xref: /linux/drivers/scsi/aacraid/aachba.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/sched.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE                        0x00
61 #define SENCODE_END_OF_DATA                     0x00
62 #define SENCODE_BECOMING_READY                  0x04
63 #define SENCODE_INIT_CMD_REQUIRED               0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
65 #define SENCODE_INVALID_COMMAND                 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE                0x21
67 #define SENCODE_INVALID_CDB_FIELD               0x24
68 #define SENCODE_LUN_NOT_SUPPORTED               0x25
69 #define SENCODE_INVALID_PARAM_FIELD             0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED             0x26
71 #define SENCODE_PARAM_VALUE_INVALID             0x26
72 #define SENCODE_RESET_OCCURRED                  0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED            0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE              0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE         0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR           0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
80 #define SENCODE_OVERLAPPED_COMMAND              0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE                       0x00
87 #define ASENCODE_END_OF_DATA                    0x05
88 #define ASENCODE_BECOMING_READY                 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED              0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
91 #define ASENCODE_INVALID_COMMAND                0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE               0x00
93 #define ASENCODE_INVALID_CDB_FIELD              0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED              0x00
95 #define ASENCODE_INVALID_PARAM_FIELD            0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED            0x01
97 #define ASENCODE_PARAM_VALUE_INVALID            0x02
98 #define ASENCODE_RESET_OCCURRED                 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED           0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE             0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR          0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
106 #define ASENCODE_OVERLAPPED_COMMAND             0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type  */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier  */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
137 #ifdef AAC_DETAILED_STATUS_INFO
138 static char *aac_get_status_string(u32 status);
139 #endif
140 
141 /*
142  *	Non dasd selection is handled entirely in aachba now
143  */
144 
145 static int nondasd = -1;
146 static int dacmode = -1;
147 
148 static int commit = -1;
149 
150 module_param(nondasd, int, 0);
151 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
152 module_param(dacmode, int, 0);
153 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
154 module_param(commit, int, 0);
155 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
156 
157 int numacb = -1;
158 module_param(numacb, int, S_IRUGO|S_IWUSR);
159 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid\nvalues are 512 and down. Default is to use suggestion from Firmware.");
160 
161 int acbsize = -1;
162 module_param(acbsize, int, S_IRUGO|S_IWUSR);
163 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512,\n2048, 4096 and 8192. Default is to use suggestion from Firmware.");
164 /**
165  *	aac_get_config_status	-	check the adapter configuration
166  *	@common: adapter to query
167  *
168  *	Query config status, and commit the configuration if needed.
169  */
170 int aac_get_config_status(struct aac_dev *dev)
171 {
172 	int status = 0;
173 	struct fib * fibptr;
174 
175 	if (!(fibptr = fib_alloc(dev)))
176 		return -ENOMEM;
177 
178 	fib_init(fibptr);
179 	{
180 		struct aac_get_config_status *dinfo;
181 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
182 
183 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
184 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
185 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
186 	}
187 
188 	status = fib_send(ContainerCommand,
189 			    fibptr,
190 			    sizeof (struct aac_get_config_status),
191 			    FsaNormal,
192 			    1, 1,
193 			    NULL, NULL);
194 	if (status < 0 ) {
195 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
196 	} else {
197 		struct aac_get_config_status_resp *reply
198 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
199 		dprintk((KERN_WARNING
200 		  "aac_get_config_status: response=%d status=%d action=%d\n",
201 		  le32_to_cpu(reply->response),
202 		  le32_to_cpu(reply->status),
203 		  le32_to_cpu(reply->data.action)));
204 		if ((le32_to_cpu(reply->response) != ST_OK) ||
205 		     (le32_to_cpu(reply->status) != CT_OK) ||
206 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
207 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
208 			status = -EINVAL;
209 		}
210 	}
211 	fib_complete(fibptr);
212 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
213 	if (status >= 0) {
214 		if (commit == 1) {
215 			struct aac_commit_config * dinfo;
216 			fib_init(fibptr);
217 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
218 
219 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
