xref: /linux/drivers/scsi/aacraid/aachba.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/uaccess.h>
36 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
37 #include <linux/module.h>
38 
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 
44 #include "aacraid.h"
45 
46 /* values for inqd_pdt: Peripheral device type in plain English */
47 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
48 #define	INQD_PDT_PROC	0x03	/* Processor device */
49 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
50 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
51 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
52 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
53 
54 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
55 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
56 
57 /*
58  *	Sense codes
59  */
60 
61 #define SENCODE_NO_SENSE			0x00
62 #define SENCODE_END_OF_DATA			0x00
63 #define SENCODE_BECOMING_READY			0x04
64 #define SENCODE_INIT_CMD_REQUIRED		0x04
65 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
66 #define SENCODE_INVALID_COMMAND			0x20
67 #define SENCODE_LBA_OUT_OF_RANGE		0x21
68 #define SENCODE_INVALID_CDB_FIELD		0x24
69 #define SENCODE_LUN_NOT_SUPPORTED		0x25
70 #define SENCODE_INVALID_PARAM_FIELD		0x26
71 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
72 #define SENCODE_PARAM_VALUE_INVALID		0x26
73 #define SENCODE_RESET_OCCURRED			0x29
74 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
75 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
76 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
77 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
78 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
79 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
80 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
81 #define SENCODE_OVERLAPPED_COMMAND		0x4E
82 
83 /*
84  *	Additional sense codes
85  */
86 
87 #define ASENCODE_NO_SENSE			0x00
88 #define ASENCODE_END_OF_DATA			0x05
89 #define ASENCODE_BECOMING_READY			0x01
90 #define ASENCODE_INIT_CMD_REQUIRED		0x02
91 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
92 #define ASENCODE_INVALID_COMMAND		0x00
93 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
94 #define ASENCODE_INVALID_CDB_FIELD		0x00
95 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
96 #define ASENCODE_INVALID_PARAM_FIELD		0x00
97 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
98 #define ASENCODE_PARAM_VALUE_INVALID		0x02
99 #define ASENCODE_RESET_OCCURRED			0x00
100 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
101 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
102 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
103 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
104 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
105 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
106 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
107 #define ASENCODE_OVERLAPPED_COMMAND		0x00
108 
109 #define BYTE0(x) (unsigned char)(x)
110 #define BYTE1(x) (unsigned char)((x) >> 8)
111 #define BYTE2(x) (unsigned char)((x) >> 16)
112 #define BYTE3(x) (unsigned char)((x) >> 24)
113 
114 /*------------------------------------------------------------------------------
115  *              S T R U C T S / T Y P E D E F S
116  *----------------------------------------------------------------------------*/
117 /* SCSI inquiry data */
118 struct inquiry_data {
119 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
120 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
121 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
122 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
123 	u8 inqd_len;	/* Additional length (n-4) */
124 	u8 inqd_pad1[2];/* Reserved - must be zero */
125 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
126 	u8 inqd_vid[8];	/* Vendor ID */
127 	u8 inqd_pid[16];/* Product ID */
128 	u8 inqd_prl[4];	/* Product Revision Level */
129 };
130 
131 /*
132  *              M O D U L E   G L O B A L S
133  */
134 
135 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *sgmap);
136 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg);
137 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg);
138 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
139 				struct aac_raw_io2 *rio2, int sg_max);
140 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2,
141 				int pages, int nseg, int nseg_new);
142 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
143 #ifdef AAC_DETAILED_STATUS_INFO
144 static char *aac_get_status_string(u32 status);
145 #endif
146 
147 /*
148  *	Non dasd selection is handled entirely in aachba now
149  */
150 
151 static int nondasd = -1;
152 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
153 static int dacmode = -1;
154 int aac_msi;
155 int aac_commit = -1;
156 int startup_timeout = 180;
157 int aif_timeout = 120;
158 int aac_sync_mode;  /* Only Sync. transfer - disabled */
159 int aac_convert_sgl = 1;	/* convert non-conformable s/g list - enabled */
160 
161 module_param(aac_sync_mode, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(aac_sync_mode, "Force sync. transfer mode"
163 	" 0=off, 1=on");
164 module_param(aac_convert_sgl, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(aac_convert_sgl, "Convert non-conformable s/g list"
166 	" 0=off, 1=on");
167 module_param(nondasd, int, S_IRUGO|S_IWUSR);
168 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
169 	" 0=off, 1=on");
170 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
171 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
172 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
173 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
174 	"\tbit 2 - Disable only if Battery is protecting Cache");
175 module_param(dacmode, int, S_IRUGO|S_IWUSR);
176 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
177 	" 0=off, 1=on");
178 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
179 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
180 	" adapter for foreign arrays.\n"
181 	"This is typically needed in systems that do not have a BIOS."
182 	" 0=off, 1=on");
183 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
184 MODULE_PARM_DESC(msi, "IRQ handling."
185 	" 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
186 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
187 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
188 	" adapter to have it's kernel up and\n"
189 	"running. This is typically adjusted for large systems that do not"
190 	" have a BIOS.");
191 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
192 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
193 	" applications to pick up AIFs before\n"
194 	"deregistering them. This is typically adjusted for heavily burdened"
195 	" systems.");
196 
197 int numacb = -1;
198 module_param(numacb, int, S_IRUGO|S_IWUSR);
199 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
200 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
201 	" to use suggestion from Firmware.");
202 
203 int acbsize = -1;
204 module_param(acbsize, int, S_IRUGO|S_IWUSR);
205 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
206 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
207 	" suggestion from Firmware.");
208 
209 int update_interval = 30 * 60;
210 module_param(update_interval, int, S_IRUGO|S_IWUSR);
211 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
212 	" updates issued to adapter.");
213 
214 int check_interval = 24 * 60 * 60;
215 module_param(check_interval, int, S_IRUGO|S_IWUSR);
216 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
217 	" checks.");
218 
219 int aac_check_reset = 1;
220 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
221 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
222 	" adapter. a value of -1 forces the reset to adapters programmed to"
223 	" ignore it.");
224 
225 int expose_physicals = -1;
226 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
227 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
228 	" -1=protect 0=off, 1=on");
229 
230 int aac_reset_devices;
231 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
232 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
233 
234 int aac_wwn = 1;
235 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
236 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
237 	"\t0 - Disable\n"
238 	"\t1 - Array Meta Data Signature (default)\n"
239 	"\t2 - Adapter Serial Number");
240 
241 
242 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
243 		struct fib *fibptr) {
244 	struct scsi_device *device;
245 
246 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
247 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
248 		aac_fib_complete(fibptr);
249 		aac_fib_free(fibptr);
250 		return 0;
251 	}
252 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
253 	device = scsicmd->device;
254 	if (unlikely(!device || !scsi_device_online(device))) {
255 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
256 		aac_fib_complete(fibptr);
257 		aac_fib_free(fibptr);
258 		return 0;
259 	}
260 	return 1;
261 }
262 
263 /**
264  *	aac_get_config_status	-	check the adapter configuration
265  *	@common: adapter to query
266  *
267  *	Query config status, and commit the configuration if needed.
268  */
269 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
270 {
271 	int status = 0;
272 	struct fib * fibptr;
273 
274 	if (!(fibptr = aac_fib_alloc(dev)))
275 		return -ENOMEM;
276 
277 	aac_fib_init(fibptr);
278 	{
279 		struct aac_get_config_status *dinfo;
280 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
281 
282 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
283 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
284 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
285 	}
286 
287 	status = aac_fib_send(ContainerCommand,
288 			    fibptr,
289 			    sizeof (struct aac_get_config_status),
290 			    FsaNormal,
291 			    1, 1,
292 			    NULL, NULL);
293 	if (status < 0) {
294 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
295 	} else {
296 		struct aac_get_config_status_resp *reply
297 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
298 		dprintk((KERN_WARNING
299 		  "aac_get_config_status: response=%d status=%d action=%d\n",
300 		  le32_to_cpu(reply->response),
301 		  le32_to_cpu(reply->status),
302 		  le32_to_cpu(reply->data.action)));
303 		if ((le32_to_cpu(reply->response) != ST_OK) ||
304 		     (le32_to_cpu(reply->status) != CT_OK) ||
305 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
306 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
307 			status = -EINVAL;
308 		}
309 	}
310 	/* Do not set XferState to zero unless receives a response from F/W */
311 	if (status >= 0)
312 		aac_fib_complete(fibptr);
313 
314 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
315 	if (status >= 0) {
316 		if ((aac_commit == 1) || commit_flag) {
317 			struct aac_commit_config * dinfo;
318 			aac_fib_init(fibptr);
319 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
320 
321 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
322 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
323 
324 			status = aac_fib_send(ContainerCommand,
325 				    fibptr,
326 				    sizeof (struct aac_commit_config),
327 				    FsaNormal,
328 				    1, 1,
329 				    NULL, NULL);
330 			/* Do not set XferState to zero unless
331 			 * receives a response from F/W */
332 			if (status >= 0)
333 				aac_fib_complete(fibptr);
334 		} else if (aac_commit == 0) {
335 			printk(KERN_WARNING
336 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
337 		}
338 	}
339 	/* FIB should be freed only after getting the response from the F/W */
340 	if (status != -ERESTARTSYS)
341 		aac_fib_free(fibptr);
342 	return status;
343 }
344 
345 static void aac_expose_phy_device(struct scsi_cmnd *scsicmd)
346 {
347 	char inq_data;
348 	scsi_sg_copy_to_buffer(scsicmd,  &inq_data, sizeof(inq_data));
349 	if ((inq_data & 0x20) && (inq_data & 0x1f) == TYPE_DISK) {
350 		inq_data &= 0xdf;
351 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
352 	}
353 }
354 
355 /**
356  *	aac_get_containers	-	list containers
357  *	@common: adapter to probe
358  *
359  *	Make a list of all containers on this controller
360  */
361 int aac_get_containers(struct aac_dev *dev)
362 {
363 	struct fsa_dev_info *fsa_dev_ptr;
364 	u32 index;
365 	int status = 0;
366 	struct fib * fibptr;
367 	struct aac_get_container_count *dinfo;
368 	struct aac_get_container_count_resp *dresp;
369 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
370 
371 	if (!(fibptr = aac_fib_alloc(dev)))
372 		return -ENOMEM;
373 
374 	aac_fib_init(fibptr);
375 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
376 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
377 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
378 
379 	status = aac_fib_send(ContainerCommand,
380 		    fibptr,
381 		    sizeof (struct aac_get_container_count),
382 		    FsaNormal,
383 		    1, 1,
384 		    NULL, NULL);
385 	if (status >= 0) {
386 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
387 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
388 		aac_fib_complete(fibptr);
389 	}
390 	/* FIB should be freed only after getting the response from the F/W */
391 	if (status != -ERESTARTSYS)
392 		aac_fib_free(fibptr);
393 
394 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
395 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
396 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
397 			GFP_KERNEL);
398 	if (!fsa_dev_ptr)
399 		return -ENOMEM;
400 
401 	dev->fsa_dev = fsa_dev_ptr;
402 	dev->maximum_num_containers = maximum_num_containers;
403 
404 	for (index = 0; index < dev->maximum_num_containers; ) {
405 		fsa_dev_ptr[index].devname[0] = '\0';
406 
407 		status = aac_probe_container(dev, index);
408 
409 		if (status < 0) {
410 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
411 			break;
412 		}
413 
414 		/*
415 		 *	If there are no more containers, then stop asking.
416 		 */
417 		if (++index >= status)
418 			break;
419 	}
420 	return status;
421 }
422 
423 static void get_container_name_callback(void *context, struct fib * fibptr)
424 {
425 	struct aac_get_name_resp * get_name_reply;
426 	struct scsi_cmnd * scsicmd;
427 
428 	scsicmd = (struct scsi_cmnd *) context;
429 
430 	if (!aac_valid_context(scsicmd, fibptr))
431 		return;
432 
433 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
434 	BUG_ON(fibptr == NULL);
435 
436 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
437 	/* Failure is irrelevant, using default value instead */
438 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
439 	 && (get_name_reply->data[0] != '\0')) {
440 		char *sp = get_name_reply->data;
441 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
442 		while (*sp == ' ')
443 			++sp;
444 		if (*sp) {
445 			struct inquiry_data inq;
446 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
447 			int count = sizeof(d);
448 			char *dp = d;
449 			do {
450 				*dp++ = (*sp) ? *sp++ : ' ';
451 			} while (--count > 0);
452 
453 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
454 			memcpy(inq.inqd_pid, d, sizeof(d));
455 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
456 		}
457 	}
458 
459 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
460 
461 	aac_fib_complete(fibptr);
462 	aac_fib_free(fibptr);
463 	scsicmd->scsi_done(scsicmd);
464 }
465 
466 /**
467  *	aac_get_container_name	-	get container name, none blocking.
