1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * aachba.c 15 * 16 * Abstract: Contains Interfaces to manage IOs. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/init.h> 21 #include <linux/types.h> 22 #include <linux/pci.h> 23 #include <linux/spinlock.h> 24 #include <linux/slab.h> 25 #include <linux/completion.h> 26 #include <linux/blkdev.h> 27 #include <linux/uaccess.h> 28 #include <linux/highmem.h> /* For flush_kernel_dcache_page */ 29 #include <linux/module.h> 30 31 #include <asm/unaligned.h> 32 33 #include <scsi/scsi.h> 34 #include <scsi/scsi_cmnd.h> 35 #include <scsi/scsi_device.h> 36 #include <scsi/scsi_host.h> 37 38 #include "aacraid.h" 39 40 /* values for inqd_pdt: Peripheral device type in plain English */ 41 #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */ 42 #define INQD_PDT_PROC 0x03 /* Processor device */ 43 #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */ 44 #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */ 45 #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */ 46 #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */ 47 48 #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */ 49 #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */ 50 51 /* 52 * Sense codes 53 */ 54 55 #define SENCODE_NO_SENSE 0x00 56 #define SENCODE_END_OF_DATA 0x00 57 #define SENCODE_BECOMING_READY 0x04 58 #define SENCODE_INIT_CMD_REQUIRED 0x04 59 #define SENCODE_UNRECOVERED_READ_ERROR 0x11 60 #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A 61 #define SENCODE_INVALID_COMMAND 0x20 62 #define SENCODE_LBA_OUT_OF_RANGE 0x21 63 #define SENCODE_INVALID_CDB_FIELD 0x24 64 #define SENCODE_LUN_NOT_SUPPORTED 0x25 65 #define SENCODE_INVALID_PARAM_FIELD 0x26 66 #define SENCODE_PARAM_NOT_SUPPORTED 0x26 67 #define SENCODE_PARAM_VALUE_INVALID 0x26 68 #define SENCODE_RESET_OCCURRED 0x29 69 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E 70 #define SENCODE_INQUIRY_DATA_CHANGED 0x3F 71 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39 72 #define SENCODE_DIAGNOSTIC_FAILURE 0x40 73 #define SENCODE_INTERNAL_TARGET_FAILURE 0x44 74 #define SENCODE_INVALID_MESSAGE_ERROR 0x49 75 #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c 76 #define SENCODE_OVERLAPPED_COMMAND 0x4E 77 78 /* 79 * Additional sense codes 80 */ 81 82 #define ASENCODE_NO_SENSE 0x00 83 #define ASENCODE_END_OF_DATA 0x05 84 #define ASENCODE_BECOMING_READY 0x01 85 #define ASENCODE_INIT_CMD_REQUIRED 0x02 86 #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00 87 #define ASENCODE_INVALID_COMMAND 0x00 88 #define ASENCODE_LBA_OUT_OF_RANGE 0x00 89 #define ASENCODE_INVALID_CDB_FIELD 0x00 90 #define ASENCODE_LUN_NOT_SUPPORTED 0x00 91 #define ASENCODE_INVALID_PARAM_FIELD 0x00 92 #define ASENCODE_PARAM_NOT_SUPPORTED 0x01 93 #define ASENCODE_PARAM_VALUE_INVALID 0x02 94 #define ASENCODE_RESET_OCCURRED 0x00 95 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00 96 #define ASENCODE_INQUIRY_DATA_CHANGED 0x03 97 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00 98 #define ASENCODE_DIAGNOSTIC_FAILURE 0x80 99 #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00 100 #define ASENCODE_INVALID_MESSAGE_ERROR 0x00 101 #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00 102 #define ASENCODE_OVERLAPPED_COMMAND 0x00 103 104 #define BYTE0(x) (unsigned char)(x) 105 #define BYTE1(x) (unsigned char)((x) >> 8) 106 #define BYTE2(x) (unsigned char)((x) >> 16) 107 #define BYTE3(x) (unsigned char)((x) >> 24) 108 109 /* MODE_SENSE data format */ 110 typedef struct { 111 struct { 112 u8 data_length; 113 u8 med_type; 114 u8 dev_par; 115 u8 bd_length; 116 } __attribute__((packed)) hd; 117 struct { 118 u8 dens_code; 119 u8 block_count[3]; 120 u8 reserved; 121 u8 block_length[3]; 122 } __attribute__((packed)) bd; 123 u8 mpc_buf[3]; 124 } __attribute__((packed)) aac_modep_data; 125 126 /* MODE_SENSE_10 data format */ 127 typedef struct { 128 struct { 129 u8 data_length[2]; 130 u8 med_type; 131 u8 dev_par; 132 u8 rsrvd[2]; 133 u8 bd_length[2]; 134 } __attribute__((packed)) hd; 135 struct { 136 u8 dens_code; 137 u8 block_count[3]; 138 u8 reserved; 139 u8 block_length[3]; 140 } __attribute__((packed)) bd; 141 u8 mpc_buf[3]; 142 } __attribute__((packed)) aac_modep10_data; 143 144 /*------------------------------------------------------------------------------ 145 * S T R U C T S / T Y P E D E F S 146 *----------------------------------------------------------------------------*/ 147 /* SCSI inquiry data */ 148 struct inquiry_data { 149 u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */ 150 u8 inqd_dtq; /* RMB | Device Type Qualifier */ 151 u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */ 152 u8 inqd_rdf; /* AENC | TrmIOP | Response data format */ 153 u8 inqd_len; /* Additional length (n-4) */ 154 u8 inqd_pad1[2];/* Reserved - must be zero */ 155 u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 156 u8 inqd_vid[8]; /* Vendor ID */ 157 u8 inqd_pid[16];/* Product ID */ 158 u8 inqd_prl[4]; /* Product Revision Level */ 159 }; 160 161 /* Added for VPD 0x83 */ 162 struct tvpd_id_descriptor_type_1 { 163 u8 codeset:4; /* VPD_CODE_SET */ 164 u8 reserved:4; 165 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 166 u8 reserved2:4; 167 u8 reserved3; 168 u8 identifierlength; 169 u8 venid[8]; 170 u8 productid[16]; 171 u8 serialnumber[8]; /* SN in ASCII */ 172 173 }; 174 175 struct tvpd_id_descriptor_type_2 { 176 u8 codeset:4; /* VPD_CODE_SET */ 177 u8 reserved:4; 178 u8 identifiertype:4; /* VPD_IDENTIFIER_TYPE */ 179 u8 reserved2:4; 180 u8 reserved3; 181 u8 identifierlength; 182 struct teu64id { 183 u32 Serial; 184 /* The serial number supposed to be 40 bits, 185 * bit we only support 32, so make the last byte zero. */ 186 u8 reserved; 187 u8 venid[3]; 188 } eu64id; 189 190 }; 191 192 struct tvpd_id_descriptor_type_3 { 193 u8 codeset : 4; /* VPD_CODE_SET */ 194 u8 reserved : 4; 195 u8 identifiertype : 4; /* VPD_IDENTIFIER_TYPE */ 196 u8 reserved2 : 4; 197 u8 reserved3; 198 u8 identifierlength; 199 u8 Identifier[16]; 200 }; 201 202 struct tvpd_page83 { 203 u8 DeviceType:5; 204 u8 DeviceTypeQualifier:3; 205 u8 PageCode; 206 u8 reserved; 207 u8 PageLength; 208 struct tvpd_id_descriptor_type_1 type1; 209 struct tvpd_id_descriptor_type_2 type2; 210 struct tvpd_id_descriptor_type_3 type3; 211 }; 212 213 /* 214 * M O D U L E G L O B A L S 215 */ 216 217 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap); 218 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg); 219 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg); 220 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 221 struct aac_raw_io2 *rio2, int sg_max); 222 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 223 struct aac_hba_cmd_req *hbacmd, 224 int sg_max, u64 sg_address); 225 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, 226 int pages, int nseg, int nseg_new); 227 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd); 228 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd); 229 #ifdef AAC_DETAILED_STATUS_INFO 230 static char *aac_get_status_string(u32 status); 231 #endif 232 233 /* 234 * Non dasd selection is handled entirely in aachba now 235 */ 236 237 static int nondasd = -1; 238 static int aac_cache = 2; /* WCE=0 to avoid performance problems */ 239 static int dacmode = -1; 240 int aac_msi; 241 int aac_commit = -1; 242 int startup_timeout = 180; 243 int aif_timeout = 120; 244 int aac_sync_mode; /* Only Sync. transfer - disabled */ 245 static int aac_convert_sgl = 1; /* convert non-conformable s/g list - enabled */ 246 247 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR); 248 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode" 249 " 0=off, 1=on"); 250 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR); 251 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list" 252 " 0=off, 1=on"); 253 module_param(nondasd, int, S_IRUGO|S_IWUSR); 254 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices." 255 " 0=off, 1=on"); 256 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR); 257 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n" 258 "\tbit 0 - Disable FUA in WRITE SCSI commands\n" 259 "\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n" 260 "\tbit 2 - Disable only if Battery is protecting Cache"); 261 module_param(dacmode, int, S_IRUGO|S_IWUSR); 262 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC." 263 " 0=off, 1=on"); 264 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR); 265 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the" 266 " adapter for foreign arrays.\n" 267 "This is typically needed in systems that do not have a BIOS." 268 " 0=off, 1=on"); 269 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR); 270 MODULE_PARM_DESC(msi, "IRQ handling." 271 " 0=PIC(default), 1=MSI, 2=MSI-X)"); 272 module_param(startup_timeout, int, S_IRUGO|S_IWUSR); 273 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for" 274 " adapter to have it's kernel up and\n" 275 "running. This is typically adjusted for large systems that do not" 276 " have a BIOS."); 277 module_param(aif_timeout, int, S_IRUGO|S_IWUSR); 278 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for" 279 " applications to pick up AIFs before\n" 280 "deregistering them. This is typically adjusted for heavily burdened" 281 " systems."); 282 283 int aac_fib_dump; 284 module_param(aac_fib_dump, int, 0644); 285 MODULE_PARM_DESC(aac_fib_dump, "Dump controller fibs prior to IOP_RESET 0=off, 1=on"); 286 287 int numacb = -1; 288 module_param(numacb, int, S_IRUGO|S_IWUSR); 289 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control" 290 " blocks (FIB) allocated. Valid values are 512 and down. Default is" 291 " to use suggestion from Firmware."); 292 293 static int acbsize = -1; 294 module_param(acbsize, int, S_IRUGO|S_IWUSR); 295 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)" 296 " size. Valid values are 512, 2048, 4096 and 8192. Default is to use" 297 " suggestion from Firmware."); 298 299 int update_interval = 30 * 60; 300 module_param(update_interval, int, S_IRUGO|S_IWUSR); 301 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync" 302 " updates issued to adapter."); 303 304 int check_interval = 60; 305 module_param(check_interval, int, S_IRUGO|S_IWUSR); 306 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health" 307 " checks."); 308 309 int aac_check_reset = 1; 310 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR); 311 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the" 312 " adapter. a value of -1 forces the reset to adapters programmed to" 313 " ignore it."); 314 315 int expose_physicals = -1; 316 module_param(expose_physicals, int, S_IRUGO|S_IWUSR); 317 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays." 318 " -1=protect 0=off, 1=on"); 319 320 int aac_reset_devices; 321 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR); 322 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization."); 323 324 static int aac_wwn = 1; 325 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR); 326 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n" 327 "\t0 - Disable\n" 328 "\t1 - Array Meta Data Signature (default)\n" 329 "\t2 - Adapter Serial Number"); 330 331 332 static inline int aac_valid_context(struct scsi_cmnd *scsicmd, 333 struct fib *fibptr) { 334 struct scsi_device *device; 335 336 if (unlikely(!scsicmd || !scsicmd->scsi_done)) { 337 dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n")); 338 aac_fib_complete(fibptr); 339 return 0; 340 } 341 scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL; 342 device = scsicmd->device; 343 if (unlikely(!device)) { 344 dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n")); 345 aac_fib_complete(fibptr); 346 return 0; 347 } 348 return 1; 349 } 350 351 /** 352 * aac_get_config_status - check the adapter configuration 353 * @dev: aac driver data 354 * @commit_flag: force sending CT_COMMIT_CONFIG 355 * 356 * Query config status, and commit the configuration if needed. 357 */ 358 int aac_get_config_status(struct aac_dev *dev, int commit_flag) 359 { 360 int status = 0; 361 struct fib * fibptr; 362 363 if (!(fibptr = aac_fib_alloc(dev))) 364 return -ENOMEM; 365 366 aac_fib_init(fibptr); 367 { 368 struct aac_get_config_status *dinfo; 369 dinfo = (struct aac_get_config_status *) fib_data(fibptr); 370 371 dinfo->command = cpu_to_le32(VM_ContainerConfig); 372 dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS); 373 dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data)); 374 } 375 376 status = aac_fib_send(ContainerCommand, 377 fibptr, 378 sizeof (struct aac_get_config_status), 379 FsaNormal, 380 1, 1, 381 NULL, NULL); 382 if (status < 0) { 383 printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n"); 384 } else { 385 struct aac_get_config_status_resp *reply 386 = (struct aac_get_config_status_resp *) fib_data(fibptr); 387 dprintk((KERN_WARNING 388 "aac_get_config_status: response=%d status=%d action=%d\n", 389 le32_to_cpu(reply->response), 390 le32_to_cpu(reply->status), 391 le32_to_cpu(reply->data.action))); 392 if ((le32_to_cpu(reply->response) != ST_OK) || 393 (le32_to_cpu(reply->status) != CT_OK) || 394 (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) { 395 printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n"); 396 status = -EINVAL; 397 } 398 } 399 /* Do not set XferState to zero unless receives a response from F/W */ 400 if (status >= 0) 401 aac_fib_complete(fibptr); 402 403 /* Send a CT_COMMIT_CONFIG to enable discovery of devices */ 404 if (status >= 0) { 405 if ((aac_commit == 1) || commit_flag) { 406 struct aac_commit_config * dinfo; 407 aac_fib_init(fibptr); 408 dinfo = (struct aac_commit_config *) fib_data(fibptr); 409 410 dinfo->command = cpu_to_le32(VM_ContainerConfig); 411 dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG); 412 413 status = aac_fib_send(ContainerCommand, 414 fibptr, 415 sizeof (struct aac_commit_config), 416 FsaNormal, 417 1, 1, 418 NULL, NULL); 419 /* Do not set XferState to zero unless 420 * receives a response from F/W */ 421 if (status >= 0) 422 aac_fib_complete(fibptr); 423 } else if (aac_commit == 0) { 424 printk(KERN_WARNING 425 "aac_get_config_status: Foreign device configurations are being ignored\n"); 426 } 427 } 428 /* FIB should be freed only after getting the response from the F/W */ 429 if (status != -ERESTARTSYS) 430 aac_fib_free(fibptr); 431 return status; 432 } 433 434 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd) 435 { 436 char inq_data; 437 scsi_sg_copy_to_buffer(scsicmd, &inq_data, sizeof(inq_data)); 438 if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) { 439 inq_data &= 0xdf; 440 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 441 } 442 } 443 444 /** 445 * aac_get_containers - list containers 446 * @dev: aac driver data 447 * 448 * Make a list of all containers on this controller 449 */ 450 int aac_get_containers(struct aac_dev *dev) 451 { 452 struct fsa_dev_info *fsa_dev_ptr; 453 u32 index; 454 int status = 0; 455 struct fib * fibptr; 456 struct aac_get_container_count *dinfo; 457 struct aac_get_container_count_resp *dresp; 458 int maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 459 460 if (!