220 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
221 
222 			status = fib_send(ContainerCommand,
223 				    fibptr,
224 				    sizeof (struct aac_commit_config),
225 				    FsaNormal,
226 				    1, 1,
227 				    NULL, NULL);
228 			fib_complete(fibptr);
229 		} else if (commit == 0) {
230 			printk(KERN_WARNING
231 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
232 		}
233 	}
234 	fib_free(fibptr);
235 	return status;
236 }
237 
238 /**
239  *	aac_get_containers	-	list containers
240  *	@common: adapter to probe
241  *
242  *	Make a list of all containers on this controller
243  */
244 int aac_get_containers(struct aac_dev *dev)
245 {
246 	struct fsa_dev_info *fsa_dev_ptr;
247 	u32 index;
248 	int status = 0;
249 	struct fib * fibptr;
250 	unsigned instance;
251 	struct aac_get_container_count *dinfo;
252 	struct aac_get_container_count_resp *dresp;
253 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
254 
255 	instance = dev->scsi_host_ptr->unique_id;
256 
257 	if (!(fibptr = fib_alloc(dev)))
258 		return -ENOMEM;
259 
260 	fib_init(fibptr);
261 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
262 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
263 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
264 
265 	status = fib_send(ContainerCommand,
266 		    fibptr,
267 		    sizeof (struct aac_get_container_count),
268 		    FsaNormal,
269 		    1, 1,
270 		    NULL, NULL);
271 	if (status >= 0) {
272 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
273 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
274 		fib_complete(fibptr);
275 	}
276 
277 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
278 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
279 
280 	fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
281 	  sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
282 	if (!fsa_dev_ptr) {
283 		fib_free(fibptr);
284 		return -ENOMEM;
285 	}
286 	memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
287 
288 	dev->fsa_dev = fsa_dev_ptr;
289 	dev->maximum_num_containers = maximum_num_containers;
290 
291 	for (index = 0; index < dev->maximum_num_containers; index++) {
292 		struct aac_query_mount *dinfo;
293 		struct aac_mount *dresp;
294 
295 		fsa_dev_ptr[index].devname[0] = '\0';
296 
297 		fib_init(fibptr);
298 		dinfo = (struct aac_query_mount *) fib_data(fibptr);
299 
300 		dinfo->command = cpu_to_le32(VM_NameServe);
301 		dinfo->count = cpu_to_le32(index);
302 		dinfo->type = cpu_to_le32(FT_FILESYS);
303 
304 		status = fib_send(ContainerCommand,
305 				    fibptr,
306 				    sizeof (struct aac_query_mount),
307 				    FsaNormal,
308 				    1, 1,
309 				    NULL, NULL);
310 		if (status < 0 ) {
311 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
312 			break;
313 		}
314 		dresp = (struct aac_mount *)fib_data(fibptr);
315 
316 		dprintk ((KERN_DEBUG
317 		  "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n",
318 		  (int)index, (int)le32_to_cpu(dresp->status),
319 		  (int)le32_to_cpu(dresp->mnt[0].vol),
320 		  (int)le32_to_cpu(dresp->mnt[0].state),
321 		  (unsigned)le32_to_cpu(dresp->mnt[0].capacity)));
322 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
323 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
324 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
325 			fsa_dev_ptr[index].valid = 1;
326 			fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
327 			fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity);
328 			if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
329 				    fsa_dev_ptr[index].ro = 1;
330 		}
331 		fib_complete(fibptr);
332 		/*
333 		 *	If there are no more containers, then stop asking.
334 		 */
335 		if ((index + 1) >= le32_to_cpu(dresp->count)){
336 			break;
337 		}
338 	}
339 	fib_free(fibptr);
340 	return status;
341 }
342 
343 static void aac_io_done(struct scsi_cmnd * scsicmd)
344 {
345 	unsigned long cpu_flags;
346 	struct Scsi_Host *host = scsicmd->device->host;
347 	spin_lock_irqsave(host->host_lock, cpu_flags);
348 	scsicmd->scsi_done(scsicmd);
349 	spin_unlock_irqrestore(host->host_lock, cpu_flags);
350 }
351 
352 static void get_container_name_callback(void *context, struct fib * fibptr)
353 {
354 	struct aac_get_name_resp * get_name_reply;
355 	struct scsi_cmnd * scsicmd;
356 
357 	scsicmd = (struct scsi_cmnd *) context;
358 
359 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
360 	if (fibptr == NULL)
361 		BUG();
362 
363 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
364 	/* Failure is irrelevant, using default value instead */
365 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
366 	 && (get_name_reply->data[0] != '\0')) {
367 		int    count;
368 		char * dp;
369 		char * sp = get_name_reply->data;
370 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
371 		while (*sp == ' ')
372 			++sp;
373 		count = sizeof(((struct inquiry_data *)NULL)->inqd_pid);
374 		dp = ((struct inquiry_data *)scsicmd->request_buffer)->inqd_pid;
375 		if (*sp) do {
376 			*dp++ = (*sp) ? *sp++ : ' ';
377 		} while (--count > 0);
378 	}
379 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
380 
381 	fib_complete(fibptr);
382 	fib_free(fibptr);
383 	aac_io_done(scsicmd);
384 }
385 
386 /**
387  *	aac_get_container_name	-	get container name, none blocking.
