xref: /linux/drivers/scsi/aacraid/aachba.c (revision 920925f90fa6455f7e8c9db0e215e706cd7dedeb)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/completion.h>
33 #include <linux/blkdev.h>
34 #include <asm/uaccess.h>
35 #include <linux/highmem.h> /* For flush_kernel_dcache_page */
36 
37 #include <scsi/scsi.h>
38 #include <scsi/scsi_cmnd.h>
39 #include <scsi/scsi_device.h>
40 #include <scsi/scsi_host.h>
41 
42 #include "aacraid.h"
43 
44 /* values for inqd_pdt: Peripheral device type in plain English */
45 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
46 #define	INQD_PDT_PROC	0x03	/* Processor device */
47 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
48 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
49 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
50 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
51 
52 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
53 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
54 
55 /*
56  *	Sense codes
57  */
58 
59 #define SENCODE_NO_SENSE			0x00
60 #define SENCODE_END_OF_DATA			0x00
61 #define SENCODE_BECOMING_READY			0x04
62 #define SENCODE_INIT_CMD_REQUIRED		0x04
63 #define SENCODE_PARAM_LIST_LENGTH_ERROR		0x1A
64 #define SENCODE_INVALID_COMMAND			0x20
65 #define SENCODE_LBA_OUT_OF_RANGE		0x21
66 #define SENCODE_INVALID_CDB_FIELD		0x24
67 #define SENCODE_LUN_NOT_SUPPORTED		0x25
68 #define SENCODE_INVALID_PARAM_FIELD		0x26
69 #define SENCODE_PARAM_NOT_SUPPORTED		0x26
70 #define SENCODE_PARAM_VALUE_INVALID		0x26
71 #define SENCODE_RESET_OCCURRED			0x29
72 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x3E
73 #define SENCODE_INQUIRY_DATA_CHANGED		0x3F
74 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x39
75 #define SENCODE_DIAGNOSTIC_FAILURE		0x40
76 #define SENCODE_INTERNAL_TARGET_FAILURE		0x44
77 #define SENCODE_INVALID_MESSAGE_ERROR		0x49
78 #define SENCODE_LUN_FAILED_SELF_CONFIG		0x4c
79 #define SENCODE_OVERLAPPED_COMMAND		0x4E
80 
81 /*
82  *	Additional sense codes
83  */
84 
85 #define ASENCODE_NO_SENSE			0x00
86 #define ASENCODE_END_OF_DATA			0x05
87 #define ASENCODE_BECOMING_READY			0x01
88 #define ASENCODE_INIT_CMD_REQUIRED		0x02
89 #define ASENCODE_PARAM_LIST_LENGTH_ERROR	0x00
90 #define ASENCODE_INVALID_COMMAND		0x00
91 #define ASENCODE_LBA_OUT_OF_RANGE		0x00
92 #define ASENCODE_INVALID_CDB_FIELD		0x00
93 #define ASENCODE_LUN_NOT_SUPPORTED		0x00
94 #define ASENCODE_INVALID_PARAM_FIELD		0x00
95 #define ASENCODE_PARAM_NOT_SUPPORTED		0x01
96 #define ASENCODE_PARAM_VALUE_INVALID		0x02
97 #define ASENCODE_RESET_OCCURRED			0x00
98 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET	0x00
99 #define ASENCODE_INQUIRY_DATA_CHANGED		0x03
100 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED	0x00
101 #define ASENCODE_DIAGNOSTIC_FAILURE		0x80
102 #define ASENCODE_INTERNAL_TARGET_FAILURE	0x00
103 #define ASENCODE_INVALID_MESSAGE_ERROR		0x00
104 #define ASENCODE_LUN_FAILED_SELF_CONFIG		0x00
105 #define ASENCODE_OVERLAPPED_COMMAND		0x00
106 
107 #define BYTE0(x) (unsigned char)(x)
108 #define BYTE1(x) (unsigned char)((x) >> 8)
109 #define BYTE2(x) (unsigned char)((x) >> 16)
110 #define BYTE3(x) (unsigned char)((x) >> 24)
111 
112 /*------------------------------------------------------------------------------
113  *              S T R U C T S / T Y P E D E F S
114  *----------------------------------------------------------------------------*/
115 /* SCSI inquiry data */
116 struct inquiry_data {
117 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type */
118 	u8 inqd_dtq;	/* RMB | Device Type Qualifier */
119 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
120 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
121 	u8 inqd_len;	/* Additional length (n-4) */
122 	u8 inqd_pad1[2];/* Reserved - must be zero */
123 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
124 	u8 inqd_vid[8];	/* Vendor ID */
125 	u8 inqd_pid[16];/* Product ID */
126 	u8 inqd_prl[4];	/* Product Revision Level */
127 };
128 
129 /*
130  *              M O D U L E   G L O B A L S
131  */
132 
133 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
134 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
135 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
137 #ifdef AAC_DETAILED_STATUS_INFO
138 static char *aac_get_status_string(u32 status);
139 #endif
140 
141 /*
142  *	Non dasd selection is handled entirely in aachba now
143  */
144 
145 static int nondasd = -1;
146 static int aac_cache = 2;	/* WCE=0 to avoid performance problems */
147 static int dacmode = -1;
148 int aac_msi;
149 int aac_commit = -1;
150 int startup_timeout = 180;
151 int aif_timeout = 120;
152 
153 module_param(nondasd, int, S_IRUGO|S_IWUSR);
154 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices."
155 	" 0=off, 1=on");
156 module_param_named(cache, aac_cache, int, S_IRUGO|S_IWUSR);
157 MODULE_PARM_DESC(cache, "Disable Queue Flush commands:\n"
158 	"\tbit 0 - Disable FUA in WRITE SCSI commands\n"
159 	"\tbit 1 - Disable SYNCHRONIZE_CACHE SCSI command\n"
160 	"\tbit 2 - Disable only if Battery is protecting Cache");
161 module_param(dacmode, int, S_IRUGO|S_IWUSR);
162 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC."
163 	" 0=off, 1=on");
164 module_param_named(commit, aac_commit, int, S_IRUGO|S_IWUSR);
165 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the"
166 	" adapter for foreign arrays.\n"
167 	"This is typically needed in systems that do not have a BIOS."
168 	" 0=off, 1=on");
169 module_param_named(msi, aac_msi, int, S_IRUGO|S_IWUSR);
170 MODULE_PARM_DESC(msi, "IRQ handling."
171 	" 0=PIC(default), 1=MSI, 2=MSI-X(unsupported, uses MSI)");
172 module_param(startup_timeout, int, S_IRUGO|S_IWUSR);
173 MODULE_PARM_DESC(startup_timeout, "The duration of time in seconds to wait for"
174 	" adapter to have it's kernel up and\n"
175 	"running. This is typically adjusted for large systems that do not"
176 	" have a BIOS.");
177 module_param(aif_timeout, int, S_IRUGO|S_IWUSR);
178 MODULE_PARM_DESC(aif_timeout, "The duration of time in seconds to wait for"
179 	" applications to pick up AIFs before\n"
180 	"deregistering them. This is typically adjusted for heavily burdened"
181 	" systems.");
182 
183 int numacb = -1;
184 module_param(numacb, int, S_IRUGO|S_IWUSR);
185 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control"
186 	" blocks (FIB) allocated. Valid values are 512 and down. Default is"
187 	" to use suggestion from Firmware.");
188 
189 int acbsize = -1;
190 module_param(acbsize, int, S_IRUGO|S_IWUSR);
191 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB)"
192 	" size. Valid values are 512, 2048, 4096 and 8192. Default is to use"
193 	" suggestion from Firmware.");
194 
195 int update_interval = 30 * 60;
196 module_param(update_interval, int, S_IRUGO|S_IWUSR);
197 MODULE_PARM_DESC(update_interval, "Interval in seconds between time sync"
198 	" updates issued to adapter.");
199 
200 int check_interval = 24 * 60 * 60;
201 module_param(check_interval, int, S_IRUGO|S_IWUSR);
202 MODULE_PARM_DESC(check_interval, "Interval in seconds between adapter health"
203 	" checks.");
204 
205 int aac_check_reset = 1;
206 module_param_named(check_reset, aac_check_reset, int, S_IRUGO|S_IWUSR);
207 MODULE_PARM_DESC(check_reset, "If adapter fails health check, reset the"
208 	" adapter. a value of -1 forces the reset to adapters programmed to"
209 	" ignore it.");
210 
211 int expose_physicals = -1;
212 module_param(expose_physicals, int, S_IRUGO|S_IWUSR);
213 MODULE_PARM_DESC(expose_physicals, "Expose physical components of the arrays."
214 	" -1=protect 0=off, 1=on");
215 
216 int aac_reset_devices;
217 module_param_named(reset_devices, aac_reset_devices, int, S_IRUGO|S_IWUSR);
218 MODULE_PARM_DESC(reset_devices, "Force an adapter reset at initialization.");
219 
220 int aac_wwn = 1;
221 module_param_named(wwn, aac_wwn, int, S_IRUGO|S_IWUSR);
222 MODULE_PARM_DESC(wwn, "Select a WWN type for the arrays:\n"
223 	"\t0 - Disable\n"
224 	"\t1 - Array Meta Data Signature (default)\n"
225 	"\t2 - Adapter Serial Number");
226 
227 
228 static inline int aac_valid_context(struct scsi_cmnd *scsicmd,
229 		struct fib *fibptr) {
230 	struct scsi_device *device;
231 
232 	if (unlikely(!scsicmd || !scsicmd->scsi_done)) {
233 		dprintk((KERN_WARNING "aac_valid_context: scsi command corrupt\n"));
234 		aac_fib_complete(fibptr);
235 		aac_fib_free(fibptr);
236 		return 0;
237 	}
238 	scsicmd->SCp.phase = AAC_OWNER_MIDLEVEL;
239 	device = scsicmd->device;
240 	if (unlikely(!device || !scsi_device_online(device))) {
241 		dprintk((KERN_WARNING "aac_valid_context: scsi device corrupt\n"));
242 		aac_fib_complete(fibptr);
243 		aac_fib_free(fibptr);
244 		return 0;
245 	}
246 	return 1;
247 }
248 
249 /**
250  *	aac_get_config_status	-	check the adapter configuration
251  *	@common: adapter to query
252  *
253  *	Query config status, and commit the configuration if needed.
254  */
255 int aac_get_config_status(struct aac_dev *dev, int commit_flag)
256 {
257 	int status = 0;
258 	struct fib * fibptr;
259 
260 	if (!(fibptr = aac_fib_alloc(dev)))
261 		return -ENOMEM;
262 
263 	aac_fib_init(fibptr);
264 	{
265 		struct aac_get_config_status *dinfo;
266 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
267 
268 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
269 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
270 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
271 	}
272 
273 	status = aac_fib_send(ContainerCommand,
274 			    fibptr,
275 			    sizeof (struct aac_get_config_status),
276 			    FsaNormal,
277 			    1, 1,
278 			    NULL, NULL);
279 	if (status < 0) {
280 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
281 	} else {
282 		struct aac_get_config_status_resp *reply
283 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
284 		dprintk((KERN_WARNING
285 		  "aac_get_config_status: response=%d status=%d action=%d\n",
286 		  le32_to_cpu(reply->response),
287 		  le32_to_cpu(reply->status),
288 		  le32_to_cpu(reply->data.action)));
289 		if ((le32_to_cpu(reply->response) != ST_OK) ||
290 		     (le32_to_cpu(reply->status) != CT_OK) ||
291 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
292 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
293 			status = -EINVAL;
294 		}
295 	}
296 	/* Do not set XferState to zero unless receives a response from F/W */
297 	if (status >= 0)
298 		aac_fib_complete(fibptr);
299 
300 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
301 	if (status >= 0) {
302 		if ((aac_commit == 1) || commit_flag) {
303 			struct aac_commit_config * dinfo;
304 			aac_fib_init(fibptr);
305 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
306 
307 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
308 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
309 
310 			status = aac_fib_send(ContainerCommand,
311 				    fibptr,
312 				    sizeof (struct aac_commit_config),
313 				    FsaNormal,
314 				    1, 1,
315 				    NULL, NULL);
316 			/* Do not set XferState to zero unless
317 			 * receives a response from F/W */
318 			if (status >= 0)
319 				aac_fib_complete(fibptr);
320 		} else if (aac_commit == 0) {
321 			printk(KERN_WARNING
322 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
323 		}
324 	}
325 	/* FIB should be freed only after getting the response from the F/W */
326 	if (status != -ERESTARTSYS)
327 		aac_fib_free(fibptr);
328 	return status;
329 }
330 
331 /**
332  *	aac_get_containers	-	list containers
333  *	@common: adapter to probe
334  *
335  *	Make a list of all containers on this controller
336  */
337 int aac_get_containers(struct aac_dev *dev)
338 {
339 	struct fsa_dev_info *fsa_dev_ptr;
340 	u32 index;
341 	int status = 0;
342 	struct fib * fibptr;
343 	struct aac_get_container_count *dinfo;
344 	struct aac_get_container_count_resp *dresp;
345 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
346 
347 	if (!(fibptr = aac_fib_alloc(dev)))
348 		return -ENOMEM;
349 
350 	aac_fib_init(fibptr);
351 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
352 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
353 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
354 
355 	status = aac_fib_send(ContainerCommand,
356 		    fibptr,
357 		    sizeof (struct aac_get_container_count),
358 		    FsaNormal,
359 		    1, 1,
360 		    NULL, NULL);
361 	if (status >= 0) {
362 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
363 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
364 		aac_fib_complete(fibptr);
365 	}
366 	/* FIB should be freed only after getting the response from the F/W */
367 	if (status != -ERESTARTSYS)
368 		aac_fib_free(fibptr);
369 
370 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
371 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
372 	fsa_dev_ptr = kzalloc(sizeof(*fsa_dev_ptr) * maximum_num_containers,
373 			GFP_KERNEL);
374 	if (!fsa_dev_ptr)
375 		return -ENOMEM;
376 
377 	dev->fsa_dev = fsa_dev_ptr;
378 	dev->maximum_num_containers = maximum_num_containers;
379 
380 	for (index = 0; index < dev->maximum_num_containers; ) {
381 		fsa_dev_ptr[index].devname[0] = '\0';
382 
383 		status = aac_probe_container(dev, index);
384 
385 		if (status < 0) {
386 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
387 			break;
388 		}
389 
390 		/*
391 		 *	If there are no more containers, then stop asking.