(fibptr = aac_fib_alloc(dev))) 461 return -ENOMEM; 462 463 aac_fib_init(fibptr); 464 dinfo = (struct aac_get_container_count *) fib_data(fibptr); 465 dinfo->command = cpu_to_le32(VM_ContainerConfig); 466 dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT); 467 468 status = aac_fib_send(ContainerCommand, 469 fibptr, 470 sizeof (struct aac_get_container_count), 471 FsaNormal, 472 1, 1, 473 NULL, NULL); 474 if (status >= 0) { 475 dresp = (struct aac_get_container_count_resp *)fib_data(fibptr); 476 maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries); 477 if (fibptr->dev->supplement_adapter_info.supported_options2 & 478 AAC_OPTION_SUPPORTED_240_VOLUMES) { 479 maximum_num_containers = 480 le32_to_cpu(dresp->MaxSimpleVolumes); 481 } 482 aac_fib_complete(fibptr); 483 } 484 /* FIB should be freed only after getting the response from the F/W */ 485 if (status != -ERESTARTSYS) 486 aac_fib_free(fibptr); 487 488 if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS) 489 maximum_num_containers = MAXIMUM_NUM_CONTAINERS; 490 if (dev->fsa_dev == NULL || 491 dev->maximum_num_containers != maximum_num_containers) { 492 493 fsa_dev_ptr = dev->fsa_dev; 494 495 dev->fsa_dev = kcalloc(maximum_num_containers, 496 sizeof(*fsa_dev_ptr), GFP_KERNEL); 497 498 kfree(fsa_dev_ptr); 499 fsa_dev_ptr = NULL; 500 501 502 if (!dev->fsa_dev) 503 return -ENOMEM; 504 505 dev->maximum_num_containers = maximum_num_containers; 506 } 507 for (index = 0; index < dev->maximum_num_containers; index++) { 508 dev->fsa_dev[index].devname[0] = '\0'; 509 dev->fsa_dev[index].valid = 0; 510 511 status = aac_probe_container(dev, index); 512 513 if (status < 0) { 514 printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n"); 515 break; 516 } 517 } 518 return status; 519 } 520 521 static void get_container_name_callback(void *context, struct fib * fibptr) 522 { 523 struct aac_get_name_resp * get_name_reply; 524 struct scsi_cmnd * scsicmd; 525 526 scsicmd = (struct scsi_cmnd *) context; 527 528 if (!aac_valid_context(scsicmd, fibptr)) 529 return; 530 531 dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies)); 532 BUG_ON(fibptr == NULL); 533 534 get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr); 535 /* Failure is irrelevant, using default value instead */ 536 if ((le32_to_cpu(get_name_reply->status) == CT_OK) 537 && (get_name_reply->data[0] != '\0')) { 538 char *sp = get_name_reply->data; 539 int data_size = sizeof_field(struct aac_get_name_resp, data); 540 541 sp[data_size - 1] = '\0'; 542 while (*sp == ' ') 543 ++sp; 544 if (*sp) { 545 struct inquiry_data inq; 546 char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)]; 547 int count = sizeof(d); 548 char *dp = d; 549 do { 550 *dp++ = (*sp) ? *sp++ : ' '; 551 } while (--count > 0); 552 553 scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq)); 554 memcpy(inq.inqd_pid, d, sizeof(d)); 555 scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq)); 556 } 557 } 558 559 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 560 561 aac_fib_complete(fibptr); 562 scsicmd->scsi_done(scsicmd); 563 } 564 565 /* 566 * aac_get_container_name - get container name, none blocking. 567 */ 568 static int aac_get_container_name(struct scsi_cmnd * scsicmd) 569 { 570 int status; 571 int data_size; 572 struct aac_get_name *dinfo; 573 struct fib * cmd_fibcontext; 574 struct aac_dev * dev; 575 576 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 577 578 data_size = sizeof_field(struct aac_get_name_resp, data); 579 580 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 581 582 aac_fib_init(cmd_fibcontext); 583 dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext); 584 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 585 586 dinfo->command = cpu_to_le32(VM_ContainerConfig); 587 dinfo->type = cpu_to_le32(CT_READ_NAME); 588 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 589 dinfo->count = cpu_to_le32(data_size - 1); 590 591 status = aac_fib_send(ContainerCommand, 592 cmd_fibcontext, 593 sizeof(struct aac_get_name_resp), 594 FsaNormal, 595 0, 1, 596 (fib_callback)get_container_name_callback, 597 (void *) scsicmd); 598 599 /* 600 * Check that the command queued to the controller 601 */ 602 if (status == -EINPROGRESS) 603 return 0; 604 605 printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status); 606 aac_fib_complete(cmd_fibcontext); 607 return -1; 608 } 609 610 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd) 611 { 612 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 613 614 if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1)) 615 return aac_scsi_cmd(scsicmd); 616 617 scsicmd->result = DID_NO_CONNECT << 16; 618 scsicmd->scsi_done(scsicmd); 619 return 0; 620 } 621 622 static void _aac_probe_container2(void * context, struct fib * fibptr) 623 { 624 struct fsa_dev_info *fsa_dev_ptr; 625 int (*callback)(struct scsi_cmnd *); 626 struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context; 627 int i; 628 629 630 if (!aac_valid_context(scsicmd, fibptr)) 631 return; 632 633 scsicmd->SCp.Status = 0; 634 fsa_dev_ptr = fibptr->dev->fsa_dev; 635 if (fsa_dev_ptr) { 636 struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr); 637 __le32 sup_options2; 638 639 fsa_dev_ptr += scmd_id(scsicmd); 640 sup_options2 = 641 fibptr->dev->supplement_adapter_info.supported_options2; 642 643 if ((le32_to_cpu(dresp->status) == ST_OK) && 644 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 645 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 646 if (!(sup_options2 & AAC_OPTION_VARIABLE_BLOCK_SIZE)) { 647 dresp->mnt[0].fileinfo.bdevinfo.block_size = 0x200; 648 fsa_dev_ptr->block_size = 0x200; 649 } else { 650 fsa_dev_ptr->block_size = 651 le32_to_cpu(dresp->mnt[0].fileinfo.bdevinfo.block_size); 652 } 653 for (i = 0; i < 16; i++) 654 fsa_dev_ptr->identifier[i] = 655 dresp->mnt[0].fileinfo.bdevinfo 656 .identifier[i]; 657 fsa_dev_ptr->valid = 1; 658 /* sense_key holds the current state of the spin-up */ 659 if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY)) 660 fsa_dev_ptr->sense_data.sense_key = NOT_READY; 661 else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY) 662 fsa_dev_ptr->sense_data.sense_key = NO_SENSE; 663 fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol); 664 fsa_dev_ptr->size 665 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) + 666 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32); 667 fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0); 668 } 669 if ((fsa_dev_ptr->valid & 1) == 0) 670 fsa_dev_ptr->valid = 0; 671 scsicmd->SCp.Status = le32_to_cpu(dresp->count); 672 } 673 aac_fib_complete(fibptr); 674 aac_fib_free(fibptr); 675 callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr); 676 scsicmd->SCp.ptr = NULL; 677 (*callback)(scsicmd); 678 return; 679 } 680 681 static void _aac_probe_container1(void * context, struct fib * fibptr) 682 { 683 struct scsi_cmnd * scsicmd; 684 struct aac_mount * dresp; 685 struct aac_query_mount *dinfo; 686 int status; 687 688 dresp = (struct aac_mount *) fib_data(fibptr); 689 if (!aac_supports_2T(fibptr->dev)) { 690 dresp->mnt[0].capacityhigh = 0; 691 if ((le32_to_cpu(dresp->status) == ST_OK) && 692 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) { 693 _aac_probe_container2(context, fibptr); 694 return; 695 } 696 } 697 scsicmd = (struct scsi_cmnd *) context; 698 699 if (!aac_valid_context(scsicmd, fibptr)) 700 return; 701 702 aac_fib_init(fibptr); 703 704 dinfo = (struct aac_query_mount *)fib_data(fibptr); 705 706 if (fibptr->dev->supplement_adapter_info.supported_options2 & 707 AAC_OPTION_VARIABLE_BLOCK_SIZE) 708 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 709 else 710 dinfo->command = cpu_to_le32(VM_NameServe64); 711 712 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 713 dinfo->type = cpu_to_le32(FT_FILESYS); 714 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 715 716 status = aac_fib_send(ContainerCommand, 717 fibptr, 718 sizeof(struct aac_query_mount), 719 FsaNormal, 720 0, 1, 721 _aac_probe_container2, 722 (void *) scsicmd); 723 /* 724 * Check that the command queued to the controller 725 */ 726 if (status < 0 && status != -EINPROGRESS) { 727 /* Inherit results from VM_NameServe, if any */ 728 dresp->status = cpu_to_le32(ST_OK); 729 _aac_probe_container2(context, fibptr); 730 } 731 } 732 733 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *)) 734 { 735 struct fib * fibptr; 736 int status = -ENOMEM; 737 738 if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) { 739 struct aac_query_mount *dinfo; 740 741 aac_fib_init(fibptr); 742 743 dinfo = (struct aac_query_mount *)fib_data(fibptr); 744 745 if (fibptr->dev->supplement_adapter_info.supported_options2 & 746 AAC_OPTION_VARIABLE_BLOCK_SIZE) 747 dinfo->command = cpu_to_le32(VM_NameServeAllBlk); 748 else 749 dinfo->command = cpu_to_le32(VM_NameServe); 750 751 dinfo->count = cpu_to_le32(scmd_id(scsicmd)); 752 dinfo->type = cpu_to_le32(FT_FILESYS); 753 scsicmd->SCp.ptr = (char *)callback; 754 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 755 756 status = aac_fib_send(ContainerCommand, 757 fibptr, 758 sizeof(struct aac_query_mount), 759 FsaNormal, 760 0, 1, 761 _aac_probe_container1, 762 (void *) scsicmd); 763 /* 764 * Check that the command queued to the controller 765 */ 766 if (status == -EINPROGRESS) 767 return 0; 768 769 if (status < 0) { 770 scsicmd->SCp.ptr = NULL; 771 aac_fib_complete(fibptr); 772 aac_fib_free(fibptr); 773 } 774 } 775 if (status < 0) { 776 struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev; 777 if (fsa_dev_ptr) { 778 fsa_dev_ptr += scmd_id(scsicmd); 779 if ((fsa_dev_ptr->valid & 1) == 0) { 780 fsa_dev_ptr->valid = 0; 781 return (*callback)(scsicmd); 782 } 783 } 784 } 785 return status; 786 } 787 788 /** 789 * aac_probe_container - query a logical volume 790 * @scsicmd: the scsi command block 791 * 792 * Queries the controller about the given volume. The volume information 793 * is updated in the struct fsa_dev_info structure rather than returned. 794 */ 795 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd) 796 { 797 scsicmd->device = NULL; 798 return 0; 799 } 800 801 static void aac_probe_container_scsi_done(struct scsi_cmnd *scsi_cmnd) 802 { 803 aac_probe_container_callback1(scsi_cmnd); 804 } 805 806 int aac_probe_container(struct aac_dev *dev, int cid) 807 { 808 struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL); 809 struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL); 810 int status; 811 812 if (!scsicmd || !scsidev) { 813 kfree(scsicmd); 814 kfree(scsidev); 815 return -ENOMEM; 816 } 817 scsicmd->scsi_done = aac_probe_container_scsi_done; 818 819 scsicmd->device = scsidev; 820 scsidev->sdev_state = 0; 821 scsidev->id = cid; 822 scsidev->host = dev->scsi_host_ptr; 823 824 if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0) 825 while (scsicmd->device == scsidev) 826 schedule(); 827 kfree(scsidev); 828 status = scsicmd->SCp.Status; 829 kfree(scsicmd); 830 return status; 831 } 832 833 /* Local Structure to set SCSI inquiry data strings */ 834 struct scsi_inq { 835 char vid[8]; /* Vendor ID */ 836 char pid[16]; /* Product ID */ 837 char prl[4]; /* Product Revision Level */ 838 }; 839 840 /** 841 * InqStrCopy - string merge 842 * @a: string to copy from 843 * @b: string to copy to 844 * 845 * Copy a String from one location to another 846 * without copying \0 847 */ 848 849 static void inqstrcpy(char *a, char *b) 850 { 851 852 while (*a != (char)0) 853 *b++ = *a++; 854 } 855 856 static char *container_types[] = { 857 "None", 858 "Volume", 859 "Mirror", 860 "Stripe", 861 "RAID5", 862 "SSRW", 863 "SSRO", 864 "Morph", 865 "Legacy", 866 "RAID4", 867 "RAID10", 868 "RAID00", 869 "V-MIRRORS", 870 "PSEUDO R4", 871 "RAID50", 872 "RAID5D", 873 "RAID5D0", 874 "RAID1E", 875 "RAID6", 876 "RAID60", 877 "Unknown" 878 }; 879 880 char * get_container_type(unsigned tindex) 881 { 882 if (tindex >= ARRAY_SIZE(container_types)) 883 tindex = ARRAY_SIZE(container_types) - 1; 884 return container_types[tindex]; 885 } 886 887 /* Function: setinqstr 888 * 889 * Arguments: [1] pointer to void [1] int 890 * 891 * Purpose: Sets SCSI inquiry data strings for vendor, product 892 * and revision level. Allows strings to be set in platform dependent 893 * files instead of in OS dependent driver source. 894 */ 895 896 static void setinqstr(struct aac_dev *dev, void *data, int tindex) 897 { 898 struct scsi_inq *str; 899 struct aac_supplement_adapter_info *sup_adap_info; 900 901 sup_adap_info = &dev->supplement_adapter_info; 902 str = (struct scsi_inq *)(data); /* cast data to scsi inq block */ 903 memset(str, ' ', sizeof(*str)); 904 905 if (sup_adap_info->adapter_type_text[0]) { 906 int c; 907 char *cp; 908 char *cname = kmemdup(sup_adap_info->adapter_type_text, 909 sizeof(sup_adap_info->adapter_type_text), 910 GFP_ATOMIC); 911 if (!cname) 912 return; 913 914 cp = cname; 915 if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C')) 916 inqstrcpy("SMC", str->vid); 917 else { 918 c = sizeof(str->vid); 919 while (*cp && *cp != ' ' && --c) 920 ++cp; 921 c = *cp; 922 *cp = '\0'; 923 inqstrcpy(cname, str->vid); 924 *cp = c; 925 while (*cp && *cp != ' ') 926 ++cp; 927 } 928 while (*cp == ' ') 929 ++cp; 930 /* last six chars reserved for vol type */ 931 if (strlen(cp) > sizeof(str->pid)) 932 cp[sizeof(str->pid)] = '\0'; 933 inqstrcpy (cp, str->pid); 934 935 kfree(cname); 936 } else { 937 struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype); 938 939 inqstrcpy (mp->vname, str->vid); 940 /* last six chars reserved for vol type */ 941 inqstrcpy (mp->model, str->pid); 942 } 943 944 if (tindex < ARRAY_SIZE(container_types)){ 945 char *findit = str->pid; 946 947 for ( ; *findit != ' '; findit++); /* walk till we find a space */ 948 /* RAID is superfluous in the context of a RAID device */ 949 if (memcmp(findit-4, "RAID", 4) == 0) 950 *(findit -= 4) = ' '; 951 if (((findit - str->pid) + strlen(container_types[tindex])) 952 < (sizeof(str->pid) + sizeof(str->prl))) 953 inqstrcpy (container_types[tindex], findit + 1); 954 } 955 inqstrcpy ("V1.0", str->prl); 956 } 957 958 static void build_vpd83_type3(struct tvpd_page83 *vpdpage83data, 959 struct aac_dev *dev, struct scsi_cmnd *scsicmd) 960 { 961 int container; 962 963 vpdpage83data->type3.codeset = 1; 964 vpdpage83data->type3.identifiertype = 3; 965 vpdpage83data->type3.identifierlength = sizeof(vpdpage83data->type3) 966 - 4; 967 968 for (container = 0; container < dev->maximum_num_containers; 969 container++) { 970 971 if (scmd_id(scsicmd) == container) { 972 memcpy(vpdpage83data->type3.Identifier, 973 dev->fsa_dev[container].identifier, 974 16); 975 break; 976 } 977 } 978 } 979 980 static void get_container_serial_callback(void *context, struct fib * fibptr) 981 { 982 struct aac_get_serial_resp * get_serial_reply; 983 struct scsi_cmnd * scsicmd; 984 985 BUG_ON(fibptr == NULL); 986 987 scsicmd = (struct scsi_cmnd *) context; 988 if (!aac_valid_context(scsicmd, fibptr)) 989 return; 990 991 get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr); 992 /* Failure is irrelevant, using default value instead */ 993 if (le32_to_cpu(get_serial_reply->status) == CT_OK) { 994 /*Check to see if it's for VPD 0x83 or 0x80 */ 995 if (scsicmd->cmnd[2] == 0x83) { 996 /* vpd page 0x83 - Device Identification Page */ 997 struct aac_dev *dev; 998 int i; 999 struct tvpd_page83 vpdpage83data; 1000 1001 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1002 1003 memset(((u8 *)&vpdpage83data), 0, 1004 sizeof(vpdpage83data)); 1005 1006 /* DIRECT_ACCESS_DEVIC */ 1007 vpdpage83data.DeviceType = 0; 1008 /* DEVICE_CONNECTED */ 1009 vpdpage83data.DeviceTypeQualifier = 0; 1010 /* VPD_DEVICE_IDENTIFIERS */ 1011 vpdpage83data.PageCode = 0x83; 1012 vpdpage83data.reserved = 0; 1013 vpdpage83data.PageLength = 1014 sizeof(vpdpage83data.type1) + 1015 sizeof(vpdpage83data.type2); 1016 1017 /* VPD 83 Type 3 is not supported for ARC */ 1018 if (dev->sa_firmware) 1019 vpdpage83data.PageLength += 1020 sizeof(vpdpage83data.type3); 1021 1022 /* T10 Vendor Identifier Field Format */ 1023 /* VpdcodesetAscii */ 1024 vpdpage83data.type1.codeset = 2; 1025 /* VpdIdentifierTypeVendorId */ 1026 vpdpage83data.type1.identifiertype = 1; 1027 vpdpage83data.type1.identifierlength = 1028 sizeof(vpdpage83data.type1) - 4; 1029 1030 /* "ADAPTEC " for adaptec */ 1031 memcpy(vpdpage83data.type1.venid, 1032 "ADAPTEC ", 1033 sizeof(vpdpage83data.type1.venid)); 1034 memcpy(vpdpage83data.type1.productid, 1035 "ARRAY ", 1036 sizeof( 1037 vpdpage83data.type1.productid)); 1038 1039 /* Convert to ascii based serial number. 