xref: /linux/drivers/scsi/aacraid/aachba.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <linux/dma-mapping.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE                        0x00
61 #define SENCODE_END_OF_DATA                     0x00
62 #define SENCODE_BECOMING_READY                  0x04
63 #define SENCODE_INIT_CMD_REQUIRED               0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
65 #define SENCODE_INVALID_COMMAND                 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE                0x21
67 #define SENCODE_INVALID_CDB_FIELD               0x24
68 #define SENCODE_LUN_NOT_SUPPORTED               0x25
69 #define SENCODE_INVALID_PARAM_FIELD             0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED             0x26
71 #define SENCODE_PARAM_VALUE_INVALID             0x26
72 #define SENCODE_RESET_OCCURRED                  0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED            0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE              0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE         0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR           0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
80 #define SENCODE_OVERLAPPED_COMMAND              0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE                       0x00
87 #define ASENCODE_END_OF_DATA                    0x05
88 #define ASENCODE_BECOMING_READY                 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED              0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
91 #define ASENCODE_INVALID_COMMAND                0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE               0x00
93 #define ASENCODE_INVALID_CDB_FIELD              0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED              0x00
95 #define ASENCODE_INVALID_PARAM_FIELD            0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED            0x01
97 #define ASENCODE_PARAM_VALUE_INVALID            0x02
98 #define ASENCODE_RESET_OCCURRED                 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED           0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE             0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR          0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
106 #define ASENCODE_OVERLAPPED_COMMAND             0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type  */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier  */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141 
142 /*
143  *	Non dasd selection is handled entirely in aachba now
144  */
145 
146 static int nondasd = -1;
147 static int dacmode = -1;
148 
149 static int commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152 
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
155 module_param(dacmode, int, S_IRUGO|S_IWUSR);
156 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
157 module_param(commit, int, S_IRUGO|S_IWUSR);
158 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
159 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for adapter to have it's kernel up and\nrunning. This is typically adjusted for large systems that do not have a BIOS.");
161 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for applications to pick up AIFs before\nderegistering them. This is typically adjusted for heavily burdened systems.");
163 
164 int numacb = -1;
165 module_param(numacb, int, S_IRUGO|S_IWUSR);
166 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid values are 512 and down. Default is to use suggestion from Firmware.");
167 
168 int acbsize = -1;
169 module_param(acbsize, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512, 2048, 4096 and 8192. Default is to use suggestion from Firmware.");
171 
172 int expose_physicals = -1;
173 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
174 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays. -1=protect 0=off, 1=on");
175 
176 
177 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
178 		struct fib *fibptr) {
179 	struct scsi_device *device;
180 
181 	if (unlikely(!scsicmd || !scsicmd->scsi_done )) {
182 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"))
183 ;
184                 aac_fib_complete(fibptr);
185                 aac_fib_free(fibptr);
186                 return 0;
187         }
188 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
189 	device = scsicmd->device;
190 	if (unlikely(!device || !scsi_device_online(device))) {
191 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
192 		aac_fib_complete(fibptr);
193 		aac_fib_free(fibptr);
194 		return 0;
195 	}
196 	return 1;
197 }
198 
199 /**
200  *	aac_get_config_status	-	check the adapter configuration
201  *	@common: adapter to query
202  *
203  *	Query config status, and commit the configuration if needed.
204  */
205 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
206 {
207 	int status = 0;
208 	struct fib * fibptr;
209 
210 	if (!(fibptr = aac_fib_alloc(dev)))
211 		return -ENOMEM;
212 
213 	aac_fib_init(fibptr);
214 	{
215 		struct aac_get_config_status *dinfo;
216 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
217 
218 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
219 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
220 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
221 	}
222 
223 	status = aac_fib_send(ContainerCommand,
224 			    fibptr,
225 			    sizeof (struct aac_get_config_status),
226 			    FsaNormal,
227 			    1, 1,
228 			    NULL, NULL);
229 	if (status < 0 ) {
230 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
231 	} else {
232 		struct aac_get_config_status_resp *reply
233 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
234 		dprintk((KERN_WARNING
235 		  "aac_get_config_status: response=%d status=%d action=%d\n",
236 		  le32_to_cpu(reply->response),
237 		  le32_to_cpu(reply->status),
238 		  le32_to_cpu(reply->data.action)));
239 		if ((le32_to_cpu(reply->response) != ST_OK) ||
240 		     (le32_to_cpu(reply->status) != CT_OK) ||
241 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
242 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
243 			status = -EINVAL;
244 		}
245 	}
246 	aac_fib_complete(fibptr);
247 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
248 	if (status >= 0) {
249 		if ((commit == 1) || commit_flag) {
250 			struct aac_commit_config * dinfo;
251 			aac_fib_init(fibptr);
252 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
253 
254 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
255 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
256 
257 			status = aac_fib_send(ContainerCommand,
258 				    fibptr,
259 				    sizeof (struct aac_commit_config),
260 				    FsaNormal,
261 				    1, 1,
262 				    NULL, NULL);
263 			aac_fib_complete(fibptr);
264 		} else if (commit == 0) {
265 			printk(KERN_WARNING
266 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
267 		}
268 	}
269 	aac_fib_free(fibptr);
270 	return status;
271 }
272 
273 /**
274  *	aac_get_containers	-	list containers
275  *	@common: adapter to probe
276  *
277  *	Make a list of all containers on this controller
278  */
279 int aac_get_containers(struct aac_dev *dev)
280 {
281 	struct fsa_dev_info *fsa_dev_ptr;
282 	u32 index;
283 	int status = 0;
284 	struct fib * fibptr;
285 	struct aac_get_container_count *dinfo;
286 	struct aac_get_container_count_resp *dresp;
287 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
288 
289 	if (!(fibptr = aac_fib_alloc(dev)))
290 		return -ENOMEM;
291 
292 	aac_fib_init(fibptr);
293 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
294 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
295 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
296 
297 	status = aac_fib_send(ContainerCommand,
298 		    fibptr,
299 		    sizeof (struct aac_get_container_count),
300 		    FsaNormal,
301 		    1, 1,
302 		    NULL, NULL);
303 	if (status >= 0) {
304 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
305 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
306 		aac_fib_complete(fibptr);
307 	}
308 	aac_fib_free(fibptr);
309 
310 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
311 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
312 	fsa_dev_ptr =  kmalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
313 			GFP_KERNEL);
314 	if (!fsa_dev_ptr)
315 		return -ENOMEM;
316 	memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
317 
318 	dev->fsa_dev = fsa_dev_ptr;
319 	dev->maximum_num_containers = maximum_num_containers;
320 
321 	for (index = 0; index < dev->maximum_num_containers; ) {
322 		fsa_dev_ptr[index].devname[0] = '\0';
323 
324 		status = aac_probe_container(dev, index);
325 
326 		if (status < 0) {
327 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
328 			break;
329 		}
330 
331 		/*
332 		 *	If there are no more containers, then stop asking.
333 		 */
334 		if (++index >= status)
335 			break;
336 	}
337 	return status;
338 }
339 
340 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
341 {
342 	void *buf;
343 	unsigned int transfer_len;
344 	struct scatterlist *sg = scsicmd->request_buffer;
345 
346 	if (scsicmd->use_sg) {
347 		buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
348 		transfer_len = min(sg->length, len + offset);
349 	} else {
350 		buf = scsicmd->request_buffer;
351 		transfer_len = min(scsicmd->request_bufflen, len + offset);
352 	}
353 	transfer_len -= offset;
354 	if (buf && transfer_len)
355 		memcpy(buf + offset, data, transfer_len);
356 
357 	if (scsicmd->use_sg)
358 		kunmap_atomic(buf - sg->offset, KM_IRQ0);
359 
360 }
361 
362 static void get_container_name_callback(void *context, struct fib * fibptr)
363 {
364 	struct aac_get_name_resp * get_name_reply;
365 	struct scsi_cmnd * scsicmd;
366 
367 	scsicmd = (struct scsi_cmnd *) context;
368 
369 	if (!aac_valid_context(scsicmd, fibptr))
370 		return;
371 
372 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
373 	BUG_ON(fibptr == NULL);
374 
375 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
376 	/* Failure is irrelevant, using default value instead */
377 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
378 	 && (get_name_reply->data[0] != '\0')) {
379 		char *sp = get_name_reply->data;
380 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
381 		while (*sp == ' ')
382 			++sp;
383 		if (*sp) {
384 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
385 			int count = sizeof(d);
386 			char *dp = d;
387 			do {
388 				*dp++ = (*sp) ? *sp++ : ' ';
389 			} while (--count > 0);
390 			aac_internal_transfer(scsicmd, d,
391 			  offsetof(struct inquiry_data, inqd_pid), sizeof(d));
392 		}
393 	}
394 
395 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
396 
397 	aac_fib_complete(fibptr);
398 	aac_fib_free(fibptr);
399 	scsicmd->scsi_done(scsicmd);
400 }
401 
402 /**
403  *	aac_get_container_name	-	get container name, none blocking.
