size or is larger than our SG RAM, using
9298 	 * just the cache size might leave us with only a portion
9299 	 * of an SG element at the tail of a prefetch.  If the
9300 	 * cacheline is larger than our S/G prefetch buffer less
9301 	 * the size of an SG element, we may round down to a cacheline
9302 	 * that doesn't contain any or all of the S/G of interest
9303 	 * within the bounds of our S/G ram.  Provide variables to
9304 	 * the sequencer that will allow it to handle these edge
9305 	 * cases.
9306 	 */
9307 	/* Start by aligning to the nearest cacheline. */
9308 	sg_prefetch_align = ahd->pci_cachesize;
9309 	if (sg_prefetch_align == 0)
9310 		sg_prefetch_align = 8;
9311 	/* Round down to the nearest power of 2. */
9312 	while (powerof2(sg_prefetch_align) == 0)
9313 		sg_prefetch_align--;
9314 
9315 	cacheline_mask = sg_prefetch_align - 1;
9316 
9317 	/*
9318 	 * If the cacheline boundary is greater than half our prefetch RAM
9319 	 * we risk not being able to fetch even a single complete S/G
9320 	 * segment if we align to that boundary.
9321 	 */
9322 	if (sg_prefetch_align > CCSGADDR_MAX/2)
9323 		sg_prefetch_align = CCSGADDR_MAX/2;
9324 	/* Start by fetching a single cacheline. */
9325 	sg_prefetch_cnt = sg_prefetch_align;
9326 	/*
9327 	 * Increment the prefetch count by cachelines until
9328 	 * at least one S/G element will fit.
9329 	 */
9330 	sg_size = sizeof(struct ahd_dma_seg);
9331 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9332 		sg_size = sizeof(struct ahd_dma64_seg);
9333 	while (sg_prefetch_cnt < sg_size)
9334 		sg_prefetch_cnt += sg_prefetch_align;
9335 	/*
9336 	 * If the cacheline is not an even multiple of
9337 	 * the S/G size, we may only get a partial S/G when
9338 	 * we align. Add a cacheline if this is the case.
9339 	 */
9340 	if ((sg_prefetch_align % sg_size) != 0
9341 	 && (sg_prefetch_cnt < CCSGADDR_MAX))
9342 		sg_prefetch_cnt += sg_prefetch_align;
9343 	/*
9344 	 * Lastly, compute a value that the sequencer can use
9345 	 * to determine if the remainder of the CCSGRAM buffer
9346 	 * has a full S/G element in it.
9347 	 */
9348 	sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9349 	download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9350 	download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9351 	download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9352 	download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9353 	download_consts[SG_SIZEOF] = sg_size;
9354 	download_consts[PKT_OVERRUN_BUFOFFSET] =
9355 		(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9356 	download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9357 	download_consts[CACHELINE_MASK] = cacheline_mask;
9358 	cur_patch = patches;
9359 	downloaded = 0;
9360 	skip_addr = 0;
9361 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9362 	ahd_outw(ahd, PRGMCNT, 0);
9363 
9364 	for (i = 0; i < sizeof(seqprog)/4; i++) {
9365 		if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9366 			/*
9367 			 * Don't download this instruction as it
9368 			 * is in a patch that was removed.
9369 			 */
9370 			continue;
9371 		}
9372 		/*
9373 		 * Move through the CS table until we find a CS
9374 		 * that might apply to this instruction.
9375 		 */
9376 		for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9377 			if (critical_sections[cur_cs].end <= i) {
9378 				if (begin_set[cs_count] == TRUE
9379 				 && end_set[cs_count] == FALSE) {
9380 					cs_table[cs_count].end = downloaded;
9381 					end_set[cs_count] = TRUE;
9382 					cs_count++;
9383 				}
9384 				continue;
9385 			}
9386 			if (critical_sections[cur_cs].begin <= i
9387 			 && begin_set[cs_count] == FALSE) {
9388 				cs_table[cs_count].begin = downloaded;
9389 				begin_set[cs_count] = TRUE;
9390 			}
9391 			break;
9392 		}
9393 		ahd_download_instr(ahd, i, download_consts);
9394 		downloaded++;
9395 	}
9396 
9397 	ahd->num_critical_sections = cs_count;
9398 	if (cs_count != 0) {
9399 
9400 		cs_count *= sizeof(struct cs);
9401 		ahd->critical_sections = kmemdup(cs_table, cs_count, GFP_ATOMIC);
9402 		if (ahd->critical_sections == NULL)
9403 			panic("ahd_loadseq: Could not malloc");
9404 	}
9405 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9406 
9407 	if (bootverbose) {
9408 		printk(" %d instructions downloaded\n", downloaded);
9409 		printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9410 		       ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9411 	}
9412 }
9413 
9414 static int
9415 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9416 		u_int start_instr, u_int *skip_addr)
9417 {
9418 	const struct patch *cur_patch;
9419 	const struct patch *last_patch;
9420 	u_int	num_patches;
9421 
9422 	num_patches = ARRAY_SIZE(patches);
9423 	last_patch = &patches[num_patches];
9424 	cur_patch = *start_patch;
9425 
9426 	while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9427 
9428 		if (cur_patch->patch_func(ahd) == 0) {
9429 
9430 			/* Start rejecting code */
9431 			*skip_addr = start_instr + cur_patch->skip_instr;
9432 			cur_patch += cur_patch->skip_patch;
9433 		} else {
9434 			/* Accepted this patch.  Advance to the next
9435 			 * one and wait for our intruction pointer to
9436 			 * hit this point.
