xref: /linux/drivers/scsi/aic7xxx/aic79xx_core.c (revision 9a8f32038a74cb800e9649afbf4b3dba2b7d6539)
1 /*
2  * Core routines and tables shareable across OS platforms.
3  *
4  * Copyright (c) 1994-2002 Justin T. Gibbs.
5  * Copyright (c) 2000-2003 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    substantially similar to the "NO WARRANTY" disclaimer below
16  *    ("Disclaimer") and any redistribution must be conditioned upon
17  *    including a substantially similar Disclaimer requirement for further
18  *    binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  *    of any contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41  */
42 
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
46 
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
49 {
50 	"NONE",
51 	"aic7901",
52 	"aic7902",
53 	"aic7901A"
54 };
55 
56 /*
57  * Hardware error codes.
58  */
59 struct ahd_hard_error_entry {
60         uint8_t errno;
61 	const char *errmesg;
62 };
63 
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 	{ DSCTMOUT,	"Discard Timer has timed out" },
66 	{ ILLOPCODE,	"Illegal Opcode in sequencer program" },
67 	{ SQPARERR,	"Sequencer Parity Error" },
68 	{ DPARERR,	"Data-path Parity Error" },
69 	{ MPARERR,	"Scratch or SCB Memory Parity Error" },
70 	{ CIOPARERR,	"CIOBUS Parity Error" },
71 };
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73 
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
75 {
76 	{ P_DATAOUT,	MSG_NOOP,		"in Data-out phase"	},
77 	{ P_DATAIN,	MSG_INITIATOR_DET_ERR,	"in Data-in phase"	},
78 	{ P_DATAOUT_DT,	MSG_NOOP,		"in DT Data-out phase"	},
79 	{ P_DATAIN_DT,	MSG_INITIATOR_DET_ERR,	"in DT Data-in phase"	},
80 	{ P_COMMAND,	MSG_NOOP,		"in Command phase"	},
81 	{ P_MESGOUT,	MSG_NOOP,		"in Message-out phase"	},
82 	{ P_STATUS,	MSG_INITIATOR_DET_ERR,	"in Status phase"	},
83 	{ P_MESGIN,	MSG_PARITY_ERROR,	"in Message-in phase"	},
84 	{ P_BUSFREE,	MSG_NOOP,		"while idle"		},
85 	{ 0,		MSG_NOOP,		"in unknown phase"	}
86 };
87 
88 /*
89  * In most cases we only wish to itterate over real phases, so
90  * exclude the last element from the count.
91  */
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93 
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
96 
97 /**************************** Function Declarations ***************************/
98 static void		ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void		ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 						  u_int lqistat1);
101 static int		ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 					       u_int busfreetime);
103 static int		ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void		ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void		ahd_force_renegotiation(struct ahd_softc *ahd,
106 						struct ahd_devinfo *devinfo);
107 
108 static struct ahd_tmode_tstate*
109 			ahd_alloc_tstate(struct ahd_softc *ahd,
110 					 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void		ahd_free_tstate(struct ahd_softc *ahd,
113 					u_int scsi_id, char channel, int force);
114 #endif
115 static void		ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 					        struct ahd_initiator_tinfo *,
117 						u_int *period,
118 						u_int *ppr_options,
119 						role_t role);
120 static void		ahd_update_neg_table(struct ahd_softc *ahd,
121 					     struct ahd_devinfo *devinfo,
122 					     struct ahd_transinfo *tinfo);
123 static void		ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void		ahd_fetch_devinfo(struct ahd_softc *ahd,
125 					  struct ahd_devinfo *devinfo);
126 static void		ahd_scb_devinfo(struct ahd_softc *ahd,
127 					struct ahd_devinfo *devinfo,
128 					struct scb *scb);
129 static void		ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 						   struct ahd_devinfo *devinfo,
131 						   struct scb *scb);
132 static void		ahd_build_transfer_msg(struct ahd_softc *ahd,
133 					       struct ahd_devinfo *devinfo);
134 static void		ahd_construct_sdtr(struct ahd_softc *ahd,
135 					   struct ahd_devinfo *devinfo,
136 					   u_int period, u_int offset);
137 static void		ahd_construct_wdtr(struct ahd_softc *ahd,
138 					   struct ahd_devinfo *devinfo,
139 					   u_int bus_width);
140 static void		ahd_construct_ppr(struct ahd_softc *ahd,
141 					  struct ahd_devinfo *devinfo,
142 					  u_int period, u_int offset,
143 					  u_int bus_width, u_int ppr_options);
144 static void		ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void		ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 	AHDMSG_1B,
148 	AHDMSG_2B,
149 	AHDMSG_EXT
150 } ahd_msgtype;
151 static int		ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 				     u_int msgval, int full);
153 static int		ahd_parse_msg(struct ahd_softc *ahd,
154 				      struct ahd_devinfo *devinfo);
155 static int		ahd_handle_msg_reject(struct ahd_softc *ahd,
156 					      struct ahd_devinfo *devinfo);
157 static void		ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 						struct ahd_devinfo *devinfo);
159 static void		ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void		ahd_handle_devreset(struct ahd_softc *ahd,
161 					    struct ahd_devinfo *devinfo,
162 					    u_int lun, cam_status status,
163 					    char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void		ahd_setup_target_msgin(struct ahd_softc *ahd,
166 					       struct ahd_devinfo *devinfo,
167 					       struct scb *scb);
168 #endif
169 
170 static u_int		ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int		ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 			ahd_dmamap_cb;
174 static void		ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int		ahd_init_scbdata(struct ahd_softc *ahd);
176 static void		ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void		ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void		ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void		ahd_add_col_list(struct ahd_softc *ahd,
180 					 struct scb *scb, u_int col_idx);
181 static void		ahd_rem_col_list(struct ahd_softc *ahd,
182 					 struct scb *scb);
183 static void		ahd_chip_init(struct ahd_softc *ahd);
184 static void		ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 					    struct scb *prev_scb,
186 					    struct scb *scb);
187 static int		ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int		ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 					    char channel, int lun, u_int tag,
190 					    role_t role, uint32_t status,
191 					    ahd_search_action action,
192 					    u_int *list_head, u_int *list_tail,
193 					    u_int tid);
194 static void		ahd_stitch_tid_list(struct ahd_softc *ahd,
195 					    u_int tid_prev, u_int tid_cur,
196 					    u_int tid_next);
197 static void		ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 						 u_int scbid);
199 static u_int		ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 				     u_int prev, u_int next, u_int tid);
201 static void		ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void		ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void		ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void		ahd_loadseq(struct ahd_softc *ahd);
207 static int		ahd_check_patch(struct ahd_softc *ahd,
208 					const struct patch **start_patch,
209 					u_int start_instr, u_int *skip_addr);
210 static u_int		ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 					    u_int address);
212 static void		ahd_download_instr(struct ahd_softc *ahd,
213 					   u_int instrptr, uint8_t *dconsts);
214 static int		ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int		ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 					       struct scb *scb);
217 static void		ahd_run_data_fifo(struct ahd_softc *ahd,
218 					  struct scb *scb);
219 
220 #ifdef AHD_TARGET_MODE
221 static void		ahd_queue_lstate_event(struct ahd_softc *ahd,
222 					       struct ahd_tmode_lstate *lstate,
223 					       u_int initiator_id,
224 					       u_int event_type,
225 					       u_int event_arg);
226 static void		ahd_update_scsiid(struct ahd_softc *ahd,
227 					  u_int targid_mask);
228 static int		ahd_handle_target_cmd(struct ahd_softc *ahd,
229 					      struct target_cmd *cmd);
230 #endif
231 
232 static int		ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 				       char channel, int lun, u_int tag,
234 				       role_t role, uint32_t status);
235 static void		ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void		ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 				     u_int scbid);
238 static void		ahd_calc_residual(struct ahd_softc *ahd,
239 					  struct scb *scb);
240 static void		ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void		ahd_clear_intstat(struct ahd_softc *ahd);
242 static void		ahd_enable_coalescing(struct ahd_softc *ahd,
243 					      int enable);
244 static u_int		ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void		ahd_freeze_devq(struct ahd_softc *ahd,
246 					struct scb *scb);
247 static void		ahd_handle_scb_status(struct ahd_softc *ahd,
248 					      struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void		ahd_shutdown(void *arg);
251 static void		ahd_update_coalescing_values(struct ahd_softc *ahd,
252 						     u_int timer,
253 						     u_int maxcmds,
254 						     u_int mincmds);
255 static int		ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int		ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int		ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 				      int target, char channel, int lun,
259 				      u_int tag, role_t role);
260 
261 static void		ahd_reset_cmds_pending(struct ahd_softc *ahd);
262 
263 /*************************** Interrupt Services *******************************/
264 static void		ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void		ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void		ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void		ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void		ahd_handle_scsiint(struct ahd_softc *ahd,
271 				           u_int intstat);
272 
273 /************************ Sequencer Execution Control *************************/
274 void
275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276 {
277 	if (ahd->src_mode == src && ahd->dst_mode == dst)
278 		return;
279 #ifdef AHD_DEBUG
280 	if (ahd->src_mode == AHD_MODE_UNKNOWN
281 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 		panic("Setting mode prior to saving it.\n");
283 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 		printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 		       ahd_build_mode_state(ahd, src, dst));
286 #endif
287 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 	ahd->src_mode = src;
289 	ahd->dst_mode = dst;
290 }
291 
292 static void
293 ahd_update_modes(struct ahd_softc *ahd)
294 {
295 	ahd_mode_state mode_ptr;
296 	ahd_mode src;
297 	ahd_mode dst;
298 
299 	mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 		printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 	ahd_known_modes(ahd, src, dst);
306 }
307 
308 static void
309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 		 ahd_mode dstmode, const char *file, int line)
311 {
312 #ifdef AHD_DEBUG
313 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 		panic("%s:%s:%d: Mode assertion failed.\n",
316 		       ahd_name(ahd), file, line);
317 	}
318 #endif
319 }
320 
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323 
324 ahd_mode_state
325 ahd_save_modes(struct ahd_softc *ahd)
326 {
327 	if (ahd->src_mode == AHD_MODE_UNKNOWN
328 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 		ahd_update_modes(ahd);
330 
331 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332 }
333 
334 void
335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336 {
337 	ahd_mode src;
338 	ahd_mode dst;
339 
340 	ahd_extract_mode_state(ahd, state, &src, &dst);
341 	ahd_set_modes(ahd, src, dst);
342 }
343 
344 /*
345  * Determine whether the sequencer has halted code execution.
346  * Returns non-zero status if the sequencer is stopped.
347  */
348 int
349 ahd_is_paused(struct ahd_softc *ahd)
350 {
351 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352 }
353 
354 /*
355  * Request that the sequencer stop and wait, indefinitely, for it
356  * to stop.  The sequencer will only acknowledge that it is paused
357  * once it has reached an instruction boundary and PAUSEDIS is
358  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
359  * for critical sections.
360  */
361 void
362 ahd_pause(struct ahd_softc *ahd)
363 {
364 	ahd_outb(ahd, HCNTRL, ahd->pause);
365 
366 	/*
367 	 * Since the sequencer can disable pausing in a critical section, we
368 	 * must loop until it actually stops.
369 	 */
370 	while (ahd_is_paused(ahd) == 0)
371 		;
372 }
373 
374 /*
375  * Allow the sequencer to continue program execution.
376  * We check here to ensure that no additional interrupt
377  * sources that would cause the sequencer to halt have been
378  * asserted.  If, for example, a SCSI bus reset is detected
379  * while we are fielding a different, pausing, interrupt type,
380  * we don't want to release the sequencer before going back
381  * into our interrupt handler and dealing with this new
382  * condition.
383  */
384 void
385 ahd_unpause(struct ahd_softc *ahd)
386 {
387 	/*
388 	 * Automatically restore our modes to those saved
389 	 * prior to the first change of the mode.
390 	 */
391 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 			ahd_reset_cmds_pending(ahd);
395 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396 	}
397 
398 	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 		ahd_outb(ahd, HCNTRL, ahd->unpause);
400 
401 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402 }
403 
404 /*********************** Scatter Gather List Handling *************************/
405 void *
406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 	     void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408 {
409 	scb->sg_count++;
410 	if (sizeof(dma_addr_t) > 4
411 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 		struct ahd_dma64_seg *sg;
413 
414 		sg = (struct ahd_dma64_seg *)sgptr;
415 		sg->addr = ahd_htole64(addr);
416 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 		return (sg + 1);
418 	} else {
419 		struct ahd_dma_seg *sg;
420 
421 		sg = (struct ahd_dma_seg *)sgptr;
422 		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 				    | (last ? AHD_DMA_LAST_SEG : 0));
425 		return (sg + 1);
426 	}
427 }
428 
429 static void
430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431 {
432 	/* XXX Handle target mode SCBs. */
433 	scb->crc_retry_count = 0;
434 	if ((scb->flags & SCB_PACKETIZED) != 0) {
435 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
436 		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 	} else {
438 		if (ahd_get_transfer_length(scb) & 0x01)
439 			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 		else
441 			scb->hscb->task_attribute = 0;
442 	}
443 
444 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 		    ahd_htole32(scb->sense_busaddr);
448 }
449 
450 static void
451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452 {
453 	/*
454 	 * Copy the first SG into the "current" data ponter area.
455 	 */
456 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 		struct ahd_dma64_seg *sg;
458 
459 		sg = (struct ahd_dma64_seg *)scb->sg_list;
460 		scb->hscb->dataptr = sg->addr;
461 		scb->hscb->datacnt = sg->len;
462 	} else {
463 		struct ahd_dma_seg *sg;
464 		uint32_t *dataptr_words;
465 
466 		sg = (struct ahd_dma_seg *)scb->sg_list;
467 		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 		dataptr_words[0] = sg->addr;
469 		dataptr_words[1] = 0;
470 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 			uint64_t high_addr;
472 
473 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475 		}
476 		scb->hscb->datacnt = sg->len;
477 	}
478 	/*
479 	 * Note where to find the SG entries in bus space.
480 	 * We also set the full residual flag which the
481 	 * sequencer will clear as soon as a data transfer
482 	 * occurs.
483 	 */
484 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485 }
486 
487 static void
488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489 {
490 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 	scb->hscb->dataptr = 0;
492 	scb->hscb->datacnt = 0;
493 }
494 
495 /************************** Memory mapping routines ***************************/
496 static void *
497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498 {
499 	dma_addr_t sg_offset;
500 
501 	/* sg_list_phys points to entry 1, not 0 */
502 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 	return ((uint8_t *)scb->sg_list + sg_offset);
504 }
505 
506 static uint32_t
507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508 {
509 	dma_addr_t sg_offset;
510 
511 	/* sg_list_phys points to entry 1, not 0 */
512 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 		  - ahd_sg_size(ahd);
514 
515 	return (scb->sg_list_busaddr + sg_offset);
516 }
517 
518 static void
519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520 {
521 	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 			scb->hscb_map->dmamap,
523 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 			/*len*/sizeof(*scb->hscb), op);
525 }
526 
527 void
528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529 {
530 	if (scb->sg_count == 0)
531 		return;
532 
533 	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 			scb->sg_map->dmamap,
535 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537 }
538 
539 static void
540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541 {
542 	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 			scb->sense_map->dmamap,
544 			/*offset*/scb->sense_busaddr,
545 			/*len*/AHD_SENSE_BUFSIZE, op);
546 }
547 
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551 {
552 	return (((uint8_t *)&ahd->targetcmds[index])
553 	       - (uint8_t *)ahd->qoutfifo);
554 }
555 #endif
556 
557 /*********************** Miscellaneous Support Functions ***********************/
558 /*
559  * Return pointers to the transfer negotiation information
560  * for the specified our_id/remote_id pair.
561  */
562 struct ahd_initiator_tinfo *
563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
565 {
566 	/*
567 	 * Transfer data structures are stored from the perspective
568 	 * of the target role.  Since the parameters for a connection
569 	 * in the initiator role to a given target are the same as
570 	 * when the roles are reversed, we pretend we are the target.
571 	 */
572 	if (channel == 'B')
573 		our_id += 8;
574 	*tstate = ahd->enabled_targets[our_id];
575 	return (&(*tstate)->transinfo[remote_id]);
576 }
577 
578 uint16_t
579 ahd_inw(struct ahd_softc *ahd, u_int port)
580 {
581 	/*
582 	 * Read high byte first as some registers increment
583 	 * or have other side effects when the low byte is
584 	 * read.
585 	 */
586 	uint16_t r = ahd_inb(ahd, port+1) << 8;
587 	return r | ahd_inb(ahd, port);
588 }
589 
590 void
591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592 {
593 	/*
594 	 * Write low byte first to accommodate registers
595 	 * such as PRGMCNT where the order maters.
596 	 */
597 	ahd_outb(ahd, port, value & 0xFF);
598 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599 }
600 
601 uint32_t
602 ahd_inl(struct ahd_softc *ahd, u_int port)
603 {
604 	return ((ahd_inb(ahd, port))
605 	      | (ahd_inb(ahd, port+1) << 8)
606 	      | (ahd_inb(ahd, port+2) << 16)
607 	      | (ahd_inb(ahd, port+3) << 24));
608 }
609 
610 void
611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612 {
613 	ahd_outb(ahd, port, (value) & 0xFF);
614 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617 }
618 
619 uint64_t
620 ahd_inq(struct ahd_softc *ahd, u_int port)
621 {
622 	return ((ahd_inb(ahd, port))
623 	      | (ahd_inb(ahd, port+1) << 8)
624 	      | (ahd_inb(ahd, port+2) << 16)
625 	      | (ahd_inb(ahd, port+3) << 24)
626 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630 }
631 
632 void
633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634 {
635 	ahd_outb(ahd, port, value & 0xFF);
636 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643 }
644 
645 u_int
646 ahd_get_scbptr(struct ahd_softc *ahd)
647 {
648 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651 }
652 
653 void
654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655 {
656 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660 }
661 
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665 {
666 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667 }
668 #endif
669 
670 static void
671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672 {
673 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674 }
675 
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
679 {
680 	return (ahd_inb(ahd, HESCB_QOFF));
681 }
682 #endif
683 
684 static void
685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686 {
687 	ahd_outb(ahd, HESCB_QOFF, value);
688 }
689 
690 static u_int
691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
692 {
693 	u_int oldvalue;
694 
695 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 	return (oldvalue);
699 }
700 
701 static void
702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703 {
704 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 	ahd_outw(ahd, SNSCB_QOFF, value);
706 }
707 
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
711 {
712 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 	return (ahd_inb(ahd, SESCB_QOFF));
714 }
715 #endif
716 
717 static void
718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719 {
720 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 	ahd_outb(ahd, SESCB_QOFF, value);
722 }
723 
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727 {
728 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730 }
731 #endif
732 
733 static void
734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735 {
736 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739 }
740 
741 u_int
742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743 {
744 	u_int value;
745 
746 	/*
747 	 * Workaround PCI-X Rev A. hardware bug.
748 	 * After a host read of SCB memory, the chip
749 	 * may become confused into thinking prefetch
750 	 * was required.  This starts the discard timer
751 	 * running and can cause an unexpected discard
752 	 * timer interrupt.  The work around is to read
753 	 * a normal register prior to the exhaustion of
754 	 * the discard timer.  The mode pointer register
755 	 * has no side effects and so serves well for
756 	 * this purpose.
757 	 *
758 	 * Razor #528
759 	 */
760 	value = ahd_inb(ahd, offset);
761 	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 		ahd_inb(ahd, MODE_PTR);
763 	return (value);
764 }
765 
766 u_int
767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768 {
769 	return (ahd_inb_scbram(ahd, offset)
770 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
771 }
772 
773 static uint32_t
774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775 {
776 	return (ahd_inw_scbram(ahd, offset)
777 	      | (ahd_inw_scbram(ahd, offset+2) << 16));
778 }
779 
780 static uint64_t
781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782 {
783 	return (ahd_inl_scbram(ahd, offset)
784 	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785 }
786 
787 struct scb *
788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789 {
790 	struct scb* scb;
791 
792 	if (tag >= AHD_SCB_MAX)
793 		return (NULL);
794 	scb = ahd->scb_data.scbindex[tag];
795 	if (scb != NULL)
796 		ahd_sync_scb(ahd, scb,
797 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 	return (scb);
799 }
800 
801 static void
802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803 {
804 	struct	 hardware_scb *q_hscb;
805 	struct	 map_node *q_hscb_map;
806 	uint32_t saved_hscb_busaddr;
807 
808 	/*
809 	 * Our queuing method is a bit tricky.  The card
810 	 * knows in advance which HSCB (by address) to download,
811 	 * and we can't disappoint it.  To achieve this, the next
812 	 * HSCB to download is saved off in ahd->next_queued_hscb.
813 	 * When we are called to queue "an arbitrary scb",
814 	 * we copy the contents of the incoming HSCB to the one
815 	 * the sequencer knows about, swap HSCB pointers and
816 	 * finally assign the SCB to the tag indexed location
817 	 * in the scb_array.  This makes sure that we can still
818 	 * locate the correct SCB by SCB_TAG.
819 	 */
820 	q_hscb = ahd->next_queued_hscb;
821 	q_hscb_map = ahd->next_queued_hscb_map;
822 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826 
827 	/* Now swap HSCB pointers. */
828 	ahd->next_queued_hscb = scb->hscb;
829 	ahd->next_queued_hscb_map = scb->hscb_map;
830 	scb->hscb = q_hscb;
831 	scb->hscb_map = q_hscb_map;
832 
833 	/* Now define the mapping from tag to SCB in the scbindex */
834 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835 }
836 
837 /*
838  * Tell the sequencer about a new transaction to execute.
839  */
840 void
841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842 {
843 	ahd_swap_with_next_hscb(ahd, scb);
844 
845 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 		panic("Attempt to queue invalid SCB tag %x\n",
847 		      SCB_GET_TAG(scb));
848 
849 	/*
850 	 * Keep a history of SCBs we've downloaded in the qinfifo.
851 	 */
852 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 	ahd->qinfifonext++;
854 
855 	if (scb->sg_count != 0)
856 		ahd_setup_data_scb(ahd, scb);
857 	else
858 		ahd_setup_noxfer_scb(ahd, scb);
859 	ahd_setup_scb_common(ahd, scb);
860 
861 	/*
862 	 * Make sure our data is consistent from the
863 	 * perspective of the adapter.
864 	 */
865 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866 
867 #ifdef AHD_DEBUG
868 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 		uint64_t host_dataptr;
870 
871 		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 		printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 		       ahd_name(ahd),
874 		       SCB_GET_TAG(scb), scb->hscb->scsiid,
875 		       ahd_le32toh(scb->hscb->hscb_busaddr),
876 		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 		       (u_int)(host_dataptr & 0xFFFFFFFF),
878 		       ahd_le32toh(scb->hscb->datacnt));
879 	}
880 #endif
881 	/* Tell the adapter about the newly queued SCB */
882 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883 }
884 
885 /************************** Interrupt Processing ******************************/
886 static void
887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888 {
889 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 			/*offset*/0,
891 			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892 }
893 
894 static void
895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896 {
897 #ifdef AHD_TARGET_MODE
898 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 				ahd->shared_data_map.dmamap,
901 				ahd_targetcmd_offset(ahd, 0),
902 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 				op);
904 	}
905 #endif
906 }
907 
908 /*
909  * See if the firmware has posted any completed commands
910  * into our in-core command complete fifos.
911  */
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916 {
917 	u_int retval;
918 
919 	retval = 0;
920 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 	  == ahd->qoutfifonext_valid_tag)
925 		retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 	if ((ahd->flags & AHD_TARGETROLE) != 0
928 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 				ahd->shared_data_map.dmamap,
931 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 				/*len*/sizeof(struct target_cmd),
933 				BUS_DMASYNC_POSTREAD);
934 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 			retval |= AHD_RUN_TQINFIFO;
936 	}
937 #endif
938 	return (retval);
939 }
940 
941 /*
942  * Catch an interrupt from the adapter
943  */
944 int
945 ahd_intr(struct ahd_softc *ahd)
946 {
947 	u_int	intstat;
948 
949 	if ((ahd->pause & INTEN) == 0) {
950 		/*
951 		 * Our interrupt is not enabled on the chip
952 		 * and may be disabled for re-entrancy reasons,
953 		 * so just return.  This is likely just a shared
954 		 * interrupt.
955 		 */
956 		return (0);
957 	}
958 
959 	/*
960 	 * Instead of directly reading the interrupt status register,
961 	 * infer the cause of the interrupt by checking our in-core
962 	 * completion queues.  This avoids a costly PCI bus read in
963 	 * most cases.
964 	 */
965 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 		intstat = CMDCMPLT;
968 	else
969 		intstat = ahd_inb(ahd, INTSTAT);
970 
971 	if ((intstat & INT_PEND) == 0)
972 		return (0);
973 
974 	if (intstat & CMDCMPLT) {
975 		ahd_outb(ahd, CLRINT, CLRCMDINT);
976 
977 		/*
978 		 * Ensure that the chip sees that we've cleared
979 		 * this interrupt before we walk the output fifo.
980 		 * Otherwise, we may, due to posted bus writes,
981 		 * clear the interrupt after we finish the scan,
982 		 * and after the sequencer has added new entries
983 		 * and asserted the interrupt again.
984 		 */
985 		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 			if (ahd_is_paused(ahd)) {
987 				/*
988 				 * Potentially lost SEQINT.
989 				 * If SEQINTCODE is non-zero,
990 				 * simulate the SEQINT.
991 				 */
992 				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 					intstat |= SEQINT;
994 			}
995 		} else {
996 			ahd_flush_device_writes(ahd);
997 		}
998 		ahd_run_qoutfifo(ahd);
999 		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 		ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 		if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1005 	}
1006 
1007 	/*
1008 	 * Handle statuses that may invalidate our cached
1009 	 * copy of INTSTAT separately.
1010 	 */
1011 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 		/* Hot eject.  Do nothing */
1013 	} else if (intstat & HWERRINT) {
1014 		ahd_handle_hwerrint(ahd);
1015 	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 		ahd->bus_intr(ahd);
1017 	} else {
1018 
1019 		if ((intstat & SEQINT) != 0)
1020 			ahd_handle_seqint(ahd, intstat);
1021 
1022 		if ((intstat & SCSIINT) != 0)
1023 			ahd_handle_scsiint(ahd, intstat);
1024 	}
1025 	return (1);
1026 }
1027 
1028 /******************************** Private Inlines *****************************/
1029 static inline void
1030 ahd_assert_atn(struct ahd_softc *ahd)
1031 {
1032 	ahd_outb(ahd, SCSISIGO, ATNO);
1033 }
1034 
1035 /*
1036  * Determine if the current connection has a packetized
1037  * agreement.  This does not necessarily mean that we
1038  * are currently in a packetized transfer.  We could
1039  * just as easily be sending or receiving a message.
1040  */
1041 static int
1042 ahd_currently_packetized(struct ahd_softc *ahd)
1043 {
1044 	ahd_mode_state	 saved_modes;
1045 	int		 packetized;
1046 
1047 	saved_modes = ahd_save_modes(ahd);
1048 	if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049 		/*
1050 		 * The packetized bit refers to the last
1051 		 * connection, not the current one.  Check
1052 		 * for non-zero LQISTATE instead.
1053 		 */
1054 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 		packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 	} else {
1057 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 		packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059 	}
1060 	ahd_restore_modes(ahd, saved_modes);
1061 	return (packetized);
1062 }
1063 
1064 static inline int
1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1066 {
1067 	u_int active_fifo;
1068 
1069 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 	active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 	switch (active_fifo) {
1072 	case 0:
1073 	case 1:
1074 		ahd_set_modes(ahd, active_fifo, active_fifo);
1075 		return (1);
1076 	default:
1077 		return (0);
1078 	}
1079 }
1080 
1081 static inline void
1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083 {
1084 	ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085 }
1086 
1087 /*
1088  * Determine whether the sequencer reported a residual
1089  * for this SCB/transaction.
1090  */
1091 static inline void
1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093 {
1094 	uint32_t sgptr;
1095 
1096 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 	if ((sgptr & SG_STATUS_VALID) != 0)
1098 		ahd_calc_residual(ahd, scb);
1099 }
1100 
1101 static inline void
1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103 {
1104 	uint32_t sgptr;
1105 
1106 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 	if ((sgptr & SG_STATUS_VALID) != 0)
1108 		ahd_handle_scb_status(ahd, scb);
1109 	else
1110 		ahd_done(ahd, scb);
1111 }
1112 
1113 
1114 /************************* Sequencer Execution Control ************************/
1115 /*
1116  * Restart the sequencer program from address zero
1117  */
1118 static void
1119 ahd_restart(struct ahd_softc *ahd)
1120 {
1121 
1122 	ahd_pause(ahd);
1123 
1124 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125 
1126 	/* No more pending messages */
1127 	ahd_clear_msg_state(ahd);
1128 	ahd_outb(ahd, SCSISIGO, 0);		/* De-assert BSY */
1129 	ahd_outb(ahd, MSG_OUT, MSG_NOOP);	/* No message to send */
1130 	ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 	ahd_outb(ahd, SEQINTCTL, 0);
1132 	ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 	ahd_outb(ahd, SEQ_FLAGS, 0);
1134 	ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 	ahd_outb(ahd, SAVED_LUN, 0xFF);
1136 
1137 	/*
1138 	 * Ensure that the sequencer's idea of TQINPOS
1139 	 * matches our own.  The sequencer increments TQINPOS
1140 	 * only after it sees a DMA complete and a reset could
1141 	 * occur before the increment leaving the kernel to believe
1142 	 * the command arrived but the sequencer to not.
1143 	 */
1144 	ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145 
1146 	/* Always allow reselection */
1147 	ahd_outb(ahd, SCSISEQ1,
1148 		 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150 
1151 	/*
1152 	 * Clear any pending sequencer interrupt.  It is no
1153 	 * longer relevant since we're resetting the Program
1154 	 * Counter.
1155 	 */
1156 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1157 
1158 	ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 	ahd_unpause(ahd);
1160 }
1161 
1162 static void
1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164 {
1165 	ahd_mode_state	 saved_modes;
1166 
1167 #ifdef AHD_DEBUG
1168 	if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 		printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 	saved_modes = ahd_save_modes(ahd);
1172 	ahd_set_modes(ahd, fifo, fifo);
1173 	ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 	if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 		ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 	ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 	ahd_outb(ahd, SG_STATE, 0);
1178 	ahd_restore_modes(ahd, saved_modes);
1179 }
1180 
1181 /************************* Input/Output Queues ********************************/
1182 /*
1183  * Flush and completed commands that are sitting in the command
1184  * complete queues down on the chip but have yet to be dma'ed back up.
1185  */
1186 static void
1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188 {
1189 	struct		scb *scb;
1190 	ahd_mode_state	saved_modes;
1191 	u_int		saved_scbptr;
1192 	u_int		ccscbctl;
1193 	u_int		scbid;
1194 	u_int		next_scbid;
1195 
1196 	saved_modes = ahd_save_modes(ahd);
1197 
1198 	/*
1199 	 * Flush the good status FIFO for completed packetized commands.
1200 	 */
1201 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 	saved_scbptr = ahd_get_scbptr(ahd);
1203 	while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 		u_int fifo_mode;
1205 		u_int i;
1206 
1207 		scbid = ahd_inw(ahd, GSFIFO);
1208 		scb = ahd_lookup_scb(ahd, scbid);
1209 		if (scb == NULL) {
1210 			printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 			       ahd_name(ahd), scbid);
1212 			continue;
1213 		}
1214 		/*
1215 		 * Determine if this transaction is still active in
1216 		 * any FIFO.  If it is, we must flush that FIFO to
1217 		 * the host before completing the  command.
1218 		 */
1219 		fifo_mode = 0;
1220 rescan_fifos:
1221 		for (i = 0; i < 2; i++) {
1222 			/* Toggle to the other mode. */
1223 			fifo_mode ^= 1;
1224 			ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225 
1226 			if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 				continue;
1228 
1229 			ahd_run_data_fifo(ahd, scb);
1230 
1231 			/*
1232 			 * Running this FIFO may cause a CFG4DATA for
1233 			 * this same transaction to assert in the other
1234 			 * FIFO or a new snapshot SAVEPTRS interrupt
1235 			 * in this FIFO.  Even running a FIFO may not
1236 			 * clear the transaction if we are still waiting
1237 			 * for data to drain to the host. We must loop
1238 			 * until the transaction is not active in either
1239 			 * FIFO just to be sure.  Reset our loop counter
1240 			 * so we will visit both FIFOs again before
1241 			 * declaring this transaction finished.  We
1242 			 * also delay a bit so that status has a chance
1243 			 * to change before we look at this FIFO again.
1244 			 */
1245 			ahd_delay(200);
1246 			goto rescan_fifos;
1247 		}
1248 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 		ahd_set_scbptr(ahd, scbid);
1250 		if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 		 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 		  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 		      & SG_LIST_NULL) != 0)) {
1254 			u_int comp_head;
1255 
1256 			/*
1257 			 * The transfer completed with a residual.
1258 			 * Place this SCB on the complete DMA list
1259 			 * so that we update our in-core copy of the
1260 			 * SCB before completing the command.
1261 			 */
1262 			ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 			ahd_outb(ahd, SCB_SGPTR,
1264 				 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 				 | SG_STATUS_VALID);
1266 			ahd_outw(ahd, SCB_TAG, scbid);
1267 			ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 			comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 			if (SCBID_IS_NULL(comp_head)) {
1270 				ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 			} else {
1273 				u_int tail;
1274 
1275 				tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 				ahd_set_scbptr(ahd, tail);
1277 				ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 				ahd_set_scbptr(ahd, scbid);
1280 			}
1281 		} else
1282 			ahd_complete_scb(ahd, scb);
1283 	}
1284 	ahd_set_scbptr(ahd, saved_scbptr);
1285 
1286 	/*
1287 	 * Setup for command channel portion of flush.
1288 	 */
1289 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290 
1291 	/*
1292 	 * Wait for any inprogress DMA to complete and clear DMA state
1293 	 * if this is for an SCB in the qinfifo.
1294 	 */
1295 	while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296 
1297 		if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 			if ((ccscbctl & ARRDONE) != 0)
1299 				break;
1300 		} else if ((ccscbctl & CCSCBDONE) != 0)
1301 			break;
1302 		ahd_delay(200);
1303 	}
1304 	/*
1305 	 * We leave the sequencer to cleanup in the case of DMA's to
1306 	 * update the qoutfifo.  In all other cases (DMA's to the
1307 	 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 	 * we disable the DMA engine so that the sequencer will not
1309 	 * attempt to handle the DMA completion.
1310 	 */
1311 	if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 		ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313 
1314 	/*
1315 	 * Complete any SCBs that just finished
1316 	 * being DMA'ed into the qoutfifo.
1317 	 */
1318 	ahd_run_qoutfifo(ahd);
1319 
1320 	saved_scbptr = ahd_get_scbptr(ahd);
1321 	/*
1322 	 * Manually update/complete any completed SCBs that are waiting to be
1323 	 * DMA'ed back up to the host.
1324 	 */
1325 	scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 	while (!SCBID_IS_NULL(scbid)) {
1327 		uint8_t *hscb_ptr;
1328 		u_int	 i;
1329 
1330 		ahd_set_scbptr(ahd, scbid);
1331 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 		scb = ahd_lookup_scb(ahd, scbid);
1333 		if (scb == NULL) {
1334 			printk("%s: Warning - DMA-up and complete "
1335 			       "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 			continue;
1337 		}
1338 		hscb_ptr = (uint8_t *)scb->hscb;
1339 		for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 			*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341 
1342 		ahd_complete_scb(ahd, scb);
1343 		scbid = next_scbid;
1344 	}
1345 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347 
1348 	scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 	while (!SCBID_IS_NULL(scbid)) {
1350 
1351 		ahd_set_scbptr(ahd, scbid);
1352 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 		scb = ahd_lookup_scb(ahd, scbid);
1354 		if (scb == NULL) {
1355 			printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 			       ahd_name(ahd), scbid);
1357 			continue;
1358 		}
1359 
1360 		ahd_complete_scb(ahd, scb);
1361 		scbid = next_scbid;
1362 	}
1363 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364 
1365 	scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 	while (!SCBID_IS_NULL(scbid)) {
1367 
1368 		ahd_set_scbptr(ahd, scbid);
1369 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 		scb = ahd_lookup_scb(ahd, scbid);
1371 		if (scb == NULL) {
1372 			printk("%s: Warning - Complete SCB %d invalid\n",
1373 			       ahd_name(ahd), scbid);
1374 			continue;
1375 		}
1376 
1377 		ahd_complete_scb(ahd, scb);
1378 		scbid = next_scbid;
1379 	}
1380 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381 
1382 	/*
1383 	 * Restore state.
1384 	 */
1385 	ahd_set_scbptr(ahd, saved_scbptr);
1386 	ahd_restore_modes(ahd, saved_modes);
1387 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388 }
1389 
1390 /*
1391  * Determine if an SCB for a packetized transaction
1392  * is active in a FIFO.
1393  */
1394 static int
1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396 {
1397 
1398 	/*
1399 	 * The FIFO is only active for our transaction if
1400 	 * the SCBPTR matches the SCB's ID and the firmware
1401 	 * has installed a handler for the FIFO or we have
1402 	 * a pending SAVEPTRS or CFG4DATA interrupt.
1403 	 */
1404 	if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 	 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 	  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 		return (0);
1408 
1409 	return (1);
1410 }
1411 
1412 /*
1413  * Run a data fifo to completion for a transaction we know
1414  * has completed across the SCSI bus (good status has been
1415  * received).  We are already set to the correct FIFO mode
1416  * on entry to this routine.
1417  *
1418  * This function attempts to operate exactly as the firmware
1419  * would when running this FIFO.  Care must be taken to update
1420  * this routine any time the firmware's FIFO algorithm is
1421  * changed.
1422  */
1423 static void
1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425 {
1426 	u_int seqintsrc;
1427 
1428 	seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 	if ((seqintsrc & CFG4DATA) != 0) {
1430 		uint32_t datacnt;
1431 		uint32_t sgptr;
1432 
1433 		/*
1434 		 * Clear full residual flag.
1435 		 */
1436 		sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 		ahd_outb(ahd, SCB_SGPTR, sgptr);
1438 
1439 		/*
1440 		 * Load datacnt and address.
1441 		 */
1442 		datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 		if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 			sgptr |= LAST_SEG;
1445 			ahd_outb(ahd, SG_STATE, 0);
1446 		} else
1447 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 		ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 		ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 		ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452 
1453 		/*
1454 		 * Initialize Residual Fields.
1455 		 */
1456 		ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 		ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458 
1459 		/*
1460 		 * Mark the SCB as having a FIFO in use.
1461 		 */
1462 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464 
1465 		/*
1466 		 * Install a "fake" handler for this FIFO.
1467 		 */
1468 		ahd_outw(ahd, LONGJMP_ADDR, 0);
1469 
1470 		/*
1471 		 * Notify the hardware that we have satisfied
1472 		 * this sequencer interrupt.
1473 		 */
1474 		ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 	} else if ((seqintsrc & SAVEPTRS) != 0) {
1476 		uint32_t sgptr;
1477 		uint32_t resid;
1478 
1479 		if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480 			/*
1481 			 * Snapshot Save Pointers.  All that
1482 			 * is necessary to clear the snapshot
1483 			 * is a CLRCHN.
1484 			 */
1485 			goto clrchn;
1486 		}
1487 
1488 		/*
1489 		 * Disable S/G fetch so the DMA engine
1490 		 * is available to future users.
1491 		 */
1492 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 			ahd_outb(ahd, CCSGCTL, 0);
1494 		ahd_outb(ahd, SG_STATE, 0);
1495 
1496 		/*
1497 		 * Flush the data FIFO.  Strickly only
1498 		 * necessary for Rev A parts.
1499 		 */
1500 		ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501 
1502 		/*
1503 		 * Calculate residual.
1504 		 */
1505 		sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 		resid = ahd_inl(ahd, SHCNT);
1507 		resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 		ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 		if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510 			/*
1511 			 * Must back up to the correct S/G element.
1512 			 * Typically this just means resetting our
1513 			 * low byte to the offset in the SG_CACHE,
1514 			 * but if we wrapped, we have to correct
1515 			 * the other bytes of the sgptr too.
1516 			 */
1517 			if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 			 && (sgptr & 0x80) == 0)
1519 				sgptr -= 0x100;
1520 			sgptr &= ~0xFF;
1521 			sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 			       & SG_ADDR_MASK;
1523 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 		} else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 			ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 				 sgptr | SG_LIST_NULL);
1528 		}
1529 		/*
1530 		 * Save Pointers.
1531 		 */
1532 		ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 		ahd_outl(ahd, SCB_DATACNT, resid);
1534 		ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 		ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 		ahd_outb(ahd, SEQIMODE,
1537 			 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538 		/*
1539 		 * If the data is to the SCSI bus, we are
1540 		 * done, otherwise wait for FIFOEMP.
1541 		 */
1542 		if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 			goto clrchn;
1544 	} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 		uint32_t sgptr;
1546 		uint64_t data_addr;
1547 		uint32_t data_len;
1548 		u_int	 dfcntrl;
1549 
1550 		/*
1551 		 * Disable S/G fetch so the DMA engine
1552 		 * is available to future users.  We won't
1553 		 * be using the DMA engine to load segments.
1554 		 */
1555 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 			ahd_outb(ahd, CCSGCTL, 0);
1557 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558 		}
1559 
1560 		/*
1561 		 * Wait for the DMA engine to notice that the
1562 		 * host transfer is enabled and that there is
1563 		 * space in the S/G FIFO for new segments before
1564 		 * loading more segments.
1565 		 */
1566 		if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 		 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568 
1569 			/*
1570 			 * Determine the offset of the next S/G
1571 			 * element to load.
1572 			 */
1573 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 			sgptr &= SG_PTR_MASK;
1575 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 				struct ahd_dma64_seg *sg;
1577 
1578 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 				data_addr = sg->addr;
1580 				data_len = sg->len;
1581 				sgptr += sizeof(*sg);
1582 			} else {
1583 				struct	ahd_dma_seg *sg;
1584 
1585 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 				data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 				data_addr <<= 8;
1588 				data_addr |= sg->addr;
1589 				data_len = sg->len;
1590 				sgptr += sizeof(*sg);
1591 			}
1592 
1593 			/*
1594 			 * Update residual information.
1595 			 */
1596 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598 
1599 			/*
1600 			 * Load the S/G.
1601 			 */
1602 			if (data_len & AHD_DMA_LAST_SEG) {
1603 				sgptr |= LAST_SEG;
1604 				ahd_outb(ahd, SG_STATE, 0);
1605 			}
1606 			ahd_outq(ahd, HADDR, data_addr);
1607 			ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 			ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609 
1610 			/*
1611 			 * Advertise the segment to the hardware.
1612 			 */
1613 			dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 			if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615 				/*
1616 				 * Use SCSIENWRDIS so that SCSIEN
1617 				 * is never modified by this
1618 				 * operation.
1619 				 */
1620 				dfcntrl |= SCSIENWRDIS;
1621 			}
1622 			ahd_outb(ahd, DFCNTRL, dfcntrl);
1623 		}
1624 	} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625 
1626 		/*
1627 		 * Transfer completed to the end of SG list
1628 		 * and has flushed to the host.
