1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Adaptec AAC series RAID controller driver
4 * (c) Copyright 2001 Red Hat Inc.
5 *
6 * based on the old aacraid driver that is..
7 * Adaptec aacraid device driver for Linux.
8 *
9 * Copyright (c) 2000-2010 Adaptec, Inc.
10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12 *
13 * Module Name:
14 * aachba.c
15 *
16 * Abstract: Contains Interfaces to manage IOs.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/uaccess.h>
28 #include <linux/module.h>
29
30 #include <linux/unaligned.h>
31
32 #include <scsi/scsi.h>
33 #include <scsi/scsi_cmnd.h>
34 #include <scsi/scsi_device.h>
35 #include <scsi/scsi_host.h>
36
37 #include "aacraid.h"
38
39 /* values for inqd_pdt: Peripheral device type in plain English */
40 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
41 #define INQD_PDT_PROC 0x03 /* Processor device */
42 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
43 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
44 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
45 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
46
47 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
48 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
49
50 /*
51 * Sense codes
52 */
53
54 #define SENCODE_NO_SENSE 0x00
55 #define SENCODE_END_OF_DATA 0x00
56 #define SENCODE_BECOMING_READY 0x04
57 #define SENCODE_INIT_CMD_REQUIRED 0x04
58 #define SENCODE_UNRECOVERED_READ_ERROR 0x11
59 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
60 #define SENCODE_INVALID_COMMAND 0x20
61 #define SENCODE_LBA_OUT_OF_RANGE 0x21
62 #define SENCODE_INVALID_CDB_FIELD 0x24
63 #define SENCODE_LUN_NOT_SUPPORTED 0x25
64 #define SENCODE_INVALID_PARAM_FIELD 0x26
65 #define SENCODE_PARAM_NOT_SUPPORTED 0x26
66 #define SENCODE_PARAM_VALUE_INVALID 0x26
67 #define SENCODE_RESET_OCCURRED 0x29
68 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
69 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
70 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
71 #define SENCODE_DIAGNOSTIC_FAILURE 0x40
72 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
73 #define SENCODE_INVALID_MESSAGE_ERROR 0x49
74 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
75 #define SENCODE_OVERLAPPED_COMMAND 0x4E
76
77 /*
78 * Additional sense codes
79 */
80
81 #define ASENCODE_NO_SENSE 0x00
82 #define ASENCODE_END_OF_DATA 0x05
83 #define ASENCODE_BECOMING_READY 0x01
84 #define ASENCODE_INIT_CMD_REQUIRED 0x02
85 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
86 #define ASENCODE_INVALID_COMMAND 0x00
87 #define ASENCODE_LBA_OUT_OF_RANGE 0x00
88 #define ASENCODE_INVALID_CDB_FIELD 0x00
89 #define ASENCODE_LUN_NOT_SUPPORTED 0x00
90 #define ASENCODE_INVALID_PARAM_FIELD 0x00
91 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
92 #define ASENCODE_PARAM_VALUE_INVALID 0x02
93 #define ASENCODE_RESET_OCCURRED 0x00
94 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
95 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
96 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
97 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
98 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
99 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
100 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
101 #define ASENCODE_OVERLAPPED_COMMAND 0x00
102
103 #define BYTE0(x) (unsigned char)(x)
104 #define BYTE1(x) (unsigned char)((x) >> 8)
105 #define BYTE2(x) (unsigned char)((x) >> 16)
106 #define BYTE3(x) (unsigned char)((x) >> 24)
107
108 /* MODE_SENSE data format */
109 typedef struct {
110 struct {
111 u8 data_length;
112 u8 med_type;
113 u8 dev_par;
114 u8 bd_length;
115 } __attribute__((packed)) hd;
116 struct {
117 u8 dens_code;
118 u8 block_count[3];
119 u8 reserved;
120 u8 block_length[3];
121 } __attribute__((packed)) bd;
122 u8 mpc_buf[3];
123 } __attribute__((packed)) aac_modep_data;
124
125 /* MODE_SENSE_10 data format */
126 typedef struct {
127 struct {
128 u8 data_length[2];
129 u8 med_type;
130 u8 dev_par;
131 u8 rsrvd[2];
132 u8 bd_length[2];
133 } __attribute__((packed)) hd;
134 struct {
135 u8 dens_code;
136 u8 block_count[3];
137 u8 reserved;
138 u8 block_length[3];
139 } __attribute__((packed)) bd;
140 u8 mpc_buf[3];
141 } __attribute__((packed)) aac_modep10_data;
142
143 /*------------------------------------------------------------------------------
144 * S T R U C T S / T Y P E D E F S
145 *----------------------------------------------------------------------------*/
146 /* SCSI inquiry data */
147 struct inquiry_data {
148 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
149 u8 inqd_dtq; /* RMB | Device Type Qualifier */
150 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
151 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
152 u8 inqd_len; /* Additional length (n-4) */
153 u8 inqd_pad1[2];/* Reserved - must be zero */
154 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
155 u8 inqd_vid[8]; /* Vendor ID */
156 u8 inqd_pid[16];/* Product ID */
157 u8 inqd_prl[4]; /* Product Revision Level */
158 };
159
160 /* Added for VPD 0x83 */
161 struct tvpd_id_descriptor_type_1 {
162 u8 codeset:4; /* VPD_CODE_SET */
163 u8 reserved:4;
164 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
165 u8 reserved2:4;
166 u8 reserved3;
167 u8 identifierlength;
168 u8 venid[8];
169 u8 productid[16];
170 u8 serialnumber[8]; /* SN in ASCII */
171
172 };
173
174 struct tvpd_id_descriptor_type_2 {
175 u8 codeset:4; /* VPD_CODE_SET */
176 u8 reserved:4;
177 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */
178 u8 reserved2:4;
179 u8 reserved3;
180 u8 identifierlength;
181 struct teu64id {
182 u32 Serial;
183 /* The serial number supposed to be 40 bits,
184 * bit we only support 32, so make the last byte zero. */
185 u8 reserved;
186 u8 venid[3];
187 } eu64id;
188
189 };
190
191 struct tvpd_id_descriptor_type_3 {
192 u8 codeset : 4; /* VPD_CODE_SET */
193 u8 reserved : 4;
194 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */
195 u8 reserved2 : 4;
196 u8 reserved3;
197 u8 identifierlength;
198 u8 Identifier[16];
199 };
200
201 struct tvpd_page83 {
202 u8 DeviceType:5;
203 u8 DeviceTypeQualifier:3;
204 u8 PageCode;
205 u8 reserved;
206 u8 PageLength;
207 struct tvpd_id_descriptor_type_1 type1;
208 struct tvpd_id_descriptor_type_2 type2;
209 struct tvpd_id_descriptor_type_3 type3;
210 };
211
212 /*
213 * M O D U L E G L O B A L S
214 */
215
216 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
217 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
218 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
219 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
220 struct aac_raw_io2 *rio2, int sg_max);
221 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
222 struct aac_hba_cmd_req *hbacmd,
223 int sg_max, u64 sg_address);
224 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
225 int pages, int nseg, int nseg_new);
226 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd);
227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd);
229 #ifdef AAC_DETAILED_STATUS_INFO
230 static char *aac_get_status_string(u32 status);
231 #endif
232
233 /*
234 * Non dasd selection is handled entirely in aachba now
235 */
236
237 static int nondasd = -1;
238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */
239 static int dacmode = -1;
240 int aac_msi;
241 int aac_commit = -1;
242 int startup_timeout = 180;
243 int aif_timeout = 120;
244 int aac_sync_mode; /* Only Sync. transfer - disabled */
245 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */
246
247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
249 " 0=off, 1=on");
250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
252 " 0=off, 1=on");
253 module_param(nondasd, int, S_IRUGO|S_IWUSR);
254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
255 " 0=off, 1=on");
256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n"
259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
260 "\tbit 2 - Disable only if Battery is protecting Cache");
261 module_param(dacmode, int, S_IRUGO|S_IWUSR);
262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
263 " 0=off, 1=on");
264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
266 " adapter for foreign arrays.\n"
267 "This is typically needed in systems that do not have a BIOS."
268 " 0=off, 1=on");
269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
270 MODULE_PARM_DESC(msi, "IRQ handling."
271 " 0=PIC(default), 1=MSI, 2=MSI-X)");
272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
274 " adapter to have its kernel up and\n"
275 "running. This is typically adjusted for large systems that do not"
276 " have a BIOS.");
277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
279 " applications to pick up AIFs before\n"
280 "deregistering them. This is typically adjusted for heavily burdened"
281 " systems.");
282
283 int aac_fib_dump;
284 module_param(aac_fib_dump, int, 0644);
285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on");
286
287 int numacb = -1;
288 module_param(numacb, int, S_IRUGO|S_IWUSR);
289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
290 " blocks (FIB) allocated. Valid values are 512 and down. Default is"
291 " to use suggestion from Firmware.");
292
293 static int acbsize = -1;
294 module_param(acbsize, int, S_IRUGO|S_IWUSR);
295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
297 " suggestion from Firmware.");
298
299 int update_interval = 30 * 60;
300 module_param(update_interval, int, S_IRUGO|S_IWUSR);
301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
302 " updates issued to adapter.");
303
304 int check_interval = 60;
305 module_param(check_interval, int, S_IRUGO|S_IWUSR);
306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
307 " checks.");
308
309 int aac_check_reset = 1;
310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
312 " adapter. a value of -1 forces the reset to adapters programmed to"
313 " ignore it.");
314
315 int expose_physicals = -1;
316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
318 " -1=protect 0=off, 1=on");
319
320 int aac_reset_devices;
321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
323
324 static int aac_wwn = 1;
325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
327 "\t0 - Disable\n"
328 "\t1 - Array Meta Data Signature (default)\n"
329 "\t2 - Adapter Serial Number");
330
331
aac_valid_context(struct scsi_cmnd * scsicmd,struct fib * fibptr)332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
333 struct fib *fibptr) {
334 struct scsi_device *device;
335
336 if (unlikely(!scsicmd)) {
337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
338 aac_fib_complete(fibptr);
339 return 0;
340 }
341 aac_priv(scsicmd)->owner = AAC_OWNER_MIDLEVEL;
342 device = scsicmd->device;
343 if (unlikely(!device)) {
344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
345 aac_fib_complete(fibptr);
346 return 0;
347 }
348 return 1;
349 }
350
351 /**
352 * aac_get_config_status - check the adapter configuration
353 * @dev: aac driver data
354 * @commit_flag: force sending CT_COMMIT_CONFIG
355 *
356 * Query config status, and commit the configuration if needed.
357 */
aac_get_config_status(struct aac_dev * dev,int commit_flag)358 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
359 {
360 int status = 0;
361 struct fib * fibptr;
362
363 if (!(fibptr = aac_fib_alloc(dev)))
364 return -ENOMEM;
365
366 aac_fib_init(fibptr);
367 {
368 struct aac_get_config_status *dinfo;
369 dinfo = (struct aac_get_config_status *) fib_data(fibptr);
370
371 dinfo->command = cpu_to_le32(VM_ContainerConfig);
372 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
373 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
374 }
375
376 status = aac_fib_send(ContainerCommand,
377 fibptr,
378 sizeof (struct aac_get_config_status),
379 FsaNormal,
380 1, 1,
381 NULL, NULL);
382 if (status < 0) {
383 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
384 } else {
385 struct aac_get_config_status_resp *reply
386 = (struct aac_get_config_status_resp *) fib_data(fibptr);
387 dprintk((KERN_WARNING
388 "aac_get_config_status: response=%d status=%d action=%d\n",
389 le32_to_cpu(reply->response),
390 le32_to_cpu(reply->status),
391 le32_to_cpu(reply->data.action)));
392 if ((le32_to_cpu(reply->response) != ST_OK) ||
393 (le32_to_cpu(reply->status) != CT_OK) ||
394 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
395 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
396 status = -EINVAL;
397 }
398 }
399 /* Do not set XferState to zero unless receives a response from F/W */
400 if (status >= 0)
401 aac_fib_complete(fibptr);
402
403 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
404 if (status >= 0) {
405 if ((aac_commit == 1) || commit_flag) {
406 struct aac_commit_config * dinfo;
407 aac_fib_init(fibptr);
408 dinfo = (struct aac_commit_config *) fib_data(fibptr);
409
410 dinfo->command = cpu_to_le32(VM_ContainerConfig);
411 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
412
413 status = aac_fib_send(ContainerCommand,
414 fibptr,
415 sizeof (struct aac_commit_config),
416 FsaNormal,
417 1, 1,
418 NULL, NULL);
419 /* Do not set XferState to zero unless
420 * receives a response from F/W */
421 if (status >= 0)
422 aac_fib_complete(fibptr);
423 } else if (aac_commit == 0) {
424 printk(KERN_WARNING
425 "aac_get_config_status: Foreign device configurations are being ignored\n");
426 }
427 }
428 /* FIB should be freed only after getting the response from the F/W */
429 if (status != -ERESTARTSYS)
430 aac_fib_free(fibptr);
431 return status;
432 }
433
aac_expose_phy_device(struct scsi_cmnd * scsicmd)434 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
435 {
436 char inq_data;
437 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data));
438 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
439 inq_data &= 0xdf;
440 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
441 }
442 }
443
444 /**
445 * aac_get_containers - list containers
446 * @dev: aac driver data
447 *
448 * Make a list of all containers on this controller
449 */
aac_get_containers(struct aac_dev * dev)450 int aac_get_containers(struct aac_dev *dev)
451 {
452 struct fsa_dev_info *fsa_dev_ptr;
453 u32 index;
454 int status = 0;
455 struct fib * fibptr;
456 struct aac_get_container_count *dinfo;
457 struct aac_get_container_count_resp *dresp;
458 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
459
460 if (!(fibptr = aac_fib_alloc(dev)))
461 return -ENOMEM;
462
463 aac_fib_init(fibptr);
464 dinfo = (struct aac_get_container_count *) fib_data(fibptr);
465 dinfo->command = cpu_to_le32(VM_ContainerConfig);
466 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
467
468 status = aac_fib_send(ContainerCommand,
469 fibptr,
470 sizeof (struct aac_get_container_count),
471 FsaNormal,
472 1, 1,
473 NULL, NULL);
474 if (status >= 0) {
475 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
476 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
477 if (fibptr->dev->supplement_adapter_info.supported_options2 &
478 AAC_OPTION_SUPPORTED_240_VOLUMES) {
479 maximum_num_containers =
480 le32_to_cpu(dresp->MaxSimpleVolumes);
481 }
482 aac_fib_complete(fibptr);
483 }
484 /* FIB should be freed only after getting the response from the F/W */
485 if (status != -ERESTARTSYS)
486 aac_fib_free(fibptr);
487
488 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
489 maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
490 if (dev->fsa_dev == NULL ||
491 dev->maximum_num_containers != maximum_num_containers) {
492
493 fsa_dev_ptr = dev->fsa_dev;
494
495 dev->fsa_dev = kcalloc(maximum_num_containers,
496 sizeof(*fsa_dev_ptr), GFP_KERNEL);
497
498 kfree(fsa_dev_ptr);
499 fsa_dev_ptr = NULL;
500
501
502 if (!dev->fsa_dev)
503 return -ENOMEM;
504
505 dev->maximum_num_containers = maximum_num_containers;
506 }
507 for (index = 0; index < dev->maximum_num_containers; index++) {
508 dev->fsa_dev[index].devname[0] = '\0';
509 dev->fsa_dev[index].valid = 0;
510
511 status = aac_probe_container(dev, index);
512
513 if (status < 0) {
514 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
515 break;
516 }
517 }
518 return status;
519 }
520
aac_scsi_done(struct scsi_cmnd * scmd)521 static void aac_scsi_done(struct scsi_cmnd *scmd)
522 {
523 if (scmd->device->request_queue) {
524 /* SCSI command has been submitted by the SCSI mid-layer. */
525 scsi_done(scmd);
526 } else {
527 /* SCSI command has been submitted by aac_probe_container(). */
528 aac_probe_container_scsi_done(scmd);
529 }
530 }
531
get_container_name_callback(void * context,struct fib * fibptr)532 static void get_container_name_callback(void *context, struct fib * fibptr)
533 {
534 struct aac_get_name_resp * get_name_reply;
535 struct scsi_cmnd * scsicmd;
536
537 scsicmd = (struct scsi_cmnd *) context;
538
539 if (!aac_valid_context(scsicmd, fibptr))
540 return;
541
542 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
543 BUG_ON(fibptr == NULL);
544
545 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
546 /* Failure is irrelevant, using default value instead */
547 if ((le32_to_cpu(get_name_reply->status) == CT_OK)
548 && (get_name_reply->data[0] != '\0')) {
549 char *sp = get_name_reply->data;
550 int data_size = sizeof_field(struct aac_get_name_resp, data);
551
552 sp[data_size - 1] = '\0';
553 while (*sp == ' ')
554 ++sp;
555 if (*sp) {
556 struct inquiry_data inq;
557 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
558 int count = sizeof(d);
559 char *dp = d;
560 do {
561 *dp++ = (*sp) ? *sp++ : ' ';
562 } while (--count > 0);
563
564 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
565 memcpy(inq.inqd_pid, d, sizeof(d));
566 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
567 }
568 }
569
570 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
571
572 aac_fib_complete(fibptr);
573 aac_scsi_done(scsicmd);
574 }
575
576 /*
577 * aac_get_container_name - get container name, none blocking.