1040 * The LSB is the the end. 1041 */ 1042 for (i = 0; i < 8; i++) { 1043 u8 temp = 1044 (u8)((get_serial_reply->uid >> ((7 - i) * 4)) & 0xF); 1045 if (temp > 0x9) { 1046 vpdpage83data.type1.serialnumber[i] = 1047 'A' + (temp - 0xA); 1048 } else { 1049 vpdpage83data.type1.serialnumber[i] = 1050 '0' + temp; 1051 } 1052 } 1053 1054 /* VpdCodeSetBinary */ 1055 vpdpage83data.type2.codeset = 1; 1056 /* VpdidentifiertypeEUI64 */ 1057 vpdpage83data.type2.identifiertype = 2; 1058 vpdpage83data.type2.identifierlength = 1059 sizeof(vpdpage83data.type2) - 4; 1060 1061 vpdpage83data.type2.eu64id.venid[0] = 0xD0; 1062 vpdpage83data.type2.eu64id.venid[1] = 0; 1063 vpdpage83data.type2.eu64id.venid[2] = 0; 1064 1065 vpdpage83data.type2.eu64id.Serial = 1066 get_serial_reply->uid; 1067 vpdpage83data.type2.eu64id.reserved = 0; 1068 1069 /* 1070 * VpdIdentifierTypeFCPHName 1071 * VPD 0x83 Type 3 not supported for ARC 1072 */ 1073 if (dev->sa_firmware) { 1074 build_vpd83_type3(&vpdpage83data, 1075 dev, scsicmd); 1076 } 1077 1078 /* Move the inquiry data to the response buffer. */ 1079 scsi_sg_copy_from_buffer(scsicmd, &vpdpage83data, 1080 sizeof(vpdpage83data)); 1081 } else { 1082 /* It must be for VPD 0x80 */ 1083 char sp[13]; 1084 /* EVPD bit set */ 1085 sp[0] = INQD_PDT_DA; 1086 sp[1] = scsicmd->cmnd[2]; 1087 sp[2] = 0; 1088 sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X", 1089 le32_to_cpu(get_serial_reply->uid)); 1090 scsi_sg_copy_from_buffer(scsicmd, sp, 1091 sizeof(sp)); 1092 } 1093 } 1094 1095 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1096 1097 aac_fib_complete(fibptr); 1098 scsicmd->scsi_done(scsicmd); 1099 } 1100 1101 /* 1102 * aac_get_container_serial - get container serial, none blocking. 1103 */ 1104 static int aac_get_container_serial(struct scsi_cmnd * scsicmd) 1105 { 1106 int status; 1107 struct aac_get_serial *dinfo; 1108 struct fib * cmd_fibcontext; 1109 struct aac_dev * dev; 1110 1111 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 1112 1113 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 1114 1115 aac_fib_init(cmd_fibcontext); 1116 dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext); 1117 1118 dinfo->command = cpu_to_le32(VM_ContainerConfig); 1119 dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID); 1120 dinfo->cid = cpu_to_le32(scmd_id(scsicmd)); 1121 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 1122 1123 status = aac_fib_send(ContainerCommand, 1124 cmd_fibcontext, 1125 sizeof(struct aac_get_serial_resp), 1126 FsaNormal, 1127 0, 1, 1128 (fib_callback) get_container_serial_callback, 1129 (void *) scsicmd); 1130 1131 /* 1132 * Check that the command queued to the controller 1133 */ 1134 if (status == -EINPROGRESS) 1135 return 0; 1136 1137 printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status); 1138 aac_fib_complete(cmd_fibcontext); 1139 return -1; 1140 } 1141 1142 /* Function: setinqserial 1143 * 1144 * Arguments: [1] pointer to void [1] int 1145 * 1146 * Purpose: Sets SCSI Unit Serial number. 1147 * This is a fake. We should read a proper 1148 * serial number from the container. <SuSE>But 1149 * without docs it's quite hard to do it :-) 1150 * So this will have to do in the meantime.</SuSE> 1151 */ 1152 1153 static int setinqserial(struct aac_dev *dev, void *data, int cid) 1154 { 1155 /* 1156 * This breaks array migration. 1157 */ 1158 return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X", 1159 le32_to_cpu(dev->adapter_info.serial[0]), cid); 1160 } 1161 1162 static inline void set_sense(struct sense_data *sense_data, u8 sense_key, 1163 u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer) 1164 { 1165 u8 *sense_buf = (u8 *)sense_data; 1166 /* Sense data valid, err code 70h */ 1167 sense_buf[0] = 0x70; /* No info field */ 1168 sense_buf[1] = 0; /* Segment number, always zero */ 1169 1170 sense_buf[2] = sense_key; /* Sense key */ 1171 1172 sense_buf[12] = sense_code; /* Additional sense code */ 1173 sense_buf[13] = a_sense_code; /* Additional sense code qualifier */ 1174 1175 if (sense_key == ILLEGAL_REQUEST) { 1176 sense_buf[7] = 10; /* Additional sense length */ 1177 1178 sense_buf[15] = bit_pointer; 1179 /* Illegal parameter is in the parameter block */ 1180 if (sense_code == SENCODE_INVALID_CDB_FIELD) 1181 sense_buf[15] |= 0xc0;/* Std sense key specific field */ 1182 /* Illegal parameter is in the CDB block */ 1183 sense_buf[16] = field_pointer >> 8; /* MSB */ 1184 sense_buf[17] = field_pointer; /* LSB */ 1185 } else 1186 sense_buf[7] = 6; /* Additional sense length */ 1187 } 1188 1189 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1190 { 1191 if (lba & 0xffffffff00000000LL) { 1192 int cid = scmd_id(cmd); 1193 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 1194 cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 1195 SAM_STAT_CHECK_CONDITION; 1196 set_sense(&dev->fsa_dev[cid].sense_data, 1197 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 1198 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 1199 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 1200 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 1201 SCSI_SENSE_BUFFERSIZE)); 1202 cmd->scsi_done(cmd); 1203 return 1; 1204 } 1205 return 0; 1206 } 1207 1208 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba) 1209 { 1210 return 0; 1211 } 1212 1213 static void io_callback(void *context, struct fib * fibptr); 1214 1215 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1216 { 1217 struct aac_dev *dev = fib->dev; 1218 u16 fibsize, command; 1219 long ret; 1220 1221 aac_fib_init(fib); 1222 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1223 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1224 !dev->sync_mode) { 1225 struct aac_raw_io2 *readcmd2; 1226 readcmd2 = (struct aac_raw_io2 *) fib_data(fib); 1227 memset(readcmd2, 0, sizeof(struct aac_raw_io2)); 1228 readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1229 readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1230 readcmd2->byteCount = cpu_to_le32(count * 1231 dev->fsa_dev[scmd_id(cmd)].block_size); 1232 readcmd2->cid = cpu_to_le16(scmd_id(cmd)); 1233 readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ); 1234 ret = aac_build_sgraw2(cmd, readcmd2, 1235 dev->scsi_host_ptr->sg_tablesize); 1236 if (ret < 0) 1237 return ret; 1238 command = ContainerRawIo2; 1239 fibsize = sizeof(struct aac_raw_io2) + 1240 ((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1241 } else { 1242 struct aac_raw_io *readcmd; 1243 readcmd = (struct aac_raw_io *) fib_data(fib); 1244 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1245 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1246 readcmd->count = cpu_to_le32(count * 1247 dev->fsa_dev[scmd_id(cmd)].block_size); 1248 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1249 readcmd->flags = cpu_to_le16(RIO_TYPE_READ); 1250 readcmd->bpTotal = 0; 1251 readcmd->bpComplete = 0; 1252 ret = aac_build_sgraw(cmd, &readcmd->sg); 1253 if (ret < 0) 1254 return ret; 1255 command = ContainerRawIo; 1256 fibsize = sizeof(struct aac_raw_io) + 1257 ((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw)); 1258 } 1259 1260 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1261 /* 1262 * Now send the Fib to the adapter 1263 */ 1264 return aac_fib_send(command, 1265 fib, 1266 fibsize, 1267 FsaNormal, 1268 0, 1, 1269 (fib_callback) io_callback, 1270 (void *) cmd); 1271 } 1272 1273 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1274 { 1275 u16 fibsize; 1276 struct aac_read64 *readcmd; 1277 long ret; 1278 1279 aac_fib_init(fib); 1280 readcmd = (struct aac_read64 *) fib_data(fib); 1281 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1282 readcmd->cid = cpu_to_le16(scmd_id(cmd)); 1283 readcmd->sector_count = cpu_to_le16(count); 1284 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1285 readcmd->pad = 0; 1286 readcmd->flags = 0; 1287 1288 ret = aac_build_sg64(cmd, &readcmd->sg); 1289 if (ret < 0) 1290 return ret; 1291 fibsize = sizeof(struct aac_read64) + 1292 ((le32_to_cpu(readcmd->sg.count) - 1) * 1293 sizeof (struct sgentry64)); 1294 BUG_ON (fibsize > (fib->dev->max_fib_size - 1295 sizeof(struct aac_fibhdr))); 1296 /* 1297 * Now send the Fib to the adapter 1298 */ 1299 return aac_fib_send(ContainerCommand64, 1300 fib, 1301 fibsize, 1302 FsaNormal, 1303 0, 1, 1304 (fib_callback) io_callback, 1305 (void *) cmd); 1306 } 1307 1308 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count) 1309 { 1310 u16 fibsize; 1311 struct aac_read *readcmd; 1312 struct aac_dev *dev = fib->dev; 1313 long ret; 1314 1315 aac_fib_init(fib); 1316 readcmd = (struct aac_read *) fib_data(fib); 1317 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1318 readcmd->cid = cpu_to_le32(scmd_id(cmd)); 1319 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1320 readcmd->count = cpu_to_le32(count * 1321 dev->fsa_dev[scmd_id(cmd)].block_size); 1322 1323 ret = aac_build_sg(cmd, &readcmd->sg); 1324 if (ret < 0) 1325 return ret; 1326 fibsize = sizeof(struct aac_read) + 1327 ((le32_to_cpu(readcmd->sg.count) - 1) * 1328 sizeof (struct sgentry)); 1329 BUG_ON (fibsize > (fib->dev->max_fib_size - 1330 sizeof(struct aac_fibhdr))); 1331 /* 1332 * Now send the Fib to the adapter 1333 */ 1334 return aac_fib_send(ContainerCommand, 1335 fib, 1336 fibsize, 1337 FsaNormal, 1338 0, 1, 1339 (fib_callback) io_callback, 1340 (void *) cmd); 1341 } 1342 1343 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1344 { 1345 struct aac_dev *dev = fib->dev; 1346 u16 fibsize, command; 1347 long ret; 1348 1349 aac_fib_init(fib); 1350 if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 1351 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) && 1352 !dev->sync_mode) { 1353 struct aac_raw_io2 *writecmd2; 1354 writecmd2 = (struct aac_raw_io2 *) fib_data(fib); 1355 memset(writecmd2, 0, sizeof(struct aac_raw_io2)); 1356 writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff)); 1357 writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1358 writecmd2->byteCount = cpu_to_le32(count * 1359 dev->fsa_dev[scmd_id(cmd)].block_size); 1360 writecmd2->cid = cpu_to_le16(scmd_id(cmd)); 1361 writecmd2->flags = (fua && ((aac_cache & 5) != 1) && 1362 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1363 cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) : 1364 cpu_to_le16(RIO2_IO_TYPE_WRITE); 1365 ret = aac_build_sgraw2(cmd, writecmd2, 1366 dev->scsi_host_ptr->sg_tablesize); 1367 if (ret < 0) 1368 return ret; 1369 command = ContainerRawIo2; 1370 fibsize = sizeof(struct aac_raw_io2) + 1371 ((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212)); 1372 } else { 1373 struct aac_raw_io *writecmd; 1374 writecmd = (struct aac_raw_io *) fib_data(fib); 1375 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff)); 1376 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32)); 1377 writecmd->count = cpu_to_le32(count * 1378 dev->fsa_dev[scmd_id(cmd)].block_size); 1379 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1380 writecmd->flags = (fua && ((aac_cache & 5) != 1) && 1381 (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ? 1382 cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) : 1383 cpu_to_le16(RIO_TYPE_WRITE); 1384 writecmd->bpTotal = 0; 1385 writecmd->bpComplete = 0; 1386 ret = aac_build_sgraw(cmd, &writecmd->sg); 1387 if (ret < 0) 1388 return ret; 1389 command = ContainerRawIo; 1390 fibsize = sizeof(struct aac_raw_io) + 1391 ((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw)); 1392 } 1393 1394 BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr))); 1395 /* 1396 * Now send the Fib to the adapter 1397 */ 1398 return aac_fib_send(command, 1399 fib, 1400 fibsize, 1401 FsaNormal, 1402 0, 1, 1403 (fib_callback) io_callback, 1404 (void *) cmd); 1405 } 1406 1407 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1408 { 1409 u16 fibsize; 1410 struct aac_write64 *writecmd; 1411 long ret; 1412 1413 aac_fib_init(fib); 1414 writecmd = (struct aac_write64 *) fib_data(fib); 1415 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1416 writecmd->cid = cpu_to_le16(scmd_id(cmd)); 1417 writecmd->sector_count = cpu_to_le16(count); 1418 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1419 writecmd->pad = 0; 1420 writecmd->flags = 0; 1421 1422 ret = aac_build_sg64(cmd, &writecmd->sg); 1423 if (ret < 0) 1424 return ret; 1425 fibsize = sizeof(struct aac_write64) + 1426 ((le32_to_cpu(writecmd->sg.count) - 1) * 1427 sizeof (struct sgentry64)); 1428 BUG_ON (fibsize > (fib->dev->max_fib_size - 1429 sizeof(struct aac_fibhdr))); 1430 /* 1431 * Now send the Fib to the adapter 1432 */ 1433 return aac_fib_send(ContainerCommand64, 1434 fib, 1435 fibsize, 1436 FsaNormal, 1437 0, 1, 1438 (fib_callback) io_callback, 1439 (void *) cmd); 1440 } 1441 1442 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua) 1443 { 1444 u16 fibsize; 1445 struct aac_write *writecmd; 1446 struct aac_dev *dev = fib->dev; 1447 long ret; 1448 1449 aac_fib_init(fib); 1450 writecmd = (struct aac_write *) fib_data(fib); 1451 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1452 writecmd->cid = cpu_to_le32(scmd_id(cmd)); 1453 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff)); 1454 writecmd->count = cpu_to_le32(count * 1455 dev->fsa_dev[scmd_id(cmd)].block_size); 1456 writecmd->sg.count = cpu_to_le32(1); 1457 /* ->stable is not used - it did mean which type of write */ 1458 1459 ret = aac_build_sg(cmd, &writecmd->sg); 1460 if (ret < 0) 1461 return ret; 1462 fibsize = sizeof(struct aac_write) + 1463 ((le32_to_cpu(writecmd->sg.count) - 1) * 1464 sizeof (struct sgentry)); 1465 BUG_ON (fibsize > (fib->dev->max_fib_size - 1466 sizeof(struct aac_fibhdr))); 1467 /* 1468 * Now send the Fib to the adapter 1469 */ 1470 return aac_fib_send(ContainerCommand, 1471 fib, 1472 fibsize, 1473 FsaNormal, 1474 0, 1, 1475 (fib_callback) io_callback, 1476 (void *) cmd); 1477 } 1478 1479 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd) 1480 { 1481 struct aac_srb * srbcmd; 1482 u32 flag; 1483 u32 timeout; 1484 struct aac_dev *dev = fib->dev; 1485 1486 aac_fib_init(fib); 1487 switch(cmd->sc_data_direction){ 1488 case DMA_TO_DEVICE: 1489 flag = SRB_DataOut; 1490 break; 1491 case DMA_BIDIRECTIONAL: 1492 flag = SRB_DataIn | SRB_DataOut; 1493 break; 1494 case DMA_FROM_DEVICE: 1495 flag = SRB_DataIn; 1496 break; 1497 case DMA_NONE: 1498 default: /* shuts up some versions of gcc */ 1499 flag = SRB_NoDataXfer; 1500 break; 1501 } 1502 1503 srbcmd = (struct aac_srb*) fib_data(fib); 1504 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 1505 srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd))); 1506 srbcmd->id = cpu_to_le32(scmd_id(cmd)); 1507 srbcmd->lun = cpu_to_le32(cmd->device->lun); 1508 srbcmd->flags = cpu_to_le32(flag); 1509 timeout = cmd->request->timeout/HZ; 1510 if (timeout == 0) 1511 timeout = (dev->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT); 1512 srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds 1513 srbcmd->retry_limit = 0; /* Obsolete parameter */ 1514 srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len); 1515 return srbcmd; 1516 } 1517 1518 static struct aac_hba_cmd_req *aac_construct_hbacmd(struct fib *fib, 1519 struct scsi_cmnd *cmd) 1520 { 1521 struct aac_hba_cmd_req *hbacmd; 1522 struct aac_dev *dev; 1523 int bus, target; 1524 u64 address; 1525 1526 dev = (struct aac_dev *)cmd->device->host->hostdata; 1527 1528 hbacmd = (struct aac_hba_cmd_req *)fib->hw_fib_va; 1529 memset(hbacmd, 0, 96); /* sizeof(*hbacmd) is not necessary */ 1530 /* iu_type is a parameter of aac_hba_send */ 1531 switch (cmd->sc_data_direction) { 1532 case DMA_TO_DEVICE: 1533 hbacmd->byte1 = 2; 1534 break; 1535 case DMA_FROM_DEVICE: 1536 case DMA_BIDIRECTIONAL: 1537 hbacmd->byte1 = 1; 1538 break; 1539 case DMA_NONE: 1540 default: 1541 break; 1542 } 1543 hbacmd->lun[1] = cpu_to_le32(cmd->device->lun); 1544 1545 bus = aac_logical_to_phys(scmd_channel(cmd)); 1546 target = scmd_id(cmd); 1547 hbacmd->it_nexus = dev->hba_map[bus][target].rmw_nexus; 1548 1549 /* we fill in reply_qid later in aac_src_deliver_message */ 1550 /* we fill in iu_type, request_id later in aac_hba_send */ 1551 /* we fill in emb_data_desc_count later in aac_build_sghba */ 1552 1553 memcpy(hbacmd->cdb, cmd->cmnd, cmd->cmd_len); 1554 hbacmd->data_length = cpu_to_le32(scsi_bufflen(cmd)); 1555 1556 address = (u64)fib->hw_error_pa; 1557 hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 1558 hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 