388  */
389 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
390 {
391 	int status;
392 	struct aac_get_name *dinfo;
393 	struct fib * cmd_fibcontext;
394 	struct aac_dev * dev;
395 
396 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
397 
398 	if (!(cmd_fibcontext = fib_alloc(dev)))
399 		return -ENOMEM;
400 
401 	fib_init(cmd_fibcontext);
402 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
403 
404 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
405 	dinfo->type = cpu_to_le32(CT_READ_NAME);
406 	dinfo->cid = cpu_to_le32(cid);
407 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
408 
409 	status = fib_send(ContainerCommand,
410 		  cmd_fibcontext,
411 		  sizeof (struct aac_get_name),
412 		  FsaNormal,
413 		  0, 1,
414 		  (fib_callback) get_container_name_callback,
415 		  (void *) scsicmd);
416 
417 	/*
418 	 *	Check that the command queued to the controller
419 	 */
420 	if (status == -EINPROGRESS)
421 		return 0;
422 
423 	printk(KERN_WARNING "aac_get_container_name: fib_send failed with status: %d.\n", status);
424 	fib_complete(cmd_fibcontext);
425 	fib_free(cmd_fibcontext);
426 	return -1;
427 }
428 
429 /**
430  *	probe_container		-	query a logical volume
431  *	@dev: device to query
432  *	@cid: container identifier
433  *
434  *	Queries the controller about the given volume. The volume information
435  *	is updated in the struct fsa_dev_info structure rather than returned.
436  */
437 
438 static int probe_container(struct aac_dev *dev, int cid)
439 {
440 	struct fsa_dev_info *fsa_dev_ptr;
441 	int status;
442 	struct aac_query_mount *dinfo;
443 	struct aac_mount *dresp;
444 	struct fib * fibptr;
445 	unsigned instance;
446 
447 	fsa_dev_ptr = dev->fsa_dev;
448 	instance = dev->scsi_host_ptr->unique_id;
449 
450 	if (!(fibptr = fib_alloc(dev)))
451 		return -ENOMEM;
452 
453 	fib_init(fibptr);
454 
455 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
456 
457 	dinfo->command = cpu_to_le32(VM_NameServe);
458 	dinfo->count = cpu_to_le32(cid);
459 	dinfo->type = cpu_to_le32(FT_FILESYS);
460 
461 	status = fib_send(ContainerCommand,
462 			    fibptr,
463 			    sizeof(struct aac_query_mount),
464 			    FsaNormal,
465 			    1, 1,
466 			    NULL, NULL);
467 	if (status < 0) {
468 		printk(KERN_WARNING "aacraid: probe_container query failed.\n");
469 		goto error;
470 	}
471 
472 	dresp = (struct aac_mount *) fib_data(fibptr);
473 
474 	if ((le32_to_cpu(dresp->status) == ST_OK) &&
475 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
476 	    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
477 		fsa_dev_ptr[cid].valid = 1;
478 		fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
479 		fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity);
480 		if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
481 			fsa_dev_ptr[cid].ro = 1;
482 	}
483 
484 error:
485 	fib_complete(fibptr);
486 	fib_free(fibptr);
487 
488 	return status;
489 }
490 
491 /* Local Structure to set SCSI inquiry data strings */
492 struct scsi_inq {
493 	char vid[8];         /* Vendor ID */
494 	char pid[16];        /* Product ID */
495 	char prl[4];         /* Product Revision Level */
496 };
497 
498 /**
499  *	InqStrCopy	-	string merge
500  *	@a:	string to copy from
501  *	@b:	string to copy to
502  *
503  * 	Copy a String from one location to another
504  *	without copying \0
505  */
506 
507 static void inqstrcpy(char *a, char *b)
508 {
509 
510 	while(*a != (char)0)
511 		*b++ = *a++;
512 }
513 
514 static char *container_types[] = {
515         "None",
516         "Volume",
517         "Mirror",
518         "Stripe",
519         "RAID5",
520         "SSRW",
521         "SSRO",
522         "Morph",
523         "Legacy",
524         "RAID4",
525         "RAID10",
526         "RAID00",
527         "V-MIRRORS",
528         "PSEUDO R4",
529 	"RAID50",
530         "Unknown"
531 };
532 
533 
534 
535 /* Function: setinqstr
536  *
537  * Arguments: [1] pointer to void [1] int
538  *
539  * Purpose: Sets SCSI inquiry data strings for vendor, product
540  * and revision level. Allows strings to be set in platform dependant
541  * files instead of in OS dependant driver source.