404  */
405 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
406 {
407 	int status;
408 	struct aac_get_name *dinfo;
409 	struct fib * cmd_fibcontext;
410 	struct aac_dev * dev;
411 
412 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
413 
414 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
415 		return -ENOMEM;
416 
417 	aac_fib_init(cmd_fibcontext);
418 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
419 
420 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
421 	dinfo->type = cpu_to_le32(CT_READ_NAME);
422 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
423 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
424 
425 	status = aac_fib_send(ContainerCommand,
426 		  cmd_fibcontext,
427 		  sizeof (struct aac_get_name),
428 		  FsaNormal,
429 		  0, 1,
430 		  (fib_callback) get_container_name_callback,
431 		  (void *) scsicmd);
432 
433 	/*
434 	 *	Check that the command queued to the controller
435 	 */
436 	if (status == -EINPROGRESS) {
437 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
438 		return 0;
439 	}
440 
441 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
442 	aac_fib_complete(cmd_fibcontext);
443 	aac_fib_free(cmd_fibcontext);
444 	return -1;
445 }
446 
447 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
448 {
449 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
450 
451 	if (fsa_dev_ptr[scmd_id(scsicmd)].valid)
452 		return aac_scsi_cmd(scsicmd);
453 
454 	scsicmd->result = DID_NO_CONNECT << 16;
455 	scsicmd->scsi_done(scsicmd);
456 	return 0;
457 }
458 
459 static int _aac_probe_container2(void * context, struct fib * fibptr)
460 {
461 	struct fsa_dev_info *fsa_dev_ptr;
462 	int (*callback)(struct scsi_cmnd *);
463 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
464 
465 	if (!aac_valid_context(scsicmd, fibptr))
466 		return 0;
467 
468 	fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
469 
470 	scsicmd->SCp.Status = 0;
471 	if (fsa_dev_ptr) {
472 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
473 		fsa_dev_ptr += scmd_id(scsicmd);
474 
475 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
476 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
477 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
478 			fsa_dev_ptr->valid = 1;
479 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
480 			fsa_dev_ptr->size
481 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
482 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
483 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
484 		}
485 		if ((fsa_dev_ptr->valid & 1) == 0)
486 			fsa_dev_ptr->valid = 0;
487 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
488 	}
489 	aac_fib_complete(fibptr);
490 	aac_fib_free(fibptr);
491 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
492 	scsicmd->SCp.ptr = NULL;
493 	return (*callback)(scsicmd);
494 }
495 
496 static int _aac_probe_container1(void * context, struct fib * fibptr)
497 {
498 	struct scsi_cmnd * scsicmd;
499 	struct aac_mount * dresp;
500 	struct aac_query_mount *dinfo;
501 	int status;
502 
503 	dresp = (struct aac_mount *) fib_data(fibptr);
504 	dresp->mnt[0].capacityhigh = 0;
505 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
506 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE))
507 		return _aac_probe_container2(context, fibptr);
508 	scsicmd = (struct scsi_cmnd *) context;
509 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
510 
511 	if (!aac_valid_context(scsicmd, fibptr))
512 		return 0;
513 
514 	aac_fib_init(fibptr);
515 
516 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
517 
518 	dinfo->command = cpu_to_le32(VM_NameServe64);
519 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
520 	dinfo->type = cpu_to_le32(FT_FILESYS);
521 
522 	status = aac_fib_send(ContainerCommand,
523 			  fibptr,
524 			  sizeof(struct aac_query_mount),
525 			  FsaNormal,
526 			  0, 1,
527 			  (fib_callback) _aac_probe_container2,
528 			  (void *) scsicmd);
529 	/*
530 	 *	Check that the command queued to the controller
531 	 */
532 	if (status == -EINPROGRESS) {
533 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
534 		return 0;
535 	}
536 	if (status < 0) {
537 		/* Inherit results from VM_NameServe, if any */
538 		dresp->status = cpu_to_le32(ST_OK);
539 		return _aac_probe_container2(context, fibptr);
540 	}
541 	return 0;
542 }
543 
544 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
545 {
546 	struct fib * fibptr;
547 	int status = -ENOMEM;
548 
549 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
550 		struct aac_query_mount *dinfo;
551 
552 		aac_fib_init(fibptr);
553 
554 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
555 
556 		dinfo->command = cpu_to_le32(VM_NameServe);
557 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
558 		dinfo->type = cpu_to_le32(FT_FILESYS);
559 		scsicmd->SCp.ptr = (char *)callback;
560 
561 		status = aac_fib_send(ContainerCommand,
562 			  fibptr,
563 			  sizeof(struct aac_query_mount),
564 			  FsaNormal,
565 			  0, 1,
566 			  (fib_callback) _aac_probe_container1,
567 			  (void *) scsicmd);
568 		/*
569 		 *	Check that the command queued to the controller
570 		 */
571 		if (status == -EINPROGRESS) {
572 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
573 			return 0;
574 		}
575 		if (status < 0) {
576 			scsicmd->SCp.ptr = NULL;
577 			aac_fib_complete(fibptr);
578 			aac_fib_free(fibptr);
579 		}
580 	}
581 	if (status < 0) {
582 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
583 		if (fsa_dev_ptr) {
584 			fsa_dev_ptr += scmd_id(scsicmd);
585 			if ((fsa_dev_ptr->valid & 1) == 0) {
586 				fsa_dev_ptr->valid = 0;
587 				return (*callback)(scsicmd);
588 			}
589 		}
590 	}
591 	return status;
592 }
593 
594 /**
595  *	aac_probe_container		-	query a logical volume
596  *	@dev: device to query
597  *	@cid: container identifier
598  *
599  *	Queries the controller about the given volume. The volume information
600  *	is updated in the struct fsa_dev_info structure rather than returned.
601  */
602 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
603 {
604 	scsicmd->device = NULL;
605 	return 0;
606 }
607 
608 int aac_probe_container(struct aac_dev *dev, int cid)
609 {
610 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
611 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
612 	int status;
613 
614 	if (!scsicmd || !scsidev) {
615 		kfree(scsicmd);
616 		kfree(scsidev);
617 		return -ENOMEM;
618 	}
619 	scsicmd->list.next = NULL;
620 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))_aac_probe_container1;
621 
622 	scsicmd->device = scsidev;
623 	scsidev->sdev_state = 0;
624 	scsidev->id = cid;
625 	scsidev->host = dev->scsi_host_ptr;
626 
627 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
628 		while (scsicmd->device == scsidev)
629 			schedule();
630 	kfree(scsidev);
631 	status = scsicmd->SCp.Status;
632 	kfree(scsicmd);
633 	return status;
634 }
635 
636 /* Local Structure to set SCSI inquiry data strings */
637 struct scsi_inq {
638 	char vid[8];         /* Vendor ID */
639 	char pid[16];        /* Product ID */
640 	char prl[4];         /* Product Revision Level */
641 };
642 
643 /**
644  *	InqStrCopy	-	string merge
645  *	@a:	string to copy from
646  *	@b:	string to copy to
647  *
648  * 	Copy a String from one location to another
649  *	without copying \0
650  */
651 
652 static void inqstrcpy(char *a, char *b)
653 {
654 
655 	while(*a != (char)0)
656 		*b++ = *a++;
657 }
658 
659 static char *container_types[] = {
660         "None",
661         "Volume",
662         "Mirror",
663         "Stripe",
664         "RAID5",
665         "SSRW",
666         "SSRO",
667         "Morph",
668         "Legacy",
669         "RAID4",
670         "RAID10",
671         "RAID00",
672         "V-MIRRORS",
673         "PSEUDO R4",
674 	"RAID50",
675 	"RAID5D",
676 	"RAID5D0",
677 	"RAID1E",
678 	"RAID6",
679 	"RAID60",
680         "Unknown"
681 };
682 
683 
684 
685 /* Function: setinqstr
686  *
687  * Arguments: [1] pointer to void [1] int
688  *
689  * Purpose: Sets SCSI inquiry data strings for vendor, product
690  * and revision level. Allows strings to be set in platform dependant
691  * files instead of in OS dependant driver source.