578 */
aac_get_container_name(struct scsi_cmnd * scsicmd)579 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
580 {
581 int status;
582 int data_size;
583 struct aac_get_name *dinfo;
584 struct fib * cmd_fibcontext;
585 struct aac_dev * dev;
586
587 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
588
589 data_size = sizeof_field(struct aac_get_name_resp, data);
590
591 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
592
593 aac_fib_init(cmd_fibcontext);
594 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
595 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
596
597 dinfo->command = cpu_to_le32(VM_ContainerConfig);
598 dinfo->type = cpu_to_le32(CT_READ_NAME);
599 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
600 dinfo->count = cpu_to_le32(data_size - 1);
601
602 status = aac_fib_send(ContainerCommand,
603 cmd_fibcontext,
604 sizeof(struct aac_get_name_resp),
605 FsaNormal,
606 0, 1,
607 (fib_callback)get_container_name_callback,
608 (void *) scsicmd);
609
610 /*
611 * Check that the command queued to the controller
612 */
613 if (status == -EINPROGRESS)
614 return 0;
615
616 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
617 aac_fib_complete(cmd_fibcontext);
618 return -1;
619 }
620
aac_probe_container_callback2(struct scsi_cmnd * scsicmd)621 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
622 {
623 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
624
625 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
626 return aac_scsi_cmd(scsicmd);
627
628 scsicmd->result = DID_NO_CONNECT << 16;
629 aac_scsi_done(scsicmd);
630 return 0;
631 }
632
_aac_probe_container2(void * context,struct fib * fibptr)633 static void _aac_probe_container2(void * context, struct fib * fibptr)
634 {
635 struct fsa_dev_info *fsa_dev_ptr;
636 int (*callback)(struct scsi_cmnd *);
637 struct scsi_cmnd *scsicmd = context;
638 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd);
639 int i;
640
641
642 if (!aac_valid_context(scsicmd, fibptr))
643 return;
644
645 cmd_priv->status = 0;
646 fsa_dev_ptr = fibptr->dev->fsa_dev;
647 if (fsa_dev_ptr) {
648 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
649 __le32 sup_options2;
650
651 fsa_dev_ptr += scmd_id(scsicmd);
652 sup_options2 =
653 fibptr->dev->supplement_adapter_info.supported_options2;
654
655 if ((le32_to_cpu(dresp->status) == ST_OK) &&
656 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
657 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
658 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) {
659 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200;
660 fsa_dev_ptr->block_size = 0x200;
661 } else {
662 fsa_dev_ptr->block_size =
663 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size);
664 }
665 for (i = 0; i < 16; i++)
666 fsa_dev_ptr->identifier[i] =
667 dresp->mnt[0].fileinfo.bdevinfo
668 .identifier[i];
669 fsa_dev_ptr->valid = 1;
670 /* sense_key holds the current state of the spin-up */
671 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
672 fsa_dev_ptr->sense_data.sense_key = NOT_READY;
673 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
674 fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
675 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
676 fsa_dev_ptr->size
677 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
678 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
679 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
680 }
681 if ((fsa_dev_ptr->valid & 1) == 0)
682 fsa_dev_ptr->valid = 0;
683 cmd_priv->status = le32_to_cpu(dresp->count);
684 }
685 aac_fib_complete(fibptr);
686 aac_fib_free(fibptr);
687 callback = cmd_priv->callback;
688 cmd_priv->callback = NULL;
689 (*callback)(scsicmd);
690 return;
691 }
692
_aac_probe_container1(void * context,struct fib * fibptr)693 static void _aac_probe_container1(void * context, struct fib * fibptr)
694 {
695 struct scsi_cmnd * scsicmd;
696 struct aac_mount * dresp;
697 struct aac_query_mount *dinfo;
698 int status;
699
700 dresp = (struct aac_mount *) fib_data(fibptr);
701 if (!aac_supports_2T(fibptr->dev)) {
702 dresp->mnt[0].capacityhigh = 0;
703 if ((le32_to_cpu(dresp->status) == ST_OK) &&
704 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
705 _aac_probe_container2(context, fibptr);
706 return;
707 }
708 }
709 scsicmd = (struct scsi_cmnd *) context;
710
711 if (!aac_valid_context(scsicmd, fibptr))
712 return;
713
714 aac_fib_init(fibptr);
715
716 dinfo = (struct aac_query_mount *)fib_data(fibptr);
717
718 if (fibptr->dev->supplement_adapter_info.supported_options2 &
719 AAC_OPTION_VARIABLE_BLOCK_SIZE)
720 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
721 else
722 dinfo->command = cpu_to_le32(VM_NameServe64);
723
724 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
725 dinfo->type = cpu_to_le32(FT_FILESYS);
726 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
727
728 status = aac_fib_send(ContainerCommand,
729 fibptr,
730 sizeof(struct aac_query_mount),
731 FsaNormal,
732 0, 1,
733 _aac_probe_container2,
734 (void *) scsicmd);
735 /*
736 * Check that the command queued to the controller
737 */
738 if (status < 0 && status != -EINPROGRESS) {
739 /* Inherit results from VM_NameServe, if any */
740 dresp->status = cpu_to_le32(ST_OK);
741 _aac_probe_container2(context, fibptr);
742 }
743 }
744
_aac_probe_container(struct scsi_cmnd * scsicmd,int (* callback)(struct scsi_cmnd *))745 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
746 {
747 struct aac_cmd_priv *cmd_priv = aac_priv(scsicmd);
748 struct fib * fibptr;
749 int status = -ENOMEM;
750
751 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
752 struct aac_query_mount *dinfo;
753
754 aac_fib_init(fibptr);
755
756 dinfo = (struct aac_query_mount *)fib_data(fibptr);
757
758 if (fibptr->dev->supplement_adapter_info.supported_options2 &
759 AAC_OPTION_VARIABLE_BLOCK_SIZE)
760 dinfo->command = cpu_to_le32(VM_NameServeAllBlk);
761 else
762 dinfo->command = cpu_to_le32(VM_NameServe);
763
764 dinfo->count = cpu_to_le32(scmd_id(scsicmd));
765 dinfo->type = cpu_to_le32(FT_FILESYS);
766 cmd_priv->callback = callback;
767 cmd_priv->owner = AAC_OWNER_FIRMWARE;
768
769 status = aac_fib_send(ContainerCommand,
770 fibptr,
771 sizeof(struct aac_query_mount),
772 FsaNormal,
773 0, 1,
774 _aac_probe_container1,
775 (void *) scsicmd);
776 /*
777 * Check that the command queued to the controller
778 */
779 if (status == -EINPROGRESS)
780 return 0;
781
782 if (status < 0) {
783 cmd_priv->callback = NULL;
784 aac_fib_complete(fibptr);
785 aac_fib_free(fibptr);
786 }
787 }
788 if (status < 0) {
789 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
790 if (fsa_dev_ptr) {
791 fsa_dev_ptr += scmd_id(scsicmd);
792 if ((fsa_dev_ptr->valid & 1) == 0) {
793 fsa_dev_ptr->valid = 0;
794 return (*callback)(scsicmd);
795 }
796 }
797 }
798 return status;
799 }
800
801 /**
802 * aac_probe_container_callback1 - query a logical volume
803 * @scsicmd: the scsi command block
804 *
805 * Queries the controller about the given volume. The volume information
806 * is updated in the struct fsa_dev_info structure rather than returned.
807 */
aac_probe_container_callback1(struct scsi_cmnd * scsicmd)808 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
809 {
810 scsicmd->device = NULL;
811 return 0;
812 }
813
aac_probe_container_scsi_done(struct scsi_cmnd * scsi_cmnd)814 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd)
815 {
816 aac_probe_container_callback1(scsi_cmnd);
817 }
818
aac_probe_container(struct aac_dev * dev,int cid)819 int aac_probe_container(struct aac_dev *dev, int cid)
820 {
821 struct aac_cmd_priv *cmd_priv;
822 struct scsi_cmnd *scsicmd = kzalloc(sizeof(*scsicmd) + sizeof(*cmd_priv), GFP_KERNEL);
823 struct scsi_device *scsidev = kzalloc(sizeof(*scsidev), GFP_KERNEL);
824 int status;
825
826 if (!scsicmd || !scsidev) {
827 kfree(scsicmd);
828 kfree(scsidev);
829 return -ENOMEM;
830 }
831
832 scsicmd->device = scsidev;
833 scsidev->sdev_state = 0;
834 scsidev->id = cid;
835 scsidev->host = dev->scsi_host_ptr;
836
837 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
838 while (scsicmd->device == scsidev)
839 schedule();
840 kfree(scsidev);
841 cmd_priv = aac_priv(scsicmd);
842 status = cmd_priv->status;
843 kfree(scsicmd);
844 return status;
845 }
846
847 /* Local Structure to set SCSI inquiry data strings */
848 struct scsi_inq {
849 char vid[8]; /* Vendor ID */
850 char pid[16]; /* Product ID */
851 char prl[4]; /* Product Revision Level */
852 };
853
854 /**
855 * inqstrcpy - string merge
856 * @a: string to copy from
857 * @b: string to copy to
858 *
859 * Copy a String from one location to another
860 * without copying \0
861 */
862
inqstrcpy(char * a,char * b)863 static void inqstrcpy(char *a, char *b)
864 {
865
866 while (*a != (char)0)
867 *b++ = *a++;
868 }
869
870 static char *container_types[] = {
871 "None",
872 "Volume",
873 "Mirror",
874 "Stripe",
875 "RAID5",
876 "SSRW",
877 "SSRO",
878 "Morph",
879 "Legacy",
880 "RAID4",
881 "RAID10",
882 "RAID00",
883 "V-MIRRORS",
884 "PSEUDO R4",
885 "RAID50",
886 "RAID5D",
887 "RAID5D0",
888 "RAID1E",
889 "RAID6",
890 "RAID60",
891 "Unknown"
892 };
893
get_container_type(unsigned tindex)894 char * get_container_type(unsigned tindex)
895 {
896 if (tindex >= ARRAY_SIZE(container_types))
897 tindex = ARRAY_SIZE(container_types) - 1;
898 return container_types[tindex];
899 }
900
901 /* Function: setinqstr
902 *
903 * Arguments: [1] pointer to void [1] int
904 *
905 * Purpose: Sets SCSI inquiry data strings for vendor, product
906 * and revision level. Allows strings to be set in platform dependent
907 * files instead of in OS dependent driver source.
908 */
909
setinqstr(struct aac_dev * dev,void * data,int tindex)910 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
911 {
912 struct scsi_inq *str;
913 struct aac_supplement_adapter_info *sup_adap_info;
914
915 sup_adap_info = &dev->supplement_adapter_info;
916 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
917 memset(str, ' ', sizeof(*str));
918
919 if (sup_adap_info->adapter_type_text[0]) {
920 int c;
921 char *cp;
922 char *cname = kmemdup(sup_adap_info->adapter_type_text,
923 sizeof(sup_adap_info->adapter_type_text),
924 GFP_ATOMIC);
925 if (!cname)
926 return;
927
928 cp = cname;
929 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
930 inqstrcpy("SMC", str->vid);
931 else {
932 c = sizeof(str->vid);
933 while (*cp && *cp != ' ' && --c)
934 ++cp;
935 c = *cp;
936 *cp = '\0';
937 inqstrcpy(cname, str->vid);
938 *cp = c;
939 while (*cp && *cp != ' ')
940 ++cp;
941 }
942 while (*cp == ' ')
943 ++cp;
944 /* last six chars reserved for vol type */
945 if (strlen(cp) > sizeof(str->pid))
946 cp[sizeof(str->pid)] = '\0';
947 inqstrcpy (cp, str->pid);
948
949 kfree(cname);
950 } else {
951 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
952
953 inqstrcpy (mp->vname, str->vid);
954 /* last six chars reserved for vol type */
955 inqstrcpy (mp->model, str->pid);
956 }
957
958 if (tindex < ARRAY_SIZE(container_types)){
959 char *findit = str->pid;
960
961 for ( ; *findit != ' '; findit++); /* walk till we find a space */
962 /* RAID is superfluous in the context of a RAID device */
963 if (memcmp(findit-4, "RAID", 4) == 0)
964 *(findit -= 4) = ' ';
965 if (((findit - str->pid) + strlen(container_types[tindex]))
966 < (sizeof(str->pid) + sizeof(str->prl)))
967 inqstrcpy (container_types[tindex], findit + 1);
968 }
969 inqstrcpy ("V1.0", str->prl);
970 }
971
build_vpd83_type3(struct tvpd_page83 * vpdpage83data,struct aac_dev * dev,struct scsi_cmnd * scsicmd)972 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data,
973 struct aac_dev *dev, struct scsi_cmnd *scsicmd)
974 {
975 int container;
976
977 vpdpage83data->type3.codeset = 1;
978 vpdpage83data->type3.identifiertype = 3;
979 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3)
980 - 4;
981
982 for (container = 0; container < dev->maximum_num_containers;
983 container++) {
984
985 if (scmd_id(scsicmd) == container) {
986 memcpy(vpdpage83data->type3.Identifier,
987 dev->fsa_dev[container].identifier,
988 16);
989 break;
990 }
991 }
992 }
993
get_container_serial_callback(void * context,struct fib * fibptr)994 static void get_container_serial_callback(void *context, struct fib * fibptr)
995 {
996 struct aac_get_serial_resp * get_serial_reply;
997 struct scsi_cmnd * scsicmd;
998
999 BUG_ON(fibptr == NULL);
1000
1001 scsicmd = (struct scsi_cmnd *) context;
1002 if (!aac_valid_context(scsicmd, fibptr))
1003 return;
1004
1005 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
1006 /* Failure is irrelevant, using default value instead */
1007 if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
1008 /*Check to see if it's for VPD 0x83 or 0x80 */
1009 if (scsicmd->cmnd[2] == 0x83) {
1010 /* vpd page 0x83 - Device Identification Page */
1011 struct aac_dev *dev;
1012 int i;
1013 struct tvpd_page83 vpdpage83data;
1014
1015 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1016
1017 memset(((u8 *)&vpdpage83data), 0,
1018 sizeof(vpdpage83data));
1019
1020 /* DIRECT_ACCESS_DEVIC */
1021 vpdpage83data.DeviceType = 0;
1022 /* DEVICE_CONNECTED */
1023 vpdpage83data.DeviceTypeQualifier = 0;
1024 /* VPD_DEVICE_IDENTIFIERS */
1025 vpdpage83data.PageCode = 0x83;
1026 vpdpage83data.reserved = 0;
1027 vpdpage83data.PageLength =
1028 sizeof(vpdpage83data.type1) +
1029 sizeof(vpdpage83data.type2);
1030
1031 /* VPD 83 Type 3 is not supported for ARC */
1032 if (dev->sa_firmware)
1033 vpdpage83data.PageLength +=
1034 sizeof(vpdpage83data.type3);
1035
1036 /* T10 Vendor Identifier Field Format */
1037 /* VpdcodesetAscii */
1038 vpdpage83data.type1.codeset = 2;
1039 /* VpdIdentifierTypeVendorId */
1040 vpdpage83data.type1.identifiertype = 1;
1041 vpdpage83data.type1.identifierlength =
1042 sizeof(vpdpage83data.type1) - 4;
1043
1044 /* "ADAPTEC " for adaptec */
1045 memcpy(vpdpage83data.type1.venid,
1046 "ADAPTEC ",
1047 sizeof(vpdpage83data.type1.venid));
1048 memcpy(vpdpage83data.type1.productid,
1049 "ARRAY ",
1050 sizeof(
1051 vpdpage83data.type1.productid));
1052
1053 /* Convert to ascii based serial number.
1054 * The LSB is the end.
1055 */
1056 for (i = 0; i < 8; i++) {
1057 u8 temp =
1058 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF);
1059 if (temp > 0x9) {
1060 vpdpage83data.type1.serialnumber[i] =
1061 'A' + (temp - 0xA);
1062 } else {
1063 vpdpage83data.type1.serialnumber[i] =
1064 '0' + temp;
1065 }
1066 }
1067
1068 /* VpdCodeSetBinary */
1069 vpdpage83data.type2.codeset = 1;
1070 /* VpdidentifiertypeEUI64 */
1071 vpdpage83data.type2.identifiertype = 2;
1072 vpdpage83data.type2.identifierlength =
1073 sizeof(vpdpage83data.type2) - 4;
1074
1075 vpdpage83data.type2.eu64id.venid[0] = 0xD0;
1076 vpdpage83data.type2.eu64id.venid[1] = 0;
1077 vpdpage83data.type2.eu64id.venid[2] = 0;
1078
1079 vpdpage83data.type2.eu64id.Serial =
1080 get_serial_reply->uid;
1081 vpdpage83data.type2.eu64id.reserved = 0;
1082
1083 /*
1084 * VpdIdentifierTypeFCPHName
1085 * VPD 0x83 Type 3 not supported for ARC
1086 */
1087 if (dev->sa_firmware) {
1088 build_vpd83_type3(&vpdpage83data,
1089 dev, scsicmd);
1090 }
1091
1092 /* Move the inquiry data to the response buffer. */
1093 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data,
1094 sizeof(vpdpage83data));
1095 } else {
1096 /* It must be for VPD 0x80 */
1097 char sp[13];
1098 /* EVPD bit set */
1099 sp[0] = INQD_PDT_DA;
1100 sp[1] = scsicmd->cmnd[2];
1101 sp[2] = 0;
1102 sp[3] = scnprintf(sp+4, sizeof(sp)-4, "%08X",
1103 le32_to_cpu(get_serial_reply->uid));
1104 scsi_sg_copy_from_buffer(scsicmd, sp,
1105 sizeof(sp));
1106 }
1107 }
1108
1109 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
1110
1111 aac_fib_complete(fibptr);
1112 aac_scsi_done(scsicmd);
1113 }
1114
1115 /*
1116 * aac_get_container_serial - get container serial, none blocking.