392 		 */
393 		if (++index >= status)
394 			break;
395 	}
396 	return status;
397 }
398 
399 static void get_container_name_callback(void *context, struct fib * fibptr)
400 {
401 	struct aac_get_name_resp * get_name_reply;
402 	struct scsi_cmnd * scsicmd;
403 
404 	scsicmd = (struct scsi_cmnd *) context;
405 
406 	if (!aac_valid_context(scsicmd, fibptr))
407 		return;
408 
409 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
410 	BUG_ON(fibptr == NULL);
411 
412 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
413 	/* Failure is irrelevant, using default value instead */
414 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
415 	 && (get_name_reply->data[0] != '\0')) {
416 		char *sp = get_name_reply->data;
417 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
418 		while (*sp == ' ')
419 			++sp;
420 		if (*sp) {
421 			struct inquiry_data inq;
422 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
423 			int count = sizeof(d);
424 			char *dp = d;
425 			do {
426 				*dp++ = (*sp) ? *sp++ : ' ';
427 			} while (--count > 0);
428 
429 			scsi_sg_copy_to_buffer(scsicmd, &inq, sizeof(inq));
430 			memcpy(inq.inqd_pid, d, sizeof(d));
431 			scsi_sg_copy_from_buffer(scsicmd, &inq, sizeof(inq));
432 		}
433 	}
434 
435 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
436 
437 	aac_fib_complete(fibptr);
438 	aac_fib_free(fibptr);
439 	scsicmd->scsi_done(scsicmd);
440 }
441 
442 /**
443  *	aac_get_container_name	-	get container name, none blocking.
444  */
445 static int aac_get_container_name(struct scsi_cmnd * scsicmd)
446 {
447 	int status;
448 	struct aac_get_name *dinfo;
449 	struct fib * cmd_fibcontext;
450 	struct aac_dev * dev;
451 
452 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
453 
454 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
455 		return -ENOMEM;
456 
457 	aac_fib_init(cmd_fibcontext);
458 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
459 
460 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
461 	dinfo->type = cpu_to_le32(CT_READ_NAME);
462 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
463 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
464 
465 	status = aac_fib_send(ContainerCommand,
466 		  cmd_fibcontext,
467 		  sizeof (struct aac_get_name),
468 		  FsaNormal,
469 		  0, 1,
470 		  (fib_callback)get_container_name_callback,
471 		  (void *) scsicmd);
472 
473 	/*
474 	 *	Check that the command queued to the controller
475 	 */
476 	if (status == -EINPROGRESS) {
477 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
478 		return 0;
479 	}
480 
481 	printk(KERN_WARNING "aac_get_container_name: aac_fib_send failed with status: %d.\n", status);
482 	aac_fib_complete(cmd_fibcontext);
483 	aac_fib_free(cmd_fibcontext);
484 	return -1;
485 }
486 
487 static int aac_probe_container_callback2(struct scsi_cmnd * scsicmd)
488 {
489 	struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
490 
491 	if ((fsa_dev_ptr[scmd_id(scsicmd)].valid & 1))
492 		return aac_scsi_cmd(scsicmd);
493 
494 	scsicmd->result = DID_NO_CONNECT << 16;
495 	scsicmd->scsi_done(scsicmd);
496 	return 0;
497 }
498 
499 static void _aac_probe_container2(void * context, struct fib * fibptr)
500 {
501 	struct fsa_dev_info *fsa_dev_ptr;
502 	int (*callback)(struct scsi_cmnd *);
503 	struct scsi_cmnd * scsicmd = (struct scsi_cmnd *)context;
504 
505 
506 	if (!aac_valid_context(scsicmd, fibptr))
507 		return;
508 
509 	scsicmd->SCp.Status = 0;
510 	fsa_dev_ptr = fibptr->dev->fsa_dev;
511 	if (fsa_dev_ptr) {
512 		struct aac_mount * dresp = (struct aac_mount *) fib_data(fibptr);
513 		fsa_dev_ptr += scmd_id(scsicmd);
514 
515 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
516 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
517 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
518 			fsa_dev_ptr->valid = 1;
519 			/* sense_key holds the current state of the spin-up */
520 			if (dresp->mnt[0].state & cpu_to_le32(FSCS_NOT_READY))
521 				fsa_dev_ptr->sense_data.sense_key = NOT_READY;
522 			else if (fsa_dev_ptr->sense_data.sense_key == NOT_READY)
523 				fsa_dev_ptr->sense_data.sense_key = NO_SENSE;
524 			fsa_dev_ptr->type = le32_to_cpu(dresp->mnt[0].vol);
525 			fsa_dev_ptr->size
526 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
527 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
528 			fsa_dev_ptr->ro = ((le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) != 0);
529 		}
530 		if ((fsa_dev_ptr->valid & 1) == 0)
531 			fsa_dev_ptr->valid = 0;
532 		scsicmd->SCp.Status = le32_to_cpu(dresp->count);
533 	}
534 	aac_fib_complete(fibptr);
535 	aac_fib_free(fibptr);
536 	callback = (int (*)(struct scsi_cmnd *))(scsicmd->SCp.ptr);
537 	scsicmd->SCp.ptr = NULL;
538 	(*callback)(scsicmd);
539 	return;
540 }
541 
542 static void _aac_probe_container1(void * context, struct fib * fibptr)
543 {
544 	struct scsi_cmnd * scsicmd;
545 	struct aac_mount * dresp;
546 	struct aac_query_mount *dinfo;
547 	int status;
548 
549 	dresp = (struct aac_mount *) fib_data(fibptr);
550 	dresp->mnt[0].capacityhigh = 0;
551 	if ((le32_to_cpu(dresp->status) != ST_OK) ||
552 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE)) {
553 		_aac_probe_container2(context, fibptr);
554 		return;
555 	}
556 	scsicmd = (struct scsi_cmnd *) context;
557 
558 	if (!aac_valid_context(scsicmd, fibptr))
559 		return;
560 
561 	aac_fib_init(fibptr);
562 
563 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
564 
565 	dinfo->command = cpu_to_le32(VM_NameServe64);
566 	dinfo->count = cpu_to_le32(scmd_id(scsicmd));
567 	dinfo->type = cpu_to_le32(FT_FILESYS);
568 
569 	status = aac_fib_send(ContainerCommand,
570 			  fibptr,
571 			  sizeof(struct aac_query_mount),
572 			  FsaNormal,
573 			  0, 1,
574 			  _aac_probe_container2,
575 			  (void *) scsicmd);
576 	/*
577 	 *	Check that the command queued to the controller
578 	 */
579 	if (status == -EINPROGRESS)
580 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
581 	else if (status < 0) {
582 		/* Inherit results from VM_NameServe, if any */
583 		dresp->status = cpu_to_le32(ST_OK);
584 		_aac_probe_container2(context, fibptr);
585 	}
586 }
587 
588 static int _aac_probe_container(struct scsi_cmnd * scsicmd, int (*callback)(struct scsi_cmnd *))
589 {
590 	struct fib * fibptr;
591 	int status = -ENOMEM;
592 
593 	if ((fibptr = aac_fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata))) {
594 		struct aac_query_mount *dinfo;
595 
596 		aac_fib_init(fibptr);
597 
598 		dinfo = (struct aac_query_mount *)fib_data(fibptr);
599 
600 		dinfo->command = cpu_to_le32(VM_NameServe);
601 		dinfo->count = cpu_to_le32(scmd_id(scsicmd));
602 		dinfo->type = cpu_to_le32(FT_FILESYS);
603 		scsicmd->SCp.ptr = (char *)callback;
604 
605 		status = aac_fib_send(ContainerCommand,
606 			  fibptr,
607 			  sizeof(struct aac_query_mount),
608 			  FsaNormal,
609 			  0, 1,
610 			  _aac_probe_container1,
611 			  (void *) scsicmd);
612 		/*
613 		 *	Check that the command queued to the controller
614 		 */
615 		if (status == -EINPROGRESS) {
616 			scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
617 			return 0;
618 		}
619 		if (status < 0) {
620 			scsicmd->SCp.ptr = NULL;
621 			aac_fib_complete(fibptr);
622 			aac_fib_free(fibptr);
623 		}
624 	}
625 	if (status < 0) {
626 		struct fsa_dev_info *fsa_dev_ptr = ((struct aac_dev *)(scsicmd->device->host->hostdata))->fsa_dev;
627 		if (fsa_dev_ptr) {
628 			fsa_dev_ptr += scmd_id(scsicmd);
629 			if ((fsa_dev_ptr->valid & 1) == 0) {
630 				fsa_dev_ptr->valid = 0;
631 				return (*callback)(scsicmd);
632 			}
633 		}
634 	}
635 	return status;
636 }
637 
638 /**
639  *	aac_probe_container		-	query a logical volume
640  *	@dev: device to query
641  *	@cid: container identifier
642  *
643  *	Queries the controller about the given volume. The volume information
644  *	is updated in the struct fsa_dev_info structure rather than returned.
645  */
646 static int aac_probe_container_callback1(struct scsi_cmnd * scsicmd)
647 {
648 	scsicmd->device = NULL;
649 	return 0;
650 }
651 
652 int aac_probe_container(struct aac_dev *dev, int cid)
653 {
654 	struct scsi_cmnd *scsicmd = kmalloc(sizeof(*scsicmd), GFP_KERNEL);
655 	struct scsi_device *scsidev = kmalloc(sizeof(*scsidev), GFP_KERNEL);
656 	int status;
657 
658 	if (!scsicmd || !scsidev) {
659 		kfree(scsicmd);
660 		kfree(scsidev);
661 		return -ENOMEM;
662 	}
663 	scsicmd->list.next = NULL;
664 	scsicmd->scsi_done = (void (*)(struct scsi_cmnd*))aac_probe_container_callback1;
665 
666 	scsicmd->device = scsidev;
667 	scsidev->sdev_state = 0;
668 	scsidev->id = cid;
669 	scsidev->host = dev->scsi_host_ptr;
670 
671 	if (_aac_probe_container(scsicmd, aac_probe_container_callback1) == 0)
672 		while (scsicmd->device == scsidev)
673 			schedule();
674 	kfree(scsidev);
675 	status = scsicmd->SCp.Status;
676 	kfree(scsicmd);
677 	return status;
678 }
679 
680 /* Local Structure to set SCSI inquiry data strings */
681 struct scsi_inq {
682 	char vid[8];         /* Vendor ID */
683 	char pid[16];        /* Product ID */
684 	char prl[4];         /* Product Revision Level */
685 };
686 
687 /**
688  *	InqStrCopy	-	string merge
689  *	@a:	string to copy from
690  *	@b:	string to copy to
691  *
692  *	Copy a String from one location to another
693  *	without copying \0
694  */
695 
696 static void inqstrcpy(char *a, char *b)
697 {
698 
699 	while (*a != (char)0)
700 		*b++ = *a++;
701 }
702 
703 static char *container_types[] = {
704 	"None",
705 	"Volume",
706 	"Mirror",
707 	"Stripe",
708 	"RAID5",
709 	"SSRW",
710 	"SSRO",
711 	"Morph",
712 	"Legacy",
713 	"RAID4",
714 	"RAID10",
715 	"RAID00",
716 	"V-MIRRORS",
717 	"PSEUDO R4",
718 	"RAID50",
719 	"RAID5D",
720 	"RAID5D0",
721 	"RAID1E",
722 	"RAID6",
723 	"RAID60",
724 	"Unknown"
725 };
726 
727 char * get_container_type(unsigned tindex)
728 {
729 	if (tindex >= ARRAY_SIZE(container_types))
730 		tindex = ARRAY_SIZE(container_types) - 1;
731 	return container_types[tindex];
732 }
733 
734 /* Function: setinqstr
735  *
736  * Arguments: [1] pointer to void [1] int
737  *
738  * Purpose: Sets SCSI inquiry data strings for vendor, product
739  * and revision level. Allows strings to be set in platform dependant
740  * files instead of in OS dependant driver source.