468  */
469 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
470 {
471 	int status;
472 	struct aac_get_name *dinfo;
473 	struct fib * cmd_fibcontext;
474 	struct aac_dev * dev;
475 
476 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
477 
478 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
479 		return -ENOMEM;
480 
481 	aac_fib_init(cmd_fibcontext);
482 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
483 
484 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
485 	dinfo->type = cpu_to_le32(CT_READ_NAME);
486 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
487 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
488 
489 	status = aac_fib_send(ContainerCommand,
490 		  cmd_fibcontext,
491 		  sizeof (struct aac_get_name),
492 		  FsaNormal,
493 		  0, 1,
494 		  (fib_callback)get_container_name_callback,
495 		  (void *) scsicmd);
496 
497 	/*
498 	 *	Check that the command queued to the controller
499 	 */
500 	if (status == -EINPROGRESS) {
501 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
502 		return 0;
503 	}
504 
505 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
506 	aac_fib_complete(cmd_fibcontext);
507 	aac_fib_free(cmd_fibcontext);
508 	return -1;
509 }
510 
511 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
512 {
513 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
514 
515 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
516 		return aac_scsi_cmd(scsicmd);
517 
518 	scsicmd->result = DID_NO_CONNECT << 16;
519 	scsicmd->scsi_done(scsicmd);
520 	return 0;
521 }
522 
523 static void _aac_probe_container2(void * context, struct fib * fibptr)
524 {
525 	struct fsa_dev_info *fsa_dev_ptr;
526 	int (*callback)(struct scsi_cmnd *);
527 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
528 
529 
530 	if (!aac_valid_context(scsicmd, fibptr))
531 		return;
532 
533 	scsicmd->SCp.Status = 0;
534 	fsa_dev_ptr = fibptr->dev->fsa_dev;
535 	if (fsa_dev_ptr) {
536 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
537 		fsa_dev_ptr += scmd_id(scsicmd);
538 
539 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
540 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
541 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
542 			fsa_dev_ptr->valid = 1;
543 			/* sense_key holds the current state of the spin-up */
544 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
545 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
546 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
547 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
548 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
549 			fsa_dev_ptr->size
550 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
551 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
552 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
553 		}
554 		if ((fsa_dev_ptr->valid & 1) == 0)
555 			fsa_dev_ptr->valid = 0;
556 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
557 	}
558 	aac_fib_complete(fibptr);
559 	aac_fib_free(fibptr);
560 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
561 	scsicmd->SCp.ptr = NULL;
562 	(*callback)(scsicmd);
563 	return;
564 }
565 
566 static void _aac_probe_container1(void * context, struct fib * fibptr)
567 {
568 	struct scsi_cmnd * scsicmd;
569 	struct aac_mount * dresp;
570 	struct aac_query_mount *dinfo;
571 	int status;
572 
573 	dresp = (struct aac_mount *) fib_data(fibptr);
574 	dresp->mnt[0].capacityhigh = 0;
575 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
576 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
577 		_aac_probe_container2(context, fibptr);
578 		return;
579 	}
580 	scsicmd = (struct scsi_cmnd *) context;
581 
582 	if (!aac_valid_context(scsicmd, fibptr))
583 		return;
584 
585 	aac_fib_init(fibptr);
586 
587 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
588 
589 	dinfo->command = cpu_to_le32(VM_NameServe64);
590 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
591 	dinfo->type = cpu_to_le32(FT_FILESYS);
592 
593 	status = aac_fib_send(ContainerCommand,
594 			  fibptr,
595 			  sizeof(struct aac_query_mount),
596 			  FsaNormal,
597 			  0, 1,
598 			  _aac_probe_container2,
599 			  (void *) scsicmd);
600 	/*
601 	 *	Check that the command queued to the controller
602 	 */
603 	if (status == -EINPROGRESS)
604 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
605 	else if (status < 0) {
606 		/* Inherit results from VM_NameServe, if any */
607 		dresp->status = cpu_to_le32(ST_OK);
608 		_aac_probe_container2(context, fibptr);
609 	}
610 }
611 
612 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
613 {
614 	struct fib * fibptr;
615 	int status = -ENOMEM;
616 
617 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
618 		struct aac_query_mount *dinfo;
619 
620 		aac_fib_init(fibptr);
621 
622 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
623 
624 		dinfo->command = cpu_to_le32(VM_NameServe);
625 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
626 		dinfo->type = cpu_to_le32(FT_FILESYS);
627 		scsicmd->SCp.ptr = (char *)callback;
628 
629 		status = aac_fib_send(ContainerCommand,
630 			  fibptr,
631 			  sizeof(struct aac_query_mount),
632 			  FsaNormal,
633 			  0, 1,
634 			  _aac_probe_container1,
635 			  (void *) scsicmd);
636 		/*
637 		 *	Check that the command queued to the controller
638 		 */
639 		if (status == -EINPROGRESS) {
640 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
641 			return 0;
642 		}
643 		if (status < 0) {
644 			scsicmd->SCp.ptr = NULL;
645 			aac_fib_complete(fibptr);
646 			aac_fib_free(fibptr);
647 		}
648 	}
649 	if (status < 0) {
650 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
651 		if (fsa_dev_ptr) {
652 			fsa_dev_ptr += scmd_id(scsicmd);
653 			if ((fsa_dev_ptr->valid & 1) == 0) {
654 				fsa_dev_ptr->valid = 0;
655 				return (*callback)(scsicmd);
656 			}
657 		}
658 	}
659 	return status;
660 }
661 
662 /**
663  *	aac_probe_container		-	query a logical volume
664  *	@dev: device to query
665  *	@cid: container identifier
666  *
667  *	Queries the controller about the given volume. The volume information
668  *	is updated in the struct fsa_dev_info structure rather than returned.
669  */
670 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
671 {
672 	scsicmd->device = NULL;
673 	return 0;
674 }
675 
676 int aac_probe_container(struct aac_dev *dev, int cid)
677 {
678 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
679 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
680 	int status;
681 
682 	if (!scsicmd || !scsidev) {
683 		kfree(scsicmd);
684 		kfree(scsidev);
685 		return -ENOMEM;
686 	}
687 	scsicmd->list.next = NULL;
688 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
689 
690 	scsicmd->device = scsidev;
691 	scsidev->sdev_state = 0;
692 	scsidev->id = cid;
693 	scsidev->host = dev->scsi_host_ptr;
694 
695 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
696 		while (scsicmd->device == scsidev)
697 			schedule();
698 	kfree(scsidev);
699 	status = scsicmd->SCp.Status;
700 	kfree(scsicmd);
701 	return status;
702 }
703 
704 /* Local Structure to set SCSI inquiry data strings */
705 struct scsi_inq {
706 	char vid[8];         /* Vendor ID */
707 	char pid[16];        /* Product ID */
708 	char prl[4];         /* Product Revision Level */
709 };
710 
711 /**
712  *	InqStrCopy	-	string merge
713  *	@a:	string to copy from
714  *	@b:	string to copy to
715  *
716  *	Copy a String from one location to another
717  *	without copying \0
718  */
719 
720 static void inqstrcpy(char *a, char *b)
721 {
722 
723 	while (*a != (char)0)
724 		*b++ = *a++;
725 }
726 
727 static char *container_types[] = {
728 	"None",
729 	"Volume",
730 	"Mirror",
731 	"Stripe",
732 	"RAID5",
733 	"SSRW",
734 	"SSRO",
735 	"Morph",
736 	"Legacy",
737 	"RAID4",
738 	"RAID10",
739 	"RAID00",
740 	"V-MIRRORS",
741 	"PSEUDO R4",
742 	"RAID50",
743 	"RAID5D",
744 	"RAID5D0",
745 	"RAID1E",
746 	"RAID6",
747 	"RAID60",
748 	"Unknown"
749 };
750 
751 char * get_container_type(unsigned tindex)
752 {
753 	if (tindex >= ARRAY_SIZE(container_types))
754 		tindex = ARRAY_SIZE(container_types) - 1;
755 	return container_types[tindex];
756 }
757 
758 /* Function: setinqstr
759  *
760  * Arguments: [1] pointer to void [1] int
761  *
762  * Purpose: Sets SCSI inquiry data strings for vendor, product
763  * and revision level. Allows strings to be set in platform dependent
764  * files instead of in OS dependent driver source.
765  */
766 
767 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
768 {
769 	struct scsi_inq *str;
770 
771 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
772 	memset(str, ' ', sizeof(*str));
773 
774 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
775 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
776 		int c;
777 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
778 			inqstrcpy("SMC", str->vid);
779 		else {
780 			c = sizeof(str->vid);
781 			while (*cp && *cp != ' ' && --c)
782 				++cp;
783 			c = *cp;
784 			*cp = '\0';
785 			inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
786 				   str->vid);
787 			*cp = c;
788 			while (*cp && *cp != ' ')
789 				++cp;
790 		}
791 		while (*cp == ' ')
792 			++cp;
793 		/* last six chars reserved for vol type */
794 		c = 0;
795 		if (strlen(cp) > sizeof(str->pid)) {
796 			c = cp[sizeof(str->pid)];
797 			cp[sizeof(str->pid)] = '\0';
798 		}
799 		inqstrcpy (cp, str->pid);
800 		if (c)
801 			cp[sizeof(str->pid)] = c;
802 	} else {
803 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
804 
805 		inqstrcpy (mp->vname, str->vid);
806 		/* last six chars reserved for vol type */
807 		inqstrcpy (mp->model, str->pid);
808 	}
809 
810 	if (tindex < ARRAY_SIZE(container_types)){
811 		char *findit = str->pid;
812 
813 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
814 		/* RAID is superfluous in the context of a RAID device */
815 		if (memcmp(findit-4, "RAID", 4) == 0)
816 			*(findit -= 4) = ' ';
817 		if (((findit - str->pid) + strlen(container_types[tindex]))
818 		 < (sizeof(str->pid) + sizeof(str->prl)))
819 			inqstrcpy (container_types[tindex], findit + 1);
820 	}
821 	inqstrcpy ("V1.0", str->prl);
822 }
823 
824 static void get_container_serial_callback(void *context, struct fib * fibptr)
825 {
826 	struct aac_get_serial_resp * get_serial_reply;
827 	struct scsi_cmnd * scsicmd;
828 
829 	BUG_ON(fibptr == NULL);
830 
831 	scsicmd = (struct scsi_cmnd *) context;
832 	if (!aac_valid_context(scsicmd, fibptr))
833 		return;
834 
835 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
836 	/* Failure is irrelevant, using default value instead */
837 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
838 		char sp[13];
839 		/* EVPD bit set */
840 		sp[0] = INQD_PDT_DA;
841 		sp[1] = scsicmd->cmnd[2];
842 		sp[2] = 0;
843 		sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
844 		  le32_to_cpu(get_serial_reply->uid));
845 		scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
846 	}
847 
848 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
849 
850 	aac_fib_complete(fibptr);
851 	aac_fib_free(fibptr);
852 	scsicmd->scsi_done(scsicmd);
853 }
854 
855 /**
856  *	aac_get_container_serial - get container serial, none blocking.
857  */
858 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
859 {
860 	int status;
861 	struct aac_get_serial *dinfo;
862 	struct fib * cmd_fibcontext;
863 	struct aac_dev * dev;
864 
865 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
866 
867 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
868 		return -ENOMEM;
869 
870 	aac_fib_init(cmd_fibcontext);
871 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
872 
873 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
874 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
875 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
876 
877 	status = aac_fib_send(ContainerCommand,
878 		  cmd_fibcontext,
879 		  sizeof (struct aac_get_serial),
880 		  FsaNormal,
881 		  0, 1,
882 		  (fib_callback) get_container_serial_callback,
883 		  (void *) scsicmd);
884 
885 	/*
886 	 *	Check that the command queued to the controller
887 	 */
888 	if (status == -EINPROGRESS) {
889 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
890 		return 0;
891 	}
892 
893 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
894 	aac_fib_complete(cmd_fibcontext);
895 	aac_fib_free(cmd_fibcontext);
896 	return -1;
897 }
898 
899 /* Function: setinqserial
900  *
901  * Arguments: [1] pointer to void [1] int
902  *
903  * Purpose: Sets SCSI Unit Serial number.