1117 */
aac_get_container_serial(struct scsi_cmnd * scsicmd)1118 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
1119 {
1120 int status;
1121 struct aac_get_serial *dinfo;
1122 struct fib * cmd_fibcontext;
1123 struct aac_dev * dev;
1124
1125 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1126
1127 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
1128
1129 aac_fib_init(cmd_fibcontext);
1130 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
1131
1132 dinfo->command = cpu_to_le32(VM_ContainerConfig);
1133 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
1134 dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
1135 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
1136
1137 status = aac_fib_send(ContainerCommand,
1138 cmd_fibcontext,
1139 sizeof(struct aac_get_serial_resp),
1140 FsaNormal,
1141 0, 1,
1142 (fib_callback) get_container_serial_callback,
1143 (void *) scsicmd);
1144
1145 /*
1146 * Check that the command queued to the controller
1147 */
1148 if (status == -EINPROGRESS)
1149 return 0;
1150
1151 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
1152 aac_fib_complete(cmd_fibcontext);
1153 return -1;
1154 }
1155
1156 /* Function: setinqserial
1157 *
1158 * Arguments: [1] pointer to void [1] int
1159 *
1160 * Purpose: Sets SCSI Unit Serial number.
1161 * This is a fake. We should read a proper
1162 * serial number from the container. <SuSE>But
1163 * without docs it's quite hard to do it :-)
1164 * So this will have to do in the meantime.</SuSE>
1165 */
1166
setinqserial(struct aac_dev * dev,void * data,int cid)1167 static int setinqserial(struct aac_dev *dev, void *data, int cid)
1168 {
1169 /*
1170 * This breaks array migration.
1171 */
1172 return scnprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
1173 le32_to_cpu(dev->adapter_info.serial[0]), cid);
1174 }
1175
set_sense(struct sense_data * sense_data,u8 sense_key,u8 sense_code,u8 a_sense_code,u8 bit_pointer,u16 field_pointer)1176 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
1177 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
1178 {
1179 u8 *sense_buf = (u8 *)sense_data;
1180 /* Sense data valid, err code 70h */
1181 sense_buf[0] = 0x70; /* No info field */
1182 sense_buf[1] = 0; /* Segment number, always zero */
1183
1184 sense_buf[2] = sense_key; /* Sense key */
1185
1186 sense_buf[12] = sense_code; /* Additional sense code */
1187 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
1188
1189 if (sense_key == ILLEGAL_REQUEST) {
1190 sense_buf[7] = 10; /* Additional sense length */
1191
1192 sense_buf[15] = bit_pointer;
1193 /* Illegal parameter is in the parameter block */
1194 if (sense_code == SENCODE_INVALID_CDB_FIELD)
1195 sense_buf[15] |= 0xc0;/* Std sense key specific field */
1196 /* Illegal parameter is in the CDB block */
1197 sense_buf[16] = field_pointer >> 8; /* MSB */
1198 sense_buf[17] = field_pointer; /* LSB */
1199 } else
1200 sense_buf[7] = 6; /* Additional sense length */
1201 }
1202
aac_bounds_32(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1203 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1204 {
1205 if (lba & 0xffffffff00000000LL) {
1206 int cid = scmd_id(cmd);
1207 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1208 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
1209 set_sense(&dev->fsa_dev[cid].sense_data,
1210 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1211 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1212 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1213 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1214 SCSI_SENSE_BUFFERSIZE));
1215 aac_scsi_done(cmd);
1216 return 1;
1217 }
1218 return 0;
1219 }
1220
aac_bounds_64(struct aac_dev * dev,struct scsi_cmnd * cmd,u64 lba)1221 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
1222 {
1223 return 0;
1224 }
1225
1226 static void io_callback(void *context, struct fib * fibptr);
1227
aac_read_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1228 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1229 {
1230 struct aac_dev *dev = fib->dev;
1231 u16 fibsize, command;
1232 long ret;
1233
1234 aac_fib_init(fib);
1235 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1236 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1237 !dev->sync_mode) {
1238 struct aac_raw_io2 *readcmd2;
1239 readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
1240 memset(readcmd2, 0, sizeof(struct aac_raw_io2));
1241 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1242 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1243 readcmd2->byteCount = cpu_to_le32(count *
1244 dev->fsa_dev[scmd_id(cmd)].block_size);
1245 readcmd2->cid = cpu_to_le16(scmd_id(cmd));
1246 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
1247 ret = aac_build_sgraw2(cmd, readcmd2,
1248 dev->scsi_host_ptr->sg_tablesize);
1249 if (ret < 0)
1250 return ret;
1251 command = ContainerRawIo2;
1252 fibsize = struct_size(readcmd2, sge,
1253 le32_to_cpu(readcmd2->sgeCnt));
1254 } else {
1255 struct aac_raw_io *readcmd;
1256 readcmd = (struct aac_raw_io *) fib_data(fib);
1257 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1258 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1259 readcmd->count = cpu_to_le32(count *
1260 dev->fsa_dev[scmd_id(cmd)].block_size);
1261 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1262 readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1263 readcmd->bpTotal = 0;
1264 readcmd->bpComplete = 0;
1265 ret = aac_build_sgraw(cmd, &readcmd->sg);
1266 if (ret < 0)
1267 return ret;
1268 command = ContainerRawIo;
1269 fibsize = sizeof(struct aac_raw_io) +
1270 (le32_to_cpu(readcmd->sg.count) * sizeof(struct sgentryraw));
1271 }
1272
1273 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1274 /*
1275 * Now send the Fib to the adapter
1276 */
1277 return aac_fib_send(command,
1278 fib,
1279 fibsize,
1280 FsaNormal,
1281 0, 1,
1282 (fib_callback) io_callback,
1283 (void *) cmd);
1284 }
1285
aac_read_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1286 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1287 {
1288 u16 fibsize;
1289 struct aac_read64 *readcmd;
1290 long ret;
1291
1292 aac_fib_init(fib);
1293 readcmd = (struct aac_read64 *) fib_data(fib);
1294 readcmd->command = cpu_to_le32(VM_CtHostRead64);
1295 readcmd->cid = cpu_to_le16(scmd_id(cmd));
1296 readcmd->sector_count = cpu_to_le16(count);
1297 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1298 readcmd->pad = 0;
1299 readcmd->flags = 0;
1300
1301 ret = aac_build_sg64(cmd, &readcmd->sg);
1302 if (ret < 0)
1303 return ret;
1304 fibsize = sizeof(struct aac_read64) +
1305 (le32_to_cpu(readcmd->sg.count) *
1306 sizeof (struct sgentry64));
1307 BUG_ON (fibsize > (fib->dev->max_fib_size -
1308 sizeof(struct aac_fibhdr)));
1309 /*
1310 * Now send the Fib to the adapter
1311 */
1312 return aac_fib_send(ContainerCommand64,
1313 fib,
1314 fibsize,
1315 FsaNormal,
1316 0, 1,
1317 (fib_callback) io_callback,
1318 (void *) cmd);
1319 }
1320
aac_read_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count)1321 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1322 {
1323 u16 fibsize;
1324 struct aac_read *readcmd;
1325 struct aac_dev *dev = fib->dev;
1326 long ret;
1327
1328 aac_fib_init(fib);
1329 readcmd = (struct aac_read *) fib_data(fib);
1330 readcmd->command = cpu_to_le32(VM_CtBlockRead);
1331 readcmd->cid = cpu_to_le32(scmd_id(cmd));
1332 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1333 readcmd->count = cpu_to_le32(count *
1334 dev->fsa_dev[scmd_id(cmd)].block_size);
1335
1336 ret = aac_build_sg(cmd, &readcmd->sg);
1337 if (ret < 0)
1338 return ret;
1339 fibsize = sizeof(struct aac_read) +
1340 (le32_to_cpu(readcmd->sg.count) *
1341 sizeof (struct sgentry));
1342 BUG_ON (fibsize > (fib->dev->max_fib_size -
1343 sizeof(struct aac_fibhdr)));
1344 /*
1345 * Now send the Fib to the adapter
1346 */
1347 return aac_fib_send(ContainerCommand,
1348 fib,
1349 fibsize,
1350 FsaNormal,
1351 0, 1,
1352 (fib_callback) io_callback,
1353 (void *) cmd);
1354 }
1355
aac_write_raw_io(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1356 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1357 {
1358 struct aac_dev *dev = fib->dev;
1359 u16 fibsize, command;
1360 long ret;
1361
1362 aac_fib_init(fib);
1363 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
1364 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) &&
1365 !dev->sync_mode) {
1366 struct aac_raw_io2 *writecmd2;
1367 writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1368 memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1369 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1370 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1371 writecmd2->byteCount = cpu_to_le32(count *
1372 dev->fsa_dev[scmd_id(cmd)].block_size);
1373 writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1374 writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1375 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1376 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1377 cpu_to_le16(RIO2_IO_TYPE_WRITE);
1378 ret = aac_build_sgraw2(cmd, writecmd2,
1379 dev->scsi_host_ptr->sg_tablesize);
1380 if (ret < 0)
1381 return ret;
1382 command = ContainerRawIo2;
1383 fibsize = struct_size(writecmd2, sge,
1384 le32_to_cpu(writecmd2->sgeCnt));
1385 } else {
1386 struct aac_raw_io *writecmd;
1387 writecmd = (struct aac_raw_io *) fib_data(fib);
1388 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1389 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1390 writecmd->count = cpu_to_le32(count *
1391 dev->fsa_dev[scmd_id(cmd)].block_size);
1392 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1393 writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1394 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1395 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1396 cpu_to_le16(RIO_TYPE_WRITE);
1397 writecmd->bpTotal = 0;
1398 writecmd->bpComplete = 0;
1399 ret = aac_build_sgraw(cmd, &writecmd->sg);
1400 if (ret < 0)
1401 return ret;
1402 command = ContainerRawIo;
1403 fibsize = sizeof(struct aac_raw_io) +
1404 (le32_to_cpu(writecmd->sg.count) * sizeof(struct sgentryraw));
1405 }
1406
1407 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1408 /*
1409 * Now send the Fib to the adapter
1410 */
1411 return aac_fib_send(command,
1412 fib,
1413 fibsize,
1414 FsaNormal,
1415 0, 1,
1416 (fib_callback) io_callback,
1417 (void *) cmd);
1418 }
1419
aac_write_block64(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1420 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1421 {
1422 u16 fibsize;
1423 struct aac_write64 *writecmd;
1424 long ret;
1425
1426 aac_fib_init(fib);
1427 writecmd = (struct aac_write64 *) fib_data(fib);
1428 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1429 writecmd->cid = cpu_to_le16(scmd_id(cmd));
1430 writecmd->sector_count = cpu_to_le16(count);
1431 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1432 writecmd->pad = 0;
1433 writecmd->flags = 0;
1434
1435 ret = aac_build_sg64(cmd, &writecmd->sg);
1436 if (ret < 0)
1437 return ret;
1438 fibsize = sizeof(struct aac_write64) +
1439 (le32_to_cpu(writecmd->sg.count) *
1440 sizeof (struct sgentry64));
1441 BUG_ON (fibsize > (fib->dev->max_fib_size -
1442 sizeof(struct aac_fibhdr)));
1443 /*
1444 * Now send the Fib to the adapter
1445 */
1446 return aac_fib_send(ContainerCommand64,
1447 fib,
1448 fibsize,
1449 FsaNormal,
1450 0, 1,
1451 (fib_callback) io_callback,
1452 (void *) cmd);
1453 }
1454
aac_write_block(struct fib * fib,struct scsi_cmnd * cmd,u64 lba,u32 count,int fua)1455 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1456 {
1457 u16 fibsize;
1458 struct aac_write *writecmd;
1459 struct aac_dev *dev = fib->dev;
1460 long ret;
1461
1462 aac_fib_init(fib);
1463 writecmd = (struct aac_write *) fib_data(fib);
1464 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1465 writecmd->cid = cpu_to_le32(scmd_id(cmd));
1466 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1467 writecmd->count = cpu_to_le32(count *
1468 dev->fsa_dev[scmd_id(cmd)].block_size);
1469 writecmd->sg.count = cpu_to_le32(1);
1470 /* ->stable is not used - it did mean which type of write */
1471
1472 ret = aac_build_sg(cmd, &writecmd->sg);
1473 if (ret < 0)
1474 return ret;
1475 fibsize = sizeof(struct aac_write) +
1476 (le32_to_cpu(writecmd->sg.count) *
1477 sizeof (struct sgentry));
1478 BUG_ON (fibsize > (fib->dev->max_fib_size -
1479 sizeof(struct aac_fibhdr)));
1480 /*
1481 * Now send the Fib to the adapter
1482 */
1483 return aac_fib_send(ContainerCommand,
1484 fib,
1485 fibsize,
1486 FsaNormal,
1487 0, 1,
1488 (fib_callback) io_callback,
1489 (void *) cmd);
1490 }
1491
aac_scsi_common(struct fib * fib,struct scsi_cmnd * cmd)1492 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1493 {
1494 struct aac_srb * srbcmd;
1495 u32 flag;
1496 u32 timeout;
1497 struct aac_dev *dev = fib->dev;
1498
1499 aac_fib_init(fib);
1500 switch(cmd->sc_data_direction){
1501 case DMA_TO_DEVICE:
1502 flag = SRB_DataOut;
1503 break;
1504 case DMA_BIDIRECTIONAL:
1505 flag = SRB_DataIn | SRB_DataOut;
1506 break;
1507 case DMA_FROM_DEVICE:
1508 flag = SRB_DataIn;
1509 break;
1510 case DMA_NONE:
1511 default: /* shuts up some versions of gcc */
1512 flag = SRB_NoDataXfer;
1513 break;
1514 }
1515
1516 srbcmd = (struct aac_srb*) fib_data(fib);
1517 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1518 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1519 srbcmd->id = cpu_to_le32(scmd_id(cmd));
1520 srbcmd->lun = cpu_to_le32(cmd->device->lun);
1521 srbcmd->flags = cpu_to_le32(flag);
1522 timeout = scsi_cmd_to_rq(cmd)->timeout / HZ;
1523 if (timeout == 0)
1524 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT);
1525 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
1526 srbcmd->retry_limit = 0; /* Obsolete parameter */
1527 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1528 return srbcmd;
1529 }
1530
aac_construct_hbacmd(struct fib * fib,struct scsi_cmnd * cmd)1531 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib,
1532 struct scsi_cmnd *cmd)
1533 {
1534 struct aac_hba_cmd_req *hbacmd;
1535 struct aac_dev *dev;
1536 int bus, target;
1537 u64 address;
1538
1539 dev = (struct aac_dev *)cmd->device->host->hostdata;
1540
1541 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va;
1542 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */
1543 /* iu_type is a parameter of aac_hba_send */
1544 switch (cmd->sc_data_direction) {
1545 case DMA_TO_DEVICE:
1546 hbacmd->byte1 = 2;
1547 break;
1548 case DMA_FROM_DEVICE:
1549 case DMA_BIDIRECTIONAL:
1550 hbacmd->byte1 = 1;
1551 break;
1552 case DMA_NONE:
1553 default:
1554 break;
1555 }
1556 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun);
1557
1558 bus = aac_logical_to_phys(scmd_channel(cmd));
1559 target = scmd_id(cmd);
1560 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus;
1561
1562 /* we fill in reply_qid later in aac_src_deliver_message */
1563 /* we fill in iu_type, request_id later in aac_hba_send */
1564 /* we fill in emb_data_desc_count later in aac_build_sghba */
1565
1566 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len);
1567 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd));
1568
1569 address = (u64)fib->hw_error_pa;
1570 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
1571 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
1572 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
1573
1574 return hbacmd;
1575 }
1576
1577 static void aac_srb_callback(void *context, struct fib * fibptr);
1578
aac_scsi_64(struct fib * fib,struct scsi_cmnd * cmd)1579 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1580 {
1581 u16 fibsize;
1582 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1583 long ret;
1584
1585 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1586 if (ret < 0)
1587 return ret;
1588 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1589
1590 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1591 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1592 /*
1593 * Build Scatter/Gather list
1594 */
1595 fibsize = sizeof(struct aac_srb) +
1596 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1597 sizeof(struct sgentry64));
1598 BUG_ON (fibsize > (fib->dev->max_fib_size -
1599 sizeof(struct aac_fibhdr)));
1600
1601 /*
1602 * Now send the Fib to the adapter
1603 */
1604 return aac_fib_send(ScsiPortCommand64, fib,
1605 fibsize, FsaNormal, 0, 1,
1606 (fib_callback) aac_srb_callback,
1607 (void *) cmd);
1608 }
1609
aac_scsi_32(struct fib * fib,struct scsi_cmnd * cmd)1610 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1611 {
1612 u16 fibsize;
1613 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1614 long ret;
1615
1616 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1617 if (ret < 0)
1618 return ret;
1619 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1620
1621 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1622 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1623 /*
1624 * Build Scatter/Gather list
1625 */
1626 fibsize = sizeof (struct aac_srb) +
1627 ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1628 sizeof (struct sgentry));
1629 BUG_ON (fibsize > (fib->dev->max_fib_size -
1630 sizeof(struct aac_fibhdr)));
1631
1632 /*
1633 * Now send the Fib to the adapter
1634 */