741  */
742 
743 static void setinqstr(struct aac_dev *dev, void *data, int tindex)
744 {
745 	struct scsi_inq *str;
746 
747 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
748 	memset(str, ' ', sizeof(*str));
749 
750 	if (dev->supplement_adapter_info.AdapterTypeText[0]) {
751 		char * cp = dev->supplement_adapter_info.AdapterTypeText;
752 		int c;
753 		if ((cp[0] == 'A') && (cp[1] == 'O') && (cp[2] == 'C'))
754 			inqstrcpy("SMC", str->vid);
755 		else {
756 			c = sizeof(str->vid);
757 			while (*cp && *cp != ' ' && --c)
758 				++cp;
759 			c = *cp;
760 			*cp = '\0';
761 			inqstrcpy (dev->supplement_adapter_info.AdapterTypeText,
762 				   str->vid);
763 			*cp = c;
764 			while (*cp && *cp != ' ')
765 				++cp;
766 		}
767 		while (*cp == ' ')
768 			++cp;
769 		/* last six chars reserved for vol type */
770 		c = 0;
771 		if (strlen(cp) > sizeof(str->pid)) {
772 			c = cp[sizeof(str->pid)];
773 			cp[sizeof(str->pid)] = '\0';
774 		}
775 		inqstrcpy (cp, str->pid);
776 		if (c)
777 			cp[sizeof(str->pid)] = c;
778 	} else {
779 		struct aac_driver_ident *mp = aac_get_driver_ident(dev->cardtype);
780 
781 		inqstrcpy (mp->vname, str->vid);
782 		/* last six chars reserved for vol type */
783 		inqstrcpy (mp->model, str->pid);
784 	}
785 
786 	if (tindex < ARRAY_SIZE(container_types)){
787 		char *findit = str->pid;
788 
789 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
790 		/* RAID is superfluous in the context of a RAID device */
791 		if (memcmp(findit-4, "RAID", 4) == 0)
792 			*(findit -= 4) = ' ';
793 		if (((findit - str->pid) + strlen(container_types[tindex]))
794 		 < (sizeof(str->pid) + sizeof(str->prl)))
795 			inqstrcpy (container_types[tindex], findit + 1);
796 	}
797 	inqstrcpy ("V1.0", str->prl);
798 }
799 
800 static void get_container_serial_callback(void *context, struct fib * fibptr)
801 {
802 	struct aac_get_serial_resp * get_serial_reply;
803 	struct scsi_cmnd * scsicmd;
804 
805 	BUG_ON(fibptr == NULL);
806 
807 	scsicmd = (struct scsi_cmnd *) context;
808 	if (!aac_valid_context(scsicmd, fibptr))
809 		return;
810 
811 	get_serial_reply = (struct aac_get_serial_resp *) fib_data(fibptr);
812 	/* Failure is irrelevant, using default value instead */
813 	if (le32_to_cpu(get_serial_reply->status) == CT_OK) {
814 		char sp[13];
815 		/* EVPD bit set */
816 		sp[0] = INQD_PDT_DA;
817 		sp[1] = scsicmd->cmnd[2];
818 		sp[2] = 0;
819 		sp[3] = snprintf(sp+4, sizeof(sp)-4, "%08X",
820 		  le32_to_cpu(get_serial_reply->uid));
821 		scsi_sg_copy_from_buffer(scsicmd, sp, sizeof(sp));
822 	}
823 
824 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
825 
826 	aac_fib_complete(fibptr);
827 	aac_fib_free(fibptr);
828 	scsicmd->scsi_done(scsicmd);
829 }
830 
831 /**
832  *	aac_get_container_serial - get container serial, none blocking.
833  */
834 static int aac_get_container_serial(struct scsi_cmnd * scsicmd)
835 {
836 	int status;
837 	struct aac_get_serial *dinfo;
838 	struct fib * cmd_fibcontext;
839 	struct aac_dev * dev;
840 
841 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
842 
843 	if (!(cmd_fibcontext = aac_fib_alloc(dev)))
844 		return -ENOMEM;
845 
846 	aac_fib_init(cmd_fibcontext);
847 	dinfo = (struct aac_get_serial *) fib_data(cmd_fibcontext);
848 
849 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
850 	dinfo->type = cpu_to_le32(CT_CID_TO_32BITS_UID);
851 	dinfo->cid = cpu_to_le32(scmd_id(scsicmd));
852 
853 	status = aac_fib_send(ContainerCommand,
854 		  cmd_fibcontext,
855 		  sizeof (struct aac_get_serial),
856 		  FsaNormal,
857 		  0, 1,
858 		  (fib_callback) get_container_serial_callback,
859 		  (void *) scsicmd);
860 
861 	/*
862 	 *	Check that the command queued to the controller
863 	 */
864 	if (status == -EINPROGRESS) {
865 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
866 		return 0;
867 	}
868 
869 	printk(KERN_WARNING "aac_get_container_serial: aac_fib_send failed with status: %d.\n", status);
870 	aac_fib_complete(cmd_fibcontext);
871 	aac_fib_free(cmd_fibcontext);
872 	return -1;
873 }
874 
875 /* Function: setinqserial
876  *
877  * Arguments: [1] pointer to void [1] int
878  *
879  * Purpose: Sets SCSI Unit Serial number.
880  *          This is a fake. We should read a proper
881  *          serial number from the container. <SuSE>But
882  *          without docs it's quite hard to do it :-)
883  *          So this will have to do in the meantime.</SuSE>
884  */
885 
886 static int setinqserial(struct aac_dev *dev, void *data, int cid)
887 {
888 	/*
889 	 *	This breaks array migration.
890 	 */
891 	return snprintf((char *)(data), sizeof(struct scsi_inq) - 4, "%08X%02X",
892 			le32_to_cpu(dev->adapter_info.serial[0]), cid);
893 }
894 
895 static inline void set_sense(struct sense_data *sense_data, u8 sense_key,
896 	u8 sense_code, u8 a_sense_code, u8 bit_pointer, u16 field_pointer)
897 {
898 	u8 *sense_buf = (u8 *)sense_data;
899 	/* Sense data valid, err code 70h */
900 	sense_buf[0] = 0x70; /* No info field */
901 	sense_buf[1] = 0;	/* Segment number, always zero */
902 
903 	sense_buf[2] = sense_key;	/* Sense key */
904 
905 	sense_buf[12] = sense_code;	/* Additional sense code */
906 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
907 
908 	if (sense_key == ILLEGAL_REQUEST) {
909 		sense_buf[7] = 10;	/* Additional sense length */
910 
911 		sense_buf[15] = bit_pointer;
912 		/* Illegal parameter is in the parameter block */
913 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
914 			sense_buf[15] |= 0xc0;/* Std sense key specific field */
915 		/* Illegal parameter is in the CDB block */
916 		sense_buf[16] = field_pointer >> 8;	/* MSB */
917 		sense_buf[17] = field_pointer;		/* LSB */
918 	} else
919 		sense_buf[7] = 6;	/* Additional sense length */
920 }
921 
922 static int aac_bounds_32(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
923 {
924 	if (lba & 0xffffffff00000000LL) {
925 		int cid = scmd_id(cmd);
926 		dprintk((KERN_DEBUG "aacraid: Illegal lba\n"));
927 		cmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
928 			SAM_STAT_CHECK_CONDITION;
929 		set_sense(&dev->fsa_dev[cid].sense_data,
930 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
931 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
932 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
933 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
934 			     SCSI_SENSE_BUFFERSIZE));
935 		cmd->scsi_done(cmd);
936 		return 1;
937 	}
938 	return 0;
939 }
940 
941 static int aac_bounds_64(struct aac_dev * dev, struct scsi_cmnd * cmd, u64 lba)
942 {
943 	return 0;
944 }
945 
946 static void io_callback(void *context, struct fib * fibptr);
947 
948 static int aac_read_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
949 {
950 	u16 fibsize;
951 	struct aac_raw_io *readcmd;
952 	aac_fib_init(fib);
953 	readcmd = (struct aac_raw_io *) fib_data(fib);
954 	readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
955 	readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
956 	readcmd->count = cpu_to_le32(count<<9);
957 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
958 	readcmd->flags = cpu_to_le16(IO_TYPE_READ);
959 	readcmd->bpTotal = 0;
960 	readcmd->bpComplete = 0;
961 
962 	aac_build_sgraw(cmd, &readcmd->sg);
963 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
964 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
965 	/*
966 	 *	Now send the Fib to the adapter
967 	 */
968 	return aac_fib_send(ContainerRawIo,
969 			  fib,
970 			  fibsize,
971 			  FsaNormal,
972 			  0, 1,
973 			  (fib_callback) io_callback,
974 			  (void *) cmd);
975 }
976 
977 static int aac_read_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
978 {
979 	u16 fibsize;
980 	struct aac_read64 *readcmd;
981 	aac_fib_init(fib);
982 	readcmd = (struct aac_read64 *) fib_data(fib);
983 	readcmd->command = cpu_to_le32(VM_CtHostRead64);
984 	readcmd->cid = cpu_to_le16(scmd_id(cmd));
985 	readcmd->sector_count = cpu_to_le16(count);
986 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
987 	readcmd->pad   = 0;
988 	readcmd->flags = 0;
989 
990 	aac_build_sg64(cmd, &readcmd->sg);
991 	fibsize = sizeof(struct aac_read64) +
992 		((le32_to_cpu(readcmd->sg.count) - 1) *
993 		 sizeof (struct sgentry64));
994 	BUG_ON (fibsize > (fib->dev->max_fib_size -
995 				sizeof(struct aac_fibhdr)));
996 	/*
997 	 *	Now send the Fib to the adapter
998 	 */
999 	return aac_fib_send(ContainerCommand64,
1000 			  fib,
1001 			  fibsize,
1002 			  FsaNormal,
1003 			  0, 1,
1004 			  (fib_callback) io_callback,
1005 			  (void *) cmd);
1006 }
1007 
1008 static int aac_read_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count)
1009 {
1010 	u16 fibsize;
1011 	struct aac_read *readcmd;
1012 	aac_fib_init(fib);
1013 	readcmd = (struct aac_read *) fib_data(fib);
1014 	readcmd->command = cpu_to_le32(VM_CtBlockRead);
1015 	readcmd->cid = cpu_to_le32(scmd_id(cmd));
1016 	readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1017 	readcmd->count = cpu_to_le32(count * 512);
1018 
1019 	aac_build_sg(cmd, &readcmd->sg);
1020 	fibsize = sizeof(struct aac_read) +
1021 			((le32_to_cpu(readcmd->sg.count) - 1) *
1022 			 sizeof (struct sgentry));
1023 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1024 				sizeof(struct aac_fibhdr)));
1025 	/*
1026 	 *	Now send the Fib to the adapter
1027 	 */
1028 	return aac_fib_send(ContainerCommand,
1029 			  fib,
1030 			  fibsize,
1031 			  FsaNormal,
1032 			  0, 1,
1033 			  (fib_callback) io_callback,
1034 			  (void *) cmd);
1035 }
1036 
1037 static int aac_write_raw_io(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1038 {
1039 	u16 fibsize;
1040 	struct aac_raw_io *writecmd;
1041 	aac_fib_init(fib);
1042 	writecmd = (struct aac_raw_io *) fib_data(fib);
1043 	writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1044 	writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1045 	writecmd->count = cpu_to_le32(count<<9);
1046 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1047 	writecmd->flags = (fua && ((aac_cache & 5) != 1) &&
1048 	  (((aac_cache & 5) != 5) || !fib->dev->cache_protected)) ?