9437 			 */
9438 			cur_patch++;
9439 		}
9440 	}
9441 
9442 	*start_patch = cur_patch;
9443 	if (start_instr < *skip_addr)
9444 		/* Still skipping */
9445 		return (0);
9446 
9447 	return (1);
9448 }
9449 
9450 static u_int
9451 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9452 {
9453 	const struct patch *cur_patch;
9454 	int address_offset;
9455 	u_int skip_addr;
9456 	u_int i;
9457 
9458 	address_offset = 0;
9459 	cur_patch = patches;
9460 	skip_addr = 0;
9461 
9462 	for (i = 0; i < address;) {
9463 
9464 		ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9465 
9466 		if (skip_addr > i) {
9467 			int end_addr;
9468 
9469 			end_addr = min(address, skip_addr);
9470 			address_offset += end_addr - i;
9471 			i = skip_addr;
9472 		} else {
9473 			i++;
9474 		}
9475 	}
9476 	return (address - address_offset);
9477 }
9478 
9479 static void
9480 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9481 {
9482 	union	ins_formats instr;
9483 	struct	ins_format1 *fmt1_ins;
9484 	struct	ins_format3 *fmt3_ins;
9485 	u_int	opcode;
9486 
9487 	/*
9488 	 * The firmware is always compiled into a little endian format.
9489 	 */
9490 	instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9491 
9492 	fmt1_ins = &instr.format1;
9493 	fmt3_ins = NULL;
9494 
9495 	/* Pull the opcode */
9496 	opcode = instr.format1.opcode;
9497 	switch (opcode) {
9498 	case AIC_OP_JMP:
9499 	case AIC_OP_JC:
9500 	case AIC_OP_JNC:
9501 	case AIC_OP_CALL:
9502 	case AIC_OP_JNE:
9503 	case AIC_OP_JNZ:
9504 	case AIC_OP_JE:
9505 	case AIC_OP_JZ:
9506 	{
9507 		fmt3_ins = &instr.format3;
9508 		fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9509 	}
9510 		fallthrough;
9511 	case AIC_OP_OR:
9512 	case AIC_OP_AND:
9513 	case AIC_OP_XOR:
9514 	case AIC_OP_ADD:
9515 	case AIC_OP_ADC:
9516 	case AIC_OP_BMOV:
9517 		if (fmt1_ins->parity != 0) {
9518 			fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9519 		}
9520 		fmt1_ins->parity = 0;
9521 		fallthrough;
9522 	case AIC_OP_ROL:
9523 	{
9524 		int i, count;
9525 
9526 		/* Calculate odd parity for the instruction */
9527 		for (i = 0, count = 0; i < 31; i++) {
9528 			uint32_t mask;
9529 
9530 			mask = 0x01 << i;
9531 			if ((instr.integer & mask) != 0)
9532 				count++;
9533 		}
9534 		if ((count & 0x01) == 0)
9535 			instr.format1.parity = 1;
9536 
9537 		/* The sequencer is a little endian cpu */
9538 		instr.integer = ahd_htole32(instr.integer);
9539 		ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9540 		break;
9541 	}
9542 	default:
9543 		panic("Unknown opcode encountered in seq program");
9544 		break;
9545 	}
9546 }
9547 
9548 static int
9549 ahd_probe_stack_size(struct ahd_softc *ahd)
9550 {
9551 	int last_probe;
9552 
9553 	last_probe = 0;
9554 	while (1) {
9555 		int i;
9556 
9557 		/*
9558 		 * We avoid using 0 as a pattern to avoid
9559 		 * confusion if the stack implementation
9560 		 * "back-fills" with zeros when "poping'
9561 		 * entries.
9562 		 */
9563 		for (i = 1; i <= last_probe+1; i++) {
9564 		       ahd_outb(ahd, STACK, i & 0xFF);
9565 		       ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9566 		}
9567 
9568 		/* Verify */
9569 		for (i = last_probe+1; i > 0; i--) {
9570 			u_int stack_entry;
9571 
9572 			stack_entry = ahd_inb(ahd, STACK)
9573 				    |(ahd_inb(ahd, STACK) << 8);
9574 			if (stack_entry != i)
9575 				goto sized;
9576 		}
9577 		last_probe++;
9578 	}
9579 sized:
9580 	return (last_probe);
9581 }
9582 
9583 int
9584 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9585 		   const char *name, u_int address, u_int value,
9586 		   u_int *cur_column, u_int wrap_point)
9587 {
9588 	int	printed;
9589 	u_int	printed_mask;
9590 
9591 	if (cur_column != NULL && *cur_column >= wrap_point) {
9592 		printk("\n");
9593 		*cur_column = 0;
9594 	}
9595 	printed = printk("%s[0x%x]", name, value);
9596 	if (table == NULL) {
9597 		printed += printk(" ");
9598 		*cur_column += printed;
9599 		return (printed);
9600 	}
9601 	printed_mask = 0;
9602 	while (printed_mask != 0xFF) {
9603 		int entry;
9604 
9605 		for (entry = 0; entry < num_entries; entry++) {
9606 			if (((value & table[entry].mask)
9607 			  != table[entry].value)
9608 			 || ((printed_mask & table[entry].mask)
9609 			  == table[entry].mask))
9610 				continue;
9611 
9612 			printed += printk("%s%s",
9613 					  printed_mask == 0 ? ":(" : "|",
9614 					  table[entry].name);
9615 			printed_mask |= table[entry].mask;
9616 
9617 			break;
9618 		}
9619 		if (entry >= num_entries)
9620 			break;
9621 	}
9622 	if (printed_mask != 0)
9623 		printed += printk(") ");
9624 	else
9625 		printed += printk(" ");
9626 	if (cur_column != NULL)
9627 		*cur_column += printed;
9628 	return (printed);
9629 }
9630 
9631 void
9632 ahd_dump_card_state(struct ahd_softc *ahd)
9633 {
9634 	struct scb	*scb;
9635 	ahd_mode_state	 saved_modes;
9636 	u_int		 dffstat;
9637 	int		 paused;
9638 	u_int		 scb_index;
9639 	u_int		 saved_scb_index;
9640 	u_int		 cur_col;
9641 	int		 i;
9642 
9643 	if (ahd_is_paused(ahd)) {
9644 		paused = 1;
9645 	} else {
9646 		paused = 0;
9647 		ahd_pause(ahd);
9648 	}
9649 	saved_modes = ahd_save_modes(ahd);
9650 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9651 	printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9652 	       "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9653 	       ahd_name(ahd),
9654 	       ahd_inw(ahd, CURADDR),
9655 	       ahd_build_mode_state(ahd, ahd->saved_src_mode,
9656 				    ahd->saved_dst_mode));
9657 	if (paused)
9658 		printk("Card was paused\n");
9659 
9660 	if (ahd_check_cmdcmpltqueues(ahd))
9661 		printk("Completions are pending\n");
9662 
9663 	/*
9664 	 * Mode independent registers.