904  *          This is a fake. We should read a proper
905  *          serial number from the container. <SuSE>But
906  *          without docs it's quite hard to do it :-)
907  *          So this will have to do in the meantime.</SuSE>
908  */
909 
910 static int setinqserial(struct aac_dev *dev, void *data, int cid)
911 {
912 	/*
913 	 *	This breaks array migration.
914 	 */
915 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
916 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
917 }
918 
919 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
920 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
921 {
922 	u8 *sense_buf = (u8 *)sense_data;
923 	/* Sense data valid, err code 70h */
924 	sense_buf[0] = 0x70; /* No info field */
925 	sense_buf[1] = 0;	/* Segment number, always zero */
926 
927 	sense_buf[2] = sense_key;	/* Sense key */
928 
929 	sense_buf[12] = sense_code;	/* Additional sense code */
930 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
931 
932 	if (sense_key == ILLEGAL_REQUEST) {
933 		sense_buf[7] = 10;	/* Additional sense length */
934 
935 		sense_buf[15] = bit_pointer;
936 		/* Illegal parameter is in the parameter block */
937 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
938 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
939 		/* Illegal parameter is in the CDB block */
940 		sense_buf[16] = field_pointer >> 8;	/* MSB */
941 		sense_buf[17] = field_pointer;		/* LSB */
942 	} else
943 		sense_buf[7] = 6;	/* Additional sense length */
944 }
945 
946 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
947 {
948 	if (lba & 0xffffffff00000000LL) {
949 		int cid = scmd_id(cmd);
950 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
951 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
952 			SAM_STAT_CHECK_CONDITION;
953 		set_sense(&dev->fsa_dev[cid].sense_data,
954 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
955 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
956 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
957 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
958 			     SCSI_SENSE_BUFFERSIZE));
959 		cmd->scsi_done(cmd);
960 		return 1;
961 	}
962 	return 0;
963 }
964 
965 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
966 {
967 	return 0;
968 }
969 
970 static void io_callback(void *context, struct fib * fibptr);
971 
972 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
973 {
974 	struct aac_dev *dev = fib->dev;
975 	u16 fibsize, command;
976 	long ret;
977 
978 	aac_fib_init(fib);
979 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
980 		struct aac_raw_io2 *readcmd2;
981 		readcmd2 = (struct aac_raw_io2 *) fib_data(fib);
982 		memset(readcmd2, 0, sizeof(struct aac_raw_io2));
983 		readcmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
984 		readcmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
985 		readcmd2->byteCount = cpu_to_le32(count<<9);
986 		readcmd2->cid = cpu_to_le16(scmd_id(cmd));
987 		readcmd2->flags = cpu_to_le16(RIO2_IO_TYPE_READ);
988 		ret = aac_build_sgraw2(cmd, readcmd2,
989 				dev->scsi_host_ptr->sg_tablesize);
990 		if (ret < 0)
991 			return ret;
992 		command = ContainerRawIo2;
993 		fibsize = sizeof(struct aac_raw_io2) +
994 			((le32_to_cpu(readcmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
995 	} else {
996 		struct aac_raw_io *readcmd;
997 		readcmd = (struct aac_raw_io *) fib_data(fib);
998 		readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
999 		readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1000 		readcmd->count = cpu_to_le32(count<<9);
1001 		readcmd->cid = cpu_to_le16(scmd_id(cmd));
1002 		readcmd->flags = cpu_to_le16(RIO_TYPE_READ);
1003 		readcmd->bpTotal = 0;
1004 		readcmd->bpComplete = 0;
1005 		ret = aac_build_sgraw(cmd, &readcmd->sg);
1006 		if (ret < 0)
1007 			return ret;
1008 		command = ContainerRawIo;
1009 		fibsize = sizeof(struct aac_raw_io) +
1010 			((le32_to_cpu(readcmd->sg.count)-1) * sizeof(struct sgentryraw));
1011 	}
1012 
1013 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1014 	/*
1015 	 *	Now send the Fib to the adapter
1016 	 */
1017 	return aac_fib_send(command,
1018 			  fib,
1019 			  fibsize,
1020 			  FsaNormal,
1021 			  0, 1,
1022 			  (fib_callback) io_callback,
1023 			  (void *) cmd);
1024 }
1025 
1026 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1027 {
1028 	u16 fibsize;
1029 	struct aac_read64 *readcmd;
1030 	long ret;
1031 
1032 	aac_fib_init(fib);
1033 	readcmd = (struct aac_read64 *) fib_data(fib);
1034 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
1035 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
1036 	readcmd->sector_count = cpu_to_le16(count);
1037 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1038 	readcmd->pad   = 0;
1039 	readcmd->flags = 0;
1040 
1041 	ret = aac_build_sg64(cmd, &readcmd->sg);
1042 	if (ret < 0)
1043 		return ret;
1044 	fibsize = sizeof(struct aac_read64) +
1045 		((le32_to_cpu(readcmd->sg.count) - 1) *
1046 		 sizeof (struct sgentry64));
1047 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1048 				sizeof(struct aac_fibhdr)));
1049 	/*
1050 	 *	Now send the Fib to the adapter
1051 	 */
1052 	return aac_fib_send(ContainerCommand64,
1053 			  fib,
1054 			  fibsize,
1055 			  FsaNormal,
1056 			  0, 1,
1057 			  (fib_callback) io_callback,
1058 			  (void *) cmd);
1059 }
1060 
1061 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1062 {
1063 	u16 fibsize;
1064 	struct aac_read *readcmd;
1065 	long ret;
1066 
1067 	aac_fib_init(fib);
1068 	readcmd = (struct aac_read *) fib_data(fib);
1069 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1070 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1071 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1072 	readcmd->count = cpu_to_le32(count * 512);
1073 
1074 	ret = aac_build_sg(cmd, &readcmd->sg);
1075 	if (ret < 0)
1076 		return ret;
1077 	fibsize = sizeof(struct aac_read) +
1078 			((le32_to_cpu(readcmd->sg.count) - 1) *
1079 			 sizeof (struct sgentry));
1080 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1081 				sizeof(struct aac_fibhdr)));
1082 	/*
1083 	 *	Now send the Fib to the adapter
1084 	 */
1085 	return aac_fib_send(ContainerCommand,
1086 			  fib,
1087 			  fibsize,
1088 			  FsaNormal,
1089 			  0, 1,
1090 			  (fib_callback) io_callback,
1091 			  (void *) cmd);
1092 }
1093 
1094 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1095 {
1096 	struct aac_dev *dev = fib->dev;
1097 	u16 fibsize, command;
1098 	long ret;
1099 
1100 	aac_fib_init(fib);
1101 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 && !dev->sync_mode) {
1102 		struct aac_raw_io2 *writecmd2;
1103 		writecmd2 = (struct aac_raw_io2 *) fib_data(fib);
1104 		memset(writecmd2, 0, sizeof(struct aac_raw_io2));
1105 		writecmd2->blockLow = cpu_to_le32((u32)(lba&0xffffffff));
1106 		writecmd2->blockHigh = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1107 		writecmd2->byteCount = cpu_to_le32(count<<9);
1108 		writecmd2->cid = cpu_to_le16(scmd_id(cmd));
1109 		writecmd2->flags = (fua && ((aac_cache & 5) != 1) &&
1110 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1111 			cpu_to_le16(RIO2_IO_TYPE_WRITE|RIO2_IO_SUREWRITE) :
1112 			cpu_to_le16(RIO2_IO_TYPE_WRITE);
1113 		ret = aac_build_sgraw2(cmd, writecmd2,
1114 				dev->scsi_host_ptr->sg_tablesize);
1115 		if (ret < 0)
1116 			return ret;
1117 		command = ContainerRawIo2;
1118 		fibsize = sizeof(struct aac_raw_io2) +
1119 			((le32_to_cpu(writecmd2->sgeCnt)-1) * sizeof(struct sge_ieee1212));
1120 	} else {
1121 		struct aac_raw_io *writecmd;
1122 		writecmd = (struct aac_raw_io *) fib_data(fib);
1123 		writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1124 		writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1125 		writecmd->count = cpu_to_le32(count<<9);
1126 		writecmd->cid = cpu_to_le16(scmd_id(cmd));
1127 		writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1128 						   (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1129 			cpu_to_le16(RIO_TYPE_WRITE|RIO_SUREWRITE) :
1130 			cpu_to_le16(RIO_TYPE_WRITE);
1131 		writecmd->bpTotal = 0;
1132 		writecmd->bpComplete = 0;
1133 		ret = aac_build_sgraw(cmd, &writecmd->sg);
1134 		if (ret < 0)
1135 			return ret;
1136 		command = ContainerRawIo;
1137 		fibsize = sizeof(struct aac_raw_io) +
1138 			((le32_to_cpu(writecmd->sg.count)-1) * sizeof (struct sgentryraw));
1139 	}
1140 
1141 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1142 	/*
1143 	 *	Now send the Fib to the adapter
1144 	 */
1145 	return aac_fib_send(command,
1146 			  fib,
1147 			  fibsize,
1148 			  FsaNormal,
1149 			  0, 1,
1150 			  (fib_callback) io_callback,
1151 			  (void *) cmd);
1152 }
1153 
1154 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1155 {
1156 	u16 fibsize;
1157 	struct aac_write64 *writecmd;
1158 	long ret;
1159 
1160 	aac_fib_init(fib);
1161 	writecmd = (struct aac_write64 *) fib_data(fib);
1162 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1163 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1164 	writecmd->sector_count = cpu_to_le16(count);
1165 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1166 	writecmd->pad	= 0;
1167 	writecmd->flags	= 0;
1168 
1169 	ret = aac_build_sg64(cmd, &writecmd->sg);
1170 	if (ret < 0)
1171 		return ret;
1172 	fibsize = sizeof(struct aac_write64) +
1173 		((le32_to_cpu(writecmd->sg.count) - 1) *
1174 		 sizeof (struct sgentry64));
1175 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1176 				sizeof(struct aac_fibhdr)));
1177 	/*
1178 	 *	Now send the Fib to the adapter
1179 	 */
1180 	return aac_fib_send(ContainerCommand64,
1181 			  fib,
1182 			  fibsize,
1183 			  FsaNormal,
1184 			  0, 1,
1185 			  (fib_callback) io_callback,
1186 			  (void *) cmd);
1187 }
1188 
1189 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1190 {
1191 	u16 fibsize;
1192 	struct aac_write *writecmd;
1193 	long ret;
1194 
1195 	aac_fib_init(fib);
1196 	writecmd = (struct aac_write *) fib_data(fib);
1197 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1198 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1199 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1200 	writecmd->count = cpu_to_le32(count * 512);
1201 	writecmd->sg.count = cpu_to_le32(1);
1202 	/* ->stable is not used - it did mean which type of write */
1203 
1204 	ret = aac_build_sg(cmd, &writecmd->sg);
1205 	if (ret < 0)
1206 		return ret;
1207 	fibsize = sizeof(struct aac_write) +
1208 		((le32_to_cpu(writecmd->sg.count) - 1) *
1209 		 sizeof (struct sgentry));
1210 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1211 				sizeof(struct aac_fibhdr)));
1212 	/*
1213 	 *	Now send the Fib to the adapter
1214 	 */
1215 	return aac_fib_send(ContainerCommand,
1216 			  fib,
1217 			  fibsize,
1218 			  FsaNormal,
1219 			  0, 1,
1220 			  (fib_callback) io_callback,
1221 			  (void *) cmd);
1222 }
1223 
1224 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1225 {
1226 	struct aac_srb * srbcmd;
1227 	u32 flag;
1228 	u32 timeout;
1229 
1230 	aac_fib_init(fib);
1231 	switch(cmd->sc_data_direction){
1232 	case DMA_TO_DEVICE:
1233 		flag = SRB_DataOut;
1234 		break;
1235 	case DMA_BIDIRECTIONAL:
1236 		flag = SRB_DataIn | SRB_DataOut;
1237 		break;
1238 	case DMA_FROM_DEVICE:
1239 		flag = SRB_DataIn;
1240 		break;
1241 	case DMA_NONE:
1242 	default:	/* shuts up some versions of gcc */
1243 		flag = SRB_NoDataXfer;
1244 		break;
1245 	}
1246 
1247 	srbcmd = (struct aac_srb*) fib_data(fib);