1049 		cpu_to_le16(IO_TYPE_WRITE|IO_SUREWRITE) :
1050 		cpu_to_le16(IO_TYPE_WRITE);
1051 	writecmd->bpTotal = 0;
1052 	writecmd->bpComplete = 0;
1053 
1054 	aac_build_sgraw(cmd, &writecmd->sg);
1055 	fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1056 	BUG_ON(fibsize > (fib->dev->max_fib_size - sizeof(struct aac_fibhdr)));
1057 	/*
1058 	 *	Now send the Fib to the adapter
1059 	 */
1060 	return aac_fib_send(ContainerRawIo,
1061 			  fib,
1062 			  fibsize,
1063 			  FsaNormal,
1064 			  0, 1,
1065 			  (fib_callback) io_callback,
1066 			  (void *) cmd);
1067 }
1068 
1069 static int aac_write_block64(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1070 {
1071 	u16 fibsize;
1072 	struct aac_write64 *writecmd;
1073 	aac_fib_init(fib);
1074 	writecmd = (struct aac_write64 *) fib_data(fib);
1075 	writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1076 	writecmd->cid = cpu_to_le16(scmd_id(cmd));
1077 	writecmd->sector_count = cpu_to_le16(count);
1078 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1079 	writecmd->pad	= 0;
1080 	writecmd->flags	= 0;
1081 
1082 	aac_build_sg64(cmd, &writecmd->sg);
1083 	fibsize = sizeof(struct aac_write64) +
1084 		((le32_to_cpu(writecmd->sg.count) - 1) *
1085 		 sizeof (struct sgentry64));
1086 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1087 				sizeof(struct aac_fibhdr)));
1088 	/*
1089 	 *	Now send the Fib to the adapter
1090 	 */
1091 	return aac_fib_send(ContainerCommand64,
1092 			  fib,
1093 			  fibsize,
1094 			  FsaNormal,
1095 			  0, 1,
1096 			  (fib_callback) io_callback,
1097 			  (void *) cmd);
1098 }
1099 
1100 static int aac_write_block(struct fib * fib, struct scsi_cmnd * cmd, u64 lba, u32 count, int fua)
1101 {
1102 	u16 fibsize;
1103 	struct aac_write *writecmd;
1104 	aac_fib_init(fib);
1105 	writecmd = (struct aac_write *) fib_data(fib);
1106 	writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1107 	writecmd->cid = cpu_to_le32(scmd_id(cmd));
1108 	writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1109 	writecmd->count = cpu_to_le32(count * 512);
1110 	writecmd->sg.count = cpu_to_le32(1);
1111 	/* ->stable is not used - it did mean which type of write */
1112 
1113 	aac_build_sg(cmd, &writecmd->sg);
1114 	fibsize = sizeof(struct aac_write) +
1115 		((le32_to_cpu(writecmd->sg.count) - 1) *
1116 		 sizeof (struct sgentry));
1117 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1118 				sizeof(struct aac_fibhdr)));
1119 	/*
1120 	 *	Now send the Fib to the adapter
1121 	 */
1122 	return aac_fib_send(ContainerCommand,
1123 			  fib,
1124 			  fibsize,
1125 			  FsaNormal,
1126 			  0, 1,
1127 			  (fib_callback) io_callback,
1128 			  (void *) cmd);
1129 }
1130 
1131 static struct aac_srb * aac_scsi_common(struct fib * fib, struct scsi_cmnd * cmd)
1132 {
1133 	struct aac_srb * srbcmd;
1134 	u32 flag;
1135 	u32 timeout;
1136 
1137 	aac_fib_init(fib);
1138 	switch(cmd->sc_data_direction){
1139 	case DMA_TO_DEVICE:
1140 		flag = SRB_DataOut;
1141 		break;
1142 	case DMA_BIDIRECTIONAL:
1143 		flag = SRB_DataIn | SRB_DataOut;
1144 		break;
1145 	case DMA_FROM_DEVICE:
1146 		flag = SRB_DataIn;
1147 		break;
1148 	case DMA_NONE:
1149 	default:	/* shuts up some versions of gcc */
1150 		flag = SRB_NoDataXfer;
1151 		break;
1152 	}
1153 
1154 	srbcmd = (struct aac_srb*) fib_data(fib);
1155 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1156 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scmd_channel(cmd)));
1157 	srbcmd->id       = cpu_to_le32(scmd_id(cmd));
1158 	srbcmd->lun      = cpu_to_le32(cmd->device->lun);
1159 	srbcmd->flags    = cpu_to_le32(flag);
1160 	timeout = cmd->request->timeout/HZ;
1161 	if (timeout == 0)
1162 		timeout = 1;
1163 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1164 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1165 	srbcmd->cdb_size = cpu_to_le32(cmd->cmd_len);
1166 	return srbcmd;
1167 }
1168 
1169 static void aac_srb_callback(void *context, struct fib * fibptr);
1170 
1171 static int aac_scsi_64(struct fib * fib, struct scsi_cmnd * cmd)
1172 {
1173 	u16 fibsize;
1174 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1175 
1176 	aac_build_sg64(cmd, (struct sgmap64*) &srbcmd->sg);
1177 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1178 
1179 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1180 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1181 	/*
1182 	 *	Build Scatter/Gather list
1183 	 */
1184 	fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1185 		((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1186 		 sizeof (struct sgentry64));
1187 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1188 				sizeof(struct aac_fibhdr)));
1189 
1190 	/*
1191 	 *	Now send the Fib to the adapter
1192 	 */
1193 	return aac_fib_send(ScsiPortCommand64, fib,
1194 				fibsize, FsaNormal, 0, 1,
1195 				  (fib_callback) aac_srb_callback,
1196 				  (void *) cmd);
1197 }
1198 
1199 static int aac_scsi_32(struct fib * fib, struct scsi_cmnd * cmd)
1200 {
1201 	u16 fibsize;
1202 	struct aac_srb * srbcmd = aac_scsi_common(fib, cmd);
1203 
1204 	aac_build_sg(cmd, (struct sgmap*)&srbcmd->sg);
1205 	srbcmd->count = cpu_to_le32(scsi_bufflen(cmd));
1206 
1207 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1208 	memcpy(srbcmd->cdb, cmd->cmnd, cmd->cmd_len);
1209 	/*
1210 	 *	Build Scatter/Gather list
1211 	 */
1212 	fibsize = sizeof (struct aac_srb) +
1213 		(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1214 		 sizeof (struct sgentry));
1215 	BUG_ON (fibsize > (fib->dev->max_fib_size -
1216 				sizeof(struct aac_fibhdr)));
1217 
1218 	/*
1219 	 *	Now send the Fib to the adapter
1220 	 */
1221 	return aac_fib_send(ScsiPortCommand, fib, fibsize, FsaNormal, 0, 1,
1222 				  (fib_callback) aac_srb_callback, (void *) cmd);
1223 }
1224 
1225 static int aac_scsi_32_64(struct fib * fib, struct scsi_cmnd * cmd)
1226 {
1227 	if ((sizeof(dma_addr_t) > 4) && fib->dev->needs_dac &&
1228 	    (fib->dev->adapter_info.options & AAC_OPT_SGMAP_HOST64))
1229 		return FAILED;
1230 	return aac_scsi_32(fib, cmd);
1231 }
1232 
1233 int aac_get_adapter_info(struct aac_dev* dev)
1234 {
1235 	struct fib* fibptr;
1236 	int rcode;
1237 	u32 tmp;
1238 	struct aac_adapter_info *info;
1239 	struct aac_bus_info *command;
1240 	struct aac_bus_info_response *bus_info;
1241 
1242 	if (!(fibptr = aac_fib_alloc(dev)))
1243 		return -ENOMEM;
1244 
1245 	aac_fib_init(fibptr);
1246 	info = (struct aac_adapter_info *) fib_data(fibptr);
1247 	memset(info,0,sizeof(*info));
1248 
1249 	rcode = aac_fib_send(RequestAdapterInfo,
1250 			 fibptr,
1251 			 sizeof(*info),
1252 			 FsaNormal,
1253 			 -1, 1, /* First `interrupt' command uses special wait */
1254 			 NULL,
1255 			 NULL);
1256 
1257 	if (rcode < 0) {
1258 		/* FIB should be freed only after
1259 		 * getting the response from the F/W */
1260 		if (rcode != -ERESTARTSYS) {
1261 			aac_fib_complete(fibptr);
1262 			aac_fib_free(fibptr);
1263 		}
1264 		return rcode;
1265 	}
1266 	memcpy(&dev->adapter_info, info, sizeof(*info));
1267 
1268 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
1269 		struct aac_supplement_adapter_info * sinfo;
1270 
1271 		aac_fib_init(fibptr);
1272 
1273 		sinfo = (struct aac_supplement_adapter_info *) fib_data(fibptr);
1274 
1275 		memset(sinfo,0,sizeof(*sinfo));
1276 
1277 		rcode = aac_fib_send(RequestSupplementAdapterInfo,
1278 				 fibptr,
1279 				 sizeof(*sinfo),
1280 				 FsaNormal,
1281 				 1, 1,
1282 				 NULL,
1283 				 NULL);
1284 
1285 		if (rcode >= 0)
1286 			memcpy(&dev->supplement_adapter_info, sinfo, sizeof(*sinfo));
1287 		if (rcode == -ERESTARTSYS) {
1288 			fibptr = aac_fib_alloc(dev);
1289 			if (!fibptr)
1290 				return -ENOMEM;
1291 		}
1292 
1293 	}
1294 
1295 
1296 	/*
1297 	 * GetBusInfo
1298 	 */
1299 
1300 	aac_fib_init(fibptr);
1301 
1302 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
1303 
1304 	memset(bus_info, 0, sizeof(*bus_info));
1305 
1306 	command = (struct aac_bus_info *)bus_info;
1307 
1308 	command->Command = cpu_to_le32(VM_Ioctl);
1309 	command->ObjType = cpu_to_le32(FT_DRIVE);
1310 	command->MethodId = cpu_to_le32(1);
1311 	command->CtlCmd = cpu_to_le32(GetBusInfo);
1312 
1313 	rcode = aac_fib_send(ContainerCommand,
1314 			 fibptr,
1315 			 sizeof (*bus_info),
1316 			 FsaNormal,
1317 			 1, 1,
1318 			 NULL, NULL);
1319 
1320 	/* reasoned default */
1321 	dev->maximum_num_physicals = 16;
1322 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
1323 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
1324 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
1325 	}
1326 
1327 	if (!dev->in_reset) {
1328 		char buffer[16];
1329 		tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1330 		printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
1331 			dev->name,
1332 			dev->id,
1333 			tmp>>24,
1334 			(tmp>>16)&0xff,
1335 			tmp&0xff,
1336 			le32_to_cpu(dev->adapter_info.kernelbuild),
1337 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
1338 			dev->supplement_adapter_info.BuildDate);
1339 		tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1340 		printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
1341 			dev->name, dev->id,
1342 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1343 			le32_to_cpu(dev->adapter_info.monitorbuild));
1344 		tmp = le32_to_cpu(dev->adapter_info.biosrev);
1345 		printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
1346 			dev->name, dev->id,
1347 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
1348 			le32_to_cpu(dev->adapter_info.biosbuild));
1349 		buffer[0] = '\0';
1350 		if (aac_get_serial_number(
1351 		  shost_to_class(dev->scsi_host_ptr), buffer))
1352 			printk(KERN_INFO "%s%d: serial %s",
1353 			  dev->name, dev->id, buffer);
1354 		if (dev->supplement_adapter_info.VpdInfo.Tsid[0]) {
1355 			printk(KERN_INFO "%s%d: TSID %.*s\n",
1356 			  dev->name, dev->id,
1357 			  (int)sizeof(dev->supplement_adapter_info.VpdInfo.Tsid),
1358 			  dev->supplement_adapter_info.VpdInfo.Tsid);
1359 		}
1360 		if (!aac_check_reset || ((aac_check_reset == 1) &&
1361 		  (dev->supplement_adapter_info.SupportedOptions2 &
1362 		  AAC_OPTION_IGNORE_RESET))) {
1363 			printk(KERN_INFO "%s%d: Reset Adapter Ignored\n",
1364 			  dev->name, dev->id);
1365 		}
1366 	}
1367 
1368 	dev->cache_protected = 0;
1369 	dev->jbod = ((dev->supplement_adapter_info.FeatureBits &
1370 		AAC_FEATURE_JBOD) != 0);
1371 	dev->nondasd_support = 0;
1372 	dev->raid_scsi_mode = 0;
1373 	if(dev->adapter_info.options & AAC_OPT_NONDASD)
1374 		dev->nondasd_support = 1;
1375 
1376 	/*
1377 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
1378 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
1379 	 * force nondasd support on. If we decide to allow the non-dasd flag
1380 	 * additional changes changes will have to be made to support
1381 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
1382 	 * changed to support the new dev->raid_scsi_mode flag instead of
1383 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
1384 	 * function aac_detect will have to be modified where it sets up the
1385 	 * max number of channels based on the aac->nondasd_support flag only.
1386 	 */
1387 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
1388 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
1389 		dev->nondasd_support = 1;
1390 		dev->raid_scsi_mode = 1;
1391 	}
1392 	if (dev->raid_scsi_mode != 0)
1393 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
1394 				dev->name, dev->id);
1395 
1396 	if (nondasd != -1)
1397 		dev->nondasd_support = (nondasd!=0);
1398 	if (dev->nondasd_support && !dev->in_reset)
1399 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
1400 
1401 	if (dma_get_required_mask(&dev->pdev->dev) > DMA_BIT_MASK(32))
1402 		dev->needs_dac = 1;
1403 	dev->dac_support = 0;
1404 	if ((sizeof(dma_addr_t) > 4) && dev->needs_dac &&
1405 	    (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)) {
1406 		if (!dev->in_reset)
1407 			printk(KERN_INFO "%s%d: 64bit support enabled.\n",
1408 				dev->name, dev->id);
1409 		dev->dac_support = 1;
1410 	}
1411 
1412 	if(dacmode != -1) {
1413 		dev->dac_support = (dacmode!=0);
1414 	}
1415 
1416 	/* avoid problems with AAC_QUIRK_SCSI_32 controllers */
1417 	if (dev->dac_support &&	(aac_get_driver_ident(dev->cardtype)->quirks
1418 		& AAC_QUIRK_SCSI_32)) {
1419 		dev->nondasd_support = 0;
1420 		dev->jbod = 0;
1421 		expose_physicals = 0;
1422 	}
1423 
1424 	if(dev->dac_support != 0) {
1425 		if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(64)) &&
1426 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(64))) {
1427 			if (!dev->in_reset)
1428 				printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
1429 					dev->name, dev->id);
1430 		} else if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(32)) &&
1431 			!pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32))) {
1432 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
1433 				dev->name, dev->id);
1434 			dev->dac_support = 0;
1435 		} else {
1436 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
1437 				dev->name, dev->id);
1438 			rcode = -ENOMEM;
1439 		}
1440 	}
1441 	/*
1442 	 * Deal with configuring for the individualized limits of each packet
1443 	 * interface.