1629 		 */
1630 		ahd_outb(ahd, SCB_SGPTR,
1631 			 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 		goto clrchn;
1633 	} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1635 		/*
1636 		 * Clear any handler for this FIFO, decrement
1637 		 * the FIFO use count for the SCB, and release
1638 		 * the FIFO.
1639 		 */
1640 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 		ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644 	}
1645 }
1646 
1647 /*
1648  * Look for entries in the QoutFIFO that have completed.
1649  * The valid_tag completion field indicates the validity
1650  * of the entry - the valid value toggles each time through
1651  * the queue. We use the sg_status field in the completion
1652  * entry to avoid referencing the hscb if the completion
1653  * occurred with no errors and no residual.  sg_status is
1654  * a copy of the first byte (little endian) of the sgptr
1655  * hscb field.
1656  */
1657 static void
1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1659 {
1660 	struct ahd_completion *completion;
1661 	struct scb *scb;
1662 	u_int  scb_index;
1663 
1664 	if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 		panic("ahd_run_qoutfifo recursion");
1666 	ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 	for (;;) {
1669 		completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670 
1671 		if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 			break;
1673 
1674 		scb_index = ahd_le16toh(completion->tag);
1675 		scb = ahd_lookup_scb(ahd, scb_index);
1676 		if (scb == NULL) {
1677 			printk("%s: WARNING no command for scb %d "
1678 			       "(cmdcmplt)\nQOUTPOS = %d\n",
1679 			       ahd_name(ahd), scb_index,
1680 			       ahd->qoutfifonext);
1681 			ahd_dump_card_state(ahd);
1682 		} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 			ahd_handle_scb_status(ahd, scb);
1684 		} else {
1685 			ahd_done(ahd, scb);
1686 		}
1687 
1688 		ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 		if (ahd->qoutfifonext == 0)
1690 			ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691 	}
1692 	ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693 }
1694 
1695 /************************* Interrupt Handling *********************************/
1696 static void
1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1698 {
1699 	/*
1700 	 * Some catastrophic hardware error has occurred.
1701 	 * Print it for the user and disable the controller.
1702 	 */
1703 	int i;
1704 	int error;
1705 
1706 	error = ahd_inb(ahd, ERROR);
1707 	for (i = 0; i < num_errors; i++) {
1708 		if ((error & ahd_hard_errors[i].errno) != 0)
1709 			printk("%s: hwerrint, %s\n",
1710 			       ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711 	}
1712 
1713 	ahd_dump_card_state(ahd);
1714 	panic("BRKADRINT");
1715 
1716 	/* Tell everyone that this HBA is no longer available */
1717 	ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 		       CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 		       CAM_NO_HBA);
1720 
1721 	/* Tell the system that this controller has gone away. */
1722 	ahd_free(ahd);
1723 }
1724 
1725 #ifdef AHD_DEBUG
1726 static void
1727 ahd_dump_sglist(struct scb *scb)
1728 {
1729 	int i;
1730 
1731 	if (scb->sg_count > 0) {
1732 		if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 			struct ahd_dma64_seg *sg_list;
1734 
1735 			sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 			for (i = 0; i < scb->sg_count; i++) {
1737 				uint64_t addr;
1738 				uint32_t len;
1739 
1740 				addr = ahd_le64toh(sg_list[i].addr);
1741 				len = ahd_le32toh(sg_list[i].len);
1742 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1743 				       i,
1744 				       (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1745 				       (uint32_t)(addr & 0xFFFFFFFF),
1746 				       sg_list[i].len & AHD_SG_LEN_MASK,
1747 				       (sg_list[i].len & AHD_DMA_LAST_SEG)
1748 				     ? " Last" : "");
1749 			}
1750 		} else {
1751 			struct ahd_dma_seg *sg_list;
1752 
1753 			sg_list = (struct ahd_dma_seg*)scb->sg_list;
1754 			for (i = 0; i < scb->sg_count; i++) {
1755 				uint32_t len;
1756 
1757 				len = ahd_le32toh(sg_list[i].len);
1758 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1759 				       i,
1760 				       (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1761 				       ahd_le32toh(sg_list[i].addr),
1762 				       len & AHD_SG_LEN_MASK,
1763 				       len & AHD_DMA_LAST_SEG ? " Last" : "");
1764 			}
1765 		}
1766 	}
1767 }
1768 #endif  /*  AHD_DEBUG  */
1769 
1770 static void
1771 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1772 {
1773 	u_int seqintcode;
1774 
1775 	/*
1776 	 * Save the sequencer interrupt code and clear the SEQINT
1777 	 * bit. We will unpause the sequencer, if appropriate,
1778 	 * after servicing the request.
1779 	 */
1780 	seqintcode = ahd_inb(ahd, SEQINTCODE);
1781 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1782 	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1783 		/*
1784 		 * Unpause the sequencer and let it clear
1785 		 * SEQINT by writing NO_SEQINT to it.  This
1786 		 * will cause the sequencer to be paused again,
1787 		 * which is the expected state of this routine.
1788 		 */
1789 		ahd_unpause(ahd);
1790 		while (!ahd_is_paused(ahd))
1791 			;
1792 		ahd_outb(ahd, CLRINT, CLRSEQINT);
1793 	}
1794 	ahd_update_modes(ahd);
1795 #ifdef AHD_DEBUG
1796 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
1797 		printk("%s: Handle Seqint Called for code %d\n",
1798 		       ahd_name(ahd), seqintcode);
1799 #endif
1800 	switch (seqintcode) {
1801 	case ENTERING_NONPACK:
1802 	{
1803 		struct	scb *scb;
1804 		u_int	scbid;
1805 
1806 		AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1807 				 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1808 		scbid = ahd_get_scbptr(ahd);
1809 		scb = ahd_lookup_scb(ahd, scbid);
1810 		if (scb == NULL) {
1811 			/*
1812 			 * Somehow need to know if this
1813 			 * is from a selection or reselection.
1814 			 * From that, we can determine target
1815 			 * ID so we at least have an I_T nexus.
1816 			 */
1817 		} else {
1818 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1819 			ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1820 			ahd_outb(ahd, SEQ_FLAGS, 0x0);
1821 		}
1822 		if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1823 		 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1824 			/*
1825 			 * Phase change after read stream with
1826 			 * CRC error with P0 asserted on last
1827 			 * packet.
1828 			 */
1829 #ifdef AHD_DEBUG
1830 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1831 				printk("%s: Assuming LQIPHASE_NLQ with "
1832 				       "P0 assertion\n", ahd_name(ahd));
1833 #endif
1834 		}
1835 #ifdef AHD_DEBUG
1836 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1837 			printk("%s: Entering NONPACK\n", ahd_name(ahd));
1838 #endif
1839 		break;
1840 	}
1841 	case INVALID_SEQINT:
1842 		printk("%s: Invalid Sequencer interrupt occurred, "
1843 		       "resetting channel.\n",
1844 		       ahd_name(ahd));
1845 #ifdef AHD_DEBUG
1846 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1847 			ahd_dump_card_state(ahd);
1848 #endif
1849 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1850 		break;
1851 	case STATUS_OVERRUN:
1852 	{
1853 		struct	scb *scb;
1854 		u_int	scbid;
1855 
1856 		scbid = ahd_get_scbptr(ahd);
1857 		scb = ahd_lookup_scb(ahd, scbid);
1858 		if (scb != NULL)
1859 			ahd_print_path(ahd, scb);
1860 		else
1861 			printk("%s: ", ahd_name(ahd));
1862 		printk("SCB %d Packetized Status Overrun", scbid);
1863 		ahd_dump_card_state(ahd);
1864 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1865 		break;
1866 	}
1867 	case CFG4ISTAT_INTR:
1868 	{
1869 		struct	scb *scb;
1870 		u_int	scbid;
1871 
1872 		scbid = ahd_get_scbptr(ahd);
1873 		scb = ahd_lookup_scb(ahd, scbid);
1874 		if (scb == NULL) {
1875 			ahd_dump_card_state(ahd);
1876 			printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1877 			panic("For safety");
1878 		}
1879 		ahd_outq(ahd, HADDR, scb->sense_busaddr);
1880 		ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1881 		ahd_outb(ahd, HCNT + 2, 0);
1882 		ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1883 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1884 		break;
1885 	}
1886 	case ILLEGAL_PHASE:
1887 	{
1888 		u_int bus_phase;
1889 
1890 		bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1891 		printk("%s: ILLEGAL_PHASE 0x%x\n",
1892 		       ahd_name(ahd), bus_phase);
1893 
1894 		switch (bus_phase) {
1895 		case P_DATAOUT:
1896 		case P_DATAIN:
1897 		case P_DATAOUT_DT:
1898 		case P_DATAIN_DT:
1899 		case P_MESGOUT:
1900 		case P_STATUS:
1901 		case P_MESGIN:
1902 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1903 			printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1904 			break;
1905 		case P_COMMAND:
1906 		{
1907 			struct	ahd_devinfo devinfo;
1908 			struct	scb *scb;
1909 			struct	ahd_initiator_tinfo *targ_info;
1910 			struct	ahd_tmode_tstate *tstate;
1911 			struct	ahd_transinfo *tinfo;
1912 			u_int	scbid;
1913 
1914 			/*
1915 			 * If a target takes us into the command phase
1916 			 * assume that it has been externally reset and
1917 			 * has thus lost our previous packetized negotiation
1918 			 * agreement.  Since we have not sent an identify
1919 			 * message and may not have fully qualified the
1920 			 * connection, we change our command to TUR, assert
1921 			 * ATN and ABORT the task when we go to message in
1922 			 * phase.  The OSM will see the REQUEUE_REQUEST
1923 			 * status and retry the command.
1924 			 */
1925 			scbid = ahd_get_scbptr(ahd);
1926 			scb = ahd_lookup_scb(ahd, scbid);
1927 			if (scb == NULL) {
1928 				printk("Invalid phase with no valid SCB.  "
1929 				       "Resetting bus.\n");
1930 				ahd_reset_channel(ahd, 'A',
1931 						  /*Initiate Reset*/TRUE);
1932 				break;
1933 			}
1934 			ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1935 					    SCB_GET_TARGET(ahd, scb),
1936 					    SCB_GET_LUN(scb),
1937 					    SCB_GET_CHANNEL(ahd, scb),
1938 					    ROLE_INITIATOR);
1939 			targ_info = ahd_fetch_transinfo(ahd,
1940 							devinfo.channel,
1941 							devinfo.our_scsiid,
1942 							devinfo.target,
1943 							&tstate);
1944 			tinfo = &targ_info->curr;
1945 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1946 				      AHD_TRANS_ACTIVE, /*paused*/TRUE);
1947 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1948 					 /*offset*/0, /*ppr_options*/0,
1949 					 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1950 			/* Hand-craft TUR command */
1951 			ahd_outb(ahd, SCB_CDB_STORE, 0);
1952 			ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1953 			ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1954 			ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1955 			ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1956 			ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1957 			ahd_outb(ahd, SCB_CDB_LEN, 6);
1958 			scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1959 			scb->hscb->control |= MK_MESSAGE;
1960 			ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1961 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
1962 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1963 			/*
1964 			 * The lun is 0, regardless of the SCB's lun
1965 			 * as we have not sent an identify message.
1966 			 */
1967 			ahd_outb(ahd, SAVED_LUN, 0);
1968 			ahd_outb(ahd, SEQ_FLAGS, 0);
1969 			ahd_assert_atn(ahd);
1970 			scb->flags &= ~SCB_PACKETIZED;
1971 			scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1972 			ahd_freeze_devq(ahd, scb);
1973 			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1974 			ahd_freeze_scb(scb);
1975 
1976 			/* Notify XPT */
1977 			ahd_send_async(ahd, devinfo.channel, devinfo.target,
1978 				       CAM_LUN_WILDCARD, AC_SENT_BDR);
1979 
1980 			/*
1981 			 * Allow the sequencer to continue with
1982 			 * non-pack processing.
1983 			 */
1984 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1985 			ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1986 			if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1987 				ahd_outb(ahd, CLRLQOINT1, 0);
1988 			}
1989 #ifdef AHD_DEBUG
1990 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1991 				ahd_print_path(ahd, scb);
1992 				printk("Unexpected command phase from "
1993 				       "packetized target\n");
1994 			}
1995 #endif
1996 			break;
1997 		}
1998 		}
1999 		break;
2000 	}
2001 	case CFG4OVERRUN:
2002 	{
2003 		struct	scb *scb;
2004 		u_int	scb_index;
2005 
2006 #ifdef AHD_DEBUG
2007 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2008 			printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
2009 			       ahd_inb(ahd, MODE_PTR));
2010 		}
2011 #endif
2012 		scb_index = ahd_get_scbptr(ahd);
2013 		scb = ahd_lookup_scb(ahd, scb_index);
2014 		if (scb == NULL) {
2015 			/*
2016 			 * Attempt to transfer to an SCB that is
2017 			 * not outstanding.
2018 			 */
2019 			ahd_assert_atn(ahd);
2020 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
2021 			ahd->msgout_buf[0] = MSG_ABORT_TASK;
2022 			ahd->msgout_len = 1;
2023 			ahd->msgout_index = 0;
2024 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2025 			/*
2026 			 * Clear status received flag to prevent any
2027 			 * attempt to complete this bogus SCB.
2028 			 */
2029 			ahd_outb(ahd, SCB_CONTROL,
2030 				 ahd_inb_scbram(ahd, SCB_CONTROL)
2031 				 & ~STATUS_RCVD);
2032 		}
2033 		break;
2034 	}
2035 	case DUMP_CARD_STATE:
2036 	{
2037 		ahd_dump_card_state(ahd);
2038 		break;
2039 	}
2040 	case PDATA_REINIT:
2041 	{
2042 #ifdef AHD_DEBUG
2043 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2044 			printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2045 			       "SG_CACHE_SHADOW = 0x%x\n",
2046 			       ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2047 			       ahd_inb(ahd, SG_CACHE_SHADOW));
2048 		}
2049 #endif
2050 		ahd_reinitialize_dataptrs(ahd);
2051 		break;
2052 	}
2053 	case HOST_MSG_LOOP:
2054 	{
2055 		struct ahd_devinfo devinfo;
2056 
2057 		/*
2058 		 * The sequencer has encountered a message phase
2059 		 * that requires host assistance for completion.
2060 		 * While handling the message phase(s), we will be
2061 		 * notified by the sequencer after each byte is
2062 		 * transferred so we can track bus phase changes.
2063 		 *
2064 		 * If this is the first time we've seen a HOST_MSG_LOOP
2065 		 * interrupt, initialize the state of the host message
2066 		 * loop.
2067 		 */
2068 		ahd_fetch_devinfo(ahd, &devinfo);
2069 		if (ahd->msg_type == MSG_TYPE_NONE) {
2070 			struct scb *scb;
2071 			u_int scb_index;
2072 			u_int bus_phase;
2073 
2074 			bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2075 			if (bus_phase != P_MESGIN
2076 			 && bus_phase != P_MESGOUT) {
2077 				printk("ahd_intr: HOST_MSG_LOOP bad "
2078 				       "phase 0x%x\n", bus_phase);
2079 				/*
2080 				 * Probably transitioned to bus free before
2081 				 * we got here.  Just punt the message.
2082 				 */
2083 				ahd_dump_card_state(ahd);
2084 				ahd_clear_intstat(ahd);
2085 				ahd_restart(ahd);
2086 				return;
2087 			}
2088 
2089 			scb_index = ahd_get_scbptr(ahd);
2090 			scb = ahd_lookup_scb(ahd, scb_index);
2091 			if (devinfo.role == ROLE_INITIATOR) {
2092 				if (bus_phase == P_MESGOUT)
2093 					ahd_setup_initiator_msgout(ahd,
2094 								   &devinfo,
2095 								   scb);
2096 				else {
2097 					ahd->msg_type =
2098 					    MSG_TYPE_INITIATOR_MSGIN;
2099 					ahd->msgin_index = 0;
2100 				}
2101 			}
2102 #ifdef AHD_TARGET_MODE
2103 			else {
2104 				if (bus_phase == P_MESGOUT) {
2105 					ahd->msg_type =
2106 					    MSG_TYPE_TARGET_MSGOUT;
2107 					ahd->msgin_index = 0;
2108 				}
2109 				else
2110 					ahd_setup_target_msgin(ahd,
2111 							       &devinfo,
2112 							       scb);
2113 			}
2114 #endif
2115 		}
2116 
2117 		ahd_handle_message_phase(ahd);
2118 		break;
2119 	}
2120 	case NO_MATCH:
2121 	{
2122 		/* Ensure we don't leave the selection hardware on */
2123 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2124 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2125 
2126 		printk("%s:%c:%d: no active SCB for reconnecting "
2127 		       "target - issuing BUS DEVICE RESET\n",
2128 		       ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2129 		printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2130 		       "REG0 == 0x%x ACCUM = 0x%x\n",
2131 		       ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2132 		       ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2133 		printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2134 		       "SINDEX == 0x%x\n",
2135 		       ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2136 		       ahd_find_busy_tcl(ahd,
2137 					 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2138 						   ahd_inb(ahd, SAVED_LUN))),
2139 		       ahd_inw(ahd, SINDEX));
2140 		printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2141 		       "SCB_CONTROL == 0x%x\n",
2142 		       ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2143 		       ahd_inb_scbram(ahd, SCB_LUN),
2144 		       ahd_inb_scbram(ahd, SCB_CONTROL));
2145 		printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2146 		       ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2147 		printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2148 		printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2149 		ahd_dump_card_state(ahd);
2150 		ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2151 		ahd->msgout_len = 1;
2152 		ahd->msgout_index = 0;
2153 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2154 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
2155 		ahd_assert_atn(ahd);
2156 		break;
2157 	}
2158 	case PROTO_VIOLATION:
2159 	{
2160 		ahd_handle_proto_violation(ahd);
2161 		break;
2162 	}
2163 	case IGN_WIDE_RES:
2164 	{
2165 		struct ahd_devinfo devinfo;
2166 
2167 		ahd_fetch_devinfo(ahd, &devinfo);
2168 		ahd_handle_ign_wide_residue(ahd, &devinfo);
2169 		break;
2170 	}
2171 	case BAD_PHASE:
2172 	{
2173 		u_int lastphase;
2174 
2175 		lastphase = ahd_inb(ahd, LASTPHASE);
2176 		printk("%s:%c:%d: unknown scsi bus phase %x, "
2177 		       "lastphase = 0x%x.  Attempting to continue\n",
2178 		       ahd_name(ahd), 'A',
2179 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2180 		       lastphase, ahd_inb(ahd, SCSISIGI));
2181 		break;
2182 	}
2183 	case MISSED_BUSFREE:
2184 	{
2185 		u_int lastphase;
2186 
2187 		lastphase = ahd_inb(ahd, LASTPHASE);
2188 		printk("%s:%c:%d: Missed busfree. "
2189 		       "Lastphase = 0x%x, Curphase = 0x%x\n",
2190 		       ahd_name(ahd), 'A',
2191 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2192 		       lastphase, ahd_inb(ahd, SCSISIGI));
2193 		ahd_restart(ahd);
2194 		return;
2195 	}
2196 	case DATA_OVERRUN:
2197 	{
2198 		/*
2199 		 * When the sequencer detects an overrun, it
2200 		 * places the controller in "BITBUCKET" mode
2201 		 * and allows the target to complete its transfer.
2202 		 * Unfortunately, none of the counters get updated
2203 		 * when the controller is in this mode, so we have
2204 		 * no way of knowing how large the overrun was.
2205 		 */
2206 		struct	scb *scb;
2207 		u_int	scbindex;
2208 #ifdef AHD_DEBUG
2209 		u_int	lastphase;
2210 #endif
2211 
2212 		scbindex = ahd_get_scbptr(ahd);
2213 		scb = ahd_lookup_scb(ahd, scbindex);
2214 #ifdef AHD_DEBUG
2215 		lastphase = ahd_inb(ahd, LASTPHASE);
2216 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2217 			ahd_print_path(ahd, scb);
2218 			printk("data overrun detected %s.  Tag == 0x%x.\n",
2219 			       ahd_lookup_phase_entry(lastphase)->phasemsg,
2220 			       SCB_GET_TAG(scb));
2221 			ahd_print_path(ahd, scb);
2222 			printk("%s seen Data Phase.  Length = %ld.  "
2223 			       "NumSGs = %d.\n",
2224 			       ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2225 			       ? "Have" : "Haven't",
2226 			       ahd_get_transfer_length(scb), scb->sg_count);
2227 			ahd_dump_sglist(scb);
2228 		}
2229 #endif
2230 
2231 		/*
2232 		 * Set this and it will take effect when the
2233 		 * target does a command complete.
2234 		 */
2235 		ahd_freeze_devq(ahd, scb);
2236 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2237 		ahd_freeze_scb(scb);
2238 		break;
2239 	}
2240 	case MKMSG_FAILED:
2241 	{
2242 		struct ahd_devinfo devinfo;
2243 		struct scb *scb;
2244 		u_int scbid;
2245 
2246 		ahd_fetch_devinfo(ahd, &devinfo);
2247 		printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2248 		       ahd_name(ahd), devinfo.channel, devinfo.target,
2249 		       devinfo.lun);
2250 		scbid = ahd_get_scbptr(ahd);
2251 		scb = ahd_lookup_scb(ahd, scbid);
2252 		if (scb != NULL
2253 		 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2254 			/*
2255 			 * Ensure that we didn't put a second instance of this
2256 			 * SCB into the QINFIFO.
2257 			 */
2258 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2259 					   SCB_GET_CHANNEL(ahd, scb),
2260 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2261 					   ROLE_INITIATOR, /*status*/0,
2262 					   SEARCH_REMOVE);
2263 		ahd_outb(ahd, SCB_CONTROL,
2264 			 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2265 		break;
2266 	}
2267 	case TASKMGMT_FUNC_COMPLETE:
2268 	{
2269 		u_int	scbid;
2270 		struct	scb *scb;
2271 
2272 		scbid = ahd_get_scbptr(ahd);
2273 		scb = ahd_lookup_scb(ahd, scbid);
2274 		if (scb != NULL) {
2275 			u_int	   lun;
2276 			u_int	   tag;
2277 			cam_status error;
2278 
2279 			ahd_print_path(ahd, scb);
2280 			printk("Task Management Func 0x%x Complete\n",
2281 			       scb->hscb->task_management);
2282 			lun = CAM_LUN_WILDCARD;
2283 			tag = SCB_LIST_NULL;
2284 
2285 			switch (scb->hscb->task_management) {
2286 			case SIU_TASKMGMT_ABORT_TASK:
2287 				tag = SCB_GET_TAG(scb);
2288 				/* fall through */
2289 			case SIU_TASKMGMT_ABORT_TASK_SET:
2290 			case SIU_TASKMGMT_CLEAR_TASK_SET:
2291 				lun = scb->hscb->lun;
2292 				error = CAM_REQ_ABORTED;
2293 				ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2294 					       'A', lun, tag, ROLE_INITIATOR,
2295 					       error);
2296 				break;
2297 			case SIU_TASKMGMT_LUN_RESET:
2298 				lun = scb->hscb->lun;
2299 				/* fall through */
2300 			case SIU_TASKMGMT_TARGET_RESET:
2301 			{
2302 				struct ahd_devinfo devinfo;
2303 
2304 				ahd_scb_devinfo(ahd, &devinfo, scb);
2305 				error = CAM_BDR_SENT;
2306 				ahd_handle_devreset(ahd, &devinfo, lun,
2307 						    CAM_BDR_SENT,
2308 						    lun != CAM_LUN_WILDCARD
2309 						    ? "Lun Reset"
2310 						    : "Target Reset",
2311 						    /*verbose_level*/0);
2312 				break;
2313 			}
2314 			default:
2315 				panic("Unexpected TaskMgmt Func\n");
2316 				break;
2317 			}
2318 		}
2319 		break;
2320 	}
2321 	case TASKMGMT_CMD_CMPLT_OKAY:
2322 	{
2323 		u_int	scbid;
2324 		struct	scb *scb;
2325 
2326 		/*
2327 		 * An ABORT TASK TMF failed to be delivered before
2328 		 * the targeted command completed normally.
2329 		 */
2330 		scbid = ahd_get_scbptr(ahd);
2331 		scb = ahd_lookup_scb(ahd, scbid);
2332 		if (scb != NULL) {
2333 			/*
2334 			 * Remove the second instance of this SCB from
2335 			 * the QINFIFO if it is still there.
2336                          */
2337 			ahd_print_path(ahd, scb);
2338 			printk("SCB completes before TMF\n");
2339 			/*
2340 			 * Handle losing the race.  Wait until any
2341 			 * current selection completes.  We will then
2342 			 * set the TMF back to zero in this SCB so that
2343 			 * the sequencer doesn't bother to issue another
2344 			 * sequencer interrupt for its completion.
2345 			 */
2346 			while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2347 			    && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2348 			    && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2349 				;
2350 			ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2351 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2352 					   SCB_GET_CHANNEL(ahd, scb),
2353 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2354 					   ROLE_INITIATOR, /*status*/0,
2355 					   SEARCH_REMOVE);
2356 		}
2357 		break;
2358 	}
2359 	case TRACEPOINT0:
2360 	case TRACEPOINT1:
2361 	case TRACEPOINT2:
2362 	case TRACEPOINT3:
2363 		printk("%s: Tracepoint %d\n", ahd_name(ahd),
2364 		       seqintcode - TRACEPOINT0);
2365 		break;
2366 	case NO_SEQINT:
2367 		break;
2368 	case SAW_HWERR:
2369 		ahd_handle_hwerrint(ahd);
2370 		break;
2371 	default:
2372 		printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2373 		       seqintcode);
2374 		break;
2375 	}
2376 	/*
2377 	 *  The sequencer is paused immediately on
2378 	 *  a SEQINT, so we should restart it when
2379 	 *  we're done.
2380 	 */
2381 	ahd_unpause(ahd);
2382 }
2383 
2384 static void
2385 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2386 {
2387 	struct scb	*scb;
2388 	u_int		 status0;
2389 	u_int		 status3;
2390 	u_int		 status;
2391 	u_int		 lqistat1;
2392 	u_int		 lqostat0;
2393 	u_int		 scbid;
2394 	u_int		 busfreetime;
2395 
2396 	ahd_update_modes(ahd);
2397 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2398 
2399 	status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2400 	status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2401 	status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2402 	lqistat1 = ahd_inb(ahd, LQISTAT1);
2403 	lqostat0 = ahd_inb(ahd, LQOSTAT0);
2404 	busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2405 
2406 	/*
2407 	 * Ignore external resets after a bus reset.
2408 	 */
2409 	if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2410 		ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2411 		return;
2412 	}
2413 
2414 	/*
2415 	 * Clear bus reset flag
2416 	 */
2417 	ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2418 
2419 	if ((status0 & (SELDI|SELDO)) != 0) {
2420 		u_int simode0;
2421 
2422 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2423 		simode0 = ahd_inb(ahd, SIMODE0);
2424 		status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2425 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2426 	}
2427 	scbid = ahd_get_scbptr(ahd);
2428 	scb = ahd_lookup_scb(ahd, scbid);
2429 	if (scb != NULL
2430 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2431 		scb = NULL;
2432 
2433 	if ((status0 & IOERR) != 0) {
2434 		u_int now_lvd;
2435 
2436 		now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2437 		printk("%s: Transceiver State Has Changed to %s mode\n",
2438 		       ahd_name(ahd), now_lvd ? "LVD" : "SE");
2439 		ahd_outb(ahd, CLRSINT0, CLRIOERR);
2440 		/*
2441 		 * A change in I/O mode is equivalent to a bus reset.
2442 		 */
2443 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2444 		ahd_pause(ahd);
2445 		ahd_setup_iocell_workaround(ahd);
2446 		ahd_unpause(ahd);
2447 	} else if ((status0 & OVERRUN) != 0) {
2448 
2449 		printk("%s: SCSI offset overrun detected.  Resetting bus.\n",
2450 		       ahd_name(ahd));
2451 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2452 	} else if ((status & SCSIRSTI) != 0) {
2453 
2454 		printk("%s: Someone reset channel A\n", ahd_name(ahd));
2455 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2456 	} else if ((status & SCSIPERR) != 0) {
2457 
2458 		/* Make sure the sequencer is in a safe location. */
2459 		ahd_clear_critical_section(ahd);
2460 
2461 		ahd_handle_transmission_error(ahd);
2462 	} else if (lqostat0 != 0) {
2463 
2464 		printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2465 		ahd_outb(ahd, CLRLQOINT0, lqostat0);
2466 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2467 			ahd_outb(ahd, CLRLQOINT1, 0);
2468 	} else if ((status & SELTO) != 0) {
2469 		/* Stop the selection */
2470 		ahd_outb(ahd, SCSISEQ0, 0);
2471 
2472 		/* Make sure the sequencer is in a safe location. */
2473 		ahd_clear_critical_section(ahd);
2474 
2475 		/* No more pending messages */
2476 		ahd_clear_msg_state(ahd);
2477 
2478 		/* Clear interrupt state */
2479 		ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2480 
2481 		/*
2482 		 * Although the driver does not care about the
2483 		 * 'Selection in Progress' status bit, the busy
2484 		 * LED does.  SELINGO is only cleared by a successful
2485 		 * selection, so we must manually clear it to insure
2486 		 * the LED turns off just incase no future successful
2487 		 * selections occur (e.g. no devices on the bus).
2488 		 */
2489 		ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2490 
2491 		scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2492 		scb = ahd_lookup_scb(ahd, scbid);
2493 		if (scb == NULL) {
2494 			printk("%s: ahd_intr - referenced scb not "
2495 			       "valid during SELTO scb(0x%x)\n",
2496 			       ahd_name(ahd), scbid);
2497 			ahd_dump_card_state(ahd);
2498 		} else {
2499 			struct ahd_devinfo devinfo;
2500 #ifdef AHD_DEBUG
2501 			if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2502 				ahd_print_path(ahd, scb);
2503 				printk("Saw Selection Timeout for SCB 0x%x\n",
2504 				       scbid);
2505 			}
2506 #endif
2507 			ahd_scb_devinfo(ahd, &devinfo, scb);
2508 			ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2509 			ahd_freeze_devq(ahd, scb);
2510 
2511 			/*
2512 			 * Cancel any pending transactions on the device
2513 			 * now that it seems to be missing.  This will
2514 			 * also revert us to async/narrow transfers until
2515 			 * we can renegotiate with the device.
2516 			 */
2517 			ahd_handle_devreset(ahd, &devinfo,
2518 					    CAM_LUN_WILDCARD,
2519 					    CAM_SEL_TIMEOUT,
2520 					    "Selection Timeout",
2521 					    /*verbose_level*/1);
2522 		}
2523 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2524 		ahd_iocell_first_selection(ahd);
2525 		ahd_unpause(ahd);
2526 	} else if ((status0 & (SELDI|SELDO)) != 0) {
2527 
2528 		ahd_iocell_first_selection(ahd);
2529 		ahd_unpause(ahd);
2530 	} else if (status3 != 0) {
2531 		printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2532 		       ahd_name(ahd), status3);
2533 		ahd_outb(ahd, CLRSINT3, status3);
2534 	} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2535 
2536 		/* Make sure the sequencer is in a safe location. */
2537 		ahd_clear_critical_section(ahd);
2538 
2539 		ahd_handle_lqiphase_error(ahd, lqistat1);
2540 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2541 		/*
2542 		 * This status can be delayed during some
2543 		 * streaming operations.  The SCSIPHASE
2544 		 * handler has already dealt with this case
2545 		 * so just clear the error.
2546 		 */
2547 		ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2548 	} else if ((status & BUSFREE) != 0
2549 		|| (lqistat1 & LQOBUSFREE) != 0) {
2550 		u_int lqostat1;
2551 		int   restart;
2552 		int   clear_fifo;
2553 		int   packetized;
2554 		u_int mode;
2555 
2556 		/*
2557 		 * Clear our selection hardware as soon as possible.
2558 		 * We may have an entry in the waiting Q for this target,
2559 		 * that is affected by this busfree and we don't want to
2560 		 * go about selecting the target while we handle the event.
2561 		 */
2562 		ahd_outb(ahd, SCSISEQ0, 0);
2563 
2564 		/* Make sure the sequencer is in a safe location. */
2565 		ahd_clear_critical_section(ahd);
2566 
2567 		/*
2568 		 * Determine what we were up to at the time of
2569 		 * the busfree.
2570 		 */
2571 		mode = AHD_MODE_SCSI;
2572 		busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2573 		lqostat1 = ahd_inb(ahd, LQOSTAT1);
2574 		switch (busfreetime) {
2575 		case BUSFREE_DFF0:
2576 		case BUSFREE_DFF1:
2577 		{
2578 			mode = busfreetime == BUSFREE_DFF0
2579 			     ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2580 			ahd_set_modes(ahd, mode, mode);
2581 			scbid = ahd_get_scbptr(ahd);
2582 			scb = ahd_lookup_scb(ahd, scbid);
2583 			if (scb == NULL) {
2584 				printk("%s: Invalid SCB %d in DFF%d "
2585 				       "during unexpected busfree\n",
2586 				       ahd_name(ahd), scbid, mode);
2587 				packetized = 0;
2588 			} else
2589 				packetized = (scb->flags & SCB_PACKETIZED) != 0;
2590 			clear_fifo = 1;
2591 			break;
2592 		}
2593 		case BUSFREE_LQO:
2594 			clear_fifo = 0;
2595 			packetized = 1;
2596 			break;
2597 		default:
2598 			clear_fifo = 0;
2599 			packetized =  (lqostat1 & LQOBUSFREE) != 0;
2600 			if (!packetized
2601 			 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2602 			 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2603 			 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2604 			  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2605 				/*
2606 				 * Assume packetized if we are not
2607 				 * on the bus in a non-packetized
2608 				 * capacity and any pending selection
2609 				 * was a packetized selection.
2610 				 */
2611 				packetized = 1;
2612 			break;
2613 		}
2614 
2615 #ifdef AHD_DEBUG
2616 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
2617 			printk("Saw Busfree.  Busfreetime = 0x%x.\n",
2618 			       busfreetime);
2619 #endif
2620 		/*
2621 		 * Busfrees that occur in non-packetized phases are
2622 		 * handled by the nonpkt_busfree handler.
2623 		 */
2624 		if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2625 			restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2626 		} else {
2627 			packetized = 0;
2628 			restart = ahd_handle_nonpkt_busfree(ahd);
2629 		}
2630 		/*
2631 		 * Clear the busfree interrupt status.  The setting of
2632 		 * the interrupt is a pulse, so in a perfect world, we
2633 		 * would not need to muck with the ENBUSFREE logic.  This
2634 		 * would ensure that if the bus moves on to another
2635 		 * connection, busfree protection is still in force.  If
2636 		 * BUSFREEREV is broken, however, we must manually clear
2637 		 * the ENBUSFREE if the busfree occurred during a non-pack
2638 		 * connection so that we don't get false positives during
2639 		 * future, packetized, connections.
2640 		 */
2641 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2642 		if (packetized == 0
2643 		 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2644 			ahd_outb(ahd, SIMODE1,
2645 				 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2646 
2647 		if (clear_fifo)
2648 			ahd_clear_fifo(ahd, mode);
2649 
2650 		ahd_clear_msg_state(ahd);
2651 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2652 		if (restart) {
2653 			ahd_restart(ahd);
2654 		} else {
2655 			ahd_unpause(ahd);
2656 		}
2657 	} else {
2658 		printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2659 		       ahd_name(ahd), status);
2660 		ahd_dump_card_state(ahd);
2661 		ahd_clear_intstat(ahd);
2662 		ahd_unpause(ahd);
2663 	}
2664 }
2665 
2666 static void
2667 ahd_handle_transmission_error(struct ahd_softc *ahd)
2668 {
2669 	struct	scb *scb;
2670 	u_int	scbid;
2671 	u_int	lqistat1;
2672 	u_int	lqistat2;
2673 	u_int	msg_out;
2674 	u_int	curphase;
2675 	u_int	lastphase;
2676 	u_int	perrdiag;
2677 	u_int	cur_col;
2678 	int	silent;
2679 
2680 	scb = NULL;
2681 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2682 	lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2683 	lqistat2 = ahd_inb(ahd, LQISTAT2);
2684 	if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2685 	 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2686 		u_int lqistate;
2687 
2688 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2689 		lqistate = ahd_inb(ahd, LQISTATE);
2690 		if ((lqistate >= 0x1E && lqistate <= 0x24)
2691 		 || (lqistate == 0x29)) {
2692 #ifdef AHD_DEBUG
2693 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2694 				printk("%s: NLQCRC found via LQISTATE\n",
2695 				       ahd_name(ahd));
2696 			}
2697 #endif
2698 			lqistat1 |= LQICRCI_NLQ;
2699 		}
2700 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2701 	}
2702 
2703 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2704 	lastphase = ahd_inb(ahd, LASTPHASE);
2705 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2706 	perrdiag = ahd_inb(ahd, PERRDIAG);
2707 	msg_out = MSG_INITIATOR_DET_ERR;
2708 	ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2709 
2710 	/*
2711 	 * Try to find the SCB associated with this error.
2712 	 */
2713 	silent = FALSE;
2714 	if (lqistat1 == 0
2715 	 || (lqistat1 & LQICRCI_NLQ) != 0) {
2716 	 	if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2717 			ahd_set_active_fifo(ahd);
2718 		scbid = ahd_get_scbptr(ahd);
2719 		scb = ahd_lookup_scb(ahd, scbid);
2720 		if (scb != NULL && SCB_IS_SILENT(scb))
2721 			silent = TRUE;
2722 	}
2723 
2724 	cur_col = 0;
2725 	if (silent == FALSE) {
2726 		printk("%s: Transmission error detected\n", ahd_name(ahd));
2727 		ahd_lqistat1_print(lqistat1, &cur_col, 50);
2728 		ahd_lastphase_print(lastphase, &cur_col, 50);
2729 		ahd_scsisigi_print(curphase, &cur_col, 50);
2730 		ahd_perrdiag_print(perrdiag, &cur_col, 50);
2731 		printk("\n");
2732 		ahd_dump_card_state(ahd);
2733 	}
2734 
2735 	if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2736 		if (silent == FALSE) {
2737 			printk("%s: Gross protocol error during incoming "
2738 			       "packet.  lqistat1 == 0x%x.  Resetting bus.\n",
2739 			       ahd_name(ahd), lqistat1);
2740 		}
2741 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2742 		return;
2743 	} else if ((lqistat1 & LQICRCI_LQ) != 0) {
2744 		/*
2745 		 * A CRC error has been detected on an incoming LQ.
2746 		 * The bus is currently hung on the last ACK.
2747 		 * Hit LQIRETRY to release the last ack, and
2748 		 * wait for the sequencer to determine that ATNO
2749 		 * is asserted while in message out to take us
2750 		 * to our host message loop.  No NONPACKREQ or
2751 		 * LQIPHASE type errors will occur in this
2752 		 * scenario.  After this first LQIRETRY, the LQI
2753 		 * manager will be in ISELO where it will
2754 		 * happily sit until another packet phase begins.
2755 		 * Unexpected bus free detection is enabled
2756 		 * through any phases that occur after we release
2757 		 * this last ack until the LQI manager sees a
2758 		 * packet phase.  This implies we may have to
2759 		 * ignore a perfectly valid "unexected busfree"
2760 		 * after our "initiator detected error" message is
2761 		 * sent.  A busfree is the expected response after
2762 		 * we tell the target that it's L_Q was corrupted.
2763 		 * (SPI4R09 10.7.3.3.3)
2764 		 */
2765 		ahd_outb(ahd, LQCTL2, LQIRETRY);
2766 		printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2767 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2768 		/*
2769 		 * We detected a CRC error in a NON-LQ packet.
2770 		 * The hardware has varying behavior in this situation
2771 		 * depending on whether this packet was part of a
2772 		 * stream or not.
2773 		 *
2774 		 * PKT by PKT mode:
2775 		 * The hardware has already acked the complete packet.
2776 		 * If the target honors our outstanding ATN condition,
2777 		 * we should be (or soon will be) in MSGOUT phase.
2778 		 * This will trigger the LQIPHASE_LQ status bit as the
2779 		 * hardware was expecting another LQ.  Unexpected
2780 		 * busfree detection is enabled.  Once LQIPHASE_LQ is
2781 		 * true (first entry into host message loop is much
2782 		 * the same), we must clear LQIPHASE_LQ and hit
2783 		 * LQIRETRY so the hardware is ready to handle
2784 		 * a future LQ.  NONPACKREQ will not be asserted again
2785 		 * once we hit LQIRETRY until another packet is
2786 		 * processed.  The target may either go busfree
2787 		 * or start another packet in response to our message.
2788 		 *
2789 		 * Read Streaming P0 asserted:
2790 		 * If we raise ATN and the target completes the entire
2791 		 * stream (P0 asserted during the last packet), the
2792 		 * hardware will ack all data and return to the ISTART
2793 		 * state.  When the target reponds to our ATN condition,
2794 		 * LQIPHASE_LQ will be asserted.  We should respond to
2795 		 * this with an LQIRETRY to prepare for any future
2796 		 * packets.  NONPACKREQ will not be asserted again
2797 		 * once we hit LQIRETRY until another packet is
2798 		 * processed.  The target may either go busfree or
2799 		 * start another packet in response to our message.
2800 		 * Busfree detection is enabled.
2801 		 *
2802 		 * Read Streaming P0 not asserted:
2803 		 * If we raise ATN and the target transitions to
2804 		 * MSGOUT in or after a packet where P0 is not
2805 		 * asserted, the hardware will assert LQIPHASE_NLQ.
2806 		 * We should respond to the LQIPHASE_NLQ with an
2807 		 * LQIRETRY.  Should the target stay in a non-pkt
2808 		 * phase after we send our message, the hardware
2809 		 * will assert LQIPHASE_LQ.  Recovery is then just as
2810 		 * listed above for the read streaming with P0 asserted.
2811 		 * Busfree detection is enabled.
2812 		 */
2813 		if (silent == FALSE)
2814 			printk("LQICRC_NLQ\n");
2815 		if (scb == NULL) {
2816 			printk("%s: No SCB valid for LQICRC_NLQ.  "
2817 			       "Resetting bus\n", ahd_name(ahd));
2818 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2819 			return;
2820 		}
2821 	} else if ((lqistat1 & LQIBADLQI) != 0) {
2822 		printk("Need to handle BADLQI!\n");
2823 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2824 		return;
2825 	} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2826 		if ((curphase & ~P_DATAIN_DT) != 0) {
2827 			/* Ack the byte.  So we can continue. */
2828 			if (silent == FALSE)
2829 				printk("Acking %s to clear perror\n",
2830 				    ahd_lookup_phase_entry(curphase)->phasemsg);
2831 			ahd_inb(ahd, SCSIDAT);
2832 		}
2833 
2834 		if (curphase == P_MESGIN)
2835 			msg_out = MSG_PARITY_ERROR;
2836 	}
2837 
2838 	/*
2839 	 * We've set the hardware to assert ATN if we
2840 	 * get a parity error on "in" phases, so all we
2841 	 * need to do is stuff the message buffer with
2842 	 * the appropriate message.  "In" phases have set
2843 	 * mesg_out to something other than MSG_NOP.