1248 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1249 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1250 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1251 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1252 	srbcmd->flags    = cpu_to_le32(flag);
1253 	timeout = cmd->request->timeout/HZ;
1254 	if (timeout == 0)
1255 		timeout = 1;
1256 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1257 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1258 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1259 	return srbcmd;
1260 }
1261 
1262 static void aac_srb_callback(void *context, struct fib * fibptr);
1263 
1264 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1265 {
1266 	u16 fibsize;
1267 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1268 	long ret;
1269 
1270 	ret = aac_build_sg64(cmd, (struct sgmap64 *) &srbcmd->sg);
1271 	if (ret < 0)
1272 		return ret;
1273 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1274 
1275 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1276 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1277 	/*
1278 	 *	Build Scatter/Gather list
1279 	 */
1280 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1281 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1282 		 sizeof (struct sgentry64));
1283 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1284 				sizeof(struct aac_fibhdr)));
1285 
1286 	/*
1287 	 *	Now send the Fib to the adapter
1288 	 */
1289 	return aac_fib_send(ScsiPortCommand64, fib,
1290 				fibsize, FsaNormal, 0, 1,
1291 				  (fib_callback) aac_srb_callback,
1292 				  (void *) cmd);
1293 }
1294 
1295 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1296 {
1297 	u16 fibsize;
1298 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1299 	long ret;
1300 
1301 	ret = aac_build_sg(cmd, (struct sgmap *)&srbcmd->sg);
1302 	if (ret < 0)
1303 		return ret;
1304 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1305 
1306 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1307 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1308 	/*
1309 	 *	Build Scatter/Gather list
1310 	 */
1311 	fibsize = sizeof (struct aac_srb) +
1312 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1313 		 sizeof (struct sgentry));
1314 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1315 				sizeof(struct aac_fibhdr)));
1316 
1317 	/*
1318 	 *	Now send the Fib to the adapter
1319 	 */
1320 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1321 				  (fib_callback) aac_srb_callback, (void *) cmd);
1322 }
1323 
1324 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1325 {
1326 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1327 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1328 		return FAILED;
1329 	return aac_scsi_32(fib, cmd);
1330 }
1331 
1332 int aac_get_adapter_info(struct aac_dev* dev)
1333 {
1334 	struct fib* fibptr;
1335 	int rcode;
1336 	u32 tmp;
1337 	struct aac_adapter_info *info;
1338 	struct aac_bus_info *command;
1339 	struct aac_bus_info_response *bus_info;
1340 
1341 	if (!(fibptr = aac_fib_alloc(dev)))
1342 		return -ENOMEM;
1343 
1344 	aac_fib_init(fibptr);
1345 	info = (struct aac_adapter_info *) fib_data(fibptr);
1346 	memset(info,0,sizeof(*info));
1347 
1348 	rcode = aac_fib_send(RequestAdapterInfo,
1349 			 fibptr,
1350 			 sizeof(*info),
1351 			 FsaNormal,
1352 			 -1, 1, /* First `interrupt' command uses special wait */
1353 			 NULL,
1354 			 NULL);
1355 
1356 	if (rcode < 0) {
1357 		/* FIB should be freed only after
1358 		 * getting the response from the F/W */
1359 		if (rcode != -ERESTARTSYS) {
1360 			aac_fib_complete(fibptr);
1361 			aac_fib_free(fibptr);
1362 		}
1363 		return rcode;
1364 	}
1365 	memcpy(&dev->adapter_info, info, sizeof(*info));
1366 
1367 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1368 		struct aac_supplement_adapter_info * sinfo;
1369 
1370 		aac_fib_init(fibptr);
1371 
1372 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1373 
1374 		memset(sinfo,0,sizeof(*sinfo));
1375 
1376 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1377 				 fibptr,
1378 				 sizeof(*sinfo),
1379 				 FsaNormal,
1380 				 1, 1,
1381 				 NULL,
1382 				 NULL);
1383 
1384 		if (rcode >= 0)
1385 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1386 		if (rcode == -ERESTARTSYS) {
1387 			fibptr = aac_fib_alloc(dev);
1388 			if (!fibptr)
1389 				return -ENOMEM;
1390 		}
1391 
1392 	}
1393 
1394 
1395 	/*
1396 	 * GetBusInfo
1397 	 */
1398 
1399 	aac_fib_init(fibptr);
1400 
1401 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1402 
1403 	memset(bus_info, 0, sizeof(*bus_info));
1404 
1405 	command = (struct aac_bus_info *)bus_info;
1406 
1407 	command->Command = cpu_to_le32(VM_Ioctl);
1408 	command->ObjType = cpu_to_le32(FT_DRIVE);
1409 	command->MethodId = cpu_to_le32(1);
1410 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1411 
1412 	rcode = aac_fib_send(ContainerCommand,
1413 			 fibptr,
1414 			 sizeof (*bus_info),
1415 			 FsaNormal,
1416 			 1, 1,
1417 			 NULL, NULL);
1418 
1419 	/* reasoned default */
1420 	dev->maximum_num_physicals = 16;
1421 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1422 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1423 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1424 	}
1425 
1426 	if (!dev->in_reset) {
1427 		char buffer[16];
1428 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1429 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1430 			dev->name,
1431 			dev->id,
1432 			tmp>>24,
1433 			(tmp>>16)&0xff,
1434 			tmp&0xff,
1435 			le32_to_cpu(dev->adapter_info.kernelbuild),
1436 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1437 			dev->supplement_adapter_info.BuildDate);
1438 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1439 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1440 			dev->name, dev->id,
1441 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1442 			le32_to_cpu(dev->adapter_info.monitorbuild));
1443 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1444 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1445 			dev->name, dev->id,
1446 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1447 			le32_to_cpu(dev->adapter_info.biosbuild));
1448 		buffer[0] = '\0';
1449 		if (aac_get_serial_number(
1450 		  shost_to_class(dev->scsi_host_ptr), buffer))
1451 			printk(KERN_INFO "%s%d: serial %s",
1452 			  dev->name, dev->id, buffer);
1453 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1454 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1455 			  dev->name, dev->id,
1456 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1457 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1458 		}
1459 		if (!aac_check_reset || ((aac_check_reset == 1) &&
1460 		  (dev->supplement_adapter_info.SupportedOptions2 &
1461 		  AAC_OPTION_IGNORE_RESET))) {
1462 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1463 			  dev->name, dev->id);
1464 		}
1465 	}
1466 
1467 	dev->cache_protected = 0;
1468 	dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1469 		AAC_FEATURE_JBOD) != 0);
1470 	dev->nondasd_support = 0;
1471 	dev->raid_scsi_mode = 0;
1472 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
1473 		dev->nondasd_support = 1;
1474 
1475 	/*
1476 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1477 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1478 	 * force nondasd support on. If we decide to allow the non-dasd flag
1479 	 * additional changes changes will have to be made to support
1480 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1481 	 * changed to support the new dev->raid_scsi_mode flag instead of
1482 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1483 	 * function aac_detect will have to be modified where it sets up the
1484 	 * max number of channels based on the aac->nondasd_support flag only.
1485 	 */
1486 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1487 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1488 		dev->nondasd_support = 1;
1489 		dev->raid_scsi_mode = 1;
1490 	}
1491 	if (dev->raid_scsi_mode != 0)
1492 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1493 				dev->name, dev->id);
1494 
1495 	if (nondasd != -1)
1496 		dev->nondasd_support = (nondasd!=0);
1497 	if (dev->nondasd_support && !dev->in_reset)
1498 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1499 
1500 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1501 		dev->needs_dac = 1;
1502 	dev->dac_support = 0;
1503 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1504 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1505 		if (!dev->in_reset)
1506 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1507 				dev->name, dev->id);
1508 		dev->dac_support = 1;
1509 	}
1510 
1511 	if(dacmode != -1) {
1512 		dev->dac_support = (dacmode!=0);
1513 	}
1514 
1515 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1516 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
1517 		& AAC_QUIRK_SCSI_32)) {
1518 		dev->nondasd_support = 0;
1519 		dev->jbod = 0;
1520 		expose_physicals = 0;
1521 	}
1522 
1523 	if(dev->dac_support != 0) {
1524 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1525 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1526 			if (!dev->in_reset)
1527 				printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1528 					dev->name, dev->id);
1529 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1530 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1531 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1532 				dev->name, dev->id);
1533 			dev->dac_support = 0;
1534 		} else {
1535 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1536 				dev->name, dev->id);
1537 			rcode = -ENOMEM;
1538 		}
1539 	}
1540 	/*
1541 	 * Deal with configuring for the individualized limits of each packet
1542 	 * interface.
1543 	 */
1544 	dev->a_ops.adapter_scsi = (dev->dac_support)
1545 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1546 				? aac_scsi_32_64
1547 				: aac_scsi_64)
1548 				: aac_scsi_32;
1549 	if (dev->raw_io_interface) {
1550 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1551 					? aac_bounds_64
1552 					: aac_bounds_32;
1553 		dev->a_ops.adapter_read = aac_read_raw_io;
1554 		dev->a_ops.adapter_write = aac_write_raw_io;
1555 	} else {
1556 		dev->a_ops.adapter_bounds = aac_bounds_32;
1557 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1558 			sizeof(struct aac_fibhdr) -
1559 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1560 				sizeof(struct sgentry);
1561 		if (dev->dac_support) {
1562 			dev->a_ops.adapter_read = aac_read_block64;
1563 			dev->a_ops.adapter_write = aac_write_block64;
1564 			/*
1565 			 * 38 scatter gather elements
1566 			 */
1567 			dev->scsi_host_ptr->sg_tablesize =
1568 				(dev->max_fib_size -
1569 				sizeof(struct aac_fibhdr) -
1570 				sizeof(struct aac_write64) +
1571 				sizeof(struct sgentry64)) /
1572 					sizeof(struct sgentry64);
1573 		} else {
1574 			dev->a_ops.adapter_read = aac_read_block;
1575 			dev->a_ops.adapter_write = aac_write_block;
1576 		}
1577 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1578 		if (!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1579 			/*
1580 			 * Worst case size that could cause sg overflow when
1581 			 * we break up SG elements that are larger than 64KB.
1582 			 * Would be nice if we could tell the SCSI layer what
1583 			 * the maximum SG element size can be. Worst case is
1584 			 * (sg_tablesize-1) 4KB elements with one 64KB
1585 			 * element.