1444 	 */
1445 	dev->a_ops.adapter_scsi = (dev->dac_support)
1446 	  ? ((aac_get_driver_ident(dev->cardtype)->quirks & AAC_QUIRK_SCSI_32)
1447 				? aac_scsi_32_64
1448 				: aac_scsi_64)
1449 				: aac_scsi_32;
1450 	if (dev->raw_io_interface) {
1451 		dev->a_ops.adapter_bounds = (dev->raw_io_64)
1452 					? aac_bounds_64
1453 					: aac_bounds_32;
1454 		dev->a_ops.adapter_read = aac_read_raw_io;
1455 		dev->a_ops.adapter_write = aac_write_raw_io;
1456 	} else {
1457 		dev->a_ops.adapter_bounds = aac_bounds_32;
1458 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
1459 			sizeof(struct aac_fibhdr) -
1460 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
1461 				sizeof(struct sgentry);
1462 		if (dev->dac_support) {
1463 			dev->a_ops.adapter_read = aac_read_block64;
1464 			dev->a_ops.adapter_write = aac_write_block64;
1465 			/*
1466 			 * 38 scatter gather elements
1467 			 */
1468 			dev->scsi_host_ptr->sg_tablesize =
1469 				(dev->max_fib_size -
1470 				sizeof(struct aac_fibhdr) -
1471 				sizeof(struct aac_write64) +
1472 				sizeof(struct sgentry64)) /
1473 					sizeof(struct sgentry64);
1474 		} else {
1475 			dev->a_ops.adapter_read = aac_read_block;
1476 			dev->a_ops.adapter_write = aac_write_block;
1477 		}
1478 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
1479 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
1480 			/*
1481 			 * Worst case size that could cause sg overflow when
1482 			 * we break up SG elements that are larger than 64KB.
1483 			 * Would be nice if we could tell the SCSI layer what
1484 			 * the maximum SG element size can be. Worst case is
1485 			 * (sg_tablesize-1) 4KB elements with one 64KB
1486 			 * element.
1487 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
1488 			 */
1489 			dev->scsi_host_ptr->max_sectors =
1490 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
1491 		}
1492 	}
1493 	/* FIB should be freed only after getting the response from the F/W */
1494 	if (rcode != -ERESTARTSYS) {
1495 		aac_fib_complete(fibptr);
1496 		aac_fib_free(fibptr);
1497 	}
1498 
1499 	return rcode;
1500 }
1501 
1502 
1503 static void io_callback(void *context, struct fib * fibptr)
1504 {
1505 	struct aac_dev *dev;
1506 	struct aac_read_reply *readreply;
1507 	struct scsi_cmnd *scsicmd;
1508 	u32 cid;
1509 
1510 	scsicmd = (struct scsi_cmnd *) context;
1511 
1512 	if (!aac_valid_context(scsicmd, fibptr))
1513 		return;
1514 
1515 	dev = fibptr->dev;
1516 	cid = scmd_id(scsicmd);
1517 
1518 	if (nblank(dprintk(x))) {
1519 		u64 lba;
1520 		switch (scsicmd->cmnd[0]) {
1521 		case WRITE_6:
1522 		case READ_6:
1523 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1524 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1525 			break;
1526 		case WRITE_16:
1527 		case READ_16:
1528 			lba = ((u64)scsicmd->cmnd[2] << 56) |
1529 			      ((u64)scsicmd->cmnd[3] << 48) |
1530 			      ((u64)scsicmd->cmnd[4] << 40) |
1531 			      ((u64)scsicmd->cmnd[5] << 32) |
1532 			      ((u64)scsicmd->cmnd[6] << 24) |
1533 			      (scsicmd->cmnd[7] << 16) |
1534 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1535 			break;
1536 		case WRITE_12:
1537 		case READ_12:
1538 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1539 			      (scsicmd->cmnd[3] << 16) |
1540 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1541 			break;
1542 		default:
1543 			lba = ((u64)scsicmd->cmnd[2] << 24) |
1544 			       (scsicmd->cmnd[3] << 16) |
1545 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1546 			break;
1547 		}
1548 		printk(KERN_DEBUG
1549 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
1550 		  smp_processor_id(), (unsigned long long)lba, jiffies);
1551 	}
1552 
1553 	BUG_ON(fibptr == NULL);
1554 
1555 	scsi_dma_unmap(scsicmd);
1556 
1557 	readreply = (struct aac_read_reply *)fib_data(fibptr);
1558 	switch (le32_to_cpu(readreply->status)) {
1559 	case ST_OK:
1560 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1561 			SAM_STAT_GOOD;
1562 		dev->fsa_dev[cid].sense_data.sense_key = NO_SENSE;
1563 		break;
1564 	case ST_NOT_READY:
1565 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1566 			SAM_STAT_CHECK_CONDITION;
1567 		set_sense(&dev->fsa_dev[cid].sense_data, NOT_READY,
1568 		  SENCODE_BECOMING_READY, ASENCODE_BECOMING_READY, 0, 0);
1569 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1570 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1571 			     SCSI_SENSE_BUFFERSIZE));
1572 		break;
1573 	default:
1574 #ifdef AAC_DETAILED_STATUS_INFO
1575 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
1576 		  le32_to_cpu(readreply->status));
1577 #endif
1578 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1579 			SAM_STAT_CHECK_CONDITION;
1580 		set_sense(&dev->fsa_dev[cid].sense_data,
1581 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1582 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1583 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1584 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1585 			     SCSI_SENSE_BUFFERSIZE));
1586 		break;
1587 	}
1588 	aac_fib_complete(fibptr);
1589 	aac_fib_free(fibptr);
1590 
1591 	scsicmd->scsi_done(scsicmd);
1592 }
1593 
1594 static int aac_read(struct scsi_cmnd * scsicmd)
1595 {
1596 	u64 lba;
1597 	u32 count;
1598 	int status;
1599 	struct aac_dev *dev;
1600 	struct fib * cmd_fibcontext;
1601 
1602 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1603 	/*
1604 	 *	Get block address and transfer length
1605 	 */
1606 	switch (scsicmd->cmnd[0]) {
1607 	case READ_6:
1608 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", scmd_id(scsicmd)));
1609 
1610 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
1611 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1612 		count = scsicmd->cmnd[4];
1613 
1614 		if (count == 0)
1615 			count = 256;
1616 		break;
1617 	case READ_16:
1618 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", scmd_id(scsicmd)));
1619 
1620 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1621 			((u64)scsicmd->cmnd[3] << 48) |
1622 			((u64)scsicmd->cmnd[4] << 40) |
1623 			((u64)scsicmd->cmnd[5] << 32) |
1624 			((u64)scsicmd->cmnd[6] << 24) |
1625 			(scsicmd->cmnd[7] << 16) |
1626 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1627 		count = (scsicmd->cmnd[10] << 24) |
1628 			(scsicmd->cmnd[11] << 16) |
1629 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1630 		break;
1631 	case READ_12:
1632 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", scmd_id(scsicmd)));
1633 
1634 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1635 			(scsicmd->cmnd[3] << 16) |
1636 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1637 		count = (scsicmd->cmnd[6] << 24) |
1638 			(scsicmd->cmnd[7] << 16) |
1639 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1640 		break;
1641 	default:
1642 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", scmd_id(scsicmd)));
1643 
1644 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1645 			(scsicmd->cmnd[3] << 16) |
1646 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1647 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1648 		break;
1649 	}
1650 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1651 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1652 	if (aac_adapter_bounds(dev,scsicmd,lba))
1653 		return 0;
1654 	/*
1655 	 *	Alocate and initialize a Fib
1656 	 */
1657 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1658 		printk(KERN_WARNING "aac_read: fib allocation failed\n");
1659 		return -1;
1660 	}
1661 
1662 	status = aac_adapter_read(cmd_fibcontext, scsicmd, lba, count);
1663 
1664 	/*
1665 	 *	Check that the command queued to the controller
1666 	 */
1667 	if (status == -EINPROGRESS) {
1668 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1669 		return 0;
1670 	}
1671 
1672 	printk(KERN_WARNING "aac_read: aac_fib_send failed with status: %d.\n", status);
1673 	/*
1674 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1675 	 */
1676 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1677 	scsicmd->scsi_done(scsicmd);
1678 	aac_fib_complete(cmd_fibcontext);
1679 	aac_fib_free(cmd_fibcontext);
1680 	return 0;
1681 }
1682 
1683 static int aac_write(struct scsi_cmnd * scsicmd)
1684 {
1685 	u64 lba;
1686 	u32 count;
1687 	int fua;
1688 	int status;
1689 	struct aac_dev *dev;
1690 	struct fib * cmd_fibcontext;
1691 
1692 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1693 	/*
1694 	 *	Get block address and transfer length
1695 	 */
1696 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1697 	{
1698 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1699 		count = scsicmd->cmnd[4];
1700 		if (count == 0)
1701 			count = 256;
1702 		fua = 0;
1703 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1704 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", scmd_id(scsicmd)));
1705 
1706 		lba =	((u64)scsicmd->cmnd[2] << 56) |
1707 			((u64)scsicmd->cmnd[3] << 48) |
1708 			((u64)scsicmd->cmnd[4] << 40) |
1709 			((u64)scsicmd->cmnd[5] << 32) |
1710 			((u64)scsicmd->cmnd[6] << 24) |
1711 			(scsicmd->cmnd[7] << 16) |
1712 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1713 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1714 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1715 		fua = scsicmd->cmnd[1] & 0x8;
1716 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1717 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", scmd_id(scsicmd)));
1718 
1719 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1720 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1721 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1722 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1723 		fua = scsicmd->cmnd[1] & 0x8;
1724 	} else {
1725 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", scmd_id(scsicmd)));
1726 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1727 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1728 		fua = scsicmd->cmnd[1] & 0x8;
1729 	}
1730 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1731 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1732 	if (aac_adapter_bounds(dev,scsicmd,lba))
1733 		return 0;
1734 	/*
1735 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1736 	 */
1737 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
1738 		/* FIB temporarily unavailable,not catastrophic failure */
1739 
1740 		/* scsicmd->result = DID_ERROR << 16;
1741 		 * scsicmd->scsi_done(scsicmd);
1742 		 * return 0;
1743 		 */
1744 		printk(KERN_WARNING "aac_write: fib allocation failed\n");
1745 		return -1;
1746 	}
1747 
1748 	status = aac_adapter_write(cmd_fibcontext, scsicmd, lba, count, fua);
1749 
1750 	/*
1751 	 *	Check that the command queued to the controller
1752 	 */
1753 	if (status == -EINPROGRESS) {
1754 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1755 		return 0;
1756 	}
1757 
1758 	printk(KERN_WARNING "aac_write: aac_fib_send failed with status: %d\n", status);
1759 	/*
1760 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1761 	 */
1762 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1763 	scsicmd->scsi_done(scsicmd);
1764 
1765 	aac_fib_complete(cmd_fibcontext);
1766 	aac_fib_free(cmd_fibcontext);
1767 	return 0;
1768 }
1769 
1770 static void synchronize_callback(void *context, struct fib *fibptr)
1771 {
1772 	struct aac_synchronize_reply *synchronizereply;
1773 	struct scsi_cmnd *cmd;
1774 
1775 	cmd = context;
1776 
1777 	if (!aac_valid_context(cmd, fibptr))
1778 		return;
1779 
1780 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1781 				smp_processor_id(), jiffies));
1782 	BUG_ON(fibptr == NULL);
1783 
1784 
1785 	synchronizereply = fib_data(fibptr);
1786 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1787 		cmd->result = DID_OK << 16 |
1788 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1789 	else {
1790 		struct scsi_device *sdev = cmd->device;
1791 		struct aac_dev *dev = fibptr->dev;
1792 		u32 cid = sdev_id(sdev);
1793 		printk(KERN_WARNING
1794 		     "synchronize_callback: synchronize failed, status = %d\n",
1795 		     le32_to_cpu(synchronizereply->status));
1796 		cmd->result = DID_OK << 16 |
1797 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1798 		set_sense(&dev->fsa_dev[cid].sense_data,
1799 		  HARDWARE_ERROR, SENCODE_INTERNAL_TARGET_FAILURE,
1800 		  ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0);
1801 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1802 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
1803 			     SCSI_SENSE_BUFFERSIZE));
1804 	}
1805 
1806 	aac_fib_complete(fibptr);
1807 	aac_fib_free(fibptr);
1808 	cmd->scsi_done(cmd);
1809 }
1810 
1811 static int aac_synchronize(struct scsi_cmnd *scsicmd)
1812 {
1813 	int status;
1814 	struct fib *cmd_fibcontext;
1815 	struct aac_synchronize *synchronizecmd;
1816 	struct scsi_cmnd *cmd;
1817 	struct scsi_device *sdev = scsicmd->device;
1818 	int active = 0;
1819 	struct aac_dev *aac;
1820 	u64 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) |
1821 		(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1822 	u32 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1823 	unsigned long flags;
1824 
1825 	/*
1826 	 * Wait for all outstanding queued commands to complete to this
1827 	 * specific target (block).