1635 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1636 (fib_callback) aac_srb_callback, (void *) cmd);
1637 }
1638
aac_scsi_32_64(struct fib * fib,struct scsi_cmnd * cmd)1639 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1640 {
1641 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1642 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1643 return FAILED;
1644 return aac_scsi_32(fib, cmd);
1645 }
1646
aac_adapter_hba(struct fib * fib,struct scsi_cmnd * cmd)1647 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd)
1648 {
1649 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd);
1650 struct aac_dev *dev;
1651 long ret;
1652
1653 dev = (struct aac_dev *)cmd->device->host->hostdata;
1654
1655 ret = aac_build_sghba(cmd, hbacmd,
1656 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa);
1657 if (ret < 0)
1658 return ret;
1659
1660 /*
1661 * Now send the HBA command to the adapter
1662 */
1663 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) *
1664 sizeof(struct aac_hba_sgl);
1665
1666 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib,
1667 (fib_callback) aac_hba_callback,
1668 (void *) cmd);
1669 }
1670
aac_send_safw_bmic_cmd(struct aac_dev * dev,struct aac_srb_unit * srbu,void * xfer_buf,int xfer_len)1671 static int aac_send_safw_bmic_cmd(struct aac_dev *dev,
1672 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len)
1673 {
1674 struct fib *fibptr;
1675 dma_addr_t addr;
1676 int rcode;
1677 int fibsize;
1678 struct aac_srb *srb;
1679 struct aac_srb_reply *srb_reply;
1680 struct sgmap64 *sg64;
1681 u32 vbus;
1682 u32 vid;
1683
1684 if (!dev->sa_firmware)
1685 return 0;
1686
1687 /* allocate FIB */
1688 fibptr = aac_fib_alloc(dev);
1689 if (!fibptr)
1690 return -ENOMEM;
1691
1692 aac_fib_init(fibptr);
1693 fibptr->hw_fib_va->header.XferState &=
1694 ~cpu_to_le32(FastResponseCapable);
1695
1696 fibsize = sizeof(struct aac_srb) + sizeof(struct sgentry64);
1697
1698 /* allocate DMA buffer for response */
1699 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len,
1700 DMA_BIDIRECTIONAL);
1701 if (dma_mapping_error(&dev->pdev->dev, addr)) {
1702 rcode = -ENOMEM;
1703 goto fib_error;
1704 }
1705
1706 srb = fib_data(fibptr);
1707 memcpy(srb, &srbu->srb, sizeof(struct aac_srb));
1708
1709 vbus = (u32)le16_to_cpu(
1710 dev->supplement_adapter_info.virt_device_bus);
1711 vid = (u32)le16_to_cpu(
1712 dev->supplement_adapter_info.virt_device_target);
1713
1714 /* set the common request fields */
1715 srb->channel = cpu_to_le32(vbus);
1716 srb->id = cpu_to_le32(vid);
1717 srb->lun = 0;
1718 srb->function = cpu_to_le32(SRBF_ExecuteScsi);
1719 srb->timeout = 0;
1720 srb->retry_limit = 0;
1721 srb->cdb_size = cpu_to_le32(16);
1722 srb->count = cpu_to_le32(xfer_len);
1723
1724 sg64 = (struct sgmap64 *)&srb->sg;
1725 sg64->count = cpu_to_le32(1);
1726 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr));
1727 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr));
1728 sg64->sg[0].count = cpu_to_le32(xfer_len);
1729
1730 /*
1731 * Copy the updated data for other dumping or other usage if needed
1732 */
1733 memcpy(&srbu->srb, srb, sizeof(struct aac_srb));
1734
1735 /* issue request to the controller */
1736 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal,
1737 1, 1, NULL, NULL);
1738
1739 if (rcode == -ERESTARTSYS)
1740 rcode = -ERESTART;
1741
1742 if (unlikely(rcode < 0))
1743 goto bmic_error;
1744
1745 srb_reply = (struct aac_srb_reply *)fib_data(fibptr);
1746 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply));
1747
1748 bmic_error:
1749 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL);
1750 fib_error:
1751 aac_fib_complete(fibptr);
1752 aac_fib_free(fibptr);
1753 return rcode;
1754 }
1755
aac_set_safw_target_qd(struct aac_dev * dev,int bus,int target)1756 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target)
1757 {
1758
1759 struct aac_ciss_identify_pd *identify_resp;
1760
1761 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW)
1762 return;
1763
1764 identify_resp = dev->hba_map[bus][target].safw_identify_resp;
1765 if (identify_resp == NULL) {
1766 dev->hba_map[bus][target].qd_limit = 32;
1767 return;
1768 }
1769
1770 if (identify_resp->current_queue_depth_limit <= 0 ||
1771 identify_resp->current_queue_depth_limit > 255)
1772 dev->hba_map[bus][target].qd_limit = 32;
1773 else
1774 dev->hba_map[bus][target].qd_limit =
1775 identify_resp->current_queue_depth_limit;
1776 }
1777
aac_issue_safw_bmic_identify(struct aac_dev * dev,struct aac_ciss_identify_pd ** identify_resp,u32 bus,u32 target)1778 static int aac_issue_safw_bmic_identify(struct aac_dev *dev,
1779 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target)
1780 {
1781 int rcode = -ENOMEM;
1782 int datasize;
1783 struct aac_srb_unit srbu;
1784 struct aac_srb *srbcmd;
1785 struct aac_ciss_identify_pd *identify_reply;
1786
1787 datasize = sizeof(struct aac_ciss_identify_pd);
1788 identify_reply = kmalloc(datasize, GFP_KERNEL);
1789 if (!identify_reply)
1790 goto out;
1791
1792 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1793
1794 srbcmd = &srbu.srb;
1795 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1796 srbcmd->cdb[0] = 0x26;
1797 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF);
1798 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE;
1799
1800 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize);
1801 if (unlikely(rcode < 0))
1802 goto mem_free_all;
1803
1804 *identify_resp = identify_reply;
1805
1806 out:
1807 return rcode;
1808 mem_free_all:
1809 kfree(identify_reply);
1810 goto out;
1811 }
1812
aac_free_safw_ciss_luns(struct aac_dev * dev)1813 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev)
1814 {
1815 kfree(dev->safw_phys_luns);
1816 dev->safw_phys_luns = NULL;
1817 }
1818
1819 /**
1820 * aac_get_safw_ciss_luns() - Process topology change
1821 * @dev: aac_dev structure
1822 *
1823 * Execute a CISS REPORT PHYS LUNS and process the results into
1824 * the current hba_map.
1825 */
aac_get_safw_ciss_luns(struct aac_dev * dev)1826 static int aac_get_safw_ciss_luns(struct aac_dev *dev)
1827 {
1828 int rcode = -ENOMEM;
1829 int datasize;
1830 struct aac_srb *srbcmd;
1831 struct aac_srb_unit srbu;
1832 struct aac_ciss_phys_luns_resp *phys_luns;
1833
1834 datasize = sizeof(struct aac_ciss_phys_luns_resp) +
1835 AAC_MAX_TARGETS * sizeof(struct _ciss_lun);
1836 phys_luns = kmalloc(datasize, GFP_KERNEL);
1837 if (phys_luns == NULL)
1838 goto out;
1839
1840 memset(&srbu, 0, sizeof(struct aac_srb_unit));
1841
1842 srbcmd = &srbu.srb;
1843 srbcmd->flags = cpu_to_le32(SRB_DataIn);
1844 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS;
1845 srbcmd->cdb[1] = 2; /* extended reporting */
1846 srbcmd->cdb[8] = (u8)(datasize >> 8);
1847 srbcmd->cdb[9] = (u8)(datasize);
1848
1849 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize);
1850 if (unlikely(rcode < 0))
1851 goto mem_free_all;
1852
1853 if (phys_luns->resp_flag != 2) {
1854 rcode = -ENOMSG;
1855 goto mem_free_all;
1856 }
1857
1858 dev->safw_phys_luns = phys_luns;
1859
1860 out:
1861 return rcode;
1862 mem_free_all:
1863 kfree(phys_luns);
1864 goto out;
1865 }
1866
aac_get_safw_phys_lun_count(struct aac_dev * dev)1867 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev)
1868 {
1869 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24;
1870 }
1871
aac_get_safw_phys_bus(struct aac_dev * dev,int lun)1872 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun)
1873 {
1874 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f;
1875 }
1876
aac_get_safw_phys_target(struct aac_dev * dev,int lun)1877 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun)
1878 {
1879 return dev->safw_phys_luns->lun[lun].level2[0];
1880 }
1881
aac_get_safw_phys_expose_flag(struct aac_dev * dev,int lun)1882 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun)
1883 {
1884 return dev->safw_phys_luns->lun[lun].bus >> 6;
1885 }
1886
aac_get_safw_phys_attribs(struct aac_dev * dev,int lun)1887 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun)
1888 {
1889 return dev->safw_phys_luns->lun[lun].node_ident[9];
1890 }
1891
aac_get_safw_phys_nexus(struct aac_dev * dev,int lun)1892 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun)
1893 {
1894 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]);
1895 }
1896
aac_free_safw_identify_resp(struct aac_dev * dev,int bus,int target)1897 static inline void aac_free_safw_identify_resp(struct aac_dev *dev,
1898 int bus, int target)
1899 {
1900 kfree(dev->hba_map[bus][target].safw_identify_resp);
1901 dev->hba_map[bus][target].safw_identify_resp = NULL;
1902 }
1903
aac_free_safw_all_identify_resp(struct aac_dev * dev,int lun_count)1904 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev,
1905 int lun_count)
1906 {
1907 int luns;
1908 int i;
1909 u32 bus;
1910 u32 target;
1911
1912 luns = aac_get_safw_phys_lun_count(dev);
1913
1914 if (luns < lun_count)
1915 lun_count = luns;
1916 else if (lun_count < 0)
1917 lun_count = luns;
1918
1919 for (i = 0; i < lun_count; i++) {
1920 bus = aac_get_safw_phys_bus(dev, i);
1921 target = aac_get_safw_phys_target(dev, i);
1922
1923 aac_free_safw_identify_resp(dev, bus, target);
1924 }
1925 }
1926
aac_get_safw_attr_all_targets(struct aac_dev * dev)1927 static int aac_get_safw_attr_all_targets(struct aac_dev *dev)
1928 {
1929 int i;
1930 int rcode = 0;
1931 u32 lun_count;
1932 u32 bus;
1933 u32 target;
1934 struct aac_ciss_identify_pd *identify_resp = NULL;
1935
1936 lun_count = aac_get_safw_phys_lun_count(dev);
1937
1938 for (i = 0; i < lun_count; ++i) {
1939
1940 bus = aac_get_safw_phys_bus(dev, i);
1941 target = aac_get_safw_phys_target(dev, i);
1942
1943 rcode = aac_issue_safw_bmic_identify(dev,
1944 &identify_resp, bus, target);
1945
1946 if (unlikely(rcode < 0))
1947 goto free_identify_resp;
1948
1949 dev->hba_map[bus][target].safw_identify_resp = identify_resp;
1950 }
1951
1952 out:
1953 return rcode;
1954 free_identify_resp:
1955 aac_free_safw_all_identify_resp(dev, i);
1956 goto out;
1957 }
1958
1959 /**
1960 * aac_set_safw_attr_all_targets- update current hba map with data from FW
1961 * @dev: aac_dev structure
1962 *
1963 * Update our hba map with the information gathered from the FW
1964 */
aac_set_safw_attr_all_targets(struct aac_dev * dev)1965 static void aac_set_safw_attr_all_targets(struct aac_dev *dev)
1966 {
1967 /* ok and extended reporting */
1968 u32 lun_count, nexus;
1969 u32 i, bus, target;
1970 u8 expose_flag, attribs;
1971
1972 lun_count = aac_get_safw_phys_lun_count(dev);
1973
1974 dev->scan_counter++;
1975
1976 for (i = 0; i < lun_count; ++i) {
1977
1978 bus = aac_get_safw_phys_bus(dev, i);
1979 target = aac_get_safw_phys_target(dev, i);
1980 expose_flag = aac_get_safw_phys_expose_flag(dev, i);
1981 attribs = aac_get_safw_phys_attribs(dev, i);
1982 nexus = aac_get_safw_phys_nexus(dev, i);
1983
1984 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS)
1985 continue;
1986
1987 if (expose_flag != 0) {
1988 dev->hba_map[bus][target].devtype =
1989 AAC_DEVTYPE_RAID_MEMBER;
1990 continue;
1991 }
1992
1993 if (nexus != 0 && (attribs & 8)) {
1994 dev->hba_map[bus][target].devtype =
1995 AAC_DEVTYPE_NATIVE_RAW;
1996 dev->hba_map[bus][target].rmw_nexus =
1997 nexus;
1998 } else
1999 dev->hba_map[bus][target].devtype =
2000 AAC_DEVTYPE_ARC_RAW;
2001
2002 dev->hba_map[bus][target].scan_counter = dev->scan_counter;
2003
2004 aac_set_safw_target_qd(dev, bus, target);
2005 }
2006 }
2007
aac_setup_safw_targets(struct aac_dev * dev)2008 static int aac_setup_safw_targets(struct aac_dev *dev)
2009 {
2010 int rcode = 0;
2011
2012 rcode = aac_get_containers(dev);
2013 if (unlikely(rcode < 0))
2014 goto out;
2015
2016 rcode = aac_get_safw_ciss_luns(dev);
2017 if (unlikely(rcode < 0))
2018 goto out;
2019
2020 rcode = aac_get_safw_attr_all_targets(dev);
2021 if (unlikely(rcode < 0))
2022 goto free_ciss_luns;
2023
2024 aac_set_safw_attr_all_targets(dev);
2025
2026 aac_free_safw_all_identify_resp(dev, -1);
2027 free_ciss_luns:
2028 aac_free_safw_ciss_luns(dev);
2029 out:
2030 return rcode;
2031 }
2032
aac_setup_safw_adapter(struct aac_dev * dev)2033 int aac_setup_safw_adapter(struct aac_dev *dev)
2034 {
2035 return aac_setup_safw_targets(dev);
2036 }
2037
aac_get_adapter_info(struct aac_dev * dev)2038 int aac_get_adapter_info(struct aac_dev* dev)
2039 {
2040 struct fib* fibptr;
2041 int rcode;
2042 u32 tmp, bus, target;
2043 struct aac_adapter_info *info;
2044 struct aac_bus_info *command;
2045 struct aac_bus_info_response *bus_info;
2046
2047 if (!(fibptr = aac_fib_alloc(dev)))
2048 return -ENOMEM;
2049
2050 aac_fib_init(fibptr);
2051 info = (struct aac_adapter_info *) fib_data(fibptr);
2052 memset(info,0,sizeof(*info));
2053
2054 rcode = aac_fib_send(RequestAdapterInfo,
2055 fibptr,
2056 sizeof(*info),
2057 FsaNormal,
2058 -1, 1, /* First `interrupt' command uses special wait */
2059 NULL,
2060 NULL);
2061
2062 if (rcode < 0) {
2063 /* FIB should be freed only after
2064 * getting the response from the F/W */
2065 if (rcode != -ERESTARTSYS) {
2066 aac_fib_complete(fibptr);
2067 aac_fib_free(fibptr);
2068 }
2069 return rcode;
2070 }
2071 memcpy(&dev->adapter_info, info, sizeof(*info));
2072
2073 dev->supplement_adapter_info.virt_device_bus = 0xffff;
2074 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
2075 struct aac_supplement_adapter_info * sinfo;
2076
2077 aac_fib_init(fibptr);
2078
2079 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
2080
2081 memset(sinfo,0,sizeof(*sinfo));
2082
2083 rcode = aac_fib_send(RequestSupplementAdapterInfo,
2084 fibptr,
2085 sizeof(*sinfo),
2086 FsaNormal,
2087 1, 1,
2088 NULL,
2089 NULL);
2090
2091 if (rcode >= 0)
2092 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
2093 if (rcode == -ERESTARTSYS) {
2094 fibptr = aac_fib_alloc(dev);
2095 if (!fibptr)
2096 return -ENOMEM;
2097 }
2098
2099 }
2100
2101 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */
2102 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
2103 for (target = 0; target < AAC_MAX_TARGETS; target++) {
2104 dev->hba_map[bus][target].devtype = 0;
2105 dev->hba_map[bus][target].qd_limit = 0;
2106 }
2107 }
2108
2109 /*
2110 * GetBusInfo
2111 */
2112
2113 aac_fib_init(fibptr);
2114
2115 bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
2116
2117 memset(bus_info, 0, sizeof(*bus_info));
2118
2119 command = (struct aac_bus_info *)bus_info;
2120
2121 command->Command = cpu_to_le32(VM_Ioctl);
2122 command->ObjType = cpu_to_le32(FT_DRIVE);
2123 command->MethodId = cpu_to_le32(1);
2124 command->CtlCmd = cpu_to_le32(GetBusInfo);
2125
2126 rcode = aac_fib_send(ContainerCommand,
2127 fibptr,
2128 sizeof (*bus_info),
2129 FsaNormal,
2130 1, 1,
2131 NULL, NULL);
2132
2133 /* reasoned default */
2134 dev->maximum_num_physicals = 16;
2135 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
2136 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
2137 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
2138 }
2139
2140 if (!dev->in_reset) {
2141 char buffer[16];
2142 tmp = le32_to_cpu(dev->adapter_info.kernelrev);
2143 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
2144 dev->name,
2145 dev->id,
2146 tmp>>24,
2147 (tmp>>16)&0xff,
2148 tmp&0xff,
2149 le32_to_cpu(dev->adapter_info.kernelbuild),
2150 (int)sizeof(dev->supplement_adapter_info.build_date),
2151 dev->supplement_adapter_info.build_date);
2152 tmp = le32_to_cpu(dev->adapter_info.monitorrev);
2153 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
2154 dev->name, dev->id,
2155 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2156 le32_to_cpu(dev->adapter_info.monitorbuild));
2157 tmp = le32_to_cpu(dev->adapter_info.biosrev);
2158 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
2159 dev->name, dev->id,
2160 tmp>>24,(tmp>>16)&0xff,tmp&0xff,
2161 le32_to_cpu(dev->adapter_info.biosbuild));
2162 buffer[0] = '\0';
2163 if (aac_get_serial_number(
2164 shost_to_class(dev->scsi_host_ptr), buffer))
2165 printk(KERN_INFO "%s%d: serial %s",
2166 dev->name, dev->id, buffer);
2167 if (dev->supplement_adapter_info.vpd_info.tsid[0]) {
2168 printk(KERN_INFO "%s%d: TSID %.*s\n",
2169 dev->name, dev->id,
2170 (int)sizeof(dev->supplement_adapter_info
2171 .vpd_info.tsid),
2172 dev->supplement_adapter_info.vpd_info.tsid);
2173 }
2174 if (!aac_check_reset || ((aac_check_reset == 1) &&
2175 (dev->supplement_adapter_info.supported_options2 &
2176 AAC_OPTION_IGNORE_RESET))) {
2177 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
2178 dev->name, dev->id);
2179 }
2180 }
2181
2182 dev->cache_protected = 0;
2183 dev->jbod = ((dev->supplement_adapter_info.feature_bits &
2184 AAC_FEATURE_JBOD) != 0);
2185 dev->nondasd_support = 0;
2186 dev->raid_scsi_mode = 0;
2187 if(dev->adapter_info.options & AAC_OPT_NONDASD)
2188 dev->nondasd_support = 1;
2189
2190 /*
2191 * If the firmware supports ROMB RAID/SCSI mode and we are currently
2192 * in RAID/SCSI mode, set the flag. For now if in this mode we will
2193 * force nondasd support on. If we decide to allow the non-dasd flag
2194 * additional changes changes will have to be made to support
2195 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
2196 * changed to support the new dev->raid_scsi_mode flag instead of
2197 * leaching off of the dev->nondasd_support flag. Also in linit.c the
2198 * function aac_detect will have to be modified where it sets up the
2199 * max number of channels based on the aac->nondasd_support flag only.