9665 	 */
9666 	cur_col = 0;
9667 	ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9668 	ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9669 	ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9670 	ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9671 	ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9672 	ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9673 	ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9674 	ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9675 	ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9676 	ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9677 	ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9678 	ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9679 	ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9680 	ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9681 	ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9682 	ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9683 	ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9684 	ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9685 	ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9686 	ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9687 				       &cur_col, 50);
9688 	ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9689 	ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9690 				    &cur_col, 50);
9691 	ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9692 	ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9693 	ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9694 	ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9695 	ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9696 	ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9697 	ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9698 	ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9699 	ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9700 	ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9701 	ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9702 	ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9703 	printk("\n");
9704 	printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9705 	       "CURRSCB 0x%x NEXTSCB 0x%x\n",
9706 	       ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9707 	       ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9708 	       ahd_inw(ahd, NEXTSCB));
9709 	cur_col = 0;
9710 	/* QINFIFO */
9711 	ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9712 			   CAM_LUN_WILDCARD, SCB_LIST_NULL,
9713 			   ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9714 	saved_scb_index = ahd_get_scbptr(ahd);
9715 	printk("Pending list:");
9716 	i = 0;
9717 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9718 		if (i++ > AHD_SCB_MAX)
9719 			break;
9720 		cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9721 				 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9722 		ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9723 		ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9724 				      &cur_col, 60);
9725 		ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9726 				     &cur_col, 60);
9727 	}
9728 	printk("\nTotal %d\n", i);
9729 
9730 	printk("Kernel Free SCB list: ");
9731 	i = 0;
9732 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9733 		struct scb *list_scb;
9734 
9735 		list_scb = scb;
9736 		do {
9737 			printk("%d ", SCB_GET_TAG(list_scb));
9738 			list_scb = LIST_NEXT(list_scb, collision_links);
9739 		} while (list_scb && i++ < AHD_SCB_MAX);
9740 	}
9741 
9742 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9743 		if (i++ > AHD_SCB_MAX)
9744 			break;
9745 		printk("%d ", SCB_GET_TAG(scb));
9746 	}
9747 	printk("\n");
9748 
9749 	printk("Sequencer Complete DMA-inprog list: ");
9750 	scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9751 	i = 0;
9752 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9753 		ahd_set_scbptr(ahd, scb_index);
9754 		printk("%d ", scb_index);
9755 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9756 	}
9757 	printk("\n");
9758 
9759 	printk("Sequencer Complete list: ");
9760 	scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9761 	i = 0;
9762 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9763 		ahd_set_scbptr(ahd, scb_index);
9764 		printk("%d ", scb_index);
9765 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9766 	}
9767 	printk("\n");
9768 
9769 	printk("Sequencer DMA-Up and Complete list: ");
9770 	scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9771 	i = 0;
9772 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9773 		ahd_set_scbptr(ahd, scb_index);
9774 		printk("%d ", scb_index);
9775 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9776 	}
9777 	printk("\n");
9778 	printk("Sequencer On QFreeze and Complete list: ");
9779 	scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9780 	i = 0;
9781 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9782 		ahd_set_scbptr(ahd, scb_index);
9783 		printk("%d ", scb_index);
9784 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9785 	}
9786 	printk("\n");
9787 	ahd_set_scbptr(ahd, saved_scb_index);
9788 	dffstat = ahd_inb(ahd, DFFSTAT);
9789 	for (i = 0; i < 2; i++) {
9790 #ifdef AHD_DEBUG
9791 		struct scb *fifo_scb;
9792 #endif
9793 		u_int	    fifo_scbptr;
9794 
9795 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9796 		fifo_scbptr = ahd_get_scbptr(ahd);
9797 		printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9798 		       ahd_name(ahd), i,
9799 		       (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9800 		       ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9801 		cur_col = 0;
9802 		ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9803 		ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9804 		ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9805 		ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9806 		ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9807 					  &cur_col, 50);
9808 		ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9809 		ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9810 		ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9811 		ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9812 		if (cur_col > 50) {
9813 			printk("\n");
9814 			cur_col = 0;
9815 		}
9816 		cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9817 				  ahd_inl(ahd, SHADDR+4),
9818 				  ahd_inl(ahd, SHADDR),
9819 				  (ahd_inb(ahd, SHCNT)
9820 				| (ahd_inb(ahd, SHCNT + 1) << 8)
9821 				| (ahd_inb(ahd, SHCNT + 2) << 16)));
9822 		if (cur_col > 50) {
9823 			printk("\n");
9824 			cur_col = 0;
9825 		}
9826 		cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9827 				  ahd_inl(ahd, HADDR+4),