2844 	 */
2845 	ahd->send_msg_perror = msg_out;
2846 	if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2847 		scb->flags |= SCB_TRANSMISSION_ERROR;
2848 	ahd_outb(ahd, MSG_OUT, HOST_MSG);
2849 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
2850 	ahd_unpause(ahd);
2851 }
2852 
2853 static void
2854 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2855 {
2856 	/*
2857 	 * Clear the sources of the interrupts.
2858 	 */
2859 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2860 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2861 
2862 	/*
2863 	 * If the "illegal" phase changes were in response
2864 	 * to our ATN to flag a CRC error, AND we ended up
2865 	 * on packet boundaries, clear the error, restart the
2866 	 * LQI manager as appropriate, and go on our merry
2867 	 * way toward sending the message.  Otherwise, reset
2868 	 * the bus to clear the error.
2869 	 */
2870 	ahd_set_active_fifo(ahd);
2871 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2872 	 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2873 		if ((lqistat1 & LQIPHASE_LQ) != 0) {
2874 			printk("LQIRETRY for LQIPHASE_LQ\n");
2875 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2876 		} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2877 			printk("LQIRETRY for LQIPHASE_NLQ\n");
2878 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2879 		} else
2880 			panic("ahd_handle_lqiphase_error: No phase errors\n");
2881 		ahd_dump_card_state(ahd);
2882 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2883 		ahd_unpause(ahd);
2884 	} else {
2885 		printk("Resetting Channel for LQI Phase error\n");
2886 		ahd_dump_card_state(ahd);
2887 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2888 	}
2889 }
2890 
2891 /*
2892  * Packetized unexpected or expected busfree.
2893  * Entered in mode based on busfreetime.
2894  */
2895 static int
2896 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2897 {
2898 	u_int lqostat1;
2899 
2900 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2901 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2902 	lqostat1 = ahd_inb(ahd, LQOSTAT1);
2903 	if ((lqostat1 & LQOBUSFREE) != 0) {
2904 		struct scb *scb;
2905 		u_int scbid;
2906 		u_int saved_scbptr;
2907 		u_int waiting_h;
2908 		u_int waiting_t;
2909 		u_int next;
2910 
2911 		/*
2912 		 * The LQO manager detected an unexpected busfree
2913 		 * either:
2914 		 *
2915 		 * 1) During an outgoing LQ.
2916 		 * 2) After an outgoing LQ but before the first
2917 		 *    REQ of the command packet.
2918 		 * 3) During an outgoing command packet.
2919 		 *
2920 		 * In all cases, CURRSCB is pointing to the
2921 		 * SCB that encountered the failure.  Clean
2922 		 * up the queue, clear SELDO and LQOBUSFREE,
2923 		 * and allow the sequencer to restart the select
2924 		 * out at its lesure.
2925 		 */
2926 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2927 		scbid = ahd_inw(ahd, CURRSCB);
2928 		scb = ahd_lookup_scb(ahd, scbid);
2929 		if (scb == NULL)
2930 		       panic("SCB not valid during LQOBUSFREE");
2931 		/*
2932 		 * Clear the status.
2933 		 */
2934 		ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2935 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2936 			ahd_outb(ahd, CLRLQOINT1, 0);
2937 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2938 		ahd_flush_device_writes(ahd);
2939 		ahd_outb(ahd, CLRSINT0, CLRSELDO);
2940 
2941 		/*
2942 		 * Return the LQO manager to its idle loop.  It will
2943 		 * not do this automatically if the busfree occurs
2944 		 * after the first REQ of either the LQ or command
2945 		 * packet or between the LQ and command packet.
2946 		 */
2947 		ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2948 
2949 		/*
2950 		 * Update the waiting for selection queue so
2951 		 * we restart on the correct SCB.
2952 		 */
2953 		waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2954 		saved_scbptr = ahd_get_scbptr(ahd);
2955 		if (waiting_h != scbid) {
2956 
2957 			ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2958 			waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2959 			if (waiting_t == waiting_h) {
2960 				ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2961 				next = SCB_LIST_NULL;
2962 			} else {
2963 				ahd_set_scbptr(ahd, waiting_h);
2964 				next = ahd_inw_scbram(ahd, SCB_NEXT2);
2965 			}
2966 			ahd_set_scbptr(ahd, scbid);
2967 			ahd_outw(ahd, SCB_NEXT2, next);
2968 		}
2969 		ahd_set_scbptr(ahd, saved_scbptr);
2970 		if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2971 			if (SCB_IS_SILENT(scb) == FALSE) {
2972 				ahd_print_path(ahd, scb);
2973 				printk("Probable outgoing LQ CRC error.  "
2974 				       "Retrying command\n");
2975 			}
2976 			scb->crc_retry_count++;
2977 		} else {
2978 			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2979 			ahd_freeze_scb(scb);
2980 			ahd_freeze_devq(ahd, scb);
2981 		}
2982 		/* Return unpausing the sequencer. */
2983 		return (0);
2984 	} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2985 		/*
2986 		 * Ignore what are really parity errors that
2987 		 * occur on the last REQ of a free running
2988 		 * clock prior to going busfree.  Some drives
2989 		 * do not properly active negate just before
2990 		 * going busfree resulting in a parity glitch.
2991 		 */
2992 		ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2993 #ifdef AHD_DEBUG
2994 		if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2995 			printk("%s: Parity on last REQ detected "
2996 			       "during busfree phase.\n",
2997 			       ahd_name(ahd));
2998 #endif
2999 		/* Return unpausing the sequencer. */
3000 		return (0);
3001 	}
3002 	if (ahd->src_mode != AHD_MODE_SCSI) {
3003 		u_int	scbid;
3004 		struct	scb *scb;
3005 
3006 		scbid = ahd_get_scbptr(ahd);
3007 		scb = ahd_lookup_scb(ahd, scbid);
3008 		ahd_print_path(ahd, scb);
3009 		printk("Unexpected PKT busfree condition\n");
3010 		ahd_dump_card_state(ahd);
3011 		ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3012 			       SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3013 			       ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3014 
3015 		/* Return restarting the sequencer. */
3016 		return (1);
3017 	}
3018 	printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3019 	ahd_dump_card_state(ahd);
3020 	/* Restart the sequencer. */
3021 	return (1);
3022 }
3023 
3024 /*
3025  * Non-packetized unexpected or expected busfree.
3026  */
3027 static int
3028 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3029 {
3030 	struct	ahd_devinfo devinfo;
3031 	struct	scb *scb;
3032 	u_int	lastphase;
3033 	u_int	saved_scsiid;
3034 	u_int	saved_lun;
3035 	u_int	target;
3036 	u_int	initiator_role_id;
3037 	u_int	scbid;
3038 	u_int	ppr_busfree;
3039 	int	printerror;
3040 
3041 	/*
3042 	 * Look at what phase we were last in.  If its message out,
3043 	 * chances are pretty good that the busfree was in response
3044 	 * to one of our abort requests.
3045 	 */
3046 	lastphase = ahd_inb(ahd, LASTPHASE);
3047 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3048 	saved_lun = ahd_inb(ahd, SAVED_LUN);
3049 	target = SCSIID_TARGET(ahd, saved_scsiid);
3050 	initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3051 	ahd_compile_devinfo(&devinfo, initiator_role_id,
3052 			    target, saved_lun, 'A', ROLE_INITIATOR);
3053 	printerror = 1;
3054 
3055 	scbid = ahd_get_scbptr(ahd);
3056 	scb = ahd_lookup_scb(ahd, scbid);
3057 	if (scb != NULL
3058 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3059 		scb = NULL;
3060 
3061 	ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3062 	if (lastphase == P_MESGOUT) {
3063 		u_int tag;
3064 
3065 		tag = SCB_LIST_NULL;
3066 		if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3067 		 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3068 			int found;
3069 			int sent_msg;
3070 
3071 			if (scb == NULL) {
3072 				ahd_print_devinfo(ahd, &devinfo);
3073 				printk("Abort for unidentified "
3074 				       "connection completed.\n");
3075 				/* restart the sequencer. */
3076 				return (1);
3077 			}
3078 			sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3079 			ahd_print_path(ahd, scb);
3080 			printk("SCB %d - Abort%s Completed.\n",
3081 			       SCB_GET_TAG(scb),
3082 			       sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3083 
3084 			if (sent_msg == MSG_ABORT_TAG)
3085 				tag = SCB_GET_TAG(scb);
3086 
3087 			if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3088 				/*
3089 				 * This abort is in response to an
3090 				 * unexpected switch to command phase
3091 				 * for a packetized connection.  Since
3092 				 * the identify message was never sent,
3093 				 * "saved lun" is 0.  We really want to
3094 				 * abort only the SCB that encountered
3095 				 * this error, which could have a different
3096 				 * lun.  The SCB will be retried so the OS
3097 				 * will see the UA after renegotiating to
3098 				 * packetized.
3099 				 */
3100 				tag = SCB_GET_TAG(scb);
3101 				saved_lun = scb->hscb->lun;
3102 			}
3103 			found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3104 					       tag, ROLE_INITIATOR,
3105 					       CAM_REQ_ABORTED);
3106 			printk("found == 0x%x\n", found);
3107 			printerror = 0;
3108 		} else if (ahd_sent_msg(ahd, AHDMSG_1B,
3109 					MSG_BUS_DEV_RESET, TRUE)) {
3110 #ifdef __FreeBSD__
3111 			/*
3112 			 * Don't mark the user's request for this BDR
3113 			 * as completing with CAM_BDR_SENT.  CAM3
3114 			 * specifies CAM_REQ_CMP.
3115 			 */
3116 			if (scb != NULL
3117 			 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
3118 			 && ahd_match_scb(ahd, scb, target, 'A',
3119 					  CAM_LUN_WILDCARD, SCB_LIST_NULL,
3120 					  ROLE_INITIATOR))
3121 				ahd_set_transaction_status(scb, CAM_REQ_CMP);
3122 #endif
3123 			ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3124 					    CAM_BDR_SENT, "Bus Device Reset",
3125 					    /*verbose_level*/0);
3126 			printerror = 0;
3127 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3128 			&& ppr_busfree == 0) {
3129 			struct ahd_initiator_tinfo *tinfo;
3130 			struct ahd_tmode_tstate *tstate;
3131 
3132 			/*
3133 			 * PPR Rejected.
3134 			 *
3135 			 * If the previous negotiation was packetized,
3136 			 * this could be because the device has been
3137 			 * reset without our knowledge.  Force our
3138 			 * current negotiation to async and retry the
3139 			 * negotiation.  Otherwise retry the command
3140 			 * with non-ppr negotiation.
3141 			 */
3142 #ifdef AHD_DEBUG
3143 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3144 				printk("PPR negotiation rejected busfree.\n");
3145 #endif
3146 			tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3147 						    devinfo.our_scsiid,
3148 						    devinfo.target, &tstate);
3149 			if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3150 				ahd_set_width(ahd, &devinfo,
3151 					      MSG_EXT_WDTR_BUS_8_BIT,
3152 					      AHD_TRANS_CUR,
3153 					      /*paused*/TRUE);
3154 				ahd_set_syncrate(ahd, &devinfo,
3155 						/*period*/0, /*offset*/0,
3156 						/*ppr_options*/0,
3157 						AHD_TRANS_CUR,
3158 						/*paused*/TRUE);
3159 				/*
3160 				 * The expect PPR busfree handler below
3161 				 * will effect the retry and necessary
3162 				 * abort.
3163 				 */
3164 			} else {
3165 				tinfo->curr.transport_version = 2;
3166 				tinfo->goal.transport_version = 2;
3167 				tinfo->goal.ppr_options = 0;
3168 				if (scb != NULL) {
3169 					/*
3170 					 * Remove any SCBs in the waiting
3171 					 * for selection queue that may
3172 					 * also be for this target so that
3173 					 * command ordering is preserved.
3174 					 */
3175 					ahd_freeze_devq(ahd, scb);
3176 					ahd_qinfifo_requeue_tail(ahd, scb);
3177 				}
3178 				printerror = 0;
3179 			}
3180 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3181 			&& ppr_busfree == 0) {
3182 			/*
3183 			 * Negotiation Rejected.  Go-narrow and
3184 			 * retry command.
3185 			 */
3186 #ifdef AHD_DEBUG
3187 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3188 				printk("WDTR negotiation rejected busfree.\n");
3189 #endif
3190 			ahd_set_width(ahd, &devinfo,
3191 				      MSG_EXT_WDTR_BUS_8_BIT,
3192 				      AHD_TRANS_CUR|AHD_TRANS_GOAL,
3193 				      /*paused*/TRUE);
3194 			if (scb != NULL) {
3195 				/*
3196 				 * Remove any SCBs in the waiting for
3197 				 * selection queue that may also be for
3198 				 * this target so that command ordering
3199 				 * is preserved.
3200 				 */
3201 				ahd_freeze_devq(ahd, scb);
3202 				ahd_qinfifo_requeue_tail(ahd, scb);
3203 			}
3204 			printerror = 0;
3205 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3206 			&& ppr_busfree == 0) {
3207 			/*
3208 			 * Negotiation Rejected.  Go-async and
3209 			 * retry command.
3210 			 */
3211 #ifdef AHD_DEBUG
3212 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3213 				printk("SDTR negotiation rejected busfree.\n");
3214 #endif
3215 			ahd_set_syncrate(ahd, &devinfo,
3216 					/*period*/0, /*offset*/0,
3217 					/*ppr_options*/0,
3218 					AHD_TRANS_CUR|AHD_TRANS_GOAL,
3219 					/*paused*/TRUE);
3220 			if (scb != NULL) {
3221 				/*
3222 				 * Remove any SCBs in the waiting for
3223 				 * selection queue that may also be for
3224 				 * this target so that command ordering
3225 				 * is preserved.
3226 				 */
3227 				ahd_freeze_devq(ahd, scb);
3228 				ahd_qinfifo_requeue_tail(ahd, scb);
3229 			}
3230 			printerror = 0;
3231 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3232 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3233 					 MSG_INITIATOR_DET_ERR, TRUE)) {
3234 
3235 #ifdef AHD_DEBUG
3236 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3237 				printk("Expected IDE Busfree\n");
3238 #endif
3239 			printerror = 0;
3240 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3241 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3242 					MSG_MESSAGE_REJECT, TRUE)) {
3243 
3244 #ifdef AHD_DEBUG
3245 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3246 				printk("Expected QAS Reject Busfree\n");
3247 #endif
3248 			printerror = 0;
3249 		}
3250 	}
3251 
3252 	/*
3253 	 * The busfree required flag is honored at the end of
3254 	 * the message phases.  We check it last in case we
3255 	 * had to send some other message that caused a busfree.
3256 	 */
3257 	if (scb != NULL && printerror != 0
3258 	 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3259 	 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3260 
3261 		ahd_freeze_devq(ahd, scb);
3262 		ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3263 		ahd_freeze_scb(scb);
3264 		if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3265 			ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3266 				       SCB_GET_CHANNEL(ahd, scb),
3267 				       SCB_GET_LUN(scb), SCB_LIST_NULL,
3268 				       ROLE_INITIATOR, CAM_REQ_ABORTED);
3269 		} else {
3270 #ifdef AHD_DEBUG
3271 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3272 				printk("PPR Negotiation Busfree.\n");
3273 #endif
3274 			ahd_done(ahd, scb);
3275 		}
3276 		printerror = 0;
3277 	}
3278 	if (printerror != 0) {
3279 		int aborted;
3280 
3281 		aborted = 0;
3282 		if (scb != NULL) {
3283 			u_int tag;
3284 
3285 			if ((scb->hscb->control & TAG_ENB) != 0)
3286 				tag = SCB_GET_TAG(scb);
3287 			else
3288 				tag = SCB_LIST_NULL;
3289 			ahd_print_path(ahd, scb);
3290 			aborted = ahd_abort_scbs(ahd, target, 'A',
3291 				       SCB_GET_LUN(scb), tag,
3292 				       ROLE_INITIATOR,
3293 				       CAM_UNEXP_BUSFREE);
3294 		} else {
3295 			/*
3296 			 * We had not fully identified this connection,
3297 			 * so we cannot abort anything.
3298 			 */
3299 			printk("%s: ", ahd_name(ahd));
3300 		}
3301 		printk("Unexpected busfree %s, %d SCBs aborted, "
3302 		       "PRGMCNT == 0x%x\n",
3303 		       ahd_lookup_phase_entry(lastphase)->phasemsg,
3304 		       aborted,
3305 		       ahd_inw(ahd, PRGMCNT));
3306 		ahd_dump_card_state(ahd);
3307 		if (lastphase != P_BUSFREE)
3308 			ahd_force_renegotiation(ahd, &devinfo);
3309 	}
3310 	/* Always restart the sequencer. */
3311 	return (1);
3312 }
3313 
3314 static void
3315 ahd_handle_proto_violation(struct ahd_softc *ahd)
3316 {
3317 	struct	ahd_devinfo devinfo;
3318 	struct	scb *scb;
3319 	u_int	scbid;
3320 	u_int	seq_flags;
3321 	u_int	curphase;
3322 	u_int	lastphase;
3323 	int	found;
3324 
3325 	ahd_fetch_devinfo(ahd, &devinfo);
3326 	scbid = ahd_get_scbptr(ahd);
3327 	scb = ahd_lookup_scb(ahd, scbid);
3328 	seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3329 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3330 	lastphase = ahd_inb(ahd, LASTPHASE);
3331 	if ((seq_flags & NOT_IDENTIFIED) != 0) {
3332 
3333 		/*
3334 		 * The reconnecting target either did not send an
3335 		 * identify message, or did, but we didn't find an SCB
3336 		 * to match.
3337 		 */
3338 		ahd_print_devinfo(ahd, &devinfo);
3339 		printk("Target did not send an IDENTIFY message. "
3340 		       "LASTPHASE = 0x%x.\n", lastphase);
3341 		scb = NULL;
3342 	} else if (scb == NULL) {
3343 		/*
3344 		 * We don't seem to have an SCB active for this
3345 		 * transaction.  Print an error and reset the bus.
3346 		 */
3347 		ahd_print_devinfo(ahd, &devinfo);
3348 		printk("No SCB found during protocol violation\n");
3349 		goto proto_violation_reset;
3350 	} else {
3351 		ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3352 		if ((seq_flags & NO_CDB_SENT) != 0) {
3353 			ahd_print_path(ahd, scb);
3354 			printk("No or incomplete CDB sent to device.\n");
3355 		} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3356 			  & STATUS_RCVD) == 0) {
3357 			/*
3358 			 * The target never bothered to provide status to
3359 			 * us prior to completing the command.  Since we don't
3360 			 * know the disposition of this command, we must attempt
3361 			 * to abort it.  Assert ATN and prepare to send an abort
3362 			 * message.
3363 			 */
3364 			ahd_print_path(ahd, scb);
3365 			printk("Completed command without status.\n");
3366 		} else {
3367 			ahd_print_path(ahd, scb);
3368 			printk("Unknown protocol violation.\n");
3369 			ahd_dump_card_state(ahd);
3370 		}
3371 	}
3372 	if ((lastphase & ~P_DATAIN_DT) == 0
3373 	 || lastphase == P_COMMAND) {
3374 proto_violation_reset:
3375 		/*
3376 		 * Target either went directly to data
3377 		 * phase or didn't respond to our ATN.
3378 		 * The only safe thing to do is to blow
3379 		 * it away with a bus reset.
3380 		 */
3381 		found = ahd_reset_channel(ahd, 'A', TRUE);
3382 		printk("%s: Issued Channel %c Bus Reset. "
3383 		       "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3384 	} else {
3385 		/*
3386 		 * Leave the selection hardware off in case
3387 		 * this abort attempt will affect yet to
3388 		 * be sent commands.
3389 		 */
3390 		ahd_outb(ahd, SCSISEQ0,
3391 			 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3392 		ahd_assert_atn(ahd);
3393 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
3394 		if (scb == NULL) {
3395 			ahd_print_devinfo(ahd, &devinfo);
3396 			ahd->msgout_buf[0] = MSG_ABORT_TASK;
3397 			ahd->msgout_len = 1;
3398 			ahd->msgout_index = 0;
3399 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3400 		} else {
3401 			ahd_print_path(ahd, scb);
3402 			scb->flags |= SCB_ABORT;
3403 		}
3404 		printk("Protocol violation %s.  Attempting to abort.\n",
3405 		       ahd_lookup_phase_entry(curphase)->phasemsg);
3406 	}
3407 }
3408 
3409 /*
3410  * Force renegotiation to occur the next time we initiate
3411  * a command to the current device.
3412  */
3413 static void
3414 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3415 {
3416 	struct	ahd_initiator_tinfo *targ_info;
3417 	struct	ahd_tmode_tstate *tstate;
3418 
3419 #ifdef AHD_DEBUG
3420 	if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3421 		ahd_print_devinfo(ahd, devinfo);
3422 		printk("Forcing renegotiation\n");
3423 	}
3424 #endif
3425 	targ_info = ahd_fetch_transinfo(ahd,
3426 					devinfo->channel,
3427 					devinfo->our_scsiid,
3428 					devinfo->target,
3429 					&tstate);
3430 	ahd_update_neg_request(ahd, devinfo, tstate,
3431 			       targ_info, AHD_NEG_IF_NON_ASYNC);
3432 }
3433 
3434 #define AHD_MAX_STEPS 2000
3435 static void
3436 ahd_clear_critical_section(struct ahd_softc *ahd)
3437 {
3438 	ahd_mode_state	saved_modes;
3439 	int		stepping;
3440 	int		steps;
3441 	int		first_instr;
3442 	u_int		simode0;
3443 	u_int		simode1;
3444 	u_int		simode3;
3445 	u_int		lqimode0;
3446 	u_int		lqimode1;
3447 	u_int		lqomode0;
3448 	u_int		lqomode1;
3449 
3450 	if (ahd->num_critical_sections == 0)
3451 		return;
3452 
3453 	stepping = FALSE;
3454 	steps = 0;
3455 	first_instr = 0;
3456 	simode0 = 0;
3457 	simode1 = 0;
3458 	simode3 = 0;
3459 	lqimode0 = 0;
3460 	lqimode1 = 0;
3461 	lqomode0 = 0;
3462 	lqomode1 = 0;
3463 	saved_modes = ahd_save_modes(ahd);
3464 	for (;;) {
3465 		struct	cs *cs;
3466 		u_int	seqaddr;
3467 		u_int	i;
3468 
3469 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3470 		seqaddr = ahd_inw(ahd, CURADDR);
3471 
3472 		cs = ahd->critical_sections;
3473 		for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3474 
3475 			if (cs->begin < seqaddr && cs->end >= seqaddr)
3476 				break;
3477 		}
3478 
3479 		if (i == ahd->num_critical_sections)
3480 			break;
3481 
3482 		if (steps > AHD_MAX_STEPS) {
3483 			printk("%s: Infinite loop in critical section\n"
3484 			       "%s: First Instruction 0x%x now 0x%x\n",
3485 			       ahd_name(ahd), ahd_name(ahd), first_instr,
3486 			       seqaddr);
3487 			ahd_dump_card_state(ahd);
3488 			panic("critical section loop");
3489 		}
3490 
3491 		steps++;
3492 #ifdef AHD_DEBUG
3493 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
3494 			printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3495 			       seqaddr);
3496 #endif
3497 		if (stepping == FALSE) {
3498 
3499 			first_instr = seqaddr;
3500   			ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3501   			simode0 = ahd_inb(ahd, SIMODE0);
3502 			simode3 = ahd_inb(ahd, SIMODE3);
3503 			lqimode0 = ahd_inb(ahd, LQIMODE0);
3504 			lqimode1 = ahd_inb(ahd, LQIMODE1);
3505 			lqomode0 = ahd_inb(ahd, LQOMODE0);
3506 			lqomode1 = ahd_inb(ahd, LQOMODE1);
3507 			ahd_outb(ahd, SIMODE0, 0);
3508 			ahd_outb(ahd, SIMODE3, 0);
3509 			ahd_outb(ahd, LQIMODE0, 0);
3510 			ahd_outb(ahd, LQIMODE1, 0);
3511 			ahd_outb(ahd, LQOMODE0, 0);
3512 			ahd_outb(ahd, LQOMODE1, 0);
3513 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3514 			simode1 = ahd_inb(ahd, SIMODE1);
3515 			/*
3516 			 * We don't clear ENBUSFREE.  Unfortunately
3517 			 * we cannot re-enable busfree detection within
3518 			 * the current connection, so we must leave it
3519 			 * on while single stepping.
3520 			 */
3521 			ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3522 			ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3523 			stepping = TRUE;
3524 		}
3525 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3526 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3527 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3528 		ahd_outb(ahd, HCNTRL, ahd->unpause);
3529 		while (!ahd_is_paused(ahd))
3530 			ahd_delay(200);
3531 		ahd_update_modes(ahd);
3532 	}
3533 	if (stepping) {
3534 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3535 		ahd_outb(ahd, SIMODE0, simode0);
3536 		ahd_outb(ahd, SIMODE3, simode3);
3537 		ahd_outb(ahd, LQIMODE0, lqimode0);
3538 		ahd_outb(ahd, LQIMODE1, lqimode1);
3539 		ahd_outb(ahd, LQOMODE0, lqomode0);
3540 		ahd_outb(ahd, LQOMODE1, lqomode1);
3541 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3542 		ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3543   		ahd_outb(ahd, SIMODE1, simode1);
3544 		/*
3545 		 * SCSIINT seems to glitch occasionally when
3546 		 * the interrupt masks are restored.  Clear SCSIINT
3547 		 * one more time so that only persistent errors
3548 		 * are seen as a real interrupt.
3549 		 */
3550 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3551 	}
3552 	ahd_restore_modes(ahd, saved_modes);
3553 }
3554 
3555 /*
3556  * Clear any pending interrupt status.
3557  */
3558 static void
3559 ahd_clear_intstat(struct ahd_softc *ahd)
3560 {
3561 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3562 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3563 	/* Clear any interrupt conditions this may have caused */
3564 	ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3565 				 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3566 	ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3567 				 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3568 				 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3569 	ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3570 				 |CLRLQOATNPKT|CLRLQOTCRC);
3571 	ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3572 				 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3573 	if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3574 		ahd_outb(ahd, CLRLQOINT0, 0);
3575 		ahd_outb(ahd, CLRLQOINT1, 0);
3576 	}
3577 	ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3578 	ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3579 				|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3580 	ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3581 			        |CLRIOERR|CLROVERRUN);
3582 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
3583 }
3584 
3585 /**************************** Debugging Routines ******************************/
3586 #ifdef AHD_DEBUG
3587 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3588 #endif
3589 
3590 #if 0
3591 void
3592 ahd_print_scb(struct scb *scb)
3593 {
3594 	struct hardware_scb *hscb;
3595 	int i;
3596 
3597 	hscb = scb->hscb;
3598 	printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3599 	       (void *)scb,
3600 	       hscb->control,
3601 	       hscb->scsiid,
3602 	       hscb->lun,
3603 	       hscb->cdb_len);
3604 	printk("Shared Data: ");
3605 	for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3606 		printk("%#02x", hscb->shared_data.idata.cdb[i]);
3607 	printk("        dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3608 	       (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3609 	       (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3610 	       ahd_le32toh(hscb->datacnt),
3611 	       ahd_le32toh(hscb->sgptr),
3612 	       SCB_GET_TAG(scb));
3613 	ahd_dump_sglist(scb);
3614 }
3615 #endif  /*  0  */
3616 
3617 /************************* Transfer Negotiation *******************************/
3618 /*
3619  * Allocate per target mode instance (ID we respond to as a target)
3620  * transfer negotiation data structures.
3621  */
3622 static struct ahd_tmode_tstate *
3623 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3624 {
3625 	struct ahd_tmode_tstate *master_tstate;
3626 	struct ahd_tmode_tstate *tstate;
3627 	int i;
3628 
3629 	master_tstate = ahd->enabled_targets[ahd->our_id];
3630 	if (ahd->enabled_targets[scsi_id] != NULL
3631 	 && ahd->enabled_targets[scsi_id] != master_tstate)
3632 		panic("%s: ahd_alloc_tstate - Target already allocated",
3633 		      ahd_name(ahd));
3634 	tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3635 	if (tstate == NULL)
3636 		return (NULL);
3637 
3638 	/*
3639 	 * If we have allocated a master tstate, copy user settings from
3640 	 * the master tstate (taken from SRAM or the EEPROM) for this
3641 	 * channel, but reset our current and goal settings to async/narrow
3642 	 * until an initiator talks to us.
3643 	 */
3644 	if (master_tstate != NULL) {
3645 		memcpy(tstate, master_tstate, sizeof(*tstate));
3646 		memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3647 		for (i = 0; i < 16; i++) {
3648 			memset(&tstate->transinfo[i].curr, 0,
3649 			      sizeof(tstate->transinfo[i].curr));
3650 			memset(&tstate->transinfo[i].goal, 0,
3651 			      sizeof(tstate->transinfo[i].goal));
3652 		}
3653 	} else
3654 		memset(tstate, 0, sizeof(*tstate));
3655 	ahd->enabled_targets[scsi_id] = tstate;
3656 	return (tstate);
3657 }
3658 
3659 #ifdef AHD_TARGET_MODE
3660 /*
3661  * Free per target mode instance (ID we respond to as a target)
3662  * transfer negotiation data structures.
3663  */
3664 static void
3665 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3666 {
3667 	struct ahd_tmode_tstate *tstate;
3668 
3669 	/*
3670 	 * Don't clean up our "master" tstate.
3671 	 * It has our default user settings.
3672 	 */
3673 	if (scsi_id == ahd->our_id
3674 	 && force == FALSE)
3675 		return;
3676 
3677 	tstate = ahd->enabled_targets[scsi_id];
3678 	if (tstate != NULL)
3679 		kfree(tstate);
3680 	ahd->enabled_targets[scsi_id] = NULL;
3681 }
3682 #endif
3683 
3684 /*
3685  * Called when we have an active connection to a target on the bus,
3686  * this function finds the nearest period to the input period limited
3687  * by the capabilities of the bus connectivity of and sync settings for
3688  * the target.
3689  */
3690 static void
3691 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3692 			struct ahd_initiator_tinfo *tinfo,
3693 			u_int *period, u_int *ppr_options, role_t role)
3694 {
3695 	struct	ahd_transinfo *transinfo;
3696 	u_int	maxsync;
3697 
3698 	if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3699 	 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3700 		maxsync = AHD_SYNCRATE_PACED;
3701 	} else {
3702 		maxsync = AHD_SYNCRATE_ULTRA;
3703 		/* Can't do DT related options on an SE bus */
3704 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3705 	}
3706 	/*
3707 	 * Never allow a value higher than our current goal
3708 	 * period otherwise we may allow a target initiated
3709 	 * negotiation to go above the limit as set by the
3710 	 * user.  In the case of an initiator initiated
3711 	 * sync negotiation, we limit based on the user
3712 	 * setting.  This allows the system to still accept
3713 	 * incoming negotiations even if target initiated
3714 	 * negotiation is not performed.
3715 	 */
3716 	if (role == ROLE_TARGET)
3717 		transinfo = &tinfo->user;
3718 	else
3719 		transinfo = &tinfo->goal;
3720 	*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3721 	if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3722 		maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3723 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3724 	}
3725 	if (transinfo->period == 0) {
3726 		*period = 0;
3727 		*ppr_options = 0;
3728 	} else {
3729 		*period = max(*period, (u_int)transinfo->period);
3730 		ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3731 	}
3732 }
3733 
3734 /*
3735  * Look up the valid period to SCSIRATE conversion in our table.
3736  * Return the period and offset that should be sent to the target
3737  * if this was the beginning of an SDTR.
3738  */
3739 void
3740 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3741 		  u_int *ppr_options, u_int maxsync)
3742 {
3743 	if (*period < maxsync)
3744 		*period = maxsync;
3745 
3746 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3747 	 && *period > AHD_SYNCRATE_MIN_DT)
3748 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3749 
3750 	if (*period > AHD_SYNCRATE_MIN)
3751 		*period = 0;
3752 
3753 	/* Honor PPR option conformance rules. */
3754 	if (*period > AHD_SYNCRATE_PACED)
3755 		*ppr_options &= ~MSG_EXT_PPR_RTI;
3756 
3757 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3758 		*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3759 
3760 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3761 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3762 
3763 	/* Skip all PACED only entries if IU is not available */
3764 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3765 	 && *period < AHD_SYNCRATE_DT)
3766 		*period = AHD_SYNCRATE_DT;
3767 
3768 	/* Skip all DT only entries if DT is not available */
3769 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3770 	 && *period < AHD_SYNCRATE_ULTRA2)
3771 		*period = AHD_SYNCRATE_ULTRA2;
3772 }
3773 
3774 /*
3775  * Truncate the given synchronous offset to a value the
3776  * current adapter type and syncrate are capable of.
3777  */
3778 static void
3779 ahd_validate_offset(struct ahd_softc *ahd,
3780 		    struct ahd_initiator_tinfo *tinfo,
3781 		    u_int period, u_int *offset, int wide,
3782 		    role_t role)
3783 {
3784 	u_int maxoffset;
3785 
3786 	/* Limit offset to what we can do */
3787 	if (period == 0)
3788 		maxoffset = 0;
3789 	else if (period <= AHD_SYNCRATE_PACED) {
3790 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3791 			maxoffset = MAX_OFFSET_PACED_BUG;
3792 		else
3793 			maxoffset = MAX_OFFSET_PACED;
3794 	} else
3795 		maxoffset = MAX_OFFSET_NON_PACED;
3796 	*offset = min(*offset, maxoffset);
3797 	if (tinfo != NULL) {
3798 		if (role == ROLE_TARGET)
3799 			*offset = min(*offset, (u_int)tinfo->user.offset);
3800 		else
3801 			*offset = min(*offset, (u_int)tinfo->goal.offset);
3802 	}
3803 }
3804 
3805 /*
3806  * Truncate the given transfer width parameter to a value the
3807  * current adapter type is capable of.
3808  */
3809 static void
3810 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3811 		   u_int *bus_width, role_t role)
3812 {
3813 	switch (*bus_width) {
3814 	default:
3815 		if (ahd->features & AHD_WIDE) {
3816 			/* Respond Wide */
3817 			*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3818 			break;
3819 		}
3820 		/* FALLTHROUGH */
3821 	case MSG_EXT_WDTR_BUS_8_BIT:
3822 		*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3823 		break;
3824 	}
3825 	if (tinfo != NULL) {
3826 		if (role == ROLE_TARGET)
3827 			*bus_width = min((u_int)tinfo->user.width, *bus_width);
3828 		else
3829 			*bus_width = min((u_int)tinfo->goal.width, *bus_width);
3830 	}
3831 }
3832 
3833 /*
3834  * Update the bitmask of targets for which the controller should
3835  * negotiate with at the next convenient opportunity.  This currently
3836  * means the next time we send the initial identify messages for
3837  * a new transaction.
3838  */
3839 int
3840 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3841 		       struct ahd_tmode_tstate *tstate,
3842 		       struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3843 {
3844 	u_int auto_negotiate_orig;
3845 
3846 	auto_negotiate_orig = tstate->auto_negotiate;
3847 	if (neg_type == AHD_NEG_ALWAYS) {
3848 		/*
3849 		 * Force our "current" settings to be
3850 		 * unknown so that unless a bus reset
3851 		 * occurs the need to renegotiate is
3852 		 * recorded persistently.
3853 		 */
3854 		if ((ahd->features & AHD_WIDE) != 0)
3855 			tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3856 		tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3857 		tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3858 	}
3859 	if (tinfo->curr.period != tinfo->goal.period
3860 	 || tinfo->curr.width != tinfo->goal.width
3861 	 || tinfo->curr.offset != tinfo->goal.offset
3862 	 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3863 	 || (neg_type == AHD_NEG_IF_NON_ASYNC
3864 	  && (tinfo->goal.offset != 0
3865 	   || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3866 	   || tinfo->goal.ppr_options != 0)))
3867 		tstate->auto_negotiate |= devinfo->target_mask;
3868 	else
3869 		tstate->auto_negotiate &= ~devinfo->target_mask;
3870 
3871 	return (auto_negotiate_orig != tstate->auto_negotiate);
3872 }
3873 
3874 /*
3875  * Update the user/goal/curr tables of synchronous negotiation
3876  * parameters as well as, in the case of a current or active update,
3877  * any data structures on the host controller.  In the case of an
3878  * active update, the specified target is currently talking to us on
3879  * the bus, so the transfer parameter update must take effect
3880  * immediately.
3881  */
3882 void
3883 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3884 		 u_int period, u_int offset, u_int ppr_options,
3885 		 u_int type, int paused)
3886 {
3887 	struct	ahd_initiator_tinfo *tinfo;
3888 	struct	ahd_tmode_tstate *tstate;
3889 	u_int	old_period;
3890 	u_int	old_offset;
3891 	u_int	old_ppr;
3892 	int	active;
3893 	int	update_needed;
3894 
3895 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3896 	update_needed = 0;
3897 
3898 	if (period == 0 || offset == 0) {
3899 		period = 0;
3900 		offset = 0;
3901 	}
3902 
3903 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3904 				    devinfo->target, &tstate);
3905 
3906 	if ((type & AHD_TRANS_USER) != 0) {
3907 		tinfo->user.period = period;
3908 		tinfo->user.offset = offset;
3909 		tinfo->user.ppr_options = ppr_options;
3910 	}
3911 
3912 	if ((type & AHD_TRANS_GOAL) != 0) {
3913 		tinfo->goal.period = period;
3914 		tinfo->goal.offset = offset;
3915 		tinfo->goal.ppr_options = ppr_options;
3916 	}
3917 
3918 	old_period = tinfo->curr.period;
3919 	old_offset = tinfo->curr.offset;
3920 	old_ppr	   = tinfo->curr.ppr_options;
3921 
3922 	if ((type & AHD_TRANS_CUR) != 0
3923 	 && (old_period != period
3924 	  || old_offset != offset
3925 	  || old_ppr != ppr_options)) {
3926 
3927 		update_needed++;
3928 
3929 		tinfo->curr.period = period;
3930 		tinfo->curr.offset = offset;
3931 		tinfo->curr.ppr_options = ppr_options;
3932 
3933 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
3934 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3935 		if (bootverbose) {
3936 			if (offset != 0) {
3937 				int options;
3938 
3939 				printk("%s: target %d synchronous with "
3940 				       "period = 0x%x, offset = 0x%x",
3941 				       ahd_name(ahd), devinfo->target,
3942 				       period, offset);
3943 				options = 0;
3944 				if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3945 					printk("(RDSTRM");
3946 					options++;
3947 				}
3948 				if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3949 					printk("%s", options ? "|DT" : "(DT");
3950 					options++;
3951 				}
3952 				if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3953 					printk("%s", options ? "|IU" : "(IU");
3954 					options++;
3955 				}
3956 				if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3957 					printk("%s", options ? "|RTI" : "(RTI");
3958 					options++;
3959 				}
3960 				if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3961 					printk("%s", options ? "|QAS" : "(QAS");
3962 					options++;
3963 				}
3964 				if (options != 0)
3965 					printk(")\n");
3966 				else
3967 					printk("\n");
3968 			} else {
3969 				printk("%s: target %d using "
3970 				       "asynchronous transfers%s\n",
3971 				       ahd_name(ahd), devinfo->target,
3972 				       (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3973 				     ?  "(QAS)" : "");
3974 			}
3975 		}
3976 	}
3977 	/*
3978 	 * Always refresh the neg-table to handle the case of the
3979 	 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3980 	 * We will always renegotiate in that case if this is a
3981 	 * packetized request.  Also manage the busfree expected flag
3982 	 * from this common routine so that we catch changes due to
3983 	 * WDTR or SDTR messages.
3984 	 */
3985 	if ((type & AHD_TRANS_CUR) != 0) {
3986 		if (!paused)
3987 			ahd_pause(ahd);
3988 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3989 		if (!paused)
3990 			ahd_unpause(ahd);
3991 		if (ahd->msg_type != MSG_TYPE_NONE) {
3992 			if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3993 			 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3994 #ifdef AHD_DEBUG
3995 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3996 					ahd_print_devinfo(ahd, devinfo);
3997 					printk("Expecting IU Change busfree\n");
3998 				}
3999 #endif
4000 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
4001 					       |  MSG_FLAG_IU_REQ_CHANGED;
4002 			}
4003 			if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
4004 #ifdef AHD_DEBUG
4005 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4006 					printk("PPR with IU_REQ outstanding\n");
4007 #endif
4008 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
4009 			}
4010 		}
4011 	}
4012 
4013 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4014 						tinfo, AHD_NEG_TO_GOAL);
4015 
4016 	if (update_needed && active)
4017 		ahd_update_pending_scbs(ahd);
4018 }
4019 
4020 /*
4021  * Update the user/goal/curr tables of wide negotiation
4022  * parameters as well as, in the case of a current or active update,
4023  * any data structures on the host controller.  In the case of an
4024  * active update, the specified target is currently talking to us on
4025  * the bus, so the transfer parameter update must take effect
4026  * immediately.
4027  */
4028 void
4029 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4030 	      u_int width, u_int type, int paused)
4031 {
4032 	struct	ahd_initiator_tinfo *tinfo;
4033 	struct	ahd_tmode_tstate *tstate;
4034 	u_int	oldwidth;
4035 	int	active;
4036 	int	update_needed;
4037 
4038 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4039 	update_needed = 0;
4040 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4041 				    devinfo->target, &tstate);
4042 
4043 	if ((type & AHD_TRANS_USER) != 0)
4044 		tinfo->user.width = width;
4045 
4046 	if ((type & AHD_TRANS_GOAL) != 0)
4047 		tinfo->goal.width = width;
4048 
4049 	oldwidth = tinfo->curr.width;
4050 	if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4051 
4052 		update_needed++;
4053 
4054 		tinfo->curr.width = width;
4055 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
4056 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4057 		if (bootverbose) {
4058 			printk("%s: target %d using %dbit transfers\n",
4059 			       ahd_name(ahd), devinfo->target,
4060 			       8 * (0x01 << width));
4061 		}
4062 	}
4063 
4064 	if ((type & AHD_TRANS_CUR) != 0) {
4065 		if (!paused)
4066 			ahd_pause(ahd);
4067 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4068 		if (!paused)
4069 			ahd_unpause(ahd);
4070 	}
4071 
4072 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4073 						tinfo, AHD_NEG_TO_GOAL);
4074 	if (update_needed && active)
4075 		ahd_update_pending_scbs(ahd);
4076 
4077 }
4078 
4079 /*
4080  * Update the current state of tagged queuing for a given target.