2200 */
2201 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
2202 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
2203 dev->nondasd_support = 1;
2204 dev->raid_scsi_mode = 1;
2205 }
2206 if (dev->raid_scsi_mode != 0)
2207 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
2208 dev->name, dev->id);
2209
2210 if (nondasd != -1)
2211 dev->nondasd_support = (nondasd!=0);
2212 if (dev->nondasd_support && !dev->in_reset)
2213 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
2214
2215 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
2216 dev->needs_dac = 1;
2217 dev->dac_support = 0;
2218 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
2219 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
2220 if (!dev->in_reset)
2221 printk(KERN_INFO "%s%d: 64bit support enabled.\n",
2222 dev->name, dev->id);
2223 dev->dac_support = 1;
2224 }
2225
2226 if(dacmode != -1) {
2227 dev->dac_support = (dacmode!=0);
2228 }
2229
2230 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */
2231 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks
2232 & AAC_QUIRK_SCSI_32)) {
2233 dev->nondasd_support = 0;
2234 dev->jbod = 0;
2235 expose_physicals = 0;
2236 }
2237
2238 if (dev->dac_support) {
2239 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) {
2240 if (!dev->in_reset)
2241 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n");
2242 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) {
2243 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n");
2244 dev->dac_support = 0;
2245 } else {
2246 dev_info(&dev->pdev->dev, "No suitable DMA available\n");
2247 rcode = -ENOMEM;
2248 }
2249 }
2250 /*
2251 * Deal with configuring for the individualized limits of each packet
2252 * interface.
2253 */
2254 dev->a_ops.adapter_scsi = (dev->dac_support)
2255 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
2256 ? aac_scsi_32_64
2257 : aac_scsi_64)
2258 : aac_scsi_32;
2259 if (dev->raw_io_interface) {
2260 dev->a_ops.adapter_bounds = (dev->raw_io_64)
2261 ? aac_bounds_64
2262 : aac_bounds_32;
2263 dev->a_ops.adapter_read = aac_read_raw_io;
2264 dev->a_ops.adapter_write = aac_write_raw_io;
2265 } else {
2266 dev->a_ops.adapter_bounds = aac_bounds_32;
2267 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
2268 sizeof(struct aac_fibhdr) -
2269 sizeof(struct aac_write)) /
2270 sizeof(struct sgentry);
2271 if (dev->dac_support) {
2272 dev->a_ops.adapter_read = aac_read_block64;
2273 dev->a_ops.adapter_write = aac_write_block64;
2274 /*
2275 * 38 scatter gather elements
2276 */
2277 dev->scsi_host_ptr->sg_tablesize =
2278 (dev->max_fib_size -
2279 sizeof(struct aac_fibhdr) -
2280 sizeof(struct aac_write64)) /
2281 sizeof(struct sgentry64);
2282 } else {
2283 dev->a_ops.adapter_read = aac_read_block;
2284 dev->a_ops.adapter_write = aac_write_block;
2285 }
2286 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
2287 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
2288 /*
2289 * Worst case size that could cause sg overflow when
2290 * we break up SG elements that are larger than 64KB.
2291 * Would be nice if we could tell the SCSI layer what
2292 * the maximum SG element size can be. Worst case is
2293 * (sg_tablesize-1) 4KB elements with one 64KB
2294 * element.
2295 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
2296 */
2297 dev->scsi_host_ptr->max_sectors =
2298 (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
2299 }
2300 }
2301 if (!dev->sync_mode && dev->sa_firmware &&
2302 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE)
2303 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize =
2304 HBA_MAX_SG_SEPARATE;
2305
2306 /* FIB should be freed only after getting the response from the F/W */
2307 if (rcode != -ERESTARTSYS) {
2308 aac_fib_complete(fibptr);
2309 aac_fib_free(fibptr);
2310 }
2311
2312 return rcode;
2313 }
2314
2315
io_callback(void * context,struct fib * fibptr)2316 static void io_callback(void *context, struct fib * fibptr)
2317 {
2318 struct aac_dev *dev;
2319 struct aac_read_reply *readreply;
2320 struct scsi_cmnd *scsicmd;
2321 u32 cid;
2322
2323 scsicmd = (struct scsi_cmnd *) context;
2324
2325 if (!aac_valid_context(scsicmd, fibptr))
2326 return;
2327
2328 dev = fibptr->dev;
2329 cid = scmd_id(scsicmd);
2330
2331 if (nblank(dprintk(x))) {
2332 u64 lba;
2333 switch (scsicmd->cmnd[0]) {
2334 case WRITE_6:
2335 case READ_6:
2336 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2337 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2338 break;
2339 case WRITE_16:
2340 case READ_16:
2341 lba = ((u64)scsicmd->cmnd[2] << 56) |
2342 ((u64)scsicmd->cmnd[3] << 48) |
2343 ((u64)scsicmd->cmnd[4] << 40) |
2344 ((u64)scsicmd->cmnd[5] << 32) |
2345 ((u64)scsicmd->cmnd[6] << 24) |
2346 (scsicmd->cmnd[7] << 16) |
2347 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2348 break;
2349 case WRITE_12:
2350 case READ_12:
2351 lba = ((u64)scsicmd->cmnd[2] << 24) |
2352 (scsicmd->cmnd[3] << 16) |
2353 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2354 break;
2355 default:
2356 lba = ((u64)scsicmd->cmnd[2] << 24) |
2357 (scsicmd->cmnd[3] << 16) |
2358 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2359 break;
2360 }
2361 printk(KERN_DEBUG
2362 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
2363 smp_processor_id(), (unsigned long long)lba, jiffies);
2364 }
2365
2366 BUG_ON(fibptr == NULL);
2367
2368 scsi_dma_unmap(scsicmd);
2369
2370 readreply = (struct aac_read_reply *)fib_data(fibptr);
2371 switch (le32_to_cpu(readreply->status)) {
2372 case ST_OK:
2373 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2374 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
2375 break;
2376 case ST_NOT_READY:
2377 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2378 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
2379 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
2380 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2381 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2382 SCSI_SENSE_BUFFERSIZE));
2383 break;
2384 case ST_MEDERR:
2385 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2386 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR,
2387 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0);
2388 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2389 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2390 SCSI_SENSE_BUFFERSIZE));
2391 break;
2392 default:
2393 #ifdef AAC_DETAILED_STATUS_INFO
2394 printk(KERN_WARNING "io_callback: io failed, status = %d\n",
2395 le32_to_cpu(readreply->status));
2396 #endif
2397 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2398 set_sense(&dev->fsa_dev[cid].sense_data,
2399 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2400 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2401 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2402 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2403 SCSI_SENSE_BUFFERSIZE));
2404 break;
2405 }
2406 aac_fib_complete(fibptr);
2407
2408 aac_scsi_done(scsicmd);
2409 }
2410
aac_read(struct scsi_cmnd * scsicmd)2411 static int aac_read(struct scsi_cmnd * scsicmd)
2412 {
2413 u64 lba;
2414 u32 count;
2415 int status;
2416 struct aac_dev *dev;
2417 struct fib * cmd_fibcontext;
2418 int cid;
2419
2420 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2421 /*
2422 * Get block address and transfer length
2423 */
2424 switch (scsicmd->cmnd[0]) {
2425 case READ_6:
2426 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
2427
2428 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
2429 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2430 count = scsicmd->cmnd[4];
2431
2432 if (count == 0)
2433 count = 256;
2434 break;
2435 case READ_16:
2436 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
2437
2438 lba = ((u64)scsicmd->cmnd[2] << 56) |
2439 ((u64)scsicmd->cmnd[3] << 48) |
2440 ((u64)scsicmd->cmnd[4] << 40) |
2441 ((u64)scsicmd->cmnd[5] << 32) |
2442 ((u64)scsicmd->cmnd[6] << 24) |
2443 (scsicmd->cmnd[7] << 16) |
2444 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2445 count = (scsicmd->cmnd[10] << 24) |
2446 (scsicmd->cmnd[11] << 16) |
2447 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2448 break;
2449 case READ_12:
2450 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
2451
2452 lba = ((u64)scsicmd->cmnd[2] << 24) |
2453 (scsicmd->cmnd[3] << 16) |
2454 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2455 count = (scsicmd->cmnd[6] << 24) |
2456 (scsicmd->cmnd[7] << 16) |
2457 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2458 break;
2459 default:
2460 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
2461
2462 lba = ((u64)scsicmd->cmnd[2] << 24) |
2463 (scsicmd->cmnd[3] << 16) |
2464 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2465 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2466 break;
2467 }
2468
2469 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2470 cid = scmd_id(scsicmd);
2471 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2472 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2473 set_sense(&dev->fsa_dev[cid].sense_data,
2474 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2475 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2476 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2477 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2478 SCSI_SENSE_BUFFERSIZE));
2479 aac_scsi_done(scsicmd);
2480 return 0;
2481 }
2482
2483 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
2484 smp_processor_id(), (unsigned long long)lba, jiffies));
2485 if (aac_adapter_bounds(dev,scsicmd,lba))
2486 return 0;
2487 /*
2488 * Alocate and initialize a Fib
2489 */
2490 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2491 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2492 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
2493
2494 /*
2495 * Check that the command queued to the controller
2496 */
2497 if (status == -EINPROGRESS)
2498 return 0;
2499
2500 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
2501 /*
2502 * For some reason, the Fib didn't queue, return QUEUE_FULL
2503 */
2504 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL;
2505 aac_scsi_done(scsicmd);
2506 aac_fib_complete(cmd_fibcontext);
2507 aac_fib_free(cmd_fibcontext);
2508 return 0;
2509 }
2510
aac_write(struct scsi_cmnd * scsicmd)2511 static int aac_write(struct scsi_cmnd * scsicmd)
2512 {
2513 u64 lba;
2514 u32 count;
2515 int fua;
2516 int status;
2517 struct aac_dev *dev;
2518 struct fib * cmd_fibcontext;
2519 int cid;
2520
2521 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2522 /*
2523 * Get block address and transfer length
2524 */
2525 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
2526 {
2527 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
2528 count = scsicmd->cmnd[4];
2529 if (count == 0)
2530 count = 256;
2531 fua = 0;
2532 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
2533 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
2534
2535 lba = ((u64)scsicmd->cmnd[2] << 56) |
2536 ((u64)scsicmd->cmnd[3] << 48) |
2537 ((u64)scsicmd->cmnd[4] << 40) |
2538 ((u64)scsicmd->cmnd[5] << 32) |
2539 ((u64)scsicmd->cmnd[6] << 24) |
2540 (scsicmd->cmnd[7] << 16) |
2541 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2542 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
2543 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
2544 fua = scsicmd->cmnd[1] & 0x8;
2545 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
2546 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
2547
2548 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
2549 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2550 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
2551 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
2552 fua = scsicmd->cmnd[1] & 0x8;
2553 } else {
2554 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
2555 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
2556 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
2557 fua = scsicmd->cmnd[1] & 0x8;
2558 }
2559
2560 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
2561 cid = scmd_id(scsicmd);
2562 dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
2563 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2564 set_sense(&dev->fsa_dev[cid].sense_data,
2565 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE,
2566 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2567 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2568 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2569 SCSI_SENSE_BUFFERSIZE));
2570 aac_scsi_done(scsicmd);
2571 return 0;
2572 }
2573
2574 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
2575 smp_processor_id(), (unsigned long long)lba, jiffies));
2576 if (aac_adapter_bounds(dev,scsicmd,lba))
2577 return 0;
2578 /*
2579 * Allocate and initialize a Fib then setup a BlockWrite command
2580 */
2581 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
2582 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2583 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
2584
2585 /*
2586 * Check that the command queued to the controller
2587 */
2588 if (status == -EINPROGRESS)
2589 return 0;
2590
2591 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
2592 /*
2593 * For some reason, the Fib didn't queue, return QUEUE_FULL
2594 */
2595 scsicmd->result = DID_OK << 16 | SAM_STAT_TASK_SET_FULL;
2596 aac_scsi_done(scsicmd);
2597
2598 aac_fib_complete(cmd_fibcontext);
2599 aac_fib_free(cmd_fibcontext);
2600 return 0;
2601 }
2602
synchronize_callback(void * context,struct fib * fibptr)2603 static void synchronize_callback(void *context, struct fib *fibptr)
2604 {
2605 struct aac_synchronize_reply *synchronizereply;
2606 struct scsi_cmnd *cmd = context;
2607
2608 if (!aac_valid_context(cmd, fibptr))
2609 return;
2610
2611 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
2612 smp_processor_id(), jiffies));
2613 BUG_ON(fibptr == NULL);
2614
2615
2616 synchronizereply = fib_data(fibptr);
2617 if (le32_to_cpu(synchronizereply->status) == CT_OK)
2618 cmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2619 else {
2620 struct scsi_device *sdev = cmd->device;
2621 struct aac_dev *dev = fibptr->dev;
2622 u32 cid = sdev_id(sdev);
2623 printk(KERN_WARNING
2624 "synchronize_callback: synchronize failed, status = %d\n",
2625 le32_to_cpu(synchronizereply->status));
2626 cmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2627 set_sense(&dev->fsa_dev[cid].sense_data,
2628 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
2629 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
2630 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2631 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2632 SCSI_SENSE_BUFFERSIZE));
2633 }
2634
2635 aac_fib_complete(fibptr);
2636 aac_fib_free(fibptr);
2637 aac_scsi_done(cmd);
2638 }
2639
aac_synchronize(struct scsi_cmnd * scsicmd)2640 static int aac_synchronize(struct scsi_cmnd *scsicmd)
2641 {
2642 int status;
2643 struct fib *cmd_fibcontext;
2644 struct aac_synchronize *synchronizecmd;
2645 struct scsi_device *sdev = scsicmd->device;
2646 struct aac_dev *aac;
2647
2648 aac = (struct aac_dev *)sdev->host->hostdata;
2649 if (aac->in_reset)
2650 return SCSI_MLQUEUE_HOST_BUSY;
2651
2652 /*
2653 * Allocate and initialize a Fib
2654 */
2655 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2656
2657 aac_fib_init(cmd_fibcontext);
2658
2659 synchronizecmd = fib_data(cmd_fibcontext);
2660 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2661 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2662 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2663 synchronizecmd->count =
2664 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2665 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2666
2667 /*
2668 * Now send the Fib to the adapter
2669 */
2670 status = aac_fib_send(ContainerCommand,
2671 cmd_fibcontext,
2672 sizeof(struct aac_synchronize),
2673 FsaNormal,
2674 0, 1,
2675 (fib_callback)synchronize_callback,
2676 (void *)scsicmd);
2677
2678 /*
2679 * Check that the command queued to the controller
2680 */
2681 if (status == -EINPROGRESS)
2682 return 0;
2683
2684 printk(KERN_WARNING
2685 "aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2686 aac_fib_complete(cmd_fibcontext);
2687 aac_fib_free(cmd_fibcontext);
2688 return SCSI_MLQUEUE_HOST_BUSY;
2689 }
2690
aac_start_stop_callback(void * context,struct fib * fibptr)2691 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2692 {
2693 struct scsi_cmnd *scsicmd = context;
2694
2695 if (!aac_valid_context(scsicmd, fibptr))
2696 return;
2697
2698 BUG_ON(fibptr == NULL);
2699
2700 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2701
2702 aac_fib_complete(fibptr);
2703 aac_fib_free(fibptr);
2704 aac_scsi_done(scsicmd);
2705 }
2706
aac_start_stop(struct scsi_cmnd * scsicmd)2707 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2708 {
2709 int status;
2710 struct fib *cmd_fibcontext;
2711 struct aac_power_management *pmcmd;
2712 struct scsi_device *sdev = scsicmd->device;
2713 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2714
2715 if (!(aac->supplement_adapter_info.supported_options2 &
2716 AAC_OPTION_POWER_MANAGEMENT)) {
2717 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2718 aac_scsi_done(scsicmd);
2719 return 0;
2720 }
2721
2722 if (aac->in_reset)
2723 return SCSI_MLQUEUE_HOST_BUSY;
2724
2725 /*
2726 * Allocate and initialize a Fib
2727 */
2728 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd);
2729
2730 aac_fib_init(cmd_fibcontext);
2731
2732 pmcmd = fib_data(cmd_fibcontext);
2733 pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2734 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2735 /* Eject bit ignored, not relevant */
2736 pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2737 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2738 pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2739 pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2740 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2741 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
2742
2743 /*
2744 * Now send the Fib to the adapter
2745 */
2746 status = aac_fib_send(ContainerCommand,
2747 cmd_fibcontext,
2748 sizeof(struct aac_power_management),
2749 FsaNormal,
2750 0, 1,
2751 (fib_callback)aac_start_stop_callback,
2752 (void *)scsicmd);
2753
2754 /*
2755 * Check that the command queued to the controller
2756 */
2757 if (status == -EINPROGRESS)
2758 return 0;
2759
2760 aac_fib_complete(cmd_fibcontext);
2761 aac_fib_free(cmd_fibcontext);
2762 return SCSI_MLQUEUE_HOST_BUSY;
2763 }
2764
2765 /**
2766 * aac_scsi_cmd() - Process SCSI command
2767 * @scsicmd: SCSI command block
2768 *
2769 * Emulate a SCSI command and queue the required request for the
2770 * aacraid firmware.