9828 				  ahd_inl(ahd, HADDR),
9829 				  (ahd_inb(ahd, HCNT)
9830 				| (ahd_inb(ahd, HCNT + 1) << 8)
9831 				| (ahd_inb(ahd, HCNT + 2) << 16)));
9832 		ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9833 #ifdef AHD_DEBUG
9834 		if ((ahd_debug & AHD_SHOW_SG) != 0) {
9835 			fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9836 			if (fifo_scb != NULL)
9837 				ahd_dump_sglist(fifo_scb);
9838 		}
9839 #endif
9840 	}
9841 	printk("\nLQIN: ");
9842 	for (i = 0; i < 20; i++)
9843 		printk("0x%x ", ahd_inb(ahd, LQIN + i));
9844 	printk("\n");
9845 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9846 	printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9847 	       ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9848 	       ahd_inb(ahd, OPTIONMODE));
9849 	printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9850 	       ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9851 	       ahd_inb(ahd, MAXCMDCNT));
9852 	printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9853 	       ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9854 	       ahd_inb(ahd, SAVED_LUN));
9855 	ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9856 	printk("\n");
9857 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9858 	cur_col = 0;
9859 	ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9860 	printk("\n");
9861 	ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9862 	printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9863 	       ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9864 	       ahd_inw(ahd, DINDEX));
9865 	printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9866 	       ahd_name(ahd), ahd_get_scbptr(ahd),
9867 	       ahd_inw_scbram(ahd, SCB_NEXT),
9868 	       ahd_inw_scbram(ahd, SCB_NEXT2));
9869 	printk("CDB %x %x %x %x %x %x\n",
9870 	       ahd_inb_scbram(ahd, SCB_CDB_STORE),
9871 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9872 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9873 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9874 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9875 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9876 	printk("STACK:");
9877 	for (i = 0; i < ahd->stack_size; i++) {
9878 		ahd->saved_stack[i] =
9879 		    ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9880 		printk(" 0x%x", ahd->saved_stack[i]);
9881 	}
9882 	for (i = ahd->stack_size-1; i >= 0; i--) {
9883 		ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9884 		ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9885 	}
9886 	printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9887 	ahd_restore_modes(ahd, saved_modes);
9888 	if (paused == 0)
9889 		ahd_unpause(ahd);
9890 }
9891 
9892 #if 0
9893 void
9894 ahd_dump_scbs(struct ahd_softc *ahd)
9895 {
9896 	ahd_mode_state saved_modes;
9897 	u_int	       saved_scb_index;
9898 	int	       i;
9899 
9900 	saved_modes = ahd_save_modes(ahd);
9901 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9902 	saved_scb_index = ahd_get_scbptr(ahd);
9903 	for (i = 0; i < AHD_SCB_MAX; i++) {
9904 		ahd_set_scbptr(ahd, i);
9905 		printk("%3d", i);
9906 		printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9907 		       ahd_inb_scbram(ahd, SCB_CONTROL),
9908 		       ahd_inb_scbram(ahd, SCB_SCSIID),
9909 		       ahd_inw_scbram(ahd, SCB_NEXT),
9910 		       ahd_inw_scbram(ahd, SCB_NEXT2),
9911 		       ahd_inl_scbram(ahd, SCB_SGPTR),
9912 		       ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9913 	}
9914 	printk("\n");
9915 	ahd_set_scbptr(ahd, saved_scb_index);
9916 	ahd_restore_modes(ahd, saved_modes);
9917 }
9918 #endif  /*  0  */
9919 
9920 /**************************** Flexport Logic **********************************/
9921 /*
9922  * Read count 16bit words from 16bit word address start_addr from the
9923  * SEEPROM attached to the controller, into buf, using the controller's
9924  * SEEPROM reading state machine.  Optionally treat the data as a byte
9925  * stream in terms of byte order.
9926  */
9927 int
9928 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9929 		 u_int start_addr, u_int count, int bytestream)
9930 {
9931 	u_int cur_addr;
9932 	u_int end_addr;
9933 	int   error;
9934 
9935 	/*
9936 	 * If we never make it through the loop even once,
9937 	 * we were passed invalid arguments.
9938 	 */
9939 	error = EINVAL;
9940 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9941 	end_addr = start_addr + count;
9942 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9943 
9944 		ahd_outb(ahd, SEEADR, cur_addr);
9945 		ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9946 
9947 		error = ahd_wait_seeprom(ahd);
9948 		if (error)
9949 			break;
9950 		if (bytestream != 0) {
9951 			uint8_t *bytestream_ptr;
9952 
9953 			bytestream_ptr = (uint8_t *)buf;
9954 			*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9955 			*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9956 		} else {
9957 			/*
9958 			 * ahd_inw() already handles machine byte order.
9959 			 */
9960 			*buf = ahd_inw(ahd, SEEDAT);
9961 		}
9962 		buf++;
9963 	}
9964 	return (error);
9965 }
9966 
9967 /*
9968  * Write count 16bit words from buf, into SEEPROM attache to the
9969  * controller starting at 16bit word address start_addr, using the
9970  * controller's SEEPROM writing state machine.
9971  */
9972 int
9973 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9974 		  u_int start_addr, u_int count)
9975 {
9976 	u_int cur_addr;
9977 	u_int end_addr;
9978 	int   error;
9979 	int   retval;
9980 
9981 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9982 	error = ENOENT;
9983 
9984 	/* Place the chip into write-enable mode */
9985 	ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
9986 	ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
9987 	error = ahd_wait_seeprom(ahd);
9988 	if (error)
9989 		return (error);
9990 
9991 	/*
9992 	 * Write the data.  If we don't get through the loop at
9993 	 * least once, the arguments were invalid.
9994 	 */
9995 	retval = EINVAL;
9996 	end_addr = start_addr + count;
9997 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9998 		ahd_outw(ahd, SEEDAT, *buf++);
9999 		ahd_outb(ahd, SEEADR, cur_addr);
10000 		ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10001 
10002 		retval = ahd_wait_seeprom(ahd);
10003 		if (retval)
10004 			break;
10005 	}
10006 
10007 	/*
10008 	 * Disable writes.
10009 	 */
10010 	ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10011 	ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10012 	error = ahd_wait_seeprom(ahd);
10013 	if (error)
10014 		return (error);
10015 	return (retval);
10016 }
10017 
10018 /*
10019  * Wait ~100us for the serial eeprom to satisfy our request.