1559 hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 1560 1561 return hbacmd; 1562 } 1563 1564 static void aac_srb_callback(void *context, struct fib * fibptr); 1565 1566 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd) 1567 { 1568 u16 fibsize; 1569 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1570 long ret; 1571 1572 ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg); 1573 if (ret < 0) 1574 return ret; 1575 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1576 1577 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1578 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1579 /* 1580 * Build Scatter/Gather list 1581 */ 1582 fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) + 1583 ((le32_to_cpu(srbcmd->sg.count) & 0xff) * 1584 sizeof (struct sgentry64)); 1585 BUG_ON (fibsize > (fib->dev->max_fib_size - 1586 sizeof(struct aac_fibhdr))); 1587 1588 /* 1589 * Now send the Fib to the adapter 1590 */ 1591 return aac_fib_send(ScsiPortCommand64, fib, 1592 fibsize, FsaNormal, 0, 1, 1593 (fib_callback) aac_srb_callback, 1594 (void *) cmd); 1595 } 1596 1597 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd) 1598 { 1599 u16 fibsize; 1600 struct aac_srb * srbcmd = aac_scsi_common(fib, cmd); 1601 long ret; 1602 1603 ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg); 1604 if (ret < 0) 1605 return ret; 1606 srbcmd->count = cpu_to_le32(scsi_bufflen(cmd)); 1607 1608 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 1609 memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len); 1610 /* 1611 * Build Scatter/Gather list 1612 */ 1613 fibsize = sizeof (struct aac_srb) + 1614 (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) * 1615 sizeof (struct sgentry)); 1616 BUG_ON (fibsize > (fib->dev->max_fib_size - 1617 sizeof(struct aac_fibhdr))); 1618 1619 /* 1620 * Now send the Fib to the adapter 1621 */ 1622 return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1, 1623 (fib_callback) aac_srb_callback, (void *) cmd); 1624 } 1625 1626 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd) 1627 { 1628 if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac && 1629 (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) 1630 return FAILED; 1631 return aac_scsi_32(fib, cmd); 1632 } 1633 1634 static int aac_adapter_hba(struct fib *fib, struct scsi_cmnd *cmd) 1635 { 1636 struct aac_hba_cmd_req *hbacmd = aac_construct_hbacmd(fib, cmd); 1637 struct aac_dev *dev; 1638 long ret; 1639 1640 dev = (struct aac_dev *)cmd->device->host->hostdata; 1641 1642 ret = aac_build_sghba(cmd, hbacmd, 1643 dev->scsi_host_ptr->sg_tablesize, (u64)fib->hw_sgl_pa); 1644 if (ret < 0) 1645 return ret; 1646 1647 /* 1648 * Now send the HBA command to the adapter 1649 */ 1650 fib->hbacmd_size = 64 + le32_to_cpu(hbacmd->emb_data_desc_count) * 1651 sizeof(struct aac_hba_sgl); 1652 1653 return aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, fib, 1654 (fib_callback) aac_hba_callback, 1655 (void *) cmd); 1656 } 1657 1658 static int aac_send_safw_bmic_cmd(struct aac_dev *dev, 1659 struct aac_srb_unit *srbu, void *xfer_buf, int xfer_len) 1660 { 1661 struct fib *fibptr; 1662 dma_addr_t addr; 1663 int rcode; 1664 int fibsize; 1665 struct aac_srb *srb; 1666 struct aac_srb_reply *srb_reply; 1667 struct sgmap64 *sg64; 1668 u32 vbus; 1669 u32 vid; 1670 1671 if (!dev->sa_firmware) 1672 return 0; 1673 1674 /* allocate FIB */ 1675 fibptr = aac_fib_alloc(dev); 1676 if (!fibptr) 1677 return -ENOMEM; 1678 1679 aac_fib_init(fibptr); 1680 fibptr->hw_fib_va->header.XferState &= 1681 ~cpu_to_le32(FastResponseCapable); 1682 1683 fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) + 1684 sizeof(struct sgentry64); 1685 1686 /* allocate DMA buffer for response */ 1687 addr = dma_map_single(&dev->pdev->dev, xfer_buf, xfer_len, 1688 DMA_BIDIRECTIONAL); 1689 if (dma_mapping_error(&dev->pdev->dev, addr)) { 1690 rcode = -ENOMEM; 1691 goto fib_error; 1692 } 1693 1694 srb = fib_data(fibptr); 1695 memcpy(srb, &srbu->srb, sizeof(struct aac_srb)); 1696 1697 vbus = (u32)le16_to_cpu( 1698 dev->supplement_adapter_info.virt_device_bus); 1699 vid = (u32)le16_to_cpu( 1700 dev->supplement_adapter_info.virt_device_target); 1701 1702 /* set the common request fields */ 1703 srb->channel = cpu_to_le32(vbus); 1704 srb->id = cpu_to_le32(vid); 1705 srb->lun = 0; 1706 srb->function = cpu_to_le32(SRBF_ExecuteScsi); 1707 srb->timeout = 0; 1708 srb->retry_limit = 0; 1709 srb->cdb_size = cpu_to_le32(16); 1710 srb->count = cpu_to_le32(xfer_len); 1711 1712 sg64 = (struct sgmap64 *)&srb->sg; 1713 sg64->count = cpu_to_le32(1); 1714 sg64->sg[0].addr[1] = cpu_to_le32(upper_32_bits(addr)); 1715 sg64->sg[0].addr[0] = cpu_to_le32(lower_32_bits(addr)); 1716 sg64->sg[0].count = cpu_to_le32(xfer_len); 1717 1718 /* 1719 * Copy the updated data for other dumping or other usage if needed 1720 */ 1721 memcpy(&srbu->srb, srb, sizeof(struct aac_srb)); 1722 1723 /* issue request to the controller */ 1724 rcode = aac_fib_send(ScsiPortCommand64, fibptr, fibsize, FsaNormal, 1725 1, 1, NULL, NULL); 1726 1727 if (rcode == -ERESTARTSYS) 1728 rcode = -ERESTART; 1729 1730 if (unlikely(rcode < 0)) 1731 goto bmic_error; 1732 1733 srb_reply = (struct aac_srb_reply *)fib_data(fibptr); 1734 memcpy(&srbu->srb_reply, srb_reply, sizeof(struct aac_srb_reply)); 1735 1736 bmic_error: 1737 dma_unmap_single(&dev->pdev->dev, addr, xfer_len, DMA_BIDIRECTIONAL); 1738 fib_error: 1739 aac_fib_complete(fibptr); 1740 aac_fib_free(fibptr); 1741 return rcode; 1742 } 1743 1744 static void aac_set_safw_target_qd(struct aac_dev *dev, int bus, int target) 1745 { 1746 1747 struct aac_ciss_identify_pd *identify_resp; 1748 1749 if (dev->hba_map[bus][target].devtype != AAC_DEVTYPE_NATIVE_RAW) 1750 return; 1751 1752 identify_resp = dev->hba_map[bus][target].safw_identify_resp; 1753 if (identify_resp == NULL) { 1754 dev->hba_map[bus][target].qd_limit = 32; 1755 return; 1756 } 1757 1758 if (identify_resp->current_queue_depth_limit <= 0 || 1759 identify_resp->current_queue_depth_limit > 255) 1760 dev->hba_map[bus][target].qd_limit = 32; 1761 else 1762 dev->hba_map[bus][target].qd_limit = 1763 identify_resp->current_queue_depth_limit; 1764 } 1765 1766 static int aac_issue_safw_bmic_identify(struct aac_dev *dev, 1767 struct aac_ciss_identify_pd **identify_resp, u32 bus, u32 target) 1768 { 1769 int rcode = -ENOMEM; 1770 int datasize; 1771 struct aac_srb_unit srbu; 1772 struct aac_srb *srbcmd; 1773 struct aac_ciss_identify_pd *identify_reply; 1774 1775 datasize = sizeof(struct aac_ciss_identify_pd); 1776 identify_reply = kmalloc(datasize, GFP_KERNEL); 1777 if (!identify_reply) 1778 goto out; 1779 1780 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1781 1782 srbcmd = &srbu.srb; 1783 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1784 srbcmd->cdb[0] = 0x26; 1785 srbcmd->cdb[2] = (u8)((AAC_MAX_LUN + target) & 0x00FF); 1786 srbcmd->cdb[6] = CISS_IDENTIFY_PHYSICAL_DEVICE; 1787 1788 rcode = aac_send_safw_bmic_cmd(dev, &srbu, identify_reply, datasize); 1789 if (unlikely(rcode < 0)) 1790 goto mem_free_all; 1791 1792 *identify_resp = identify_reply; 1793 1794 out: 1795 return rcode; 1796 mem_free_all: 1797 kfree(identify_reply); 1798 goto out; 1799 } 1800 1801 static inline void aac_free_safw_ciss_luns(struct aac_dev *dev) 1802 { 1803 kfree(dev->safw_phys_luns); 1804 dev->safw_phys_luns = NULL; 1805 } 1806 1807 /** 1808 * aac_get_safw_ciss_luns() Process topology change 1809 * @dev: aac_dev structure 1810 * 1811 * Execute a CISS REPORT PHYS LUNS and process the results into 1812 * the current hba_map. 1813 */ 1814 static int aac_get_safw_ciss_luns(struct aac_dev *dev) 1815 { 1816 int rcode = -ENOMEM; 1817 int datasize; 1818 struct aac_srb *srbcmd; 1819 struct aac_srb_unit srbu; 1820 struct aac_ciss_phys_luns_resp *phys_luns; 1821 1822 datasize = sizeof(struct aac_ciss_phys_luns_resp) + 1823 (AAC_MAX_TARGETS - 1) * sizeof(struct _ciss_lun); 1824 phys_luns = kmalloc(datasize, GFP_KERNEL); 1825 if (phys_luns == NULL) 1826 goto out; 1827 1828 memset(&srbu, 0, sizeof(struct aac_srb_unit)); 1829 1830 srbcmd = &srbu.srb; 1831 srbcmd->flags = cpu_to_le32(SRB_DataIn); 1832 srbcmd->cdb[0] = CISS_REPORT_PHYSICAL_LUNS; 1833 srbcmd->cdb[1] = 2; /* extended reporting */ 1834 srbcmd->cdb[8] = (u8)(datasize >> 8); 1835 srbcmd->cdb[9] = (u8)(datasize); 1836 1837 rcode = aac_send_safw_bmic_cmd(dev, &srbu, phys_luns, datasize); 1838 if (unlikely(rcode < 0)) 1839 goto mem_free_all; 1840 1841 if (phys_luns->resp_flag != 2) { 1842 rcode = -ENOMSG; 1843 goto mem_free_all; 1844 } 1845 1846 dev->safw_phys_luns = phys_luns; 1847 1848 out: 1849 return rcode; 1850 mem_free_all: 1851 kfree(phys_luns); 1852 goto out; 1853 } 1854 1855 static inline u32 aac_get_safw_phys_lun_count(struct aac_dev *dev) 1856 { 1857 return get_unaligned_be32(&dev->safw_phys_luns->list_length[0])/24; 1858 } 1859 1860 static inline u32 aac_get_safw_phys_bus(struct aac_dev *dev, int lun) 1861 { 1862 return dev->safw_phys_luns->lun[lun].level2[1] & 0x3f; 1863 } 1864 1865 static inline u32 aac_get_safw_phys_target(struct aac_dev *dev, int lun) 1866 { 1867 return dev->safw_phys_luns->lun[lun].level2[0]; 1868 } 1869 1870 static inline u32 aac_get_safw_phys_expose_flag(struct aac_dev *dev, int lun) 1871 { 1872 return dev->safw_phys_luns->lun[lun].bus >> 6; 1873 } 1874 1875 static inline u32 aac_get_safw_phys_attribs(struct aac_dev *dev, int lun) 1876 { 1877 return dev->safw_phys_luns->lun[lun].node_ident[9]; 1878 } 1879 1880 static inline u32 aac_get_safw_phys_nexus(struct aac_dev *dev, int lun) 1881 { 1882 return *((u32 *)&dev->safw_phys_luns->lun[lun].node_ident[12]); 1883 } 1884 1885 static inline u32 aac_get_safw_phys_device_type(struct aac_dev *dev, int lun) 1886 { 1887 return dev->safw_phys_luns->lun[lun].node_ident[8]; 1888 } 1889 1890 static inline void aac_free_safw_identify_resp(struct aac_dev *dev, 1891 int bus, int target) 1892 { 1893 kfree(dev->hba_map[bus][target].safw_identify_resp); 1894 dev->hba_map[bus][target].safw_identify_resp = NULL; 1895 } 1896 1897 static inline void aac_free_safw_all_identify_resp(struct aac_dev *dev, 1898 int lun_count) 1899 { 1900 int luns; 1901 int i; 1902 u32 bus; 1903 u32 target; 1904 1905 luns = aac_get_safw_phys_lun_count(dev); 1906 1907 if (luns < lun_count) 1908 lun_count = luns; 1909 else if (lun_count < 0) 1910 lun_count = luns; 1911 1912 for (i = 0; i < lun_count; i++) { 1913 bus = aac_get_safw_phys_bus(dev, i); 1914 target = aac_get_safw_phys_target(dev, i); 1915 1916 aac_free_safw_identify_resp(dev, bus, target); 1917 } 1918 } 1919 1920 static int aac_get_safw_attr_all_targets(struct aac_dev *dev) 1921 { 1922 int i; 1923 int rcode = 0; 1924 u32 lun_count; 1925 u32 bus; 1926 u32 target; 1927 struct aac_ciss_identify_pd *identify_resp = NULL; 1928 1929 lun_count = aac_get_safw_phys_lun_count(dev); 1930 1931 for (i = 0; i < lun_count; ++i) { 1932 1933 bus = aac_get_safw_phys_bus(dev, i); 1934 target = aac_get_safw_phys_target(dev, i); 1935 1936 rcode = aac_issue_safw_bmic_identify(dev, 1937 &identify_resp, bus, target); 1938 1939 if (unlikely(rcode < 0)) 1940 goto free_identify_resp; 1941 1942 dev->hba_map[bus][target].safw_identify_resp = identify_resp; 1943 } 1944 1945 out: 1946 return rcode; 1947 free_identify_resp: 1948 aac_free_safw_all_identify_resp(dev, i); 1949 goto out; 1950 } 1951 1952 /** 1953 * aac_set_safw_attr_all_targets- update current hba map with data from FW 1954 * @dev: aac_dev structure 1955 * 1956 * Update our hba map with the information gathered from the FW 1957 */ 1958 static void aac_set_safw_attr_all_targets(struct aac_dev *dev) 1959 { 1960 /* ok and extended reporting */ 1961 u32 lun_count, nexus; 1962 u32 i, bus, target; 1963 u8 expose_flag, attribs; 1964 1965 lun_count = aac_get_safw_phys_lun_count(dev); 1966 1967 dev->scan_counter++; 1968 1969 for (i = 0; i < lun_count; ++i) { 1970 1971 bus = aac_get_safw_phys_bus(dev, i); 1972 target = aac_get_safw_phys_target(dev, i); 1973 expose_flag = aac_get_safw_phys_expose_flag(dev, i); 1974 attribs = aac_get_safw_phys_attribs(dev, i); 1975 nexus = aac_get_safw_phys_nexus(dev, i); 1976 1977 if (bus >= AAC_MAX_BUSES || target >= AAC_MAX_TARGETS) 1978 continue; 1979 1980 if (expose_flag != 0) { 1981 dev->hba_map[bus][target].devtype = 1982 AAC_DEVTYPE_RAID_MEMBER; 1983 continue; 1984 } 1985 1986 if (nexus != 0 && (attribs & 8)) { 1987 dev->hba_map[bus][target].devtype = 1988 AAC_DEVTYPE_NATIVE_RAW; 1989 dev->hba_map[bus][target].rmw_nexus = 1990 nexus; 1991 } else 1992 dev->hba_map[bus][target].devtype = 1993 AAC_DEVTYPE_ARC_RAW; 1994 1995 dev->hba_map[bus][target].scan_counter = dev->scan_counter; 1996 1997 aac_set_safw_target_qd(dev, bus, target); 1998 } 1999 } 2000 2001 static int aac_setup_safw_targets(struct aac_dev *dev) 2002 { 2003 int rcode = 0; 2004 2005 rcode = aac_get_containers(dev); 2006 if (unlikely(rcode < 0)) 2007 goto out; 2008 2009 rcode = aac_get_safw_ciss_luns(dev); 2010 if (unlikely(rcode < 0)) 2011 goto out; 2012 2013 rcode = aac_get_safw_attr_all_targets(dev); 2014 if (unlikely(rcode < 0)) 2015 goto free_ciss_luns; 2016 2017 aac_set_safw_attr_all_targets(dev); 2018 2019 aac_free_safw_all_identify_resp(dev, -1); 2020 free_ciss_luns: 2021 aac_free_safw_ciss_luns(dev); 2022 out: 2023 return rcode; 2024 } 2025 2026 int aac_setup_safw_adapter(struct aac_dev *dev) 2027 { 2028 return aac_setup_safw_targets(dev); 2029 } 2030 2031 int aac_get_adapter_info(struct aac_dev* dev) 2032 { 2033 struct fib* fibptr; 2034 int rcode; 2035 u32 tmp, bus, target; 2036 struct aac_adapter_info *info; 2037 struct aac_bus_info *command; 2038 struct aac_bus_info_response *bus_info; 2039 2040 if (!(fibptr = aac_fib_alloc(dev))) 2041 return -ENOMEM; 2042 2043 aac_fib_init(fibptr); 2044 info = (struct aac_adapter_info *) fib_data(fibptr); 2045 memset(info,0,sizeof(*info)); 2046 2047 rcode = aac_fib_send(RequestAdapterInfo, 2048 fibptr, 2049 sizeof(*info), 2050 FsaNormal, 2051 -1, 1, /* First `interrupt' command uses special wait */ 2052 NULL, 2053 NULL); 2054 2055 if (rcode < 0) { 2056 /* FIB should be freed only after 2057 * getting the response from the F/W */ 2058 if (rcode != -ERESTARTSYS) { 2059 aac_fib_complete(fibptr); 2060 aac_fib_free(fibptr); 2061 } 2062 return rcode; 2063 } 2064 memcpy(&dev->adapter_info, info, sizeof(*info)); 2065 2066 dev->supplement_adapter_info.virt_device_bus = 0xffff; 2067 if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) { 2068 struct aac_supplement_adapter_info * sinfo; 2069 2070 aac_fib_init(fibptr); 2071 2072 sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr); 2073 2074 memset(sinfo,0,sizeof(*sinfo)); 2075 2076 rcode = aac_fib_send(RequestSupplementAdapterInfo, 2077 fibptr, 2078 sizeof(*sinfo), 2079 FsaNormal, 2080 1, 1, 2081 NULL, 2082 NULL); 2083 2084 if (rcode >= 0) 2085 memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo)); 2086 if (rcode == -ERESTARTSYS) { 2087 fibptr = aac_fib_alloc(dev); 2088 if (!fibptr) 2089 return -ENOMEM; 2090 } 2091 2092 } 2093 2094 /* reset all previous mapped devices (i.e. for init. after IOP_RESET) */ 2095 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 2096 for (target = 0; target < AAC_MAX_TARGETS; target++) { 2097 dev->hba_map[bus][target].devtype = 0; 2098 dev->hba_map[bus][target].qd_limit = 0; 2099 } 2100 } 2101 2102 /* 2103 * GetBusInfo 2104 */ 2105 2106 aac_fib_init(fibptr); 2107 2108 bus_info = (struct aac_bus_info_response *) fib_data(fibptr); 2109 2110 memset(bus_info, 0, sizeof(*bus_info)); 2111 2112 command = (struct aac_bus_info *)bus_info; 2113 2114 command->Command = cpu_to_le32(VM_Ioctl); 2115 command->ObjType = cpu_to_le32(FT_DRIVE); 2116 command->MethodId = cpu_to_le32(1); 2117 command->CtlCmd = cpu_to_le32(GetBusInfo); 2118 2119 rcode = aac_fib_send(ContainerCommand, 2120 fibptr, 2121 sizeof (*bus_info), 2122 FsaNormal, 2123 1, 1, 2124 NULL, NULL); 2125 2126 /* reasoned default */ 2127 dev->maximum_num_physicals = 16; 2128 if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) { 2129 dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus); 2130 dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount); 2131 } 2132 2133 if (!dev->in_reset) { 2134 char buffer[16]; 2135 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 2136 printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n", 2137 dev->name, 2138 dev->id, 2139 tmp>>24, 2140 (tmp>>16)&0xff, 2141 tmp&0xff, 2142 le32_to_cpu(dev->adapter_info.kernelbuild), 2143 (int)sizeof(dev->supplement_adapter_info.build_date), 2144 dev->supplement_adapter_info.build_date); 2145 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 2146 printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n", 2147 dev->name, dev->id, 2148 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2149 le32_to_cpu(dev->adapter_info.monitorbuild)); 2150 tmp = le32_to_cpu(dev->adapter_info.biosrev); 2151 printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n", 2152 dev->name, dev->id, 2153 tmp>>24,(tmp>>16)&0xff,tmp&0xff, 2154 le32_to_cpu(dev->adapter_info.biosbuild)); 2155 buffer[0] = '\0'; 2156 if (aac_get_serial_number( 2157 shost_to_class(dev->scsi_host_ptr), buffer)) 2158 printk(KERN_INFO "%s%d: serial %s", 2159 dev->name, dev->id, buffer); 2160 if (dev->supplement_adapter_info.vpd_info.tsid[0]) { 2161 printk(KERN_INFO "%s%d: TSID %.