1828 	 */
1829 	spin_lock_irqsave(&sdev->list_lock, flags);
1830 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1831 		if (cmd->SCp.phase == AAC_OWNER_FIRMWARE) {
1832 			u64 cmnd_lba;
1833 			u32 cmnd_count;
1834 
1835 			if (cmd->cmnd[0] == WRITE_6) {
1836 				cmnd_lba = ((cmd->cmnd[1] & 0x1F) << 16) |
1837 					(cmd->cmnd[2] << 8) |
1838 					cmd->cmnd[3];
1839 				cmnd_count = cmd->cmnd[4];
1840 				if (cmnd_count == 0)
1841 					cmnd_count = 256;
1842 			} else if (cmd->cmnd[0] == WRITE_16) {
1843 				cmnd_lba = ((u64)cmd->cmnd[2] << 56) |
1844 					((u64)cmd->cmnd[3] << 48) |
1845 					((u64)cmd->cmnd[4] << 40) |
1846 					((u64)cmd->cmnd[5] << 32) |
1847 					((u64)cmd->cmnd[6] << 24) |
1848 					(cmd->cmnd[7] << 16) |
1849 					(cmd->cmnd[8] << 8) |
1850 					cmd->cmnd[9];
1851 				cmnd_count = (cmd->cmnd[10] << 24) |
1852 					(cmd->cmnd[11] << 16) |
1853 					(cmd->cmnd[12] << 8) |
1854 					cmd->cmnd[13];
1855 			} else if (cmd->cmnd[0] == WRITE_12) {
1856 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1857 					(cmd->cmnd[3] << 16) |
1858 					(cmd->cmnd[4] << 8) |
1859 					cmd->cmnd[5];
1860 				cmnd_count = (cmd->cmnd[6] << 24) |
1861 					(cmd->cmnd[7] << 16) |
1862 					(cmd->cmnd[8] << 8) |
1863 					cmd->cmnd[9];
1864 			} else if (cmd->cmnd[0] == WRITE_10) {
1865 				cmnd_lba = ((u64)cmd->cmnd[2] << 24) |
1866 					(cmd->cmnd[3] << 16) |
1867 					(cmd->cmnd[4] << 8) |
1868 					cmd->cmnd[5];
1869 				cmnd_count = (cmd->cmnd[7] << 8) |
1870 					cmd->cmnd[8];
1871 			} else
1872 				continue;
1873 			if (((cmnd_lba + cmnd_count) < lba) ||
1874 			  (count && ((lba + count) < cmnd_lba)))
1875 				continue;
1876 			++active;
1877 			break;
1878 		}
1879 
1880 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1881 
1882 	/*
1883 	 *	Yield the processor (requeue for later)
1884 	 */
1885 	if (active)
1886 		return SCSI_MLQUEUE_DEVICE_BUSY;
1887 
1888 	aac = (struct aac_dev *)sdev->host->hostdata;
1889 	if (aac->in_reset)
1890 		return SCSI_MLQUEUE_HOST_BUSY;
1891 
1892 	/*
1893 	 *	Allocate and initialize a Fib
1894 	 */
1895 	if (!(cmd_fibcontext = aac_fib_alloc(aac)))
1896 		return SCSI_MLQUEUE_HOST_BUSY;
1897 
1898 	aac_fib_init(cmd_fibcontext);
1899 
1900 	synchronizecmd = fib_data(cmd_fibcontext);
1901 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1902 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1903 	synchronizecmd->cid = cpu_to_le32(scmd_id(scsicmd));
1904 	synchronizecmd->count =
1905 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1906 
1907 	/*
1908 	 *	Now send the Fib to the adapter
1909 	 */
1910 	status = aac_fib_send(ContainerCommand,
1911 		  cmd_fibcontext,
1912 		  sizeof(struct aac_synchronize),
1913 		  FsaNormal,
1914 		  0, 1,
1915 		  (fib_callback)synchronize_callback,
1916 		  (void *)scsicmd);
1917 
1918 	/*
1919 	 *	Check that the command queued to the controller
1920 	 */
1921 	if (status == -EINPROGRESS) {
1922 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
1923 		return 0;
1924 	}
1925 
1926 	printk(KERN_WARNING
1927 		"aac_synchronize: aac_fib_send failed with status: %d.\n", status);
1928 	aac_fib_complete(cmd_fibcontext);
1929 	aac_fib_free(cmd_fibcontext);
1930 	return SCSI_MLQUEUE_HOST_BUSY;
1931 }
1932 
1933 static void aac_start_stop_callback(void *context, struct fib *fibptr)
1934 {
1935 	struct scsi_cmnd *scsicmd = context;
1936 
1937 	if (!aac_valid_context(scsicmd, fibptr))
1938 		return;
1939 
1940 	BUG_ON(fibptr == NULL);
1941 
1942 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1943 
1944 	aac_fib_complete(fibptr);
1945 	aac_fib_free(fibptr);
1946 	scsicmd->scsi_done(scsicmd);
1947 }
1948 
1949 static int aac_start_stop(struct scsi_cmnd *scsicmd)
1950 {
1951 	int status;
1952 	struct fib *cmd_fibcontext;
1953 	struct aac_power_management *pmcmd;
1954 	struct scsi_device *sdev = scsicmd->device;
1955 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
1956 
1957 	if (!(aac->supplement_adapter_info.SupportedOptions2 &
1958 	      AAC_OPTION_POWER_MANAGEMENT)) {
1959 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1960 				  SAM_STAT_GOOD;
1961 		scsicmd->scsi_done(scsicmd);
1962 		return 0;
1963 	}
1964 
1965 	if (aac->in_reset)
1966 		return SCSI_MLQUEUE_HOST_BUSY;
1967 
1968 	/*
1969 	 *	Allocate and initialize a Fib
1970 	 */
1971 	cmd_fibcontext = aac_fib_alloc(aac);
1972 	if (!cmd_fibcontext)
1973 		return SCSI_MLQUEUE_HOST_BUSY;
1974 
1975 	aac_fib_init(cmd_fibcontext);
1976 
1977 	pmcmd = fib_data(cmd_fibcontext);
1978 	pmcmd->command = cpu_to_le32(VM_ContainerConfig);
1979 	pmcmd->type = cpu_to_le32(CT_POWER_MANAGEMENT);
1980 	/* Eject bit ignored, not relevant */
1981 	pmcmd->sub = (scsicmd->cmnd[4] & 1) ?
1982 		cpu_to_le32(CT_PM_START_UNIT) : cpu_to_le32(CT_PM_STOP_UNIT);
1983 	pmcmd->cid = cpu_to_le32(sdev_id(sdev));
1984 	pmcmd->parm = (scsicmd->cmnd[1] & 1) ?
1985 		cpu_to_le32(CT_PM_UNIT_IMMEDIATE) : 0;
1986 
1987 	/*
1988 	 *	Now send the Fib to the adapter
1989 	 */
1990 	status = aac_fib_send(ContainerCommand,
1991 		  cmd_fibcontext,
1992 		  sizeof(struct aac_power_management),
1993 		  FsaNormal,
1994 		  0, 1,
1995 		  (fib_callback)aac_start_stop_callback,
1996 		  (void *)scsicmd);
1997 
1998 	/*
1999 	 *	Check that the command queued to the controller
2000 	 */
2001 	if (status == -EINPROGRESS) {
2002 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2003 		return 0;
2004 	}
2005 
2006 	aac_fib_complete(cmd_fibcontext);
2007 	aac_fib_free(cmd_fibcontext);
2008 	return SCSI_MLQUEUE_HOST_BUSY;
2009 }
2010 
2011 /**
2012  *	aac_scsi_cmd()		-	Process SCSI command
2013  *	@scsicmd:		SCSI command block
2014  *
2015  *	Emulate a SCSI command and queue the required request for the
2016  *	aacraid firmware.
2017  */
2018 
2019 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
2020 {
2021 	u32 cid;
2022 	struct Scsi_Host *host = scsicmd->device->host;
2023 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2024 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
2025 
2026 	if (fsa_dev_ptr == NULL)
2027 		return -1;
2028 	/*
2029 	 *	If the bus, id or lun is out of range, return fail
2030 	 *	Test does not apply to ID 16, the pseudo id for the controller
2031 	 *	itself.
2032 	 */
2033 	cid = scmd_id(scsicmd);
2034 	if (cid != host->this_id) {
2035 		if (scmd_channel(scsicmd) == CONTAINER_CHANNEL) {
2036 			if((cid >= dev->maximum_num_containers) ||
2037 					(scsicmd->device->lun != 0)) {
2038 				scsicmd->result = DID_NO_CONNECT << 16;
2039 				scsicmd->scsi_done(scsicmd);
2040 				return 0;
2041 			}
2042 
2043 			/*
2044 			 *	If the target container doesn't exist, it may have
2045 			 *	been newly created
2046 			 */
2047 			if (((fsa_dev_ptr[cid].valid & 1) == 0) ||
2048 			  (fsa_dev_ptr[cid].sense_data.sense_key ==
2049 			   NOT_READY)) {
2050 				switch (scsicmd->cmnd[0]) {
2051 				case SERVICE_ACTION_IN:
2052 					if (!(dev->raw_io_interface) ||
2053 					    !(dev->raw_io_64) ||
2054 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2055 						break;
2056 				case INQUIRY:
2057 				case READ_CAPACITY:
2058 				case TEST_UNIT_READY:
2059 					if (dev->in_reset)
2060 						return -1;
2061 					return _aac_probe_container(scsicmd,
2062 							aac_probe_container_callback2);
2063 				default:
2064 					break;
2065 				}
2066 			}
2067 		} else {  /* check for physical non-dasd devices */
2068 			if (dev->nondasd_support || expose_physicals ||
2069 					dev->jbod) {
2070 				if (dev->in_reset)
2071 					return -1;
2072 				return aac_send_srb_fib(scsicmd);
2073 			} else {
2074 				scsicmd->result = DID_NO_CONNECT << 16;
2075 				scsicmd->scsi_done(scsicmd);
2076 				return 0;
2077 			}
2078 		}
2079 	}
2080 	/*
2081 	 * else Command for the controller itself
2082 	 */
2083 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
2084 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
2085 	{
2086 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
2087 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2088 		set_sense(&dev->fsa_dev[cid].sense_data,
2089 		  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2090 		  ASENCODE_INVALID_COMMAND, 0, 0);
2091 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2092 		       min_t(size_t, sizeof(dev->fsa_dev[cid].sense_data),
2093 			     SCSI_SENSE_BUFFERSIZE));
2094 		scsicmd->scsi_done(scsicmd);
2095 		return 0;
2096 	}
2097 
2098 
2099 	/* Handle commands here that don't really require going out to the adapter */
2100 	switch (scsicmd->cmnd[0]) {
2101 	case INQUIRY:
2102 	{
2103 		struct inquiry_data inq_data;
2104 
2105 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", cid));
2106 		memset(&inq_data, 0, sizeof (struct inquiry_data));
2107 
2108 		if ((scsicmd->cmnd[1] & 0x1) && aac_wwn) {
2109 			char *arr = (char *)&inq_data;
2110 
2111 			/* EVPD bit set */
2112 			arr[0] = (scmd_id(scsicmd) == host->this_id) ?