692  */
693 
694 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
695 {
696 	struct scsi_inq *str;
697 
698 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
699 	memset(str, ' ', sizeof(*str));
700 
701 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
702 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
703 		int c = sizeof(str->vid);
704 		while (*cp && *cp != ' ' && --c)
705 			++cp;
706 		c = *cp;
707 		*cp = '\0';
708 		inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
709 		  str->vid);
710 		*cp = c;
711 		while (*cp && *cp != ' ')
712 			++cp;
713 		while (*cp == ' ')
714 			++cp;
715 		/* last six chars reserved for vol type */
716 		c = 0;
717 		if (strlen(cp) > sizeof(str->pid)) {
718 			c = cp[sizeof(str->pid)];
719 			cp[sizeof(str->pid)] = '\0';
720 		}
721 		inqstrcpy (cp, str->pid);
722 		if (c)
723 			cp[sizeof(str->pid)] = c;
724 	} else {
725 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
726 
727 		inqstrcpy (mp->vname, str->vid);
728 		/* last six chars reserved for vol type */
729 		inqstrcpy (mp->model, str->pid);
730 	}
731 
732 	if (tindex < ARRAY_SIZE(container_types)){
733 		char *findit = str->pid;
734 
735 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
736 		/* RAID is superfluous in the context of a RAID device */
737 		if (memcmp(findit-4, "RAID", 4) == 0)
738 			*(findit -= 4) = ' ';
739 		if (((findit - str->pid) + strlen(container_types[tindex]))
740 		 < (sizeof(str->pid) + sizeof(str->prl)))
741 			inqstrcpy (container_types[tindex], findit + 1);
742 	}
743 	inqstrcpy ("V1.0", str->prl);
744 }
745 
746 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
747 		      u8 a_sense_code, u8 incorrect_length,
748 		      u8 bit_pointer, u16 field_pointer,
749 		      u32 residue)
750 {
751 	sense_buf[0] = 0xF0;	/* Sense data valid, err code 70h (current error) */
752 	sense_buf[1] = 0;	/* Segment number, always zero */
753 
754 	if (incorrect_length) {
755 		sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
756 		sense_buf[3] = BYTE3(residue);
757 		sense_buf[4] = BYTE2(residue);
758 		sense_buf[5] = BYTE1(residue);
759 		sense_buf[6] = BYTE0(residue);
760 	} else
761 		sense_buf[2] = sense_key;	/* Sense key */
762 
763 	if (sense_key == ILLEGAL_REQUEST)
764 		sense_buf[7] = 10;	/* Additional sense length */
765 	else
766 		sense_buf[7] = 6;	/* Additional sense length */
767 
768 	sense_buf[12] = sense_code;	/* Additional sense code */
769 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
770 	if (sense_key == ILLEGAL_REQUEST) {
771 		sense_buf[15] = 0;
772 
773 		if (sense_code == SENCODE_INVALID_PARAM_FIELD)
774 			sense_buf[15] = 0x80;/* Std sense key specific field */
775 		/* Illegal parameter is in the parameter block */
776 
777 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
778 			sense_buf[15] = 0xc0;/* Std sense key specific field */
779 		/* Illegal parameter is in the CDB block */
780 		sense_buf[15] |= bit_pointer;
781 		sense_buf[16] = field_pointer >> 8;	/* MSB */
782 		sense_buf[17] = field_pointer;		/* LSB */
783 	}
784 }
785 
786 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
787 {
788 	if (lba & 0xffffffff00000000LL) {
789 		int cid = scmd_id(cmd);
790 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
791 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
792 			SAM_STAT_CHECK_CONDITION;
793 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
794 			    HARDWARE_ERROR,
795 			    SENCODE_INTERNAL_TARGET_FAILURE,
796 			    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
797 			    0, 0);
798 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
799 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(cmd->sense_buffer))
800 		    ? sizeof(cmd->sense_buffer)
801 		    : sizeof(dev->fsa_dev[cid].sense_data));
802 		cmd->scsi_done(cmd);
803 		return 1;
804 	}
805 	return 0;
806 }
807 
808 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
809 {
810 	return 0;
811 }
812 
813 static void io_callback(void *context, struct fib * fibptr);
814 
815 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
816 {
817 	u16 fibsize;
818 	struct aac_raw_io *readcmd;
819 	aac_fib_init(fib);
820 	readcmd = (struct aac_raw_io *) fib_data(fib);
821 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
822 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
823 	readcmd->count = cpu_to_le32(count<<9);
824 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
825 	readcmd->flags = cpu_to_le16(1);
826 	readcmd->bpTotal = 0;
827 	readcmd->bpComplete = 0;
828 
829 	aac_build_sgraw(cmd, &readcmd->sg);
830 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
831 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
832 	/*
833 	 *	Now send the Fib to the adapter
834 	 */
835 	return aac_fib_send(ContainerRawIo,
836 			  fib,
837 			  fibsize,
838 			  FsaNormal,
839 			  0, 1,
840 			  (fib_callback) io_callback,
841 			  (void *) cmd);
842 }
843 
844 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
845 {
846 	u16 fibsize;
847 	struct aac_read64 *readcmd;
848 	aac_fib_init(fib);
849 	readcmd = (struct aac_read64 *) fib_data(fib);
850 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
851 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
852 	readcmd->sector_count = cpu_to_le16(count);
853 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
854 	readcmd->pad   = 0;
855 	readcmd->flags = 0;
856 
857 	aac_build_sg64(cmd, &readcmd->sg);
858 	fibsize = sizeof(struct aac_read64) +
859 		((le32_to_cpu(readcmd->sg.count) - 1) *
860 		 sizeof (struct sgentry64));
861 	BUG_ON (fibsize > (fib->dev->max_fib_size -
862 				sizeof(struct aac_fibhdr)));
863 	/*
864 	 *	Now send the Fib to the adapter
865 	 */
866 	return aac_fib_send(ContainerCommand64,
867 			  fib,
868 			  fibsize,
869 			  FsaNormal,
870 			  0, 1,
871 			  (fib_callback) io_callback,
872 			  (void *) cmd);
873 }
874 
875 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
876 {
877 	u16 fibsize;
878 	struct aac_read *readcmd;
879 	aac_fib_init(fib);
880 	readcmd = (struct aac_read *) fib_data(fib);
881 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
882 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
883 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
884 	readcmd->count = cpu_to_le32(count * 512);
885 
886 	aac_build_sg(cmd, &readcmd->sg);
887 	fibsize = sizeof(struct aac_read) +
888 			((le32_to_cpu(readcmd->sg.count) - 1) *
889 			 sizeof (struct sgentry));
890 	BUG_ON (fibsize > (fib->dev->max_fib_size -
891 				sizeof(struct aac_fibhdr)));
892 	/*
893 	 *	Now send the Fib to the adapter
894 	 */
895 	return aac_fib_send(ContainerCommand,
896 			  fib,
897 			  fibsize,
898 			  FsaNormal,
899 			  0, 1,
900 			  (fib_callback) io_callback,
901 			  (void *) cmd);
902 }
903 
904 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
905 {
906 	u16 fibsize;
907 	struct aac_raw_io *writecmd;
908 	aac_fib_init(fib);
909 	writecmd = (struct aac_raw_io *) fib_data(fib);
910 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
911 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
912 	writecmd->count = cpu_to_le32(count<<9);
913 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
914 	writecmd->flags = 0;
915 	writecmd->bpTotal = 0;
916 	writecmd->bpComplete = 0;
917 
918 	aac_build_sgraw(cmd, &writecmd->sg);
919 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
920 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
921 	/*
922 	 *	Now send the Fib to the adapter
923 	 */
924 	return aac_fib_send(ContainerRawIo,
925 			  fib,
926 			  fibsize,
927 			  FsaNormal,
928 			  0, 1,
929 			  (fib_callback) io_callback,
930 			  (void *) cmd);
931 }
932 
933 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
934 {
935 	u16 fibsize;
936 	struct aac_write64 *writecmd;
937 	aac_fib_init(fib);
938 	writecmd = (struct aac_write64 *) fib_data(fib);
939 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
940 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
941 	writecmd->sector_count = cpu_to_le16(count);
942 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
943 	writecmd->pad	= 0;
944 	writecmd->flags	= 0;
945 
946 	aac_build_sg64(cmd, &writecmd->sg);
947 	fibsize = sizeof(struct aac_write64) +
948 		((le32_to_cpu(writecmd->sg.count) - 1) *
949 		 sizeof (struct sgentry64));
950 	BUG_ON (fibsize > (fib->dev->max_fib_size -
951 				sizeof(struct aac_fibhdr)));
952 	/*
953 	 *	Now send the Fib to the adapter
954 	 */
955 	return aac_fib_send(ContainerCommand64,
956 			  fib,
957 			  fibsize,
958 			  FsaNormal,
959 			  0, 1,
960 			  (fib_callback) io_callback,
961 			  (void *) cmd);
962 }
963 
964 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
965 {
966 	u16 fibsize;
967 	struct aac_write *writecmd;
968 	aac_fib_init(fib);
969 	writecmd = (struct aac_write *) fib_data(fib);
970 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
971 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
972 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
973 	writecmd->count = cpu_to_le32(count * 512);
974 	writecmd->sg.count = cpu_to_le32(1);
975 	/* ->stable is not used - it did mean which type of write */
976 
977 	aac_build_sg(cmd, &writecmd->sg);
978 	fibsize = sizeof(struct aac_write) +
979 		((le32_to_cpu(writecmd->sg.count) - 1) *
980 		 sizeof (struct sgentry));
981 	BUG_ON (fibsize > (fib->dev->max_fib_size -
982 				sizeof(struct aac_fibhdr)));
983 	/*
984 	 *	Now send the Fib to the adapter
985 	 */
986 	return aac_fib_send(ContainerCommand,
987 			  fib,
988 			  fibsize,
989 			  FsaNormal,
990 			  0, 1,
991 			  (fib_callback) io_callback,
992 			  (void *) cmd);
993 }
994 
995 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
996 {
997 	struct aac_srb * srbcmd;
998 	u32 flag;
999 	u32 timeout;
1000 
1001 	aac_fib_init(fib);
1002 	switch(cmd->sc_data_direction){
1003 	case DMA_TO_DEVICE:
1004 		flag = SRB_DataOut;
1005 		break;
1006 	case DMA_BIDIRECTIONAL:
1007 		flag = SRB_DataIn | SRB_DataOut;
1008 		break;
1009 	case DMA_FROM_DEVICE:
1010 		flag = SRB_DataIn;