4081  */
4082 static void
4083 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4084 	     struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4085 {
4086 	struct scsi_device *sdev = cmd->device;
4087 
4088 	ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4089 	ahd_send_async(ahd, devinfo->channel, devinfo->target,
4090 		       devinfo->lun, AC_TRANSFER_NEG);
4091 }
4092 
4093 static void
4094 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4095 		     struct ahd_transinfo *tinfo)
4096 {
4097 	ahd_mode_state	saved_modes;
4098 	u_int		period;
4099 	u_int		ppr_opts;
4100 	u_int		con_opts;
4101 	u_int		offset;
4102 	u_int		saved_negoaddr;
4103 	uint8_t		iocell_opts[sizeof(ahd->iocell_opts)];
4104 
4105 	saved_modes = ahd_save_modes(ahd);
4106 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4107 
4108 	saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4109 	ahd_outb(ahd, NEGOADDR, devinfo->target);
4110 	period = tinfo->period;
4111 	offset = tinfo->offset;
4112 	memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4113 	ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4114 					|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4115 	con_opts = 0;
4116 	if (period == 0)
4117 		period = AHD_SYNCRATE_ASYNC;
4118 	if (period == AHD_SYNCRATE_160) {
4119 
4120 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4121 			/*
4122 			 * When the SPI4 spec was finalized, PACE transfers
4123 			 * was not made a configurable option in the PPR
4124 			 * message.  Instead it is assumed to be enabled for
4125 			 * any syncrate faster than 80MHz.  Nevertheless,
4126 			 * Harpoon2A4 allows this to be configurable.
4127 			 *
4128 			 * Harpoon2A4 also assumes at most 2 data bytes per
4129 			 * negotiated REQ/ACK offset.  Paced transfers take
4130 			 * 4, so we must adjust our offset.
4131 			 */
4132 			ppr_opts |= PPROPT_PACE;
4133 			offset *= 2;
4134 
4135 			/*
4136 			 * Harpoon2A assumed that there would be a
4137 			 * fallback rate between 160MHz and 80MHz,
4138 			 * so 7 is used as the period factor rather
4139 			 * than 8 for 160MHz.
4140 			 */
4141 			period = AHD_SYNCRATE_REVA_160;
4142 		}
4143 		if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4144 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4145 			    ~AHD_PRECOMP_MASK;
4146 	} else {
4147 		/*
4148 		 * Precomp should be disabled for non-paced transfers.
4149 		 */
4150 		iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4151 
4152 		if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4153 		 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4154 		 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4155 			/*
4156 			 * Slow down our CRC interval to be
4157 			 * compatible with non-packetized
4158 			 * U160 devices that can't handle a
4159 			 * CRC at full speed.
4160 			 */
4161 			con_opts |= ENSLOWCRC;
4162 		}
4163 
4164 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4165 			/*
4166 			 * On H2A4, revert to a slower slewrate
4167 			 * on non-paced transfers.
4168 			 */
4169 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4170 			    ~AHD_SLEWRATE_MASK;
4171 		}
4172 	}
4173 
4174 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4175 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4176 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4177 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4178 
4179 	ahd_outb(ahd, NEGPERIOD, period);
4180 	ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4181 	ahd_outb(ahd, NEGOFFSET, offset);
4182 
4183 	if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4184 		con_opts |= WIDEXFER;
4185 
4186 	/*
4187 	 * Slow down our CRC interval to be
4188 	 * compatible with packetized U320 devices
4189 	 * that can't handle a CRC at full speed
4190 	 */
4191 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4192 		con_opts |= ENSLOWCRC;
4193 	}
4194 
4195 	/*
4196 	 * During packetized transfers, the target will
4197 	 * give us the opportunity to send command packets
4198 	 * without us asserting attention.
4199 	 */
4200 	if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4201 		con_opts |= ENAUTOATNO;
4202 	ahd_outb(ahd, NEGCONOPTS, con_opts);
4203 	ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4204 	ahd_restore_modes(ahd, saved_modes);
4205 }
4206 
4207 /*
4208  * When the transfer settings for a connection change, setup for
4209  * negotiation in pending SCBs to effect the change as quickly as
4210  * possible.  We also cancel any negotiations that are scheduled
4211  * for inflight SCBs that have not been started yet.
4212  */
4213 static void
4214 ahd_update_pending_scbs(struct ahd_softc *ahd)
4215 {
4216 	struct		scb *pending_scb;
4217 	int		pending_scb_count;
4218 	int		paused;
4219 	u_int		saved_scbptr;
4220 	ahd_mode_state	saved_modes;
4221 
4222 	/*
4223 	 * Traverse the pending SCB list and ensure that all of the
4224 	 * SCBs there have the proper settings.  We can only safely
4225 	 * clear the negotiation required flag (setting requires the
4226 	 * execution queue to be modified) and this is only possible
4227 	 * if we are not already attempting to select out for this
4228 	 * SCB.  For this reason, all callers only call this routine
4229 	 * if we are changing the negotiation settings for the currently
4230 	 * active transaction on the bus.
4231 	 */
4232 	pending_scb_count = 0;
4233 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4234 		struct ahd_devinfo devinfo;
4235 		struct ahd_initiator_tinfo *tinfo;
4236 		struct ahd_tmode_tstate *tstate;
4237 
4238 		ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4239 		tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
4240 					    devinfo.our_scsiid,
4241 					    devinfo.target, &tstate);
4242 		if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4243 		 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4244 			pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4245 			pending_scb->hscb->control &= ~MK_MESSAGE;
4246 		}
4247 		ahd_sync_scb(ahd, pending_scb,
4248 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4249 		pending_scb_count++;
4250 	}
4251 
4252 	if (pending_scb_count == 0)
4253 		return;
4254 
4255 	if (ahd_is_paused(ahd)) {
4256 		paused = 1;
4257 	} else {
4258 		paused = 0;
4259 		ahd_pause(ahd);
4260 	}
4261 
4262 	/*
4263 	 * Force the sequencer to reinitialize the selection for
4264 	 * the command at the head of the execution queue if it
4265 	 * has already been setup.  The negotiation changes may
4266 	 * effect whether we select-out with ATN.  It is only
4267 	 * safe to clear ENSELO when the bus is not free and no
4268 	 * selection is in progres or completed.
4269 	 */
4270 	saved_modes = ahd_save_modes(ahd);
4271 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4272 	if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4273 	 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4274 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4275 	saved_scbptr = ahd_get_scbptr(ahd);
4276 	/* Ensure that the hscbs down on the card match the new information */
4277 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4278 		u_int	scb_tag;
4279 		u_int	control;
4280 
4281 		scb_tag = SCB_GET_TAG(pending_scb);
4282 		ahd_set_scbptr(ahd, scb_tag);
4283 		control = ahd_inb_scbram(ahd, SCB_CONTROL);
4284 		control &= ~MK_MESSAGE;
4285 		control |= pending_scb->hscb->control & MK_MESSAGE;
4286 		ahd_outb(ahd, SCB_CONTROL, control);
4287 	}
4288 	ahd_set_scbptr(ahd, saved_scbptr);
4289 	ahd_restore_modes(ahd, saved_modes);
4290 
4291 	if (paused == 0)
4292 		ahd_unpause(ahd);
4293 }
4294 
4295 /**************************** Pathing Information *****************************/
4296 static void
4297 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4298 {
4299 	ahd_mode_state	saved_modes;
4300 	u_int		saved_scsiid;
4301 	role_t		role;
4302 	int		our_id;
4303 
4304 	saved_modes = ahd_save_modes(ahd);
4305 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4306 
4307 	if (ahd_inb(ahd, SSTAT0) & TARGET)
4308 		role = ROLE_TARGET;
4309 	else
4310 		role = ROLE_INITIATOR;
4311 
4312 	if (role == ROLE_TARGET
4313 	 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4314 		/* We were selected, so pull our id from TARGIDIN */
4315 		our_id = ahd_inb(ahd, TARGIDIN) & OID;
4316 	} else if (role == ROLE_TARGET)
4317 		our_id = ahd_inb(ahd, TOWNID);
4318 	else
4319 		our_id = ahd_inb(ahd, IOWNID);
4320 
4321 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4322 	ahd_compile_devinfo(devinfo,
4323 			    our_id,
4324 			    SCSIID_TARGET(ahd, saved_scsiid),
4325 			    ahd_inb(ahd, SAVED_LUN),
4326 			    SCSIID_CHANNEL(ahd, saved_scsiid),
4327 			    role);
4328 	ahd_restore_modes(ahd, saved_modes);
4329 }
4330 
4331 void
4332 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4333 {
4334 	printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4335 	       devinfo->target, devinfo->lun);
4336 }
4337 
4338 static const struct ahd_phase_table_entry*
4339 ahd_lookup_phase_entry(int phase)
4340 {
4341 	const struct ahd_phase_table_entry *entry;
4342 	const struct ahd_phase_table_entry *last_entry;
4343 
4344 	/*
4345 	 * num_phases doesn't include the default entry which
4346 	 * will be returned if the phase doesn't match.
4347 	 */
4348 	last_entry = &ahd_phase_table[num_phases];
4349 	for (entry = ahd_phase_table; entry < last_entry; entry++) {
4350 		if (phase == entry->phase)
4351 			break;
4352 	}
4353 	return (entry);
4354 }
4355 
4356 void
4357 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4358 		    u_int lun, char channel, role_t role)
4359 {
4360 	devinfo->our_scsiid = our_id;
4361 	devinfo->target = target;
4362 	devinfo->lun = lun;
4363 	devinfo->target_offset = target;
4364 	devinfo->channel = channel;
4365 	devinfo->role = role;
4366 	if (channel == 'B')
4367 		devinfo->target_offset += 8;
4368 	devinfo->target_mask = (0x01 << devinfo->target_offset);
4369 }
4370 
4371 static void
4372 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4373 		struct scb *scb)
4374 {
4375 	role_t	role;
4376 	int	our_id;
4377 
4378 	our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4379 	role = ROLE_INITIATOR;
4380 	if ((scb->hscb->control & TARGET_SCB) != 0)
4381 		role = ROLE_TARGET;
4382 	ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4383 			    SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4384 }
4385 
4386 
4387 /************************ Message Phase Processing ****************************/
4388 /*
4389  * When an initiator transaction with the MK_MESSAGE flag either reconnects
4390  * or enters the initial message out phase, we are interrupted.  Fill our
4391  * outgoing message buffer with the appropriate message and beging handing
4392  * the message phase(s) manually.
4393  */
4394 static void
4395 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4396 			   struct scb *scb)
4397 {
4398 	/*
4399 	 * To facilitate adding multiple messages together,
4400 	 * each routine should increment the index and len
4401 	 * variables instead of setting them explicitly.
4402 	 */
4403 	ahd->msgout_index = 0;
4404 	ahd->msgout_len = 0;
4405 
4406 	if (ahd_currently_packetized(ahd))
4407 		ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4408 
4409 	if (ahd->send_msg_perror
4410 	 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4411 		ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4412 		ahd->msgout_len++;
4413 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4414 #ifdef AHD_DEBUG
4415 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4416 			printk("Setting up for Parity Error delivery\n");
4417 #endif
4418 		return;
4419 	} else if (scb == NULL) {
4420 		printk("%s: WARNING. No pending message for "
4421 		       "I_T msgin.  Issuing NO-OP\n", ahd_name(ahd));
4422 		ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4423 		ahd->msgout_len++;
4424 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4425 		return;
4426 	}
4427 
4428 	if ((scb->flags & SCB_DEVICE_RESET) == 0
4429 	 && (scb->flags & SCB_PACKETIZED) == 0
4430 	 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4431 		u_int identify_msg;
4432 
4433 		identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4434 		if ((scb->hscb->control & DISCENB) != 0)
4435 			identify_msg |= MSG_IDENTIFY_DISCFLAG;
4436 		ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4437 		ahd->msgout_len++;
4438 
4439 		if ((scb->hscb->control & TAG_ENB) != 0) {
4440 			ahd->msgout_buf[ahd->msgout_index++] =
4441 			    scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4442 			ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4443 			ahd->msgout_len += 2;
4444 		}
4445 	}
4446 
4447 	if (scb->flags & SCB_DEVICE_RESET) {
4448 		ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4449 		ahd->msgout_len++;
4450 		ahd_print_path(ahd, scb);
4451 		printk("Bus Device Reset Message Sent\n");
4452 		/*
4453 		 * Clear our selection hardware in advance of
4454 		 * the busfree.  We may have an entry in the waiting
4455 		 * Q for this target, and we don't want to go about
4456 		 * selecting while we handle the busfree and blow it
4457 		 * away.
4458 		 */
4459 		ahd_outb(ahd, SCSISEQ0, 0);
4460 	} else if ((scb->flags & SCB_ABORT) != 0) {
4461 
4462 		if ((scb->hscb->control & TAG_ENB) != 0) {
4463 			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4464 		} else {
4465 			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4466 		}
4467 		ahd->msgout_len++;
4468 		ahd_print_path(ahd, scb);
4469 		printk("Abort%s Message Sent\n",
4470 		       (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4471 		/*
4472 		 * Clear our selection hardware in advance of
4473 		 * the busfree.  We may have an entry in the waiting
4474 		 * Q for this target, and we don't want to go about
4475 		 * selecting while we handle the busfree and blow it
4476 		 * away.
4477 		 */
4478 		ahd_outb(ahd, SCSISEQ0, 0);
4479 	} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4480 		ahd_build_transfer_msg(ahd, devinfo);
4481 		/*
4482 		 * Clear our selection hardware in advance of potential
4483 		 * PPR IU status change busfree.  We may have an entry in
4484 		 * the waiting Q for this target, and we don't want to go
4485 		 * about selecting while we handle the busfree and blow
4486 		 * it away.
4487 		 */
4488 		ahd_outb(ahd, SCSISEQ0, 0);
4489 	} else {
4490 		printk("ahd_intr: AWAITING_MSG for an SCB that "
4491 		       "does not have a waiting message\n");
4492 		printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4493 		       devinfo->target_mask);
4494 		panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4495 		      "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4496 		      ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4497 		      scb->flags);
4498 	}
4499 
4500 	/*
4501 	 * Clear the MK_MESSAGE flag from the SCB so we aren't
4502 	 * asked to send this message again.
4503 	 */
4504 	ahd_outb(ahd, SCB_CONTROL,
4505 		 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4506 	scb->hscb->control &= ~MK_MESSAGE;
4507 	ahd->msgout_index = 0;
4508 	ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4509 }
4510 
4511 /*
4512  * Build an appropriate transfer negotiation message for the
4513  * currently active target.
4514  */
4515 static void
4516 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4517 {
4518 	/*
4519 	 * We need to initiate transfer negotiations.
4520 	 * If our current and goal settings are identical,
4521 	 * we want to renegotiate due to a check condition.
4522 	 */
4523 	struct	ahd_initiator_tinfo *tinfo;
4524 	struct	ahd_tmode_tstate *tstate;
4525 	int	dowide;
4526 	int	dosync;
4527 	int	doppr;
4528 	u_int	period;
4529 	u_int	ppr_options;
4530 	u_int	offset;
4531 
4532 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4533 				    devinfo->target, &tstate);
4534 	/*
4535 	 * Filter our period based on the current connection.
4536 	 * If we can't perform DT transfers on this segment (not in LVD
4537 	 * mode for instance), then our decision to issue a PPR message
4538 	 * may change.
4539 	 */
4540 	period = tinfo->goal.period;
4541 	offset = tinfo->goal.offset;
4542 	ppr_options = tinfo->goal.ppr_options;
4543 	/* Target initiated PPR is not allowed in the SCSI spec */
4544 	if (devinfo->role == ROLE_TARGET)
4545 		ppr_options = 0;
4546 	ahd_devlimited_syncrate(ahd, tinfo, &period,
4547 				&ppr_options, devinfo->role);
4548 	dowide = tinfo->curr.width != tinfo->goal.width;
4549 	dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4550 	/*
4551 	 * Only use PPR if we have options that need it, even if the device
4552 	 * claims to support it.  There might be an expander in the way
4553 	 * that doesn't.
4554 	 */
4555 	doppr = ppr_options != 0;
4556 
4557 	if (!dowide && !dosync && !doppr) {
4558 		dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4559 		dosync = tinfo->goal.offset != 0;
4560 	}
4561 
4562 	if (!dowide && !dosync && !doppr) {
4563 		/*
4564 		 * Force async with a WDTR message if we have a wide bus,
4565 		 * or just issue an SDTR with a 0 offset.
4566 		 */
4567 		if ((ahd->features & AHD_WIDE) != 0)
4568 			dowide = 1;
4569 		else
4570 			dosync = 1;
4571 
4572 		if (bootverbose) {
4573 			ahd_print_devinfo(ahd, devinfo);
4574 			printk("Ensuring async\n");
4575 		}
4576 	}
4577 	/* Target initiated PPR is not allowed in the SCSI spec */
4578 	if (devinfo->role == ROLE_TARGET)
4579 		doppr = 0;
4580 
4581 	/*
4582 	 * Both the PPR message and SDTR message require the
4583 	 * goal syncrate to be limited to what the target device
4584 	 * is capable of handling (based on whether an LVD->SE
4585 	 * expander is on the bus), so combine these two cases.
4586 	 * Regardless, guarantee that if we are using WDTR and SDTR
4587 	 * messages that WDTR comes first.
4588 	 */
4589 	if (doppr || (dosync && !dowide)) {
4590 
4591 		offset = tinfo->goal.offset;
4592 		ahd_validate_offset(ahd, tinfo, period, &offset,
4593 				    doppr ? tinfo->goal.width
4594 					  : tinfo->curr.width,
4595 				    devinfo->role);
4596 		if (doppr) {
4597 			ahd_construct_ppr(ahd, devinfo, period, offset,
4598 					  tinfo->goal.width, ppr_options);
4599 		} else {
4600 			ahd_construct_sdtr(ahd, devinfo, period, offset);
4601 		}
4602 	} else {
4603 		ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4604 	}
4605 }
4606 
4607 /*
4608  * Build a synchronous negotiation message in our message
4609  * buffer based on the input parameters.
4610  */
4611 static void
4612 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4613 		   u_int period, u_int offset)
4614 {
4615 	if (offset == 0)
4616 		period = AHD_ASYNC_XFER_PERIOD;
4617 	ahd->msgout_index += spi_populate_sync_msg(
4618 			ahd->msgout_buf + ahd->msgout_index, period, offset);
4619 	ahd->msgout_len += 5;
4620 	if (bootverbose) {
4621 		printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4622 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4623 		       devinfo->lun, period, offset);
4624 	}
4625 }
4626 
4627 /*
4628  * Build a wide negotiateion message in our message
4629  * buffer based on the input parameters.
4630  */
4631 static void
4632 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4633 		   u_int bus_width)
4634 {
4635 	ahd->msgout_index += spi_populate_width_msg(
4636 			ahd->msgout_buf + ahd->msgout_index, bus_width);
4637 	ahd->msgout_len += 4;
4638 	if (bootverbose) {
4639 		printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4640 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4641 		       devinfo->lun, bus_width);
4642 	}
4643 }
4644 
4645 /*
4646  * Build a parallel protocol request message in our message
4647  * buffer based on the input parameters.
4648  */
4649 static void
4650 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4651 		  u_int period, u_int offset, u_int bus_width,
4652 		  u_int ppr_options)
4653 {
4654 	/*
4655 	 * Always request precompensation from
4656 	 * the other target if we are running
4657 	 * at paced syncrates.
4658 	 */
4659 	if (period <= AHD_SYNCRATE_PACED)
4660 		ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4661 	if (offset == 0)
4662 		period = AHD_ASYNC_XFER_PERIOD;
4663 	ahd->msgout_index += spi_populate_ppr_msg(
4664 			ahd->msgout_buf + ahd->msgout_index, period, offset,
4665 			bus_width, ppr_options);
4666 	ahd->msgout_len += 8;
4667 	if (bootverbose) {
4668 		printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4669 		       "offset %x, ppr_options %x\n", ahd_name(ahd),
4670 		       devinfo->channel, devinfo->target, devinfo->lun,
4671 		       bus_width, period, offset, ppr_options);
4672 	}
4673 }
4674 
4675 /*
4676  * Clear any active message state.
4677  */
4678 static void
4679 ahd_clear_msg_state(struct ahd_softc *ahd)
4680 {
4681 	ahd_mode_state saved_modes;
4682 
4683 	saved_modes = ahd_save_modes(ahd);
4684 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4685 	ahd->send_msg_perror = 0;
4686 	ahd->msg_flags = MSG_FLAG_NONE;
4687 	ahd->msgout_len = 0;
4688 	ahd->msgin_index = 0;
4689 	ahd->msg_type = MSG_TYPE_NONE;
4690 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4691 		/*
4692 		 * The target didn't care to respond to our
4693 		 * message request, so clear ATN.
4694 		 */
4695 		ahd_outb(ahd, CLRSINT1, CLRATNO);
4696 	}
4697 	ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4698 	ahd_outb(ahd, SEQ_FLAGS2,
4699 		 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4700 	ahd_restore_modes(ahd, saved_modes);
4701 }
4702 
4703 /*
4704  * Manual message loop handler.
4705  */
4706 static void
4707 ahd_handle_message_phase(struct ahd_softc *ahd)
4708 {
4709 	struct	ahd_devinfo devinfo;
4710 	u_int	bus_phase;
4711 	int	end_session;
4712 
4713 	ahd_fetch_devinfo(ahd, &devinfo);
4714 	end_session = FALSE;
4715 	bus_phase = ahd_inb(ahd, LASTPHASE);
4716 
4717 	if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4718 		printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4719 		ahd_outb(ahd, LQCTL2, LQIRETRY);
4720 	}
4721 reswitch:
4722 	switch (ahd->msg_type) {
4723 	case MSG_TYPE_INITIATOR_MSGOUT:
4724 	{
4725 		int lastbyte;
4726 		int phasemis;
4727 		int msgdone;
4728 
4729 		if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4730 			panic("HOST_MSG_LOOP interrupt with no active message");
4731 
4732 #ifdef AHD_DEBUG
4733 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4734 			ahd_print_devinfo(ahd, &devinfo);
4735 			printk("INITIATOR_MSG_OUT");
4736 		}
4737 #endif
4738 		phasemis = bus_phase != P_MESGOUT;
4739 		if (phasemis) {
4740 #ifdef AHD_DEBUG
4741 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4742 				printk(" PHASEMIS %s\n",
4743 				       ahd_lookup_phase_entry(bus_phase)
4744 							     ->phasemsg);
4745 			}
4746 #endif
4747 			if (bus_phase == P_MESGIN) {
4748 				/*
4749 				 * Change gears and see if
4750 				 * this messages is of interest to
4751 				 * us or should be passed back to
4752 				 * the sequencer.
4753 				 */
4754 				ahd_outb(ahd, CLRSINT1, CLRATNO);
4755 				ahd->send_msg_perror = 0;
4756 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4757 				ahd->msgin_index = 0;
4758 				goto reswitch;
4759 			}
4760 			end_session = TRUE;
4761 			break;
4762 		}
4763 
4764 		if (ahd->send_msg_perror) {
4765 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4766 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4767 #ifdef AHD_DEBUG
4768 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4769 				printk(" byte 0x%x\n", ahd->send_msg_perror);
4770 #endif
4771 			/*
4772 			 * If we are notifying the target of a CRC error
4773 			 * during packetized operations, the target is
4774 			 * within its rights to acknowledge our message
4775 			 * with a busfree.
4776 			 */
4777 			if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4778 			 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4779 				ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4780 
4781 			ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4782 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4783 			break;
4784 		}
4785 
4786 		msgdone	= ahd->msgout_index == ahd->msgout_len;
4787 		if (msgdone) {
4788 			/*
4789 			 * The target has requested a retry.
4790 			 * Re-assert ATN, reset our message index to
4791 			 * 0, and try again.
4792 			 */
4793 			ahd->msgout_index = 0;
4794 			ahd_assert_atn(ahd);
4795 		}
4796 
4797 		lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4798 		if (lastbyte) {
4799 			/* Last byte is signified by dropping ATN */
4800 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4801 		}
4802 
4803 		/*
4804 		 * Clear our interrupt status and present
4805 		 * the next byte on the bus.
4806 		 */
4807 		ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4808 #ifdef AHD_DEBUG
4809 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4810 			printk(" byte 0x%x\n",
4811 			       ahd->msgout_buf[ahd->msgout_index]);
4812 #endif
4813 		ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4814 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4815 		break;
4816 	}
4817 	case MSG_TYPE_INITIATOR_MSGIN:
4818 	{
4819 		int phasemis;
4820 		int message_done;
4821 
4822 #ifdef AHD_DEBUG
4823 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4824 			ahd_print_devinfo(ahd, &devinfo);
4825 			printk("INITIATOR_MSG_IN");
4826 		}
4827 #endif
4828 		phasemis = bus_phase != P_MESGIN;
4829 		if (phasemis) {
4830 #ifdef AHD_DEBUG
4831 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4832 				printk(" PHASEMIS %s\n",
4833 				       ahd_lookup_phase_entry(bus_phase)
4834 							     ->phasemsg);
4835 			}
4836 #endif
4837 			ahd->msgin_index = 0;
4838 			if (bus_phase == P_MESGOUT
4839 			 && (ahd->send_msg_perror != 0
4840 			  || (ahd->msgout_len != 0
4841 			   && ahd->msgout_index == 0))) {
4842 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4843 				goto reswitch;
4844 			}
4845 			end_session = TRUE;
4846 			break;
4847 		}
4848 
4849 		/* Pull the byte in without acking it */
4850 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4851 #ifdef AHD_DEBUG
4852 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4853 			printk(" byte 0x%x\n",
4854 			       ahd->msgin_buf[ahd->msgin_index]);
4855 #endif
4856 
4857 		message_done = ahd_parse_msg(ahd, &devinfo);
4858 
4859 		if (message_done) {
4860 			/*
4861 			 * Clear our incoming message buffer in case there
4862 			 * is another message following this one.
4863 			 */
4864 			ahd->msgin_index = 0;
4865 
4866 			/*
4867 			 * If this message illicited a response,
4868 			 * assert ATN so the target takes us to the
4869 			 * message out phase.
4870 			 */
4871 			if (ahd->msgout_len != 0) {
4872 #ifdef AHD_DEBUG
4873 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4874 					ahd_print_devinfo(ahd, &devinfo);
4875 					printk("Asserting ATN for response\n");
4876 				}
4877 #endif
4878 				ahd_assert_atn(ahd);
4879 			}
4880 		} else
4881 			ahd->msgin_index++;
4882 
4883 		if (message_done == MSGLOOP_TERMINATED) {
4884 			end_session = TRUE;
4885 		} else {
4886 			/* Ack the byte */
4887 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4888 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4889 		}
4890 		break;
4891 	}
4892 	case MSG_TYPE_TARGET_MSGIN:
4893 	{
4894 		int msgdone;
4895 		int msgout_request;
4896 
4897 		/*
4898 		 * By default, the message loop will continue.
4899 		 */
4900 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4901 
4902 		if (ahd->msgout_len == 0)
4903 			panic("Target MSGIN with no active message");
4904 
4905 		/*
4906 		 * If we interrupted a mesgout session, the initiator
4907 		 * will not know this until our first REQ.  So, we
4908 		 * only honor mesgout requests after we've sent our
4909 		 * first byte.
4910 		 */
4911 		if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4912 		 && ahd->msgout_index > 0)
4913 			msgout_request = TRUE;
4914 		else
4915 			msgout_request = FALSE;
4916 
4917 		if (msgout_request) {
4918 
4919 			/*
4920 			 * Change gears and see if
4921 			 * this messages is of interest to
4922 			 * us or should be passed back to
4923 			 * the sequencer.
4924 			 */
4925 			ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4926 			ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4927 			ahd->msgin_index = 0;
4928 			/* Dummy read to REQ for first byte */
4929 			ahd_inb(ahd, SCSIDAT);
4930 			ahd_outb(ahd, SXFRCTL0,
4931 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4932 			break;
4933 		}
4934 
4935 		msgdone = ahd->msgout_index == ahd->msgout_len;
4936 		if (msgdone) {
4937 			ahd_outb(ahd, SXFRCTL0,
4938 				 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4939 			end_session = TRUE;
4940 			break;
4941 		}
4942 
4943 		/*
4944 		 * Present the next byte on the bus.
4945 		 */
4946 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4947 		ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4948 		break;
4949 	}
4950 	case MSG_TYPE_TARGET_MSGOUT:
4951 	{
4952 		int lastbyte;
4953 		int msgdone;
4954 
4955 		/*
4956 		 * By default, the message loop will continue.
4957 		 */
4958 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4959 
4960 		/*
4961 		 * The initiator signals that this is
4962 		 * the last byte by dropping ATN.
4963 		 */
4964 		lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4965 
4966 		/*
4967 		 * Read the latched byte, but turn off SPIOEN first
4968 		 * so that we don't inadvertently cause a REQ for the
4969 		 * next byte.
4970 		 */
4971 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4972 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4973 		msgdone = ahd_parse_msg(ahd, &devinfo);
4974 		if (msgdone == MSGLOOP_TERMINATED) {
4975 			/*
4976 			 * The message is *really* done in that it caused
4977 			 * us to go to bus free.  The sequencer has already
4978 			 * been reset at this point, so pull the ejection
4979 			 * handle.
4980 			 */
4981 			return;
4982 		}
4983 
4984 		ahd->msgin_index++;
4985 
4986 		/*
4987 		 * XXX Read spec about initiator dropping ATN too soon
4988 		 *     and use msgdone to detect it.
4989 		 */
4990 		if (msgdone == MSGLOOP_MSGCOMPLETE) {
4991 			ahd->msgin_index = 0;
4992 
4993 			/*
4994 			 * If this message illicited a response, transition
4995 			 * to the Message in phase and send it.
4996 			 */
4997 			if (ahd->msgout_len != 0) {
4998 				ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4999 				ahd_outb(ahd, SXFRCTL0,
5000 					 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5001 				ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5002 				ahd->msgin_index = 0;
5003 				break;
5004 			}
5005 		}
5006 
5007 		if (lastbyte)
5008 			end_session = TRUE;
5009 		else {
5010 			/* Ask for the next byte. */
5011 			ahd_outb(ahd, SXFRCTL0,
5012 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
5013 		}
5014 
5015 		break;
5016 	}
5017 	default:
5018 		panic("Unknown REQINIT message type");
5019 	}
5020 
5021 	if (end_session) {
5022 		if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
5023 			printk("%s: Returning to Idle Loop\n",
5024 			       ahd_name(ahd));
5025 			ahd_clear_msg_state(ahd);
5026 
5027 			/*
5028 			 * Perform the equivalent of a clear_target_state.
5029 			 */
5030 			ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5031 			ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5032 			ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5033 		} else {
5034 			ahd_clear_msg_state(ahd);
5035 			ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5036 		}
5037 	}
5038 }
5039 
5040 /*
5041  * See if we sent a particular extended message to the target.
5042  * If "full" is true, return true only if the target saw the full
5043  * message.  If "full" is false, return true if the target saw at
5044  * least the first byte of the message.
5045  */
5046 static int
5047 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5048 {
5049 	int found;
5050 	u_int index;
5051 
5052 	found = FALSE;
5053 	index = 0;
5054 
5055 	while (index < ahd->msgout_len) {
5056 		if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5057 			u_int end_index;
5058 
5059 			end_index = index + 1 + ahd->msgout_buf[index + 1];
5060 			if (ahd->msgout_buf[index+2] == msgval
5061 			 && type == AHDMSG_EXT) {
5062 
5063 				if (full) {
5064 					if (ahd->msgout_index > end_index)
5065 						found = TRUE;
5066 				} else if (ahd->msgout_index > index)
5067 					found = TRUE;
5068 			}
5069 			index = end_index;
5070 		} else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5071 			&& ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5072 
5073 			/* Skip tag type and tag id or residue param*/
5074 			index += 2;
5075 		} else {
5076 			/* Single byte message */
5077 			if (type == AHDMSG_1B
5078 			 && ahd->msgout_index > index
5079 			 && (ahd->msgout_buf[index] == msgval
5080 			  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5081 			   && msgval == MSG_IDENTIFYFLAG)))
5082 				found = TRUE;
5083 			index++;
5084 		}
5085 
5086 		if (found)
5087 			break;
5088 	}
5089 	return (found);
5090 }
5091 
5092 /*
5093  * Wait for a complete incoming message, parse it, and respond accordingly.
5094  */
5095 static int
5096 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5097 {
5098 	struct	ahd_initiator_tinfo *tinfo;
5099 	struct	ahd_tmode_tstate *tstate;
5100 	int	reject;
5101 	int	done;
5102 	int	response;
5103 
5104 	done = MSGLOOP_IN_PROG;
5105 	response = FALSE;
5106 	reject = FALSE;
5107 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5108 				    devinfo->target, &tstate);
5109 
5110 	/*
5111 	 * Parse as much of the message as is available,
5112 	 * rejecting it if we don't support it.  When
5113 	 * the entire message is available and has been
5114 	 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5115 	 * that we have parsed an entire message.
5116 	 *
5117 	 * In the case of extended messages, we accept the length
5118 	 * byte outright and perform more checking once we know the
5119 	 * extended message type.
5120 	 */
5121 	switch (ahd->msgin_buf[0]) {
5122 	case MSG_DISCONNECT:
5123 	case MSG_SAVEDATAPOINTER:
5124 	case MSG_CMDCOMPLETE:
5125 	case MSG_RESTOREPOINTERS:
5126 	case MSG_IGN_WIDE_RESIDUE:
5127 		/*
5128 		 * End our message loop as these are messages
5129 		 * the sequencer handles on its own.
5130 		 */
5131 		done = MSGLOOP_TERMINATED;
5132 		break;
5133 	case MSG_MESSAGE_REJECT:
5134 		response = ahd_handle_msg_reject(ahd, devinfo);
5135 		/* FALLTHROUGH */
5136 	case MSG_NOOP:
5137 		done = MSGLOOP_MSGCOMPLETE;
5138 		break;
5139 	case MSG_EXTENDED:
5140 	{
5141 		/* Wait for enough of the message to begin validation */
5142 		if (ahd->msgin_index < 2)
5143 			break;
5144 		switch (ahd->msgin_buf[2]) {
5145 		case MSG_EXT_SDTR:
5146 		{
5147 			u_int	 period;
5148 			u_int	 ppr_options;
5149 			u_int	 offset;
5150 			u_int	 saved_offset;
5151 
5152 			if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5153 				reject = TRUE;
5154 				break;
5155 			}
5156 
5157 			/*
5158 			 * Wait until we have both args before validating
5159 			 * and acting on this message.
5160 			 *
5161 			 * Add one to MSG_EXT_SDTR_LEN to account for
5162 			 * the extended message preamble.
5163 			 */
5164 			if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5165 				break;
5166 
5167 			period = ahd->msgin_buf[3];
5168 			ppr_options = 0;
5169 			saved_offset = offset = ahd->msgin_buf[4];
5170 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5171 						&ppr_options, devinfo->role);
5172 			ahd_validate_offset(ahd, tinfo, period, &offset,
5173 					    tinfo->curr.width, devinfo->role);
5174 			if (bootverbose) {
5175 				printk("(%s:%c:%d:%d): Received "
5176 				       "SDTR period %x, offset %x\n\t"
5177 				       "Filtered to period %x, offset %x\n",
5178 				       ahd_name(ahd), devinfo->channel,
5179 				       devinfo->target, devinfo->lun,
5180 				       ahd->msgin_buf[3], saved_offset,
5181 				       period, offset);
5182 			}
5183 			ahd_set_syncrate(ahd, devinfo, period,
5184 					 offset, ppr_options,
5185 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5186 					 /*paused*/TRUE);
5187 
5188 			/*
5189 			 * See if we initiated Sync Negotiation
5190 			 * and didn't have to fall down to async
5191 			 * transfers.
5192 			 */
5193 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5194 				/* We started it */
5195 				if (saved_offset != offset) {
5196 					/* Went too low - force async */
5197 					reject = TRUE;
5198 				}
5199 			} else {
5200 				/*
5201 				 * Send our own SDTR in reply
5202 				 */
5203 				if (bootverbose
5204 				 && devinfo->role == ROLE_INITIATOR) {
5205 					printk("(%s:%c:%d:%d): Target "
5206 					       "Initiated SDTR\n",
5207 					       ahd_name(ahd), devinfo->channel,
5208 					       devinfo->target, devinfo->lun);
5209 				}
5210 				ahd->msgout_index = 0;
5211 				ahd->msgout_len = 0;
5212 				ahd_construct_sdtr(ahd, devinfo,
5213 						   period, offset);
5214 				ahd->msgout_index = 0;
5215 				response = TRUE;
5216 			}
5217 			done = MSGLOOP_MSGCOMPLETE;
5218 			break;
5219 		}
5220 		case MSG_EXT_WDTR:
5221 		{
5222 			u_int bus_width;
5223 			u_int saved_width;
5224 			u_int sending_reply;
5225 
5226 			sending_reply = FALSE;
5227 			if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5228 				reject = TRUE;
5229 				break;
5230 			}
5231 
5232 			/*
5233 			 * Wait until we have our arg before validating
5234 			 * and acting on this message.
5235 			 *
5236 			 * Add one to MSG_EXT_WDTR_LEN to account for
5237 			 * the extended message preamble.
5238 			 */
5239 			if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5240 				break;
5241 
5242 			bus_width = ahd->msgin_buf[3];
5243 			saved_width = bus_width;
5244 			ahd_validate_width(ahd, tinfo, &bus_width,
5245 					   devinfo->role);
5246 			if (bootverbose) {
5247 				printk("(%s:%c:%d:%d): Received WDTR "
5248 				       "%x filtered to %x\n",
5249 				       ahd_name(ahd), devinfo->channel,
5250 				       devinfo->target, devinfo->lun,
5251 				       saved_width, bus_width);
5252 			}
5253 
5254 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5255 				/*
5256 				 * Don't send a WDTR back to the
5257 				 * target, since we asked first.
5258 				 * If the width went higher than our
5259 				 * request, reject it.
5260 				 */
5261 				if (saved_width > bus_width) {
5262 					reject = TRUE;
5263 					printk("(%s:%c:%d:%d): requested %dBit "
5264 					       "transfers.  Rejecting...\n",
5265 					       ahd_name(ahd), devinfo->channel,
5266 					       devinfo->target, devinfo->lun,
5267 					       8 * (0x01 << bus_width));
5268 					bus_width = 0;
5269 				}
5270 			} else {
5271 				/*
5272 				 * Send our own WDTR in reply
5273 				 */
5274 				if (bootverbose
5275 				 && devinfo->role == ROLE_INITIATOR) {
5276 					printk("(%s:%c:%d:%d): Target "
5277 					       "Initiated WDTR\n",
5278 					       ahd_name(ahd), devinfo->channel,
5279 					       devinfo->target, devinfo->lun);
5280 				}
5281 				ahd->msgout_index = 0;
5282 				ahd->msgout_len = 0;
5283 				ahd_construct_wdtr(ahd, devinfo, bus_width);
5284 				ahd->msgout_index = 0;
5285 				response = TRUE;
5286 				sending_reply = TRUE;
5287 			}
5288 			/*
5289 			 * After a wide message, we are async, but
5290 			 * some devices don't seem to honor this portion
5291 			 * of the spec.  Force a renegotiation of the
5292 			 * sync component of our transfer agreement even
5293 			 * if our goal is async.  By updating our width
5294 			 * after forcing the negotiation, we avoid
5295 			 * renegotiating for width.
5296 			 */
5297 			ahd_update_neg_request(ahd, devinfo, tstate,
5298 					       tinfo, AHD_NEG_ALWAYS);
5299 			ahd_set_width(ahd, devinfo, bus_width,
5300 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5301 				      /*paused*/TRUE);
5302 			if (sending_reply == FALSE && reject == FALSE) {
5303 
5304 				/*
5305 				 * We will always have an SDTR to send.
5306 				 */
5307 				ahd->msgout_index = 0;
5308 				ahd->msgout_len = 0;
5309 				ahd_build_transfer_msg(ahd, devinfo);
5310 				ahd->msgout_index = 0;
5311 				response = TRUE;
5312 			}
5313 			done = MSGLOOP_MSGCOMPLETE;
5314 			break;
5315 		}
5316 		case MSG_EXT_PPR:
5317 		{
5318 			u_int	period;
5319 			u_int	offset;
5320 			u_int	bus_width;
5321 			u_int	ppr_options;
5322 			u_int	saved_width;
5323 			u_int	saved_offset;
5324 			u_int	saved_ppr_options;
5325 
5326 			if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5327 				reject = TRUE;
5328 				break;
5329 			}
5330 
5331 			/*
5332 			 * Wait until we have all args before validating
5333 			 * and acting on this message.
5334 			 *
5335 			 * Add one to MSG_EXT_PPR_LEN to account for
5336 			 * the extended message preamble.
5337 			 */
5338 			if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5339 				break;
5340 
5341 			period = ahd->msgin_buf[3];
5342 			offset = ahd->msgin_buf[5];
5343 			bus_width = ahd->msgin_buf[6];
5344 			saved_width = bus_width;
5345 			ppr_options = ahd->msgin_buf[7];
5346 			/*
5347 			 * According to the spec, a DT only
5348 			 * period factor with no DT option
5349 			 * set implies async.
5350 			 */
5351 			if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5352 			 && period <= 9)
5353 				offset = 0;
5354 			saved_ppr_options = ppr_options;
5355 			saved_offset = offset;
5356 
5357 			/*
5358 			 * Transfer options are only available if we
5359 			 * are negotiating wide.
5360 			 */
5361 			if (bus_width == 0)
5362 				ppr_options &= MSG_EXT_PPR_QAS_REQ;
5363 
5364 			ahd_validate_width(ahd, tinfo, &bus_width,
5365 					   devinfo->role);
5366 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5367 						&ppr_options, devinfo->role);
5368 			ahd_validate_offset(ahd, tinfo, period, &offset,
5369 					    bus_width, devinfo->role);
5370 
5371 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5372 				/*
5373 				 * If we are unable to do any of the
5374 				 * requested options (we went too low),
5375 				 * then we'll have to reject the message.