2113 			  INQD_PDT_PROC : INQD_PDT_DA;
2114 			if (scsicmd->cmnd[2] == 0) {
2115 				/* supported vital product data pages */
2116 				arr[3] = 2;
2117 				arr[4] = 0x0;
2118 				arr[5] = 0x80;
2119 				arr[1] = scsicmd->cmnd[2];
2120 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2121 							 sizeof(inq_data));
2122 				scsicmd->result = DID_OK << 16 |
2123 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2124 			} else if (scsicmd->cmnd[2] == 0x80) {
2125 				/* unit serial number page */
2126 				arr[3] = setinqserial(dev, &arr[4],
2127 				  scmd_id(scsicmd));
2128 				arr[1] = scsicmd->cmnd[2];
2129 				scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2130 							 sizeof(inq_data));
2131 				if (aac_wwn != 2)
2132 					return aac_get_container_serial(
2133 						scsicmd);
2134 				/* SLES 10 SP1 special */
2135 				scsicmd->result = DID_OK << 16 |
2136 				  COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2137 			} else {
2138 				/* vpd page not implemented */
2139 				scsicmd->result = DID_OK << 16 |
2140 				  COMMAND_COMPLETE << 8 |
2141 				  SAM_STAT_CHECK_CONDITION;
2142 				set_sense(&dev->fsa_dev[cid].sense_data,
2143 				  ILLEGAL_REQUEST, SENCODE_INVALID_CDB_FIELD,
2144 				  ASENCODE_NO_SENSE, 7, 2);
2145 				memcpy(scsicmd->sense_buffer,
2146 				  &dev->fsa_dev[cid].sense_data,
2147 				  min_t(size_t,
2148 					sizeof(dev->fsa_dev[cid].sense_data),
2149 					SCSI_SENSE_BUFFERSIZE));
2150 			}
2151 			scsicmd->scsi_done(scsicmd);
2152 			return 0;
2153 		}
2154 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
2155 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
2156 		inq_data.inqd_len = 31;
2157 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
2158 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
2159 		/*
2160 		 *	Set the Vendor, Product, and Revision Level
2161 		 *	see: <vendor>.c i.e. aac.c
2162 		 */
2163 		if (cid == host->this_id) {
2164 			setinqstr(dev, (void *) (inq_data.inqd_vid), ARRAY_SIZE(container_types));
2165 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
2166 			scsi_sg_copy_from_buffer(scsicmd, &inq_data,
2167 						 sizeof(inq_data));
2168 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2169 			scsicmd->scsi_done(scsicmd);
2170 			return 0;
2171 		}
2172 		if (dev->in_reset)
2173 			return -1;
2174 		setinqstr(dev, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
2175 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
2176 		scsi_sg_copy_from_buffer(scsicmd, &inq_data, sizeof(inq_data));
2177 		return aac_get_container_name(scsicmd);
2178 	}
2179 	case SERVICE_ACTION_IN:
2180 		if (!(dev->raw_io_interface) ||
2181 		    !(dev->raw_io_64) ||
2182 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
2183 			break;
2184 	{
2185 		u64 capacity;
2186 		char cp[13];
2187 		unsigned int alloc_len;
2188 
2189 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
2190 		capacity = fsa_dev_ptr[cid].size - 1;
2191 		cp[0] = (capacity >> 56) & 0xff;
2192 		cp[1] = (capacity >> 48) & 0xff;
2193 		cp[2] = (capacity >> 40) & 0xff;
2194 		cp[3] = (capacity >> 32) & 0xff;
2195 		cp[4] = (capacity >> 24) & 0xff;
2196 		cp[5] = (capacity >> 16) & 0xff;
2197 		cp[6] = (capacity >> 8) & 0xff;
2198 		cp[7] = (capacity >> 0) & 0xff;
2199 		cp[8] = 0;
2200 		cp[9] = 0;
2201 		cp[10] = 2;
2202 		cp[11] = 0;
2203 		cp[12] = 0;
2204 
2205 		alloc_len = ((scsicmd->cmnd[10] << 24)
2206 			     + (scsicmd->cmnd[11] << 16)
2207 			     + (scsicmd->cmnd[12] << 8) + scsicmd->cmnd[13]);
2208 
2209 		alloc_len = min_t(size_t, alloc_len, sizeof(cp));
2210 		scsi_sg_copy_from_buffer(scsicmd, cp, alloc_len);
2211 		if (alloc_len < scsi_bufflen(scsicmd))
2212 			scsi_set_resid(scsicmd,
2213 				       scsi_bufflen(scsicmd) - alloc_len);
2214 
2215 		/* Do not cache partition table for arrays */
2216 		scsicmd->device->removable = 1;
2217 
2218 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2219 		scsicmd->scsi_done(scsicmd);
2220 
2221 		return 0;
2222 	}
2223 
2224 	case READ_CAPACITY:
2225 	{
2226 		u32 capacity;
2227 		char cp[8];
2228 
2229 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
2230 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
2231 			capacity = fsa_dev_ptr[cid].size - 1;
2232 		else
2233 			capacity = (u32)-1;
2234 
2235 		cp[0] = (capacity >> 24) & 0xff;
2236 		cp[1] = (capacity >> 16) & 0xff;
2237 		cp[2] = (capacity >> 8) & 0xff;
2238 		cp[3] = (capacity >> 0) & 0xff;
2239 		cp[4] = 0;
2240 		cp[5] = 0;
2241 		cp[6] = 2;
2242 		cp[7] = 0;
2243 		scsi_sg_copy_from_buffer(scsicmd, cp, sizeof(cp));
2244 		/* Do not cache partition table for arrays */
2245 		scsicmd->device->removable = 1;
2246 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2247 		  SAM_STAT_GOOD;
2248 		scsicmd->scsi_done(scsicmd);
2249 
2250 		return 0;
2251 	}
2252 
2253 	case MODE_SENSE:
2254 	{
2255 		char mode_buf[7];
2256 		int mode_buf_length = 4;
2257 
2258 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
2259 		mode_buf[0] = 3;	/* Mode data length */
2260 		mode_buf[1] = 0;	/* Medium type - default */
2261 		mode_buf[2] = 0;	/* Device-specific param,
2262 					   bit 8: 0/1 = write enabled/protected
2263 					   bit 4: 0/1 = FUA enabled */
2264 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2265 			mode_buf[2] = 0x10;
2266 		mode_buf[3] = 0;	/* Block descriptor length */
2267 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2268 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2269 			mode_buf[0] = 6;
2270 			mode_buf[4] = 8;
2271 			mode_buf[5] = 1;
2272 			mode_buf[6] = ((aac_cache & 6) == 2)
2273 				? 0 : 0x04; /* WCE */
2274 			mode_buf_length = 7;
2275 			if (mode_buf_length > scsicmd->cmnd[4])
2276 				mode_buf_length = scsicmd->cmnd[4];
2277 		}
2278 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2279 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2280 		scsicmd->scsi_done(scsicmd);
2281 
2282 		return 0;
2283 	}
2284 	case MODE_SENSE_10:
2285 	{
2286 		char mode_buf[11];
2287 		int mode_buf_length = 8;
2288 
2289 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
2290 		mode_buf[0] = 0;	/* Mode data length (MSB) */
2291 		mode_buf[1] = 6;	/* Mode data length (LSB) */
2292 		mode_buf[2] = 0;	/* Medium type - default */
2293 		mode_buf[3] = 0;	/* Device-specific param,
2294 					   bit 8: 0/1 = write enabled/protected
2295 					   bit 4: 0/1 = FUA enabled */
2296 		if (dev->raw_io_interface && ((aac_cache & 5) != 1))
2297 			mode_buf[3] = 0x10;
2298 		mode_buf[4] = 0;	/* reserved */
2299 		mode_buf[5] = 0;	/* reserved */
2300 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
2301 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
2302 		if (((scsicmd->cmnd[2] & 0x3f) == 8) ||
2303 		  ((scsicmd->cmnd[2] & 0x3f) == 0x3f)) {
2304 			mode_buf[1] = 9;
2305 			mode_buf[8] = 8;
2306 			mode_buf[9] = 1;
2307 			mode_buf[10] = ((aac_cache & 6) == 2)
2308 				? 0 : 0x04; /* WCE */
2309 			mode_buf_length = 11;
2310 			if (mode_buf_length > scsicmd->cmnd[8])
2311 				mode_buf_length = scsicmd->cmnd[8];
2312 		}
2313 		scsi_sg_copy_from_buffer(scsicmd, mode_buf, mode_buf_length);
2314 
2315 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2316 		scsicmd->scsi_done(scsicmd);
2317 
2318 		return 0;
2319 	}
2320 	case REQUEST_SENSE:
2321 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
2322 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
2323 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
2324 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2325 		scsicmd->scsi_done(scsicmd);
2326 		return 0;
2327 
2328 	case ALLOW_MEDIUM_REMOVAL:
2329 		dprintk((KERN_DEBUG "LOCK command.\n"));
2330 		if (scsicmd->cmnd[4])
2331 			fsa_dev_ptr[cid].locked = 1;
2332 		else
2333 			fsa_dev_ptr[cid].locked = 0;
2334 
2335 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2336 		scsicmd->scsi_done(scsicmd);
2337 		return 0;
2338 	/*
2339 	 *	These commands are all No-Ops
2340 	 */
2341 	case TEST_UNIT_READY:
2342 		if (fsa_dev_ptr[cid].sense_data.sense_key == NOT_READY) {
2343 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
2344 				SAM_STAT_CHECK_CONDITION;
2345 			set_sense(&dev->fsa_dev[cid].sense_data,
2346 				  NOT_READY, SENCODE_BECOMING_READY,
2347 				  ASENCODE_BECOMING_READY, 0, 0);
2348 			memcpy(scsicmd->sense_buffer,
2349 			       &dev->fsa_dev[cid].sense_data,
2350 			       min_t(size_t,
2351 				     sizeof(dev->fsa_dev[cid].sense_data),
2352 				     SCSI_SENSE_BUFFERSIZE));
2353 			scsicmd->scsi_done(scsicmd);
2354 			return 0;
2355 		}
2356 		/* FALLTHRU */
2357 	case RESERVE:
2358 	case RELEASE:
2359 	case REZERO_UNIT:
2360 	case REASSIGN_BLOCKS:
2361 	case SEEK_10:
2362 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2363 		scsicmd->scsi_done(scsicmd);
2364 		return 0;
2365 
2366 	case START_STOP:
2367 		return aac_start_stop(scsicmd);
2368 	}
2369 
2370 	switch (scsicmd->cmnd[0])
2371 	{
2372 		case READ_6:
2373 		case READ_10:
2374 		case READ_12:
2375 		case READ_16:
2376 			if (dev->in_reset)
2377 				return -1;
2378 			/*
2379 			 *	Hack to keep track of ordinal number of the device that
2380 			 *	corresponds to a container. Needed to convert
2381 			 *	containers to /dev/sd device names
2382 			 */
2383 
2384 			if (scsicmd->request->rq_disk)
2385 				strlcpy(fsa_dev_ptr[cid].devname,
2386 				scsicmd->request->rq_disk->disk_name,
2387 				min(sizeof(fsa_dev_ptr[cid].devname),
2388 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
2389 
2390 			return aac_read(scsicmd);
2391 
2392 		case WRITE_6:
2393 		case WRITE_10:
2394 		case WRITE_12:
2395 		case WRITE_16:
2396 			if (dev->in_reset)
2397 				return -1;
2398 			return aac_write(scsicmd);
2399 
2400 		case SYNCHRONIZE_CACHE:
2401 			if (((aac_cache & 6) == 6) && dev->cache_protected) {
2402 				scsicmd->result = DID_OK << 16 |
2403 					COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
2404 				scsicmd->scsi_done(scsicmd);
2405 				return 0;
2406 			}
2407 			/* Issue FIB to tell Firmware to flush it's cache */
2408 			if ((aac_cache & 6) != 2)
2409 				return aac_synchronize(scsicmd);
2410 			/* FALLTHRU */
2411 		default:
2412 			/*
2413 			 *	Unhandled commands
2414 			 */
2415 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
2416 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2417 			set_sense(&dev->fsa_dev[cid].sense_data,
2418 			  ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
2419 			  ASENCODE_INVALID_COMMAND, 0, 0);
2420 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
2421 				min_t(size_t,
2422 				      sizeof(dev->fsa_dev[cid].sense_data),
2423 				      SCSI_SENSE_BUFFERSIZE));
2424 			scsicmd->scsi_done(scsicmd);
2425 			return 0;
2426 	}
2427 }
2428 
2429 static int query_disk(struct aac_dev *dev, void __user *arg)
2430 {
2431 	struct aac_query_disk qd;
2432 	struct fsa_dev_info *fsa_dev_ptr;
2433 
2434 	fsa_dev_ptr = dev->fsa_dev;
2435 	if (!fsa_dev_ptr)
2436 		return -EBUSY;
2437 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
2438 		return -EFAULT;
2439 	if (qd.cnum == -1)
2440 		qd.cnum = qd.id;
2441 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
2442 	{
2443 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
2444 			return -EINVAL;
2445 		qd.instance = dev->scsi_host_ptr->host_no;
2446 		qd.bus = 0;
2447 		qd.id = CONTAINER_TO_ID(qd.cnum);
2448 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
2449 	}
2450 	else return -EINVAL;
2451 
2452 	qd.valid = fsa_dev_ptr[qd.cnum].valid != 0;
2453 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
2454 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
2455 
2456 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
2457 		qd.unmapped = 1;
2458 	else
2459 		qd.unmapped = 0;
2460 
2461 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
2462 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
2463 
2464 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
2465 		return -EFAULT;
2466 	return 0;
2467 }
2468 
2469 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
2470 {
2471 	struct aac_delete_disk dd;
2472 	struct fsa_dev_info *fsa_dev_ptr;
2473 
2474 	fsa_dev_ptr = dev->fsa_dev;
2475 	if (!fsa_dev_ptr)
2476 		return -EBUSY;
2477 
2478 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2479 		return -EFAULT;
2480 
2481 	if (dd.cnum >= dev->maximum_num_containers)
2482 		return -EINVAL;
2483 	/*
2484 	 *	Mark this container as being deleted.
2485 	 */
2486 	fsa_dev_ptr[dd.cnum].deleted = 1;
2487 	/*
2488 	 *	Mark the container as no longer valid
2489 	 */
2490 	fsa_dev_ptr[dd.cnum].valid = 0;
2491 	return 0;
2492 }
2493 
2494 static int delete_disk(struct aac_dev *dev, void __user *arg)
2495 {
2496 	struct aac_delete_disk dd;
2497 	struct fsa_dev_info *fsa_dev_ptr;
2498 
2499 	fsa_dev_ptr = dev->fsa_dev;
2500 	if (!fsa_dev_ptr)
2501 		return -EBUSY;
2502 
2503 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
2504 		return -EFAULT;
2505 
2506 	if (dd.cnum >= dev->maximum_num_containers)
2507 		return -EINVAL;
2508 	/*
2509 	 *	If the container is locked, it can not be deleted by the API.