2771 */
2772
aac_scsi_cmd(struct scsi_cmnd * scsicmd)2773 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2774 {
2775 u32 cid, bus;
2776 struct Scsi_Host *host = scsicmd->device->host;
2777 struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2778 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2779
2780 if (fsa_dev_ptr == NULL)
2781 return -1;
2782 /*
2783 * If the bus, id or lun is out of range, return fail
2784 * Test does not apply to ID 16, the pseudo id for the controller
2785 * itself.
2786 */
2787 cid = scmd_id(scsicmd);
2788 if (cid != host->this_id) {
2789 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2790 if((cid >= dev->maximum_num_containers) ||
2791 (scsicmd->device->lun != 0)) {
2792 scsicmd->result = DID_NO_CONNECT << 16;
2793 goto scsi_done_ret;
2794 }
2795
2796 /*
2797 * If the target container doesn't exist, it may have
2798 * been newly created
2799 */
2800 if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2801 (fsa_dev_ptr[cid].sense_data.sense_key ==
2802 NOT_READY)) {
2803 switch (scsicmd->cmnd[0]) {
2804 case SERVICE_ACTION_IN_16:
2805 if (!(dev->raw_io_interface) ||
2806 !(dev->raw_io_64) ||
2807 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2808 break;
2809 fallthrough;
2810 case INQUIRY:
2811 case READ_CAPACITY:
2812 case TEST_UNIT_READY:
2813 if (dev->in_reset)
2814 return -1;
2815 return _aac_probe_container(scsicmd,
2816 aac_probe_container_callback2);
2817 default:
2818 break;
2819 }
2820 }
2821 } else { /* check for physical non-dasd devices */
2822 bus = aac_logical_to_phys(scmd_channel(scsicmd));
2823
2824 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS &&
2825 dev->hba_map[bus][cid].devtype
2826 == AAC_DEVTYPE_NATIVE_RAW) {
2827 if (dev->in_reset)
2828 return -1;
2829 return aac_send_hba_fib(scsicmd);
2830 } else if (dev->nondasd_support || expose_physicals ||
2831 dev->jbod) {
2832 if (dev->in_reset)
2833 return -1;
2834 return aac_send_srb_fib(scsicmd);
2835 } else {
2836 scsicmd->result = DID_NO_CONNECT << 16;
2837 goto scsi_done_ret;
2838 }
2839 }
2840 }
2841 /*
2842 * else Command for the controller itself
2843 */
2844 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
2845 (scsicmd->cmnd[0] != TEST_UNIT_READY))
2846 {
2847 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2848 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2849 set_sense(&dev->fsa_dev[cid].sense_data,
2850 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2851 ASENCODE_INVALID_COMMAND, 0, 0);
2852 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2853 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2854 SCSI_SENSE_BUFFERSIZE));
2855 goto scsi_done_ret;
2856 }
2857
2858 switch (scsicmd->cmnd[0]) {
2859 case READ_6:
2860 case READ_10:
2861 case READ_12:
2862 case READ_16:
2863 if (dev->in_reset)
2864 return -1;
2865 return aac_read(scsicmd);
2866
2867 case WRITE_6:
2868 case WRITE_10:
2869 case WRITE_12:
2870 case WRITE_16:
2871 if (dev->in_reset)
2872 return -1;
2873 return aac_write(scsicmd);
2874
2875 case SYNCHRONIZE_CACHE:
2876 if (((aac_cache & 6) == 6) && dev->cache_protected) {
2877 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2878 break;
2879 }
2880 /* Issue FIB to tell Firmware to flush it's cache */
2881 if ((aac_cache & 6) != 2)
2882 return aac_synchronize(scsicmd);
2883 fallthrough;
2884 case INQUIRY:
2885 {
2886 struct inquiry_data inq_data;
2887
2888 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2889 memset(&inq_data, 0, sizeof (struct inquiry_data));
2890
2891 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2892 char *arr = (char *)&inq_data;
2893
2894 /* EVPD bit set */
2895 arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2896 INQD_PDT_PROC : INQD_PDT_DA;
2897 if (scsicmd->cmnd[2] == 0) {
2898 /* supported vital product data pages */
2899 arr[3] = 3;
2900 arr[4] = 0x0;
2901 arr[5] = 0x80;
2902 arr[6] = 0x83;
2903 arr[1] = scsicmd->cmnd[2];
2904 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2905 sizeof(inq_data));
2906 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2907 } else if (scsicmd->cmnd[2] == 0x80) {
2908 /* unit serial number page */
2909 arr[3] = setinqserial(dev, &arr[4],
2910 scmd_id(scsicmd));
2911 arr[1] = scsicmd->cmnd[2];
2912 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2913 sizeof(inq_data));
2914 if (aac_wwn != 2)
2915 return aac_get_container_serial(
2916 scsicmd);
2917 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2918 } else if (scsicmd->cmnd[2] == 0x83) {
2919 /* vpd page 0x83 - Device Identification Page */
2920 char *sno = (char *)&inq_data;
2921 sno[3] = setinqserial(dev, &sno[4],
2922 scmd_id(scsicmd));
2923 if (aac_wwn != 2)
2924 return aac_get_container_serial(
2925 scsicmd);
2926 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2927 } else {
2928 /* vpd page not implemented */
2929 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
2930 set_sense(&dev->fsa_dev[cid].sense_data,
2931 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2932 ASENCODE_NO_SENSE, 7, 2);
2933 memcpy(scsicmd->sense_buffer,
2934 &dev->fsa_dev[cid].sense_data,
2935 min_t(size_t,
2936 sizeof(dev->fsa_dev[cid].sense_data),
2937 SCSI_SENSE_BUFFERSIZE));
2938 }
2939 break;
2940 }
2941 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
2942 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2943 inq_data.inqd_len = 31;
2944 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
2945 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
2946 /*
2947 * Set the Vendor, Product, and Revision Level
2948 * see: <vendor>.c i.e. aac.c
2949 */
2950 if (cid == host->this_id) {
2951 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2952 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */
2953 scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2954 sizeof(inq_data));
2955 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
2956 break;
2957 }
2958 if (dev->in_reset)
2959 return -1;
2960 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2961 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
2962 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2963 return aac_get_container_name(scsicmd);
2964 }
2965 case SERVICE_ACTION_IN_16:
2966 if (!(dev->raw_io_interface) ||
2967 !(dev->raw_io_64) ||
2968 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2969 break;
2970 {
2971 u64 capacity;
2972 char cp[13];
2973 unsigned int alloc_len;
2974
2975 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2976 capacity = fsa_dev_ptr[cid].size - 1;
2977 cp[0] = (capacity >> 56) & 0xff;
2978 cp[1] = (capacity >> 48) & 0xff;
2979 cp[2] = (capacity >> 40) & 0xff;
2980 cp[3] = (capacity >> 32) & 0xff;
2981 cp[4] = (capacity >> 24) & 0xff;
2982 cp[5] = (capacity >> 16) & 0xff;
2983 cp[6] = (capacity >> 8) & 0xff;
2984 cp[7] = (capacity >> 0) & 0xff;
2985 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
2986 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
2987 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
2988 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff;
2989 cp[12] = 0;
2990
2991 alloc_len = ((scsicmd->cmnd[10] << 24)
2992 + (scsicmd->cmnd[11] << 16)
2993 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2994
2995 alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2996 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2997 if (alloc_len < scsi_bufflen(scsicmd))
2998 scsi_set_resid(scsicmd,
2999 scsi_bufflen(scsicmd) - alloc_len);
3000
3001 /* Do not cache partition table for arrays */
3002 scsicmd->device->removable = 1;
3003
3004 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3005 break;
3006 }
3007
3008 case READ_CAPACITY:
3009 {
3010 u32 capacity;
3011 char cp[8];
3012
3013 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
3014 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3015 capacity = fsa_dev_ptr[cid].size - 1;
3016 else
3017 capacity = (u32)-1;
3018
3019 cp[0] = (capacity >> 24) & 0xff;
3020 cp[1] = (capacity >> 16) & 0xff;
3021 cp[2] = (capacity >> 8) & 0xff;
3022 cp[3] = (capacity >> 0) & 0xff;
3023 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff;
3024 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3025 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3026 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff;
3027 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
3028 /* Do not cache partition table for arrays */
3029 scsicmd->device->removable = 1;
3030 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3031 break;
3032 }
3033
3034 case MODE_SENSE:
3035 {
3036 int mode_buf_length = 4;
3037 u32 capacity;
3038 aac_modep_data mpd;
3039
3040 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3041 capacity = fsa_dev_ptr[cid].size - 1;
3042 else
3043 capacity = (u32)-1;
3044
3045 dprintk((KERN_DEBUG "MODE SENSE command.\n"));
3046 memset((char *)&mpd, 0, sizeof(aac_modep_data));
3047
3048 /* Mode data length */
3049 mpd.hd.data_length = sizeof(mpd.hd) - 1;
3050 /* Medium type - default */
3051 mpd.hd.med_type = 0;
3052 /* Device-specific param,
3053 bit 8: 0/1 = write enabled/protected
3054 bit 4: 0/1 = FUA enabled */
3055 mpd.hd.dev_par = 0;
3056
3057 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3058 mpd.hd.dev_par = 0x10;
3059 if (scsicmd->cmnd[1] & 0x8)
3060 mpd.hd.bd_length = 0; /* Block descriptor length */
3061 else {
3062 mpd.hd.bd_length = sizeof(mpd.bd);
3063 mpd.hd.data_length += mpd.hd.bd_length;
3064 mpd.bd.block_length[0] =
3065 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3066 mpd.bd.block_length[1] =
3067 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3068 mpd.bd.block_length[2] =
3069 fsa_dev_ptr[cid].block_size & 0xff;
3070
3071 mpd.mpc_buf[0] = scsicmd->cmnd[2];
3072 if (scsicmd->cmnd[2] == 0x1C) {
3073 /* page length */
3074 mpd.mpc_buf[1] = 0xa;
3075 /* Mode data length */
3076 mpd.hd.data_length = 23;
3077 } else {
3078 /* Mode data length */
3079 mpd.hd.data_length = 15;
3080 }
3081
3082 if (capacity > 0xffffff) {
3083 mpd.bd.block_count[0] = 0xff;
3084 mpd.bd.block_count[1] = 0xff;
3085 mpd.bd.block_count[2] = 0xff;
3086 } else {
3087 mpd.bd.block_count[0] = (capacity >> 16) & 0xff;
3088 mpd.bd.block_count[1] = (capacity >> 8) & 0xff;
3089 mpd.bd.block_count[2] = capacity & 0xff;
3090 }
3091 }
3092 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3093 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3094 mpd.hd.data_length += 3;
3095 mpd.mpc_buf[0] = 8;
3096 mpd.mpc_buf[1] = 1;
3097 mpd.mpc_buf[2] = ((aac_cache & 6) == 2)
3098 ? 0 : 0x04; /* WCE */
3099 mode_buf_length = sizeof(mpd);
3100 }
3101
3102 if (mode_buf_length > scsicmd->cmnd[4])
3103 mode_buf_length = scsicmd->cmnd[4];
3104 else
3105 mode_buf_length = sizeof(mpd);
3106 scsi_sg_copy_from_buffer(scsicmd,
3107 (char *)&mpd,
3108 mode_buf_length);
3109 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3110 break;
3111 }
3112 case MODE_SENSE_10:
3113 {
3114 u32 capacity;
3115 int mode_buf_length = 8;
3116 aac_modep10_data mpd10;
3117
3118 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
3119 capacity = fsa_dev_ptr[cid].size - 1;
3120 else
3121 capacity = (u32)-1;
3122
3123 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
3124 memset((char *)&mpd10, 0, sizeof(aac_modep10_data));
3125 /* Mode data length (MSB) */
3126 mpd10.hd.data_length[0] = 0;
3127 /* Mode data length (LSB) */
3128 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1;
3129 /* Medium type - default */
3130 mpd10.hd.med_type = 0;
3131 /* Device-specific param,
3132 bit 8: 0/1 = write enabled/protected
3133 bit 4: 0/1 = FUA enabled */
3134 mpd10.hd.dev_par = 0;
3135
3136 if (dev->raw_io_interface && ((aac_cache & 5) != 1))
3137 mpd10.hd.dev_par = 0x10;
3138 mpd10.hd.rsrvd[0] = 0; /* reserved */
3139 mpd10.hd.rsrvd[1] = 0; /* reserved */
3140 if (scsicmd->cmnd[1] & 0x8) {
3141 /* Block descriptor length (MSB) */
3142 mpd10.hd.bd_length[0] = 0;
3143 /* Block descriptor length (LSB) */
3144 mpd10.hd.bd_length[1] = 0;
3145 } else {
3146 mpd10.hd.bd_length[0] = 0;
3147 mpd10.hd.bd_length[1] = sizeof(mpd10.bd);
3148
3149 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1];
3150
3151 mpd10.bd.block_length[0] =
3152 (fsa_dev_ptr[cid].block_size >> 16) & 0xff;
3153 mpd10.bd.block_length[1] =
3154 (fsa_dev_ptr[cid].block_size >> 8) & 0xff;
3155 mpd10.bd.block_length[2] =
3156 fsa_dev_ptr[cid].block_size & 0xff;
3157
3158 if (capacity > 0xffffff) {
3159 mpd10.bd.block_count[0] = 0xff;
3160 mpd10.bd.block_count[1] = 0xff;
3161 mpd10.bd.block_count[2] = 0xff;
3162 } else {
3163 mpd10.bd.block_count[0] =
3164 (capacity >> 16) & 0xff;
3165 mpd10.bd.block_count[1] =
3166 (capacity >> 8) & 0xff;
3167 mpd10.bd.block_count[2] =
3168 capacity & 0xff;
3169 }
3170 }
3171 if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
3172 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
3173 mpd10.hd.data_length[1] += 3;
3174 mpd10.mpc_buf[0] = 8;
3175 mpd10.mpc_buf[1] = 1;
3176 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2)
3177 ? 0 : 0x04; /* WCE */
3178 mode_buf_length = sizeof(mpd10);
3179 if (mode_buf_length > scsicmd->cmnd[8])
3180 mode_buf_length = scsicmd->cmnd[8];
3181 }
3182 scsi_sg_copy_from_buffer(scsicmd,
3183 (char *)&mpd10,
3184 mode_buf_length);
3185
3186 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3187 break;
3188 }
3189 case REQUEST_SENSE:
3190 dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
3191 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3192 sizeof(struct sense_data));
3193 memset(&dev->fsa_dev[cid].sense_data, 0,
3194 sizeof(struct sense_data));
3195 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3196 break;
3197
3198 case ALLOW_MEDIUM_REMOVAL:
3199 dprintk((KERN_DEBUG "LOCK command.\n"));
3200 if (scsicmd->cmnd[4])
3201 fsa_dev_ptr[cid].locked = 1;
3202 else
3203 fsa_dev_ptr[cid].locked = 0;
3204
3205 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3206 break;
3207 /*
3208 * These commands are all No-Ops
3209 */
3210 case TEST_UNIT_READY:
3211 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
3212 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
3213 set_sense(&dev->fsa_dev[cid].sense_data,
3214 NOT_READY, SENCODE_BECOMING_READY,
3215 ASENCODE_BECOMING_READY, 0, 0);