5376 				 */
5377 				if (saved_width > bus_width
5378 				 || saved_offset != offset
5379 				 || saved_ppr_options != ppr_options) {
5380 					reject = TRUE;
5381 					period = 0;
5382 					offset = 0;
5383 					bus_width = 0;
5384 					ppr_options = 0;
5385 				}
5386 			} else {
5387 				if (devinfo->role != ROLE_TARGET)
5388 					printk("(%s:%c:%d:%d): Target "
5389 					       "Initiated PPR\n",
5390 					       ahd_name(ahd), devinfo->channel,
5391 					       devinfo->target, devinfo->lun);
5392 				else
5393 					printk("(%s:%c:%d:%d): Initiator "
5394 					       "Initiated PPR\n",
5395 					       ahd_name(ahd), devinfo->channel,
5396 					       devinfo->target, devinfo->lun);
5397 				ahd->msgout_index = 0;
5398 				ahd->msgout_len = 0;
5399 				ahd_construct_ppr(ahd, devinfo, period, offset,
5400 						  bus_width, ppr_options);
5401 				ahd->msgout_index = 0;
5402 				response = TRUE;
5403 			}
5404 			if (bootverbose) {
5405 				printk("(%s:%c:%d:%d): Received PPR width %x, "
5406 				       "period %x, offset %x,options %x\n"
5407 				       "\tFiltered to width %x, period %x, "
5408 				       "offset %x, options %x\n",
5409 				       ahd_name(ahd), devinfo->channel,
5410 				       devinfo->target, devinfo->lun,
5411 				       saved_width, ahd->msgin_buf[3],
5412 				       saved_offset, saved_ppr_options,
5413 				       bus_width, period, offset, ppr_options);
5414 			}
5415 			ahd_set_width(ahd, devinfo, bus_width,
5416 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5417 				      /*paused*/TRUE);
5418 			ahd_set_syncrate(ahd, devinfo, period,
5419 					 offset, ppr_options,
5420 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5421 					 /*paused*/TRUE);
5422 
5423 			done = MSGLOOP_MSGCOMPLETE;
5424 			break;
5425 		}
5426 		default:
5427 			/* Unknown extended message.  Reject it. */
5428 			reject = TRUE;
5429 			break;
5430 		}
5431 		break;
5432 	}
5433 #ifdef AHD_TARGET_MODE
5434 	case MSG_BUS_DEV_RESET:
5435 		ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5436 				    CAM_BDR_SENT,
5437 				    "Bus Device Reset Received",
5438 				    /*verbose_level*/0);
5439 		ahd_restart(ahd);
5440 		done = MSGLOOP_TERMINATED;
5441 		break;
5442 	case MSG_ABORT_TAG:
5443 	case MSG_ABORT:
5444 	case MSG_CLEAR_QUEUE:
5445 	{
5446 		int tag;
5447 
5448 		/* Target mode messages */
5449 		if (devinfo->role != ROLE_TARGET) {
5450 			reject = TRUE;
5451 			break;
5452 		}
5453 		tag = SCB_LIST_NULL;
5454 		if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5455 			tag = ahd_inb(ahd, INITIATOR_TAG);
5456 		ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5457 			       devinfo->lun, tag, ROLE_TARGET,
5458 			       CAM_REQ_ABORTED);
5459 
5460 		tstate = ahd->enabled_targets[devinfo->our_scsiid];
5461 		if (tstate != NULL) {
5462 			struct ahd_tmode_lstate* lstate;
5463 
5464 			lstate = tstate->enabled_luns[devinfo->lun];
5465 			if (lstate != NULL) {
5466 				ahd_queue_lstate_event(ahd, lstate,
5467 						       devinfo->our_scsiid,
5468 						       ahd->msgin_buf[0],
5469 						       /*arg*/tag);
5470 				ahd_send_lstate_events(ahd, lstate);
5471 			}
5472 		}
5473 		ahd_restart(ahd);
5474 		done = MSGLOOP_TERMINATED;
5475 		break;
5476 	}
5477 #endif
5478 	case MSG_QAS_REQUEST:
5479 #ifdef AHD_DEBUG
5480 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5481 			printk("%s: QAS request.  SCSISIGI == 0x%x\n",
5482 			       ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5483 #endif
5484 		ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5485 		/* FALLTHROUGH */
5486 	case MSG_TERM_IO_PROC:
5487 	default:
5488 		reject = TRUE;
5489 		break;
5490 	}
5491 
5492 	if (reject) {
5493 		/*
5494 		 * Setup to reject the message.
5495 		 */
5496 		ahd->msgout_index = 0;
5497 		ahd->msgout_len = 1;
5498 		ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5499 		done = MSGLOOP_MSGCOMPLETE;
5500 		response = TRUE;
5501 	}
5502 
5503 	if (done != MSGLOOP_IN_PROG && !response)
5504 		/* Clear the outgoing message buffer */
5505 		ahd->msgout_len = 0;
5506 
5507 	return (done);
5508 }
5509 
5510 /*
5511  * Process a message reject message.
5512  */
5513 static int
5514 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5515 {
5516 	/*
5517 	 * What we care about here is if we had an
5518 	 * outstanding SDTR or WDTR message for this
5519 	 * target.  If we did, this is a signal that
5520 	 * the target is refusing negotiation.
5521 	 */
5522 	struct scb *scb;
5523 	struct ahd_initiator_tinfo *tinfo;
5524 	struct ahd_tmode_tstate *tstate;
5525 	u_int scb_index;
5526 	u_int last_msg;
5527 	int   response = 0;
5528 
5529 	scb_index = ahd_get_scbptr(ahd);
5530 	scb = ahd_lookup_scb(ahd, scb_index);
5531 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5532 				    devinfo->our_scsiid,
5533 				    devinfo->target, &tstate);
5534 	/* Might be necessary */
5535 	last_msg = ahd_inb(ahd, LAST_MSG);
5536 
5537 	if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5538 		if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5539 		 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5540 			/*
5541 			 * Target may not like our SPI-4 PPR Options.
5542 			 * Attempt to negotiate 80MHz which will turn
5543 			 * off these options.
5544 			 */
5545 			if (bootverbose) {
5546 				printk("(%s:%c:%d:%d): PPR Rejected. "
5547 				       "Trying simple U160 PPR\n",
5548 				       ahd_name(ahd), devinfo->channel,
5549 				       devinfo->target, devinfo->lun);
5550 			}
5551 			tinfo->goal.period = AHD_SYNCRATE_DT;
5552 			tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5553 						|  MSG_EXT_PPR_QAS_REQ
5554 						|  MSG_EXT_PPR_DT_REQ;
5555 		} else {
5556 			/*
5557 			 * Target does not support the PPR message.
5558 			 * Attempt to negotiate SPI-2 style.
5559 			 */
5560 			if (bootverbose) {
5561 				printk("(%s:%c:%d:%d): PPR Rejected. "
5562 				       "Trying WDTR/SDTR\n",
5563 				       ahd_name(ahd), devinfo->channel,
5564 				       devinfo->target, devinfo->lun);
5565 			}
5566 			tinfo->goal.ppr_options = 0;
5567 			tinfo->curr.transport_version = 2;
5568 			tinfo->goal.transport_version = 2;
5569 		}
5570 		ahd->msgout_index = 0;
5571 		ahd->msgout_len = 0;
5572 		ahd_build_transfer_msg(ahd, devinfo);
5573 		ahd->msgout_index = 0;
5574 		response = 1;
5575 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5576 
5577 		/* note 8bit xfers */
5578 		printk("(%s:%c:%d:%d): refuses WIDE negotiation.  Using "
5579 		       "8bit transfers\n", ahd_name(ahd),
5580 		       devinfo->channel, devinfo->target, devinfo->lun);
5581 		ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5582 			      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5583 			      /*paused*/TRUE);
5584 		/*
5585 		 * No need to clear the sync rate.  If the target
5586 		 * did not accept the command, our syncrate is
5587 		 * unaffected.  If the target started the negotiation,
5588 		 * but rejected our response, we already cleared the
5589 		 * sync rate before sending our WDTR.
5590 		 */
5591 		if (tinfo->goal.offset != tinfo->curr.offset) {
5592 
5593 			/* Start the sync negotiation */
5594 			ahd->msgout_index = 0;
5595 			ahd->msgout_len = 0;
5596 			ahd_build_transfer_msg(ahd, devinfo);
5597 			ahd->msgout_index = 0;
5598 			response = 1;
5599 		}
5600 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5601 		/* note asynch xfers and clear flag */
5602 		ahd_set_syncrate(ahd, devinfo, /*period*/0,
5603 				 /*offset*/0, /*ppr_options*/0,
5604 				 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5605 				 /*paused*/TRUE);
5606 		printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5607 		       "Using asynchronous transfers\n",
5608 		       ahd_name(ahd), devinfo->channel,
5609 		       devinfo->target, devinfo->lun);
5610 	} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5611 		int tag_type;
5612 		int mask;
5613 
5614 		tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5615 
5616 		if (tag_type == MSG_SIMPLE_TASK) {
5617 			printk("(%s:%c:%d:%d): refuses tagged commands.  "
5618 			       "Performing non-tagged I/O\n", ahd_name(ahd),
5619 			       devinfo->channel, devinfo->target, devinfo->lun);
5620 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5621 			mask = ~0x23;
5622 		} else {
5623 			printk("(%s:%c:%d:%d): refuses %s tagged commands.  "
5624 			       "Performing simple queue tagged I/O only\n",
5625 			       ahd_name(ahd), devinfo->channel, devinfo->target,
5626 			       devinfo->lun, tag_type == MSG_ORDERED_TASK
5627 			       ? "ordered" : "head of queue");
5628 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5629 			mask = ~0x03;
5630 		}
5631 
5632 		/*
5633 		 * Resend the identify for this CCB as the target
5634 		 * may believe that the selection is invalid otherwise.
5635 		 */
5636 		ahd_outb(ahd, SCB_CONTROL,
5637 			 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5638 	 	scb->hscb->control &= mask;
5639 		ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5640 					/*type*/MSG_SIMPLE_TASK);
5641 		ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5642 		ahd_assert_atn(ahd);
5643 		ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5644 			     SCB_GET_TAG(scb));
5645 
5646 		/*
5647 		 * Requeue all tagged commands for this target
5648 		 * currently in our possession so they can be
5649 		 * converted to untagged commands.
5650 		 */
5651 		ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5652 				   SCB_GET_CHANNEL(ahd, scb),
5653 				   SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5654 				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
5655 				   SEARCH_COMPLETE);
5656 	} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5657 		/*
5658 		 * Most likely the device believes that we had
5659 		 * previously negotiated packetized.
5660 		 */
5661 		ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5662 			       |  MSG_FLAG_IU_REQ_CHANGED;
5663 
5664 		ahd_force_renegotiation(ahd, devinfo);
5665 		ahd->msgout_index = 0;
5666 		ahd->msgout_len = 0;
5667 		ahd_build_transfer_msg(ahd, devinfo);
5668 		ahd->msgout_index = 0;
5669 		response = 1;
5670 	} else {
5671 		/*
5672 		 * Otherwise, we ignore it.
5673 		 */
5674 		printk("%s:%c:%d: Message reject for %x -- ignored\n",
5675 		       ahd_name(ahd), devinfo->channel, devinfo->target,
5676 		       last_msg);
5677 	}
5678 	return (response);
5679 }
5680 
5681 /*
5682  * Process an ingnore wide residue message.
5683  */
5684 static void
5685 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5686 {
5687 	u_int scb_index;
5688 	struct scb *scb;
5689 
5690 	scb_index = ahd_get_scbptr(ahd);
5691 	scb = ahd_lookup_scb(ahd, scb_index);
5692 	/*
5693 	 * XXX Actually check data direction in the sequencer?
5694 	 * Perhaps add datadir to some spare bits in the hscb?
5695 	 */
5696 	if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5697 	 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5698 		/*
5699 		 * Ignore the message if we haven't
5700 		 * seen an appropriate data phase yet.
5701 		 */
5702 	} else {
5703 		/*
5704 		 * If the residual occurred on the last
5705 		 * transfer and the transfer request was
5706 		 * expected to end on an odd count, do
5707 		 * nothing.  Otherwise, subtract a byte
5708 		 * and update the residual count accordingly.
5709 		 */
5710 		uint32_t sgptr;
5711 
5712 		sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5713 		if ((sgptr & SG_LIST_NULL) != 0
5714 		 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5715 		     & SCB_XFERLEN_ODD) != 0) {
5716 			/*
5717 			 * If the residual occurred on the last
5718 			 * transfer and the transfer request was
5719 			 * expected to end on an odd count, do
5720 			 * nothing.
5721 			 */
5722 		} else {
5723 			uint32_t data_cnt;
5724 			uint64_t data_addr;
5725 			uint32_t sglen;
5726 
5727 			/* Pull in the rest of the sgptr */
5728 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5729 			data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5730 			if ((sgptr & SG_LIST_NULL) != 0) {
5731 				/*
5732 				 * The residual data count is not updated
5733 				 * for the command run to completion case.
5734 				 * Explicitly zero the count.
5735 				 */
5736 				data_cnt &= ~AHD_SG_LEN_MASK;
5737 			}
5738 			data_addr = ahd_inq(ahd, SHADDR);
5739 			data_cnt += 1;
5740 			data_addr -= 1;
5741 			sgptr &= SG_PTR_MASK;
5742 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5743 				struct ahd_dma64_seg *sg;
5744 
5745 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5746 
5747 				/*
5748 				 * The residual sg ptr points to the next S/G
5749 				 * to load so we must go back one.
5750 				 */
5751 				sg--;
5752 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5753 				if (sg != scb->sg_list
5754 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5755 
5756 					sg--;
5757 					sglen = ahd_le32toh(sg->len);
5758 					/*
5759 					 * Preserve High Address and SG_LIST
5760 					 * bits while setting the count to 1.
5761 					 */
5762 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5763 					data_addr = ahd_le64toh(sg->addr)
5764 						  + (sglen & AHD_SG_LEN_MASK)
5765 						  - 1;
5766 
5767 					/*
5768 					 * Increment sg so it points to the
5769 					 * "next" sg.
5770 					 */
5771 					sg++;
5772 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5773 								   sg);
5774 				}
5775 			} else {
5776 				struct ahd_dma_seg *sg;
5777 
5778 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5779 
5780 				/*
5781 				 * The residual sg ptr points to the next S/G
5782 				 * to load so we must go back one.
5783 				 */
5784 				sg--;
5785 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5786 				if (sg != scb->sg_list
5787 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5788 
5789 					sg--;
5790 					sglen = ahd_le32toh(sg->len);
5791 					/*
5792 					 * Preserve High Address and SG_LIST
5793 					 * bits while setting the count to 1.
5794 					 */
5795 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5796 					data_addr = ahd_le32toh(sg->addr)
5797 						  + (sglen & AHD_SG_LEN_MASK)
5798 						  - 1;
5799 
5800 					/*
5801 					 * Increment sg so it points to the
5802 					 * "next" sg.
5803 					 */
5804 					sg++;
5805 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5806 								  sg);
5807 				}
5808 			}
5809 			/*
5810 			 * Toggle the "oddness" of the transfer length
5811 			 * to handle this mid-transfer ignore wide
5812 			 * residue.  This ensures that the oddness is
5813 			 * correct for subsequent data transfers.
5814 			 */
5815 			ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5816 			    ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5817 			    ^ SCB_XFERLEN_ODD);
5818 
5819 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5820 			ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5821 			/*
5822 			 * The FIFO's pointers will be updated if/when the
5823 			 * sequencer re-enters a data phase.
5824 			 */
5825 		}
5826 	}
5827 }
5828 
5829 
5830 /*
5831  * Reinitialize the data pointers for the active transfer
5832  * based on its current residual.
5833  */
5834 static void
5835 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5836 {
5837 	struct		 scb *scb;
5838 	ahd_mode_state	 saved_modes;
5839 	u_int		 scb_index;
5840 	u_int		 wait;
5841 	uint32_t	 sgptr;
5842 	uint32_t	 resid;
5843 	uint64_t	 dataptr;
5844 
5845 	AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5846 			 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5847 
5848 	scb_index = ahd_get_scbptr(ahd);
5849 	scb = ahd_lookup_scb(ahd, scb_index);
5850 
5851 	/*
5852 	 * Release and reacquire the FIFO so we
5853 	 * have a clean slate.
5854 	 */
5855 	ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5856 	wait = 1000;
5857 	while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5858 		ahd_delay(100);
5859 	if (wait == 0) {
5860 		ahd_print_path(ahd, scb);
5861 		printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5862 		ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5863 	}
5864 	saved_modes = ahd_save_modes(ahd);
5865 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5866 	ahd_outb(ahd, DFFSTAT,
5867 		 ahd_inb(ahd, DFFSTAT)
5868 		| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5869 
5870 	/*
5871 	 * Determine initial values for data_addr and data_cnt
5872 	 * for resuming the data phase.
5873 	 */
5874 	sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5875 	sgptr &= SG_PTR_MASK;
5876 
5877 	resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5878 	      | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5879 	      | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5880 
5881 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5882 		struct ahd_dma64_seg *sg;
5883 
5884 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5885 
5886 		/* The residual sg_ptr always points to the next sg */
5887 		sg--;
5888 
5889 		dataptr = ahd_le64toh(sg->addr)
5890 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5891 			- resid;
5892 		ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5893 	} else {
5894 		struct	 ahd_dma_seg *sg;
5895 
5896 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5897 
5898 		/* The residual sg_ptr always points to the next sg */
5899 		sg--;
5900 
5901 		dataptr = ahd_le32toh(sg->addr)
5902 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5903 			- resid;
5904 		ahd_outb(ahd, HADDR + 4,
5905 			 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5906 	}
5907 	ahd_outl(ahd, HADDR, dataptr);
5908 	ahd_outb(ahd, HCNT + 2, resid >> 16);
5909 	ahd_outb(ahd, HCNT + 1, resid >> 8);
5910 	ahd_outb(ahd, HCNT, resid);
5911 }
5912 
5913 /*
5914  * Handle the effects of issuing a bus device reset message.
5915  */
5916 static void
5917 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5918 		    u_int lun, cam_status status, char *message,
5919 		    int verbose_level)
5920 {
5921 #ifdef AHD_TARGET_MODE
5922 	struct ahd_tmode_tstate* tstate;
5923 #endif
5924 	int found;
5925 
5926 	found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5927 			       lun, SCB_LIST_NULL, devinfo->role,
5928 			       status);
5929 
5930 #ifdef AHD_TARGET_MODE
5931 	/*
5932 	 * Send an immediate notify ccb to all target mord peripheral
5933 	 * drivers affected by this action.
5934 	 */
5935 	tstate = ahd->enabled_targets[devinfo->our_scsiid];
5936 	if (tstate != NULL) {
5937 		u_int cur_lun;
5938 		u_int max_lun;
5939 
5940 		if (lun != CAM_LUN_WILDCARD) {
5941 			cur_lun = 0;
5942 			max_lun = AHD_NUM_LUNS - 1;
5943 		} else {
5944 			cur_lun = lun;
5945 			max_lun = lun;
5946 		}
5947 		for (;cur_lun <= max_lun; cur_lun++) {
5948 			struct ahd_tmode_lstate* lstate;
5949 
5950 			lstate = tstate->enabled_luns[cur_lun];
5951 			if (lstate == NULL)
5952 				continue;
5953 
5954 			ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5955 					       MSG_BUS_DEV_RESET, /*arg*/0);
5956 			ahd_send_lstate_events(ahd, lstate);
5957 		}
5958 	}
5959 #endif
5960 
5961 	/*
5962 	 * Go back to async/narrow transfers and renegotiate.
5963 	 */
5964 	ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5965 		      AHD_TRANS_CUR, /*paused*/TRUE);
5966 	ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5967 			 /*ppr_options*/0, AHD_TRANS_CUR,
5968 			 /*paused*/TRUE);
5969 
5970 	if (status != CAM_SEL_TIMEOUT)
5971 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
5972 			       CAM_LUN_WILDCARD, AC_SENT_BDR);
5973 
5974 	if (message != NULL && bootverbose)
5975 		printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5976 		       message, devinfo->channel, devinfo->target, found);
5977 }
5978 
5979 #ifdef AHD_TARGET_MODE
5980 static void
5981 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5982 		       struct scb *scb)
5983 {
5984 
5985 	/*
5986 	 * To facilitate adding multiple messages together,
5987 	 * each routine should increment the index and len
5988 	 * variables instead of setting them explicitly.
5989 	 */
5990 	ahd->msgout_index = 0;
5991 	ahd->msgout_len = 0;
5992 
5993 	if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5994 		ahd_build_transfer_msg(ahd, devinfo);
5995 	else
5996 		panic("ahd_intr: AWAITING target message with no message");
5997 
5998 	ahd->msgout_index = 0;
5999 	ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
6000 }
6001 #endif
6002 /**************************** Initialization **********************************/
6003 static u_int
6004 ahd_sglist_size(struct ahd_softc *ahd)
6005 {
6006 	bus_size_t list_size;
6007 
6008 	list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
6009 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6010 		list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
6011 	return (list_size);
6012 }
6013 
6014 /*
6015  * Calculate the optimum S/G List allocation size.  S/G elements used
6016  * for a given transaction must be physically contiguous.  Assume the
6017  * OS will allocate full pages to us, so it doesn't make sense to request
6018  * less than a page.
6019  */
6020 static u_int
6021 ahd_sglist_allocsize(struct ahd_softc *ahd)
6022 {
6023 	bus_size_t sg_list_increment;
6024 	bus_size_t sg_list_size;
6025 	bus_size_t max_list_size;
6026 	bus_size_t best_list_size;
6027 
6028 	/* Start out with the minimum required for AHD_NSEG. */
6029 	sg_list_increment = ahd_sglist_size(ahd);
6030 	sg_list_size = sg_list_increment;
6031 
6032 	/* Get us as close as possible to a page in size. */
6033 	while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6034 		sg_list_size += sg_list_increment;
6035 
6036 	/*
6037 	 * Try to reduce the amount of wastage by allocating
6038 	 * multiple pages.
6039 	 */
6040 	best_list_size = sg_list_size;
6041 	max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6042 	if (max_list_size < 4 * PAGE_SIZE)
6043 		max_list_size = 4 * PAGE_SIZE;
6044 	if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6045 		max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6046 	while ((sg_list_size + sg_list_increment) <= max_list_size
6047 	   &&  (sg_list_size % PAGE_SIZE) != 0) {
6048 		bus_size_t new_mod;
6049 		bus_size_t best_mod;
6050 
6051 		sg_list_size += sg_list_increment;
6052 		new_mod = sg_list_size % PAGE_SIZE;
6053 		best_mod = best_list_size % PAGE_SIZE;
6054 		if (new_mod > best_mod || new_mod == 0) {
6055 			best_list_size = sg_list_size;
6056 		}
6057 	}
6058 	return (best_list_size);
6059 }
6060 
6061 /*
6062  * Allocate a controller structure for a new device
6063  * and perform initial initializion.
6064  */
6065 struct ahd_softc *
6066 ahd_alloc(void *platform_arg, char *name)
6067 {
6068 	struct  ahd_softc *ahd;
6069 
6070 #ifndef	__FreeBSD__
6071 	ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC);
6072 	if (!ahd) {
6073 		printk("aic7xxx: cannot malloc softc!\n");
6074 		kfree(name);
6075 		return NULL;
6076 	}
6077 #else
6078 	ahd = device_get_softc((device_t)platform_arg);
6079 #endif
6080 	memset(ahd, 0, sizeof(*ahd));
6081 	ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6082 	if (ahd->seep_config == NULL) {
6083 #ifndef	__FreeBSD__
6084 		kfree(ahd);
6085 #endif
6086 		kfree(name);
6087 		return (NULL);
6088 	}
6089 	LIST_INIT(&ahd->pending_scbs);
6090 	/* We don't know our unit number until the OSM sets it */
6091 	ahd->name = name;
6092 	ahd->unit = -1;
6093 	ahd->description = NULL;
6094 	ahd->bus_description = NULL;
6095 	ahd->channel = 'A';
6096 	ahd->chip = AHD_NONE;
6097 	ahd->features = AHD_FENONE;
6098 	ahd->bugs = AHD_BUGNONE;
6099 	ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6100 		   | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6101 	timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6102 	ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6103 	ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6104 	ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6105 	ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6106 	ahd->int_coalescing_stop_threshold =
6107 	    AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6108 
6109 #ifdef AHD_DEBUG
6110 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6111 		printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6112 		       ahd_name(ahd), (u_int)sizeof(struct scb),
6113 		       (u_int)sizeof(struct hardware_scb));
6114 	}
6115 #endif
6116 	if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6117 		ahd_free(ahd);
6118 		ahd = NULL;
6119 	}
6120 	return (ahd);
6121 }
6122 
6123 int
6124 ahd_softc_init(struct ahd_softc *ahd)
6125 {
6126 
6127 	ahd->unpause = 0;
6128 	ahd->pause = PAUSE;
6129 	return (0);
6130 }
6131 
6132 void
6133 ahd_set_unit(struct ahd_softc *ahd, int unit)
6134 {
6135 	ahd->unit = unit;
6136 }
6137 
6138 void
6139 ahd_set_name(struct ahd_softc *ahd, char *name)
6140 {
6141 	if (ahd->name != NULL)
6142 		kfree(ahd->name);
6143 	ahd->name = name;
6144 }
6145 
6146 void
6147 ahd_free(struct ahd_softc *ahd)
6148 {
6149 	int i;
6150 
6151 	switch (ahd->init_level) {
6152 	default:
6153 	case 5:
6154 		ahd_shutdown(ahd);
6155 		/* FALLTHROUGH */
6156 	case 4:
6157 		ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6158 				  ahd->shared_data_map.dmamap);
6159 		/* FALLTHROUGH */
6160 	case 3:
6161 		ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6162 				ahd->shared_data_map.dmamap);
6163 		ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6164 				   ahd->shared_data_map.dmamap);
6165 		/* FALLTHROUGH */
6166 	case 2:
6167 		ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6168 	case 1:
6169 		break;
6170 	case 0:
6171 		break;
6172 	}
6173 
6174 	ahd_platform_free(ahd);
6175 	ahd_fini_scbdata(ahd);
6176 	for (i = 0; i < AHD_NUM_TARGETS; i++) {
6177 		struct ahd_tmode_tstate *tstate;
6178 
6179 		tstate = ahd->enabled_targets[i];
6180 		if (tstate != NULL) {
6181 #ifdef AHD_TARGET_MODE
6182 			int j;
6183 
6184 			for (j = 0; j < AHD_NUM_LUNS; j++) {
6185 				struct ahd_tmode_lstate *lstate;
6186 
6187 				lstate = tstate->enabled_luns[j];
6188 				if (lstate != NULL) {
6189 					xpt_free_path(lstate->path);
6190 					kfree(lstate);
6191 				}
6192 			}
6193 #endif
6194 			kfree(tstate);
6195 		}
6196 	}
6197 #ifdef AHD_TARGET_MODE
6198 	if (ahd->black_hole != NULL) {
6199 		xpt_free_path(ahd->black_hole->path);
6200 		kfree(ahd->black_hole);
6201 	}
6202 #endif
6203 	if (ahd->name != NULL)
6204 		kfree(ahd->name);
6205 	if (ahd->seep_config != NULL)
6206 		kfree(ahd->seep_config);
6207 	if (ahd->saved_stack != NULL)
6208 		kfree(ahd->saved_stack);
6209 #ifndef __FreeBSD__
6210 	kfree(ahd);
6211 #endif
6212 	return;
6213 }
6214 
6215 static void
6216 ahd_shutdown(void *arg)
6217 {
6218 	struct	ahd_softc *ahd;
6219 
6220 	ahd = (struct ahd_softc *)arg;
6221 
6222 	/*
6223 	 * Stop periodic timer callbacks.
6224 	 */
6225 	del_timer_sync(&ahd->stat_timer);
6226 
6227 	/* This will reset most registers to 0, but not all */
6228 	ahd_reset(ahd, /*reinit*/FALSE);
6229 }
6230 
6231 /*
6232  * Reset the controller and record some information about it
6233  * that is only available just after a reset.  If "reinit" is
6234  * non-zero, this reset occurred after initial configuration
6235  * and the caller requests that the chip be fully reinitialized
6236  * to a runable state.  Chip interrupts are *not* enabled after
6237  * a reinitialization.  The caller must enable interrupts via
6238  * ahd_intr_enable().
6239  */
6240 int
6241 ahd_reset(struct ahd_softc *ahd, int reinit)
6242 {
6243 	u_int	 sxfrctl1;
6244 	int	 wait;
6245 	uint32_t cmd;
6246 
6247 	/*
6248 	 * Preserve the value of the SXFRCTL1 register for all channels.
6249 	 * It contains settings that affect termination and we don't want
6250 	 * to disturb the integrity of the bus.
6251 	 */
6252 	ahd_pause(ahd);
6253 	ahd_update_modes(ahd);
6254 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6255 	sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6256 
6257 	cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6258 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6259 		uint32_t mod_cmd;
6260 
6261 		/*
6262 		 * A4 Razor #632
6263 		 * During the assertion of CHIPRST, the chip
6264 		 * does not disable its parity logic prior to
6265 		 * the start of the reset.  This may cause a
6266 		 * parity error to be detected and thus a
6267 		 * spurious SERR or PERR assertion.  Disable
6268 		 * PERR and SERR responses during the CHIPRST.
6269 		 */
6270 		mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6271 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6272 				     mod_cmd, /*bytes*/2);
6273 	}
6274 	ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6275 
6276 	/*
6277 	 * Ensure that the reset has finished.  We delay 1000us
6278 	 * prior to reading the register to make sure the chip
6279 	 * has sufficiently completed its reset to handle register
6280 	 * accesses.
6281 	 */
6282 	wait = 1000;
6283 	do {
6284 		ahd_delay(1000);
6285 	} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6286 
6287 	if (wait == 0) {
6288 		printk("%s: WARNING - Failed chip reset!  "
6289 		       "Trying to initialize anyway.\n", ahd_name(ahd));
6290 	}
6291 	ahd_outb(ahd, HCNTRL, ahd->pause);
6292 
6293 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6294 		/*
6295 		 * Clear any latched PCI error status and restore
6296 		 * previous SERR and PERR response enables.
6297 		 */
6298 		ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6299 				     0xFF, /*bytes*/1);
6300 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6301 				     cmd, /*bytes*/2);
6302 	}
6303 
6304 	/*
6305 	 * Mode should be SCSI after a chip reset, but lets
6306 	 * set it just to be safe.  We touch the MODE_PTR
6307 	 * register directly so as to bypass the lazy update
6308 	 * code in ahd_set_modes().
6309 	 */
6310 	ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6311 	ahd_outb(ahd, MODE_PTR,
6312 		 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6313 
6314 	/*
6315 	 * Restore SXFRCTL1.
6316 	 *
6317 	 * We must always initialize STPWEN to 1 before we
6318 	 * restore the saved values.  STPWEN is initialized
6319 	 * to a tri-state condition which can only be cleared
6320 	 * by turning it on.
6321 	 */
6322 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6323 	ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6324 
6325 	/* Determine chip configuration */
6326 	ahd->features &= ~AHD_WIDE;
6327 	if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6328 		ahd->features |= AHD_WIDE;
6329 
6330 	/*
6331 	 * If a recovery action has forced a chip reset,
6332 	 * re-initialize the chip to our liking.
6333 	 */
6334 	if (reinit != 0)
6335 		ahd_chip_init(ahd);
6336 
6337 	return (0);
6338 }
6339 
6340 /*
6341  * Determine the number of SCBs available on the controller
6342  */
6343 static int
6344 ahd_probe_scbs(struct ahd_softc *ahd) {
6345 	int i;
6346 
6347 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6348 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6349 	for (i = 0; i < AHD_SCB_MAX; i++) {
6350 		int j;
6351 
6352 		ahd_set_scbptr(ahd, i);
6353 		ahd_outw(ahd, SCB_BASE, i);
6354 		for (j = 2; j < 64; j++)
6355 			ahd_outb(ahd, SCB_BASE+j, 0);
6356 		/* Start out life as unallocated (needing an abort) */
6357 		ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6358 		if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6359 			break;
6360 		ahd_set_scbptr(ahd, 0);
6361 		if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6362 			break;
6363 	}
6364 	return (i);
6365 }
6366 
6367 static void
6368 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6369 {
6370 	dma_addr_t *baddr;
6371 
6372 	baddr = (dma_addr_t *)arg;
6373 	*baddr = segs->ds_addr;
6374 }
6375 
6376 static void
6377 ahd_initialize_hscbs(struct ahd_softc *ahd)
6378 {
6379 	int i;
6380 
6381 	for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6382 		ahd_set_scbptr(ahd, i);
6383 
6384 		/* Clear the control byte. */
6385 		ahd_outb(ahd, SCB_CONTROL, 0);
6386 
6387 		/* Set the next pointer */
6388 		ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6389 	}
6390 }
6391 
6392 static int
6393 ahd_init_scbdata(struct ahd_softc *ahd)
6394 {
6395 	struct	scb_data *scb_data;
6396 	int	i;
6397 
6398 	scb_data = &ahd->scb_data;
6399 	TAILQ_INIT(&scb_data->free_scbs);
6400 	for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6401 		LIST_INIT(&scb_data->free_scb_lists[i]);
6402 	LIST_INIT(&scb_data->any_dev_free_scb_list);
6403 	SLIST_INIT(&scb_data->hscb_maps);
6404 	SLIST_INIT(&scb_data->sg_maps);
6405 	SLIST_INIT(&scb_data->sense_maps);
6406 
6407 	/* Determine the number of hardware SCBs and initialize them */
6408 	scb_data->maxhscbs = ahd_probe_scbs(ahd);
6409 	if (scb_data->maxhscbs == 0) {
6410 		printk("%s: No SCB space found\n", ahd_name(ahd));
6411 		return (ENXIO);
6412 	}
6413 
6414 	ahd_initialize_hscbs(ahd);
6415 
6416 	/*
6417 	 * Create our DMA tags.  These tags define the kinds of device
6418 	 * accessible memory allocations and memory mappings we will
6419 	 * need to perform during normal operation.
6420 	 *
6421 	 * Unless we need to further restrict the allocation, we rely
6422 	 * on the restrictions of the parent dmat, hence the common
6423 	 * use of MAXADDR and MAXSIZE.
6424 	 */
6425 
6426 	/* DMA tag for our hardware scb structures */
6427 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6428 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6429 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6430 			       /*highaddr*/BUS_SPACE_MAXADDR,
6431 			       /*filter*/NULL, /*filterarg*/NULL,
6432 			       PAGE_SIZE, /*nsegments*/1,
6433 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6434 			       /*flags*/0, &scb_data->hscb_dmat) != 0) {
6435 		goto error_exit;
6436 	}
6437 
6438 	scb_data->init_level++;
6439 
6440 	/* DMA tag for our S/G structures. */
6441 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6442 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6443 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6444 			       /*highaddr*/BUS_SPACE_MAXADDR,
6445 			       /*filter*/NULL, /*filterarg*/NULL,
6446 			       ahd_sglist_allocsize(ahd), /*nsegments*/1,
6447 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6448 			       /*flags*/0, &scb_data->sg_dmat) != 0) {
6449 		goto error_exit;
6450 	}
6451 #ifdef AHD_DEBUG
6452 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6453 		printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6454 		       ahd_sglist_allocsize(ahd));
6455 #endif
6456 
6457 	scb_data->init_level++;
6458 
6459 	/* DMA tag for our sense buffers.  We allocate in page sized chunks */
6460 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6461 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6462 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6463 			       /*highaddr*/BUS_SPACE_MAXADDR,
6464 			       /*filter*/NULL, /*filterarg*/NULL,
6465 			       PAGE_SIZE, /*nsegments*/1,
6466 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6467 			       /*flags*/0, &scb_data->sense_dmat) != 0) {
6468 		goto error_exit;
6469 	}
6470 
6471 	scb_data->init_level++;
6472 
6473 	/* Perform initial CCB allocation */
6474 	ahd_alloc_scbs(ahd);
6475 
6476 	if (scb_data->numscbs == 0) {
6477 		printk("%s: ahd_init_scbdata - "
6478 		       "Unable to allocate initial scbs\n",
6479 		       ahd_name(ahd));
6480 		goto error_exit;
6481 	}
6482 
6483 	/*
6484 	 * Note that we were successful
6485 	 */
6486 	return (0);
6487 
6488 error_exit:
6489 
6490 	return (ENOMEM);
6491 }
6492 
6493 static struct scb *
6494 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6495 {
6496 	struct scb *scb;
6497 
6498 	/*
6499 	 * Look on the pending list.
6500 	 */
6501 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6502 		if (SCB_GET_TAG(scb) == tag)
6503 			return (scb);
6504 	}
6505 
6506 	/*
6507 	 * Then on all of the collision free lists.
6508 	 */
6509 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6510 		struct scb *list_scb;
6511 
6512 		list_scb = scb;
6513 		do {
6514 			if (SCB_GET_TAG(list_scb) == tag)
6515 				return (list_scb);
6516 			list_scb = LIST_NEXT(list_scb, collision_links);
6517 		} while (list_scb);
6518 	}
6519 
6520 	/*
6521 	 * And finally on the generic free list.
6522 	 */
6523 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6524 		if (SCB_GET_TAG(scb) == tag)
6525 			return (scb);
6526 	}
6527 
6528 	return (NULL);
6529 }
6530 
6531 static void
6532 ahd_fini_scbdata(struct ahd_softc *ahd)
6533 {
6534 	struct scb_data *scb_data;
6535 
6536 	scb_data = &ahd->scb_data;
6537 	if (scb_data == NULL)
6538 		return;
6539 
6540 	switch (scb_data->init_level) {
6541 	default:
6542 	case 7:
6543 	{
6544 		struct map_node *sns_map;
6545 
6546 		while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6547 			SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6548 			ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6549 					  sns_map->dmamap);
6550 			ahd_dmamem_free(ahd, scb_data->sense_dmat,
6551 					sns_map->vaddr, sns_map->dmamap);
6552 			kfree(sns_map);
6553 		}
6554 		ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6555 	}
6556 		/* fall through */
6557 	case 6:
6558 	{
6559 		struct map_node *sg_map;
6560 
6561 		while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6562 			SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6563 			ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6564 					  sg_map->dmamap);
6565 			ahd_dmamem_free(ahd, scb_data->sg_dmat,
6566 					sg_map->vaddr, sg_map->dmamap);
6567 			kfree(sg_map);
6568 		}
6569 		ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6570 	}
6571 		/* fall through */
6572 	case 5:
6573 	{
6574 		struct map_node *hscb_map;
6575 
6576 		while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6577 			SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6578 			ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6579 					  hscb_map->dmamap);
6580 			ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6581 					hscb_map->vaddr, hscb_map->dmamap);
6582 			kfree(hscb_map);
6583 		}
6584 		ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6585 		/* FALLTHROUGH */
6586 	}
6587 	case 4:
6588 	case 3:
6589 	case 2:
6590 	case 1:
6591 	case 0:
6592 		break;
6593 	}
6594 }
6595 
6596 /*
6597  * DSP filter Bypass must be enabled until the first selection
6598  * after a change in bus mode (Razor #491 and #493).
6599  */
6600 static void
6601 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6602 {
6603 	ahd_mode_state saved_modes;
6604 
6605 	saved_modes = ahd_save_modes(ahd);
6606 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6607 	ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6608 	       | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6609 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6610 #ifdef AHD_DEBUG
6611 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6612 		printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6613 #endif
6614 	ahd_restore_modes(ahd, saved_modes);
6615 	ahd->flags &= ~AHD_HAD_FIRST_SEL;
6616 }
6617 
6618 static void
6619 ahd_iocell_first_selection(struct ahd_softc *ahd)
6620 {
6621 	ahd_mode_state	saved_modes;
6622 	u_int		sblkctl;
6623 
6624 	if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6625 		return;
6626 	saved_modes = ahd_save_modes(ahd);
6627 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6628 	sblkctl = ahd_inb(ahd, SBLKCTL);
6629 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6630 #ifdef AHD_DEBUG
6631 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6632 		printk("%s: iocell first selection\n", ahd_name(ahd));
6633 #endif
6634 	if ((sblkctl & ENAB40) != 0) {
6635 		ahd_outb(ahd, DSPDATACTL,
6636 			 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6637 #ifdef AHD_DEBUG
6638 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
6639 			printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6640 #endif
6641 	}
6642 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6643 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
6644 	ahd_restore_modes(ahd, saved_modes);
6645 	ahd->flags |= AHD_HAD_FIRST_SEL;
6646 }
6647 
6648 /*************************** SCB Management ***********************************/
6649 static void
6650 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6651 {
6652 	struct	scb_list *free_list;
6653 	struct	scb_tailq *free_tailq;
6654 	struct	scb *first_scb;
6655 
6656 	scb->flags |= SCB_ON_COL_LIST;
6657 	AHD_SET_SCB_COL_IDX(scb, col_idx);
6658 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6659 	free_tailq = &ahd->scb_data.free_scbs;
6660 	first_scb = LIST_FIRST(free_list);
6661 	if (first_scb != NULL) {
6662 		LIST_INSERT_AFTER(first_scb, scb, collision_links);
6663 	} else {
6664 		LIST_INSERT_HEAD(free_list, scb, collision_links);
6665 		TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6666 	}
6667 }
6668 
6669 static void
6670 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6671 {
6672 	struct	scb_list *free_list;
6673 	struct	scb_tailq *free_tailq;
6674 	struct	scb *first_scb;
6675 	u_int	col_idx;
6676 
6677 	scb->flags &= ~SCB_ON_COL_LIST;
6678 	col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6679 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6680 	free_tailq = &ahd->scb_data.free_scbs;
6681 	first_scb = LIST_FIRST(free_list);
6682 	if (first_scb == scb) {
6683 		struct scb *next_scb;
6684 
6685 		/*
6686 		 * Maintain order in the collision free
6687 		 * lists for fairness if this device has
6688 		 * other colliding tags active.
6689 		 */
6690 		next_scb = LIST_NEXT(scb, collision_links);
6691 		if (next_scb != NULL) {
6692 			TAILQ_INSERT_AFTER(free_tailq, scb,
6693 					   next_scb, links.tqe);
6694 		}
6695 		TAILQ_REMOVE(free_tailq, scb, links.tqe);
6696 	}
6697 	LIST_REMOVE(scb, collision_links);
6698 }
6699 
6700 /*
6701  * Get a free scb. If there are none, see if we can allocate a new SCB.
6702  */
6703 struct scb *
6704 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6705 {
6706 	struct scb *scb;
6707 	int tries;
6708 
6709 	tries = 0;
6710 look_again:
6711 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6712 		if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6713 			ahd_rem_col_list(ahd, scb);
6714 			goto found;
6715 		}
6716 	}
6717 	if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6718 
6719 		if (tries++ != 0)
6720 			return (NULL);
6721 		ahd_alloc_scbs(ahd);
6722 		goto look_again;
6723 	}
6724 	LIST_REMOVE(scb, links.le);
6725 	if (col_idx != AHD_NEVER_COL_IDX
6726 	 && (scb->col_scb != NULL)
6727 	 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6728 		LIST_REMOVE(scb->col_scb, links.le);
6729 		ahd_add_col_list(ahd, scb->col_scb, col_idx);
6730 	}
6731 found:
6732 	scb->flags |= SCB_ACTIVE;
6733 	return (scb);
6734 }
6735 
6736 /*
6737  * Return an SCB resource to the free list.
6738  */
6739 void
6740 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6741 {
6742 	/* Clean up for the next user */
6743 	scb->flags = SCB_FLAG_NONE;
6744 	scb->hscb->control = 0;
6745 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6746 
6747 	if (scb->col_scb == NULL) {
6748 
6749 		/*
6750 		 * No collision possible.  Just free normally.
6751 		 */
6752 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6753 				 scb, links.le);
6754 	} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6755 
6756 		/*
6757 		 * The SCB we might have collided with is on
6758 		 * a free collision list.  Put both SCBs on
6759 		 * the generic list.
6760 		 */
6761 		ahd_rem_col_list(ahd, scb->col_scb);
6762 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6763 				 scb, links.le);
6764 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6765 				 scb->col_scb, links.le);
6766 	} else if ((scb->col_scb->flags
6767 		  & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6768 		&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6769 
6770 		/*
6771 		 * The SCB we might collide with on the next allocation
6772 		 * is still active in a non-packetized, tagged, context.
6773 		 * Put us on the SCB collision list.