2510 	 */
2511 	if (fsa_dev_ptr[dd.cnum].locked)
2512 		return -EBUSY;
2513 	else {
2514 		/*
2515 		 *	Mark the container as no longer being valid.
2516 		 */
2517 		fsa_dev_ptr[dd.cnum].valid = 0;
2518 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
2519 		return 0;
2520 	}
2521 }
2522 
2523 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
2524 {
2525 	switch (cmd) {
2526 	case FSACTL_QUERY_DISK:
2527 		return query_disk(dev, arg);
2528 	case FSACTL_DELETE_DISK:
2529 		return delete_disk(dev, arg);
2530 	case FSACTL_FORCE_DELETE_DISK:
2531 		return force_delete_disk(dev, arg);
2532 	case FSACTL_GET_CONTAINERS:
2533 		return aac_get_containers(dev);
2534 	default:
2535 		return -ENOTTY;
2536 	}
2537 }
2538 
2539 /**
2540  *
2541  * aac_srb_callback
2542  * @context: the context set in the fib - here it is scsi cmd
2543  * @fibptr: pointer to the fib
2544  *
2545  * Handles the completion of a scsi command to a non dasd device
2546  *
2547  */
2548 
2549 static void aac_srb_callback(void *context, struct fib * fibptr)
2550 {
2551 	struct aac_dev *dev;
2552 	struct aac_srb_reply *srbreply;
2553 	struct scsi_cmnd *scsicmd;
2554 
2555 	scsicmd = (struct scsi_cmnd *) context;
2556 
2557 	if (!aac_valid_context(scsicmd, fibptr))
2558 		return;
2559 
2560 	BUG_ON(fibptr == NULL);
2561 
2562 	dev = fibptr->dev;
2563 
2564 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
2565 
2566 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
2567 	/*
2568 	 *	Calculate resid for sg
2569 	 */
2570 
2571 	scsi_set_resid(scsicmd, scsi_bufflen(scsicmd)
2572 		       - le32_to_cpu(srbreply->data_xfer_length));
2573 
2574 	scsi_dma_unmap(scsicmd);
2575 
2576 	/*
2577 	 * First check the fib status
2578 	 */
2579 
2580 	if (le32_to_cpu(srbreply->status) != ST_OK){
2581 		int len;
2582 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
2583 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2584 			    SCSI_SENSE_BUFFERSIZE);
2585 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
2586 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2587 	}
2588 
2589 	/*
2590 	 * Next check the srb status
2591 	 */
2592 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
2593 	case SRB_STATUS_ERROR_RECOVERY:
2594 	case SRB_STATUS_PENDING:
2595 	case SRB_STATUS_SUCCESS:
2596 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2597 		break;
2598 	case SRB_STATUS_DATA_OVERRUN:
2599 		switch(scsicmd->cmnd[0]){
2600 		case  READ_6:
2601 		case  WRITE_6:
2602 		case  READ_10:
2603 		case  WRITE_10:
2604 		case  READ_12:
2605 		case  WRITE_12:
2606 		case  READ_16:
2607 		case  WRITE_16:
2608 			if (le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow) {
2609 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
2610 			} else {
2611 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
2612 			}
2613 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2614 			break;
2615 		case INQUIRY: {
2616 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2617 			break;
2618 		}
2619 		default:
2620 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
2621 			break;
2622 		}
2623 		break;
2624 	case SRB_STATUS_ABORTED:
2625 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
2626 		break;
2627 	case SRB_STATUS_ABORT_FAILED:
2628 		// Not sure about this one - but assuming the hba was trying to abort for some reason
2629 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
2630 		break;
2631 	case SRB_STATUS_PARITY_ERROR:
2632 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2633 		break;
2634 	case SRB_STATUS_NO_DEVICE:
2635 	case SRB_STATUS_INVALID_PATH_ID:
2636 	case SRB_STATUS_INVALID_TARGET_ID:
2637 	case SRB_STATUS_INVALID_LUN:
2638 	case SRB_STATUS_SELECTION_TIMEOUT:
2639 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2640 		break;
2641 
2642 	case SRB_STATUS_COMMAND_TIMEOUT:
2643 	case SRB_STATUS_TIMEOUT:
2644 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2645 		break;
2646 
2647 	case SRB_STATUS_BUSY:
2648 		scsicmd->result = DID_BUS_BUSY << 16 | COMMAND_COMPLETE << 8;
2649 		break;
2650 
2651 	case SRB_STATUS_BUS_RESET:
2652 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2653 		break;
2654 
2655 	case SRB_STATUS_MESSAGE_REJECTED:
2656 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2657 		break;
2658 	case SRB_STATUS_REQUEST_FLUSHED:
2659 	case SRB_STATUS_ERROR:
2660 	case SRB_STATUS_INVALID_REQUEST:
2661 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2662 	case SRB_STATUS_NO_HBA:
2663 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2664 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2665 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2666 	case SRB_STATUS_DELAYED_RETRY:
2667 	case SRB_STATUS_BAD_FUNCTION:
2668 	case SRB_STATUS_NOT_STARTED:
2669 	case SRB_STATUS_NOT_IN_USE:
2670 	case SRB_STATUS_FORCE_ABORT:
2671 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2672 	default:
2673 #ifdef AAC_DETAILED_STATUS_INFO
2674 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2675 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2676 			aac_get_status_string(
2677 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2678 			scsicmd->cmnd[0],
2679 			le32_to_cpu(srbreply->scsi_status));
2680 #endif
2681 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2682 		break;
2683 	}
2684 	if (le32_to_cpu(srbreply->scsi_status) == SAM_STAT_CHECK_CONDITION) {
2685 		int len;
2686 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2687 		len = min_t(u32, le32_to_cpu(srbreply->sense_data_size),
2688 			    SCSI_SENSE_BUFFERSIZE);
2689 #ifdef AAC_DETAILED_STATUS_INFO
2690 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2691 					le32_to_cpu(srbreply->status), len);
2692 #endif
2693 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2694 	}
2695 	/*
2696 	 * OR in the scsi status (already shifted up a bit)
2697 	 */
2698 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2699 
2700 	aac_fib_complete(fibptr);
2701 	aac_fib_free(fibptr);
2702 	scsicmd->scsi_done(scsicmd);
2703 }
2704 
2705 /**
2706  *
2707  * aac_send_scb_fib
2708  * @scsicmd: the scsi command block
2709  *
2710  * This routine will form a FIB and fill in the aac_srb from the
2711  * scsicmd passed in.
2712  */
2713 
2714 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2715 {
2716 	struct fib* cmd_fibcontext;
2717 	struct aac_dev* dev;
2718 	int status;
2719 
2720 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2721 	if (scmd_id(scsicmd) >= dev->maximum_num_physicals ||
2722 			scsicmd->device->lun > 7) {
2723 		scsicmd->result = DID_NO_CONNECT << 16;
2724 		scsicmd->scsi_done(scsicmd);
2725 		return 0;
2726 	}
2727 
2728 	/*
2729 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2730 	 */
2731 	if (!(cmd_fibcontext = aac_fib_alloc(dev))) {
2732 		return -1;
2733 	}
2734 	status = aac_adapter_scsi(cmd_fibcontext, scsicmd);
2735 
2736 	/*
2737 	 *	Check that the command queued to the controller
2738 	 */
2739 	if (status == -EINPROGRESS) {
2740 		scsicmd->SCp.phase = AAC_OWNER_FIRMWARE;
2741 		return 0;
2742 	}
2743 
2744 	printk(KERN_WARNING "aac_srb: aac_fib_send failed with status: %d\n", status);
2745 	aac_fib_complete(cmd_fibcontext);
2746 	aac_fib_free(cmd_fibcontext);
2747 
2748 	return -1;
2749 }
2750 
2751 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2752 {
2753 	struct aac_dev *dev;
2754 	unsigned long byte_count = 0;
2755 	int nseg;
2756 
2757 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2758 	// Get rid of old data
2759 	psg->count = 0;
2760 	psg->sg[0].addr = 0;
2761 	psg->sg[0].count = 0;
2762 
2763 	nseg = scsi_dma_map(scsicmd);
2764 	BUG_ON(nseg < 0);
2765 	if (nseg) {
2766 		struct scatterlist *sg;
2767 		int i;
2768 
2769 		psg->count = cpu_to_le32(nseg);
2770 
2771 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2772 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2773 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2774 			byte_count += sg_dma_len(sg);
2775 		}
2776 		/* hba wants the size to be exact */
2777 		if (byte_count > scsi_bufflen(scsicmd)) {
2778 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2779 				(byte_count - scsi_bufflen(scsicmd));
2780 			psg->sg[i-1].count = cpu_to_le32(temp);
2781 			byte_count = scsi_bufflen(scsicmd);
2782 		}
2783 		/* Check for command underflow */
2784 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2785 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2786 					byte_count, scsicmd->underflow);
2787 		}
2788 	}
2789 	return byte_count;
2790 }
2791 
2792 
2793 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2794 {
2795 	struct aac_dev *dev;
2796 	unsigned long byte_count = 0;
2797 	u64 addr;
2798 	int nseg;
2799 
2800 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2801 	// Get rid of old data
2802 	psg->count = 0;
2803 	psg->sg[0].addr[0] = 0;
2804 	psg->sg[0].addr[1] = 0;
2805 	psg->sg[0].count = 0;
2806 
2807 	nseg = scsi_dma_map(scsicmd);
2808 	BUG_ON(nseg < 0);
2809 	if (nseg) {
2810 		struct scatterlist *sg;
2811 		int i;
2812 
2813 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2814 			int count = sg_dma_len(sg);
2815 			addr = sg_dma_address(sg);
2816 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2817 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2818 			psg->sg[i].count = cpu_to_le32(count);
2819 			byte_count += count;
2820 		}
2821 		psg->count = cpu_to_le32(nseg);
2822 		/* hba wants the size to be exact */
2823 		if (byte_count > scsi_bufflen(scsicmd)) {
2824 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2825 				(byte_count - scsi_bufflen(scsicmd));
2826 			psg->sg[i-1].count = cpu_to_le32(temp);
2827 			byte_count = scsi_bufflen(scsicmd);
2828 		}
2829 		/* Check for command underflow */
2830 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2831 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2832 					byte_count, scsicmd->underflow);
2833 		}
2834 	}
2835 	return byte_count;
2836 }
2837 
2838 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2839 {
2840 	unsigned long byte_count = 0;
2841 	int nseg;
2842 
2843 	// Get rid of old data
2844 	psg->count = 0;
2845 	psg->sg[0].next = 0;
2846 	psg->sg[0].prev = 0;
2847 	psg->sg[0].addr[0] = 0;
2848 	psg->sg[0].addr[1] = 0;
2849 	psg->sg[0].count = 0;
2850 	psg->sg[0].flags = 0;
2851 
2852 	nseg = scsi_dma_map(scsicmd);
2853 	BUG_ON(nseg < 0);
2854 	if (nseg) {
2855 		struct scatterlist *sg;
2856 		int i;
2857 
2858 		scsi_for_each_sg(scsicmd, sg, nseg, i) {
2859 			int count = sg_dma_len(sg);
2860 			u64 addr = sg_dma_address(sg);
2861 			psg->sg[i].next = 0;
2862 			psg->sg[i].prev = 0;
2863 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2864 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2865 			psg->sg[i].count = cpu_to_le32(count);
2866 			psg->sg[i].flags = 0;
2867 			byte_count += count;
2868 		}
2869 		psg->count = cpu_to_le32(nseg);
2870 		/* hba wants the size to be exact */
2871 		if (byte_count > scsi_bufflen(scsicmd)) {
2872 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2873 				(byte_count - scsi_bufflen(scsicmd));
2874 			psg->sg[i-1].count = cpu_to_le32(temp);
2875 			byte_count = scsi_bufflen(scsicmd);
2876 		}
2877 		/* Check for command underflow */
2878 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2879 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2880 					byte_count, scsicmd->underflow);
2881 		}
2882 	}
2883 	return byte_count;
2884 }
2885 
2886 #ifdef AAC_DETAILED_STATUS_INFO
2887 
2888 struct aac_srb_status_info {
2889 	u32	status;
2890 	char	*str;
2891 };
2892 
2893 
2894 static struct aac_srb_status_info srb_status_info[] = {
2895 	{ SRB_STATUS_PENDING,		"Pending Status"},
2896 	{ SRB_STATUS_SUCCESS,		"Success"},
2897 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2898 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2899 	{ SRB_STATUS_ERROR,		"Error Event"},
2900 	{ SRB_STATUS_BUSY,		"Device Busy"},
2901 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2902 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2903 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2904 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2905 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2906 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2907 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2908 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2909 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2910 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2911 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2912 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2913 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2914 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2915 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2916 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2917 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2918 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2919 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2920 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2921 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2922 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2923 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2924 	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2925 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2926 	{ 0xff,				"Unknown Error"}
2927 };
2928 
2929 char *aac_get_status_string(u32 status)
2930 {
2931 	int i;
2932 
2933 	for (i = 0; i < ARRAY_SIZE(srb_status_info); i++)
2934 		if (srb_status_info[i].status == status)
2935 			return srb_status_info[i].str;
2936 
2937 	return "Bad Status Code";
2938 }
2939 
2940 #endif
2941