*s\n", 2162 dev->name, dev->id, 2163 (int)sizeof(dev->supplement_adapter_info 2164 .vpd_info.tsid), 2165 dev->supplement_adapter_info.vpd_info.tsid); 2166 } 2167 if (!aac_check_reset || ((aac_check_reset == 1) && 2168 (dev->supplement_adapter_info.supported_options2 & 2169 AAC_OPTION_IGNORE_RESET))) { 2170 printk(KERN_INFO "%s%d: Reset Adapter Ignored\n", 2171 dev->name, dev->id); 2172 } 2173 } 2174 2175 dev->cache_protected = 0; 2176 dev->jbod = ((dev->supplement_adapter_info.feature_bits & 2177 AAC_FEATURE_JBOD) != 0); 2178 dev->nondasd_support = 0; 2179 dev->raid_scsi_mode = 0; 2180 if(dev->adapter_info.options & AAC_OPT_NONDASD) 2181 dev->nondasd_support = 1; 2182 2183 /* 2184 * If the firmware supports ROMB RAID/SCSI mode and we are currently 2185 * in RAID/SCSI mode, set the flag. For now if in this mode we will 2186 * force nondasd support on. If we decide to allow the non-dasd flag 2187 * additional changes changes will have to be made to support 2188 * RAID/SCSI. the function aac_scsi_cmd in this module will have to be 2189 * changed to support the new dev->raid_scsi_mode flag instead of 2190 * leaching off of the dev->nondasd_support flag. Also in linit.c the 2191 * function aac_detect will have to be modified where it sets up the 2192 * max number of channels based on the aac->nondasd_support flag only. 2193 */ 2194 if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) && 2195 (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) { 2196 dev->nondasd_support = 1; 2197 dev->raid_scsi_mode = 1; 2198 } 2199 if (dev->raid_scsi_mode != 0) 2200 printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n", 2201 dev->name, dev->id); 2202 2203 if (nondasd != -1) 2204 dev->nondasd_support = (nondasd!=0); 2205 if (dev->nondasd_support && !dev->in_reset) 2206 printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id); 2207 2208 if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32)) 2209 dev->needs_dac = 1; 2210 dev->dac_support = 0; 2211 if ((sizeof(dma_addr_t) > 4) && dev->needs_dac && 2212 (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) { 2213 if (!dev->in_reset) 2214 printk(KERN_INFO "%s%d: 64bit support enabled.\n", 2215 dev->name, dev->id); 2216 dev->dac_support = 1; 2217 } 2218 2219 if(dacmode != -1) { 2220 dev->dac_support = (dacmode!=0); 2221 } 2222 2223 /* avoid problems with AAC_QUIRK_SCSI_32 controllers */ 2224 if (dev->dac_support && (aac_get_driver_ident(dev->cardtype)->quirks 2225 & AAC_QUIRK_SCSI_32)) { 2226 dev->nondasd_support = 0; 2227 dev->jbod = 0; 2228 expose_physicals = 0; 2229 } 2230 2231 if (dev->dac_support) { 2232 if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(64))) { 2233 if (!dev->in_reset) 2234 dev_info(&dev->pdev->dev, "64 Bit DAC enabled\n"); 2235 } else if (!dma_set_mask(&dev->pdev->dev, DMA_BIT_MASK(32))) { 2236 dev_info(&dev->pdev->dev, "DMA mask set failed, 64 Bit DAC disabled\n"); 2237 dev->dac_support = 0; 2238 } else { 2239 dev_info(&dev->pdev->dev, "No suitable DMA available\n"); 2240 rcode = -ENOMEM; 2241 } 2242 } 2243 /* 2244 * Deal with configuring for the individualized limits of each packet 2245 * interface. 2246 */ 2247 dev->a_ops.adapter_scsi = (dev->dac_support) 2248 ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32) 2249 ? aac_scsi_32_64 2250 : aac_scsi_64) 2251 : aac_scsi_32; 2252 if (dev->raw_io_interface) { 2253 dev->a_ops.adapter_bounds = (dev->raw_io_64) 2254 ? aac_bounds_64 2255 : aac_bounds_32; 2256 dev->a_ops.adapter_read = aac_read_raw_io; 2257 dev->a_ops.adapter_write = aac_write_raw_io; 2258 } else { 2259 dev->a_ops.adapter_bounds = aac_bounds_32; 2260 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 2261 sizeof(struct aac_fibhdr) - 2262 sizeof(struct aac_write) + sizeof(struct sgentry)) / 2263 sizeof(struct sgentry); 2264 if (dev->dac_support) { 2265 dev->a_ops.adapter_read = aac_read_block64; 2266 dev->a_ops.adapter_write = aac_write_block64; 2267 /* 2268 * 38 scatter gather elements 2269 */ 2270 dev->scsi_host_ptr->sg_tablesize = 2271 (dev->max_fib_size - 2272 sizeof(struct aac_fibhdr) - 2273 sizeof(struct aac_write64) + 2274 sizeof(struct sgentry64)) / 2275 sizeof(struct sgentry64); 2276 } else { 2277 dev->a_ops.adapter_read = aac_read_block; 2278 dev->a_ops.adapter_write = aac_write_block; 2279 } 2280 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 2281 if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 2282 /* 2283 * Worst case size that could cause sg overflow when 2284 * we break up SG elements that are larger than 64KB. 2285 * Would be nice if we could tell the SCSI layer what 2286 * the maximum SG element size can be. Worst case is 2287 * (sg_tablesize-1) 4KB elements with one 64KB 2288 * element. 2289 * 32bit -> 468 or 238KB 64bit -> 424 or 212KB 2290 */ 2291 dev->scsi_host_ptr->max_sectors = 2292 (dev->scsi_host_ptr->sg_tablesize * 8) + 112; 2293 } 2294 } 2295 if (!dev->sync_mode && dev->sa_firmware && 2296 dev->scsi_host_ptr->sg_tablesize > HBA_MAX_SG_SEPARATE) 2297 dev->scsi_host_ptr->sg_tablesize = dev->sg_tablesize = 2298 HBA_MAX_SG_SEPARATE; 2299 2300 /* FIB should be freed only after getting the response from the F/W */ 2301 if (rcode != -ERESTARTSYS) { 2302 aac_fib_complete(fibptr); 2303 aac_fib_free(fibptr); 2304 } 2305 2306 return rcode; 2307 } 2308 2309 2310 static void io_callback(void *context, struct fib * fibptr) 2311 { 2312 struct aac_dev *dev; 2313 struct aac_read_reply *readreply; 2314 struct scsi_cmnd *scsicmd; 2315 u32 cid; 2316 2317 scsicmd = (struct scsi_cmnd *) context; 2318 2319 if (!aac_valid_context(scsicmd, fibptr)) 2320 return; 2321 2322 dev = fibptr->dev; 2323 cid = scmd_id(scsicmd); 2324 2325 if (nblank(dprintk(x))) { 2326 u64 lba; 2327 switch (scsicmd->cmnd[0]) { 2328 case WRITE_6: 2329 case READ_6: 2330 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2331 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2332 break; 2333 case WRITE_16: 2334 case READ_16: 2335 lba = ((u64)scsicmd->cmnd[2] << 56) | 2336 ((u64)scsicmd->cmnd[3] << 48) | 2337 ((u64)scsicmd->cmnd[4] << 40) | 2338 ((u64)scsicmd->cmnd[5] << 32) | 2339 ((u64)scsicmd->cmnd[6] << 24) | 2340 (scsicmd->cmnd[7] << 16) | 2341 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2342 break; 2343 case WRITE_12: 2344 case READ_12: 2345 lba = ((u64)scsicmd->cmnd[2] << 24) | 2346 (scsicmd->cmnd[3] << 16) | 2347 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2348 break; 2349 default: 2350 lba = ((u64)scsicmd->cmnd[2] << 24) | 2351 (scsicmd->cmnd[3] << 16) | 2352 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2353 break; 2354 } 2355 printk(KERN_DEBUG 2356 "io_callback[cpu %d]: lba = %llu, t = %ld.\n", 2357 smp_processor_id(), (unsigned long long)lba, jiffies); 2358 } 2359 2360 BUG_ON(fibptr == NULL); 2361 2362 scsi_dma_unmap(scsicmd); 2363 2364 readreply = (struct aac_read_reply *)fib_data(fibptr); 2365 switch (le32_to_cpu(readreply->status)) { 2366 case ST_OK: 2367 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2368 SAM_STAT_GOOD; 2369 dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE; 2370 break; 2371 case ST_NOT_READY: 2372 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2373 SAM_STAT_CHECK_CONDITION; 2374 set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY, 2375 SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0); 2376 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2377 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2378 SCSI_SENSE_BUFFERSIZE)); 2379 break; 2380 case ST_MEDERR: 2381 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2382 SAM_STAT_CHECK_CONDITION; 2383 set_sense(&dev->fsa_dev[cid].sense_data, MEDIUM_ERROR, 2384 SENCODE_UNRECOVERED_READ_ERROR, ASENCODE_NO_SENSE, 0, 0); 2385 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2386 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2387 SCSI_SENSE_BUFFERSIZE)); 2388 break; 2389 default: 2390 #ifdef AAC_DETAILED_STATUS_INFO 2391 printk(KERN_WARNING "io_callback: io failed, status = %d\n", 2392 le32_to_cpu(readreply->status)); 2393 #endif 2394 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2395 SAM_STAT_CHECK_CONDITION; 2396 set_sense(&dev->fsa_dev[cid].sense_data, 2397 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2398 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2399 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2400 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2401 SCSI_SENSE_BUFFERSIZE)); 2402 break; 2403 } 2404 aac_fib_complete(fibptr); 2405 2406 scsicmd->scsi_done(scsicmd); 2407 } 2408 2409 static int aac_read(struct scsi_cmnd * scsicmd) 2410 { 2411 u64 lba; 2412 u32 count; 2413 int status; 2414 struct aac_dev *dev; 2415 struct fib * cmd_fibcontext; 2416 int cid; 2417 2418 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2419 /* 2420 * Get block address and transfer length 2421 */ 2422 switch (scsicmd->cmnd[0]) { 2423 case READ_6: 2424 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd))); 2425 2426 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | 2427 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2428 count = scsicmd->cmnd[4]; 2429 2430 if (count == 0) 2431 count = 256; 2432 break; 2433 case READ_16: 2434 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd))); 2435 2436 lba = ((u64)scsicmd->cmnd[2] << 56) | 2437 ((u64)scsicmd->cmnd[3] << 48) | 2438 ((u64)scsicmd->cmnd[4] << 40) | 2439 ((u64)scsicmd->cmnd[5] << 32) | 2440 ((u64)scsicmd->cmnd[6] << 24) | 2441 (scsicmd->cmnd[7] << 16) | 2442 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2443 count = (scsicmd->cmnd[10] << 24) | 2444 (scsicmd->cmnd[11] << 16) | 2445 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2446 break; 2447 case READ_12: 2448 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd))); 2449 2450 lba = ((u64)scsicmd->cmnd[2] << 24) | 2451 (scsicmd->cmnd[3] << 16) | 2452 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2453 count = (scsicmd->cmnd[6] << 24) | 2454 (scsicmd->cmnd[7] << 16) | 2455 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2456 break; 2457 default: 2458 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd))); 2459 2460 lba = ((u64)scsicmd->cmnd[2] << 24) | 2461 (scsicmd->cmnd[3] << 16) | 2462 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2463 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2464 break; 2465 } 2466 2467 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2468 cid = scmd_id(scsicmd); 2469 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2470 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2471 SAM_STAT_CHECK_CONDITION; 2472 set_sense(&dev->fsa_dev[cid].sense_data, 2473 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2474 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2475 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2476 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2477 SCSI_SENSE_BUFFERSIZE)); 2478 scsicmd->scsi_done(scsicmd); 2479 return 0; 2480 } 2481 2482 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n", 2483 smp_processor_id(), (unsigned long long)lba, jiffies)); 2484 if (aac_adapter_bounds(dev,scsicmd,lba)) 2485 return 0; 2486 /* 2487 * Alocate and initialize a Fib 2488 */ 2489 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2490 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2491 status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count); 2492 2493 /* 2494 * Check that the command queued to the controller 2495 */ 2496 if (status == -EINPROGRESS) 2497 return 0; 2498 2499 printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status); 2500 /* 2501 * For some reason, the Fib didn't queue, return QUEUE_FULL 2502 */ 2503 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2504 scsicmd->scsi_done(scsicmd); 2505 aac_fib_complete(cmd_fibcontext); 2506 aac_fib_free(cmd_fibcontext); 2507 return 0; 2508 } 2509 2510 static int aac_write(struct scsi_cmnd * scsicmd) 2511 { 2512 u64 lba; 2513 u32 count; 2514 int fua; 2515 int status; 2516 struct aac_dev *dev; 2517 struct fib * cmd_fibcontext; 2518 int cid; 2519 2520 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 2521 /* 2522 * Get block address and transfer length 2523 */ 2524 if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */ 2525 { 2526 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 2527 count = scsicmd->cmnd[4]; 2528 if (count == 0) 2529 count = 256; 2530 fua = 0; 2531 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */ 2532 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd))); 2533 2534 lba = ((u64)scsicmd->cmnd[2] << 56) | 2535 ((u64)scsicmd->cmnd[3] << 48) | 2536 ((u64)scsicmd->cmnd[4] << 40) | 2537 ((u64)scsicmd->cmnd[5] << 32) | 2538 ((u64)scsicmd->cmnd[6] << 24) | 2539 (scsicmd->cmnd[7] << 16) | 2540 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2541 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) | 2542 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13]; 2543 fua = scsicmd->cmnd[1] & 0x8; 2544 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */ 2545 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd))); 2546 2547 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) 2548 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2549 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16) 2550 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9]; 2551 fua = scsicmd->cmnd[1] & 0x8; 2552 } else { 2553 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd))); 2554 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 2555 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 2556 fua = scsicmd->cmnd[1] & 0x8; 2557 } 2558 2559 if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) { 2560 cid = scmd_id(scsicmd); 2561 dprintk((KERN_DEBUG "aacraid: Illegal lba\n")); 2562 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2563 SAM_STAT_CHECK_CONDITION; 2564 set_sense(&dev->fsa_dev[cid].sense_data, 2565 ILLEGAL_REQUEST, SENCODE_LBA_OUT_OF_RANGE, 2566 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2567 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2568 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2569 SCSI_SENSE_BUFFERSIZE)); 2570 scsicmd->scsi_done(scsicmd); 2571 return 0; 2572 } 2573 2574 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n", 2575 smp_processor_id(), (unsigned long long)lba, jiffies)); 2576 if (aac_adapter_bounds(dev,scsicmd,lba)) 2577 return 0; 2578 /* 2579 * Allocate and initialize a Fib then setup a BlockWrite command 2580 */ 2581 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 2582 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2583 status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua); 2584 2585 /* 2586 * Check that the command queued to the controller 2587 */ 2588 if (status == -EINPROGRESS) 2589 return 0; 2590 2591 printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status); 