6774 		 */
6775 		ahd_add_col_list(ahd, scb,
6776 				 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6777 	} else {
6778 		/*
6779 		 * The SCB we might collide with on the next allocation
6780 		 * is either active in a packetized context, or free.
6781 		 * Since we can't collide, put this SCB on the generic
6782 		 * free list.
6783 		 */
6784 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6785 				 scb, links.le);
6786 	}
6787 
6788 	ahd_platform_scb_free(ahd, scb);
6789 }
6790 
6791 static void
6792 ahd_alloc_scbs(struct ahd_softc *ahd)
6793 {
6794 	struct scb_data *scb_data;
6795 	struct scb	*next_scb;
6796 	struct hardware_scb *hscb;
6797 	struct map_node *hscb_map;
6798 	struct map_node *sg_map;
6799 	struct map_node *sense_map;
6800 	uint8_t		*segs;
6801 	uint8_t		*sense_data;
6802 	dma_addr_t	 hscb_busaddr;
6803 	dma_addr_t	 sg_busaddr;
6804 	dma_addr_t	 sense_busaddr;
6805 	int		 newcount;
6806 	int		 i;
6807 
6808 	scb_data = &ahd->scb_data;
6809 	if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6810 		/* Can't allocate any more */
6811 		return;
6812 
6813 	if (scb_data->scbs_left != 0) {
6814 		int offset;
6815 
6816 		offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6817 		hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6818 		hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6819 		hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6820 	} else {
6821 		hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6822 
6823 		if (hscb_map == NULL)
6824 			return;
6825 
6826 		/* Allocate the next batch of hardware SCBs */
6827 		if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6828 				     (void **)&hscb_map->vaddr,
6829 				     BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6830 			kfree(hscb_map);
6831 			return;
6832 		}
6833 
6834 		SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6835 
6836 		ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6837 				hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6838 				&hscb_map->physaddr, /*flags*/0);
6839 
6840 		hscb = (struct hardware_scb *)hscb_map->vaddr;
6841 		hscb_busaddr = hscb_map->physaddr;
6842 		scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6843 	}
6844 
6845 	if (scb_data->sgs_left != 0) {
6846 		int offset;
6847 
6848 		offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6849 		       - scb_data->sgs_left) * ahd_sglist_size(ahd);
6850 		sg_map = SLIST_FIRST(&scb_data->sg_maps);
6851 		segs = sg_map->vaddr + offset;
6852 		sg_busaddr = sg_map->physaddr + offset;
6853 	} else {
6854 		sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6855 
6856 		if (sg_map == NULL)
6857 			return;
6858 
6859 		/* Allocate the next batch of S/G lists */
6860 		if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6861 				     (void **)&sg_map->vaddr,
6862 				     BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6863 			kfree(sg_map);
6864 			return;
6865 		}
6866 
6867 		SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6868 
6869 		ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6870 				sg_map->vaddr, ahd_sglist_allocsize(ahd),
6871 				ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6872 
6873 		segs = sg_map->vaddr;
6874 		sg_busaddr = sg_map->physaddr;
6875 		scb_data->sgs_left =
6876 		    ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6877 #ifdef AHD_DEBUG
6878 		if (ahd_debug & AHD_SHOW_MEMORY)
6879 			printk("Mapped SG data\n");
6880 #endif
6881 	}
6882 
6883 	if (scb_data->sense_left != 0) {
6884 		int offset;
6885 
6886 		offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6887 		sense_map = SLIST_FIRST(&scb_data->sense_maps);
6888 		sense_data = sense_map->vaddr + offset;
6889 		sense_busaddr = sense_map->physaddr + offset;
6890 	} else {
6891 		sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6892 
6893 		if (sense_map == NULL)
6894 			return;
6895 
6896 		/* Allocate the next batch of sense buffers */
6897 		if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6898 				     (void **)&sense_map->vaddr,
6899 				     BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6900 			kfree(sense_map);
6901 			return;
6902 		}
6903 
6904 		SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6905 
6906 		ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6907 				sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6908 				&sense_map->physaddr, /*flags*/0);
6909 
6910 		sense_data = sense_map->vaddr;
6911 		sense_busaddr = sense_map->physaddr;
6912 		scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6913 #ifdef AHD_DEBUG
6914 		if (ahd_debug & AHD_SHOW_MEMORY)
6915 			printk("Mapped sense data\n");
6916 #endif
6917 	}
6918 
6919 	newcount = min(scb_data->sense_left, scb_data->scbs_left);
6920 	newcount = min(newcount, scb_data->sgs_left);
6921 	newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6922 	for (i = 0; i < newcount; i++) {
6923 		struct scb_platform_data *pdata;
6924 		u_int col_tag;
6925 
6926 		next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6927 		if (next_scb == NULL)
6928 			break;
6929 
6930 		pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6931 		if (pdata == NULL) {
6932 			kfree(next_scb);
6933 			break;
6934 		}
6935 		next_scb->platform_data = pdata;
6936 		next_scb->hscb_map = hscb_map;
6937 		next_scb->sg_map = sg_map;
6938 		next_scb->sense_map = sense_map;
6939 		next_scb->sg_list = segs;
6940 		next_scb->sense_data = sense_data;
6941 		next_scb->sense_busaddr = sense_busaddr;
6942 		memset(hscb, 0, sizeof(*hscb));
6943 		next_scb->hscb = hscb;
6944 		hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6945 
6946 		/*
6947 		 * The sequencer always starts with the second entry.
6948 		 * The first entry is embedded in the scb.
6949 		 */
6950 		next_scb->sg_list_busaddr = sg_busaddr;
6951 		if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6952 			next_scb->sg_list_busaddr
6953 			    += sizeof(struct ahd_dma64_seg);
6954 		else
6955 			next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6956 		next_scb->ahd_softc = ahd;
6957 		next_scb->flags = SCB_FLAG_NONE;
6958 		next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6959 		col_tag = scb_data->numscbs ^ 0x100;
6960 		next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6961 		if (next_scb->col_scb != NULL)
6962 			next_scb->col_scb->col_scb = next_scb;
6963 		ahd_free_scb(ahd, next_scb);
6964 		hscb++;
6965 		hscb_busaddr += sizeof(*hscb);
6966 		segs += ahd_sglist_size(ahd);
6967 		sg_busaddr += ahd_sglist_size(ahd);
6968 		sense_data += AHD_SENSE_BUFSIZE;
6969 		sense_busaddr += AHD_SENSE_BUFSIZE;
6970 		scb_data->numscbs++;
6971 		scb_data->sense_left--;
6972 		scb_data->scbs_left--;
6973 		scb_data->sgs_left--;
6974 	}
6975 }
6976 
6977 void
6978 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6979 {
6980 	const char *speed;
6981 	const char *type;
6982 	int len;
6983 
6984 	len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6985 	buf += len;
6986 
6987 	speed = "Ultra320 ";
6988 	if ((ahd->features & AHD_WIDE) != 0) {
6989 		type = "Wide ";
6990 	} else {
6991 		type = "Single ";
6992 	}
6993 	len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6994 		      speed, type, ahd->channel, ahd->our_id);
6995 	buf += len;
6996 
6997 	sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6998 		ahd->scb_data.maxhscbs);
6999 }
7000 
7001 static const char *channel_strings[] = {
7002 	"Primary Low",
7003 	"Primary High",
7004 	"Secondary Low",
7005 	"Secondary High"
7006 };
7007 
7008 static const char *termstat_strings[] = {
7009 	"Terminated Correctly",
7010 	"Over Terminated",
7011 	"Under Terminated",
7012 	"Not Configured"
7013 };
7014 
7015 /***************************** Timer Facilities *******************************/
7016 static void
7017 ahd_timer_reset(struct timer_list *timer, int usec)
7018 {
7019 	del_timer(timer);
7020 	timer->expires = jiffies + (usec * HZ)/1000000;
7021 	add_timer(timer);
7022 }
7023 
7024 /*
7025  * Start the board, ready for normal operation
7026  */
7027 int
7028 ahd_init(struct ahd_softc *ahd)
7029 {
7030 	uint8_t		*next_vaddr;
7031 	dma_addr_t	 next_baddr;
7032 	size_t		 driver_data_size;
7033 	int		 i;
7034 	int		 error;
7035 	u_int		 warn_user;
7036 	uint8_t		 current_sensing;
7037 	uint8_t		 fstat;
7038 
7039 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7040 
7041 	ahd->stack_size = ahd_probe_stack_size(ahd);
7042 	ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7043 					 GFP_ATOMIC);
7044 	if (ahd->saved_stack == NULL)
7045 		return (ENOMEM);
7046 
7047 	/*
7048 	 * Verify that the compiler hasn't over-aggressively
7049 	 * padded important structures.
7050 	 */
7051 	if (sizeof(struct hardware_scb) != 64)
7052 		panic("Hardware SCB size is incorrect");
7053 
7054 #ifdef AHD_DEBUG
7055 	if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7056 		ahd->flags |= AHD_SEQUENCER_DEBUG;
7057 #endif
7058 
7059 	/*
7060 	 * Default to allowing initiator operations.
7061 	 */
7062 	ahd->flags |= AHD_INITIATORROLE;
7063 
7064 	/*
7065 	 * Only allow target mode features if this unit has them enabled.
7066 	 */
7067 	if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7068 		ahd->features &= ~AHD_TARGETMODE;
7069 
7070 	ahd->init_level++;
7071 
7072 	/*
7073 	 * DMA tag for our command fifos and other data in system memory
7074 	 * the card's sequencer must be able to access.  For initiator
7075 	 * roles, we need to allocate space for the qoutfifo.  When providing
7076 	 * for the target mode role, we must additionally provide space for
7077 	 * the incoming target command fifo.
7078 	 */
7079 	driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7080 			 + sizeof(struct hardware_scb);
7081 	if ((ahd->features & AHD_TARGETMODE) != 0)
7082 		driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7083 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7084 		driver_data_size += PKT_OVERRUN_BUFSIZE;
7085 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7086 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7087 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7088 			       /*highaddr*/BUS_SPACE_MAXADDR,
7089 			       /*filter*/NULL, /*filterarg*/NULL,
7090 			       driver_data_size,
7091 			       /*nsegments*/1,
7092 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7093 			       /*flags*/0, &ahd->shared_data_dmat) != 0) {
7094 		return (ENOMEM);
7095 	}
7096 
7097 	ahd->init_level++;
7098 
7099 	/* Allocation of driver data */
7100 	if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7101 			     (void **)&ahd->shared_data_map.vaddr,
7102 			     BUS_DMA_NOWAIT,
7103 			     &ahd->shared_data_map.dmamap) != 0) {
7104 		return (ENOMEM);
7105 	}
7106 
7107 	ahd->init_level++;
7108 
7109 	/* And permanently map it in */
7110 	ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7111 			ahd->shared_data_map.vaddr, driver_data_size,
7112 			ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7113 			/*flags*/0);
7114 	ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7115 	next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7116 	next_baddr = ahd->shared_data_map.physaddr
7117 		   + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7118 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7119 		ahd->targetcmds = (struct target_cmd *)next_vaddr;
7120 		next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7121 		next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7122 	}
7123 
7124 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7125 		ahd->overrun_buf = next_vaddr;
7126 		next_vaddr += PKT_OVERRUN_BUFSIZE;
7127 		next_baddr += PKT_OVERRUN_BUFSIZE;
7128 	}
7129 
7130 	/*
7131 	 * We need one SCB to serve as the "next SCB".  Since the
7132 	 * tag identifier in this SCB will never be used, there is
7133 	 * no point in using a valid HSCB tag from an SCB pulled from
7134 	 * the standard free pool.  So, we allocate this "sentinel"
7135 	 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7136 	 */
7137 	ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7138 	ahd->next_queued_hscb_map = &ahd->shared_data_map;
7139 	ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7140 
7141 	ahd->init_level++;
7142 
7143 	/* Allocate SCB data now that buffer_dmat is initialized */
7144 	if (ahd_init_scbdata(ahd) != 0)
7145 		return (ENOMEM);
7146 
7147 	if ((ahd->flags & AHD_INITIATORROLE) == 0)
7148 		ahd->flags &= ~AHD_RESET_BUS_A;
7149 
7150 	/*
7151 	 * Before committing these settings to the chip, give
7152 	 * the OSM one last chance to modify our configuration.
7153 	 */
7154 	ahd_platform_init(ahd);
7155 
7156 	/* Bring up the chip. */
7157 	ahd_chip_init(ahd);
7158 
7159 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7160 
7161 	if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7162 		goto init_done;
7163 
7164 	/*
7165 	 * Verify termination based on current draw and
7166 	 * warn user if the bus is over/under terminated.
7167 	 */
7168 	error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7169 				   CURSENSE_ENB);
7170 	if (error != 0) {
7171 		printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7172 		goto init_done;
7173 	}
7174 	for (i = 20, fstat = FLX_FSTAT_BUSY;
7175 	     (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7176 		error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7177 		if (error != 0) {
7178 			printk("%s: current sensing timeout 2\n",
7179 			       ahd_name(ahd));
7180 			goto init_done;
7181 		}
7182 	}
7183 	if (i == 0) {
7184 		printk("%s: Timedout during current-sensing test\n",
7185 		       ahd_name(ahd));
7186 		goto init_done;
7187 	}
7188 
7189 	/* Latch Current Sensing status. */
7190 	error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7191 	if (error != 0) {
7192 		printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7193 		goto init_done;
7194 	}
7195 
7196 	/* Diable current sensing. */
7197 	ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7198 
7199 #ifdef AHD_DEBUG
7200 	if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7201 		printk("%s: current_sensing == 0x%x\n",
7202 		       ahd_name(ahd), current_sensing);
7203 	}
7204 #endif
7205 	warn_user = 0;
7206 	for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7207 		u_int term_stat;
7208 
7209 		term_stat = (current_sensing & FLX_CSTAT_MASK);
7210 		switch (term_stat) {
7211 		case FLX_CSTAT_OVER:
7212 		case FLX_CSTAT_UNDER:
7213 			warn_user++;
7214 			/* fall through */
7215 		case FLX_CSTAT_INVALID:
7216 		case FLX_CSTAT_OKAY:
7217 			if (warn_user == 0 && bootverbose == 0)
7218 				break;
7219 			printk("%s: %s Channel %s\n", ahd_name(ahd),
7220 			       channel_strings[i], termstat_strings[term_stat]);
7221 			break;
7222 		}
7223 	}
7224 	if (warn_user) {
7225 		printk("%s: WARNING. Termination is not configured correctly.\n"
7226 		       "%s: WARNING. SCSI bus operations may FAIL.\n",
7227 		       ahd_name(ahd), ahd_name(ahd));
7228 	}
7229 init_done:
7230 	ahd_restart(ahd);
7231 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7232 	return (0);
7233 }
7234 
7235 /*
7236  * (Re)initialize chip state after a chip reset.
7237  */
7238 static void
7239 ahd_chip_init(struct ahd_softc *ahd)
7240 {
7241 	uint32_t busaddr;
7242 	u_int	 sxfrctl1;
7243 	u_int	 scsiseq_template;
7244 	u_int	 wait;
7245 	u_int	 i;
7246 	u_int	 target;
7247 
7248 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7249 	/*
7250 	 * Take the LED out of diagnostic mode
7251 	 */
7252 	ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7253 
7254 	/*
7255 	 * Return HS_MAILBOX to its default value.
7256 	 */
7257 	ahd->hs_mailbox = 0;
7258 	ahd_outb(ahd, HS_MAILBOX, 0);
7259 
7260 	/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7261 	ahd_outb(ahd, IOWNID, ahd->our_id);
7262 	ahd_outb(ahd, TOWNID, ahd->our_id);
7263 	sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7264 	sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7265 	if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7266 	 && (ahd->seltime != STIMESEL_MIN)) {
7267 		/*
7268 		 * The selection timer duration is twice as long
7269 		 * as it should be.  Halve it by adding "1" to
7270 		 * the user specified setting.
7271 		 */
7272 		sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7273 	} else {
7274 		sxfrctl1 |= ahd->seltime;
7275 	}
7276 
7277 	ahd_outb(ahd, SXFRCTL0, DFON);
7278 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7279 	ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7280 
7281 	/*
7282 	 * Now that termination is set, wait for up
7283 	 * to 500ms for our transceivers to settle.  If
7284 	 * the adapter does not have a cable attached,
7285 	 * the transceivers may never settle, so don't
7286 	 * complain if we fail here.
7287 	 */
7288 	for (wait = 10000;
7289 	     (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7290 	     wait--)
7291 		ahd_delay(100);
7292 
7293 	/* Clear any false bus resets due to the transceivers settling */
7294 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7295 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7296 
7297 	/* Initialize mode specific S/G state. */
7298 	for (i = 0; i < 2; i++) {
7299 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7300 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7301 		ahd_outb(ahd, SG_STATE, 0);
7302 		ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7303 		ahd_outb(ahd, SEQIMODE,
7304 			 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7305 			|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7306 	}
7307 
7308 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7309 	ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7310 	ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7311 	ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7312 	ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7313 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7314 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7315 	} else {
7316 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7317 	}
7318 	ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7319 	if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7320 		/*
7321 		 * Do not issue a target abort when a split completion
7322 		 * error occurs.  Let our PCIX interrupt handler deal
7323 		 * with it instead. H2A4 Razor #625
7324 		 */
7325 		ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7326 
7327 	if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7328 		ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7329 
7330 	/*
7331 	 * Tweak IOCELL settings.
7332 	 */
7333 	if ((ahd->flags & AHD_HP_BOARD) != 0) {
7334 		for (i = 0; i < NUMDSPS; i++) {
7335 			ahd_outb(ahd, DSPSELECT, i);
7336 			ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7337 		}
7338 #ifdef AHD_DEBUG
7339 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7340 			printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7341 			       WRTBIASCTL_HP_DEFAULT);
7342 #endif
7343 	}
7344 	ahd_setup_iocell_workaround(ahd);
7345 
7346 	/*
7347 	 * Enable LQI Manager interrupts.
7348 	 */
7349 	ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7350 			      | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7351 			      | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7352 	ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7353 	/*
7354 	 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7355 	 * manually for the command phase at the start of a packetized
7356 	 * selection case.  ENLQOBUSFREE should be made redundant by
7357 	 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7358 	 * events fail to assert the BUSFREE interrupt so we must
7359 	 * also enable LQOBUSFREE interrupts.
7360 	 */
7361 	ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7362 
7363 	/*
7364 	 * Setup sequencer interrupt handlers.
7365 	 */
7366 	ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7367 	ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7368 
7369 	/*
7370 	 * Setup SCB Offset registers.
7371 	 */
7372 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7373 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7374 			 pkt_long_lun));
7375 	} else {
7376 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7377 	}
7378 	ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7379 	ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7380 	ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7381 	ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7382 				       shared_data.idata.cdb));
7383 	ahd_outb(ahd, QNEXTPTR,
7384 		 offsetof(struct hardware_scb, next_hscb_busaddr));
7385 	ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7386 	ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7387 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7388 		ahd_outb(ahd, LUNLEN,
7389 			 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7390 	} else {
7391 		ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7392 	}
7393 	ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7394 	ahd_outb(ahd, MAXCMD, 0xFF);
7395 	ahd_outb(ahd, SCBAUTOPTR,
7396 		 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7397 
7398 	/* We haven't been enabled for target mode yet. */
7399 	ahd_outb(ahd, MULTARGID, 0);
7400 	ahd_outb(ahd, MULTARGID + 1, 0);
7401 
7402 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7403 	/* Initialize the negotiation table. */
7404 	if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7405 		/*
7406 		 * Clear the spare bytes in the neg table to avoid
7407 		 * spurious parity errors.
7408 		 */
7409 		for (target = 0; target < AHD_NUM_TARGETS; target++) {
7410 			ahd_outb(ahd, NEGOADDR, target);
7411 			ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7412 			for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7413 				ahd_outb(ahd, ANNEXDAT, 0);
7414 		}
7415 	}
7416 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7417 		struct	 ahd_devinfo devinfo;
7418 		struct	 ahd_initiator_tinfo *tinfo;
7419 		struct	 ahd_tmode_tstate *tstate;
7420 
7421 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7422 					    target, &tstate);
7423 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7424 				    target, CAM_LUN_WILDCARD,
7425 				    'A', ROLE_INITIATOR);
7426 		ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7427 	}
7428 
7429 	ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7430 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7431 
7432 #ifdef NEEDS_MORE_TESTING
7433 	/*
7434 	 * Always enable abort on incoming L_Qs if this feature is
7435 	 * supported.  We use this to catch invalid SCB references.
7436 	 */
7437 	if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7438 		ahd_outb(ahd, LQCTL1, ABORTPENDING);
7439 	else
7440 #endif
7441 		ahd_outb(ahd, LQCTL1, 0);
7442 
7443 	/* All of our queues are empty */
7444 	ahd->qoutfifonext = 0;
7445 	ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7446 	ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7447 	for (i = 0; i < AHD_QOUT_SIZE; i++)
7448 		ahd->qoutfifo[i].valid_tag = 0;
7449 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7450 
7451 	ahd->qinfifonext = 0;
7452 	for (i = 0; i < AHD_QIN_SIZE; i++)
7453 		ahd->qinfifo[i] = SCB_LIST_NULL;
7454 
7455 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7456 		/* All target command blocks start out invalid. */
7457 		for (i = 0; i < AHD_TMODE_CMDS; i++)
7458 			ahd->targetcmds[i].cmd_valid = 0;
7459 		ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7460 		ahd->tqinfifonext = 1;
7461 		ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7462 		ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7463 	}
7464 
7465 	/* Initialize Scratch Ram. */
7466 	ahd_outb(ahd, SEQ_FLAGS, 0);
7467 	ahd_outb(ahd, SEQ_FLAGS2, 0);
7468 
7469 	/* We don't have any waiting selections */
7470 	ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7471 	ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7472 	ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7473 	ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7474 	for (i = 0; i < AHD_NUM_TARGETS; i++)
7475 		ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7476 
7477 	/*
7478 	 * Nobody is waiting to be DMAed into the QOUTFIFO.
7479 	 */
7480 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7481 	ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7482 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7483 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7484 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7485 
7486 	/*
7487 	 * The Freeze Count is 0.
7488 	 */
7489 	ahd->qfreeze_cnt = 0;
7490 	ahd_outw(ahd, QFREEZE_COUNT, 0);
7491 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7492 
7493 	/*
7494 	 * Tell the sequencer where it can find our arrays in memory.
7495 	 */
7496 	busaddr = ahd->shared_data_map.physaddr;
7497 	ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7498 	ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7499 
7500 	/*
7501 	 * Setup the allowed SCSI Sequences based on operational mode.
7502 	 * If we are a target, we'll enable select in operations once
7503 	 * we've had a lun enabled.
7504 	 */
7505 	scsiseq_template = ENAUTOATNP;
7506 	if ((ahd->flags & AHD_INITIATORROLE) != 0)
7507 		scsiseq_template |= ENRSELI;
7508 	ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7509 
7510 	/* There are no busy SCBs yet. */
7511 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7512 		int lun;
7513 
7514 		for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7515 			ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7516 	}
7517 
7518 	/*
7519 	 * Initialize the group code to command length table.
7520 	 * Vendor Unique codes are set to 0 so we only capture
7521 	 * the first byte of the cdb.  These can be overridden
7522 	 * when target mode is enabled.
7523 	 */
7524 	ahd_outb(ahd, CMDSIZE_TABLE, 5);
7525 	ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7526 	ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7527 	ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7528 	ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7529 	ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7530 	ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7531 	ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7532 
7533 	/* Tell the sequencer of our initial queue positions */
7534 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7535 	ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7536 	ahd->qinfifonext = 0;
7537 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7538 	ahd_set_hescb_qoff(ahd, 0);
7539 	ahd_set_snscb_qoff(ahd, 0);
7540 	ahd_set_sescb_qoff(ahd, 0);
7541 	ahd_set_sdscb_qoff(ahd, 0);
7542 
7543 	/*
7544 	 * Tell the sequencer which SCB will be the next one it receives.
7545 	 */
7546 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7547 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7548 
7549 	/*
7550 	 * Default to coalescing disabled.
7551 	 */
7552 	ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7553 	ahd_outw(ahd, CMDS_PENDING, 0);
7554 	ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7555 				     ahd->int_coalescing_maxcmds,
7556 				     ahd->int_coalescing_mincmds);
7557 	ahd_enable_coalescing(ahd, FALSE);
7558 
7559 	ahd_loadseq(ahd);
7560 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7561 
7562 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7563 		u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7564 
7565 		negodat3 |= ENSLOWCRC;
7566 		ahd_outb(ahd, NEGCONOPTS, negodat3);
7567 		negodat3 = ahd_inb(ahd, NEGCONOPTS);
7568 		if (!(negodat3 & ENSLOWCRC))
7569 			printk("aic79xx: failed to set the SLOWCRC bit\n");
7570 		else
7571 			printk("aic79xx: SLOWCRC bit set\n");
7572 	}
7573 }
7574 
7575 /*
7576  * Setup default device and controller settings.
7577  * This should only be called if our probe has
7578  * determined that no configuration data is available.
7579  */
7580 int
7581 ahd_default_config(struct ahd_softc *ahd)
7582 {
7583 	int	targ;
7584 
7585 	ahd->our_id = 7;
7586 
7587 	/*
7588 	 * Allocate a tstate to house information for our
7589 	 * initiator presence on the bus as well as the user
7590 	 * data for any target mode initiator.
7591 	 */
7592 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7593 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7594 		       "Failing attach\n", ahd_name(ahd));
7595 		return (ENOMEM);
7596 	}
7597 
7598 	for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7599 		struct	 ahd_devinfo devinfo;
7600 		struct	 ahd_initiator_tinfo *tinfo;
7601 		struct	 ahd_tmode_tstate *tstate;
7602 		uint16_t target_mask;
7603 
7604 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7605 					    targ, &tstate);
7606 		/*
7607 		 * We support SPC2 and SPI4.
7608 		 */
7609 		tinfo->user.protocol_version = 4;
7610 		tinfo->user.transport_version = 4;
7611 
7612 		target_mask = 0x01 << targ;
7613 		ahd->user_discenable |= target_mask;
7614 		tstate->discenable |= target_mask;
7615 		ahd->user_tagenable |= target_mask;
7616 #ifdef AHD_FORCE_160
7617 		tinfo->user.period = AHD_SYNCRATE_DT;
7618 #else
7619 		tinfo->user.period = AHD_SYNCRATE_160;
7620 #endif
7621 		tinfo->user.offset = MAX_OFFSET;
7622 		tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7623 					| MSG_EXT_PPR_WR_FLOW
7624 					| MSG_EXT_PPR_HOLD_MCS
7625 					| MSG_EXT_PPR_IU_REQ
7626 					| MSG_EXT_PPR_QAS_REQ
7627 					| MSG_EXT_PPR_DT_REQ;
7628 		if ((ahd->features & AHD_RTI) != 0)
7629 			tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7630 
7631 		tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7632 
7633 		/*
7634 		 * Start out Async/Narrow/Untagged and with
7635 		 * conservative protocol support.
7636 		 */
7637 		tinfo->goal.protocol_version = 2;
7638 		tinfo->goal.transport_version = 2;
7639 		tinfo->curr.protocol_version = 2;
7640 		tinfo->curr.transport_version = 2;
7641 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7642 				    targ, CAM_LUN_WILDCARD,
7643 				    'A', ROLE_INITIATOR);
7644 		tstate->tagenable &= ~target_mask;
7645 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7646 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7647 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7648 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7649 				 /*paused*/TRUE);
7650 	}
7651 	return (0);
7652 }
7653 
7654 /*
7655  * Parse device configuration information.
7656  */
7657 int
7658 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7659 {
7660 	int targ;
7661 	int max_targ;
7662 
7663 	max_targ = sc->max_targets & CFMAXTARG;
7664 	ahd->our_id = sc->brtime_id & CFSCSIID;
7665 
7666 	/*
7667 	 * Allocate a tstate to house information for our
7668 	 * initiator presence on the bus as well as the user
7669 	 * data for any target mode initiator.
7670 	 */
7671 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7672 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7673 		       "Failing attach\n", ahd_name(ahd));
7674 		return (ENOMEM);
7675 	}
7676 
7677 	for (targ = 0; targ < max_targ; targ++) {
7678 		struct	 ahd_devinfo devinfo;
7679 		struct	 ahd_initiator_tinfo *tinfo;
7680 		struct	 ahd_transinfo *user_tinfo;
7681 		struct	 ahd_tmode_tstate *tstate;
7682 		uint16_t target_mask;
7683 
7684 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7685 					    targ, &tstate);
7686 		user_tinfo = &tinfo->user;
7687 
7688 		/*
7689 		 * We support SPC2 and SPI4.
7690 		 */
7691 		tinfo->user.protocol_version = 4;
7692 		tinfo->user.transport_version = 4;
7693 
7694 		target_mask = 0x01 << targ;
7695 		ahd->user_discenable &= ~target_mask;
7696 		tstate->discenable &= ~target_mask;
7697 		ahd->user_tagenable &= ~target_mask;
7698 		if (sc->device_flags[targ] & CFDISC) {
7699 			tstate->discenable |= target_mask;
7700 			ahd->user_discenable |= target_mask;
7701 			ahd->user_tagenable |= target_mask;
7702 		} else {
7703 			/*
7704 			 * Cannot be packetized without disconnection.
7705 			 */
7706 			sc->device_flags[targ] &= ~CFPACKETIZED;
7707 		}
7708 
7709 		user_tinfo->ppr_options = 0;
7710 		user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7711 		if (user_tinfo->period < CFXFER_ASYNC) {
7712 			if (user_tinfo->period <= AHD_PERIOD_10MHz)
7713 				user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7714 			user_tinfo->offset = MAX_OFFSET;
7715 		} else  {
7716 			user_tinfo->offset = 0;
7717 			user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7718 		}
7719 #ifdef AHD_FORCE_160
7720 		if (user_tinfo->period <= AHD_SYNCRATE_160)
7721 			user_tinfo->period = AHD_SYNCRATE_DT;
7722 #endif
7723 
7724 		if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7725 			user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7726 						|  MSG_EXT_PPR_WR_FLOW
7727 						|  MSG_EXT_PPR_HOLD_MCS
7728 						|  MSG_EXT_PPR_IU_REQ;
7729 			if ((ahd->features & AHD_RTI) != 0)
7730 				user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7731 		}
7732 
7733 		if ((sc->device_flags[targ] & CFQAS) != 0)
7734 			user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7735 
7736 		if ((sc->device_flags[targ] & CFWIDEB) != 0)
7737 			user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7738 		else
7739 			user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7740 #ifdef AHD_DEBUG
7741 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7742 			printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7743 			       user_tinfo->period, user_tinfo->offset,
7744 			       user_tinfo->ppr_options);
7745 #endif
7746 		/*
7747 		 * Start out Async/Narrow/Untagged and with
7748 		 * conservative protocol support.
7749 		 */
7750 		tstate->tagenable &= ~target_mask;
7751 		tinfo->goal.protocol_version = 2;
7752 		tinfo->goal.transport_version = 2;
7753 		tinfo->curr.protocol_version = 2;
7754 		tinfo->curr.transport_version = 2;
7755 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7756 				    targ, CAM_LUN_WILDCARD,
7757 				    'A', ROLE_INITIATOR);
7758 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7759 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7760 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7761 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7762 				 /*paused*/TRUE);
7763 	}
7764 
7765 	ahd->flags &= ~AHD_SPCHK_ENB_A;
7766 	if (sc->bios_control & CFSPARITY)
7767 		ahd->flags |= AHD_SPCHK_ENB_A;
7768 
7769 	ahd->flags &= ~AHD_RESET_BUS_A;
7770 	if (sc->bios_control & CFRESETB)
7771 		ahd->flags |= AHD_RESET_BUS_A;
7772 
7773 	ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7774 	if (sc->bios_control & CFEXTEND)
7775 		ahd->flags |= AHD_EXTENDED_TRANS_A;
7776 
7777 	ahd->flags &= ~AHD_BIOS_ENABLED;
7778 	if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7779 		ahd->flags |= AHD_BIOS_ENABLED;
7780 
7781 	ahd->flags &= ~AHD_STPWLEVEL_A;
7782 	if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7783 		ahd->flags |= AHD_STPWLEVEL_A;
7784 
7785 	return (0);
7786 }
7787 
7788 /*
7789  * Parse device configuration information.
7790  */
7791 int
7792 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7793 {
7794 	int error;
7795 
7796 	error = ahd_verify_vpd_cksum(vpd);
7797 	if (error == 0)
7798 		return (EINVAL);
7799 	if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7800 		ahd->flags |= AHD_BOOT_CHANNEL;
7801 	return (0);
7802 }
7803 
7804 void
7805 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7806 {
7807 	u_int hcntrl;
7808 
7809 	hcntrl = ahd_inb(ahd, HCNTRL);
7810 	hcntrl &= ~INTEN;
7811 	ahd->pause &= ~INTEN;
7812 	ahd->unpause &= ~INTEN;
7813 	if (enable) {
7814 		hcntrl |= INTEN;
7815 		ahd->pause |= INTEN;
7816 		ahd->unpause |= INTEN;
7817 	}
7818 	ahd_outb(ahd, HCNTRL, hcntrl);
7819 }
7820 
7821 static void
7822 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7823 			     u_int mincmds)
7824 {
7825 	if (timer > AHD_TIMER_MAX_US)
7826 		timer = AHD_TIMER_MAX_US;
7827 	ahd->int_coalescing_timer = timer;
7828 
7829 	if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7830 		maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7831 	if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7832 		mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7833 	ahd->int_coalescing_maxcmds = maxcmds;
7834 	ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7835 	ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7836 	ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7837 }
7838 
7839 static void
7840 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7841 {
7842 
7843 	ahd->hs_mailbox &= ~ENINT_COALESCE;
7844 	if (enable)
7845 		ahd->hs_mailbox |= ENINT_COALESCE;
7846 	ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7847 	ahd_flush_device_writes(ahd);
7848 	ahd_run_qoutfifo(ahd);
7849 }
7850 
7851 /*
7852  * Ensure that the card is paused in a location
7853  * outside of all critical sections and that all
7854  * pending work is completed prior to returning.
7855  * This routine should only be called from outside
7856  * an interrupt context.
7857  */
7858 void
7859 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7860 {
7861 	u_int intstat;
7862 	u_int maxloops;
7863 
7864 	maxloops = 1000;
7865 	ahd->flags |= AHD_ALL_INTERRUPTS;
7866 	ahd_pause(ahd);
7867 	/*
7868 	 * Freeze the outgoing selections.  We do this only
7869 	 * until we are safely paused without further selections
7870 	 * pending.
7871 	 */
7872 	ahd->qfreeze_cnt--;
7873 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7874 	ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7875 	do {
7876 
7877 		ahd_unpause(ahd);
7878 		/*
7879 		 * Give the sequencer some time to service
7880 		 * any active selections.
7881 		 */
7882 		ahd_delay(500);
7883 
7884 		ahd_intr(ahd);
7885 		ahd_pause(ahd);
7886 		intstat = ahd_inb(ahd, INTSTAT);
7887 		if ((intstat & INT_PEND) == 0) {
7888 			ahd_clear_critical_section(ahd);
7889 			intstat = ahd_inb(ahd, INTSTAT);
7890 		}
7891 	} while (--maxloops
7892 	      && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7893 	      && ((intstat & INT_PEND) != 0
7894 	       || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7895 	       || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7896 
7897 	if (maxloops == 0) {
7898 		printk("Infinite interrupt loop, INTSTAT = %x",
7899 		      ahd_inb(ahd, INTSTAT));
7900 	}
7901 	ahd->qfreeze_cnt++;
7902 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7903 
7904 	ahd_flush_qoutfifo(ahd);
7905 
7906 	ahd->flags &= ~AHD_ALL_INTERRUPTS;
7907 }
7908 
7909 #ifdef CONFIG_PM
7910 int
7911 ahd_suspend(struct ahd_softc *ahd)
7912 {
7913 
7914 	ahd_pause_and_flushwork(ahd);
7915 
7916 	if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7917 		ahd_unpause(ahd);
7918 		return (EBUSY);
7919 	}
7920 	ahd_shutdown(ahd);
7921 	return (0);
7922 }
7923 
7924 void
7925 ahd_resume(struct ahd_softc *ahd)
7926 {
7927 
7928 	ahd_reset(ahd, /*reinit*/TRUE);
7929 	ahd_intr_enable(ahd, TRUE);
7930 	ahd_restart(ahd);
7931 }
7932 #endif
7933 
7934 /************************** Busy Target Table *********************************/
7935 /*
7936  * Set SCBPTR to the SCB that contains the busy
7937  * table entry for TCL.  Return the offset into
7938  * the SCB that contains the entry for TCL.
7939  * saved_scbid is dereferenced and set to the
7940  * scbid that should be restored once manipualtion
7941  * of the TCL entry is complete.
7942  */
7943 static inline u_int
7944 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7945 {
7946 	/*
7947 	 * Index to the SCB that contains the busy entry.
7948 	 */
7949 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7950 	*saved_scbid = ahd_get_scbptr(ahd);
7951 	ahd_set_scbptr(ahd, TCL_LUN(tcl)
7952 		     | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7953 
7954 	/*
7955 	 * And now calculate the SCB offset to the entry.
7956 	 * Each entry is 2 bytes wide, hence the
7957 	 * multiplication by 2.
7958 	 */
7959 	return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7960 }
7961 
7962 /*
7963  * Return the untagged transaction id for a given target/channel lun.
7964  */
7965 static u_int
7966 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7967 {
7968 	u_int scbid;
7969 	u_int scb_offset;
7970 	u_int saved_scbptr;
7971 
7972 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7973 	scbid = ahd_inw_scbram(ahd, scb_offset);
7974 	ahd_set_scbptr(ahd, saved_scbptr);
7975 	return (scbid);
7976 }
7977 
7978 static void
7979 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7980 {
7981 	u_int scb_offset;
7982 	u_int saved_scbptr;
7983 
7984 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7985 	ahd_outw(ahd, scb_offset, scbid);
7986 	ahd_set_scbptr(ahd, saved_scbptr);
7987 }
7988 
7989 /************************** SCB and SCB queue management **********************/
7990 static int
7991 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7992 	      char channel, int lun, u_int tag, role_t role)
7993 {
7994 	int targ = SCB_GET_TARGET(ahd, scb);
7995 	char chan = SCB_GET_CHANNEL(ahd, scb);
7996 	int slun = SCB_GET_LUN(scb);
7997 	int match;
7998 
7999 	match = ((chan == channel) || (channel == ALL_CHANNELS));
8000 	if (match != 0)
8001 		match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
8002 	if (match != 0)
8003 		match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
8004 	if (match != 0) {
8005 #ifdef AHD_TARGET_MODE
8006 		int group;
8007 
8008 		group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
8009 		if (role == ROLE_INITIATOR) {
8010 			match = (group != XPT_FC_GROUP_TMODE)
8011 			      && ((tag == SCB_GET_TAG(scb))
8012 			       || (tag == SCB_LIST_NULL));
8013 		} else if (role == ROLE_TARGET) {
8014 			match = (group == XPT_FC_GROUP_TMODE)
8015 			      && ((tag == scb->io_ctx->csio.tag_id)
8016 			       || (tag == SCB_LIST_NULL));
8017 		}
8018 #else /* !AHD_TARGET_MODE */
8019 		match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
8020 #endif /* AHD_TARGET_MODE */
8021 	}
8022 
8023 	return match;
8024 }
8025 
8026 static void
8027 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
8028 {
8029 	int	target;
8030 	char	channel;
8031 	int	lun;
8032 
8033 	target = SCB_GET_TARGET(ahd, scb);
8034 	lun = SCB_GET_LUN(scb);
8035 	channel = SCB_GET_CHANNEL(ahd, scb);
8036 
8037 	ahd_search_qinfifo(ahd, target, channel, lun,
8038 			   /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
8039 			   CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8040 
8041 	ahd_platform_freeze_devq(ahd, scb);
8042 }
8043 
8044 void
8045 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8046 {
8047 	struct scb	*prev_scb;
8048 	ahd_mode_state	 saved_modes;
8049 
8050 	saved_modes = ahd_save_modes(ahd);
8051 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8052 	prev_scb = NULL;
8053 	if (ahd_qinfifo_count(ahd) != 0) {
8054 		u_int prev_tag;
8055 		u_int prev_pos;
8056 
8057 		prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8058 		prev_tag = ahd->qinfifo[prev_pos];
8059 		prev_scb = ahd_lookup_scb(ahd, prev_tag);
8060 	}
8061 	ahd_qinfifo_requeue(ahd, prev_scb, scb);
8062 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8063 	ahd_restore_modes(ahd, saved_modes);
8064 }
8065 
8066 static void
8067 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8068 		    struct scb *scb)
8069 {
8070 	if (prev_scb == NULL) {
8071 		uint32_t busaddr;
8072 
8073 		busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8074 		ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8075 	} else {
8076 		prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8077 		ahd_sync_scb(ahd, prev_scb,
8078 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8079 	}
8080 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8081 	ahd->qinfifonext++;
8082 	scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8083 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8084 }
8085 
8086 static int
8087 ahd_qinfifo_count(struct ahd_softc *ahd)
8088 {
8089 	u_int qinpos;
8090 	u_int wrap_qinpos;
8091 	u_int wrap_qinfifonext;
8092 
8093 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8094 	qinpos = ahd_get_snscb_qoff(ahd);
8095 	wrap_qinpos = AHD_QIN_WRAP(qinpos);
8096 	wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8097 	if (wrap_qinfifonext >= wrap_qinpos)
8098 		return (wrap_qinfifonext - wrap_qinpos);
8099 	else
8100 		return (wrap_qinfifonext
8101 		      + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8102 }
8103 
8104 static void
8105 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8106 {
8107 	struct		scb *scb;
8108 	ahd_mode_state	saved_modes;
8109 	u_int		pending_cmds;
8110 
8111 	saved_modes = ahd_save_modes(ahd);
8112 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8113 
8114 	/*
8115 	 * Don't count any commands as outstanding that the
8116 	 * sequencer has already marked for completion.
8117 	 */
8118 	ahd_flush_qoutfifo(ahd);
8119 
8120 	pending_cmds = 0;
8121 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8122 		pending_cmds++;
8123 	}
8124 	ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8125 	ahd_restore_modes(ahd, saved_modes);
8126 	ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8127 }
8128 
8129 static void
8130 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8131 {
8132 	cam_status ostat;
8133 	cam_status cstat;
8134 
8135 	ostat = ahd_get_transaction_status(scb);
8136 	if (ostat == CAM_REQ_INPROG)
8137 		ahd_set_transaction_status(scb, status);
8138 	cstat = ahd_get_transaction_status(scb);
8139 	if (cstat != CAM_REQ_CMP)
8140 		ahd_freeze_scb(scb);
8141 	ahd_done(ahd, scb);
8142 }
8143 
8144 int
8145 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8146 		   int lun, u_int tag, role_t role, uint32_t status,
8147 		   ahd_search_action action)
8148 {
8149 	struct scb	*scb;
8150 	struct scb	*mk_msg_scb;
8151 	struct scb	*prev_scb;
8152 	ahd_mode_state	 saved_modes;
8153 	u_int		 qinstart;
8154 	u_int		 qinpos;
8155 	u_int		 qintail;
8156 	u_int		 tid_next;
8157 	u_int		 tid_prev;
8158 	u_int		 scbid;
8159 	u_int		 seq_flags2;
8160 	u_int		 savedscbptr;
8161 	uint32_t	 busaddr;
8162 	int		 found;
8163 	int		 targets;
8164 
8165 	/* Must be in CCHAN mode */
8166 	saved_modes = ahd_save_modes(ahd);
8167 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8168 
8169 	/*
8170 	 * Halt any pending SCB DMA.  The sequencer will reinitiate
8171 	 * this dma if the qinfifo is not empty once we unpause.