1586 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1587 			 */
1588 			dev->scsi_host_ptr->max_sectors =
1589 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1590 		}
1591 	}
1592 	/* FIB should be freed only after getting the response from the F/W */
1593 	if (rcode != -ERESTARTSYS) {
1594 		aac_fib_complete(fibptr);
1595 		aac_fib_free(fibptr);
1596 	}
1597 
1598 	return rcode;
1599 }
1600 
1601 
1602 static void io_callback(void *context, struct fib * fibptr)
1603 {
1604 	struct aac_dev *dev;
1605 	struct aac_read_reply *readreply;
1606 	struct scsi_cmnd *scsicmd;
1607 	u32 cid;
1608 
1609 	scsicmd = (struct scsi_cmnd *) context;
1610 
1611 	if (!aac_valid_context(scsicmd, fibptr))
1612 		return;
1613 
1614 	dev = fibptr->dev;
1615 	cid = scmd_id(scsicmd);
1616 
1617 	if (nblank(dprintk(x))) {
1618 		u64 lba;
1619 		switch (scsicmd->cmnd[0]) {
1620 		case WRITE_6:
1621 		case READ_6:
1622 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1623 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1624 			break;
1625 		case WRITE_16:
1626 		case READ_16:
1627 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1628 			      ((u64)scsicmd->cmnd[3] << 48) |
1629 			      ((u64)scsicmd->cmnd[4] << 40) |
1630 			      ((u64)scsicmd->cmnd[5] << 32) |
1631 			      ((u64)scsicmd->cmnd[6] << 24) |
1632 			      (scsicmd->cmnd[7] << 16) |
1633 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1634 			break;
1635 		case WRITE_12:
1636 		case READ_12:
1637 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1638 			      (scsicmd->cmnd[3] << 16) |
1639 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1640 			break;
1641 		default:
1642 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1643 			       (scsicmd->cmnd[3] << 16) |
1644 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1645 			break;
1646 		}
1647 		printk(KERN_DEBUG
1648 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1649 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1650 	}
1651 
1652 	BUG_ON(fibptr == NULL);
1653 
1654 	scsi_dma_unmap(scsicmd);
1655 
1656 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1657 	switch (le32_to_cpu(readreply->status)) {
1658 	case ST_OK:
1659 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1660 			SAM_STAT_GOOD;
1661 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1662 		break;
1663 	case ST_NOT_READY:
1664 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1665 			SAM_STAT_CHECK_CONDITION;
1666 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1667 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1668 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1669 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1670 			     SCSI_SENSE_BUFFERSIZE));
1671 		break;
1672 	default:
1673 #ifdef AAC_DETAILED_STATUS_INFO
1674 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1675 		  le32_to_cpu(readreply->status));
1676 #endif
1677 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1678 			SAM_STAT_CHECK_CONDITION;
1679 		set_sense(&dev->fsa_dev[cid].sense_data,
1680 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1681 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1682 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1683 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1684 			     SCSI_SENSE_BUFFERSIZE));
1685 		break;
1686 	}
1687 	aac_fib_complete(fibptr);
1688 	aac_fib_free(fibptr);
1689 
1690 	scsicmd->scsi_done(scsicmd);
1691 }
1692 
1693 static int aac_read(struct scsi_cmnd * scsicmd)
1694 {
1695 	u64 lba;
1696 	u32 count;
1697 	int status;
1698 	struct aac_dev *dev;
1699 	struct fib * cmd_fibcontext;
1700 	int cid;
1701 
1702 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1703 	/*
1704 	 *	Get block address and transfer length
1705 	 */
1706 	switch (scsicmd->cmnd[0]) {
1707 	case READ_6:
1708 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1709 
1710 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1711 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1712 		count = scsicmd->cmnd[4];
1713 
1714 		if (count == 0)
1715 			count = 256;
1716 		break;
1717 	case READ_16:
1718 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1719 
1720 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1721 			((u64)scsicmd->cmnd[3] << 48) |
1722 			((u64)scsicmd->cmnd[4] << 40) |
1723 			((u64)scsicmd->cmnd[5] << 32) |
1724 			((u64)scsicmd->cmnd[6] << 24) |
1725 			(scsicmd->cmnd[7] << 16) |
1726 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1727 		count = (scsicmd->cmnd[10] << 24) |
1728 			(scsicmd->cmnd[11] << 16) |
1729 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1730 		break;
1731 	case READ_12:
1732 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1733 
1734 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1735 			(scsicmd->cmnd[3] << 16) |
1736 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1737 		count = (scsicmd->cmnd[6] << 24) |
1738 			(scsicmd->cmnd[7] << 16) |
1739 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1740 		break;
1741 	default:
1742 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1743 
1744 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1745 			(scsicmd->cmnd[3] << 16) |
1746 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1747 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1748 		break;
1749 	}
1750 
1751 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1752 		cid = scmd_id(scsicmd);
1753 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1754 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1755 			SAM_STAT_CHECK_CONDITION;
1756 		set_sense(&dev->fsa_dev[cid].sense_data,
1757 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1758 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1759 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1760 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1761 			     SCSI_SENSE_BUFFERSIZE));
1762 		scsicmd->scsi_done(scsicmd);
1763 		return 1;
1764 	}
1765 
1766 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1767 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1768 	if (aac_adapter_bounds(dev,scsicmd,lba))
1769 		return 0;
1770 	/*
1771 	 *	Alocate and initialize a Fib
1772 	 */
1773 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1774 		printk(KERN_WARNING "aac_read: fib allocation failed\n");
1775 		return -1;
1776 	}
1777 
1778 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1779 
1780 	/*
1781 	 *	Check that the command queued to the controller
1782 	 */
1783 	if (status == -EINPROGRESS) {
1784 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1785 		return 0;
1786 	}
1787 
1788 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1789 	/*
1790 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1791 	 */
1792 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1793 	scsicmd->scsi_done(scsicmd);
1794 	aac_fib_complete(cmd_fibcontext);
1795 	aac_fib_free(cmd_fibcontext);
1796 	return 0;
1797 }
1798 
1799 static int aac_write(struct scsi_cmnd * scsicmd)
1800 {
1801 	u64 lba;
1802 	u32 count;
1803 	int fua;
1804 	int status;
1805 	struct aac_dev *dev;
1806 	struct fib * cmd_fibcontext;
1807 	int cid;
1808 
1809 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1810 	/*
1811 	 *	Get block address and transfer length
1812 	 */
1813 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1814 	{
1815 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1816 		count = scsicmd->cmnd[4];
1817 		if (count == 0)
1818 			count = 256;
1819 		fua = 0;
1820 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1821 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1822 
1823 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1824 			((u64)scsicmd->cmnd[3] << 48) |
1825 			((u64)scsicmd->cmnd[4] << 40) |
1826 			((u64)scsicmd->cmnd[5] << 32) |
1827 			((u64)scsicmd->cmnd[6] << 24) |
1828 			(scsicmd->cmnd[7] << 16) |
1829 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1830 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1831 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1832 		fua = scsicmd->cmnd[1] & 0x8;
1833 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1834 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1835 
1836 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1837 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1838 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1839 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1840 		fua = scsicmd->cmnd[1] & 0x8;
1841 	} else {
1842 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1843 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1844 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1845 		fua = scsicmd->cmnd[1] & 0x8;
1846 	}
1847 
1848 	if ((lba + count) > (dev->fsa_dev[scmd_id(scsicmd)].size)) {
1849 		cid = scmd_id(scsicmd);
1850 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
1851 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1852 			SAM_STAT_CHECK_CONDITION;
1853 		set_sense(&dev->fsa_dev[cid].sense_data,
1854 			  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1855 			  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1856 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1857 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1858 			     SCSI_SENSE_BUFFERSIZE));
1859 		scsicmd->scsi_done(scsicmd);
1860 		return 1;
1861 	}
1862 
1863 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1864 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1865 	if (aac_adapter_bounds(dev,scsicmd,lba))
1866 		return 0;
1867 	/*
1868 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1869 	 */
1870 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1871 		/* FIB temporarily unavailable,not catastrophic failure */
1872 
1873 		/* scsicmd->result = DID_ERROR << 16;
1874 		 * scsicmd->scsi_done(scsicmd);
1875 		 * return 0;
1876 		 */
1877 		printk(KERN_WARNING "aac_write: fib allocation failed\n");
1878 		return -1;
1879 	}
1880 
1881 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1882 
1883 	/*
1884 	 *	Check that the command queued to the controller
1885 	 */
1886 	if (status == -EINPROGRESS) {
1887 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1888 		return 0;
1889 	}
1890 
1891 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1892 	/*
1893 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1894 	 */
1895 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1896 	scsicmd->scsi_done(scsicmd);
1897 
1898 	aac_fib_complete(cmd_fibcontext);
1899 	aac_fib_free(cmd_fibcontext);
1900 	return 0;
1901 }
1902 
1903 static void synchronize_callback(void *context, struct fib *fibptr)
1904 {
1905 	struct aac_synchronize_reply *synchronizereply;
1906 	struct scsi_cmnd *cmd;
1907 
1908 	cmd = context;
1909 
1910 	if (!aac_valid_context(cmd, fibptr))
1911 		return;
1912 
1913 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1914 				smp_processor_id(), jiffies));
1915 	BUG_ON(fibptr == NULL);
1916 
1917 
1918 	synchronizereply = fib_data(fibptr);
1919 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1920 		cmd->result = DID_OK << 16 |
1921 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1922 	else {
1923 		struct scsi_device *sdev = cmd->device;
1924 		struct aac_dev *dev = fibptr->dev;
1925 		u32 cid = sdev_id(sdev);
1926 		printk(KERN_WARNING
1927 		     "synchronize_callback: synchronize failed, status = %d\n",
1928 		     le32_to_cpu(synchronizereply->status));
1929 		cmd->result = DID_OK << 16 |
1930 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1931 		set_sense(&dev->fsa_dev[cid].sense_data,
1932 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1933 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1934 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1935 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1936 			     SCSI_SENSE_BUFFERSIZE));
1937 	}
1938 
1939 	aac_fib_complete(fibptr);
1940 	aac_fib_free(fibptr);
1941 	cmd->scsi_done(cmd);
1942 }
1943 
1944 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1945 {
1946 	int status;
1947 	struct fib *cmd_fibcontext;
1948 	struct aac_synchronize *synchronizecmd;
1949 	struct scsi_cmnd *cmd;
1950 	struct scsi_device *sdev = scsicmd->device;
1951 	int active = 0;
1952 	struct aac_dev *aac;
1953 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1954 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1955 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1956 	unsigned long flags;
1957 
1958 	/*
1959 	 * Wait for all outstanding queued commands to complete to this
1960 	 * specific target (block).
1961 	 */
1962 	spin_lock_irqsave(&sdev->list_lock, flags);
1963 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1964 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1965 			u64 cmnd_lba;
1966 			u32 cmnd_count;
1967 
1968 			if (cmd->cmnd[0] == WRITE_6) {
1969 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1970 					(cmd->cmnd[2] << 8) |
1971 					cmd->cmnd[3];
1972 				cmnd_count = cmd->cmnd[4];
1973 				if (cmnd_count == 0)
1974 					cmnd_count = 256;
1975 			} else if (cmd->cmnd[0] == WRITE_16) {
1976 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1977 					((u64)cmd->cmnd[3] << 48) |
1978 					((u64)cmd->cmnd[4] << 40) |
1979 					((u64)cmd->cmnd[5] << 32) |
1980 					((u64)cmd->cmnd[6] << 24) |
1981 					(cmd->cmnd[7] << 16) |
1982 					(cmd->cmnd[8] << 8) |
1983 					cmd->cmnd[9];
1984 				cmnd_count = (cmd->cmnd[10] << 24) |
1985 					(cmd->cmnd[11] << 16) |
1986 					(cmd->cmnd[12] << 8) |
1987 					cmd->cmnd[13];
1988 			} else if (cmd->cmnd[0] == WRITE_12) {
1989 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1990 					(cmd->cmnd[3] << 16) |
1991 					(cmd->cmnd[4] << 8) |
1992 					cmd->cmnd[5];
1993 				cmnd_count = (cmd->cmnd[6] << 24) |
1994 					(cmd->cmnd[7] << 16) |
1995 					(cmd->cmnd[8] << 8) |
1996 					cmd->cmnd[9];
1997 			} else if (cmd->cmnd[0] == WRITE_10) {
1998 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1999 					(cmd->cmnd[3] << 16) |
2000 					(cmd->cmnd[4] << 8) |
2001 					cmd->cmnd[5];
2002 				cmnd_count = (cmd->cmnd[7] << 8) |
2003 					cmd->cmnd[8];
2004 			} else
2005 				continue;
2006 			if (((cmnd_lba + cmnd_count) < lba) ||
2007 			  (count && ((lba + count) < cmnd_lba)))
2008 				continue;
2009 			++active;
2010 			break;
2011 		}
2012 
2013 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2014 
2015 	/*
2016 	 *	Yield the processor (requeue for later)
2017 	 */
2018 	if (active)
2019 		return SCSI_MLQUEUE_DEVICE_BUSY;
2020 
2021 	aac = (struct aac_dev *)sdev->host->hostdata;
2022 	if (aac->in_reset)
2023 		return SCSI_MLQUEUE_HOST_BUSY;
2024 
2025 	/*
2026 	 *	Allocate and initialize a Fib
2027 	 */
2028 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
2029 		return SCSI_MLQUEUE_HOST_BUSY;
2030 
2031 	aac_fib_init(cmd_fibcontext);
2032 
2033 	synchronizecmd = fib_data(cmd_fibcontext);
2034 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
2035 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
2036 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
2037 	synchronizecmd->count =
2038 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
2039 
2040 	/*
2041 	 *	Now send the Fib to the adapter
2042 	 */
2043 	status = aac_fib_send(ContainerCommand,
2044 		  cmd_fibcontext,
2045 		  sizeof(struct aac_synchronize),
2046 		  FsaNormal,
2047 		  0, 1,
2048 		  (fib_callback)synchronize_callback,
2049 		  (void *)scsicmd);
2050 
2051 	/*
2052 	 *	Check that the command queued to the controller
2053 	 */
2054 	if (status == -EINPROGRESS) {
2055 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2056 		return 0;
2057 	}
2058 
2059 	printk(KERN_WARNING
2060 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
2061 	aac_fib_complete(cmd_fibcontext);
2062 	aac_fib_free(cmd_fibcontext);
2063 	return SCSI_MLQUEUE_HOST_BUSY;
2064 }
2065 
2066 static void aac_start_stop_callback(void *context, struct fib *fibptr)
2067 {
2068 	struct scsi_cmnd *scsicmd = context;
2069 
2070 	if (!aac_valid_context(scsicmd, fibptr))
2071 		return;
2072 
2073 	BUG_ON(fibptr == NULL);
2074 
2075 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2076 
2077 	aac_fib_complete(fibptr);
2078 	aac_fib_free(fibptr);
2079 	scsicmd->scsi_done(scsicmd);
2080 }
2081 
2082 static int aac_start_stop(struct scsi_cmnd *scsicmd)
2083 {
2084 	int status;
2085 	struct fib *cmd_fibcontext;
2086 	struct aac_power_management *pmcmd;
2087 	struct scsi_device *sdev = scsicmd->device;
2088 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
2089 
2090 	if (!(aac->supplement_adapter_info.SupportedOptions2 &
2091 	      AAC_OPTION_POWER_MANAGEMENT)) {
2092 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2093 				  SAM_STAT_GOOD;
2094 		scsicmd->scsi_done(scsicmd);
2095 		return 0;
2096 	}
2097 
2098 	if (aac->in_reset)
2099 		return SCSI_MLQUEUE_HOST_BUSY;
2100 
2101 	/*
2102 	 *	Allocate and initialize a Fib
2103 	 */
2104 	cmd_fibcontext = aac_fib_alloc(aac);
2105 	if (!cmd_fibcontext)
2106 		return SCSI_MLQUEUE_HOST_BUSY;
2107 
2108 	aac_fib_init(cmd_fibcontext);
2109 
2110 	pmcmd = fib_data(cmd_fibcontext);
2111 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
2112 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
2113 	/* Eject bit ignored, not relevant */
2114 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
2115 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
2116 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
2117 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
2118 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
2119 
2120 	/*
2121 	 *	Now send the Fib to the adapter
2122 	 */
2123 	status = aac_fib_send(ContainerCommand,
2124 		  cmd_fibcontext,
2125 		  sizeof(struct aac_power_management),
2126 		  FsaNormal,
2127 		  0, 1,
2128 		  (fib_callback)aac_start_stop_callback,
2129 		  (void *)scsicmd);
2130 
2131 	/*
2132 	 *	Check that the command queued to the controller
2133 	 */
2134 	if (status == -EINPROGRESS) {
2135 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2136 		return 0;
2137 	}
2138 
2139 	aac_fib_complete(cmd_fibcontext);
2140 	aac_fib_free(cmd_fibcontext);
2141 	return SCSI_MLQUEUE_HOST_BUSY;
2142 }
2143 
2144 /**
2145  *	aac_scsi_cmd()		-	Process SCSI command
2146  *	@scsicmd:		SCSI command block
2147  *
2148  *	Emulate a SCSI command and queue the required request for the
2149  *	aacraid firmware.