2592 /* 2593 * For some reason, the Fib didn't queue, return QUEUE_FULL 2594 */ 2595 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL; 2596 scsicmd->scsi_done(scsicmd); 2597 2598 aac_fib_complete(cmd_fibcontext); 2599 aac_fib_free(cmd_fibcontext); 2600 return 0; 2601 } 2602 2603 static void synchronize_callback(void *context, struct fib *fibptr) 2604 { 2605 struct aac_synchronize_reply *synchronizereply; 2606 struct scsi_cmnd *cmd = context; 2607 2608 if (!aac_valid_context(cmd, fibptr)) 2609 return; 2610 2611 dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n", 2612 smp_processor_id(), jiffies)); 2613 BUG_ON(fibptr == NULL); 2614 2615 2616 synchronizereply = fib_data(fibptr); 2617 if (le32_to_cpu(synchronizereply->status) == CT_OK) 2618 cmd->result = DID_OK << 16 | 2619 COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2620 else { 2621 struct scsi_device *sdev = cmd->device; 2622 struct aac_dev *dev = fibptr->dev; 2623 u32 cid = sdev_id(sdev); 2624 printk(KERN_WARNING 2625 "synchronize_callback: synchronize failed, status = %d\n", 2626 le32_to_cpu(synchronizereply->status)); 2627 cmd->result = DID_OK << 16 | 2628 COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2629 set_sense(&dev->fsa_dev[cid].sense_data, 2630 HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE, 2631 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0); 2632 memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2633 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2634 SCSI_SENSE_BUFFERSIZE)); 2635 } 2636 2637 aac_fib_complete(fibptr); 2638 aac_fib_free(fibptr); 2639 cmd->scsi_done(cmd); 2640 } 2641 2642 static int aac_synchronize(struct scsi_cmnd *scsicmd) 2643 { 2644 int status; 2645 struct fib *cmd_fibcontext; 2646 struct aac_synchronize *synchronizecmd; 2647 struct scsi_device *sdev = scsicmd->device; 2648 struct aac_dev *aac; 2649 2650 aac = (struct aac_dev *)sdev->host->hostdata; 2651 if (aac->in_reset) 2652 return SCSI_MLQUEUE_HOST_BUSY; 2653 2654 /* 2655 * Allocate and initialize a Fib 2656 */ 2657 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2658 2659 aac_fib_init(cmd_fibcontext); 2660 2661 synchronizecmd = fib_data(cmd_fibcontext); 2662 synchronizecmd->command = cpu_to_le32(VM_ContainerConfig); 2663 synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE); 2664 synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd)); 2665 synchronizecmd->count = 2666 cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data)); 2667 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2668 2669 /* 2670 * Now send the Fib to the adapter 2671 */ 2672 status = aac_fib_send(ContainerCommand, 2673 cmd_fibcontext, 2674 sizeof(struct aac_synchronize), 2675 FsaNormal, 2676 0, 1, 2677 (fib_callback)synchronize_callback, 2678 (void *)scsicmd); 2679 2680 /* 2681 * Check that the command queued to the controller 2682 */ 2683 if (status == -EINPROGRESS) 2684 return 0; 2685 2686 printk(KERN_WARNING 2687 "aac_synchronize: aac_fib_send failed with status: %d.\n", status); 2688 aac_fib_complete(cmd_fibcontext); 2689 aac_fib_free(cmd_fibcontext); 2690 return SCSI_MLQUEUE_HOST_BUSY; 2691 } 2692 2693 static void aac_start_stop_callback(void *context, struct fib *fibptr) 2694 { 2695 struct scsi_cmnd *scsicmd = context; 2696 2697 if (!aac_valid_context(scsicmd, fibptr)) 2698 return; 2699 2700 BUG_ON(fibptr == NULL); 2701 2702 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 2703 2704 aac_fib_complete(fibptr); 2705 aac_fib_free(fibptr); 2706 scsicmd->scsi_done(scsicmd); 2707 } 2708 2709 static int aac_start_stop(struct scsi_cmnd *scsicmd) 2710 { 2711 int status; 2712 struct fib *cmd_fibcontext; 2713 struct aac_power_management *pmcmd; 2714 struct scsi_device *sdev = scsicmd->device; 2715 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 2716 2717 if (!(aac->supplement_adapter_info.supported_options2 & 2718 AAC_OPTION_POWER_MANAGEMENT)) { 2719 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2720 SAM_STAT_GOOD; 2721 scsicmd->scsi_done(scsicmd); 2722 return 0; 2723 } 2724 2725 if (aac->in_reset) 2726 return SCSI_MLQUEUE_HOST_BUSY; 2727 2728 /* 2729 * Allocate and initialize a Fib 2730 */ 2731 cmd_fibcontext = aac_fib_alloc_tag(aac, scsicmd); 2732 2733 aac_fib_init(cmd_fibcontext); 2734 2735 pmcmd = fib_data(cmd_fibcontext); 2736 pmcmd->command = cpu_to_le32(VM_ContainerConfig); 2737 pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT); 2738 /* Eject bit ignored, not relevant */ 2739 pmcmd->sub = (scsicmd->cmnd[4] & 1) ? 2740 cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT); 2741 pmcmd->cid = cpu_to_le32(sdev_id(sdev)); 2742 pmcmd->parm = (scsicmd->cmnd[1] & 1) ? 2743 cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0; 2744 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 2745 2746 /* 2747 * Now send the Fib to the adapter 2748 */ 2749 status = aac_fib_send(ContainerCommand, 2750 cmd_fibcontext, 2751 sizeof(struct aac_power_management), 2752 FsaNormal, 2753 0, 1, 2754 (fib_callback)aac_start_stop_callback, 2755 (void *)scsicmd); 2756 2757 /* 2758 * Check that the command queued to the controller 2759 */ 2760 if (status == -EINPROGRESS) 2761 return 0; 2762 2763 aac_fib_complete(cmd_fibcontext); 2764 aac_fib_free(cmd_fibcontext); 2765 return SCSI_MLQUEUE_HOST_BUSY; 2766 } 2767 2768 /** 2769 * aac_scsi_cmd() - Process SCSI command 2770 * @scsicmd: SCSI command block 2771 * 2772 * Emulate a SCSI command and queue the required request for the 2773 * aacraid firmware. 2774 */ 2775 2776 int aac_scsi_cmd(struct scsi_cmnd * scsicmd) 2777 { 2778 u32 cid, bus; 2779 struct Scsi_Host *host = scsicmd->device->host; 2780 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 2781 struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev; 2782 2783 if (fsa_dev_ptr == NULL) 2784 return -1; 2785 /* 2786 * If the bus, id or lun is out of range, return fail 2787 * Test does not apply to ID 16, the pseudo id for the controller 2788 * itself. 2789 */ 2790 cid = scmd_id(scsicmd); 2791 if (cid != host->this_id) { 2792 if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) { 2793 if((cid >= dev->maximum_num_containers) || 2794 (scsicmd->device->lun != 0)) { 2795 scsicmd->result = DID_NO_CONNECT << 16; 2796 goto scsi_done_ret; 2797 } 2798 2799 /* 2800 * If the target container doesn't exist, it may have 2801 * been newly created 2802 */ 2803 if (((fsa_dev_ptr[cid].valid & 1) == 0) || 2804 (fsa_dev_ptr[cid].sense_data.sense_key == 2805 NOT_READY)) { 2806 switch (scsicmd->cmnd[0]) { 2807 case SERVICE_ACTION_IN_16: 2808 if (!(dev->raw_io_interface) || 2809 !(dev->raw_io_64) || 2810 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2811 break; 2812 fallthrough; 2813 case INQUIRY: 2814 case READ_CAPACITY: 2815 case TEST_UNIT_READY: 2816 if (dev->in_reset) 2817 return -1; 2818 return _aac_probe_container(scsicmd, 2819 aac_probe_container_callback2); 2820 default: 2821 break; 2822 } 2823 } 2824 } else { /* check for physical non-dasd devices */ 2825 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 2826 2827 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 2828 dev->hba_map[bus][cid].devtype 2829 == AAC_DEVTYPE_NATIVE_RAW) { 2830 if (dev->in_reset) 2831 return -1; 2832 return aac_send_hba_fib(scsicmd); 2833 } else if (dev->nondasd_support || expose_physicals || 2834 dev->jbod) { 2835 if (dev->in_reset) 2836 return -1; 2837 return aac_send_srb_fib(scsicmd); 2838 } else { 2839 scsicmd->result = DID_NO_CONNECT << 16; 2840 goto scsi_done_ret; 2841 } 2842 } 2843 } 2844 /* 2845 * else Command for the controller itself 2846 */ 2847 else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */ 2848 (scsicmd->cmnd[0] != TEST_UNIT_READY)) 2849 { 2850 dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0])); 2851 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION; 2852 set_sense(&dev->fsa_dev[cid].sense_data, 2853 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 2854 ASENCODE_INVALID_COMMAND, 0, 0); 2855 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 2856 min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data), 2857 SCSI_SENSE_BUFFERSIZE)); 2858 goto scsi_done_ret; 2859 } 2860 2861 switch (scsicmd->cmnd[0]) { 2862 case READ_6: 2863 case READ_10: 2864 case READ_12: 2865 case READ_16: 2866 if (dev->in_reset) 2867 return -1; 2868 return aac_read(scsicmd); 2869 2870 case WRITE_6: 2871 case WRITE_10: 2872 case WRITE_12: 2873 case WRITE_16: 2874 if (dev->in_reset) 2875 return -1; 2876 return aac_write(scsicmd); 2877 2878 case SYNCHRONIZE_CACHE: 2879 if (((aac_cache & 6) == 6) && dev->cache_protected) { 2880 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2881 SAM_STAT_GOOD; 2882 break; 2883 } 2884 /* Issue FIB to tell Firmware to flush it's cache */ 2885 if ((aac_cache & 6) != 2) 2886 return aac_synchronize(scsicmd); 2887 fallthrough; 2888 case INQUIRY: 2889 { 2890 struct inquiry_data inq_data; 2891 2892 dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid)); 2893 memset(&inq_data, 0, sizeof (struct inquiry_data)); 2894 2895 if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) { 2896 char *arr = (char *)&inq_data; 2897 2898 /* EVPD bit set */ 2899 arr[0] = (scmd_id(scsicmd) == host->this_id) ? 2900 INQD_PDT_PROC : INQD_PDT_DA; 2901 if (scsicmd->cmnd[2] == 0) { 2902 /* supported vital product data pages */ 2903 arr[3] = 3; 2904 arr[4] = 0x0; 2905 arr[5] = 0x80; 2906 arr[6] = 0x83; 2907 arr[1] = scsicmd->cmnd[2]; 2908 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2909 sizeof(inq_data)); 2910 scsicmd->result = DID_OK << 16 | 2911 COMMAND_COMPLETE << 8 | 2912 SAM_STAT_GOOD; 2913 } else if (scsicmd->cmnd[2] == 0x80) { 2914 /* unit serial number page */ 2915 arr[3] = setinqserial(dev, &arr[4], 2916 scmd_id(scsicmd)); 2917 arr[1] = scsicmd->cmnd[2]; 2918 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2919 sizeof(inq_data)); 2920 if (aac_wwn != 2) 2921 return aac_get_container_serial( 2922 scsicmd); 2923 scsicmd->result = DID_OK << 16 | 2924 COMMAND_COMPLETE << 8 | 2925 SAM_STAT_GOOD; 2926 } else if (scsicmd->cmnd[2] == 0x83) { 2927 /* vpd page 0x83 - Device Identification Page */ 2928 char *sno = (char *)&inq_data; 2929 sno[3] = setinqserial(dev, &sno[4], 2930 scmd_id(scsicmd)); 2931 if (aac_wwn != 2) 2932 return aac_get_container_serial( 2933 scsicmd); 2934 scsicmd->result = DID_OK << 16 | 2935 COMMAND_COMPLETE << 8 | 2936 SAM_STAT_GOOD; 2937 } else { 2938 /* vpd page not implemented */ 2939 scsicmd->result = DID_OK << 16 | 2940 COMMAND_COMPLETE << 8 | 2941 SAM_STAT_CHECK_CONDITION; 2942 set_sense(&dev->fsa_dev[cid].sense_data, 2943 ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD, 2944 ASENCODE_NO_SENSE, 7, 2); 2945 memcpy(scsicmd->sense_buffer, 2946 &dev->fsa_dev[cid].sense_data, 2947 min_t(size_t, 2948 sizeof(dev->fsa_dev[cid].sense_data), 2949 SCSI_SENSE_BUFFERSIZE)); 2950 } 2951 break; 2952 } 2953 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 2954 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 2955 inq_data.inqd_len = 31; 2956 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 2957 inq_data.inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */ 2958 /* 2959 * Set the Vendor, Product, and Revision Level 2960 * see: <vendor>.c i.e. aac.c 2961 */ 2962 if (cid == host->this_id) { 2963 setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types)); 2964 inq_data.inqd_pdt = INQD_PDT_PROC; /* Processor device */ 2965 scsi_sg_copy_from_buffer(scsicmd, &inq_data, 2966 sizeof(inq_data)); 2967 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 2968 SAM_STAT_GOOD; 2969 break; 2970 } 2971 if (dev->in_reset) 2972 return -1; 2973 setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type); 2974 inq_data.inqd_pdt = INQD_PDT_DA; /* Direct/random access device */ 2975 scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data)); 2976 return aac_get_container_name(scsicmd); 2977 } 2978 case SERVICE_ACTION_IN_16: 2979 if (!(dev->raw_io_interface) || 2980 !(dev->raw_io_64) || 2981 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 2982 break; 2983 { 2984 u64 capacity; 2985 char cp[13]; 2986 unsigned int alloc_len; 2987 2988 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n")); 2989 capacity = fsa_dev_ptr[cid].size - 1; 2990 cp[0] = (capacity >> 56) & 0xff; 2991 cp[1] = (capacity >> 48) & 0xff; 2992 cp[2] = (capacity >> 40) & 0xff; 2993 cp[3] = (capacity >> 32) & 0xff; 2994 cp[4] = (capacity >> 24) & 0xff; 2995 cp[5] = (capacity >> 16) & 0xff; 2996 cp[6] = (capacity >> 8) & 0xff; 2997 cp[7] = (capacity >> 0) & 0xff; 2998 cp[8] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 2999 cp[9] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3000 cp[10] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3001 cp[11] = (fsa_dev_ptr[cid].block_size) & 0xff; 3002 cp[12] = 0; 3003 3004 alloc_len = ((scsicmd->cmnd[10] << 24) 3005 + (scsicmd->cmnd[11] << 16) 3006 + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]); 3007 3008 alloc_len = min_t(size_t, alloc_len, sizeof(cp)); 3009 scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len); 3010 if (alloc_len < scsi_bufflen(scsicmd)) 3011 scsi_set_resid(scsicmd, 3012 scsi_bufflen(scsicmd) - alloc_len); 3013 3014 /* Do not cache partition table for arrays */ 3015 scsicmd->device->removable = 1; 3016 3017 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3018 SAM_STAT_GOOD; 3019 break; 3020 } 3021 3022 case READ_CAPACITY: 3023 { 3024 u32 capacity; 3025 char cp[8]; 3026 3027 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 3028 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3029 capacity = fsa_dev_ptr[cid].size - 1; 3030 else 3031 capacity = (u32)-1; 3032 3033 cp[0] = (capacity >> 24) & 0xff; 3034 cp[1] = (capacity >> 16) & 0xff; 3035 cp[2] = (capacity >> 8) & 0xff; 3036 cp[3] = (capacity >> 0) & 0xff; 3037 cp[4] = (fsa_dev_ptr[cid].block_size >> 24) & 0xff; 3038 cp[5] = (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3039 cp[6] = (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3040 cp[7] = (fsa_dev_ptr[cid].block_size) & 0xff; 3041 scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp)); 3042 /* Do not cache partition table for arrays */ 3043 scsicmd->device->removable = 1; 3044 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3045 SAM_STAT_GOOD; 3046 break; 3047 } 3048 3049 case MODE_SENSE: 3050 { 3051 int mode_buf_length = 4; 3052 u32 capacity; 3053 aac_modep_data mpd; 3054 3055 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3056 capacity = fsa_dev_ptr[cid].size - 1; 3057 else 3058 capacity = (u32)-1; 3059 3060 dprintk((KERN_DEBUG "MODE SENSE command.\n")); 3061 memset((char *)&mpd, 0, sizeof(aac_modep_data)); 3062 3063 /* Mode data length */ 3064 mpd.hd.data_length = sizeof(mpd.hd) - 1; 3065 /* Medium type - default */ 3066 mpd.hd.med_type = 0; 3067 /* Device-specific param, 3068 bit 8: 0/1 = write enabled/protected 3069 bit 4: 0/1 = FUA enabled */ 3070 mpd.hd.dev_par = 0; 3071 3072 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3073 mpd.hd.dev_par = 0x10; 3074 if (scsicmd->cmnd[1] & 0x8) 3075 mpd.hd.bd_length = 0; /* Block descriptor length */ 3076 else { 3077 mpd.hd.bd_length = sizeof(mpd.bd); 3078 mpd.hd.data_length += mpd.hd.bd_length; 3079 mpd.bd.block_length[0] = 3080 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3081 mpd.bd.block_length[1] = 3082 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3083 mpd.bd.block_length[2] = 3084 fsa_dev_ptr[cid].block_size & 0xff; 3085 3086 mpd.mpc_buf[0] = scsicmd->cmnd[2]; 3087 if (scsicmd->cmnd[2] == 0x1C) { 3088 /* page length */ 3089 mpd.mpc_buf[1] = 0xa; 3090 /* Mode data length */ 3091 mpd.hd.data_length = 23; 3092 } else { 3093 /* Mode data length */ 3094 mpd.hd.data_length = 15; 3095 } 3096 3097 if (capacity > 0xffffff) { 3098 mpd.bd.block_count[0] = 0xff; 3099 mpd.bd.block_count[1] = 0xff; 3100 mpd.bd.block_count[2] = 0xff; 3101 } else { 3102 mpd.bd.block_count[0] = (capacity >> 16) & 0xff; 3103 mpd.bd.block_count[1] = (capacity >> 8) & 0xff; 3104 mpd.bd.block_count[2] = capacity & 0xff; 3105 } 3106 } 3107 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3108 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3109 mpd.hd.data_length += 3; 3110 mpd.mpc_buf[0] = 8; 3111 mpd.mpc_buf[1] = 1; 3112 mpd.mpc_buf[2] = ((aac_cache & 6) == 2) 3113 ? 