8172 	 */
8173 	if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8174 	 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8175 		ahd_outb(ahd, CCSCBCTL,
8176 			 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8177 		while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8178 			;
8179 	}
8180 	/* Determine sequencer's position in the qinfifo. */
8181 	qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8182 	qinstart = ahd_get_snscb_qoff(ahd);
8183 	qinpos = AHD_QIN_WRAP(qinstart);
8184 	found = 0;
8185 	prev_scb = NULL;
8186 
8187 	if (action == SEARCH_PRINT) {
8188 		printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8189 		       qinstart, ahd->qinfifonext);
8190 	}
8191 
8192 	/*
8193 	 * Start with an empty queue.  Entries that are not chosen
8194 	 * for removal will be re-added to the queue as we go.
8195 	 */
8196 	ahd->qinfifonext = qinstart;
8197 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8198 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8199 
8200 	while (qinpos != qintail) {
8201 		scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8202 		if (scb == NULL) {
8203 			printk("qinpos = %d, SCB index = %d\n",
8204 				qinpos, ahd->qinfifo[qinpos]);
8205 			panic("Loop 1\n");
8206 		}
8207 
8208 		if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8209 			/*
8210 			 * We found an scb that needs to be acted on.
8211 			 */
8212 			found++;
8213 			switch (action) {
8214 			case SEARCH_COMPLETE:
8215 				if ((scb->flags & SCB_ACTIVE) == 0)
8216 					printk("Inactive SCB in qinfifo\n");
8217 				ahd_done_with_status(ahd, scb, status);
8218 				/* FALLTHROUGH */
8219 			case SEARCH_REMOVE:
8220 				break;
8221 			case SEARCH_PRINT:
8222 				printk(" 0x%x", ahd->qinfifo[qinpos]);
8223 				/* FALLTHROUGH */
8224 			case SEARCH_COUNT:
8225 				ahd_qinfifo_requeue(ahd, prev_scb, scb);
8226 				prev_scb = scb;
8227 				break;
8228 			}
8229 		} else {
8230 			ahd_qinfifo_requeue(ahd, prev_scb, scb);
8231 			prev_scb = scb;
8232 		}
8233 		qinpos = AHD_QIN_WRAP(qinpos+1);
8234 	}
8235 
8236 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8237 
8238 	if (action == SEARCH_PRINT)
8239 		printk("\nWAITING_TID_QUEUES:\n");
8240 
8241 	/*
8242 	 * Search waiting for selection lists.  We traverse the
8243 	 * list of "their ids" waiting for selection and, if
8244 	 * appropriate, traverse the SCBs of each "their id"
8245 	 * looking for matches.
8246 	 */
8247 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8248 	seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8249 	if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8250 		scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8251 		mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8252 	} else
8253 		mk_msg_scb = NULL;
8254 	savedscbptr = ahd_get_scbptr(ahd);
8255 	tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8256 	tid_prev = SCB_LIST_NULL;
8257 	targets = 0;
8258 	for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8259 		u_int tid_head;
8260 		u_int tid_tail;
8261 
8262 		targets++;
8263 		if (targets > AHD_NUM_TARGETS)
8264 			panic("TID LIST LOOP");
8265 
8266 		if (scbid >= ahd->scb_data.numscbs) {
8267 			printk("%s: Waiting TID List inconsistency. "
8268 			       "SCB index == 0x%x, yet numscbs == 0x%x.",
8269 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8270 			ahd_dump_card_state(ahd);
8271 			panic("for safety");
8272 		}
8273 		scb = ahd_lookup_scb(ahd, scbid);
8274 		if (scb == NULL) {
8275 			printk("%s: SCB = 0x%x Not Active!\n",
8276 			       ahd_name(ahd), scbid);
8277 			panic("Waiting TID List traversal\n");
8278 		}
8279 		ahd_set_scbptr(ahd, scbid);
8280 		tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8281 		if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8282 				  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8283 			tid_prev = scbid;
8284 			continue;
8285 		}
8286 
8287 		/*
8288 		 * We found a list of scbs that needs to be searched.
8289 		 */
8290 		if (action == SEARCH_PRINT)
8291 			printk("       %d ( ", SCB_GET_TARGET(ahd, scb));
8292 		tid_head = scbid;
8293 		found += ahd_search_scb_list(ahd, target, channel,
8294 					     lun, tag, role, status,
8295 					     action, &tid_head, &tid_tail,
8296 					     SCB_GET_TARGET(ahd, scb));
8297 		/*
8298 		 * Check any MK_MESSAGE SCB that is still waiting to
8299 		 * enter this target's waiting for selection queue.
8300 		 */
8301 		if (mk_msg_scb != NULL
8302 		 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8303 				  lun, tag, role)) {
8304 
8305 			/*
8306 			 * We found an scb that needs to be acted on.
8307 			 */
8308 			found++;
8309 			switch (action) {
8310 			case SEARCH_COMPLETE:
8311 				if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8312 					printk("Inactive SCB pending MK_MSG\n");
8313 				ahd_done_with_status(ahd, mk_msg_scb, status);
8314 				/* FALLTHROUGH */
8315 			case SEARCH_REMOVE:
8316 			{
8317 				u_int tail_offset;
8318 
8319 				printk("Removing MK_MSG scb\n");
8320 
8321 				/*
8322 				 * Reset our tail to the tail of the
8323 				 * main per-target list.
8324 				 */
8325 				tail_offset = WAITING_SCB_TAILS
8326 				    + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8327 				ahd_outw(ahd, tail_offset, tid_tail);
8328 
8329 				seq_flags2 &= ~PENDING_MK_MESSAGE;
8330 				ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8331 				ahd_outw(ahd, CMDS_PENDING,
8332 					 ahd_inw(ahd, CMDS_PENDING)-1);
8333 				mk_msg_scb = NULL;
8334 				break;
8335 			}
8336 			case SEARCH_PRINT:
8337 				printk(" 0x%x", SCB_GET_TAG(scb));
8338 				/* FALLTHROUGH */
8339 			case SEARCH_COUNT:
8340 				break;
8341 			}
8342 		}
8343 
8344 		if (mk_msg_scb != NULL
8345 		 && SCBID_IS_NULL(tid_head)
8346 		 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8347 				  SCB_LIST_NULL, ROLE_UNKNOWN)) {
8348 
8349 			/*
8350 			 * When removing the last SCB for a target
8351 			 * queue with a pending MK_MESSAGE scb, we
8352 			 * must queue the MK_MESSAGE scb.
8353 			 */
8354 			printk("Queueing mk_msg_scb\n");
8355 			tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8356 			seq_flags2 &= ~PENDING_MK_MESSAGE;
8357 			ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8358 			mk_msg_scb = NULL;
8359 		}
8360 		if (tid_head != scbid)
8361 			ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8362 		if (!SCBID_IS_NULL(tid_head))
8363 			tid_prev = tid_head;
8364 		if (action == SEARCH_PRINT)
8365 			printk(")\n");
8366 	}
8367 
8368 	/* Restore saved state. */
8369 	ahd_set_scbptr(ahd, savedscbptr);
8370 	ahd_restore_modes(ahd, saved_modes);
8371 	return (found);
8372 }
8373 
8374 static int
8375 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8376 		    int lun, u_int tag, role_t role, uint32_t status,
8377 		    ahd_search_action action, u_int *list_head,
8378 		    u_int *list_tail, u_int tid)
8379 {
8380 	struct	scb *scb;
8381 	u_int	scbid;
8382 	u_int	next;
8383 	u_int	prev;
8384 	int	found;
8385 
8386 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8387 	found = 0;
8388 	prev = SCB_LIST_NULL;
8389 	next = *list_head;
8390 	*list_tail = SCB_LIST_NULL;
8391 	for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8392 		if (scbid >= ahd->scb_data.numscbs) {
8393 			printk("%s:SCB List inconsistency. "
8394 			       "SCB == 0x%x, yet numscbs == 0x%x.",
8395 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8396 			ahd_dump_card_state(ahd);
8397 			panic("for safety");
8398 		}
8399 		scb = ahd_lookup_scb(ahd, scbid);
8400 		if (scb == NULL) {
8401 			printk("%s: SCB = %d Not Active!\n",
8402 			       ahd_name(ahd), scbid);
8403 			panic("Waiting List traversal\n");
8404 		}
8405 		ahd_set_scbptr(ahd, scbid);
8406 		*list_tail = scbid;
8407 		next = ahd_inw_scbram(ahd, SCB_NEXT);
8408 		if (ahd_match_scb(ahd, scb, target, channel,
8409 				  lun, SCB_LIST_NULL, role) == 0) {
8410 			prev = scbid;
8411 			continue;
8412 		}
8413 		found++;
8414 		switch (action) {
8415 		case SEARCH_COMPLETE:
8416 			if ((scb->flags & SCB_ACTIVE) == 0)
8417 				printk("Inactive SCB in Waiting List\n");
8418 			ahd_done_with_status(ahd, scb, status);
8419 			/* fall through */
8420 		case SEARCH_REMOVE:
8421 			ahd_rem_wscb(ahd, scbid, prev, next, tid);
8422 			*list_tail = prev;
8423 			if (SCBID_IS_NULL(prev))
8424 				*list_head = next;
8425 			break;
8426 		case SEARCH_PRINT:
8427 			printk("0x%x ", scbid);
8428 			/* fall through */
8429 		case SEARCH_COUNT:
8430 			prev = scbid;
8431 			break;
8432 		}
8433 		if (found > AHD_SCB_MAX)
8434 			panic("SCB LIST LOOP");
8435 	}
8436 	if (action == SEARCH_COMPLETE
8437 	 || action == SEARCH_REMOVE)
8438 		ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8439 	return (found);
8440 }
8441 
8442 static void
8443 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8444 		    u_int tid_cur, u_int tid_next)
8445 {
8446 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8447 
8448 	if (SCBID_IS_NULL(tid_cur)) {
8449 
8450 		/* Bypass current TID list */
8451 		if (SCBID_IS_NULL(tid_prev)) {
8452 			ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8453 		} else {
8454 			ahd_set_scbptr(ahd, tid_prev);
8455 			ahd_outw(ahd, SCB_NEXT2, tid_next);
8456 		}
8457 		if (SCBID_IS_NULL(tid_next))
8458 			ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8459 	} else {
8460 
8461 		/* Stitch through tid_cur */
8462 		if (SCBID_IS_NULL(tid_prev)) {
8463 			ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8464 		} else {
8465 			ahd_set_scbptr(ahd, tid_prev);
8466 			ahd_outw(ahd, SCB_NEXT2, tid_cur);
8467 		}
8468 		ahd_set_scbptr(ahd, tid_cur);
8469 		ahd_outw(ahd, SCB_NEXT2, tid_next);
8470 
8471 		if (SCBID_IS_NULL(tid_next))
8472 			ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8473 	}
8474 }
8475 
8476 /*
8477  * Manipulate the waiting for selection list and return the
8478  * scb that follows the one that we remove.
8479  */
8480 static u_int
8481 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8482 	     u_int prev, u_int next, u_int tid)
8483 {
8484 	u_int tail_offset;
8485 
8486 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8487 	if (!SCBID_IS_NULL(prev)) {
8488 		ahd_set_scbptr(ahd, prev);
8489 		ahd_outw(ahd, SCB_NEXT, next);
8490 	}
8491 
8492 	/*
8493 	 * SCBs that have MK_MESSAGE set in them may
8494 	 * cause the tail pointer to be updated without
8495 	 * setting the next pointer of the previous tail.
8496 	 * Only clear the tail if the removed SCB was
8497 	 * the tail.
8498 	 */
8499 	tail_offset = WAITING_SCB_TAILS + (2 * tid);
8500 	if (SCBID_IS_NULL(next)
8501 	 && ahd_inw(ahd, tail_offset) == scbid)
8502 		ahd_outw(ahd, tail_offset, prev);
8503 
8504 	ahd_add_scb_to_free_list(ahd, scbid);
8505 	return (next);
8506 }
8507 
8508 /*
8509  * Add the SCB as selected by SCBPTR onto the on chip list of
8510  * free hardware SCBs.  This list is empty/unused if we are not
8511  * performing SCB paging.
8512  */
8513 static void
8514 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8515 {
8516 /* XXX Need some other mechanism to designate "free". */
8517 	/*
8518 	 * Invalidate the tag so that our abort
8519 	 * routines don't think it's active.
8520 	ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8521 	 */
8522 }
8523 
8524 /******************************** Error Handling ******************************/
8525 /*
8526  * Abort all SCBs that match the given description (target/channel/lun/tag),
8527  * setting their status to the passed in status if the status has not already
8528  * been modified from CAM_REQ_INPROG.  This routine assumes that the sequencer
8529  * is paused before it is called.
8530  */
8531 static int
8532 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8533 	       int lun, u_int tag, role_t role, uint32_t status)
8534 {
8535 	struct		scb *scbp;
8536 	struct		scb *scbp_next;
8537 	u_int		i, j;
8538 	u_int		maxtarget;
8539 	u_int		minlun;
8540 	u_int		maxlun;
8541 	int		found;
8542 	ahd_mode_state	saved_modes;
8543 
8544 	/* restore this when we're done */
8545 	saved_modes = ahd_save_modes(ahd);
8546 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8547 
8548 	found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8549 				   role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8550 
8551 	/*
8552 	 * Clean out the busy target table for any untagged commands.
8553 	 */
8554 	i = 0;
8555 	maxtarget = 16;
8556 	if (target != CAM_TARGET_WILDCARD) {
8557 		i = target;
8558 		if (channel == 'B')
8559 			i += 8;
8560 		maxtarget = i + 1;
8561 	}
8562 
8563 	if (lun == CAM_LUN_WILDCARD) {
8564 		minlun = 0;
8565 		maxlun = AHD_NUM_LUNS_NONPKT;
8566 	} else if (lun >= AHD_NUM_LUNS_NONPKT) {
8567 		minlun = maxlun = 0;
8568 	} else {
8569 		minlun = lun;
8570 		maxlun = lun + 1;
8571 	}
8572 
8573 	if (role != ROLE_TARGET) {
8574 		for (;i < maxtarget; i++) {
8575 			for (j = minlun;j < maxlun; j++) {
8576 				u_int scbid;
8577 				u_int tcl;
8578 
8579 				tcl = BUILD_TCL_RAW(i, 'A', j);
8580 				scbid = ahd_find_busy_tcl(ahd, tcl);
8581 				scbp = ahd_lookup_scb(ahd, scbid);
8582 				if (scbp == NULL
8583 				 || ahd_match_scb(ahd, scbp, target, channel,
8584 						  lun, tag, role) == 0)
8585 					continue;
8586 				ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8587 			}
8588 		}
8589 	}
8590 
8591 	/*
8592 	 * Don't abort commands that have already completed,
8593 	 * but haven't quite made it up to the host yet.
8594 	 */
8595 	ahd_flush_qoutfifo(ahd);
8596 
8597 	/*
8598 	 * Go through the pending CCB list and look for
8599 	 * commands for this target that are still active.
8600 	 * These are other tagged commands that were
8601 	 * disconnected when the reset occurred.
8602 	 */
8603 	scbp_next = LIST_FIRST(&ahd->pending_scbs);
8604 	while (scbp_next != NULL) {
8605 		scbp = scbp_next;
8606 		scbp_next = LIST_NEXT(scbp, pending_links);
8607 		if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8608 			cam_status ostat;
8609 
8610 			ostat = ahd_get_transaction_status(scbp);
8611 			if (ostat == CAM_REQ_INPROG)
8612 				ahd_set_transaction_status(scbp, status);
8613 			if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8614 				ahd_freeze_scb(scbp);
8615 			if ((scbp->flags & SCB_ACTIVE) == 0)
8616 				printk("Inactive SCB on pending list\n");
8617 			ahd_done(ahd, scbp);
8618 			found++;
8619 		}
8620 	}
8621 	ahd_restore_modes(ahd, saved_modes);
8622 	ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8623 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
8624 	return found;
8625 }
8626 
8627 static void
8628 ahd_reset_current_bus(struct ahd_softc *ahd)
8629 {
8630 	uint8_t scsiseq;
8631 
8632 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8633 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8634 	scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8635 	ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8636 	ahd_flush_device_writes(ahd);
8637 	ahd_delay(AHD_BUSRESET_DELAY);
8638 	/* Turn off the bus reset */
8639 	ahd_outb(ahd, SCSISEQ0, scsiseq);
8640 	ahd_flush_device_writes(ahd);
8641 	ahd_delay(AHD_BUSRESET_DELAY);
8642 	if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8643 		/*
8644 		 * 2A Razor #474
8645 		 * Certain chip state is not cleared for
8646 		 * SCSI bus resets that we initiate, so
8647 		 * we must reset the chip.
8648 		 */
8649 		ahd_reset(ahd, /*reinit*/TRUE);
8650 		ahd_intr_enable(ahd, /*enable*/TRUE);
8651 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8652 	}
8653 
8654 	ahd_clear_intstat(ahd);
8655 }
8656 
8657 int
8658 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8659 {
8660 	struct	ahd_devinfo caminfo;
8661 	u_int	initiator;
8662 	u_int	target;
8663 	u_int	max_scsiid;
8664 	int	found;
8665 	u_int	fifo;
8666 	u_int	next_fifo;
8667 	uint8_t scsiseq;
8668 
8669 	/*
8670 	 * Check if the last bus reset is cleared
8671 	 */
8672 	if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8673 		printk("%s: bus reset still active\n",
8674 		       ahd_name(ahd));
8675 		return 0;
8676 	}
8677 	ahd->flags |= AHD_BUS_RESET_ACTIVE;
8678 
8679 	ahd->pending_device = NULL;
8680 
8681 	ahd_compile_devinfo(&caminfo,
8682 			    CAM_TARGET_WILDCARD,
8683 			    CAM_TARGET_WILDCARD,
8684 			    CAM_LUN_WILDCARD,
8685 			    channel, ROLE_UNKNOWN);
8686 	ahd_pause(ahd);
8687 
8688 	/* Make sure the sequencer is in a safe location. */
8689 	ahd_clear_critical_section(ahd);
8690 
8691 	/*
8692 	 * Run our command complete fifos to ensure that we perform
8693 	 * completion processing on any commands that 'completed'
8694 	 * before the reset occurred.
8695 	 */
8696 	ahd_run_qoutfifo(ahd);
8697 #ifdef AHD_TARGET_MODE
8698 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
8699 		ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8700 	}
8701 #endif
8702 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8703 
8704 	/*
8705 	 * Disable selections so no automatic hardware
8706 	 * functions will modify chip state.
8707 	 */
8708 	ahd_outb(ahd, SCSISEQ0, 0);
8709 	ahd_outb(ahd, SCSISEQ1, 0);
8710 
8711 	/*
8712 	 * Safely shut down our DMA engines.  Always start with
8713 	 * the FIFO that is not currently active (if any are
8714 	 * actively connected).
8715 	 */
8716 	next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8717 	if (next_fifo > CURRFIFO_1)
8718 		/* If disconneced, arbitrarily start with FIFO1. */
8719 		next_fifo = fifo = 0;
8720 	do {
8721 		next_fifo ^= CURRFIFO_1;
8722 		ahd_set_modes(ahd, next_fifo, next_fifo);
8723 		ahd_outb(ahd, DFCNTRL,
8724 			 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8725 		while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8726 			ahd_delay(10);
8727 		/*
8728 		 * Set CURRFIFO to the now inactive channel.
8729 		 */
8730 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8731 		ahd_outb(ahd, DFFSTAT, next_fifo);
8732 	} while (next_fifo != fifo);
8733 
8734 	/*
8735 	 * Reset the bus if we are initiating this reset
8736 	 */
8737 	ahd_clear_msg_state(ahd);
8738 	ahd_outb(ahd, SIMODE1,
8739 		 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8740 
8741 	if (initiate_reset)
8742 		ahd_reset_current_bus(ahd);
8743 
8744 	ahd_clear_intstat(ahd);
8745 
8746 	/*
8747 	 * Clean up all the state information for the
8748 	 * pending transactions on this bus.
8749 	 */
8750 	found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8751 			       CAM_LUN_WILDCARD, SCB_LIST_NULL,
8752 			       ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8753 
8754 	/*
8755 	 * Cleanup anything left in the FIFOs.
8756 	 */
8757 	ahd_clear_fifo(ahd, 0);
8758 	ahd_clear_fifo(ahd, 1);
8759 
8760 	/*
8761 	 * Clear SCSI interrupt status
8762 	 */
8763 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8764 
8765 	/*
8766 	 * Reenable selections
8767 	 */
8768 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8769 	scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8770 	ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8771 
8772 	max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8773 #ifdef AHD_TARGET_MODE
8774 	/*
8775 	 * Send an immediate notify ccb to all target more peripheral
8776 	 * drivers affected by this action.
8777 	 */
8778 	for (target = 0; target <= max_scsiid; target++) {
8779 		struct ahd_tmode_tstate* tstate;
8780 		u_int lun;
8781 
8782 		tstate = ahd->enabled_targets[target];
8783 		if (tstate == NULL)
8784 			continue;
8785 		for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8786 			struct ahd_tmode_lstate* lstate;
8787 
8788 			lstate = tstate->enabled_luns[lun];
8789 			if (lstate == NULL)
8790 				continue;
8791 
8792 			ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8793 					       EVENT_TYPE_BUS_RESET, /*arg*/0);
8794 			ahd_send_lstate_events(ahd, lstate);
8795 		}
8796 	}
8797 #endif
8798 	/*
8799 	 * Revert to async/narrow transfers until we renegotiate.
8800 	 */
8801 	for (target = 0; target <= max_scsiid; target++) {
8802 
8803 		if (ahd->enabled_targets[target] == NULL)
8804 			continue;
8805 		for (initiator = 0; initiator <= max_scsiid; initiator++) {
8806 			struct ahd_devinfo devinfo;
8807 
8808 			ahd_compile_devinfo(&devinfo, target, initiator,
8809 					    CAM_LUN_WILDCARD,
8810 					    'A', ROLE_UNKNOWN);
8811 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8812 				      AHD_TRANS_CUR, /*paused*/TRUE);
8813 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8814 					 /*offset*/0, /*ppr_options*/0,
8815 					 AHD_TRANS_CUR, /*paused*/TRUE);
8816 		}
8817 	}
8818 
8819 	/* Notify the XPT that a bus reset occurred */
8820 	ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8821 		       CAM_LUN_WILDCARD, AC_BUS_RESET);
8822 
8823 	ahd_restart(ahd);
8824 
8825 	return (found);
8826 }
8827 
8828 /**************************** Statistics Processing ***************************/
8829 static void
8830 ahd_stat_timer(struct timer_list *t)
8831 {
8832 	struct	ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8833 	u_long	s;
8834 	int	enint_coal;
8835 
8836 	ahd_lock(ahd, &s);
8837 
8838 	enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8839 	if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8840 		enint_coal |= ENINT_COALESCE;
8841 	else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8842 		enint_coal &= ~ENINT_COALESCE;
8843 
8844 	if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8845 		ahd_enable_coalescing(ahd, enint_coal);
8846 #ifdef AHD_DEBUG
8847 		if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8848 			printk("%s: Interrupt coalescing "
8849 			       "now %sabled. Cmds %d\n",
8850 			       ahd_name(ahd),
8851 			       (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8852 			       ahd->cmdcmplt_total);
8853 #endif
8854 	}
8855 
8856 	ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8857 	ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8858 	ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8859 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8860 	ahd_unlock(ahd, &s);
8861 }
8862 
8863 /****************************** Status Processing *****************************/
8864 
8865 static void
8866 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8867 {
8868 	struct	hardware_scb *hscb;
8869 	int	paused;
8870 
8871 	/*
8872 	 * The sequencer freezes its select-out queue
8873 	 * anytime a SCSI status error occurs.  We must
8874 	 * handle the error and increment our qfreeze count
8875 	 * to allow the sequencer to continue.  We don't
8876 	 * bother clearing critical sections here since all
8877 	 * operations are on data structures that the sequencer
8878 	 * is not touching once the queue is frozen.
8879 	 */
8880 	hscb = scb->hscb;
8881 
8882 	if (ahd_is_paused(ahd)) {
8883 		paused = 1;
8884 	} else {
8885 		paused = 0;
8886 		ahd_pause(ahd);
8887 	}
8888 
8889 	/* Freeze the queue until the client sees the error. */
8890 	ahd_freeze_devq(ahd, scb);
8891 	ahd_freeze_scb(scb);
8892 	ahd->qfreeze_cnt++;
8893 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8894 
8895 	if (paused == 0)
8896 		ahd_unpause(ahd);
8897 
8898 	/* Don't want to clobber the original sense code */
8899 	if ((scb->flags & SCB_SENSE) != 0) {
8900 		/*
8901 		 * Clear the SCB_SENSE Flag and perform
8902 		 * a normal command completion.
8903 		 */
8904 		scb->flags &= ~SCB_SENSE;
8905 		ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8906 		ahd_done(ahd, scb);
8907 		return;
8908 	}
8909 	ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8910 	ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8911 	switch (hscb->shared_data.istatus.scsi_status) {
8912 	case STATUS_PKT_SENSE:
8913 	{
8914 		struct scsi_status_iu_header *siu;
8915 
8916 		ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8917 		siu = (struct scsi_status_iu_header *)scb->sense_data;
8918 		ahd_set_scsi_status(scb, siu->status);
8919 #ifdef AHD_DEBUG
8920 		if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8921 			ahd_print_path(ahd, scb);
8922 			printk("SCB 0x%x Received PKT Status of 0x%x\n",
8923 			       SCB_GET_TAG(scb), siu->status);
8924 			printk("\tflags = 0x%x, sense len = 0x%x, "
8925 			       "pktfail = 0x%x\n",
8926 			       siu->flags, scsi_4btoul(siu->sense_length),
8927 			       scsi_4btoul(siu->pkt_failures_length));
8928 		}
8929 #endif
8930 		if ((siu->flags & SIU_RSPVALID) != 0) {
8931 			ahd_print_path(ahd, scb);
8932 			if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8933 				printk("Unable to parse pkt_failures\n");
8934 			} else {
8935 
8936 				switch (SIU_PKTFAIL_CODE(siu)) {
8937 				case SIU_PFC_NONE:
8938 					printk("No packet failure found\n");
8939 					break;
8940 				case SIU_PFC_CIU_FIELDS_INVALID:
8941 					printk("Invalid Command IU Field\n");
8942 					break;
8943 				case SIU_PFC_TMF_NOT_SUPPORTED:
8944 					printk("TMF not supported\n");
8945 					break;
8946 				case SIU_PFC_TMF_FAILED:
8947 					printk("TMF failed\n");
8948 					break;
8949 				case SIU_PFC_INVALID_TYPE_CODE:
8950 					printk("Invalid L_Q Type code\n");
8951 					break;
8952 				case SIU_PFC_ILLEGAL_REQUEST:
8953 					printk("Illegal request\n");
8954 				default:
8955 					break;
8956 				}
8957 			}
8958 			if (siu->status == SCSI_STATUS_OK)
8959 				ahd_set_transaction_status(scb,
8960 							   CAM_REQ_CMP_ERR);
8961 		}
8962 		if ((siu->flags & SIU_SNSVALID) != 0) {
8963 			scb->flags |= SCB_PKT_SENSE;
8964 #ifdef AHD_DEBUG
8965 			if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8966 				printk("Sense data available\n");
8967 #endif
8968 		}
8969 		ahd_done(ahd, scb);
8970 		break;
8971 	}
8972 	case SCSI_STATUS_CMD_TERMINATED:
8973 	case SCSI_STATUS_CHECK_COND:
8974 	{
8975 		struct ahd_devinfo devinfo;
8976 		struct ahd_dma_seg *sg;
8977 		struct scsi_sense *sc;
8978 		struct ahd_initiator_tinfo *targ_info;
8979 		struct ahd_tmode_tstate *tstate;
8980 		struct ahd_transinfo *tinfo;
8981 #ifdef AHD_DEBUG
8982 		if (ahd_debug & AHD_SHOW_SENSE) {
8983 			ahd_print_path(ahd, scb);
8984 			printk("SCB %d: requests Check Status\n",
8985 			       SCB_GET_TAG(scb));
8986 		}
8987 #endif
8988 
8989 		if (ahd_perform_autosense(scb) == 0)
8990 			break;
8991 
8992 		ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8993 				    SCB_GET_TARGET(ahd, scb),
8994 				    SCB_GET_LUN(scb),
8995 				    SCB_GET_CHANNEL(ahd, scb),
8996 				    ROLE_INITIATOR);
8997 		targ_info = ahd_fetch_transinfo(ahd,
8998 						devinfo.channel,
8999 						devinfo.our_scsiid,
9000 						devinfo.target,
9001 						&tstate);
9002 		tinfo = &targ_info->curr;
9003 		sg = scb->sg_list;
9004 		sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
9005 		/*
9006 		 * Save off the residual if there is one.
9007 		 */
9008 		ahd_update_residual(ahd, scb);
9009 #ifdef AHD_DEBUG
9010 		if (ahd_debug & AHD_SHOW_SENSE) {
9011 			ahd_print_path(ahd, scb);
9012 			printk("Sending Sense\n");
9013 		}
9014 #endif
9015 		scb->sg_count = 0;
9016 		sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
9017 				  ahd_get_sense_bufsize(ahd, scb),
9018 				  /*last*/TRUE);
9019 		sc->opcode = REQUEST_SENSE;
9020 		sc->byte2 = 0;
9021 		if (tinfo->protocol_version <= SCSI_REV_2
9022 		 && SCB_GET_LUN(scb) < 8)
9023 			sc->byte2 = SCB_GET_LUN(scb) << 5;
9024 		sc->unused[0] = 0;
9025 		sc->unused[1] = 0;
9026 		sc->length = ahd_get_sense_bufsize(ahd, scb);
9027 		sc->control = 0;
9028 
9029 		/*
9030 		 * We can't allow the target to disconnect.
9031 		 * This will be an untagged transaction and
9032 		 * having the target disconnect will make this
9033 		 * transaction indestinguishable from outstanding
9034 		 * tagged transactions.
9035 		 */
9036 		hscb->control = 0;
9037 
9038 		/*
9039 		 * This request sense could be because the
9040 		 * the device lost power or in some other
9041 		 * way has lost our transfer negotiations.
9042 		 * Renegotiate if appropriate.  Unit attention
9043 		 * errors will be reported before any data
9044 		 * phases occur.
9045 		 */
9046 		if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9047 			ahd_update_neg_request(ahd, &devinfo,
9048 					       tstate, targ_info,
9049 					       AHD_NEG_IF_NON_ASYNC);
9050 		}
9051 		if (tstate->auto_negotiate & devinfo.target_mask) {
9052 			hscb->control |= MK_MESSAGE;
9053 			scb->flags &=
9054 			    ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9055 			scb->flags |= SCB_AUTO_NEGOTIATE;
9056 		}
9057 		hscb->cdb_len = sizeof(*sc);
9058 		ahd_setup_data_scb(ahd, scb);
9059 		scb->flags |= SCB_SENSE;
9060 		ahd_queue_scb(ahd, scb);
9061 		break;
9062 	}
9063 	case SCSI_STATUS_OK:
9064 		printk("%s: Interrupted for status of 0???\n",
9065 		       ahd_name(ahd));
9066 		/* FALLTHROUGH */
9067 	default:
9068 		ahd_done(ahd, scb);
9069 		break;
9070 	}
9071 }
9072 
9073 static void
9074 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9075 {
9076 	if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9077 		ahd_handle_scsi_status(ahd, scb);
9078 	} else {
9079 		ahd_calc_residual(ahd, scb);
9080 		ahd_done(ahd, scb);
9081 	}
9082 }
9083 
9084 /*
9085  * Calculate the residual for a just completed SCB.
9086  */
9087 static void
9088 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9089 {
9090 	struct hardware_scb *hscb;
9091 	struct initiator_status *spkt;
9092 	uint32_t sgptr;
9093 	uint32_t resid_sgptr;
9094 	uint32_t resid;
9095 
9096 	/*
9097 	 * 5 cases.
9098 	 * 1) No residual.
9099 	 *    SG_STATUS_VALID clear in sgptr.
9100 	 * 2) Transferless command
9101 	 * 3) Never performed any transfers.
9102 	 *    sgptr has SG_FULL_RESID set.
9103 	 * 4) No residual but target did not
9104 	 *    save data pointers after the
9105 	 *    last transfer, so sgptr was
9106 	 *    never updated.
9107 	 * 5) We have a partial residual.
9108 	 *    Use residual_sgptr to determine
9109 	 *    where we are.
9110 	 */
9111 
9112 	hscb = scb->hscb;
9113 	sgptr = ahd_le32toh(hscb->sgptr);
9114 	if ((sgptr & SG_STATUS_VALID) == 0)
9115 		/* Case 1 */
9116 		return;
9117 	sgptr &= ~SG_STATUS_VALID;
9118 
9119 	if ((sgptr & SG_LIST_NULL) != 0)
9120 		/* Case 2 */
9121 		return;
9122 
9123 	/*
9124 	 * Residual fields are the same in both
9125 	 * target and initiator status packets,
9126 	 * so we can always use the initiator fields
9127 	 * regardless of the role for this SCB.
9128 	 */
9129 	spkt = &hscb->shared_data.istatus;
9130 	resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9131 	if ((sgptr & SG_FULL_RESID) != 0) {
9132 		/* Case 3 */
9133 		resid = ahd_get_transfer_length(scb);
9134 	} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9135 		/* Case 4 */
9136 		return;
9137 	} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9138 		ahd_print_path(ahd, scb);
9139 		printk("data overrun detected Tag == 0x%x.\n",
9140 		       SCB_GET_TAG(scb));
9141 		ahd_freeze_devq(ahd, scb);
9142 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9143 		ahd_freeze_scb(scb);
9144 		return;
9145 	} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9146 		panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9147 		/* NOTREACHED */
9148 	} else {
9149 		struct ahd_dma_seg *sg;
9150 
9151 		/*
9152 		 * Remainder of the SG where the transfer
9153 		 * stopped.
9154 		 */
9155 		resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9156 		sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9157 
9158 		/* The residual sg_ptr always points to the next sg */
9159 		sg--;
9160 
9161 		/*
9162 		 * Add up the contents of all residual
9163 		 * SG segments that are after the SG where
9164 		 * the transfer stopped.
9165 		 */
9166 		while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9167 			sg++;
9168 			resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9169 		}
9170 	}
9171 	if ((scb->flags & SCB_SENSE) == 0)
9172 		ahd_set_residual(scb, resid);
9173 	else
9174 		ahd_set_sense_residual(scb, resid);
9175 
9176 #ifdef AHD_DEBUG
9177 	if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9178 		ahd_print_path(ahd, scb);
9179 		printk("Handled %sResidual of %d bytes\n",
9180 		       (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9181 	}
9182 #endif
9183 }
9184 
9185 /******************************* Target Mode **********************************/
9186 #ifdef AHD_TARGET_MODE
9187 /*
9188  * Add a target mode event to this lun's queue
9189  */
9190 static void
9191 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9192 		       u_int initiator_id, u_int event_type, u_int event_arg)
9193 {
9194 	struct ahd_tmode_event *event;
9195 	int pending;
9196 
9197 	xpt_freeze_devq(lstate->path, /*count*/1);
9198 	if (lstate->event_w_idx >= lstate->event_r_idx)
9199 		pending = lstate->event_w_idx - lstate->event_r_idx;
9200 	else
9201 		pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9202 			- (lstate->event_r_idx - lstate->event_w_idx);
9203 
9204 	if (event_type == EVENT_TYPE_BUS_RESET
9205 	 || event_type == MSG_BUS_DEV_RESET) {
9206 		/*
9207 		 * Any earlier events are irrelevant, so reset our buffer.
9208 		 * This has the effect of allowing us to deal with reset
9209 		 * floods (an external device holding down the reset line)
9210 		 * without losing the event that is really interesting.
9211 		 */
9212 		lstate->event_r_idx = 0;
9213 		lstate->event_w_idx = 0;
9214 		xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9215 	}
9216 
9217 	if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9218 		xpt_print_path(lstate->path);
9219 		printk("immediate event %x:%x lost\n",
9220 		       lstate->event_buffer[lstate->event_r_idx].event_type,
9221 		       lstate->event_buffer[lstate->event_r_idx].event_arg);
9222 		lstate->event_r_idx++;
9223 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9224 			lstate->event_r_idx = 0;
9225 		xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9226 	}
9227 
9228 	event = &lstate->event_buffer[lstate->event_w_idx];
9229 	event->initiator_id = initiator_id;
9230 	event->event_type = event_type;
9231 	event->event_arg = event_arg;
9232 	lstate->event_w_idx++;
9233 	if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9234 		lstate->event_w_idx = 0;
9235 }
9236 
9237 /*
9238  * Send any target mode events queued up waiting
9239  * for immediate notify resources.
9240  */
9241 void
9242 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9243 {
9244 	struct ccb_hdr *ccbh;
9245 	struct ccb_immed_notify *inot;
9246 
9247 	while (lstate->event_r_idx != lstate->event_w_idx
9248 	    && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9249 		struct ahd_tmode_event *event;
9250 
9251 		event = &lstate->event_buffer[lstate->event_r_idx];
9252 		SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9253 		inot = (struct ccb_immed_notify *)ccbh;
9254 		switch (event->event_type) {
9255 		case EVENT_TYPE_BUS_RESET:
9256 			ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9257 			break;
9258 		default:
9259 			ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9260 			inot->message_args[0] = event->event_type;
9261 			inot->message_args[1] = event->event_arg;
9262 			break;
9263 		}
9264 		inot->initiator_id = event->initiator_id;
9265 		inot->sense_len = 0;
9266 		xpt_done((union ccb *)inot);
9267 		lstate->event_r_idx++;
9268 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9269 			lstate->event_r_idx = 0;
9270 	}
9271 }
9272 #endif
9273 
9274 /******************** Sequencer Program Patching/Download *********************/
9275 
9276 #ifdef AHD_DUMP_SEQ
9277 void
9278 ahd_dumpseq(struct ahd_softc* ahd)
9279 {
9280 	int i;
9281 	int max_prog;
9282 
9283 	max_prog = 2048;
9284 
9285 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9286 	ahd_outw(ahd, PRGMCNT, 0);
9287 	for (i = 0; i < max_prog; i++) {
9288 		uint8_t ins_bytes[4];
9289 
9290 		ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9291 		printk("0x%08x\n", ins_bytes[0] << 24
9292 				 | ins_bytes[1] << 16
9293 				 | ins_bytes[2] << 8
9294 				 | ins_bytes[3]);
9295 	}
9296 }
9297 #endif
9298 
9299 static void
9300 ahd_loadseq(struct ahd_softc *ahd)
9301 {
9302 	struct	cs cs_table[NUM_CRITICAL_SECTIONS];
9303 	u_int	begin_set[NUM_CRITICAL_SECTIONS];
9304 	u_int	end_set[NUM_CRITICAL_SECTIONS];
9305 	const struct patch *cur_patch;
9306 	u_int	cs_count;
9307 	u_int	cur_cs;
9308 	u_int	i;
9309 	int	downloaded;
9310 	u_int	skip_addr;
9311 	u_int	sg_prefetch_cnt;
9312 	u_int	sg_prefetch_cnt_limit;
9313 	u_int	sg_prefetch_align;
9314 	u_int	sg_size;
9315 	u_int	cacheline_mask;
9316 	uint8_t	download_consts[DOWNLOAD_CONST_COUNT];
9317 
9318 	if (bootverbose)
9319 		printk("%s: Downloading Sequencer Program...",
9320 		       ahd_name(ahd));
9321 
9322 #if DOWNLOAD_CONST_COUNT != 8
9323 #error "Download Const Mismatch"
9324 #endif
9325 	/*
9326 	 * Start out with 0 critical sections
9327 	 * that apply to this firmware load.
9328 	 */
9329 	cs_count = 0;
9330 	cur_cs = 0;
9331 	memset(begin_set, 0, sizeof(begin_set));
9332 	memset(end_set, 0, sizeof(end_set));
9333 
9334 	/*
9335 	 * Setup downloadable constant table.
9336 	 *
9337 	 * The computation for the S/G prefetch variables is
9338 	 * a bit complicated.  We would like to always fetch
9339 	 * in terms of cachelined sized increments.  However,
9340 	 * if the cacheline is not an even multiple of the
9341 	 * SG element size or is larger than our SG RAM, using
9342 	 * just the cache size might leave us with only a portion
9343 	 * of an SG element at the tail of a prefetch.  If the
9344 	 * cacheline is larger than our S/G prefetch buffer less
9345 	 * the size of an SG element, we may round down to a cacheline
9346 	 * that doesn't contain any or all of the S/G of interest
9347 	 * within the bounds of our S/G ram.  Provide variables to
9348 	 * the sequencer that will allow it to handle these edge
9349 	 * cases.
9350 	 */
9351 	/* Start by aligning to the nearest cacheline. */
9352 	sg_prefetch_align = ahd->pci_cachesize;
9353 	if (sg_prefetch_align == 0)
9354 		sg_prefetch_align = 8;
9355 	/* Round down to the nearest power of 2. */
9356 	while (powerof2(sg_prefetch_align) == 0)
9357 		sg_prefetch_align--;
9358 
9359 	cacheline_mask = sg_prefetch_align - 1;
9360 
9361 	/*
9362 	 * If the cacheline boundary is greater than half our prefetch RAM
9363 	 * we risk not being able to fetch even a single complete S/G
9364 	 * segment if we align to that boundary.
9365 	 */
9366 	if (sg_prefetch_align > CCSGADDR_MAX/2)
9367 		sg_prefetch_align = CCSGADDR_MAX/2;
9368 	/* Start by fetching a single cacheline. */
9369 	sg_prefetch_cnt = sg_prefetch_align;
9370 	/*
9371 	 * Increment the prefetch count by cachelines until
9372 	 * at least one S/G element will fit.
9373 	 */
9374 	sg_size = sizeof(struct ahd_dma_seg);
9375 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9376 		sg_size = sizeof(struct ahd_dma64_seg);
9377 	while (sg_prefetch_cnt < sg_size)
9378 		sg_prefetch_cnt += sg_prefetch_align;
9379 	/*
9380 	 * If the cacheline is not an even multiple of
9381 	 * the S/G size, we may only get a partial S/G when
9382 	 * we align. Add a cacheline if this is the case.