1011 		break;
1012 	case DMA_NONE:
1013 	default:	/* shuts up some versions of gcc */
1014 		flag = SRB_NoDataXfer;
1015 		break;
1016 	}
1017 
1018 	srbcmd = (struct aac_srb*) fib_data(fib);
1019 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1020 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1021 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1022 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1023 	srbcmd->flags    = cpu_to_le32(flag);
1024 	timeout = cmd->timeout_per_command/HZ;
1025 	if (timeout == 0)
1026 		timeout = 1;
1027 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1028 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1029 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1030 	return srbcmd;
1031 }
1032 
1033 static void aac_srb_callback(void *context, struct fib * fibptr);
1034 
1035 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1036 {
1037 	u16 fibsize;
1038 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1039 
1040 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1041 	srbcmd->count = cpu_to_le32(cmd->request_bufflen);
1042 
1043 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1044 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1045 	/*
1046 	 *	Build Scatter/Gather list
1047 	 */
1048 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1049 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1050 		 sizeof (struct sgentry64));
1051 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1052 				sizeof(struct aac_fibhdr)));
1053 
1054 	/*
1055 	 *	Now send the Fib to the adapter
1056 	 */
1057 	return aac_fib_send(ScsiPortCommand64, fib,
1058 				fibsize, FsaNormal, 0, 1,
1059 				  (fib_callback) aac_srb_callback,
1060 				  (void *) cmd);
1061 }
1062 
1063 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1064 {
1065 	u16 fibsize;
1066 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1067 
1068 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1069 	srbcmd->count = cpu_to_le32(cmd->request_bufflen);
1070 
1071 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1072 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1073 	/*
1074 	 *	Build Scatter/Gather list
1075 	 */
1076 	fibsize = sizeof (struct aac_srb) +
1077 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1078 		 sizeof (struct sgentry));
1079 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1080 				sizeof(struct aac_fibhdr)));
1081 
1082 	/*
1083 	 *	Now send the Fib to the adapter
1084 	 */
1085 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1086 				  (fib_callback) aac_srb_callback, (void *) cmd);
1087 }
1088 
1089 int aac_get_adapter_info(struct aac_dev* dev)
1090 {
1091 	struct fib* fibptr;
1092 	int rcode;
1093 	u32 tmp;
1094 	struct aac_adapter_info *info;
1095 	struct aac_bus_info *command;
1096 	struct aac_bus_info_response *bus_info;
1097 
1098 	if (!(fibptr = aac_fib_alloc(dev)))
1099 		return -ENOMEM;
1100 
1101 	aac_fib_init(fibptr);
1102 	info = (struct aac_adapter_info *) fib_data(fibptr);
1103 	memset(info,0,sizeof(*info));
1104 
1105 	rcode = aac_fib_send(RequestAdapterInfo,
1106 			 fibptr,
1107 			 sizeof(*info),
1108 			 FsaNormal,
1109 			 -1, 1, /* First `interrupt' command uses special wait */
1110 			 NULL,
1111 			 NULL);
1112 
1113 	if (rcode < 0) {
1114 		aac_fib_complete(fibptr);
1115 		aac_fib_free(fibptr);
1116 		return rcode;
1117 	}
1118 	memcpy(&dev->adapter_info, info, sizeof(*info));
1119 
1120 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1121 		struct aac_supplement_adapter_info * info;
1122 
1123 		aac_fib_init(fibptr);
1124 
1125 		info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1126 
1127 		memset(info,0,sizeof(*info));
1128 
1129 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1130 				 fibptr,
1131 				 sizeof(*info),
1132 				 FsaNormal,
1133 				 1, 1,
1134 				 NULL,
1135 				 NULL);
1136 
1137 		if (rcode >= 0)
1138 			memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
1139 	}
1140 
1141 
1142 	/*
1143 	 * GetBusInfo
1144 	 */
1145 
1146 	aac_fib_init(fibptr);
1147 
1148 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1149 
1150 	memset(bus_info, 0, sizeof(*bus_info));
1151 
1152 	command = (struct aac_bus_info *)bus_info;
1153 
1154 	command->Command = cpu_to_le32(VM_Ioctl);
1155 	command->ObjType = cpu_to_le32(FT_DRIVE);
1156 	command->MethodId = cpu_to_le32(1);
1157 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1158 
1159 	rcode = aac_fib_send(ContainerCommand,
1160 			 fibptr,
1161 			 sizeof (*bus_info),
1162 			 FsaNormal,
1163 			 1, 1,
1164 			 NULL, NULL);
1165 
1166 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1167 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1168 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1169 	}
1170 
1171 	if (!dev->in_reset) {
1172 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1173 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1174 			dev->name,
1175 			dev->id,
1176 			tmp>>24,
1177 			(tmp>>16)&0xff,
1178 			tmp&0xff,
1179 			le32_to_cpu(dev->adapter_info.kernelbuild),
1180 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1181 			dev->supplement_adapter_info.BuildDate);
1182 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1183 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1184 			dev->name, dev->id,
1185 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1186 			le32_to_cpu(dev->adapter_info.monitorbuild));
1187 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1188 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1189 			dev->name, dev->id,
1190 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1191 			le32_to_cpu(dev->adapter_info.biosbuild));
1192 		if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1193 			printk(KERN_INFO "%s%d: serial %x\n",
1194 				dev->name, dev->id,
1195 				le32_to_cpu(dev->adapter_info.serial[0]));
1196 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1197 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1198 			  dev->name, dev->id,
1199 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1200 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1201 		}
1202 	}
1203 
1204 	dev->nondasd_support = 0;
1205 	dev->raid_scsi_mode = 0;
1206 	if(dev->adapter_info.options & AAC_OPT_NONDASD){
1207 		dev->nondasd_support = 1;
1208 	}
1209 
1210 	/*
1211 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1212 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1213 	 * force nondasd support on. If we decide to allow the non-dasd flag
1214 	 * additional changes changes will have to be made to support
1215 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1216 	 * changed to support the new dev->raid_scsi_mode flag instead of
1217 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1218 	 * function aac_detect will have to be modified where it sets up the
1219 	 * max number of channels based on the aac->nondasd_support flag only.
1220 	 */
1221 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1222 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1223 		dev->nondasd_support = 1;
1224 		dev->raid_scsi_mode = 1;
1225 	}
1226 	if (dev->raid_scsi_mode != 0)
1227 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1228 				dev->name, dev->id);
1229 
1230 	if(nondasd != -1) {
1231 		dev->nondasd_support = (nondasd!=0);
1232 	}
1233 	if(dev->nondasd_support != 0){
1234 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1235 	}
1236 
1237 	dev->dac_support = 0;
1238 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
1239 		printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
1240 		dev->dac_support = 1;
1241 	}
1242 
1243 	if(dacmode != -1) {
1244 		dev->dac_support = (dacmode!=0);
1245 	}
1246 	if(dev->dac_support != 0) {
1247 		if (!pci_set_dma_mask(dev->pdev, DMA_64BIT_MASK) &&
1248 			!pci_set_consistent_dma_mask(dev->pdev, DMA_64BIT_MASK)) {
1249 			printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1250 				dev->name, dev->id);
1251 		} else if (!pci_set_dma_mask(dev->pdev, DMA_32BIT_MASK) &&
1252 			!pci_set_consistent_dma_mask(dev->pdev, DMA_32BIT_MASK)) {
1253 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1254 				dev->name, dev->id);
1255 			dev->dac_support = 0;
1256 		} else {
1257 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1258 				dev->name, dev->id);
1259 			rcode = -ENOMEM;
1260 		}
1261 	}
1262 	/*
1263 	 * Deal with configuring for the individualized limits of each packet
1264 	 * interface.
1265 	 */
1266 	dev->a_ops.adapter_scsi = (dev->dac_support)
1267 				? aac_scsi_64
1268 				: aac_scsi_32;
1269 	if (dev->raw_io_interface) {
1270 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1271 					? aac_bounds_64
1272 					: aac_bounds_32;
1273 		dev->a_ops.adapter_read = aac_read_raw_io;
1274 		dev->a_ops.adapter_write = aac_write_raw_io;
1275 	} else {
1276 		dev->a_ops.adapter_bounds = aac_bounds_32;
1277 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1278 			sizeof(struct aac_fibhdr) -
1279 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1280 				sizeof(struct sgentry);
1281 		if (dev->dac_support) {
1282 			dev->a_ops.adapter_read = aac_read_block64;
1283 			dev->a_ops.adapter_write = aac_write_block64;
1284 			/*
1285 			 * 38 scatter gather elements
1286 			 */
1287 			dev->scsi_host_ptr->sg_tablesize =
1288 				(dev->max_fib_size -
1289 				sizeof(struct aac_fibhdr) -
1290 				sizeof(struct aac_write64) +
1291 				sizeof(struct sgentry64)) /
1292 					sizeof(struct sgentry64);
1293 		} else {
1294 			dev->a_ops.adapter_read = aac_read_block;
1295 			dev->a_ops.adapter_write = aac_write_block;
1296 		}
1297 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1298 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1299 			/*
1300 			 * Worst case size that could cause sg overflow when
1301 			 * we break up SG elements that are larger than 64KB.
1302 			 * Would be nice if we could tell the SCSI layer what
1303 			 * the maximum SG element size can be. Worst case is
1304 			 * (sg_tablesize-1) 4KB elements with one 64KB
1305 			 * element.