0 : 0x04; /* WCE */ 3114 mode_buf_length = sizeof(mpd); 3115 } 3116 3117 if (mode_buf_length > scsicmd->cmnd[4]) 3118 mode_buf_length = scsicmd->cmnd[4]; 3119 else 3120 mode_buf_length = sizeof(mpd); 3121 scsi_sg_copy_from_buffer(scsicmd, 3122 (char *)&mpd, 3123 mode_buf_length); 3124 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3125 SAM_STAT_GOOD; 3126 break; 3127 } 3128 case MODE_SENSE_10: 3129 { 3130 u32 capacity; 3131 int mode_buf_length = 8; 3132 aac_modep10_data mpd10; 3133 3134 if (fsa_dev_ptr[cid].size <= 0x100000000ULL) 3135 capacity = fsa_dev_ptr[cid].size - 1; 3136 else 3137 capacity = (u32)-1; 3138 3139 dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n")); 3140 memset((char *)&mpd10, 0, sizeof(aac_modep10_data)); 3141 /* Mode data length (MSB) */ 3142 mpd10.hd.data_length[0] = 0; 3143 /* Mode data length (LSB) */ 3144 mpd10.hd.data_length[1] = sizeof(mpd10.hd) - 1; 3145 /* Medium type - default */ 3146 mpd10.hd.med_type = 0; 3147 /* Device-specific param, 3148 bit 8: 0/1 = write enabled/protected 3149 bit 4: 0/1 = FUA enabled */ 3150 mpd10.hd.dev_par = 0; 3151 3152 if (dev->raw_io_interface && ((aac_cache & 5) != 1)) 3153 mpd10.hd.dev_par = 0x10; 3154 mpd10.hd.rsrvd[0] = 0; /* reserved */ 3155 mpd10.hd.rsrvd[1] = 0; /* reserved */ 3156 if (scsicmd->cmnd[1] & 0x8) { 3157 /* Block descriptor length (MSB) */ 3158 mpd10.hd.bd_length[0] = 0; 3159 /* Block descriptor length (LSB) */ 3160 mpd10.hd.bd_length[1] = 0; 3161 } else { 3162 mpd10.hd.bd_length[0] = 0; 3163 mpd10.hd.bd_length[1] = sizeof(mpd10.bd); 3164 3165 mpd10.hd.data_length[1] += mpd10.hd.bd_length[1]; 3166 3167 mpd10.bd.block_length[0] = 3168 (fsa_dev_ptr[cid].block_size >> 16) & 0xff; 3169 mpd10.bd.block_length[1] = 3170 (fsa_dev_ptr[cid].block_size >> 8) & 0xff; 3171 mpd10.bd.block_length[2] = 3172 fsa_dev_ptr[cid].block_size & 0xff; 3173 3174 if (capacity > 0xffffff) { 3175 mpd10.bd.block_count[0] = 0xff; 3176 mpd10.bd.block_count[1] = 0xff; 3177 mpd10.bd.block_count[2] = 0xff; 3178 } else { 3179 mpd10.bd.block_count[0] = 3180 (capacity >> 16) & 0xff; 3181 mpd10.bd.block_count[1] = 3182 (capacity >> 8) & 0xff; 3183 mpd10.bd.block_count[2] = 3184 capacity & 0xff; 3185 } 3186 } 3187 if (((scsicmd->cmnd[2] & 0x3f) == 8) || 3188 ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) { 3189 mpd10.hd.data_length[1] += 3; 3190 mpd10.mpc_buf[0] = 8; 3191 mpd10.mpc_buf[1] = 1; 3192 mpd10.mpc_buf[2] = ((aac_cache & 6) == 2) 3193 ? 0 : 0x04; /* WCE */ 3194 mode_buf_length = sizeof(mpd10); 3195 if (mode_buf_length > scsicmd->cmnd[8]) 3196 mode_buf_length = scsicmd->cmnd[8]; 3197 } 3198 scsi_sg_copy_from_buffer(scsicmd, 3199 (char *)&mpd10, 3200 mode_buf_length); 3201 3202 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3203 SAM_STAT_GOOD; 3204 break; 3205 } 3206 case REQUEST_SENSE: 3207 dprintk((KERN_DEBUG "REQUEST SENSE command.\n")); 3208 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3209 sizeof(struct sense_data)); 3210 memset(&dev->fsa_dev[cid].sense_data, 0, 3211 sizeof(struct sense_data)); 3212 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3213 SAM_STAT_GOOD; 3214 break; 3215 3216 case ALLOW_MEDIUM_REMOVAL: 3217 dprintk((KERN_DEBUG "LOCK command.\n")); 3218 if (scsicmd->cmnd[4]) 3219 fsa_dev_ptr[cid].locked = 1; 3220 else 3221 fsa_dev_ptr[cid].locked = 0; 3222 3223 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3224 SAM_STAT_GOOD; 3225 break; 3226 /* 3227 * These commands are all No-Ops 3228 */ 3229 case TEST_UNIT_READY: 3230 if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) { 3231 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3232 SAM_STAT_CHECK_CONDITION; 3233 set_sense(&dev->fsa_dev[cid].sense_data, 3234 NOT_READY, SENCODE_BECOMING_READY, 3235 ASENCODE_BECOMING_READY, 0, 0); 3236 memcpy(scsicmd->sense_buffer, 3237 &dev->fsa_dev[cid].sense_data, 3238 min_t(size_t, 3239 sizeof(dev->fsa_dev[cid].sense_data), 3240 SCSI_SENSE_BUFFERSIZE)); 3241 break; 3242 } 3243 fallthrough; 3244 case RESERVE: 3245 case RELEASE: 3246 case REZERO_UNIT: 3247 case REASSIGN_BLOCKS: 3248 case SEEK_10: 3249 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3250 SAM_STAT_GOOD; 3251 break; 3252 3253 case START_STOP: 3254 return aac_start_stop(scsicmd); 3255 3256 default: 3257 /* 3258 * Unhandled commands 3259 */ 3260 dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", 3261 scsicmd->cmnd[0])); 3262 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | 3263 SAM_STAT_CHECK_CONDITION; 3264 set_sense(&dev->fsa_dev[cid].sense_data, 3265 ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND, 3266 ASENCODE_INVALID_COMMAND, 0, 0); 3267 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, 3268 min_t(size_t, 3269 sizeof(dev->fsa_dev[cid].sense_data), 3270 SCSI_SENSE_BUFFERSIZE)); 3271 } 3272 3273 scsi_done_ret: 3274 3275 scsicmd->scsi_done(scsicmd); 3276 return 0; 3277 } 3278 3279 static int query_disk(struct aac_dev *dev, void __user *arg) 3280 { 3281 struct aac_query_disk qd; 3282 struct fsa_dev_info *fsa_dev_ptr; 3283 3284 fsa_dev_ptr = dev->fsa_dev; 3285 if (!fsa_dev_ptr) 3286 return -EBUSY; 3287 if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk))) 3288 return -EFAULT; 3289 if (qd.cnum == -1) { 3290 if (qd.id < 0 || qd.id >= dev->maximum_num_containers) 3291 return -EINVAL; 3292 qd.cnum = qd.id; 3293 } else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1)) { 3294 if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers) 3295 return -EINVAL; 3296 qd.instance = dev->scsi_host_ptr->host_no; 3297 qd.bus = 0; 3298 qd.id = CONTAINER_TO_ID(qd.cnum); 3299 qd.lun = CONTAINER_TO_LUN(qd.cnum); 3300 } 3301 else return -EINVAL; 3302 3303 qd.valid = fsa_dev_ptr[qd.cnum].valid != 0; 3304 qd.locked = fsa_dev_ptr[qd.cnum].locked; 3305 qd.deleted = fsa_dev_ptr[qd.cnum].deleted; 3306 3307 if (fsa_dev_ptr[qd.cnum].devname[0] == '\0') 3308 qd.unmapped = 1; 3309 else 3310 qd.unmapped = 0; 3311 3312 strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname, 3313 min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1)); 3314 3315 if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk))) 3316 return -EFAULT; 3317 return 0; 3318 } 3319 3320 static int force_delete_disk(struct aac_dev *dev, void __user *arg) 3321 { 3322 struct aac_delete_disk dd; 3323 struct fsa_dev_info *fsa_dev_ptr; 3324 3325 fsa_dev_ptr = dev->fsa_dev; 3326 if (!fsa_dev_ptr) 3327 return -EBUSY; 3328 3329 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3330 return -EFAULT; 3331 3332 if (dd.cnum >= dev->maximum_num_containers) 3333 return -EINVAL; 3334 /* 3335 * Mark this container as being deleted. 3336 */ 3337 fsa_dev_ptr[dd.cnum].deleted = 1; 3338 /* 3339 * Mark the container as no longer valid 3340 */ 3341 fsa_dev_ptr[dd.cnum].valid = 0; 3342 return 0; 3343 } 3344 3345 static int delete_disk(struct aac_dev *dev, void __user *arg) 3346 { 3347 struct aac_delete_disk dd; 3348 struct fsa_dev_info *fsa_dev_ptr; 3349 3350 fsa_dev_ptr = dev->fsa_dev; 3351 if (!fsa_dev_ptr) 3352 return -EBUSY; 3353 3354 if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk))) 3355 return -EFAULT; 3356 3357 if (dd.cnum >= dev->maximum_num_containers) 3358 return -EINVAL; 3359 /* 3360 * If the container is locked, it can not be deleted by the API. 3361 */ 3362 if (fsa_dev_ptr[dd.cnum].locked) 3363 return -EBUSY; 3364 else { 3365 /* 3366 * Mark the container as no longer being valid. 3367 */ 3368 fsa_dev_ptr[dd.cnum].valid = 0; 3369 fsa_dev_ptr[dd.cnum].devname[0] = '\0'; 3370 return 0; 3371 } 3372 } 3373 3374 int aac_dev_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg) 3375 { 3376 switch (cmd) { 3377 case FSACTL_QUERY_DISK: 3378 return query_disk(dev, arg); 3379 case FSACTL_DELETE_DISK: 3380 return delete_disk(dev, arg); 3381 case FSACTL_FORCE_DELETE_DISK: 3382 return force_delete_disk(dev, arg); 3383 case FSACTL_GET_CONTAINERS: 3384 return aac_get_containers(dev); 3385 default: 3386 return -ENOTTY; 3387 } 3388 } 3389 3390 /** 3391 * aac_srb_callback 3392 * @context: the context set in the fib - here it is scsi cmd 3393 * @fibptr: pointer to the fib 3394 * 3395 * Handles the completion of a scsi command to a non dasd device 3396 */ 3397 static void aac_srb_callback(void *context, struct fib * fibptr) 3398 { 3399 struct aac_srb_reply *srbreply; 3400 struct scsi_cmnd *scsicmd; 3401 3402 scsicmd = (struct scsi_cmnd *) context; 3403 3404 if (!aac_valid_context(scsicmd, fibptr)) 3405 return; 3406 3407 BUG_ON(fibptr == NULL); 3408 3409 srbreply = (struct aac_srb_reply *) fib_data(fibptr); 3410 3411 scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */ 3412 3413 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3414 /* fast response */ 3415 srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS); 3416 srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD); 3417 } else { 3418 /* 3419 * Calculate resid for sg 3420 */ 3421 scsi_set_resid(scsicmd, scsi_bufflen(scsicmd) 3422 - le32_to_cpu(srbreply->data_xfer_length)); 3423 } 3424 3425 3426 scsi_dma_unmap(scsicmd); 3427 3428 /* expose physical device if expose_physicald flag is on */ 3429 if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01) 3430 && expose_physicals > 0) 3431 aac_expose_phy_device(scsicmd); 3432 3433 /* 3434 * First check the fib status 3435 */ 3436 3437 if (le32_to_cpu(srbreply->status) != ST_OK) { 3438 int len; 3439 3440 pr_warn("aac_srb_callback: srb failed, status = %d\n", 3441 le32_to_cpu(srbreply->status)); 3442 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3443 SCSI_SENSE_BUFFERSIZE); 3444 scsicmd->result = DID_ERROR << 16 3445 | COMMAND_COMPLETE << 8 3446 | SAM_STAT_CHECK_CONDITION; 3447 memcpy(scsicmd->sense_buffer, 3448 srbreply->sense_data, len); 3449 } 3450 3451 /* 3452 * Next check the srb status 3453 */ 3454 switch ((le32_to_cpu(srbreply->srb_status))&0x3f) { 3455 case SRB_STATUS_ERROR_RECOVERY: 3456 case SRB_STATUS_PENDING: 3457 case SRB_STATUS_SUCCESS: 3458 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3459 break; 3460 case SRB_STATUS_DATA_OVERRUN: 3461 switch (scsicmd->cmnd[0]) { 3462 case READ_6: 3463 case WRITE_6: 3464 case READ_10: 3465 case WRITE_10: 3466 case READ_12: 3467 case WRITE_12: 3468 case READ_16: 3469 case WRITE_16: 3470 if (le32_to_cpu(srbreply->data_xfer_length) 3471 < scsicmd->underflow) 3472 pr_warn("aacraid: SCSI CMD underflow\n"); 3473 else 3474 pr_warn("aacraid: SCSI CMD Data Overrun\n"); 3475 scsicmd->result = DID_ERROR << 16 3476 | COMMAND_COMPLETE << 8; 3477 break; 3478 case INQUIRY: 3479 scsicmd->result = DID_OK << 16 3480 | COMMAND_COMPLETE << 8; 3481 break; 3482 default: 3483 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3484 break; 3485 } 3486 break; 3487 case SRB_STATUS_ABORTED: 3488 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3489 break; 3490 case SRB_STATUS_ABORT_FAILED: 3491 /* 3492 * Not sure about this one - but assuming the 3493 * hba was trying to abort for some reason 3494 */ 3495 scsicmd->result = DID_ERROR << 16 | ABORT << 8; 3496 break; 3497 case SRB_STATUS_PARITY_ERROR: 3498 scsicmd->result = DID_PARITY << 16 3499 | MSG_PARITY_ERROR << 8; 3500 break; 3501 case SRB_STATUS_NO_DEVICE: 3502 case SRB_STATUS_INVALID_PATH_ID: 3503 case SRB_STATUS_INVALID_TARGET_ID: 3504 case SRB_STATUS_INVALID_LUN: 3505 case SRB_STATUS_SELECTION_TIMEOUT: 3506 scsicmd->result = DID_NO_CONNECT << 16 3507 | COMMAND_COMPLETE << 8; 3508 break; 3509 3510 case SRB_STATUS_COMMAND_TIMEOUT: 3511 case SRB_STATUS_TIMEOUT: 3512 scsicmd->result = DID_TIME_OUT << 16 3513 | COMMAND_COMPLETE << 8; 3514 break; 3515 3516 case SRB_STATUS_BUSY: 3517 scsicmd->result = DID_BUS_BUSY << 16 3518 | COMMAND_COMPLETE << 8; 3519 break; 3520 3521 case SRB_STATUS_BUS_RESET: 3522 scsicmd->result = DID_RESET << 16 3523 | COMMAND_COMPLETE << 8; 3524 break; 3525 3526 case SRB_STATUS_MESSAGE_REJECTED: 3527 scsicmd->result = DID_ERROR << 16 3528 | MESSAGE_REJECT << 8; 3529 break; 3530 case SRB_STATUS_REQUEST_FLUSHED: 3531 case SRB_STATUS_ERROR: 3532 case SRB_STATUS_INVALID_REQUEST: 3533 case SRB_STATUS_REQUEST_SENSE_FAILED: 3534 case SRB_STATUS_NO_HBA: 3535 case SRB_STATUS_UNEXPECTED_BUS_FREE: 3536 case SRB_STATUS_PHASE_SEQUENCE_FAILURE: 3537 case SRB_STATUS_BAD_SRB_BLOCK_LENGTH: 3538 case SRB_STATUS_DELAYED_RETRY: 3539 case SRB_STATUS_BAD_FUNCTION: 3540 case SRB_STATUS_NOT_STARTED: 3541 case SRB_STATUS_NOT_IN_USE: 3542 case SRB_STATUS_FORCE_ABORT: 3543 case SRB_STATUS_DOMAIN_VALIDATION_FAIL: 3544 default: 3545 #ifdef AAC_DETAILED_STATUS_INFO 3546 pr_info("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x -scsi status 0x%x\n", 3547 le32_to_cpu(srbreply->srb_status) & 0x3F, 3548 aac_get_status_string( 3549 le32_to_cpu(srbreply->srb_status) & 0x3F), 3550 scsicmd->cmnd[0], 3551 le32_to_cpu(srbreply->scsi_status)); 3552 #endif 3553 /* 3554 * When the CC bit is SET by the host in ATA pass thru CDB, 3555 * driver is supposed to return DID_OK 3556 * 3557 * When the CC bit is RESET by the host, driver should 3558 * return DID_ERROR 3559 */ 3560 if ((scsicmd->cmnd[0] == ATA_12) 3561 || (scsicmd->cmnd[0] == ATA_16)) { 3562 3563 if (scsicmd->cmnd[2] & (0x01 << 5)) { 3564 scsicmd->result = DID_OK << 16 3565 | COMMAND_COMPLETE << 8; 3566 break; 3567 } else { 3568 scsicmd->result = DID_ERROR << 16 3569 | COMMAND_COMPLETE << 8; 3570 break; 3571 } 3572 } else { 3573 scsicmd->result = DID_ERROR << 16 3574 | COMMAND_COMPLETE << 8; 3575 break; 3576 } 3577 } 3578 if (le32_to_cpu(srbreply->scsi_status) 3579 == SAM_STAT_CHECK_CONDITION) { 3580 int len; 3581 3582 scsicmd->result |= SAM_STAT_CHECK_CONDITION; 3583 len = min_t(u32, le32_to_cpu(srbreply->sense_data_size), 3584 SCSI_SENSE_BUFFERSIZE); 3585 #ifdef AAC_DETAILED_STATUS_INFO 3586 pr_warn("aac_srb_callback: check condition, status = %d len=%d\n", 3587 le32_to_cpu(srbreply->status), len); 3588 #endif 3589 memcpy(scsicmd->sense_buffer, 3590 srbreply->sense_data, len); 3591 } 3592 3593 /* 3594 * OR in the scsi status (already shifted up a bit) 3595 */ 3596 scsicmd->result |= le32_to_cpu(srbreply->scsi_status); 3597 3598 aac_fib_complete(fibptr); 3599 scsicmd->scsi_done(scsicmd); 3600 } 3601 3602 static void hba_resp_task_complete(struct aac_dev *dev, 3603 struct scsi_cmnd *scsicmd, 3604 struct aac_hba_resp *err) { 3605 3606 scsicmd->result = err->status; 3607 /* set residual count */ 3608 scsi_set_resid(scsicmd, le32_to_cpu(err->residual_count)); 3609 3610 switch (err->status) { 3611 case SAM_STAT_GOOD: 3612 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3613 break; 3614 case SAM_STAT_CHECK_CONDITION: 3615 { 3616 int len; 3617 3618 len = min_t(u8, err->sense_response_data_len, 3619 SCSI_SENSE_BUFFERSIZE); 3620 if (len) 3621 memcpy(scsicmd->sense_buffer, 3622 err->sense_response_buf, len); 3623 scsicmd->result |= DID_OK << 16 | COMMAND_COMPLETE << 8; 3624 break; 3625 } 3626 case SAM_STAT_BUSY: 3627 scsicmd->result |= DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8; 3628 break; 3629 case SAM_STAT_TASK_ABORTED: 3630 scsicmd->result |= DID_ABORT << 16 | ABORT << 8; 3631 break; 3632 case SAM_STAT_RESERVATION_CONFLICT: 3633 case SAM_STAT_TASK_SET_FULL: 3634 default: 3635 scsicmd->result |= DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3636 break; 3637 } 3638 } 3639 3640 static void hba_resp_task_failure(struct aac_dev *dev, 3641 struct scsi_cmnd *scsicmd, 3642 struct aac_hba_resp *err) 3643 { 3644 switch (err->status) { 3645 case HBA_RESP_STAT_HBAMODE_DISABLED: 3646 { 3647 u32 bus, cid; 3648 3649 bus = aac_logical_to_phys(scmd_channel(scsicmd)); 3650 cid = scmd_id(scsicmd); 3651 if (dev->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 3652 dev->hba_map[bus][cid].devtype = AAC_DEVTYPE_ARC_RAW; 3653 dev->hba_map[bus][cid].rmw_nexus = 0xffffffff; 3654 } 3655 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3656 break; 3657 } 3658 case HBA_RESP_STAT_IO_ERROR: 3659 case HBA_RESP_STAT_NO_PATH_TO_DEVICE: 3660 