9383 	 */
9384 	if ((sg_prefetch_align % sg_size) != 0
9385 	 && (sg_prefetch_cnt < CCSGADDR_MAX))
9386 		sg_prefetch_cnt += sg_prefetch_align;
9387 	/*
9388 	 * Lastly, compute a value that the sequencer can use
9389 	 * to determine if the remainder of the CCSGRAM buffer
9390 	 * has a full S/G element in it.
9391 	 */
9392 	sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9393 	download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9394 	download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9395 	download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9396 	download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9397 	download_consts[SG_SIZEOF] = sg_size;
9398 	download_consts[PKT_OVERRUN_BUFOFFSET] =
9399 		(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9400 	download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9401 	download_consts[CACHELINE_MASK] = cacheline_mask;
9402 	cur_patch = patches;
9403 	downloaded = 0;
9404 	skip_addr = 0;
9405 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9406 	ahd_outw(ahd, PRGMCNT, 0);
9407 
9408 	for (i = 0; i < sizeof(seqprog)/4; i++) {
9409 		if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9410 			/*
9411 			 * Don't download this instruction as it
9412 			 * is in a patch that was removed.
9413 			 */
9414 			continue;
9415 		}
9416 		/*
9417 		 * Move through the CS table until we find a CS
9418 		 * that might apply to this instruction.
9419 		 */
9420 		for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9421 			if (critical_sections[cur_cs].end <= i) {
9422 				if (begin_set[cs_count] == TRUE
9423 				 && end_set[cs_count] == FALSE) {
9424 					cs_table[cs_count].end = downloaded;
9425 				 	end_set[cs_count] = TRUE;
9426 					cs_count++;
9427 				}
9428 				continue;
9429 			}
9430 			if (critical_sections[cur_cs].begin <= i
9431 			 && begin_set[cs_count] == FALSE) {
9432 				cs_table[cs_count].begin = downloaded;
9433 				begin_set[cs_count] = TRUE;
9434 			}
9435 			break;
9436 		}
9437 		ahd_download_instr(ahd, i, download_consts);
9438 		downloaded++;
9439 	}
9440 
9441 	ahd->num_critical_sections = cs_count;
9442 	if (cs_count != 0) {
9443 
9444 		cs_count *= sizeof(struct cs);
9445 		ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
9446 		if (ahd->critical_sections == NULL)
9447 			panic("ahd_loadseq: Could not malloc");
9448 		memcpy(ahd->critical_sections, cs_table, cs_count);
9449 	}
9450 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9451 
9452 	if (bootverbose) {
9453 		printk(" %d instructions downloaded\n", downloaded);
9454 		printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9455 		       ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9456 	}
9457 }
9458 
9459 static int
9460 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9461 		u_int start_instr, u_int *skip_addr)
9462 {
9463 	const struct patch *cur_patch;
9464 	const struct patch *last_patch;
9465 	u_int	num_patches;
9466 
9467 	num_patches = ARRAY_SIZE(patches);
9468 	last_patch = &patches[num_patches];
9469 	cur_patch = *start_patch;
9470 
9471 	while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9472 
9473 		if (cur_patch->patch_func(ahd) == 0) {
9474 
9475 			/* Start rejecting code */
9476 			*skip_addr = start_instr + cur_patch->skip_instr;
9477 			cur_patch += cur_patch->skip_patch;
9478 		} else {
9479 			/* Accepted this patch.  Advance to the next
9480 			 * one and wait for our intruction pointer to
9481 			 * hit this point.
9482 			 */
9483 			cur_patch++;
9484 		}
9485 	}
9486 
9487 	*start_patch = cur_patch;
9488 	if (start_instr < *skip_addr)
9489 		/* Still skipping */
9490 		return (0);
9491 
9492 	return (1);
9493 }
9494 
9495 static u_int
9496 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9497 {
9498 	const struct patch *cur_patch;
9499 	int address_offset;
9500 	u_int skip_addr;
9501 	u_int i;
9502 
9503 	address_offset = 0;
9504 	cur_patch = patches;
9505 	skip_addr = 0;
9506 
9507 	for (i = 0; i < address;) {
9508 
9509 		ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9510 
9511 		if (skip_addr > i) {
9512 			int end_addr;
9513 
9514 			end_addr = min(address, skip_addr);
9515 			address_offset += end_addr - i;
9516 			i = skip_addr;
9517 		} else {
9518 			i++;
9519 		}
9520 	}
9521 	return (address - address_offset);
9522 }
9523 
9524 static void
9525 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9526 {
9527 	union	ins_formats instr;
9528 	struct	ins_format1 *fmt1_ins;
9529 	struct	ins_format3 *fmt3_ins;
9530 	u_int	opcode;
9531 
9532 	/*
9533 	 * The firmware is always compiled into a little endian format.
9534 	 */
9535 	instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9536 
9537 	fmt1_ins = &instr.format1;
9538 	fmt3_ins = NULL;
9539 
9540 	/* Pull the opcode */
9541 	opcode = instr.format1.opcode;
9542 	switch (opcode) {
9543 	case AIC_OP_JMP:
9544 	case AIC_OP_JC:
9545 	case AIC_OP_JNC:
9546 	case AIC_OP_CALL:
9547 	case AIC_OP_JNE:
9548 	case AIC_OP_JNZ:
9549 	case AIC_OP_JE:
9550 	case AIC_OP_JZ:
9551 	{
9552 		fmt3_ins = &instr.format3;
9553 		fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9554 	}
9555 		/* fall through */
9556 	case AIC_OP_OR:
9557 	case AIC_OP_AND:
9558 	case AIC_OP_XOR:
9559 	case AIC_OP_ADD:
9560 	case AIC_OP_ADC:
9561 	case AIC_OP_BMOV:
9562 		if (fmt1_ins->parity != 0) {
9563 			fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9564 		}
9565 		fmt1_ins->parity = 0;
9566 		/* fall through */
9567 	case AIC_OP_ROL:
9568 	{
9569 		int i, count;
9570 
9571 		/* Calculate odd parity for the instruction */
9572 		for (i = 0, count = 0; i < 31; i++) {
9573 			uint32_t mask;
9574 
9575 			mask = 0x01 << i;
9576 			if ((instr.integer & mask) != 0)
9577 				count++;
9578 		}
9579 		if ((count & 0x01) == 0)
9580 			instr.format1.parity = 1;
9581 
9582 		/* The sequencer is a little endian cpu */
9583 		instr.integer = ahd_htole32(instr.integer);
9584 		ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9585 		break;
9586 	}
9587 	default:
9588 		panic("Unknown opcode encountered in seq program");
9589 		break;
9590 	}
9591 }
9592 
9593 static int
9594 ahd_probe_stack_size(struct ahd_softc *ahd)
9595 {
9596 	int last_probe;
9597 
9598 	last_probe = 0;
9599 	while (1) {
9600 		int i;
9601 
9602 		/*
9603 		 * We avoid using 0 as a pattern to avoid
9604 		 * confusion if the stack implementation
9605 		 * "back-fills" with zeros when "poping'
9606 		 * entries.
9607 		 */
9608 		for (i = 1; i <= last_probe+1; i++) {
9609 		       ahd_outb(ahd, STACK, i & 0xFF);
9610 		       ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9611 		}
9612 
9613 		/* Verify */
9614 		for (i = last_probe+1; i > 0; i--) {
9615 			u_int stack_entry;
9616 
9617 			stack_entry = ahd_inb(ahd, STACK)
9618 				    |(ahd_inb(ahd, STACK) << 8);
9619 			if (stack_entry != i)
9620 				goto sized;
9621 		}
9622 		last_probe++;
9623 	}
9624 sized:
9625 	return (last_probe);
9626 }
9627 
9628 int
9629 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9630 		   const char *name, u_int address, u_int value,
9631 		   u_int *cur_column, u_int wrap_point)
9632 {
9633 	int	printed;
9634 	u_int	printed_mask;
9635 
9636 	if (cur_column != NULL && *cur_column >= wrap_point) {
9637 		printk("\n");
9638 		*cur_column = 0;
9639 	}
9640 	printed = printk("%s[0x%x]", name, value);
9641 	if (table == NULL) {
9642 		printed += printk(" ");
9643 		*cur_column += printed;
9644 		return (printed);
9645 	}
9646 	printed_mask = 0;
9647 	while (printed_mask != 0xFF) {
9648 		int entry;
9649 
9650 		for (entry = 0; entry < num_entries; entry++) {
9651 			if (((value & table[entry].mask)
9652 			  != table[entry].value)
9653 			 || ((printed_mask & table[entry].mask)
9654 			  == table[entry].mask))
9655 				continue;
9656 
9657 			printed += printk("%s%s",
9658 					  printed_mask == 0 ? ":(" : "|",
9659 					  table[entry].name);
9660 			printed_mask |= table[entry].mask;
9661 
9662 			break;
9663 		}
9664 		if (entry >= num_entries)
9665 			break;
9666 	}
9667 	if (printed_mask != 0)
9668 		printed += printk(") ");
9669 	else
9670 		printed += printk(" ");
9671 	if (cur_column != NULL)
9672 		*cur_column += printed;
9673 	return (printed);
9674 }
9675 
9676 void
9677 ahd_dump_card_state(struct ahd_softc *ahd)
9678 {
9679 	struct scb	*scb;
9680 	ahd_mode_state	 saved_modes;
9681 	u_int		 dffstat;
9682 	int		 paused;
9683 	u_int		 scb_index;
9684 	u_int		 saved_scb_index;
9685 	u_int		 cur_col;
9686 	int		 i;
9687 
9688 	if (ahd_is_paused(ahd)) {
9689 		paused = 1;
9690 	} else {
9691 		paused = 0;
9692 		ahd_pause(ahd);
9693 	}
9694 	saved_modes = ahd_save_modes(ahd);
9695 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9696 	printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9697 	       "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9698 	       ahd_name(ahd),
9699 	       ahd_inw(ahd, CURADDR),
9700 	       ahd_build_mode_state(ahd, ahd->saved_src_mode,
9701 				    ahd->saved_dst_mode));
9702 	if (paused)
9703 		printk("Card was paused\n");
9704 
9705 	if (ahd_check_cmdcmpltqueues(ahd))
9706 		printk("Completions are pending\n");
9707 
9708 	/*
9709 	 * Mode independent registers.
9710 	 */
9711 	cur_col = 0;
9712 	ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9713 	ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9714 	ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9715 	ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9716 	ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9717 	ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9718 	ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9719 	ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9720 	ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9721 	ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9722 	ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9723 	ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9724 	ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9725 	ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9726 	ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9727 	ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9728 	ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9729 	ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9730 	ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9731 	ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9732 				       &cur_col, 50);
9733 	ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9734 	ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9735 				    &cur_col, 50);
9736 	ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9737 	ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9738 	ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9739 	ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9740 	ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9741 	ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9742 	ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9743 	ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9744 	ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9745 	ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9746 	ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9747 	ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9748 	printk("\n");
9749 	printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9750 	       "CURRSCB 0x%x NEXTSCB 0x%x\n",
9751 	       ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9752 	       ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9753 	       ahd_inw(ahd, NEXTSCB));
9754 	cur_col = 0;
9755 	/* QINFIFO */
9756 	ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9757 			   CAM_LUN_WILDCARD, SCB_LIST_NULL,
9758 			   ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9759 	saved_scb_index = ahd_get_scbptr(ahd);
9760 	printk("Pending list:");
9761 	i = 0;
9762 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9763 		if (i++ > AHD_SCB_MAX)
9764 			break;
9765 		cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9766 				 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9767 		ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9768 		ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9769 				      &cur_col, 60);
9770 		ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9771 				     &cur_col, 60);
9772 	}
9773 	printk("\nTotal %d\n", i);
9774 
9775 	printk("Kernel Free SCB list: ");
9776 	i = 0;
9777 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9778 		struct scb *list_scb;
9779 
9780 		list_scb = scb;
9781 		do {
9782 			printk("%d ", SCB_GET_TAG(list_scb));
9783 			list_scb = LIST_NEXT(list_scb, collision_links);
9784 		} while (list_scb && i++ < AHD_SCB_MAX);
9785 	}
9786 
9787 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9788 		if (i++ > AHD_SCB_MAX)
9789 			break;
9790 		printk("%d ", SCB_GET_TAG(scb));
9791 	}
9792 	printk("\n");
9793 
9794 	printk("Sequencer Complete DMA-inprog list: ");
9795 	scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9796 	i = 0;
9797 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9798 		ahd_set_scbptr(ahd, scb_index);
9799 		printk("%d ", scb_index);
9800 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9801 	}
9802 	printk("\n");
9803 
9804 	printk("Sequencer Complete list: ");
9805 	scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9806 	i = 0;
9807 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9808 		ahd_set_scbptr(ahd, scb_index);
9809 		printk("%d ", scb_index);
9810 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9811 	}
9812 	printk("\n");
9813 
9814 
9815 	printk("Sequencer DMA-Up and Complete list: ");
9816 	scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9817 	i = 0;
9818 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9819 		ahd_set_scbptr(ahd, scb_index);
9820 		printk("%d ", scb_index);
9821 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9822 	}
9823 	printk("\n");
9824 	printk("Sequencer On QFreeze and Complete list: ");
9825 	scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9826 	i = 0;
9827 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9828 		ahd_set_scbptr(ahd, scb_index);
9829 		printk("%d ", scb_index);
9830 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9831 	}
9832 	printk("\n");
9833 	ahd_set_scbptr(ahd, saved_scb_index);
9834 	dffstat = ahd_inb(ahd, DFFSTAT);
9835 	for (i = 0; i < 2; i++) {
9836 #ifdef AHD_DEBUG
9837 		struct scb *fifo_scb;
9838 #endif
9839 		u_int	    fifo_scbptr;
9840 
9841 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9842 		fifo_scbptr = ahd_get_scbptr(ahd);
9843 		printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9844 		       ahd_name(ahd), i,
9845 		       (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9846 		       ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9847 		cur_col = 0;
9848 		ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9849 		ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9850 		ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9851 		ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9852 		ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9853 					  &cur_col, 50);
9854 		ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9855 		ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9856 		ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9857 		ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9858 		if (cur_col > 50) {
9859 			printk("\n");
9860 			cur_col = 0;
9861 		}
9862 		cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9863 				  ahd_inl(ahd, SHADDR+4),
9864 				  ahd_inl(ahd, SHADDR),
9865 				  (ahd_inb(ahd, SHCNT)
9866 				| (ahd_inb(ahd, SHCNT + 1) << 8)
9867 				| (ahd_inb(ahd, SHCNT + 2) << 16)));
9868 		if (cur_col > 50) {
9869 			printk("\n");
9870 			cur_col = 0;
9871 		}
9872 		cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9873 				  ahd_inl(ahd, HADDR+4),
9874 				  ahd_inl(ahd, HADDR),
9875 				  (ahd_inb(ahd, HCNT)
9876 				| (ahd_inb(ahd, HCNT + 1) << 8)
9877 				| (ahd_inb(ahd, HCNT + 2) << 16)));
9878 		ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9879 #ifdef AHD_DEBUG
9880 		if ((ahd_debug & AHD_SHOW_SG) != 0) {
9881 			fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9882 			if (fifo_scb != NULL)
9883 				ahd_dump_sglist(fifo_scb);
9884 		}
9885 #endif
9886 	}
9887 	printk("\nLQIN: ");
9888 	for (i = 0; i < 20; i++)
9889 		printk("0x%x ", ahd_inb(ahd, LQIN + i));
9890 	printk("\n");
9891 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9892 	printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9893 	       ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9894 	       ahd_inb(ahd, OPTIONMODE));
9895 	printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9896 	       ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9897 	       ahd_inb(ahd, MAXCMDCNT));
9898 	printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9899 	       ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9900 	       ahd_inb(ahd, SAVED_LUN));
9901 	ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9902 	printk("\n");
9903 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9904 	cur_col = 0;
9905 	ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9906 	printk("\n");
9907 	ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9908 	printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9909 	       ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9910 	       ahd_inw(ahd, DINDEX));
9911 	printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9912 	       ahd_name(ahd), ahd_get_scbptr(ahd),
9913 	       ahd_inw_scbram(ahd, SCB_NEXT),
9914 	       ahd_inw_scbram(ahd, SCB_NEXT2));
9915 	printk("CDB %x %x %x %x %x %x\n",
9916 	       ahd_inb_scbram(ahd, SCB_CDB_STORE),
9917 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9918 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9919 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9920 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9921 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9922 	printk("STACK:");
9923 	for (i = 0; i < ahd->stack_size; i++) {
9924 		ahd->saved_stack[i] =
9925 		    ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9926 		printk(" 0x%x", ahd->saved_stack[i]);
9927 	}
9928 	for (i = ahd->stack_size-1; i >= 0; i--) {
9929 		ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9930 		ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9931 	}
9932 	printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9933 	ahd_restore_modes(ahd, saved_modes);
9934 	if (paused == 0)
9935 		ahd_unpause(ahd);
9936 }
9937 
9938 #if 0
9939 void
9940 ahd_dump_scbs(struct ahd_softc *ahd)
9941 {
9942 	ahd_mode_state saved_modes;
9943 	u_int	       saved_scb_index;
9944 	int	       i;
9945 
9946 	saved_modes = ahd_save_modes(ahd);
9947 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9948 	saved_scb_index = ahd_get_scbptr(ahd);
9949 	for (i = 0; i < AHD_SCB_MAX; i++) {
9950 		ahd_set_scbptr(ahd, i);
9951 		printk("%3d", i);
9952 		printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9953 		       ahd_inb_scbram(ahd, SCB_CONTROL),
9954 		       ahd_inb_scbram(ahd, SCB_SCSIID),
9955 		       ahd_inw_scbram(ahd, SCB_NEXT),
9956 		       ahd_inw_scbram(ahd, SCB_NEXT2),
9957 		       ahd_inl_scbram(ahd, SCB_SGPTR),
9958 		       ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9959 	}
9960 	printk("\n");
9961 	ahd_set_scbptr(ahd, saved_scb_index);
9962 	ahd_restore_modes(ahd, saved_modes);
9963 }
9964 #endif  /*  0  */
9965 
9966 /**************************** Flexport Logic **********************************/
9967 /*
9968  * Read count 16bit words from 16bit word address start_addr from the
9969  * SEEPROM attached to the controller, into buf, using the controller's
9970  * SEEPROM reading state machine.  Optionally treat the data as a byte
9971  * stream in terms of byte order.
9972  */
9973 int
9974 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9975 		 u_int start_addr, u_int count, int bytestream)
9976 {
9977 	u_int cur_addr;
9978 	u_int end_addr;
9979 	int   error;
9980 
9981 	/*
9982 	 * If we never make it through the loop even once,
9983 	 * we were passed invalid arguments.
9984 	 */
9985 	error = EINVAL;
9986 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9987 	end_addr = start_addr + count;
9988 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9989 
9990 		ahd_outb(ahd, SEEADR, cur_addr);
9991 		ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9992 
9993 		error = ahd_wait_seeprom(ahd);
9994 		if (error)
9995 			break;
9996 		if (bytestream != 0) {
9997 			uint8_t *bytestream_ptr;
9998 
9999 			bytestream_ptr = (uint8_t *)buf;
10000 			*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
10001 			*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
10002 		} else {
10003 			/*
10004 			 * ahd_inw() already handles machine byte order.
10005 			 */
10006 			*buf = ahd_inw(ahd, SEEDAT);
10007 		}
10008 		buf++;
10009 	}
10010 	return (error);
10011 }
10012 
10013 /*
10014  * Write count 16bit words from buf, into SEEPROM attache to the
10015  * controller starting at 16bit word address start_addr, using the
10016  * controller's SEEPROM writing state machine.
10017  */
10018 int
10019 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
10020 		  u_int start_addr, u_int count)
10021 {
10022 	u_int cur_addr;
10023 	u_int end_addr;
10024 	int   error;
10025 	int   retval;
10026 
10027 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10028 	error = ENOENT;
10029 
10030 	/* Place the chip into write-enable mode */
10031 	ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
10032 	ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
10033 	error = ahd_wait_seeprom(ahd);
10034 	if (error)
10035 		return (error);
10036 
10037 	/*
10038 	 * Write the data.  If we don't get through the loop at
10039 	 * least once, the arguments were invalid.
10040 	 */
10041 	retval = EINVAL;
10042 	end_addr = start_addr + count;
10043 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10044 		ahd_outw(ahd, SEEDAT, *buf++);
10045 		ahd_outb(ahd, SEEADR, cur_addr);
10046 		ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10047 
10048 		retval = ahd_wait_seeprom(ahd);
10049 		if (retval)
10050 			break;
10051 	}
10052 
10053 	/*
10054 	 * Disable writes.
10055 	 */
10056 	ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10057 	ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10058 	error = ahd_wait_seeprom(ahd);
10059 	if (error)
10060 		return (error);
10061 	return (retval);
10062 }
10063 
10064 /*
10065  * Wait ~100us for the serial eeprom to satisfy our request.
10066  */
10067 static int
10068 ahd_wait_seeprom(struct ahd_softc *ahd)
10069 {
10070 	int cnt;
10071 
10072 	cnt = 5000;
10073 	while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10074 		ahd_delay(5);
10075 
10076 	if (cnt == 0)
10077 		return (ETIMEDOUT);
10078 	return (0);
10079 }
10080 
10081 /*
10082  * Validate the two checksums in the per_channel
10083  * vital product data struct.
10084  */
10085 static int
10086 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10087 {
10088 	int i;
10089 	int maxaddr;
10090 	uint32_t checksum;
10091 	uint8_t *vpdarray;
10092 
10093 	vpdarray = (uint8_t *)vpd;
10094 	maxaddr = offsetof(struct vpd_config, vpd_checksum);
10095 	checksum = 0;
10096 	for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10097 		checksum = checksum + vpdarray[i];
10098 	if (checksum == 0
10099 	 || (-checksum & 0xFF) != vpd->vpd_checksum)
10100 		return (0);
10101 
10102 	checksum = 0;
10103 	maxaddr = offsetof(struct vpd_config, checksum);
10104 	for (i = offsetof(struct vpd_config, default_target_flags);
10105 	     i < maxaddr; i++)
10106 		checksum = checksum + vpdarray[i];
10107 	if (checksum == 0
10108 	 || (-checksum & 0xFF) != vpd->checksum)
10109 		return (0);
10110 	return (1);
10111 }
10112 
10113 int
10114 ahd_verify_cksum(struct seeprom_config *sc)
10115 {
10116 	int i;
10117 	int maxaddr;
10118 	uint32_t checksum;
10119 	uint16_t *scarray;
10120 
10121 	maxaddr = (sizeof(*sc)/2) - 1;
10122 	checksum = 0;
10123 	scarray = (uint16_t *)sc;
10124 
10125 	for (i = 0; i < maxaddr; i++)
10126 		checksum = checksum + scarray[i];
10127 	if (checksum == 0
10128 	 || (checksum & 0xFFFF) != sc->checksum) {
10129 		return (0);
10130 	} else {
10131 		return (1);
10132 	}
10133 }
10134 
10135 int
10136 ahd_acquire_seeprom(struct ahd_softc *ahd)
10137 {
10138 	/*
10139 	 * We should be able to determine the SEEPROM type
10140 	 * from the flexport logic, but unfortunately not
10141 	 * all implementations have this logic and there is
10142 	 * no programatic method for determining if the logic
10143 	 * is present.
10144 	 */
10145 	return (1);
10146 #if 0
10147 	uint8_t	seetype;
10148 	int	error;
10149 
10150 	error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10151 	if (error != 0
10152          || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10153 		return (0);
10154 	return (1);
10155 #endif
10156 }
10157 
10158 void
10159 ahd_release_seeprom(struct ahd_softc *ahd)
10160 {
10161 	/* Currently a no-op */
10162 }
10163 
10164 /*
10165  * Wait at most 2 seconds for flexport arbitration to succeed.
10166  */
10167 static int
10168 ahd_wait_flexport(struct ahd_softc *ahd)
10169 {
10170 	int cnt;
10171 
10172 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10173 	cnt = 1000000 * 2 / 5;
10174 	while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10175 		ahd_delay(5);
10176 
10177 	if (cnt == 0)
10178 		return (ETIMEDOUT);
10179 	return (0);
10180 }
10181 
10182 int
10183 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10184 {
10185 	int error;
10186 
10187 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10188 	if (addr > 7)
10189 		panic("ahd_write_flexport: address out of range");
10190 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10191 	error = ahd_wait_flexport(ahd);
10192 	if (error != 0)
10193 		return (error);
10194 	ahd_outb(ahd, BRDDAT, value);
10195 	ahd_flush_device_writes(ahd);
10196 	ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10197 	ahd_flush_device_writes(ahd);
10198 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10199 	ahd_flush_device_writes(ahd);
10200 	ahd_outb(ahd, BRDCTL, 0);
10201 	ahd_flush_device_writes(ahd);
10202 	return (0);
10203 }
10204 
10205 int
10206 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10207 {
10208 	int	error;
10209 
10210 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10211 	if (addr > 7)
10212 		panic("ahd_read_flexport: address out of range");
10213 	ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10214 	error = ahd_wait_flexport(ahd);
10215 	if (error != 0)
10216 		return (error);
10217 	*value = ahd_inb(ahd, BRDDAT);
10218 	ahd_outb(ahd, BRDCTL, 0);
10219 	ahd_flush_device_writes(ahd);
10220 	return (0);
10221 }
10222 
10223 /************************* Target Mode ****************************************/
10224 #ifdef AHD_TARGET_MODE
10225 cam_status
10226 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10227 		    struct ahd_tmode_tstate **tstate,
10228 		    struct ahd_tmode_lstate **lstate,
10229 		    int notfound_failure)
10230 {
10231 
10232 	if ((ahd->features & AHD_TARGETMODE) == 0)
10233 		return (CAM_REQ_INVALID);
10234 
10235 	/*
10236 	 * Handle the 'black hole' device that sucks up
10237 	 * requests to unattached luns on enabled targets.
10238 	 */
10239 	if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10240 	 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10241 		*tstate = NULL;
10242 		*lstate = ahd->black_hole;
10243 	} else {
10244 		u_int max_id;
10245 
10246 		max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10247 		if (ccb->ccb_h.target_id >= max_id)
10248 			return (CAM_TID_INVALID);
10249 
10250 		if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10251 			return (CAM_LUN_INVALID);
10252 
10253 		*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10254 		*lstate = NULL;
10255 		if (*tstate != NULL)
10256 			*lstate =
10257 			    (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10258 	}
10259 
10260 	if (notfound_failure != 0 && *lstate == NULL)
10261 		return (CAM_PATH_INVALID);
10262 
10263 	return (CAM_REQ_CMP);
10264 }
10265 
10266 void
10267 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10268 {
10269 #if NOT_YET
10270 	struct	   ahd_tmode_tstate *tstate;
10271 	struct	   ahd_tmode_lstate *lstate;
10272 	struct	   ccb_en_lun *cel;
10273 	cam_status status;
10274 	u_int	   target;
10275 	u_int	   lun;
10276 	u_int	   target_mask;
10277 	u_long	   s;
10278 	char	   channel;
10279 
10280 	status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10281 				     /*notfound_failure*/FALSE);
10282 
10283 	if (status != CAM_REQ_CMP) {
10284 		ccb->ccb_h.status = status;
10285 		return;
10286 	}
10287 
10288 	if ((ahd->features & AHD_MULTIROLE) != 0) {
10289 		u_int	   our_id;
10290 
10291 		our_id = ahd->our_id;
10292 		if (ccb->ccb_h.target_id != our_id) {
10293 			if ((ahd->features & AHD_MULTI_TID) != 0
10294 		   	 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10295 				/*
10296 				 * Only allow additional targets if
10297 				 * the initiator role is disabled.
10298 				 * The hardware cannot handle a re-select-in
10299 				 * on the initiator id during a re-select-out
10300 				 * on a different target id.
10301 				 */
10302 				status = CAM_TID_INVALID;
10303 			} else if ((ahd->flags & AHD_INITIATORROLE) != 0
10304 				|| ahd->enabled_luns > 0) {
10305 				/*
10306 				 * Only allow our target id to change
10307 				 * if the initiator role is not configured
10308 				 * and there are no enabled luns which
10309 				 * are attached to the currently registered
10310 				 * scsi id.
10311 				 */
10312 				status = CAM_TID_INVALID;
10313 			}
10314 		}
10315 	}
10316 
10317 	if (status != CAM_REQ_CMP) {
10318 		ccb->ccb_h.status = status;
10319 		return;
10320 	}
10321 
10322 	/*
10323 	 * We now have an id that is valid.
10324 	 * If we aren't in target mode, switch modes.
10325 	 */
10326 	if ((ahd->flags & AHD_TARGETROLE) == 0
10327 	 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10328 		u_long	s;
10329 
10330 		printk("Configuring Target Mode\n");
10331 		ahd_lock(ahd, &s);
10332 		if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10333 			ccb->ccb_h.status = CAM_BUSY;
10334 			ahd_unlock(ahd, &s);
10335 			return;
10336 		}
10337 		ahd->flags |= AHD_TARGETROLE;
10338 		if ((ahd->features & AHD_MULTIROLE) == 0)
10339 			ahd->flags &= ~AHD_INITIATORROLE;
10340 		ahd_pause(ahd);
10341 		ahd_loadseq(ahd);
10342 		ahd_restart(ahd);
10343 		ahd_unlock(ahd, &s);
10344 	}
10345 	cel = &ccb->cel;
10346 	target = ccb->ccb_h.target_id;
10347 	lun = ccb->ccb_h.target_lun;
10348 	channel = SIM_CHANNEL(ahd, sim);
10349 	target_mask = 0x01 << target;
10350 	if (channel == 'B')
10351 		target_mask <<= 8;
10352 
10353 	if (cel->enable != 0) {
10354 		u_int scsiseq1;
10355 
10356 		/* Are we already enabled?? */
10357 		if (lstate != NULL) {
10358 			xpt_print_path(ccb->ccb_h.path);
10359 			printk("Lun already enabled\n");
10360 			ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10361 			return;
10362 		}
10363 
10364 		if (cel->grp6_len != 0
10365 		 || cel->grp7_len != 0) {
10366 			/*
10367 			 * Don't (yet?) support vendor
10368 			 * specific commands.
10369 			 */
10370 			ccb->ccb_h.status = CAM_REQ_INVALID;
10371 			printk("Non-zero Group Codes\n");
10372 			return;
10373 		}
10374 
10375 		/*
10376 		 * Seems to be okay.
10377 		 * Setup our data structures.
10378 		 */
10379 		if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10380 			tstate = ahd_alloc_tstate(ahd, target, channel);
10381 			if (tstate == NULL) {
10382 				xpt_print_path(ccb->ccb_h.path);
10383 				printk("Couldn't allocate tstate\n");
10384 				ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10385 				return;
10386 			}
10387 		}
10388 		lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10389 		if (lstate == NULL) {
10390 			xpt_print_path(ccb->ccb_h.path);
10391 			printk("Couldn't allocate lstate\n");
10392 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10393 			return;
10394 		}
10395 		status = xpt_create_path(&lstate->path, /*periph*/NULL,
10396 					 xpt_path_path_id(ccb->ccb_h.path),
10397 					 xpt_path_target_id(ccb->ccb_h.path),
10398 					 xpt_path_lun_id(ccb->ccb_h.path));
10399 		if (status != CAM_REQ_CMP) {
10400 			kfree(lstate);
10401 			xpt_print_path(ccb->ccb_h.path);
10402 			printk("Couldn't allocate path\n");
10403 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10404 			return;
10405 		}
10406 		SLIST_INIT(&lstate->accept_tios);
10407 		SLIST_INIT(&lstate->immed_notifies);
10408 		ahd_lock(ahd, &s);
10409 		ahd_pause(ahd);
10410 		if (target != CAM_TARGET_WILDCARD) {
10411 			tstate->enabled_luns[lun] = lstate;
10412 			ahd->enabled_luns++;
10413 
10414 			if ((ahd->features & AHD_MULTI_TID) != 0) {
10415 				u_int targid_mask;
10416 
10417 				targid_mask = ahd_inw(ahd, TARGID);
10418 				targid_mask |= target_mask;
10419 				ahd_outw(ahd, TARGID, targid_mask);
10420 				ahd_update_scsiid(ahd, targid_mask);
10421 			} else {
10422 				u_int our_id;
10423 				char  channel;
10424 
10425 				channel = SIM_CHANNEL(ahd, sim);
10426 				our_id = SIM_SCSI_ID(ahd, sim);
10427 
10428 				/*
10429 				 * This can only happen if selections
10430 				 * are not enabled
10431 				 */
10432 				if (target != our_id) {
10433 					u_int sblkctl;
10434 					char  cur_channel;
10435 					int   swap;
10436 
10437 					sblkctl = ahd_inb(ahd, SBLKCTL);
10438 					cur_channel = (sblkctl & SELBUSB)
10439 						    ? 'B' : 'A';
10440 					if ((ahd->features & AHD_TWIN) == 0)
10441 						cur_channel = 'A';
10442 					swap = cur_channel != channel;
10443 					ahd->our_id = target;
10444 
10445 					if (swap)
10446 						ahd_outb(ahd, SBLKCTL,
10447 							 sblkctl ^ SELBUSB);
10448 
10449 					ahd_outb(ahd, SCSIID, target);
10450 
10451 					if (swap)
10452 						ahd_outb(ahd, SBLKCTL, sblkctl);
10453 				}
10454 			}
10455 		} else
10456 			ahd->black_hole = lstate;
10457 		/* Allow select-in operations */
10458 		if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10459 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10460 			scsiseq1 |= ENSELI;
10461 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10462 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10463 			scsiseq1 |= ENSELI;
10464 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10465 		}
10466 		ahd_unpause(ahd);
10467 		ahd_unlock(ahd, &s);
10468 		ccb->ccb_h.status = CAM_REQ_CMP;
10469 		xpt_print_path(ccb->ccb_h.path);
10470 		printk("Lun now enabled for target mode\n");
10471 	} else {
10472 		struct scb *scb;
10473 		int i, empty;
10474 
10475 		if (lstate == NULL) {
10476 			ccb->ccb_h.status = CAM_LUN_INVALID;
10477 			return;
10478 		}
10479 
10480 		ahd_lock(ahd, &s);
10481 
10482 		ccb->ccb_h.status = CAM_REQ_CMP;
10483 		LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10484 			struct ccb_hdr *ccbh;
10485 
10486 			ccbh = &scb->io_ctx->ccb_h;
10487 			if (ccbh->func_code == XPT_CONT_TARGET_IO
10488 			 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10489 				printk("CTIO pending\n");
10490 				ccb->ccb_h.status = CAM_REQ_INVALID;
10491 				ahd_unlock(ahd, &s);
10492 				return;
10493 			}
10494 		}
10495 
10496 		if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10497 			printk("ATIOs pending\n");
10498 			ccb->ccb_h.status = CAM_REQ_INVALID;
10499 		}
10500 
10501 		if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10502 			printk("INOTs pending\n");
10503 			ccb->ccb_h.status = CAM_REQ_INVALID;
10504 		}
10505 
10506 		if (ccb->ccb_h.status != CAM_REQ_CMP) {
10507 			ahd_unlock(ahd, &s);
10508 			return;
10509 		}
10510 
10511 		xpt_print_path(ccb->ccb_h.path);
10512 		printk("Target mode disabled\n");
10513 		xpt_free_path(lstate->path);
10514 		kfree(lstate);
10515 
10516 		ahd_pause(ahd);
10517 		/* Can we clean up the target too? */
10518 		if (target != CAM_TARGET_WILDCARD) {
10519 			tstate->enabled_luns[lun] = NULL;
10520 			ahd->enabled_luns--;
10521 			for (empty = 1, i = 0; i < 8; i++)
10522 				if (tstate->enabled_luns[i] != NULL) {
10523 					empty = 0;
10524 					break;
10525 				}
10526 
10527 			if (empty) {
10528 				ahd_free_tstate(ahd, target, channel,
10529 						/*force*/FALSE);
10530 				if (ahd->features & AHD_MULTI_TID) {
10531 					u_int targid_mask;
10532 
10533 					targid_mask = ahd_inw(ahd, TARGID);
10534 					targid_mask &= ~target_mask;
10535 					ahd_outw(ahd, TARGID, targid_mask);
10536 					ahd_update_scsiid(ahd, targid_mask);
10537 				}
10538 			}
10539 		} else {
10540 
10541 			ahd->black_hole = NULL;
10542 
10543 			/*
10544 			 * We can't allow selections without
10545 			 * our black hole device.
10546 			 */
10547 			empty = TRUE;
10548 		}
10549 		if (ahd->enabled_luns == 0) {
10550 			/* Disallow select-in */
10551 			u_int scsiseq1;
10552 
10553 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10554 			scsiseq1 &= ~ENSELI;
10555 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10556 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10557 			scsiseq1 &= ~ENSELI;
10558 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10559 
10560 			if ((ahd->features & AHD_MULTIROLE) == 0) {
10561 				printk("Configuring Initiator Mode\n");
10562 				ahd->flags &= ~AHD_TARGETROLE;
10563 				ahd->flags |= AHD_INITIATORROLE;
10564 				ahd_pause(ahd);
10565 				ahd_loadseq(ahd);
10566 				ahd_restart(ahd);
10567 				/*
10568 				 * Unpaused.  The extra unpause
10569 				 * that follows is harmless.
10570 				 */
10571 			}
10572 		}
10573 		ahd_unpause(ahd);
10574 		ahd_unlock(ahd, &s);
10575 	}
10576 #endif
10577 }
10578 
10579 static void
10580 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10581 {
10582 #if NOT_YET
10583 	u_int scsiid_mask;
10584 	u_int scsiid;
10585 
10586 	if ((ahd->features & AHD_MULTI_TID) == 0)
10587 		panic("ahd_update_scsiid called on non-multitid unit\n");
10588 
10589 	/*
10590 	 * Since we will rely on the TARGID mask
10591 	 * for selection enables, ensure that OID
10592 	 * in SCSIID is not set to some other ID
10593 	 * that we don't want to allow selections on.
10594 	 */
10595 	if ((ahd->features & AHD_ULTRA2) != 0)
10596 		scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10597 	else
10598 		scsiid = ahd_inb(ahd, SCSIID);
10599 	scsiid_mask = 0x1 << (scsiid & OID);
10600 	if ((targid_mask & scsiid_mask) == 0) {
10601 		u_int our_id;
10602 
10603 		/* ffs counts from 1 */
10604 		our_id = ffs(targid_mask);
10605 		if (our_id == 0)
10606 			our_id = ahd->our_id;
10607 		else
10608 			our_id--;
10609 		scsiid &= TID;
10610 		scsiid |= our_id;
10611 	}
10612 	if ((ahd->features & AHD_ULTRA2) != 0)
10613 		ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10614 	else
10615 		ahd_outb(ahd, SCSIID, scsiid);
10616 #endif
10617 }
10618 
10619 static void
10620 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10621 {
10622 	struct target_cmd *cmd;
10623 
10624 	ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10625 	while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10626 
10627 		/*
10628 		 * Only advance through the queue if we
10629 		 * have the resources to process the command.
10630 		 */
10631 		if (ahd_handle_target_cmd(ahd, cmd) != 0)
10632 			break;
10633 
10634 		cmd->cmd_valid = 0;
10635 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10636 				ahd->shared_data_map.dmamap,
10637 				ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10638 				sizeof(struct target_cmd),
10639 				BUS_DMASYNC_PREREAD);
10640 		ahd->tqinfifonext++;
10641 
10642 		/*
10643 		 * Lazily update our position in the target mode incoming
10644 		 * command queue as seen by the sequencer.
10645 		 */
10646 		if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10647 			u_int hs_mailbox;
10648 
10649 			hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10650 			hs_mailbox &= ~HOST_TQINPOS;
10651 			hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10652 			ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10653 		}
10654 	}
10655 }
10656 
10657 static int
10658 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10659 {
10660 	struct	  ahd_tmode_tstate *tstate;
10661 	struct	  ahd_tmode_lstate *lstate;
10662 	struct	  ccb_accept_tio *atio;
10663 	uint8_t *byte;
10664 	int	  initiator;
10665 	int	  target;
10666 	int	  lun;
10667 
10668 	initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10669 	target = SCSIID_OUR_ID(cmd->scsiid);
10670 	lun    = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10671 
10672 	byte = cmd->bytes;
10673 	tstate = ahd->enabled_targets[target];
10674 	lstate = NULL;
10675 	if (tstate != NULL)
10676 		lstate = tstate->enabled_luns[lun];
10677 
10678 	/*
10679 	 * Commands for disabled luns go to the black hole driver.
10680 	 */
10681 	if (lstate == NULL)
10682 		lstate = ahd->black_hole;
10683 
10684 	atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10685 	if (atio == NULL) {
10686 		ahd->flags |= AHD_TQINFIFO_BLOCKED;
10687 		/*
10688 		 * Wait for more ATIOs from the peripheral driver for this lun.
10689 		 */
10690 		return (1);
10691 	} else
10692 		ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10693 #ifdef AHD_DEBUG
10694 	if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10695 		printk("Incoming command from %d for %d:%d%s\n",
10696 		       initiator, target, lun,
10697 		       lstate == ahd->black_hole ? "(Black Holed)" : "");
10698 #endif
10699 	SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10700 
10701 	if (lstate == ahd->black_hole) {
10702 		/* Fill in the wildcards */
10703 		atio->ccb_h.target_id = target;
10704 		atio->ccb_h.target_lun = lun;
10705 	}
10706 
10707 	/*
10708 	 * Package it up and send it off to
10709 	 * whomever has this lun enabled.
10710 	 */
10711 	atio->sense_len = 0;
10712 	atio->init_id = initiator;
10713 	if (byte[0] != 0xFF) {
10714 		/* Tag was included */
10715 		atio->tag_action = *byte++;
10716 		atio->tag_id = *byte++;
10717 		atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10718 	} else {
10719 		atio->ccb_h.flags = 0;
10720 	}
10721 	byte++;
10722 
10723 	/* Okay.  Now determine the cdb size based on the command code */
10724 	switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10725 	case 0:
10726 		atio->cdb_len = 6;
10727 		break;
10728 	case 1:
10729 	case 2:
10730 		atio->cdb_len = 10;
10731 		break;
10732 	case 4:
10733 		atio->cdb_len = 16;
10734 		break;
10735 	case 5:
10736 		atio->cdb_len = 12;
10737 		break;
10738 	case 3:
10739 	default:
10740 		/* Only copy the opcode. */
10741 		atio->cdb_len = 1;
10742 		printk("Reserved or VU command code type encountered\n");
10743 		break;
10744 	}
10745 
10746 	memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10747 
10748 	atio->ccb_h.status |= CAM_CDB_RECVD;
10749 
10750 	if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10751 		/*
10752 		 * We weren't allowed to disconnect.
10753 		 * We're hanging on the bus until a
10754 		 * continue target I/O comes in response
10755 		 * to this accept tio.
10756 		 */
10757 #ifdef AHD_DEBUG
10758 		if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10759 			printk("Received Immediate Command %d:%d:%d - %p\n",
10760 			       initiator, target, lun, ahd->pending_device);
10761 #endif
10762 		ahd->pending_device = lstate;
10763 		ahd_freeze_ccb((union ccb *)atio);
10764 		atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10765 	}
10766 	xpt_done((union ccb*)atio);
10767 	return (0);
10768 }
10769 
10770 #endif
10771