1306 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1307 			 */
1308 			dev->scsi_host_ptr->max_sectors =
1309 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1310 		}
1311 	}
1312 
1313 	aac_fib_complete(fibptr);
1314 	aac_fib_free(fibptr);
1315 
1316 	return rcode;
1317 }
1318 
1319 
1320 static void io_callback(void *context, struct fib * fibptr)
1321 {
1322 	struct aac_dev *dev;
1323 	struct aac_read_reply *readreply;
1324 	struct scsi_cmnd *scsicmd;
1325 	u32 cid;
1326 
1327 	scsicmd = (struct scsi_cmnd *) context;
1328 
1329 	if (!aac_valid_context(scsicmd, fibptr))
1330 		return;
1331 
1332 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1333 	cid = scmd_id(scsicmd);
1334 
1335 	if (nblank(dprintk(x))) {
1336 		u64 lba;
1337 		switch (scsicmd->cmnd[0]) {
1338 		case WRITE_6:
1339 		case READ_6:
1340 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1341 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1342 			break;
1343 		case WRITE_16:
1344 		case READ_16:
1345 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1346 			      ((u64)scsicmd->cmnd[3] << 48) |
1347 			      ((u64)scsicmd->cmnd[4] << 40) |
1348 			      ((u64)scsicmd->cmnd[5] << 32) |
1349 			      ((u64)scsicmd->cmnd[6] << 24) |
1350 			      (scsicmd->cmnd[7] << 16) |
1351 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1352 			break;
1353 		case WRITE_12:
1354 		case READ_12:
1355 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1356 			      (scsicmd->cmnd[3] << 16) |
1357 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1358 			break;
1359 		default:
1360 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1361 			       (scsicmd->cmnd[3] << 16) |
1362 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1363 			break;
1364 		}
1365 		printk(KERN_DEBUG
1366 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1367 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1368 	}
1369 
1370 	BUG_ON(fibptr == NULL);
1371 
1372 	if(scsicmd->use_sg)
1373 		pci_unmap_sg(dev->pdev,
1374 			(struct scatterlist *)scsicmd->request_buffer,
1375 			scsicmd->use_sg,
1376 			scsicmd->sc_data_direction);
1377 	else if(scsicmd->request_bufflen)
1378 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
1379 				 scsicmd->request_bufflen,
1380 				 scsicmd->sc_data_direction);
1381 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1382 	if (le32_to_cpu(readreply->status) == ST_OK)
1383 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1384 	else {
1385 #ifdef AAC_DETAILED_STATUS_INFO
1386 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1387 		  le32_to_cpu(readreply->status));
1388 #endif
1389 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1390 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1391 				    HARDWARE_ERROR,
1392 				    SENCODE_INTERNAL_TARGET_FAILURE,
1393 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1394 				    0, 0);
1395 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1396 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1397 		    ? sizeof(scsicmd->sense_buffer)
1398 		    : sizeof(dev->fsa_dev[cid].sense_data));
1399 	}
1400 	aac_fib_complete(fibptr);
1401 	aac_fib_free(fibptr);
1402 
1403 	scsicmd->scsi_done(scsicmd);
1404 }
1405 
1406 static int aac_read(struct scsi_cmnd * scsicmd)
1407 {
1408 	u64 lba;
1409 	u32 count;
1410 	int status;
1411 	struct aac_dev *dev;
1412 	struct fib * cmd_fibcontext;
1413 
1414 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1415 	/*
1416 	 *	Get block address and transfer length
1417 	 */
1418 	switch (scsicmd->cmnd[0]) {
1419 	case READ_6:
1420 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1421 
1422 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1423 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1424 		count = scsicmd->cmnd[4];
1425 
1426 		if (count == 0)
1427 			count = 256;
1428 		break;
1429 	case READ_16:
1430 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1431 
1432 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
1433 		 	((u64)scsicmd->cmnd[3] << 48) |
1434 			((u64)scsicmd->cmnd[4] << 40) |
1435 			((u64)scsicmd->cmnd[5] << 32) |
1436 			((u64)scsicmd->cmnd[6] << 24) |
1437 			(scsicmd->cmnd[7] << 16) |
1438 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1439 		count = (scsicmd->cmnd[10] << 24) |
1440 			(scsicmd->cmnd[11] << 16) |
1441 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1442 		break;
1443 	case READ_12:
1444 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1445 
1446 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1447 			(scsicmd->cmnd[3] << 16) |
1448 		    	(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1449 		count = (scsicmd->cmnd[6] << 24) |
1450 			(scsicmd->cmnd[7] << 16) |
1451 		      	(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1452 		break;
1453 	default:
1454 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1455 
1456 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1457 			(scsicmd->cmnd[3] << 16) |
1458 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1459 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1460 		break;
1461 	}
1462 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1463 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1464 	if (aac_adapter_bounds(dev,scsicmd,lba))
1465 		return 0;
1466 	/*
1467 	 *	Alocate and initialize a Fib
1468 	 */
1469 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1470 		return -1;
1471 	}
1472 
1473 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1474 
1475 	/*
1476 	 *	Check that the command queued to the controller
1477 	 */
1478 	if (status == -EINPROGRESS) {
1479 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1480 		return 0;
1481 	}
1482 
1483 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1484 	/*
1485 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1486 	 */
1487 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1488 	scsicmd->scsi_done(scsicmd);
1489 	aac_fib_complete(cmd_fibcontext);
1490 	aac_fib_free(cmd_fibcontext);
1491 	return 0;
1492 }
1493 
1494 static int aac_write(struct scsi_cmnd * scsicmd)
1495 {
1496 	u64 lba;
1497 	u32 count;
1498 	int status;
1499 	struct aac_dev *dev;
1500 	struct fib * cmd_fibcontext;
1501 
1502 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1503 	/*
1504 	 *	Get block address and transfer length
1505 	 */
1506 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1507 	{
1508 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1509 		count = scsicmd->cmnd[4];
1510 		if (count == 0)
1511 			count = 256;
1512 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1513 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1514 
1515 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
1516 			((u64)scsicmd->cmnd[3] << 48) |
1517 			((u64)scsicmd->cmnd[4] << 40) |
1518 			((u64)scsicmd->cmnd[5] << 32) |
1519 			((u64)scsicmd->cmnd[6] << 24) |
1520 			(scsicmd->cmnd[7] << 16) |
1521 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1522 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1523 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1524 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1525 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1526 
1527 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1528 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1529 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1530 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1531 	} else {
1532 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1533 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1534 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1535 	}
1536 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1537 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1538 	if (aac_adapter_bounds(dev,scsicmd,lba))
1539 		return 0;
1540 	/*
1541 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1542 	 */
1543 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1544 		scsicmd->result = DID_ERROR << 16;
1545 		scsicmd->scsi_done(scsicmd);
1546 		return 0;
1547 	}
1548 
1549 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count);
1550 
1551 	/*
1552 	 *	Check that the command queued to the controller
1553 	 */
1554 	if (status == -EINPROGRESS) {
1555 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1556 		return 0;
1557 	}
1558 
1559 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1560 	/*
1561 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1562 	 */
1563 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1564 	scsicmd->scsi_done(scsicmd);
1565 
1566 	aac_fib_complete(cmd_fibcontext);
1567 	aac_fib_free(cmd_fibcontext);
1568 	return 0;
1569 }
1570 
1571 static void synchronize_callback(void *context, struct fib *fibptr)
1572 {
1573 	struct aac_synchronize_reply *synchronizereply;
1574 	struct scsi_cmnd *cmd;
1575 
1576 	cmd = context;
1577 
1578 	if (!aac_valid_context(cmd, fibptr))
1579 		return;
1580 
1581 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1582 				smp_processor_id(), jiffies));
1583 	BUG_ON(fibptr == NULL);
1584 
1585 
1586 	synchronizereply = fib_data(fibptr);
1587 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1588 		cmd->result = DID_OK << 16 |
1589 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1590 	else {
1591 		struct scsi_device *sdev = cmd->device;
1592 		struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1593 		u32 cid = sdev_id(sdev);
1594 		printk(KERN_WARNING
1595 		     "synchronize_callback: synchronize failed, status = %d\n",
1596 		     le32_to_cpu(synchronizereply->status));
1597 		cmd->result = DID_OK << 16 |
1598 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1599 		set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1600 				    HARDWARE_ERROR,
1601 				    SENCODE_INTERNAL_TARGET_FAILURE,
1602 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1603 				    0, 0);
1604 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1605 		  min(sizeof(dev->fsa_dev[cid].sense_data),
1606 			  sizeof(cmd->sense_buffer)));
1607 	}
1608 
1609 	aac_fib_complete(fibptr);
1610 	aac_fib_free(fibptr);
1611 	cmd->scsi_done(cmd);
1612 }
1613 
1614 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1615 {
1616 	int status;
1617 	struct fib *cmd_fibcontext;
1618 	struct aac_synchronize *synchronizecmd;
1619 	struct scsi_cmnd *cmd;
1620 	struct scsi_device *sdev = scsicmd->device;
1621 	int active = 0;
1622 	struct aac_dev *aac;
1623 	unsigned long flags;
1624 
1625 	/*
1626 	 * Wait for all outstanding queued commands to complete to this
1627 	 * specific target (block).
1628 	 */
1629 	spin_lock_irqsave(&sdev->list_lock, flags);
1630 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1631 		if (cmd != scsicmd && cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1632 			++active;
1633 			break;
1634 		}
1635 
1636 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1637 
1638 	/*
1639 	 *	Yield the processor (requeue for later)
1640 	 */
1641 	if (active)
1642 		return SCSI_MLQUEUE_DEVICE_BUSY;
1643 
1644 	aac = (struct aac_dev *)scsicmd->device->host->hostdata;
1645 	if (aac->in_reset)
1646 		return SCSI_MLQUEUE_HOST_BUSY;
1647 
1648 	/*
1649 	 *	Allocate and initialize a Fib
1650 	 */
1651 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1652 		return SCSI_MLQUEUE_HOST_BUSY;
1653 
1654 	aac_fib_init(cmd_fibcontext);
1655 
1656 	synchronizecmd = fib_data(cmd_fibcontext);
1657 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1658 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1659 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1660 	synchronizecmd->count =
1661 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1662 
1663 	/*
1664 	 *	Now send the Fib to the adapter
1665 	 */
1666 	status = aac_fib_send(ContainerCommand,
1667 		  cmd_fibcontext,
1668 		  sizeof(struct aac_synchronize),
1669 		  FsaNormal,
1670 		  0, 1,
1671 		  (fib_callback)synchronize_callback,
1672 		  (void *)scsicmd);
1673 
1674 	/*
1675 	 *	Check that the command queued to the controller
1676 	 */
1677 	if (status == -EINPROGRESS) {
1678 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1679 		return 0;
1680 	}
1681 
1682 	printk(KERN_WARNING
1683 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1684 	aac_fib_complete(cmd_fibcontext);
1685 	aac_fib_free(cmd_fibcontext);
1686 	return SCSI_MLQUEUE_HOST_BUSY;
1687 }
1688 
1689 /**
1690  *	aac_scsi_cmd()		-	Process SCSI command
1691  *	@scsicmd:		SCSI command block
1692  *
1693  *	Emulate a SCSI command and queue the required request for the
1694  *	aacraid firmware.