scsicmd->result = DID_OK << 16 | 3661 COMMAND_COMPLETE << 8 | SAM_STAT_BUSY; 3662 break; 3663 case HBA_RESP_STAT_IO_ABORTED: 3664 scsicmd->result = DID_ABORT << 16 | ABORT << 8; 3665 break; 3666 case HBA_RESP_STAT_INVALID_DEVICE: 3667 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3668 break; 3669 case HBA_RESP_STAT_UNDERRUN: 3670 /* UNDERRUN is OK */ 3671 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3672 break; 3673 case HBA_RESP_STAT_OVERRUN: 3674 default: 3675 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3676 break; 3677 } 3678 } 3679 3680 /** 3681 * aac_hba_callback 3682 * @context: the context set in the fib - here it is scsi cmd 3683 * @fibptr: pointer to the fib 3684 * 3685 * Handles the completion of a native HBA scsi command 3686 */ 3687 void aac_hba_callback(void *context, struct fib *fibptr) 3688 { 3689 struct aac_dev *dev; 3690 struct scsi_cmnd *scsicmd; 3691 3692 struct aac_hba_resp *err = 3693 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 3694 3695 scsicmd = (struct scsi_cmnd *) context; 3696 3697 if (!aac_valid_context(scsicmd, fibptr)) 3698 return; 3699 3700 WARN_ON(fibptr == NULL); 3701 dev = fibptr->dev; 3702 3703 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF)) 3704 scsi_dma_unmap(scsicmd); 3705 3706 if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) { 3707 /* fast response */ 3708 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3709 goto out; 3710 } 3711 3712 switch (err->service_response) { 3713 case HBA_RESP_SVCRES_TASK_COMPLETE: 3714 hba_resp_task_complete(dev, scsicmd, err); 3715 break; 3716 case HBA_RESP_SVCRES_FAILURE: 3717 hba_resp_task_failure(dev, scsicmd, err); 3718 break; 3719 case HBA_RESP_SVCRES_TMF_REJECTED: 3720 scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8; 3721 break; 3722 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 3723 scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8; 3724 break; 3725 case HBA_RESP_SVCRES_TMF_COMPLETE: 3726 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 3727 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8; 3728 break; 3729 default: 3730 scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8; 3731 break; 3732 } 3733 3734 out: 3735 aac_fib_complete(fibptr); 3736 3737 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) 3738 scsicmd->SCp.sent_command = 1; 3739 else 3740 scsicmd->scsi_done(scsicmd); 3741 } 3742 3743 /** 3744 * aac_send_srb_fib 3745 * @scsicmd: the scsi command block 3746 * 3747 * This routine will form a FIB and fill in the aac_srb from the 3748 * scsicmd passed in. 3749 */ 3750 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd) 3751 { 3752 struct fib* cmd_fibcontext; 3753 struct aac_dev* dev; 3754 int status; 3755 3756 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 3757 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3758 scsicmd->device->lun > 7) { 3759 scsicmd->result = DID_NO_CONNECT << 16; 3760 scsicmd->scsi_done(scsicmd); 3761 return 0; 3762 } 3763 3764 /* 3765 * Allocate and initialize a Fib then setup a BlockWrite command 3766 */ 3767 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3768 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3769 status = aac_adapter_scsi(cmd_fibcontext, scsicmd); 3770 3771 /* 3772 * Check that the command queued to the controller 3773 */ 3774 if (status == -EINPROGRESS) 3775 return 0; 3776 3777 printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status); 3778 aac_fib_complete(cmd_fibcontext); 3779 aac_fib_free(cmd_fibcontext); 3780 3781 return -1; 3782 } 3783 3784 /** 3785 * aac_send_hba_fib 3786 * @scsicmd: the scsi command block 3787 * 3788 * This routine will form a FIB and fill in the aac_hba_cmd_req from the 3789 * scsicmd passed in. 3790 */ 3791 static int aac_send_hba_fib(struct scsi_cmnd *scsicmd) 3792 { 3793 struct fib *cmd_fibcontext; 3794 struct aac_dev *dev; 3795 int status; 3796 3797 dev = shost_priv(scsicmd->device->host); 3798 if (scmd_id(scsicmd) >= dev->maximum_num_physicals || 3799 scsicmd->device->lun > AAC_MAX_LUN - 1) { 3800 scsicmd->result = DID_NO_CONNECT << 16; 3801 scsicmd->scsi_done(scsicmd); 3802 return 0; 3803 } 3804 3805 /* 3806 * Allocate and initialize a Fib then setup a BlockWrite command 3807 */ 3808 cmd_fibcontext = aac_fib_alloc_tag(dev, scsicmd); 3809 if (!cmd_fibcontext) 3810 return -1; 3811 3812 scsicmd->SCp.phase = AAC_OWNER_FIRMWARE; 3813 status = aac_adapter_hba(cmd_fibcontext, scsicmd); 3814 3815 /* 3816 * Check that the command queued to the controller 3817 */ 3818 if (status == -EINPROGRESS) 3819 return 0; 3820 3821 pr_warn("aac_hba_cmd_req: aac_fib_send failed with status: %d\n", 3822 status); 3823 aac_fib_complete(cmd_fibcontext); 3824 aac_fib_free(cmd_fibcontext); 3825 3826 return -1; 3827 } 3828 3829 3830 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg) 3831 { 3832 unsigned long byte_count = 0; 3833 int nseg; 3834 struct scatterlist *sg; 3835 int i; 3836 3837 // Get rid of old data 3838 psg->count = 0; 3839 psg->sg[0].addr = 0; 3840 psg->sg[0].count = 0; 3841 3842 nseg = scsi_dma_map(scsicmd); 3843 if (nseg <= 0) 3844 return nseg; 3845 3846 psg->count = cpu_to_le32(nseg); 3847 3848 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3849 psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg)); 3850 psg->sg[i].count = cpu_to_le32(sg_dma_len(sg)); 3851 byte_count += sg_dma_len(sg); 3852 } 3853 /* hba wants the size to be exact */ 3854 if (byte_count > scsi_bufflen(scsicmd)) { 3855 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3856 (byte_count - scsi_bufflen(scsicmd)); 3857 psg->sg[i-1].count = cpu_to_le32(temp); 3858 byte_count = scsi_bufflen(scsicmd); 3859 } 3860 /* Check for command underflow */ 3861 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3862 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3863 byte_count, scsicmd->underflow); 3864 } 3865 3866 return byte_count; 3867 } 3868 3869 3870 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg) 3871 { 3872 unsigned long byte_count = 0; 3873 u64 addr; 3874 int nseg; 3875 struct scatterlist *sg; 3876 int i; 3877 3878 // Get rid of old data 3879 psg->count = 0; 3880 psg->sg[0].addr[0] = 0; 3881 psg->sg[0].addr[1] = 0; 3882 psg->sg[0].count = 0; 3883 3884 nseg = scsi_dma_map(scsicmd); 3885 if (nseg <= 0) 3886 return nseg; 3887 3888 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3889 int count = sg_dma_len(sg); 3890 addr = sg_dma_address(sg); 3891 psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff); 3892 psg->sg[i].addr[1] = cpu_to_le32(addr>>32); 3893 psg->sg[i].count = cpu_to_le32(count); 3894 byte_count += count; 3895 } 3896 psg->count = cpu_to_le32(nseg); 3897 /* hba wants the size to be exact */ 3898 if (byte_count > scsi_bufflen(scsicmd)) { 3899 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3900 (byte_count - scsi_bufflen(scsicmd)); 3901 psg->sg[i-1].count = cpu_to_le32(temp); 3902 byte_count = scsi_bufflen(scsicmd); 3903 } 3904 /* Check for command underflow */ 3905 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3906 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3907 byte_count, scsicmd->underflow); 3908 } 3909 3910 return byte_count; 3911 } 3912 3913 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg) 3914 { 3915 unsigned long byte_count = 0; 3916 int nseg; 3917 struct scatterlist *sg; 3918 int i; 3919 3920 // Get rid of old data 3921 psg->count = 0; 3922 psg->sg[0].next = 0; 3923 psg->sg[0].prev = 0; 3924 psg->sg[0].addr[0] = 0; 3925 psg->sg[0].addr[1] = 0; 3926 psg->sg[0].count = 0; 3927 psg->sg[0].flags = 0; 3928 3929 nseg = scsi_dma_map(scsicmd); 3930 if (nseg <= 0) 3931 return nseg; 3932 3933 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3934 int count = sg_dma_len(sg); 3935 u64 addr = sg_dma_address(sg); 3936 psg->sg[i].next = 0; 3937 psg->sg[i].prev = 0; 3938 psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32)); 3939 psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 3940 psg->sg[i].count = cpu_to_le32(count); 3941 psg->sg[i].flags = 0; 3942 byte_count += count; 3943 } 3944 psg->count = cpu_to_le32(nseg); 3945 /* hba wants the size to be exact */ 3946 if (byte_count > scsi_bufflen(scsicmd)) { 3947 u32 temp = le32_to_cpu(psg->sg[i-1].count) - 3948 (byte_count - scsi_bufflen(scsicmd)); 3949 psg->sg[i-1].count = cpu_to_le32(temp); 3950 byte_count = scsi_bufflen(scsicmd); 3951 } 3952 /* Check for command underflow */ 3953 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 3954 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 3955 byte_count, scsicmd->underflow); 3956 } 3957 3958 return byte_count; 3959 } 3960 3961 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd, 3962 struct aac_raw_io2 *rio2, int sg_max) 3963 { 3964 unsigned long byte_count = 0; 3965 int nseg; 3966 struct scatterlist *sg; 3967 int i, conformable = 0; 3968 u32 min_size = PAGE_SIZE, cur_size; 3969 3970 nseg = scsi_dma_map(scsicmd); 3971 if (nseg <= 0) 3972 return nseg; 3973 3974 scsi_for_each_sg(scsicmd, sg, nseg, i) { 3975 int count = sg_dma_len(sg); 3976 u64 addr = sg_dma_address(sg); 3977 3978 BUG_ON(i >= sg_max); 3979 rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32)); 3980 rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff)); 3981 cur_size = cpu_to_le32(count); 3982 rio2->sge[i].length = cur_size; 3983 rio2->sge[i].flags = 0; 3984 if (i == 0) { 3985 conformable = 1; 3986 rio2->sgeFirstSize = cur_size; 3987 } else if (i == 1) { 3988 rio2->sgeNominalSize = cur_size; 3989 min_size = cur_size; 3990 } else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) { 3991 conformable = 0; 3992 if (cur_size < min_size) 3993 min_size = cur_size; 3994 } 3995 byte_count += count; 3996 } 3997 3998 /* hba wants the size to be exact */ 3999 if (byte_count > scsi_bufflen(scsicmd)) { 4000 u32 temp = le32_to_cpu(rio2->sge[i-1].length) - 4001 (byte_count - scsi_bufflen(scsicmd)); 4002 rio2->sge[i-1].length = cpu_to_le32(temp); 4003 byte_count = scsi_bufflen(scsicmd); 4004 } 4005 4006 rio2->sgeCnt = cpu_to_le32(nseg); 4007 rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212); 4008 /* not conformable: evaluate required sg elements */ 4009 if (!conformable) { 4010 int j, nseg_new = nseg, err_found; 4011 for (i = min_size / PAGE_SIZE; i >= 1; --i) { 4012 err_found = 0; 4013 nseg_new = 2; 4014 for (j = 1; j < nseg - 1; ++j) { 4015 if (rio2->sge[j].length % (i*PAGE_SIZE)) { 4016 err_found = 1; 4017 break; 4018 } 4019 nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE)); 4020 } 4021 if (!err_found) 4022 break; 4023 } 4024 if (i > 0 && nseg_new <= sg_max) { 4025 int ret = aac_convert_sgraw2(rio2, i, nseg, nseg_new); 4026 4027 if (ret < 0) 4028 return ret; 4029 } 4030 } else 4031 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4032 4033 /* Check for command underflow */ 4034 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4035 printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n", 4036 byte_count, scsicmd->underflow); 4037 } 4038 4039 return byte_count; 4040 } 4041 4042 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new) 4043 { 4044 struct sge_ieee1212 *sge; 4045 int i, j, pos; 4046 u32 addr_low; 4047 4048 if (aac_convert_sgl == 0) 4049 return 0; 4050 4051 sge = kmalloc_array(nseg_new, sizeof(struct sge_ieee1212), GFP_ATOMIC); 4052 if (sge == NULL) 4053 return -ENOMEM; 4054 4055 for (i = 1, pos = 1; i < nseg-1; ++i) { 4056 for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) { 4057 addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE; 4058 sge[pos].addrLow = addr_low; 4059 sge[pos].addrHigh = rio2->sge[i].addrHigh; 4060 if (addr_low < rio2->sge[i].addrLow) 4061 sge[pos].addrHigh++; 4062 sge[pos].length = pages * PAGE_SIZE; 4063 sge[pos].flags = 0; 4064 pos++; 4065 } 4066 } 4067 sge[pos] = rio2->sge[nseg-1]; 4068 memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212)); 4069 4070 kfree(sge); 4071 rio2->sgeCnt = cpu_to_le32(nseg_new); 4072 rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT); 4073 rio2->sgeNominalSize = pages * PAGE_SIZE; 4074 return 0; 4075 } 4076 4077 static long aac_build_sghba(struct scsi_cmnd *scsicmd, 4078 struct aac_hba_cmd_req *hbacmd, 4079 int sg_max, 4080 u64 sg_address) 4081 { 4082 unsigned long byte_count = 0; 4083 int nseg; 4084 struct scatterlist *sg; 4085 int i; 4086 u32 cur_size; 4087 struct aac_hba_sgl *sge; 4088 4089 nseg = scsi_dma_map(scsicmd); 4090 if (nseg <= 0) { 4091 byte_count = nseg; 4092 goto out; 4093 } 4094 4095 if (nseg > HBA_MAX_SG_EMBEDDED) 4096 sge = &hbacmd->sge[2]; 4097 else 4098 sge = &hbacmd->sge[0]; 4099 4100 scsi_for_each_sg(scsicmd, sg, nseg, i) { 4101 int count = sg_dma_len(sg); 4102 u64 addr = sg_dma_address(sg); 4103 4104 WARN_ON(i >= sg_max); 4105 sge->addr_hi = cpu_to_le32((u32)(addr>>32)); 4106 sge->addr_lo = cpu_to_le32((u32)(addr & 0xffffffff)); 4107 cur_size = cpu_to_le32(count); 4108 sge->len = cur_size; 4109 sge->flags = 0; 4110 byte_count += count; 4111 sge++; 4112 } 4113 4114 sge--; 4115 /* hba wants the size to be exact */ 4116 if (byte_count > scsi_bufflen(scsicmd)) { 4117 u32 temp; 4118 4119 temp = le32_to_cpu(sge->len) - byte_count 4120 - scsi_bufflen(scsicmd); 4121 sge->len = cpu_to_le32(temp); 4122 byte_count = scsi_bufflen(scsicmd); 4123 } 4124 4125 if (nseg <= HBA_MAX_SG_EMBEDDED) { 4126 hbacmd->emb_data_desc_count = cpu_to_le32(nseg); 4127 sge->flags = cpu_to_le32(0x40000000); 4128 } else { 4129 /* not embedded */ 4130 hbacmd->sge[0].flags = cpu_to_le32(0x80000000); 4131 hbacmd->emb_data_desc_count = (u8)cpu_to_le32(1); 4132 hbacmd->sge[0].addr_hi = (u32)cpu_to_le32(sg_address >> 32); 4133 hbacmd->sge[0].addr_lo = 4134 cpu_to_le32((u32)(sg_address & 0xffffffff)); 4135 } 4136 4137 /* Check for command underflow */ 4138 if (scsicmd->underflow && (byte_count < scsicmd->underflow)) { 4139 pr_warn("aacraid: cmd len %08lX cmd underflow %08X\n", 4140 byte_count, scsicmd->underflow); 4141 } 4142 out: 4143 return byte_count; 4144 } 4145 4146 #ifdef AAC_DETAILED_STATUS_INFO 4147 4148 struct aac_srb_status_info { 4149 u32 status; 4150 char *str; 4151 }; 4152 4153 4154 static struct aac_srb_status_info srb_status_info[] = { 4155 { SRB_STATUS_PENDING, "Pending Status"}, 4156 { SRB_STATUS_SUCCESS, "Success"}, 4157 { SRB_STATUS_ABORTED, "Aborted Command"}, 4158 { SRB_STATUS_ABORT_FAILED, "Abort Failed"}, 4159 { SRB_STATUS_ERROR, "Error Event"}, 4160 { SRB_STATUS_BUSY, "Device Busy"}, 4161 { SRB_STATUS_INVALID_REQUEST, "Invalid Request"}, 4162 { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"}, 4163 { SRB_STATUS_NO_DEVICE, "No Device"}, 4164 { SRB_STATUS_TIMEOUT, "Timeout"}, 4165 { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"}, 4166 { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"}, 4167 { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"}, 4168 { SRB_STATUS_BUS_RESET, "Bus Reset"}, 4169 { SRB_STATUS_PARITY_ERROR, "Parity Error"}, 4170 { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"}, 4171 { SRB_STATUS_NO_HBA, "No HBA"}, 4172 { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"}, 4173 { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"}, 4174 { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"}, 4175 { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"}, 4176 { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"}, 4177 { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"}, 4178 { SRB_STATUS_INVALID_LUN, "Invalid LUN"}, 4179 { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"}, 4180 { SRB_STATUS_BAD_FUNCTION, "Bad Function"}, 4181 { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"}, 4182 { SRB_STATUS_NOT_STARTED, "Not Started"}, 4183 { SRB_STATUS_NOT_IN_USE, "Not In Use"}, 4184 { SRB_STATUS_FORCE_ABORT, "Force Abort"}, 4185 { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"}, 4186 { 0xff, "Unknown Error"} 4187 }; 4188 4189 char *aac_get_status_string(u32 status) 4190 { 4191 int i; 4192 4193 for (i = 0; i < ARRAY_SIZE(srb_status_info); i++) 4194 if (srb_status_info[i].status == status) 4195 return srb_status_info[i].str; 4196 4197 return "Bad Status Code"; 4198 } 4199 4200 #endif 4201