2150  */
2151 
2152 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2153 {
2154 	u32 cid;
2155 	struct Scsi_Host *host = scsicmd->device->host;
2156 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2157 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2158 
2159 	if (fsa_dev_ptr == NULL)
2160 		return -1;
2161 	/*
2162 	 *	If the bus, id or lun is out of range, return fail
2163 	 *	Test does not apply to ID 16, the pseudo id for the controller
2164 	 *	itself.
2165 	 */
2166 	cid = scmd_id(scsicmd);
2167 	if (cid != host->this_id) {
2168 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2169 			if((cid >= dev->maximum_num_containers) ||
2170 					(scsicmd->device->lun != 0)) {
2171 				scsicmd->result = DID_NO_CONNECT << 16;
2172 				scsicmd->scsi_done(scsicmd);
2173 				return 0;
2174 			}
2175 
2176 			/*
2177 			 *	If the target container doesn't exist, it may have
2178 			 *	been newly created
2179 			 */
2180 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2181 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2182 			   NOT_READY)) {
2183 				switch (scsicmd->cmnd[0]) {
2184 				case SERVICE_ACTION_IN:
2185 					if (!(dev->raw_io_interface) ||
2186 					    !(dev->raw_io_64) ||
2187 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2188 						break;
2189 				case INQUIRY:
2190 				case READ_CAPACITY:
2191 				case TEST_UNIT_READY:
2192 					if (dev->in_reset)
2193 						return -1;
2194 					return _aac_probe_container(scsicmd,
2195 							aac_probe_container_callback2);
2196 				default:
2197 					break;
2198 				}
2199 			}
2200 		} else {  /* check for physical non-dasd devices */
2201 			if (dev->nondasd_support || expose_physicals ||
2202 					dev->jbod) {
2203 				if (dev->in_reset)
2204 					return -1;
2205 				return aac_send_srb_fib(scsicmd);
2206 			} else {
2207 				scsicmd->result = DID_NO_CONNECT << 16;
2208 				scsicmd->scsi_done(scsicmd);
2209 				return 0;
2210 			}
2211 		}
2212 	}
2213 	/*
2214 	 * else Command for the controller itself
2215 	 */
2216 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2217 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2218 	{
2219 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2220 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2221 		set_sense(&dev->fsa_dev[cid].sense_data,
2222 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2223 		  ASENCODE_INVALID_COMMAND, 0, 0);
2224 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2225 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2226 			     SCSI_SENSE_BUFFERSIZE));
2227 		scsicmd->scsi_done(scsicmd);
2228 		return 0;
2229 	}
2230 
2231 
2232 	/* Handle commands here that don't really require going out to the adapter */
2233 	switch (scsicmd->cmnd[0]) {
2234 	case INQUIRY:
2235 	{
2236 		struct inquiry_data inq_data;
2237 
2238 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2239 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2240 
2241 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2242 			char *arr = (char *)&inq_data;
2243 
2244 			/* EVPD bit set */
2245 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2246 			  INQD_PDT_PROC : INQD_PDT_DA;
2247 			if (scsicmd->cmnd[2] == 0) {
2248 				/* supported vital product data pages */
2249 				arr[3] = 2;
2250 				arr[4] = 0x0;
2251 				arr[5] = 0x80;
2252 				arr[1] = scsicmd->cmnd[2];
2253 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2254 							 sizeof(inq_data));
2255 				scsicmd->result = DID_OK << 16 |
2256 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2257 			} else if (scsicmd->cmnd[2] == 0x80) {
2258 				/* unit serial number page */
2259 				arr[3] = setinqserial(dev, &arr[4],
2260 				  scmd_id(scsicmd));
2261 				arr[1] = scsicmd->cmnd[2];
2262 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2263 							 sizeof(inq_data));
2264 				if (aac_wwn != 2)
2265 					return aac_get_container_serial(
2266 						scsicmd);
2267 				/* SLES 10 SP1 special */
2268 				scsicmd->result = DID_OK << 16 |
2269 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2270 			} else {
2271 				/* vpd page not implemented */
2272 				scsicmd->result = DID_OK << 16 |
2273 				  COMMAND_COMPLETE << 8 |
2274 				  SAM_STAT_CHECK_CONDITION;
2275 				set_sense(&dev->fsa_dev[cid].sense_data,
2276 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2277 				  ASENCODE_NO_SENSE, 7, 2);
2278 				memcpy(scsicmd->sense_buffer,
2279 				  &dev->fsa_dev[cid].sense_data,
2280 				  min_t(size_t,
2281 					sizeof(dev->fsa_dev[cid].sense_data),
2282 					SCSI_SENSE_BUFFERSIZE));
2283 			}
2284 			scsicmd->scsi_done(scsicmd);
2285 			return 0;
2286 		}
2287 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2288 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2289 		inq_data.inqd_len = 31;
2290 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2291 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2292 		/*
2293 		 *	Set the Vendor, Product, and Revision Level
2294 		 *	see: <vendor>.c i.e. aac.c
2295 		 */
2296 		if (cid == host->this_id) {
2297 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2298 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2299 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2300 						 sizeof(inq_data));
2301 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2302 			scsicmd->scsi_done(scsicmd);
2303 			return 0;
2304 		}
2305 		if (dev->in_reset)
2306 			return -1;
2307 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2308 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2309 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2310 		return aac_get_container_name(scsicmd);
2311 	}
2312 	case SERVICE_ACTION_IN:
2313 		if (!(dev->raw_io_interface) ||
2314 		    !(dev->raw_io_64) ||
2315 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2316 			break;
2317 	{
2318 		u64 capacity;
2319 		char cp[13];
2320 		unsigned int alloc_len;
2321 
2322 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2323 		capacity = fsa_dev_ptr[cid].size - 1;
2324 		cp[0] = (capacity >> 56) & 0xff;
2325 		cp[1] = (capacity >> 48) & 0xff;
2326 		cp[2] = (capacity >> 40) & 0xff;
2327 		cp[3] = (capacity >> 32) & 0xff;
2328 		cp[4] = (capacity >> 24) & 0xff;
2329 		cp[5] = (capacity >> 16) & 0xff;
2330 		cp[6] = (capacity >> 8) & 0xff;
2331 		cp[7] = (capacity >> 0) & 0xff;
2332 		cp[8] = 0;
2333 		cp[9] = 0;
2334 		cp[10] = 2;
2335 		cp[11] = 0;
2336 		cp[12] = 0;
2337 
2338 		alloc_len = ((scsicmd->cmnd[10] << 24)
2339 			     + (scsicmd->cmnd[11] << 16)
2340 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2341 
2342 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2343 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2344 		if (alloc_len < scsi_bufflen(scsicmd))
2345 			scsi_set_resid(scsicmd,
2346 				       scsi_bufflen(scsicmd) - alloc_len);
2347 
2348 		/* Do not cache partition table for arrays */
2349 		scsicmd->device->removable = 1;
2350 
2351 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2352 		scsicmd->scsi_done(scsicmd);
2353 
2354 		return 0;
2355 	}
2356 
2357 	case READ_CAPACITY:
2358 	{
2359 		u32 capacity;
2360 		char cp[8];
2361 
2362 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2363 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2364 			capacity = fsa_dev_ptr[cid].size - 1;
2365 		else
2366 			capacity = (u32)-1;
2367 
2368 		cp[0] = (capacity >> 24) & 0xff;
2369 		cp[1] = (capacity >> 16) & 0xff;
2370 		cp[2] = (capacity >> 8) & 0xff;
2371 		cp[3] = (capacity >> 0) & 0xff;
2372 		cp[4] = 0;
2373 		cp[5] = 0;
2374 		cp[6] = 2;
2375 		cp[7] = 0;
2376 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2377 		/* Do not cache partition table for arrays */
2378 		scsicmd->device->removable = 1;
2379 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2380 		  SAM_STAT_GOOD;
2381 		scsicmd->scsi_done(scsicmd);
2382 
2383 		return 0;
2384 	}
2385 
2386 	case MODE_SENSE:
2387 	{
2388 		char mode_buf[7];
2389 		int mode_buf_length = 4;
2390 
2391 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2392 		mode_buf[0] = 3;	/* Mode data length */
2393 		mode_buf[1] = 0;	/* Medium type - default */
2394 		mode_buf[2] = 0;	/* Device-specific param,
2395 					   bit 8: 0/1 = write enabled/protected
2396 					   bit 4: 0/1 = FUA enabled */
2397 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2398 			mode_buf[2] = 0x10;
2399 		mode_buf[3] = 0;	/* Block descriptor length */
2400 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2401 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2402 			mode_buf[0] = 6;
2403 			mode_buf[4] = 8;
2404 			mode_buf[5] = 1;
2405 			mode_buf[6] = ((aac_cache & 6) == 2)
2406 				? 0 : 0x04; /* WCE */
2407 			mode_buf_length = 7;
2408 			if (mode_buf_length > scsicmd->cmnd[4])
2409 				mode_buf_length = scsicmd->cmnd[4];
2410 		}
2411 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2412 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2413 		scsicmd->scsi_done(scsicmd);
2414 
2415 		return 0;
2416 	}
2417 	case MODE_SENSE_10:
2418 	{
2419 		char mode_buf[11];
2420 		int mode_buf_length = 8;
2421 
2422 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2423 		mode_buf[0] = 0;	/* Mode data length (MSB) */
2424 		mode_buf[1] = 6;	/* Mode data length (LSB) */
2425 		mode_buf[2] = 0;	/* Medium type - default */
2426 		mode_buf[3] = 0;	/* Device-specific param,
2427 					   bit 8: 0/1 = write enabled/protected
2428 					   bit 4: 0/1 = FUA enabled */
2429 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2430 			mode_buf[3] = 0x10;
2431 		mode_buf[4] = 0;	/* reserved */
2432 		mode_buf[5] = 0;	/* reserved */
2433 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
2434 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
2435 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2436 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2437 			mode_buf[1] = 9;
2438 			mode_buf[8] = 8;
2439 			mode_buf[9] = 1;
2440 			mode_buf[10] = ((aac_cache & 6) == 2)
2441 				? 0 : 0x04; /* WCE */
2442 			mode_buf_length = 11;
2443 			if (mode_buf_length > scsicmd->cmnd[8])
2444 				mode_buf_length = scsicmd->cmnd[8];
2445 		}
2446 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2447 
2448 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2449 		scsicmd->scsi_done(scsicmd);
2450 
2451 		return 0;
2452 	}
2453 	case REQUEST_SENSE:
2454 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2455 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2456 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2457 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2458 		scsicmd->scsi_done(scsicmd);
2459 		return 0;
2460 
2461 	case ALLOW_MEDIUM_REMOVAL:
2462 		dprintk((KERN_DEBUG "LOCK command.\n"));
2463 		if (scsicmd->cmnd[4])
2464 			fsa_dev_ptr[cid].locked = 1;
2465 		else
2466 			fsa_dev_ptr[cid].locked = 0;
2467 
2468 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2469 		scsicmd->scsi_done(scsicmd);
2470 		return 0;
2471 	/*
2472 	 *	These commands are all No-Ops
2473 	 */
2474 	case TEST_UNIT_READY:
2475 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2476 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2477 				SAM_STAT_CHECK_CONDITION;
2478 			set_sense(&dev->fsa_dev[cid].sense_data,
2479 				  NOT_READY, SENCODE_BECOMING_READY,
2480 				  ASENCODE_BECOMING_READY, 0, 0);
2481 			memcpy(scsicmd->sense_buffer,
2482 			       &dev->fsa_dev[cid].sense_data,
2483 			       min_t(size_t,
2484 				     sizeof(dev->fsa_dev[cid].sense_data),
2485 				     SCSI_SENSE_BUFFERSIZE));