10020  */
10021 static int
10022 ahd_wait_seeprom(struct ahd_softc *ahd)
10023 {
10024 	int cnt;
10025 
10026 	cnt = 5000;
10027 	while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10028 		ahd_delay(5);
10029 
10030 	if (cnt == 0)
10031 		return (ETIMEDOUT);
10032 	return (0);
10033 }
10034 
10035 /*
10036  * Validate the two checksums in the per_channel
10037  * vital product data struct.
10038  */
10039 static int
10040 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10041 {
10042 	int i;
10043 	int maxaddr;
10044 	uint32_t checksum;
10045 	uint8_t *vpdarray;
10046 
10047 	vpdarray = (uint8_t *)vpd;
10048 	maxaddr = offsetof(struct vpd_config, vpd_checksum);
10049 	checksum = 0;
10050 	for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10051 		checksum = checksum + vpdarray[i];
10052 	if (checksum == 0
10053 	 || (-checksum & 0xFF) != vpd->vpd_checksum)
10054 		return (0);
10055 
10056 	checksum = 0;
10057 	maxaddr = offsetof(struct vpd_config, checksum);
10058 	for (i = offsetof(struct vpd_config, default_target_flags);
10059 	     i < maxaddr; i++)
10060 		checksum = checksum + vpdarray[i];
10061 	if (checksum == 0
10062 	 || (-checksum & 0xFF) != vpd->checksum)
10063 		return (0);
10064 	return (1);
10065 }
10066 
10067 int
10068 ahd_verify_cksum(struct seeprom_config *sc)
10069 {
10070 	int i;
10071 	int maxaddr;
10072 	uint32_t checksum;
10073 	uint16_t *scarray;
10074 
10075 	maxaddr = (sizeof(*sc)/2) - 1;
10076 	checksum = 0;
10077 	scarray = (uint16_t *)sc;
10078 
10079 	for (i = 0; i < maxaddr; i++)
10080 		checksum = checksum + scarray[i];
10081 	if (checksum == 0
10082 	 || (checksum & 0xFFFF) != sc->checksum) {
10083 		return (0);
10084 	} else {
10085 		return (1);
10086 	}
10087 }
10088 
10089 int
10090 ahd_acquire_seeprom(struct ahd_softc *ahd)
10091 {
10092 	/*
10093 	 * We should be able to determine the SEEPROM type
10094 	 * from the flexport logic, but unfortunately not
10095 	 * all implementations have this logic and there is
10096 	 * no programatic method for determining if the logic
10097 	 * is present.
10098 	 */
10099 	return (1);
10100 #if 0
10101 	uint8_t	seetype;
10102 	int	error;
10103 
10104 	error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10105 	if (error != 0
10106 	    || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10107 		return (0);
10108 	return (1);
10109 #endif
10110 }
10111 
10112 void
10113 ahd_release_seeprom(struct ahd_softc *ahd)
10114 {
10115 	/* Currently a no-op */
10116 }
10117 
10118 /*
10119  * Wait at most 2 seconds for flexport arbitration to succeed.
10120  */
10121 static int
10122 ahd_wait_flexport(struct ahd_softc *ahd)
10123 {
10124 	int cnt;
10125 
10126 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10127 	cnt = 1000000 * 2 / 5;
10128 	while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10129 		ahd_delay(5);
10130 
10131 	if (cnt == 0)
10132 		return (ETIMEDOUT);
10133 	return (0);
10134 }
10135 
10136 int
10137 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10138 {
10139 	int error;
10140 
10141 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10142 	if (addr > 7)
10143 		panic("ahd_write_flexport: address out of range");
10144 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10145 	error = ahd_wait_flexport(ahd);
10146 	if (error != 0)
10147 		return (error);
10148 	ahd_outb(ahd, BRDDAT, value);
10149 	ahd_flush_device_writes(ahd);
10150 	ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10151 	ahd_flush_device_writes(ahd);
10152 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10153 	ahd_flush_device_writes(ahd);
10154 	ahd_outb(ahd, BRDCTL, 0);
10155 	ahd_flush_device_writes(ahd);
10156 	return (0);
10157 }
10158 
10159 int
10160 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10161 {
10162 	int	error;
10163 
10164 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10165 	if (addr > 7)
10166 		panic("ahd_read_flexport: address out of range");
10167 	ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10168 	error = ahd_wait_flexport(ahd);
10169 	if (error != 0)
10170 		return (error);
10171 	*value = ahd_inb(ahd, BRDDAT);
10172 	ahd_outb(ahd, BRDCTL, 0);
10173 	ahd_flush_device_writes(ahd);
10174 	return (0);
10175 }
10176 
10177 /************************* Target Mode ****************************************/
10178 #ifdef AHD_TARGET_MODE
10179 cam_status
10180 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10181 		    struct ahd_tmode_tstate **tstate,
10182 		    struct ahd_tmode_lstate **lstate,
10183 		    int notfound_failure)
10184 {
10185 
10186 	if ((ahd->features & AHD_TARGETMODE) == 0)
10187 		return (CAM_REQ_INVALID);
10188 
10189 	/*
10190 	 * Handle the 'black hole' device that sucks up
10191 	 * requests to unattached luns on enabled targets.