3216 memcpy(scsicmd->sense_buffer,
3217 &dev->fsa_dev[cid].sense_data,
3218 min_t(size_t,
3219 sizeof(dev->fsa_dev[cid].sense_data),
3220 SCSI_SENSE_BUFFERSIZE));
3221 break;
3222 }
3223 fallthrough;
3224 case RESERVE:
3225 case RELEASE:
3226 case REZERO_UNIT:
3227 case REASSIGN_BLOCKS:
3228 case SEEK_10:
3229 scsicmd->result = DID_OK << 16 | SAM_STAT_GOOD;
3230 break;
3231
3232 case START_STOP:
3233 return aac_start_stop(scsicmd);
3234
3235 default:
3236 /*
3237 * Unhandled commands
3238 */
3239 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n",
3240 scsicmd->cmnd[0]));
3241 scsicmd->result = DID_OK << 16 | SAM_STAT_CHECK_CONDITION;
3242 set_sense(&dev->fsa_dev[cid].sense_data,
3243 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
3244 ASENCODE_INVALID_COMMAND, 0, 0);
3245 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
3246 min_t(size_t,
3247 sizeof(dev->fsa_dev[cid].sense_data),
3248 SCSI_SENSE_BUFFERSIZE));
3249 }
3250
3251 scsi_done_ret:
3252
3253 aac_scsi_done(scsicmd);
3254 return 0;
3255 }
3256
query_disk(struct aac_dev * dev,void __user * arg)3257 static int query_disk(struct aac_dev *dev, void __user *arg)
3258 {
3259 struct aac_query_disk qd;
3260 struct fsa_dev_info *fsa_dev_ptr;
3261
3262 fsa_dev_ptr = dev->fsa_dev;
3263 if (!fsa_dev_ptr)
3264 return -EBUSY;
3265 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
3266 return -EFAULT;
3267 if (qd.cnum == -1) {
3268 if (qd.id < 0 || qd.id >= dev->maximum_num_containers)
3269 return -EINVAL;
3270 qd.cnum = qd.id;
3271 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) {
3272 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
3273 return -EINVAL;
3274 qd.instance = dev->scsi_host_ptr->host_no;
3275 qd.bus = 0;
3276 qd.id = CONTAINER_TO_ID(qd.cnum);
3277 qd.lun = CONTAINER_TO_LUN(qd.cnum);
3278 }
3279 else return -EINVAL;
3280
3281 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
3282 qd.locked = fsa_dev_ptr[qd.cnum].locked;
3283 qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
3284
3285 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
3286 qd.unmapped = 1;
3287 else
3288 qd.unmapped = 0;
3289
3290 strscpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
3291 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
3292
3293 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
3294 return -EFAULT;
3295 return 0;
3296 }
3297
force_delete_disk(struct aac_dev * dev,void __user * arg)3298 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
3299 {
3300 struct aac_delete_disk dd;
3301 struct fsa_dev_info *fsa_dev_ptr;
3302
3303 fsa_dev_ptr = dev->fsa_dev;
3304 if (!fsa_dev_ptr)
3305 return -EBUSY;
3306
3307 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3308 return -EFAULT;
3309
3310 if (dd.cnum >= dev->maximum_num_containers)
3311 return -EINVAL;
3312 /*
3313 * Mark this container as being deleted.
3314 */
3315 fsa_dev_ptr[dd.cnum].deleted = 1;
3316 /*
3317 * Mark the container as no longer valid
3318 */
3319 fsa_dev_ptr[dd.cnum].valid = 0;
3320 return 0;
3321 }
3322
delete_disk(struct aac_dev * dev,void __user * arg)3323 static int delete_disk(struct aac_dev *dev, void __user *arg)
3324 {
3325 struct aac_delete_disk dd;
3326 struct fsa_dev_info *fsa_dev_ptr;
3327
3328 fsa_dev_ptr = dev->fsa_dev;
3329 if (!fsa_dev_ptr)
3330 return -EBUSY;
3331
3332 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
3333 return -EFAULT;
3334
3335 if (dd.cnum >= dev->maximum_num_containers)
3336 return -EINVAL;
3337 /*
3338 * If the container is locked, it can not be deleted by the API.
3339 */
3340 if (fsa_dev_ptr[dd.cnum].locked)
3341 return -EBUSY;
3342 else {
3343 /*
3344 * Mark the container as no longer being valid.
3345 */
3346 fsa_dev_ptr[dd.cnum].valid = 0;
3347 fsa_dev_ptr[dd.cnum].devname[0] = '\0';
3348 return 0;
3349 }
3350 }
3351
aac_dev_ioctl(struct aac_dev * dev,unsigned int cmd,void __user * arg)3352 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
3353 {
3354 switch (cmd) {
3355 case FSACTL_QUERY_DISK:
3356 return query_disk(dev, arg);
3357 case FSACTL_DELETE_DISK:
3358 return delete_disk(dev, arg);
3359 case FSACTL_FORCE_DELETE_DISK:
3360 return force_delete_disk(dev, arg);
3361 case FSACTL_GET_CONTAINERS:
3362 return aac_get_containers(dev);
3363 default:
3364 return -ENOTTY;
3365 }
3366 }
3367
3368 /**
3369 * aac_srb_callback
3370 * @context: the context set in the fib - here it is scsi cmd
3371 * @fibptr: pointer to the fib
3372 *
3373 * Handles the completion of a scsi command to a non dasd device
3374 */
aac_srb_callback(void * context,struct fib * fibptr)3375 static void aac_srb_callback(void *context, struct fib * fibptr)
3376 {
3377 struct aac_srb_reply *srbreply;
3378 struct scsi_cmnd *scsicmd;
3379
3380 scsicmd = (struct scsi_cmnd *) context;
3381
3382 if (!aac_valid_context(scsicmd, fibptr))
3383 return;
3384
3385 BUG_ON(fibptr == NULL);
3386
3387 srbreply = (struct aac_srb_reply *) fib_data(fibptr);
3388
3389 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
3390
3391 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3392 /* fast response */
3393 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
3394 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
3395 } else {
3396 /*
3397 * Calculate resid for sg
3398 */
3399 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
3400 - le32_to_cpu(srbreply->data_xfer_length));
3401 }
3402
3403
3404 scsi_dma_unmap(scsicmd);
3405
3406 /* expose physical device if expose_physicald flag is on */
3407 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
3408 && expose_physicals > 0)
3409 aac_expose_phy_device(scsicmd);
3410
3411 /*
3412 * First check the fib status
3413 */
3414
3415 if (le32_to_cpu(srbreply->status) != ST_OK) {
3416 int len;
3417
3418 pr_warn("aac_srb_callback: srb failed, status = %d\n",
3419 le32_to_cpu(srbreply->status));
3420 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3421 SCSI_SENSE_BUFFERSIZE);
3422 scsicmd->result = DID_ERROR << 16 | SAM_STAT_CHECK_CONDITION;
3423 memcpy(scsicmd->sense_buffer,
3424 srbreply->sense_data, len);
3425 }
3426
3427 /*
3428 * Next check the srb status
3429 */
3430 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) {
3431 case SRB_STATUS_ERROR_RECOVERY:
3432 case SRB_STATUS_PENDING:
3433 case SRB_STATUS_SUCCESS:
3434 scsicmd->result = DID_OK << 16;
3435 break;
3436 case SRB_STATUS_DATA_OVERRUN:
3437 switch (scsicmd->cmnd[0]) {
3438 case READ_6:
3439 case WRITE_6:
3440 case READ_10:
3441 case WRITE_10:
3442 case READ_12:
3443 case WRITE_12:
3444 case READ_16:
3445 case WRITE_16:
3446 if (le32_to_cpu(srbreply->data_xfer_length)
3447 < scsicmd->underflow)
3448 pr_warn("aacraid: SCSI CMD underflow\n");
3449 else
3450 pr_warn("aacraid: SCSI CMD Data Overrun\n");
3451 scsicmd->result = DID_ERROR << 16;
3452 break;
3453 case INQUIRY:
3454 scsicmd->result = DID_OK << 16;
3455 break;
3456 default:
3457 scsicmd->result = DID_OK << 16;
3458 break;
3459 }
3460 break;
3461 case SRB_STATUS_ABORTED:
3462 scsicmd->result = DID_ABORT << 16;
3463 break;
3464 case SRB_STATUS_ABORT_FAILED:
3465 /*
3466 * Not sure about this one - but assuming the
3467 * hba was trying to abort for some reason
3468 */
3469 scsicmd->result = DID_ERROR << 16;
3470 break;
3471 case SRB_STATUS_PARITY_ERROR:
3472 scsicmd->result = DID_PARITY << 16;
3473 break;
3474 case SRB_STATUS_NO_DEVICE:
3475 case SRB_STATUS_INVALID_PATH_ID:
3476 case SRB_STATUS_INVALID_TARGET_ID:
3477 case SRB_STATUS_INVALID_LUN:
3478 case SRB_STATUS_SELECTION_TIMEOUT:
3479 scsicmd->result = DID_NO_CONNECT << 16;
3480 break;
3481
3482 case SRB_STATUS_COMMAND_TIMEOUT:
3483 case SRB_STATUS_TIMEOUT:
3484 scsicmd->result = DID_TIME_OUT << 16;
3485 break;
3486
3487 case SRB_STATUS_BUSY:
3488 scsicmd->result = DID_BUS_BUSY << 16;
3489 break;
3490
3491 case SRB_STATUS_BUS_RESET:
3492 scsicmd->result = DID_RESET << 16;
3493 break;
3494
3495 case SRB_STATUS_MESSAGE_REJECTED:
3496 scsicmd->result = DID_ERROR << 16;
3497 break;
3498 case SRB_STATUS_REQUEST_FLUSHED:
3499 case SRB_STATUS_ERROR:
3500 case SRB_STATUS_INVALID_REQUEST:
3501 case SRB_STATUS_REQUEST_SENSE_FAILED:
3502 case SRB_STATUS_NO_HBA:
3503 case SRB_STATUS_UNEXPECTED_BUS_FREE:
3504 case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
3505 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
3506 case SRB_STATUS_DELAYED_RETRY:
3507 case SRB_STATUS_BAD_FUNCTION:
3508 case SRB_STATUS_NOT_STARTED:
3509 case SRB_STATUS_NOT_IN_USE:
3510 case SRB_STATUS_FORCE_ABORT:
3511 case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
3512 default:
3513 #ifdef AAC_DETAILED_STATUS_INFO
3514 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n",
3515 le32_to_cpu(srbreply->srb_status) & 0x3F,
3516 aac_get_status_string(
3517 le32_to_cpu(srbreply->srb_status) & 0x3F),
3518 scsicmd->cmnd[0],
3519 le32_to_cpu(srbreply->scsi_status));
3520 #endif
3521 /*
3522 * When the CC bit is SET by the host in ATA pass thru CDB,
3523 * driver is supposed to return DID_OK
3524 *
3525 * When the CC bit is RESET by the host, driver should
3526 * return DID_ERROR
3527 */
3528 if ((scsicmd->cmnd[0] == ATA_12)
3529 || (scsicmd->cmnd[0] == ATA_16)) {
3530
3531 if (scsicmd->cmnd[2] & (0x01 << 5)) {
3532 scsicmd->result = DID_OK << 16;
3533 } else {
3534 scsicmd->result = DID_ERROR << 16;
3535 }
3536 } else {
3537 scsicmd->result = DID_ERROR << 16;
3538 }
3539 break;
3540 }
3541 if (le32_to_cpu(srbreply->scsi_status)
3542 == SAM_STAT_CHECK_CONDITION) {
3543 int len;
3544
3545 scsicmd->result |= SAM_STAT_CHECK_CONDITION;
3546 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
3547 SCSI_SENSE_BUFFERSIZE);
3548 #ifdef AAC_DETAILED_STATUS_INFO
3549 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n",
3550 le32_to_cpu(srbreply->status), len);
3551 #endif
3552 memcpy(scsicmd->sense_buffer,
3553 srbreply->sense_data, len);
3554 }
3555
3556 /*
3557 * OR in the scsi status (already shifted up a bit)
3558 */
3559 scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
3560
3561 aac_fib_complete(fibptr);
3562 aac_scsi_done(scsicmd);
3563 }
3564
hba_resp_task_complete(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3565 static void hba_resp_task_complete(struct aac_dev *dev,
3566 struct scsi_cmnd *scsicmd,
3567 struct aac_hba_resp *err) {
3568
3569 scsicmd->result = err->status;
3570 /* set residual count */
3571 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count));
3572
3573 switch (err->status) {
3574 case SAM_STAT_GOOD:
3575 scsicmd->result |= DID_OK << 16;
3576 break;
3577 case SAM_STAT_CHECK_CONDITION:
3578 {
3579 int len;
3580
3581 len = min_t(u8, err->sense_response_data_len,
3582 SCSI_SENSE_BUFFERSIZE);
3583 if (len)
3584 memcpy(scsicmd->sense_buffer,
3585 err->sense_response_buf, len);
3586 scsicmd->result |= DID_OK << 16;
3587 break;
3588 }
3589 case SAM_STAT_BUSY:
3590 scsicmd->result |= DID_BUS_BUSY << 16;
3591 break;
3592 case SAM_STAT_TASK_ABORTED:
3593 scsicmd->result |= DID_ABORT << 16;
3594 break;
3595 case SAM_STAT_RESERVATION_CONFLICT:
3596 case SAM_STAT_TASK_SET_FULL:
3597 default:
3598 scsicmd->result |= DID_ERROR << 16;
3599 break;
3600 }
3601 }
3602
hba_resp_task_failure(struct aac_dev * dev,struct scsi_cmnd * scsicmd,struct aac_hba_resp * err)3603 static void hba_resp_task_failure(struct aac_dev *dev,
3604 struct scsi_cmnd *scsicmd,
3605 struct aac_hba_resp *err)
3606 {
3607 switch (err->status) {
3608 case HBA_RESP_STAT_HBAMODE_DISABLED:
3609 {
3610 u32 bus, cid;
3611
3612 bus = aac_logical_to_phys(scmd_channel(scsicmd));
3613 cid = scmd_id(scsicmd);
3614 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
3615 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW;
3616 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff;
3617 }
3618 scsicmd->result = DID_NO_CONNECT << 16;
3619 break;
3620 }
3621 case HBA_RESP_STAT_IO_ERROR:
3622 case HBA_RESP_STAT_NO_PATH_TO_DEVICE:
3623 scsicmd->result = DID_OK << 16 | SAM_STAT_BUSY;
3624 break;
3625 case HBA_RESP_STAT_IO_ABORTED:
3626 scsicmd->result = DID_ABORT << 16;
3627 break;
3628 case HBA_RESP_STAT_INVALID_DEVICE:
3629 scsicmd->result = DID_NO_CONNECT << 16;
3630 break;
3631 case HBA_RESP_STAT_UNDERRUN:
3632 /* UNDERRUN is OK */
3633 scsicmd->result = DID_OK << 16;
3634 break;
3635 case HBA_RESP_STAT_OVERRUN:
3636 default:
3637 scsicmd->result = DID_ERROR << 16;
3638 break;
3639 }
3640 }
3641
3642 /**
3643 * aac_hba_callback
3644 * @context: the context set in the fib - here it is scsi cmd
3645 * @fibptr: pointer to the fib
3646 *
3647 * Handles the completion of a native HBA scsi command
3648 */
aac_hba_callback(void * context,struct fib * fibptr)3649 void aac_hba_callback(void *context, struct fib *fibptr)
3650 {
3651 struct aac_dev *dev;
3652 struct scsi_cmnd *scsicmd;
3653
3654 struct aac_hba_resp *err =
3655 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
3656
3657 scsicmd = (struct scsi_cmnd *) context;
3658
3659 if (!aac_valid_context(scsicmd, fibptr))
3660 return;
3661
3662 WARN_ON(fibptr == NULL);
3663 dev = fibptr->dev;
3664
3665 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF))
3666 scsi_dma_unmap(scsicmd);
3667
3668 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
3669 /* fast response */
3670 scsicmd->result = DID_OK << 16;
3671 goto out;
3672 }
3673
3674 switch (err->service_response) {
3675 case HBA_RESP_SVCRES_TASK_COMPLETE:
3676 hba_resp_task_complete(dev, scsicmd, err);
3677 break;
3678 case HBA_RESP_SVCRES_FAILURE:
3679 hba_resp_task_failure(dev, scsicmd, err);
3680 break;
3681 case HBA_RESP_SVCRES_TMF_REJECTED:
3682 scsicmd->result = DID_ERROR << 16;
3683 break;
3684 case HBA_RESP_SVCRES_TMF_LUN_INVALID:
3685 scsicmd->result = DID_NO_CONNECT << 16;
3686 break;
3687 case HBA_RESP_SVCRES_TMF_COMPLETE:
3688 case HBA_RESP_SVCRES_TMF_SUCCEEDED:
3689 scsicmd->result = DID_OK << 16;
3690 break;
3691 default:
3692 scsicmd->result = DID_ERROR << 16;
3693 break;
3694 }
3695
3696 out:
3697 aac_fib_complete(fibptr);
3698
3699 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)
3700 aac_priv(scsicmd)->sent_command = 1;
3701 else
3702 aac_scsi_done(scsicmd);
3703 }
3704
3705 /**
3706 * aac_send_srb_fib
3707 * @scsicmd: the scsi command block
3708 *
3709 * This routine will form a FIB and fill in the aac_srb from the
3710 * scsicmd passed in.