2486 			scsicmd->scsi_done(scsicmd);
2487 			return 0;
2488 		}
2489 		/* FALLTHRU */
2490 	case RESERVE:
2491 	case RELEASE:
2492 	case REZERO_UNIT:
2493 	case REASSIGN_BLOCKS:
2494 	case SEEK_10:
2495 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2496 		scsicmd->scsi_done(scsicmd);
2497 		return 0;
2498 
2499 	case START_STOP:
2500 		return aac_start_stop(scsicmd);
2501 	}
2502 
2503 	switch (scsicmd->cmnd[0])
2504 	{
2505 		case READ_6:
2506 		case READ_10:
2507 		case READ_12:
2508 		case READ_16:
2509 			if (dev->in_reset)
2510 				return -1;
2511 			/*
2512 			 *	Hack to keep track of ordinal number of the device that
2513 			 *	corresponds to a container. Needed to convert
2514 			 *	containers to /dev/sd device names
2515 			 */
2516 
2517 			if (scsicmd->request->rq_disk)
2518 				strlcpy(fsa_dev_ptr[cid].devname,
2519 				scsicmd->request->rq_disk->disk_name,
2520 				min(sizeof(fsa_dev_ptr[cid].devname),
2521 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2522 
2523 			return aac_read(scsicmd);
2524 
2525 		case WRITE_6:
2526 		case WRITE_10:
2527 		case WRITE_12:
2528 		case WRITE_16:
2529 			if (dev->in_reset)
2530 				return -1;
2531 			return aac_write(scsicmd);
2532 
2533 		case SYNCHRONIZE_CACHE:
2534 			if (((aac_cache & 6) == 6) && dev->cache_protected) {
2535 				scsicmd->result = DID_OK << 16 |
2536 					COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2537 				scsicmd->scsi_done(scsicmd);
2538 				return 0;
2539 			}
2540 			/* Issue FIB to tell Firmware to flush it's cache */
2541 			if ((aac_cache & 6) != 2)
2542 				return aac_synchronize(scsicmd);
2543 			/* FALLTHRU */
2544 		default:
2545 			/*
2546 			 *	Unhandled commands
2547 			 */
2548 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2549 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2550 			set_sense(&dev->fsa_dev[cid].sense_data,
2551 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2552 			  ASENCODE_INVALID_COMMAND, 0, 0);
2553 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2554 				min_t(size_t,
2555 				      sizeof(dev->fsa_dev[cid].sense_data),
2556 				      SCSI_SENSE_BUFFERSIZE));
2557 			scsicmd->scsi_done(scsicmd);
2558 			return 0;
2559 	}
2560 }
2561 
2562 static int query_disk(struct aac_dev *dev, void __user *arg)
2563 {
2564 	struct aac_query_disk qd;
2565 	struct fsa_dev_info *fsa_dev_ptr;
2566 
2567 	fsa_dev_ptr = dev->fsa_dev;
2568 	if (!fsa_dev_ptr)
2569 		return -EBUSY;
2570 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2571 		return -EFAULT;
2572 	if (qd.cnum == -1)
2573 		qd.cnum = qd.id;
2574 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2575 	{
2576 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2577 			return -EINVAL;
2578 		qd.instance = dev->scsi_host_ptr->host_no;
2579 		qd.bus = 0;
2580 		qd.id = CONTAINER_TO_ID(qd.cnum);
2581 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2582 	}
2583 	else return -EINVAL;
2584 
2585 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2586 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2587 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2588 
2589 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2590 		qd.unmapped = 1;
2591 	else
2592 		qd.unmapped = 0;
2593 
2594 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2595 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2596 
2597 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2598 		return -EFAULT;
2599 	return 0;
2600 }
2601 
2602 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2603 {
2604 	struct aac_delete_disk dd;
2605 	struct fsa_dev_info *fsa_dev_ptr;
2606 
2607 	fsa_dev_ptr = dev->fsa_dev;
2608 	if (!fsa_dev_ptr)
2609 		return -EBUSY;
2610 
2611 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2612 		return -EFAULT;
2613 
2614 	if (dd.cnum >= dev->maximum_num_containers)
2615 		return -EINVAL;
2616 	/*
2617 	 *	Mark this container as being deleted.
2618 	 */
2619 	fsa_dev_ptr[dd.cnum].deleted = 1;
2620 	/*
2621 	 *	Mark the container as no longer valid
2622 	 */
2623 	fsa_dev_ptr[dd.cnum].valid = 0;
2624 	return 0;
2625 }
2626 
2627 static int delete_disk(struct aac_dev *dev, void __user *arg)
2628 {
2629 	struct aac_delete_disk dd;
2630 	struct fsa_dev_info *fsa_dev_ptr;
2631 
2632 	fsa_dev_ptr = dev->fsa_dev;
2633 	if (!fsa_dev_ptr)
2634 		return -EBUSY;
2635 
2636 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2637 		return -EFAULT;
2638 
2639 	if (dd.cnum >= dev->maximum_num_containers)
2640 		return -EINVAL;
2641 	/*
2642 	 *	If the container is locked, it can not be deleted by the API.
2643 	 */
2644 	if (fsa_dev_ptr[dd.cnum].locked)
2645 		return -EBUSY;
2646 	else {
2647 		/*
2648 		 *	Mark the container as no longer being valid.
2649 		 */
2650 		fsa_dev_ptr[dd.cnum].valid = 0;
2651 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2652 		return 0;
2653 	}
2654 }
2655 
2656 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2657 {
2658 	switch (cmd) {
2659 	case FSACTL_QUERY_DISK:
2660 		return query_disk(dev, arg);
2661 	case FSACTL_DELETE_DISK:
2662 		return delete_disk(dev, arg);
2663 	case FSACTL_FORCE_DELETE_DISK:
2664 		return force_delete_disk(dev, arg);
2665 	case FSACTL_GET_CONTAINERS:
2666 		return aac_get_containers(dev);
2667 	default:
2668 		return -ENOTTY;
2669 	}
2670 }
2671 
2672 /**
2673  *
2674  * aac_srb_callback
2675  * @context: the context set in the fib - here it is scsi cmd
2676  * @fibptr: pointer to the fib
2677  *
2678  * Handles the completion of a scsi command to a non dasd device
2679  *
2680  */
2681 
2682 static void aac_srb_callback(void *context, struct fib * fibptr)
2683 {
2684 	struct aac_dev *dev;
2685 	struct aac_srb_reply *srbreply;
2686 	struct scsi_cmnd *scsicmd;
2687 
2688 	scsicmd = (struct scsi_cmnd *) context;
2689 
2690 	if (!aac_valid_context(scsicmd, fibptr))
2691 		return;
2692 
2693 	BUG_ON(fibptr == NULL);
2694 
2695 	dev = fibptr->dev;
2696 
2697 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2698 
2699 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2700 
2701 	if (fibptr->flags & FIB_CONTEXT_FLAG_FASTRESP) {
2702 		/* fast response */
2703 		srbreply->srb_status = cpu_to_le32(SRB_STATUS_SUCCESS);
2704 		srbreply->scsi_status = cpu_to_le32(SAM_STAT_GOOD);
2705 	} else {
2706 		/*
2707 		 *	Calculate resid for sg
2708 		 */
2709 		scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2710 				   - le32_to_cpu(srbreply->data_xfer_length));
2711 	}
2712 
2713 	scsi_dma_unmap(scsicmd);
2714 
2715 	/* expose physical device if expose_physicald flag is on */
2716 	if (scsicmd->cmnd[0] == INQUIRY && !(scsicmd->cmnd[1] & 0x01)
2717 	  && expose_physicals > 0)
2718 		aac_expose_phy_device(scsicmd);
2719 
2720 	/*
2721 	 * First check the fib status
2722 	 */
2723 
2724 	if (le32_to_cpu(srbreply->status) != ST_OK){
2725 		int len;
2726 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2727 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2728 			    SCSI_SENSE_BUFFERSIZE);
2729 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2730 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2731 	}
2732 
2733 	/*
2734 	 * Next check the srb status
2735 	 */
2736 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2737 	case SRB_STATUS_ERROR_RECOVERY:
2738 	case SRB_STATUS_PENDING:
2739 	case SRB_STATUS_SUCCESS:
2740 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2741 		break;
2742 	case SRB_STATUS_DATA_OVERRUN:
2743 		switch(scsicmd->cmnd[0]){
2744 		case  READ_6:
2745 		case  WRITE_6:
2746 		case  READ_10:
2747 		case  WRITE_10:
2748 		case  READ_12:
2749 		case  WRITE_12:
2750 		case  READ_16:
2751 		case  WRITE_16:
2752 			if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2753 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2754 			} else {
2755 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2756 			}
2757 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2758 			break;
2759 		case INQUIRY: {
2760 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2761 			break;
2762 		}
2763 		default:
2764 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2765 			break;
2766 		}
2767 		break;
2768 	case SRB_STATUS_ABORTED:
2769 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2770 		break;
2771 	case SRB_STATUS_ABORT_FAILED:
2772 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2773 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2774 		break;
2775 	case SRB_STATUS_PARITY_ERROR:
2776 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2777 		break;
2778 	case SRB_STATUS_NO_DEVICE:
2779 	case SRB_STATUS_INVALID_PATH_ID:
2780 	case SRB_STATUS_INVALID_TARGET_ID:
2781 	case SRB_STATUS_INVALID_LUN:
2782 	case SRB_STATUS_SELECTION_TIMEOUT:
2783 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2784 		break;
2785 
2786 	case SRB_STATUS_COMMAND_TIMEOUT:
2787 	case SRB_STATUS_TIMEOUT:
2788 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2789 		break;
2790 
2791 	case SRB_STATUS_BUSY:
2792 		scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2793 		break;
2794 
2795 	case SRB_STATUS_BUS_RESET:
2796 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2797 		break;
2798 
2799 	case SRB_STATUS_MESSAGE_REJECTED:
2800 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2801 		break;
2802 	case SRB_STATUS_REQUEST_FLUSHED:
2803 	case SRB_STATUS_ERROR:
2804 	case SRB_STATUS_INVALID_REQUEST:
2805 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2806 	case SRB_STATUS_NO_HBA:
2807 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2808 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2809 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2810 	case SRB_STATUS_DELAYED_RETRY:
2811 	case SRB_STATUS_BAD_FUNCTION:
2812 	case SRB_STATUS_NOT_STARTED:
2813 	case SRB_STATUS_NOT_IN_USE:
2814 	case SRB_STATUS_FORCE_ABORT:
2815 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2816 	default:
2817 #ifdef AAC_DETAILED_STATUS_INFO
2818 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2819 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2820 			aac_get_status_string(
2821 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2822 			scsicmd->cmnd[0],
2823 			le32_to_cpu(srbreply->scsi_status));
2824 #endif
2825 		if ((scsicmd->cmnd[0] == ATA_12)
2826 		  || (scsicmd->cmnd[0] == ATA_16)) {
2827 			if (scsicmd->cmnd[2] & (0x01 << 5)) {
2828 				scsicmd->result = DID_OK << 16
2829 						| COMMAND_COMPLETE << 8;
2830 				break;
2831 			} else {
2832 				scsicmd->result = DID_ERROR << 16
2833 						| COMMAND_COMPLETE << 8;
2834 				break;
2835 			}
2836 		} else {
2837 			scsicmd->result = DID_ERROR << 16
2838 					| COMMAND_COMPLETE << 8;
2839 			break;
2840 		}
2841 	}
2842 	if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2843 		int len;
2844 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2845 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2846 			    SCSI_SENSE_BUFFERSIZE);
2847 #ifdef AAC_DETAILED_STATUS_INFO
2848 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2849 					le32_to_cpu(srbreply->status), len);
2850 #endif
2851 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2852 	}
2853 	/*
2854 	 * OR in the scsi status (already shifted up a bit)
2855 	 */
2856 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2857 
2858 	aac_fib_complete(fibptr);
2859 	aac_fib_free(fibptr);
2860 	scsicmd->scsi_done(scsicmd);
2861 }
2862 
2863 /**
2864  *
2865  * aac_send_scb_fib
2866  * @scsicmd: the scsi command block
2867  *
2868  * This routine will form a FIB and fill in the aac_srb from the
2869  * scsicmd passed in.