10192 	 */
10193 	if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10194 	 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10195 		*tstate = NULL;
10196 		*lstate = ahd->black_hole;
10197 	} else {
10198 		u_int max_id;
10199 
10200 		max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10201 		if (ccb->ccb_h.target_id >= max_id)
10202 			return (CAM_TID_INVALID);
10203 
10204 		if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10205 			return (CAM_LUN_INVALID);
10206 
10207 		*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10208 		*lstate = NULL;
10209 		if (*tstate != NULL)
10210 			*lstate =
10211 			    (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10212 	}
10213 
10214 	if (notfound_failure != 0 && *lstate == NULL)
10215 		return (CAM_PATH_INVALID);
10216 
10217 	return (CAM_REQ_CMP);
10218 }
10219 
10220 void
10221 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10222 {
10223 #if NOT_YET
10224 	struct	   ahd_tmode_tstate *tstate;
10225 	struct	   ahd_tmode_lstate *lstate;
10226 	struct	   ccb_en_lun *cel;
10227 	cam_status status;
10228 	u_int	   target;
10229 	u_int	   lun;
10230 	u_int	   target_mask;
10231 	u_long	   s;
10232 	char	   channel;
10233 
10234 	status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10235 				     /*notfound_failure*/FALSE);
10236 
10237 	if (status != CAM_REQ_CMP) {
10238 		ccb->ccb_h.status = status;
10239 		return;
10240 	}
10241 
10242 	if ((ahd->features & AHD_MULTIROLE) != 0) {
10243 		u_int	   our_id;
10244 
10245 		our_id = ahd->our_id;
10246 		if (ccb->ccb_h.target_id != our_id) {
10247 			if ((ahd->features & AHD_MULTI_TID) != 0
10248 			 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10249 				/*
10250 				 * Only allow additional targets if
10251 				 * the initiator role is disabled.
10252 				 * The hardware cannot handle a re-select-in
10253 				 * on the initiator id during a re-select-out
10254 				 * on a different target id.
10255 				 */
10256 				status = CAM_TID_INVALID;
10257 			} else if ((ahd->flags & AHD_INITIATORROLE) != 0
10258 				|| ahd->enabled_luns > 0) {
10259 				/*
10260 				 * Only allow our target id to change
10261 				 * if the initiator role is not configured
10262 				 * and there are no enabled luns which
10263 				 * are attached to the currently registered
10264 				 * scsi id.
10265 				 */
10266 				status = CAM_TID_INVALID;
10267 			}
10268 		}
10269 	}
10270 
10271 	if (status != CAM_REQ_CMP) {
10272 		ccb->ccb_h.status = status;
10273 		return;
10274 	}
10275 
10276 	/*
10277 	 * We now have an id that is valid.
10278 	 * If we aren't in target mode, switch modes.
10279 	 */
10280 	if ((ahd->flags & AHD_TARGETROLE) == 0
10281 	 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10282 		u_long	s;
10283 
10284 		printk("Configuring Target Mode\n");
10285 		ahd_lock(ahd, &s);
10286 		if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10287 			ccb->ccb_h.status = CAM_BUSY;
10288 			ahd_unlock(ahd, &s);
10289 			return;
10290 		}
10291 		ahd->flags |= AHD_TARGETROLE;
10292 		if ((ahd->features & AHD_MULTIROLE) == 0)
10293 			ahd->flags &= ~AHD_INITIATORROLE;
10294 		ahd_pause(ahd);
10295 		ahd_loadseq(ahd);
10296 		ahd_restart(ahd);
10297 		ahd_unlock(ahd, &s);
10298 	}
10299 	cel = &ccb->cel;
10300 	target = ccb->ccb_h.target_id;
10301 	lun = ccb->ccb_h.target_lun;
10302 	channel = SIM_CHANNEL(ahd, sim);
10303 	target_mask = 0x01 << target;
10304 	if (channel == 'B')
10305 		target_mask <<= 8;
10306 
10307 	if (cel->enable != 0) {
10308 		u_int scsiseq1;
10309 
10310 		/* Are we already enabled?? */
10311 		if (lstate != NULL) {
10312 			xpt_print_path(ccb->ccb_h.path);
10313 			printk("Lun already enabled\n");
10314 			ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10315 			return;
10316 		}
10317 
10318 		if (cel->grp6_len != 0
10319 		 || cel->grp7_len != 0) {
10320 			/*
10321 			 * Don't (yet?) support vendor
10322 			 * specific commands.
10323 			 */
10324 			ccb->ccb_h.status = CAM_REQ_INVALID;
10325 			printk("Non-zero Group Codes\n");
10326 			return;
10327 		}
10328 
10329 		/*
10330 		 * Seems to be okay.
10331 		 * Setup our data structures.