3711 */
aac_send_srb_fib(struct scsi_cmnd * scsicmd)3712 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
3713 {
3714 struct fib* cmd_fibcontext;
3715 struct aac_dev* dev;
3716 int status;
3717
3718 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
3719 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3720 scsicmd->device->lun > 7) {
3721 scsicmd->result = DID_NO_CONNECT << 16;
3722 aac_scsi_done(scsicmd);
3723 return 0;
3724 }
3725
3726 /*
3727 * Allocate and initialize a Fib then setup a BlockWrite command
3728 */
3729 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3730 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
3731 status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
3732
3733 /*
3734 * Check that the command queued to the controller
3735 */
3736 if (status == -EINPROGRESS)
3737 return 0;
3738
3739 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
3740 aac_fib_complete(cmd_fibcontext);
3741 aac_fib_free(cmd_fibcontext);
3742
3743 return -1;
3744 }
3745
3746 /**
3747 * aac_send_hba_fib
3748 * @scsicmd: the scsi command block
3749 *
3750 * This routine will form a FIB and fill in the aac_hba_cmd_req from the
3751 * scsicmd passed in.
3752 */
aac_send_hba_fib(struct scsi_cmnd * scsicmd)3753 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd)
3754 {
3755 struct fib *cmd_fibcontext;
3756 struct aac_dev *dev;
3757 int status;
3758
3759 dev = shost_priv(scsicmd->device->host);
3760 if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
3761 scsicmd->device->lun > AAC_MAX_LUN - 1) {
3762 scsicmd->result = DID_NO_CONNECT << 16;
3763 aac_scsi_done(scsicmd);
3764 return 0;
3765 }
3766
3767 /*
3768 * Allocate and initialize a Fib then setup a BlockWrite command
3769 */
3770 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd);
3771 if (!cmd_fibcontext)
3772 return -1;
3773
3774 aac_priv(scsicmd)->owner = AAC_OWNER_FIRMWARE;
3775 status = aac_adapter_hba(cmd_fibcontext, scsicmd);
3776
3777 /*
3778 * Check that the command queued to the controller
3779 */
3780 if (status == -EINPROGRESS)
3781 return 0;
3782
3783 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n",
3784 status);
3785 aac_fib_complete(cmd_fibcontext);
3786 aac_fib_free(cmd_fibcontext);
3787
3788 return -1;
3789 }
3790
3791
aac_build_sg(struct scsi_cmnd * scsicmd,struct sgmap * psg)3792 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
3793 {
3794 unsigned long byte_count = 0;
3795 int nseg;
3796 struct scatterlist *sg;
3797 int i;
3798
3799 // Get rid of old data
3800 psg->count = 0;
3801 psg->sg[0].addr = 0;
3802 psg->sg[0].count = 0;
3803
3804 nseg = scsi_dma_map(scsicmd);
3805 if (nseg <= 0)
3806 return nseg;
3807
3808 psg->count = cpu_to_le32(nseg);
3809
3810 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3811 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
3812 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
3813 byte_count += sg_dma_len(sg);
3814 }
3815 /* hba wants the size to be exact */
3816 if (byte_count > scsi_bufflen(scsicmd)) {
3817 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3818 (byte_count - scsi_bufflen(scsicmd));
3819 psg->sg[i-1].count = cpu_to_le32(temp);
3820 byte_count = scsi_bufflen(scsicmd);
3821 }
3822 /* Check for command underflow */
3823 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3824 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3825 byte_count, scsicmd->underflow);
3826 }
3827
3828 return byte_count;
3829 }
3830
3831
aac_build_sg64(struct scsi_cmnd * scsicmd,struct sgmap64 * psg)3832 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
3833 {
3834 unsigned long byte_count = 0;
3835 u64 addr;
3836 int nseg;
3837 struct scatterlist *sg;
3838 int i;
3839
3840 // Get rid of old data
3841 psg->count = 0;
3842 psg->sg[0].addr[0] = 0;
3843 psg->sg[0].addr[1] = 0;
3844 psg->sg[0].count = 0;
3845
3846 nseg = scsi_dma_map(scsicmd);
3847 if (nseg <= 0)
3848 return nseg;
3849
3850 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3851 int count = sg_dma_len(sg);
3852 addr = sg_dma_address(sg);
3853 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
3854 psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
3855 psg->sg[i].count = cpu_to_le32(count);
3856 byte_count += count;
3857 }
3858 psg->count = cpu_to_le32(nseg);
3859 /* hba wants the size to be exact */
3860 if (byte_count > scsi_bufflen(scsicmd)) {
3861 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3862 (byte_count - scsi_bufflen(scsicmd));
3863 psg->sg[i-1].count = cpu_to_le32(temp);
3864 byte_count = scsi_bufflen(scsicmd);
3865 }
3866 /* Check for command underflow */
3867 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3868 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3869 byte_count, scsicmd->underflow);
3870 }
3871
3872 return byte_count;
3873 }
3874
aac_build_sgraw(struct scsi_cmnd * scsicmd,struct sgmapraw * psg)3875 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
3876 {
3877 unsigned long byte_count = 0;
3878 int nseg;
3879 struct scatterlist *sg;
3880 int i;
3881
3882 // Get rid of old data
3883 psg->count = 0;
3884 psg->sg[0].next = 0;
3885 psg->sg[0].prev = 0;
3886 psg->sg[0].addr[0] = 0;
3887 psg->sg[0].addr[1] = 0;
3888 psg->sg[0].count = 0;
3889 psg->sg[0].flags = 0;
3890
3891 nseg = scsi_dma_map(scsicmd);
3892 if (nseg <= 0)
3893 return nseg;
3894
3895 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3896 int count = sg_dma_len(sg);
3897 u64 addr = sg_dma_address(sg);
3898 psg->sg[i].next = 0;
3899 psg->sg[i].prev = 0;
3900 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3901 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3902 psg->sg[i].count = cpu_to_le32(count);
3903 psg->sg[i].flags = 0;
3904 byte_count += count;
3905 }
3906 psg->count = cpu_to_le32(nseg);
3907 /* hba wants the size to be exact */
3908 if (byte_count > scsi_bufflen(scsicmd)) {
3909 u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3910 (byte_count - scsi_bufflen(scsicmd));
3911 psg->sg[i-1].count = cpu_to_le32(temp);
3912 byte_count = scsi_bufflen(scsicmd);
3913 }
3914 /* Check for command underflow */
3915 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3916 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3917 byte_count, scsicmd->underflow);
3918 }
3919
3920 return byte_count;
3921 }
3922
aac_build_sgraw2(struct scsi_cmnd * scsicmd,struct aac_raw_io2 * rio2,int sg_max)3923 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3924 struct aac_raw_io2 *rio2, int sg_max)
3925 {
3926 unsigned long byte_count = 0;
3927 int nseg;
3928 struct scatterlist *sg;
3929 int i, conformable = 0;
3930 u32 min_size = PAGE_SIZE, cur_size;
3931
3932 nseg = scsi_dma_map(scsicmd);
3933 if (nseg <= 0)
3934 return nseg;
3935
3936 scsi_for_each_sg(scsicmd, sg, nseg, i) {
3937 int count = sg_dma_len(sg);
3938 u64 addr = sg_dma_address(sg);
3939
3940 BUG_ON(i >= sg_max);
3941 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3942 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3943 cur_size = cpu_to_le32(count);
3944 rio2->sge[i].length = cur_size;
3945 rio2->sge[i].flags = 0;
3946 if (i == 0) {
3947 conformable = 1;
3948 rio2->sgeFirstSize = cur_size;
3949 } else if (i == 1) {
3950 rio2->sgeNominalSize = cur_size;
3951 min_size = cur_size;
3952 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3953 conformable = 0;
3954 if (cur_size < min_size)
3955 min_size = cur_size;
3956 }
3957 byte_count += count;
3958 }
3959
3960 /* hba wants the size to be exact */
3961 if (byte_count > scsi_bufflen(scsicmd)) {
3962 u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3963 (byte_count - scsi_bufflen(scsicmd));
3964 rio2->sge[i-1].length = cpu_to_le32(temp);
3965 byte_count = scsi_bufflen(scsicmd);
3966 }
3967
3968 rio2->sgeCnt = cpu_to_le32(nseg);
3969 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3970 /* not conformable: evaluate required sg elements */
3971 if (!conformable) {
3972 int j, nseg_new = nseg, err_found;
3973 for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3974 err_found = 0;
3975 nseg_new = 2;
3976 for (j = 1; j < nseg - 1; ++j) {
3977 if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3978 err_found = 1;
3979 break;
3980 }
3981 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3982 }
3983 if (!err_found)
3984 break;
3985 }
3986 if (i > 0 && nseg_new <= sg_max) {
3987 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3988
3989 if (ret < 0)
3990 return ret;
3991 }
3992 } else
3993 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3994
3995 /* Check for command underflow */
3996 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3997 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3998 byte_count, scsicmd->underflow);
3999 }
4000
4001 return byte_count;
4002 }
4003
aac_convert_sgraw2(struct aac_raw_io2 * rio2,int pages,int nseg,int nseg_new)4004 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
4005 {
4006 struct sge_ieee1212 *sge;
4007 int i, j, pos;
4008 u32 addr_low;
4009
4010 if (aac_convert_sgl == 0)
4011 return 0;
4012
4013 sge = kmalloc_array(nseg_new, sizeof(*sge), GFP_ATOMIC);
4014 if (sge == NULL)
4015 return -ENOMEM;
4016
4017 for (i = 1, pos = 1; i < nseg-1; ++i) {
4018 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
4019 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
4020 sge[pos].addrLow = addr_low;
4021 sge[pos].addrHigh = rio2->sge[i].addrHigh;
4022 if (addr_low < rio2->sge[i].addrLow)
4023 sge[pos].addrHigh++;
4024 sge[pos].length = pages * PAGE_SIZE;
4025 sge[pos].flags = 0;
4026 pos++;
4027 }
4028 }
4029 sge[pos] = rio2->sge[nseg-1];
4030 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
4031
4032 kfree(sge);
4033 rio2->sgeCnt = cpu_to_le32(nseg_new);
4034 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
4035 rio2->sgeNominalSize = pages * PAGE_SIZE;
4036 return 0;
4037 }
4038
aac_build_sghba(struct scsi_cmnd * scsicmd,struct aac_hba_cmd_req * hbacmd,int sg_max,u64 sg_address)4039 static long aac_build_sghba(struct scsi_cmnd *scsicmd,
4040 struct aac_hba_cmd_req *hbacmd,
4041 int sg_max,
4042 u64 sg_address)
4043 {
4044 unsigned long byte_count = 0;
4045 int nseg;
4046 struct scatterlist *sg;
4047 int i;
4048 u32 cur_size;
4049 struct aac_hba_sgl *sge;
4050
4051 nseg = scsi_dma_map(scsicmd);
4052 if (nseg <= 0) {
4053 byte_count = nseg;
4054 goto out;
4055 }
4056
4057 if (nseg > HBA_MAX_SG_EMBEDDED)
4058 sge = &hbacmd->sge[2];
4059 else
4060 sge = &hbacmd->sge[0];
4061
4062 scsi_for_each_sg(scsicmd, sg, nseg, i) {
4063 int count = sg_dma_len(sg);
4064 u64 addr = sg_dma_address(sg);
4065
4066 WARN_ON(i >= sg_max);
4067 sge->addr_hi = cpu_to_le32((u32)(addr>>32));
4068 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff));
4069 cur_size = cpu_to_le32(count);
4070 sge->len = cur_size;
4071 sge->flags = 0;
4072 byte_count += count;
4073 sge++;
4074 }
4075
4076 sge--;
4077 /* hba wants the size to be exact */
4078 if (byte_count > scsi_bufflen(scsicmd)) {
4079 u32 temp;
4080
4081 temp = le32_to_cpu(sge->len) - byte_count
4082 - scsi_bufflen(scsicmd);
4083 sge->len = cpu_to_le32(temp);
4084 byte_count = scsi_bufflen(scsicmd);
4085 }
4086
4087 if (nseg <= HBA_MAX_SG_EMBEDDED) {
4088 hbacmd->emb_data_desc_count = cpu_to_le32(nseg);
4089 sge->flags = cpu_to_le32(0x40000000);
4090 } else {
4091 /* not embedded */
4092 hbacmd->sge[0].flags = cpu_to_le32(0x80000000);
4093 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1);
4094 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32);
4095 hbacmd->sge[0].addr_lo =
4096 cpu_to_le32((u32)(sg_address & 0xffffffff));
4097 }
4098
4099 /* Check for command underflow */
4100 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
4101 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n",
4102 byte_count, scsicmd->underflow);
4103 }
4104 out:
4105 return byte_count;
4106 }
4107
4108 #ifdef AAC_DETAILED_STATUS_INFO
4109
4110 struct aac_srb_status_info {
4111 u32 status;
4112 char *str;
4113 };
4114
4115
4116 static struct aac_srb_status_info srb_status_info[] = {
4117 { SRB_STATUS_PENDING, "Pending Status"},
4118 { SRB_STATUS_SUCCESS, "Success"},
4119 { SRB_STATUS_ABORTED, "Aborted Command"},
4120 { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
4121 { SRB_STATUS_ERROR, "Error Event"},
4122 { SRB_STATUS_BUSY, "Device Busy"},
4123 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
4124 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
4125 { SRB_STATUS_NO_DEVICE, "No Device"},
4126 { SRB_STATUS_TIMEOUT, "Timeout"},
4127 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
4128 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
4129 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
4130 { SRB_STATUS_BUS_RESET, "Bus Reset"},
4131 { SRB_STATUS_PARITY_ERROR, "Parity Error"},
4132 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
4133 { SRB_STATUS_NO_HBA, "No HBA"},
4134 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
4135 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
4136 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
4137 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
4138 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
4139 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
4140 { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
4141 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
4142 { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
4143 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
4144 { SRB_STATUS_NOT_STARTED, "Not Started"},
4145 { SRB_STATUS_NOT_IN_USE, "Not In Use"},
4146 { SRB_STATUS_FORCE_ABORT, "Force Abort"},
4147 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
4148 { 0xff, "Unknown Error"}
4149 };
4150
aac_get_status_string(u32 status)4151 char *aac_get_status_string(u32 status)
4152 {
4153 int i;
4154
4155 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
4156 if (srb_status_info[i].status == status)
4157 return srb_status_info[i].str;
4158
4159 return "Bad Status Code";
4160 }
4161
4162 #endif
4163