2870  */
2871 
2872 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2873 {
2874 	struct fib* cmd_fibcontext;
2875 	struct aac_dev* dev;
2876 	int status;
2877 
2878 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2879 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2880 			scsicmd->device->lun > 7) {
2881 		scsicmd->result = DID_NO_CONNECT << 16;
2882 		scsicmd->scsi_done(scsicmd);
2883 		return 0;
2884 	}
2885 
2886 	/*
2887 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2888 	 */
2889 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2890 		return -1;
2891 	}
2892 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2893 
2894 	/*
2895 	 *	Check that the command queued to the controller
2896 	 */
2897 	if (status == -EINPROGRESS) {
2898 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2899 		return 0;
2900 	}
2901 
2902 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2903 	aac_fib_complete(cmd_fibcontext);
2904 	aac_fib_free(cmd_fibcontext);
2905 
2906 	return -1;
2907 }
2908 
2909 static long aac_build_sg(struct scsi_cmnd *scsicmd, struct sgmap *psg)
2910 {
2911 	struct aac_dev *dev;
2912 	unsigned long byte_count = 0;
2913 	int nseg;
2914 
2915 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2916 	// Get rid of old data
2917 	psg->count = 0;
2918 	psg->sg[0].addr = 0;
2919 	psg->sg[0].count = 0;
2920 
2921 	nseg = scsi_dma_map(scsicmd);
2922 	if (nseg < 0)
2923 		return nseg;
2924 	if (nseg) {
2925 		struct scatterlist *sg;
2926 		int i;
2927 
2928 		psg->count = cpu_to_le32(nseg);
2929 
2930 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2931 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2932 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2933 			byte_count += sg_dma_len(sg);
2934 		}
2935 		/* hba wants the size to be exact */
2936 		if (byte_count > scsi_bufflen(scsicmd)) {
2937 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2938 				(byte_count - scsi_bufflen(scsicmd));
2939 			psg->sg[i-1].count = cpu_to_le32(temp);
2940 			byte_count = scsi_bufflen(scsicmd);
2941 		}
2942 		/* Check for command underflow */
2943 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2944 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2945 					byte_count, scsicmd->underflow);
2946 		}
2947 	}
2948 	return byte_count;
2949 }
2950 
2951 
2952 static long aac_build_sg64(struct scsi_cmnd *scsicmd, struct sgmap64 *psg)
2953 {
2954 	struct aac_dev *dev;
2955 	unsigned long byte_count = 0;
2956 	u64 addr;
2957 	int nseg;
2958 
2959 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2960 	// Get rid of old data
2961 	psg->count = 0;
2962 	psg->sg[0].addr[0] = 0;
2963 	psg->sg[0].addr[1] = 0;
2964 	psg->sg[0].count = 0;
2965 
2966 	nseg = scsi_dma_map(scsicmd);
2967 	if (nseg < 0)
2968 		return nseg;
2969 	if (nseg) {
2970 		struct scatterlist *sg;
2971 		int i;
2972 
2973 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2974 			int count = sg_dma_len(sg);
2975 			addr = sg_dma_address(sg);
2976 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2977 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2978 			psg->sg[i].count = cpu_to_le32(count);
2979 			byte_count += count;
2980 		}
2981 		psg->count = cpu_to_le32(nseg);
2982 		/* hba wants the size to be exact */
2983 		if (byte_count > scsi_bufflen(scsicmd)) {
2984 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2985 				(byte_count - scsi_bufflen(scsicmd));
2986 			psg->sg[i-1].count = cpu_to_le32(temp);
2987 			byte_count = scsi_bufflen(scsicmd);
2988 		}
2989 		/* Check for command underflow */
2990 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2991 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2992 					byte_count, scsicmd->underflow);
2993 		}
2994 	}
2995 	return byte_count;
2996 }
2997 
2998 static long aac_build_sgraw(struct scsi_cmnd *scsicmd, struct sgmapraw *psg)
2999 {
3000 	unsigned long byte_count = 0;
3001 	int nseg;
3002 
3003 	// Get rid of old data
3004 	psg->count = 0;
3005 	psg->sg[0].next = 0;
3006 	psg->sg[0].prev = 0;
3007 	psg->sg[0].addr[0] = 0;
3008 	psg->sg[0].addr[1] = 0;
3009 	psg->sg[0].count = 0;
3010 	psg->sg[0].flags = 0;
3011 
3012 	nseg = scsi_dma_map(scsicmd);
3013 	if (nseg < 0)
3014 		return nseg;
3015 	if (nseg) {
3016 		struct scatterlist *sg;
3017 		int i;
3018 
3019 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
3020 			int count = sg_dma_len(sg);
3021 			u64 addr = sg_dma_address(sg);
3022 			psg->sg[i].next = 0;
3023 			psg->sg[i].prev = 0;
3024 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
3025 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
3026 			psg->sg[i].count = cpu_to_le32(count);
3027 			psg->sg[i].flags = 0;
3028 			byte_count += count;
3029 		}
3030 		psg->count = cpu_to_le32(nseg);
3031 		/* hba wants the size to be exact */
3032 		if (byte_count > scsi_bufflen(scsicmd)) {
3033 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
3034 				(byte_count - scsi_bufflen(scsicmd));
3035 			psg->sg[i-1].count = cpu_to_le32(temp);
3036 			byte_count = scsi_bufflen(scsicmd);
3037 		}
3038 		/* Check for command underflow */
3039 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
3040 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3041 					byte_count, scsicmd->underflow);
3042 		}
3043 	}
3044 	return byte_count;
3045 }
3046 
3047 static long aac_build_sgraw2(struct scsi_cmnd *scsicmd,
3048 				struct aac_raw_io2 *rio2, int sg_max)
3049 {
3050 	unsigned long byte_count = 0;
3051 	int nseg;
3052 
3053 	nseg = scsi_dma_map(scsicmd);
3054 	if (nseg < 0)
3055 		return nseg;
3056 	if (nseg) {
3057 		struct scatterlist *sg;
3058 		int i, conformable = 0;
3059 		u32 min_size = PAGE_SIZE, cur_size;
3060 
3061 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
3062 			int count = sg_dma_len(sg);
3063 			u64 addr = sg_dma_address(sg);
3064 
3065 			BUG_ON(i >= sg_max);
3066 			rio2->sge[i].addrHigh = cpu_to_le32((u32)(addr>>32));
3067 			rio2->sge[i].addrLow = cpu_to_le32((u32)(addr & 0xffffffff));
3068 			cur_size = cpu_to_le32(count);
3069 			rio2->sge[i].length = cur_size;
3070 			rio2->sge[i].flags = 0;
3071 			if (i == 0) {
3072 				conformable = 1;
3073 				rio2->sgeFirstSize = cur_size;
3074 			} else if (i == 1) {
3075 				rio2->sgeNominalSize = cur_size;
3076 				min_size = cur_size;
3077 			} else if ((i+1) < nseg && cur_size != rio2->sgeNominalSize) {
3078 				conformable = 0;
3079 				if (cur_size < min_size)
3080 					min_size = cur_size;
3081 			}
3082 			byte_count += count;
3083 		}
3084 
3085 		/* hba wants the size to be exact */
3086 		if (byte_count > scsi_bufflen(scsicmd)) {
3087 			u32 temp = le32_to_cpu(rio2->sge[i-1].length) -
3088 				(byte_count - scsi_bufflen(scsicmd));
3089 			rio2->sge[i-1].length = cpu_to_le32(temp);
3090 			byte_count = scsi_bufflen(scsicmd);
3091 		}
3092 
3093 		rio2->sgeCnt = cpu_to_le32(nseg);
3094 		rio2->flags |= cpu_to_le16(RIO2_SG_FORMAT_IEEE1212);
3095 		/* not conformable: evaluate required sg elements */
3096 		if (!conformable) {
3097 			int j, nseg_new = nseg, err_found;
3098 			for (i = min_size / PAGE_SIZE; i >= 1; --i) {
3099 				err_found = 0;
3100 				nseg_new = 2;
3101 				for (j = 1; j < nseg - 1; ++j) {
3102 					if (rio2->sge[j].length % (i*PAGE_SIZE)) {
3103 						err_found = 1;
3104 						break;
3105 					}
3106 					nseg_new += (rio2->sge[j].length / (i*PAGE_SIZE));
3107 				}
3108 				if (!err_found)
3109 					break;
3110 			}
3111 			if (i > 0 && nseg_new <= sg_max)
3112 				aac_convert_sgraw2(rio2, i, nseg, nseg_new);
3113 		} else
3114 			rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3115 
3116 		/* Check for command underflow */
3117 		if (scsicmd->underflow && (byte_count < scsicmd->underflow)) {
3118 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
3119 					byte_count, scsicmd->underflow);
3120 		}
3121 	}
3122 
3123 	return byte_count;
3124 }
3125 
3126 static int aac_convert_sgraw2(struct aac_raw_io2 *rio2, int pages, int nseg, int nseg_new)
3127 {
3128 	struct sge_ieee1212 *sge;
3129 	int i, j, pos;
3130 	u32 addr_low;
3131 
3132 	if (aac_convert_sgl == 0)
3133 		return 0;
3134 
3135 	sge = kmalloc(nseg_new * sizeof(struct sge_ieee1212), GFP_ATOMIC);
3136 	if (sge == NULL)
3137 		return -1;
3138 
3139 	for (i = 1, pos = 1; i < nseg-1; ++i) {
3140 		for (j = 0; j < rio2->sge[i].length / (pages * PAGE_SIZE); ++j) {
3141 			addr_low = rio2->sge[i].addrLow + j * pages * PAGE_SIZE;
3142 			sge[pos].addrLow = addr_low;
3143 			sge[pos].addrHigh = rio2->sge[i].addrHigh;
3144 			if (addr_low < rio2->sge[i].addrLow)
3145 				sge[pos].addrHigh++;
3146 			sge[pos].length = pages * PAGE_SIZE;
3147 			sge[pos].flags = 0;
3148 			pos++;
3149 		}
3150 	}
3151 	sge[pos] = rio2->sge[nseg-1];
3152 	memcpy(&rio2->sge[1], &sge[1], (nseg_new-1)*sizeof(struct sge_ieee1212));
3153 
3154 	kfree(sge);
3155 	rio2->sgeCnt = cpu_to_le32(nseg_new);
3156 	rio2->flags |= cpu_to_le16(RIO2_SGL_CONFORMANT);
3157 	rio2->sgeNominalSize = pages * PAGE_SIZE;
3158 	return 0;
3159 }
3160 
3161 #ifdef AAC_DETAILED_STATUS_INFO
3162 
3163 struct aac_srb_status_info {
3164 	u32	status;
3165 	char	*str;
3166 };
3167 
3168 
3169 static struct aac_srb_status_info srb_status_info[] = {
3170 	{ SRB_STATUS_PENDING,		"Pending Status"},
3171 	{ SRB_STATUS_SUCCESS,		"Success"},
3172 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
3173 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
3174 	{ SRB_STATUS_ERROR,		"Error Event"},
3175 	{ SRB_STATUS_BUSY,		"Device Busy"},
3176 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
3177 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
3178 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
3179 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
3180 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
3181 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
3182 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
3183 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
3184 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
3185 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
3186 	{ SRB_STATUS_NO_HBA,		"No HBA"},
3187 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
3188 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
3189 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
3190 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
3191 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
3192 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
3193 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
3194 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
3195 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
3196 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
3197 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
3198 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
3199 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
3200 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
3201 	{ 0xff,				"Unknown Error"}
3202 };
3203 
3204 char *aac_get_status_string(u32 status)
3205 {
3206 	int i;
3207 
3208 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
3209 		if (srb_status_info[i].status == status)
3210 			return srb_status_info[i].str;
3211 
3212 	return "Bad Status Code";
3213 }
3214 
3215 #endif
3216