10332 		 */
10333 		if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10334 			tstate = ahd_alloc_tstate(ahd, target, channel);
10335 			if (tstate == NULL) {
10336 				xpt_print_path(ccb->ccb_h.path);
10337 				printk("Couldn't allocate tstate\n");
10338 				ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10339 				return;
10340 			}
10341 		}
10342 		lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10343 		if (lstate == NULL) {
10344 			xpt_print_path(ccb->ccb_h.path);
10345 			printk("Couldn't allocate lstate\n");
10346 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10347 			return;
10348 		}
10349 		status = xpt_create_path(&lstate->path, /*periph*/NULL,
10350 					 xpt_path_path_id(ccb->ccb_h.path),
10351 					 xpt_path_target_id(ccb->ccb_h.path),
10352 					 xpt_path_lun_id(ccb->ccb_h.path));
10353 		if (status != CAM_REQ_CMP) {
10354 			kfree(lstate);
10355 			xpt_print_path(ccb->ccb_h.path);
10356 			printk("Couldn't allocate path\n");
10357 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10358 			return;
10359 		}
10360 		SLIST_INIT(&lstate->accept_tios);
10361 		SLIST_INIT(&lstate->immed_notifies);
10362 		ahd_lock(ahd, &s);
10363 		ahd_pause(ahd);
10364 		if (target != CAM_TARGET_WILDCARD) {
10365 			tstate->enabled_luns[lun] = lstate;
10366 			ahd->enabled_luns++;
10367 
10368 			if ((ahd->features & AHD_MULTI_TID) != 0) {
10369 				u_int targid_mask;
10370 
10371 				targid_mask = ahd_inw(ahd, TARGID);
10372 				targid_mask |= target_mask;
10373 				ahd_outw(ahd, TARGID, targid_mask);
10374 				ahd_update_scsiid(ahd, targid_mask);
10375 			} else {
10376 				u_int our_id;
10377 				char  channel;
10378 
10379 				channel = SIM_CHANNEL(ahd, sim);
10380 				our_id = SIM_SCSI_ID(ahd, sim);
10381 
10382 				/*
10383 				 * This can only happen if selections
10384 				 * are not enabled
10385 				 */
10386 				if (target != our_id) {
10387 					u_int sblkctl;
10388 					char  cur_channel;
10389 					int   swap;
10390 
10391 					sblkctl = ahd_inb(ahd, SBLKCTL);
10392 					cur_channel = (sblkctl & SELBUSB)
10393 						    ? 'B' : 'A';
10394 					if ((ahd->features & AHD_TWIN) == 0)
10395 						cur_channel = 'A';
10396 					swap = cur_channel != channel;
10397 					ahd->our_id = target;
10398 
10399 					if (swap)
10400 						ahd_outb(ahd, SBLKCTL,
10401 							 sblkctl ^ SELBUSB);
10402 
10403 					ahd_outb(ahd, SCSIID, target);
10404 
10405 					if (swap)
10406 						ahd_outb(ahd, SBLKCTL, sblkctl);
10407 				}
10408 			}
10409 		} else
10410 			ahd->black_hole = lstate;
10411 		/* Allow select-in operations */
10412 		if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10413 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10414 			scsiseq1 |= ENSELI;
10415 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10416 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10417 			scsiseq1 |= ENSELI;
10418 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10419 		}
10420 		ahd_unpause(ahd);
10421 		ahd_unlock(ahd, &s);
10422 		ccb->ccb_h.status = CAM_REQ_CMP;
10423 		xpt_print_path(ccb->ccb_h.path);
10424 		printk("Lun now enabled for target mode\n");
10425 	} else {
10426 		struct scb *scb;
10427 		int i, empty;
10428 
10429 		if (lstate == NULL) {
10430 			ccb->ccb_h.status = CAM_LUN_INVALID;
10431 			return;
10432 		}
10433 
10434 		ahd_lock(ahd, &s);
10435 
10436 		ccb->ccb_h.status = CAM_REQ_CMP;
10437 		LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10438 			struct ccb_hdr *ccbh;
10439 
10440 			ccbh = &scb->io_ctx->ccb_h;
10441 			if (ccbh->func_code == XPT_CONT_TARGET_IO
10442 			 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10443 				printk("CTIO pending\n");
10444 				ccb->ccb_h.status = CAM_REQ_INVALID;
10445 				ahd_unlock(ahd, &s);
10446 				return;
10447 			}
10448 		}
10449 
10450 		if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10451 			printk("ATIOs pending\n");
10452 			ccb->ccb_h.status = CAM_REQ_INVALID;
10453 		}
10454 
10455 		if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10456 			printk("INOTs pending\n");
10457 			ccb->ccb_h.status = CAM_REQ_INVALID;
10458 		}
10459 
10460 		if (ccb->ccb_h.status != CAM_REQ_CMP) {
10461 			ahd_unlock(ahd, &s);
10462 			return;
10463 		}
10464 
10465 		xpt_print_path(ccb->ccb_h.path);
10466 		printk("Target mode disabled\n");
10467 		xpt_free_path(lstate->path);
10468 		kfree(lstate);
10469 
10470 		ahd_pause(ahd);
10471 		/* Can we clean up the target too? */
10472 		if (target != CAM_TARGET_WILDCARD) {
10473 			tstate->enabled_luns[lun] = NULL;
10474 			ahd->enabled_luns--;
10475 			for (empty = 1, i = 0; i < 8; i++)
10476 				if (tstate->enabled_luns[i] != NULL) {
10477 					empty = 0;
10478 					break;
10479 				}
10480 
10481 			if (empty) {
10482 				ahd_free_tstate(ahd, target, channel,
10483 						/*force*/FALSE);
10484 				if (ahd->features & AHD_MULTI_TID) {
10485 					u_int targid_mask;
10486 
10487 					targid_mask = ahd_inw(ahd, TARGID);
10488 					targid_mask &= ~target_mask;
10489 					ahd_outw(ahd, TARGID, targid_mask);
10490 					ahd_update_scsiid(ahd, targid_mask);
10491 				}
10492 			}
10493 		} else {
10494 
10495 			ahd->black_hole = NULL;
10496 
10497 			/*
10498 			 * We can't allow selections without
10499 			 * our black hole device.
10500 			 */
10501 			empty = TRUE;
10502 		}
10503 		if (ahd->enabled_luns == 0) {
10504 			/* Disallow select-in */
10505 			u_int scsiseq1;
10506 
10507 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10508 			scsiseq1 &= ~ENSELI;
10509 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10510 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10511 			scsiseq1 &= ~ENSELI;
10512 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10513 
10514 			if ((ahd->features & AHD_MULTIROLE) == 0) {
10515 				printk("Configuring Initiator Mode\n");
10516 				ahd->flags &= ~AHD_TARGETROLE;
10517 				ahd->flags |= AHD_INITIATORROLE;
10518 				ahd_pause(ahd);
10519 				ahd_loadseq(ahd);
10520 				ahd_restart(ahd);
10521 				/*
10522 				 * Unpaused.  The extra unpause
10523 				 * that follows is harmless.
10524 				 */
10525 			}
10526 		}
10527 		ahd_unpause(ahd);
10528 		ahd_unlock(ahd, &s);
10529 	}
10530 #endif
10531 }
10532 
10533 static void
10534 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10535 {
10536 #if NOT_YET
10537 	u_int scsiid_mask;
10538 	u_int scsiid;
10539 
10540 	if ((ahd->features & AHD_MULTI_TID) == 0)
10541 		panic("ahd_update_scsiid called on non-multitid unit\n");
10542 
10543 	/*
10544 	 * Since we will rely on the TARGID mask
10545 	 * for selection enables, ensure that OID
10546 	 * in SCSIID is not set to some other ID
10547 	 * that we don't want to allow selections on.