1695  */
1696 
1697 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1698 {
1699 	u32 cid = 0;
1700 	struct Scsi_Host *host = scsicmd->device->host;
1701 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1702 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1703 
1704 	if (fsa_dev_ptr == NULL)
1705 		return -1;
1706 	/*
1707 	 *	If the bus, id or lun is out of range, return fail
1708 	 *	Test does not apply to ID 16, the pseudo id for the controller
1709 	 *	itself.
1710 	 */
1711 	if (scmd_id(scsicmd) != host->this_id) {
1712 		if ((scmd_channel(scsicmd) == CONTAINER_CHANNEL)) {
1713 			if((scmd_id(scsicmd) >= dev->maximum_num_containers) ||
1714 					(scsicmd->device->lun != 0)) {
1715 				scsicmd->result = DID_NO_CONNECT << 16;
1716 				scsicmd->scsi_done(scsicmd);
1717 				return 0;
1718 			}
1719 			cid = scmd_id(scsicmd);
1720 
1721 			/*
1722 			 *	If the target container doesn't exist, it may have
1723 			 *	been newly created
1724 			 */
1725 			if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1726 				switch (scsicmd->cmnd[0]) {
1727 				case SERVICE_ACTION_IN:
1728 					if (!(dev->raw_io_interface) ||
1729 					    !(dev->raw_io_64) ||
1730 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1731 						break;
1732 				case INQUIRY:
1733 				case READ_CAPACITY:
1734 				case TEST_UNIT_READY:
1735 					if (dev->in_reset)
1736 						return -1;
1737 					return _aac_probe_container(scsicmd,
1738 							aac_probe_container_callback2);
1739 				default:
1740 					break;
1741 				}
1742 			}
1743 		} else {  /* check for physical non-dasd devices */
1744 			if ((dev->nondasd_support == 1) || expose_physicals) {
1745 				if (dev->in_reset)
1746 					return -1;
1747 				return aac_send_srb_fib(scsicmd);
1748 			} else {
1749 				scsicmd->result = DID_NO_CONNECT << 16;
1750 				scsicmd->scsi_done(scsicmd);
1751 				return 0;
1752 			}
1753 		}
1754 	}
1755 	/*
1756 	 * else Command for the controller itself
1757 	 */
1758 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
1759 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
1760 	{
1761 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1762 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1763 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1764 			    ILLEGAL_REQUEST,
1765 			    SENCODE_INVALID_COMMAND,
1766 			    ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1767 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1768 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1769 		    ? sizeof(scsicmd->sense_buffer)
1770 		    : sizeof(dev->fsa_dev[cid].sense_data));
1771 		scsicmd->scsi_done(scsicmd);
1772 		return 0;
1773 	}
1774 
1775 
1776 	/* Handle commands here that don't really require going out to the adapter */
1777 	switch (scsicmd->cmnd[0]) {
1778 	case INQUIRY:
1779 	{
1780 		struct inquiry_data inq_data;
1781 
1782 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scmd_id(scsicmd)));
1783 		memset(&inq_data, 0, sizeof (struct inquiry_data));
1784 
1785 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
1786 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1787 		inq_data.inqd_len = 31;
1788 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
1789 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
1790 		/*
1791 		 *	Set the Vendor, Product, and Revision Level
1792 		 *	see: <vendor>.c i.e. aac.c
1793 		 */
1794 		if (scmd_id(scsicmd) == host->this_id) {
1795 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
1796 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
1797 			aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1798 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1799 			scsicmd->scsi_done(scsicmd);
1800 			return 0;
1801 		}
1802 		if (dev->in_reset)
1803 			return -1;
1804 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1805 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
1806 		aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1807 		return aac_get_container_name(scsicmd);
1808 	}
1809 	case SERVICE_ACTION_IN:
1810 		if (!(dev->raw_io_interface) ||
1811 		    !(dev->raw_io_64) ||
1812 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1813 			break;
1814 	{
1815 		u64 capacity;
1816 		char cp[13];
1817 
1818 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1819 		capacity = fsa_dev_ptr[cid].size - 1;
1820 		cp[0] = (capacity >> 56) & 0xff;
1821 		cp[1] = (capacity >> 48) & 0xff;
1822 		cp[2] = (capacity >> 40) & 0xff;
1823 		cp[3] = (capacity >> 32) & 0xff;
1824 		cp[4] = (capacity >> 24) & 0xff;
1825 		cp[5] = (capacity >> 16) & 0xff;
1826 		cp[6] = (capacity >> 8) & 0xff;
1827 		cp[7] = (capacity >> 0) & 0xff;
1828 		cp[8] = 0;
1829 		cp[9] = 0;
1830 		cp[10] = 2;
1831 		cp[11] = 0;
1832 		cp[12] = 0;
1833 		aac_internal_transfer(scsicmd, cp, 0,
1834 		  min_t(size_t, scsicmd->cmnd[13], sizeof(cp)));
1835 		if (sizeof(cp) < scsicmd->cmnd[13]) {
1836 			unsigned int len, offset = sizeof(cp);
1837 
1838 			memset(cp, 0, offset);
1839 			do {
1840 				len = min_t(size_t, scsicmd->cmnd[13] - offset,
1841 						sizeof(cp));
1842 				aac_internal_transfer(scsicmd, cp, offset, len);
1843 			} while ((offset += len) < scsicmd->cmnd[13]);
1844 		}
1845 
1846 		/* Do not cache partition table for arrays */
1847 		scsicmd->device->removable = 1;
1848 
1849 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1850 		scsicmd->scsi_done(scsicmd);
1851 
1852 		return 0;
1853 	}
1854 
1855 	case READ_CAPACITY:
1856 	{
1857 		u32 capacity;
1858 		char cp[8];
1859 
1860 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1861 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1862 			capacity = fsa_dev_ptr[cid].size - 1;
1863 		else
1864 			capacity = (u32)-1;
1865 
1866 		cp[0] = (capacity >> 24) & 0xff;
1867 		cp[1] = (capacity >> 16) & 0xff;
1868 		cp[2] = (capacity >> 8) & 0xff;
1869 		cp[3] = (capacity >> 0) & 0xff;
1870 		cp[4] = 0;
1871 		cp[5] = 0;
1872 		cp[6] = 2;
1873 		cp[7] = 0;
1874 		aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1875 		/* Do not cache partition table for arrays */
1876 		scsicmd->device->removable = 1;
1877 
1878 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1879 		scsicmd->scsi_done(scsicmd);
1880 
1881 		return 0;
1882 	}
1883 
1884 	case MODE_SENSE:
1885 	{
1886 		char mode_buf[4];
1887 
1888 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1889 		mode_buf[0] = 3;	/* Mode data length */
1890 		mode_buf[1] = 0;	/* Medium type - default */
1891 		mode_buf[2] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1892 		mode_buf[3] = 0;	/* Block descriptor length */
1893 
1894 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1895 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1896 		scsicmd->scsi_done(scsicmd);
1897 
1898 		return 0;
1899 	}
1900 	case MODE_SENSE_10:
1901 	{
1902 		char mode_buf[8];
1903 
1904 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1905 		mode_buf[0] = 0;	/* Mode data length (MSB) */
1906 		mode_buf[1] = 6;	/* Mode data length (LSB) */
1907 		mode_buf[2] = 0;	/* Medium type - default */
1908 		mode_buf[3] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1909 		mode_buf[4] = 0;	/* reserved */
1910 		mode_buf[5] = 0;	/* reserved */
1911 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
1912 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
1913 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1914 
1915 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1916 		scsicmd->scsi_done(scsicmd);
1917 
1918 		return 0;
1919 	}
1920 	case REQUEST_SENSE:
1921 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1922 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1923 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1924 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1925 		scsicmd->scsi_done(scsicmd);
1926 		return 0;
1927 
1928 	case ALLOW_MEDIUM_REMOVAL:
1929 		dprintk((KERN_DEBUG "LOCK command.\n"));
1930 		if (scsicmd->cmnd[4])
1931 			fsa_dev_ptr[cid].locked = 1;
1932 		else
1933 			fsa_dev_ptr[cid].locked = 0;
1934 
1935 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1936 		scsicmd->scsi_done(scsicmd);
1937 		return 0;
1938 	/*
1939 	 *	These commands are all No-Ops
1940 	 */
1941 	case TEST_UNIT_READY:
1942 	case RESERVE:
1943 	case RELEASE:
1944 	case REZERO_UNIT:
1945 	case REASSIGN_BLOCKS:
1946 	case SEEK_10:
1947 	case START_STOP:
1948 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1949 		scsicmd->scsi_done(scsicmd);
1950 		return 0;
1951 	}
1952 
1953 	switch (scsicmd->cmnd[0])
1954 	{
1955 		case READ_6:
1956 		case READ_10:
1957 		case READ_12:
1958 		case READ_16:
1959 			if (dev->in_reset)
1960 				return -1;
1961 			/*
1962 			 *	Hack to keep track of ordinal number of the device that
1963 			 *	corresponds to a container. Needed to convert
1964 			 *	containers to /dev/sd device names
1965 			 */
1966 
1967 			if (scsicmd->request->rq_disk)
1968 				strlcpy(fsa_dev_ptr[cid].devname,
1969 				scsicmd->request->rq_disk->disk_name,
1970 			  	min(sizeof(fsa_dev_ptr[cid].devname),
1971 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
1972 
1973 			return aac_read(scsicmd);
1974 
1975 		case WRITE_6:
1976 		case WRITE_10:
1977 		case WRITE_12:
1978 		case WRITE_16:
1979 			if (dev->in_reset)
1980 				return -1;
1981 			return aac_write(scsicmd);
1982 
1983 		case SYNCHRONIZE_CACHE:
1984 			/* Issue FIB to tell Firmware to flush it's cache */
1985 			return aac_synchronize(scsicmd);
1986 
1987 		default:
1988 			/*
1989 			 *	Unhandled commands
1990 			 */
1991 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1992 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1993 			set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1994 				ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1995 				ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1996 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1997 			  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1998 			    ? sizeof(scsicmd->sense_buffer)
1999 			    : sizeof(dev->fsa_dev[cid].sense_data));
2000 			scsicmd->scsi_done(scsicmd);
2001 			return 0;
2002 	}
2003 }
2004 
2005 static int query_disk(struct aac_dev *dev, void __user *arg)
2006 {
2007 	struct aac_query_disk qd;
2008 	struct fsa_dev_info *fsa_dev_ptr;
2009 
2010 	fsa_dev_ptr = dev->fsa_dev;
2011 	if (!fsa_dev_ptr)
2012 		return -EBUSY;
2013 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2014 		return -EFAULT;
2015 	if (qd.cnum == -1)
2016 		qd.cnum = qd.id;
2017 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2018 	{
2019 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2020 			return -EINVAL;
2021 		qd.instance = dev->scsi_host_ptr->host_no;
2022 		qd.bus = 0;
2023 		qd.id = CONTAINER_TO_ID(qd.cnum);
2024 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2025 	}
2026 	else return -EINVAL;
2027 
2028 	qd.valid = fsa_dev_ptr[qd.cnum].valid;
2029 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2030 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2031 
2032 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2033 		qd.unmapped = 1;
2034 	else
2035 		qd.unmapped = 0;
2036 
2037 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2038 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2039 
2040 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2041 		return -EFAULT;
2042 	return 0;
2043 }
2044 
2045 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2046 {
2047 	struct aac_delete_disk dd;
2048 	struct fsa_dev_info *fsa_dev_ptr;
2049 
2050 	fsa_dev_ptr = dev->fsa_dev;
2051 	if (!fsa_dev_ptr)
2052 		return -EBUSY;
2053 
2054 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2055 		return -EFAULT;
2056 
2057 	if (dd.cnum >= dev->maximum_num_containers)
2058 		return -EINVAL;
2059 	/*
2060 	 *	Mark this container as being deleted.
2061 	 */
2062 	fsa_dev_ptr[dd.cnum].deleted = 1;
2063 	/*
2064 	 *	Mark the container as no longer valid
2065 	 */
2066 	fsa_dev_ptr[dd.cnum].valid = 0;
2067 	return 0;
2068 }
2069 
2070 static int delete_disk(struct aac_dev *dev, void __user *arg)
2071 {
2072 	struct aac_delete_disk dd;
2073 	struct fsa_dev_info *fsa_dev_ptr;
2074 
2075 	fsa_dev_ptr = dev->fsa_dev;
2076 	if (!fsa_dev_ptr)
2077 		return -EBUSY;
2078 
2079 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2080 		return -EFAULT;
2081 
2082 	if (dd.cnum >= dev->maximum_num_containers)
2083 		return -EINVAL;
2084 	/*
2085 	 *	If the container is locked, it can not be deleted by the API.
2086 	 */
2087 	if (fsa_dev_ptr[dd.cnum].locked)
2088 		return -EBUSY;
2089 	else {
2090 		/*
2091 		 *	Mark the container as no longer being valid.
2092 		 */
2093 		fsa_dev_ptr[dd.cnum].valid = 0;
2094 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2095 		return 0;
2096 	}
2097 }
2098 
2099 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2100 {
2101 	switch (cmd) {
2102 	case FSACTL_QUERY_DISK:
2103 		return query_disk(dev, arg);
2104 	case FSACTL_DELETE_DISK:
2105 		return delete_disk(dev, arg);
2106 	case FSACTL_FORCE_DELETE_DISK:
2107 		return force_delete_disk(dev, arg);
2108 	case FSACTL_GET_CONTAINERS:
2109 		return aac_get_containers(dev);
2110 	default:
2111 		return -ENOTTY;
2112 	}
2113 }
2114 
2115 /**
2116  *
2117  * aac_srb_callback
2118  * @context: the context set in the fib - here it is scsi cmd
2119  * @fibptr: pointer to the fib
2120  *
2121  * Handles the completion of a scsi command to a non dasd device
2122  *
2123  */
2124 
2125 static void aac_srb_callback(void *context, struct fib * fibptr)
2126 {
2127 	struct aac_dev *dev;
2128 	struct aac_srb_reply *srbreply;
2129 	struct scsi_cmnd *scsicmd;
2130 
2131 	scsicmd = (struct scsi_cmnd *) context;
2132 
2133 	if (!aac_valid_context(scsicmd, fibptr))
2134 		return;
2135 
2136 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2137 
2138 	BUG_ON(fibptr == NULL);
2139 
2140 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2141 
2142 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2143 	/*
2144 	 *	Calculate resid for sg
2145 	 */
2146 
2147 	scsicmd->resid = scsicmd->request_bufflen -
2148 		le32_to_cpu(srbreply->data_xfer_length);
2149 
2150 	if(scsicmd->use_sg)
2151 		pci_unmap_sg(dev->pdev,
2152 			(struct scatterlist *)scsicmd->request_buffer,
2153 			scsicmd->use_sg,
2154 			scsicmd->sc_data_direction);
2155 	else if(scsicmd->request_bufflen)
2156 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
2157 			scsicmd->sc_data_direction);
2158 
2159 	/*
2160 	 * First check the fib status
2161 	 */
2162 
2163 	if (le32_to_cpu(srbreply->status) != ST_OK){
2164 		int len;
2165 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2166 		len = (le32_to_cpu(srbreply->sense_data_size) >
2167 				sizeof(scsicmd->sense_buffer)) ?
2168 				sizeof(scsicmd->sense_buffer) :
2169 				le32_to_cpu(srbreply->sense_data_size);
2170 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2171 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2172 	}
2173 
2174 	/*
2175 	 * Next check the srb status
2176 	 */
2177 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2178 	case SRB_STATUS_ERROR_RECOVERY:
2179 	case SRB_STATUS_PENDING:
2180 	case SRB_STATUS_SUCCESS:
2181 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2182 		break;
2183 	case SRB_STATUS_DATA_OVERRUN:
2184 		switch(scsicmd->cmnd[0]){
2185 		case  READ_6:
2186 		case  WRITE_6:
2187 		case  READ_10:
2188 		case  WRITE_10:
2189 		case  READ_12:
2190 		case  WRITE_12:
2191 		case  READ_16:
2192 		case  WRITE_16:
2193 			if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
2194 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2195 			} else {
2196 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2197 			}
2198 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2199 			break;
2200 		case INQUIRY: {
2201 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2202 			break;
2203 		}
2204 		default:
2205 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2206 			break;
2207 		}
2208 		break;
2209 	case SRB_STATUS_ABORTED:
2210 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2211 		break;
2212 	case SRB_STATUS_ABORT_FAILED:
2213 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2214 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2215 		break;
2216 	case SRB_STATUS_PARITY_ERROR:
2217 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2218 		break;
2219 	case SRB_STATUS_NO_DEVICE:
2220 	case SRB_STATUS_INVALID_PATH_ID:
2221 	case SRB_STATUS_INVALID_TARGET_ID:
2222 	case SRB_STATUS_INVALID_LUN:
2223 	case SRB_STATUS_SELECTION_TIMEOUT:
2224 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2225 		break;
2226 
2227 	case SRB_STATUS_COMMAND_TIMEOUT:
2228 	case SRB_STATUS_TIMEOUT:
2229 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2230 		break;
2231 
2232 	case SRB_STATUS_BUSY:
2233 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2234 		break;
2235 
2236 	case SRB_STATUS_BUS_RESET:
2237 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2238 		break;
2239 
2240 	case SRB_STATUS_MESSAGE_REJECTED:
2241 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2242 		break;
2243 	case SRB_STATUS_REQUEST_FLUSHED:
2244 	case SRB_STATUS_ERROR:
2245 	case SRB_STATUS_INVALID_REQUEST:
2246 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2247 	case SRB_STATUS_NO_HBA:
2248 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2249 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2250 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2251 	case SRB_STATUS_DELAYED_RETRY:
2252 	case SRB_STATUS_BAD_FUNCTION:
2253 	case SRB_STATUS_NOT_STARTED:
2254 	case SRB_STATUS_NOT_IN_USE:
2255 	case SRB_STATUS_FORCE_ABORT:
2256 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2257 	default:
2258 #ifdef AAC_DETAILED_STATUS_INFO
2259 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2260 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2261 			aac_get_status_string(
2262 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2263 			scsicmd->cmnd[0],
2264 			le32_to_cpu(srbreply->scsi_status));
2265 #endif
2266 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2267 		break;
2268 	}
2269 	if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
2270 		int len;
2271 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2272 		len = (le32_to_cpu(srbreply->sense_data_size) >
2273 				sizeof(scsicmd->sense_buffer)) ?