10548 	 */
10549 	if ((ahd->features & AHD_ULTRA2) != 0)
10550 		scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10551 	else
10552 		scsiid = ahd_inb(ahd, SCSIID);
10553 	scsiid_mask = 0x1 << (scsiid & OID);
10554 	if ((targid_mask & scsiid_mask) == 0) {
10555 		u_int our_id;
10556 
10557 		/* ffs counts from 1 */
10558 		our_id = ffs(targid_mask);
10559 		if (our_id == 0)
10560 			our_id = ahd->our_id;
10561 		else
10562 			our_id--;
10563 		scsiid &= TID;
10564 		scsiid |= our_id;
10565 	}
10566 	if ((ahd->features & AHD_ULTRA2) != 0)
10567 		ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10568 	else
10569 		ahd_outb(ahd, SCSIID, scsiid);
10570 #endif
10571 }
10572 
10573 static void
10574 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10575 {
10576 	struct target_cmd *cmd;
10577 
10578 	ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10579 	while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10580 
10581 		/*
10582 		 * Only advance through the queue if we
10583 		 * have the resources to process the command.
10584 		 */
10585 		if (ahd_handle_target_cmd(ahd, cmd) != 0)
10586 			break;
10587 
10588 		cmd->cmd_valid = 0;
10589 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10590 				ahd->shared_data_map.dmamap,
10591 				ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10592 				sizeof(struct target_cmd),
10593 				BUS_DMASYNC_PREREAD);
10594 		ahd->tqinfifonext++;
10595 
10596 		/*
10597 		 * Lazily update our position in the target mode incoming
10598 		 * command queue as seen by the sequencer.
10599 		 */
10600 		if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10601 			u_int hs_mailbox;
10602 
10603 			hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10604 			hs_mailbox &= ~HOST_TQINPOS;
10605 			hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10606 			ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10607 		}
10608 	}
10609 }
10610 
10611 static int
10612 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10613 {
10614 	struct	  ahd_tmode_tstate *tstate;
10615 	struct	  ahd_tmode_lstate *lstate;
10616 	struct	  ccb_accept_tio *atio;
10617 	uint8_t *byte;
10618 	int	  initiator;
10619 	int	  target;
10620 	int	  lun;
10621 
10622 	initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10623 	target = SCSIID_OUR_ID(cmd->scsiid);
10624 	lun    = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10625 
10626 	byte = cmd->bytes;
10627 	tstate = ahd->enabled_targets[target];
10628 	lstate = NULL;
10629 	if (tstate != NULL)
10630 		lstate = tstate->enabled_luns[lun];
10631 
10632 	/*
10633 	 * Commands for disabled luns go to the black hole driver.
10634 	 */
10635 	if (lstate == NULL)
10636 		lstate = ahd->black_hole;
10637 
10638 	atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10639 	if (atio == NULL) {
10640 		ahd->flags |= AHD_TQINFIFO_BLOCKED;
10641 		/*
10642 		 * Wait for more ATIOs from the peripheral driver for this lun.
10643 		 */
10644 		return (1);
10645 	} else
10646 		ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10647 #ifdef AHD_DEBUG
10648 	if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10649 		printk("Incoming command from %d for %d:%d%s\n",
10650 		       initiator, target, lun,
10651 		       lstate == ahd->black_hole ? "(Black Holed)" : "");
10652 #endif
10653 	SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10654 
10655 	if (lstate == ahd->black_hole) {
10656 		/* Fill in the wildcards */
10657 		atio->ccb_h.target_id = target;
10658 		atio->ccb_h.target_lun = lun;
10659 	}
10660 
10661 	/*
10662 	 * Package it up and send it off to
10663 	 * whomever has this lun enabled.
10664 	 */
10665 	atio->sense_len = 0;
10666 	atio->init_id = initiator;
10667 	if (byte[0] != 0xFF) {
10668 		/* Tag was included */
10669 		atio->tag_action = *byte++;
10670 		atio->tag_id = *byte++;
10671 		atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10672 	} else {
10673 		atio->ccb_h.flags = 0;
10674 	}
10675 	byte++;
10676 
10677 	/* Okay.  Now determine the cdb size based on the command code */
10678 	switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10679 	case 0:
10680 		atio->cdb_len = 6;
10681 		break;
10682 	case 1:
10683 	case 2:
10684 		atio->cdb_len = 10;
10685 		break;
10686 	case 4:
10687 		atio->cdb_len = 16;
10688 		break;
10689 	case 5:
10690 		atio->cdb_len = 12;
10691 		break;
10692 	case 3:
10693 	default:
10694 		/* Only copy the opcode. */
10695 		atio->cdb_len = 1;
10696 		printk("Reserved or VU command code type encountered\n");
10697 		break;
10698 	}
10699 
10700 	memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10701 
10702 	atio->ccb_h.status |= CAM_CDB_RECVD;
10703 
10704 	if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10705 		/*
10706 		 * We weren't allowed to disconnect.
10707 		 * We're hanging on the bus until a
10708 		 * continue target I/O comes in response
10709 		 * to this accept tio.
10710 		 */
10711 #ifdef AHD_DEBUG
10712 		if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10713 			printk("Received Immediate Command %d:%d:%d - %p\n",
10714 			       initiator, target, lun, ahd->pending_device);
10715 #endif
10716 		ahd->pending_device = lstate;
10717 		ahd_freeze_ccb((union ccb *)atio);
10718 		atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10719 	}
10720 	xpt_done((union ccb*)atio);
10721 	return (0);
10722 }
10723 
10724 #endif
10725