2274 				sizeof(scsicmd->sense_buffer) :
2275 				le32_to_cpu(srbreply->sense_data_size);
2276 #ifdef AAC_DETAILED_STATUS_INFO
2277 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2278 					le32_to_cpu(srbreply->status), len);
2279 #endif
2280 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2281 
2282 	}
2283 	/*
2284 	 * OR in the scsi status (already shifted up a bit)
2285 	 */
2286 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2287 
2288 	aac_fib_complete(fibptr);
2289 	aac_fib_free(fibptr);
2290 	scsicmd->scsi_done(scsicmd);
2291 }
2292 
2293 /**
2294  *
2295  * aac_send_scb_fib
2296  * @scsicmd: the scsi command block
2297  *
2298  * This routine will form a FIB and fill in the aac_srb from the
2299  * scsicmd passed in.
2300  */
2301 
2302 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2303 {
2304 	struct fib* cmd_fibcontext;
2305 	struct aac_dev* dev;
2306 	int status;
2307 
2308 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2309 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2310 			scsicmd->device->lun > 7) {
2311 		scsicmd->result = DID_NO_CONNECT << 16;
2312 		scsicmd->scsi_done(scsicmd);
2313 		return 0;
2314 	}
2315 
2316 	/*
2317 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2318 	 */
2319 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2320 		return -1;
2321 	}
2322 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2323 
2324 	/*
2325 	 *	Check that the command queued to the controller
2326 	 */
2327 	if (status == -EINPROGRESS) {
2328 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2329 		return 0;
2330 	}
2331 
2332 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2333 	aac_fib_complete(cmd_fibcontext);
2334 	aac_fib_free(cmd_fibcontext);
2335 
2336 	return -1;
2337 }
2338 
2339 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2340 {
2341 	struct aac_dev *dev;
2342 	unsigned long byte_count = 0;
2343 
2344 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2345 	// Get rid of old data
2346 	psg->count = 0;
2347 	psg->sg[0].addr = 0;
2348 	psg->sg[0].count = 0;
2349 	if (scsicmd->use_sg) {
2350 		struct scatterlist *sg;
2351 		int i;
2352 		int sg_count;
2353 		sg = (struct scatterlist *) scsicmd->request_buffer;
2354 
2355 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2356 			scsicmd->sc_data_direction);
2357 		psg->count = cpu_to_le32(sg_count);
2358 
2359 		for (i = 0; i < sg_count; i++) {
2360 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2361 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2362 			byte_count += sg_dma_len(sg);
2363 			sg++;
2364 		}
2365 		/* hba wants the size to be exact */
2366 		if(byte_count > scsicmd->request_bufflen){
2367 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2368 				(byte_count - scsicmd->request_bufflen);
2369 			psg->sg[i-1].count = cpu_to_le32(temp);
2370 			byte_count = scsicmd->request_bufflen;
2371 		}
2372 		/* Check for command underflow */
2373 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2374 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2375 					byte_count, scsicmd->underflow);
2376 		}
2377 	}
2378 	else if(scsicmd->request_bufflen) {
2379 		u32 addr;
2380 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2381 				scsicmd->request_buffer,
2382 				scsicmd->request_bufflen,
2383 				scsicmd->sc_data_direction);
2384 		addr = scsicmd->SCp.dma_handle;
2385 		psg->count = cpu_to_le32(1);
2386 		psg->sg[0].addr = cpu_to_le32(addr);
2387 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2388 		byte_count = scsicmd->request_bufflen;
2389 	}
2390 	return byte_count;
2391 }
2392 
2393 
2394 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2395 {
2396 	struct aac_dev *dev;
2397 	unsigned long byte_count = 0;
2398 	u64 addr;
2399 
2400 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2401 	// Get rid of old data
2402 	psg->count = 0;
2403 	psg->sg[0].addr[0] = 0;
2404 	psg->sg[0].addr[1] = 0;
2405 	psg->sg[0].count = 0;
2406 	if (scsicmd->use_sg) {
2407 		struct scatterlist *sg;
2408 		int i;
2409 		int sg_count;
2410 		sg = (struct scatterlist *) scsicmd->request_buffer;
2411 
2412 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2413 			scsicmd->sc_data_direction);
2414 
2415 		for (i = 0; i < sg_count; i++) {
2416 			int count = sg_dma_len(sg);
2417 			addr = sg_dma_address(sg);
2418 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2419 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2420 			psg->sg[i].count = cpu_to_le32(count);
2421 			byte_count += count;
2422 			sg++;
2423 		}
2424 		psg->count = cpu_to_le32(sg_count);
2425 		/* hba wants the size to be exact */
2426 		if(byte_count > scsicmd->request_bufflen){
2427 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2428 				(byte_count - scsicmd->request_bufflen);
2429 			psg->sg[i-1].count = cpu_to_le32(temp);
2430 			byte_count = scsicmd->request_bufflen;
2431 		}
2432 		/* Check for command underflow */
2433 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2434 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2435 					byte_count, scsicmd->underflow);
2436 		}
2437 	}
2438 	else if(scsicmd->request_bufflen) {
2439 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2440 				scsicmd->request_buffer,
2441 				scsicmd->request_bufflen,
2442 				scsicmd->sc_data_direction);
2443 		addr = scsicmd->SCp.dma_handle;
2444 		psg->count = cpu_to_le32(1);
2445 		psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2446 		psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2447 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2448 		byte_count = scsicmd->request_bufflen;
2449 	}
2450 	return byte_count;
2451 }
2452 
2453 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2454 {
2455 	struct Scsi_Host *host = scsicmd->device->host;
2456 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2457 	unsigned long byte_count = 0;
2458 
2459 	// Get rid of old data
2460 	psg->count = 0;
2461 	psg->sg[0].next = 0;
2462 	psg->sg[0].prev = 0;
2463 	psg->sg[0].addr[0] = 0;
2464 	psg->sg[0].addr[1] = 0;
2465 	psg->sg[0].count = 0;
2466 	psg->sg[0].flags = 0;
2467 	if (scsicmd->use_sg) {
2468 		struct scatterlist *sg;
2469 		int i;
2470 		int sg_count;
2471 		sg = (struct scatterlist *) scsicmd->request_buffer;
2472 
2473 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2474 			scsicmd->sc_data_direction);
2475 
2476 		for (i = 0; i < sg_count; i++) {
2477 			int count = sg_dma_len(sg);
2478 			u64 addr = sg_dma_address(sg);
2479 			psg->sg[i].next = 0;
2480 			psg->sg[i].prev = 0;
2481 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2482 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2483 			psg->sg[i].count = cpu_to_le32(count);
2484 			psg->sg[i].flags = 0;
2485 			byte_count += count;
2486 			sg++;
2487 		}
2488 		psg->count = cpu_to_le32(sg_count);
2489 		/* hba wants the size to be exact */
2490 		if(byte_count > scsicmd->request_bufflen){
2491 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2492 				(byte_count - scsicmd->request_bufflen);
2493 			psg->sg[i-1].count = cpu_to_le32(temp);
2494 			byte_count = scsicmd->request_bufflen;
2495 		}
2496 		/* Check for command underflow */
2497 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2498 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2499 					byte_count, scsicmd->underflow);
2500 		}
2501 	}
2502 	else if(scsicmd->request_bufflen) {
2503 		int count;
2504 		u64 addr;
2505 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2506 				scsicmd->request_buffer,
2507 				scsicmd->request_bufflen,
2508 				scsicmd->sc_data_direction);
2509 		addr = scsicmd->SCp.dma_handle;
2510 		count = scsicmd->request_bufflen;
2511 		psg->count = cpu_to_le32(1);
2512 		psg->sg[0].next = 0;
2513 		psg->sg[0].prev = 0;
2514 		psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
2515 		psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2516 		psg->sg[0].count = cpu_to_le32(count);
2517 		psg->sg[0].flags = 0;
2518 		byte_count = scsicmd->request_bufflen;
2519 	}
2520 	return byte_count;
2521 }
2522 
2523 #ifdef AAC_DETAILED_STATUS_INFO
2524 
2525 struct aac_srb_status_info {
2526 	u32	status;
2527 	char	*str;
2528 };
2529 
2530 
2531 static struct aac_srb_status_info srb_status_info[] = {
2532 	{ SRB_STATUS_PENDING,		"Pending Status"},
2533 	{ SRB_STATUS_SUCCESS,		"Success"},
2534 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2535 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2536 	{ SRB_STATUS_ERROR,		"Error Event"},
2537 	{ SRB_STATUS_BUSY,		"Device Busy"},
2538 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2539 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2540 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2541 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2542 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2543 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2544 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2545 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2546 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2547 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2548 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2549 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2550 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2551 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2552 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2553 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2554 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2555 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2556 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2557 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2558 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2559 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2560 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2561     	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2562 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2563 	{ 0xff,				"Unknown Error"}
2564 };
2565 
2566 char *aac_get_status_string(u32 status)
2567 {
2568 	int i;
2569 
2570 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2571 		if (srb_status_info[i].status == status)
2572 			return srb_status_info[i].str;
2573 
2574 	return "Bad Status Code";
2575 }
2576 
2577 #endif
2578