542  */
543 
544 static void setinqstr(int devtype, void *data, int tindex)
545 {
546 	struct scsi_inq *str;
547 	struct aac_driver_ident *mp;
548 
549 	mp = aac_get_driver_ident(devtype);
550 
551 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
552 
553 	inqstrcpy (mp->vname, str->vid);
554 	inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */
555 
556 	if (tindex < (sizeof(container_types)/sizeof(char *))){
557 		char *findit = str->pid;
558 
559 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
560 		/* RAID is superfluous in the context of a RAID device */
561 		if (memcmp(findit-4, "RAID", 4) == 0)
562 			*(findit -= 4) = ' ';
563 		inqstrcpy (container_types[tindex], findit + 1);
564 	}
565 	inqstrcpy ("V1.0", str->prl);
566 }
567 
568 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
569 		      u8 a_sense_code, u8 incorrect_length,
570 		      u8 bit_pointer, u16 field_pointer,
571 		      u32 residue)
572 {
573 	sense_buf[0] = 0xF0;	/* Sense data valid, err code 70h (current error) */
574 	sense_buf[1] = 0;	/* Segment number, always zero */
575 
576 	if (incorrect_length) {
577 		sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
578 		sense_buf[3] = BYTE3(residue);
579 		sense_buf[4] = BYTE2(residue);
580 		sense_buf[5] = BYTE1(residue);
581 		sense_buf[6] = BYTE0(residue);
582 	} else
583 		sense_buf[2] = sense_key;	/* Sense key */
584 
585 	if (sense_key == ILLEGAL_REQUEST)
586 		sense_buf[7] = 10;	/* Additional sense length */
587 	else
588 		sense_buf[7] = 6;	/* Additional sense length */
589 
590 	sense_buf[12] = sense_code;	/* Additional sense code */
591 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
592 	if (sense_key == ILLEGAL_REQUEST) {
593 		sense_buf[15] = 0;
594 
595 		if (sense_code == SENCODE_INVALID_PARAM_FIELD)
596 			sense_buf[15] = 0x80;/* Std sense key specific field */
597 		/* Illegal parameter is in the parameter block */
598 
599 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
600 			sense_buf[15] = 0xc0;/* Std sense key specific field */
601 		/* Illegal parameter is in the CDB block */
602 		sense_buf[15] |= bit_pointer;
603 		sense_buf[16] = field_pointer >> 8;	/* MSB */
604 		sense_buf[17] = field_pointer;		/* LSB */
605 	}
606 }
607 
608 int aac_get_adapter_info(struct aac_dev* dev)
609 {
610 	struct fib* fibptr;
611 	int rcode;
612 	u32 tmp;
613 	struct aac_adapter_info * info;
614 
615 	if (!(fibptr = fib_alloc(dev)))
616 		return -ENOMEM;
617 
618 	fib_init(fibptr);
619 	info = (struct aac_adapter_info *) fib_data(fibptr);
620 	memset(info,0,sizeof(*info));
621 
622 	rcode = fib_send(RequestAdapterInfo,
623 			 fibptr,
624 			 sizeof(*info),
625 			 FsaNormal,
626 			 1, 1,
627 			 NULL,
628 			 NULL);
629 
630 	if (rcode < 0) {
631 		fib_complete(fibptr);
632 		fib_free(fibptr);
633 		return rcode;
634 	}
635 	memcpy(&dev->adapter_info, info, sizeof(*info));
636 
637 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
638 		struct aac_supplement_adapter_info * info;
639 
640 		fib_init(fibptr);
641 
642 		info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
643 
644 		memset(info,0,sizeof(*info));
645 
646 		rcode = fib_send(RequestSupplementAdapterInfo,
647 				 fibptr,
648 				 sizeof(*info),
649 				 FsaNormal,
650 				 1, 1,
651 				 NULL,
652 				 NULL);
653 
654 		if (rcode >= 0)
655 			memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
656 	}
657 
658 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
659 	printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
660 			dev->name,
661 			dev->id,
662 			tmp>>24,
663 			(tmp>>16)&0xff,
664 			tmp&0xff,
665 			le32_to_cpu(dev->adapter_info.kernelbuild),
666 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
667 			dev->supplement_adapter_info.BuildDate);
668 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
669 	printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
670 			dev->name, dev->id,
671 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
672 			le32_to_cpu(dev->adapter_info.monitorbuild));
673 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
674 	printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
675 			dev->name, dev->id,
676 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
677 			le32_to_cpu(dev->adapter_info.biosbuild));
678 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
679 		printk(KERN_INFO "%s%d: serial %x\n",
680 			dev->name, dev->id,
681 			le32_to_cpu(dev->adapter_info.serial[0]));
682 
683 	dev->nondasd_support = 0;
684 	dev->raid_scsi_mode = 0;
685 	if(dev->adapter_info.options & AAC_OPT_NONDASD){
686 		dev->nondasd_support = 1;
687 	}
688 
689 	/*
690 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
691 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
692 	 * force nondasd support on. If we decide to allow the non-dasd flag
693 	 * additional changes changes will have to be made to support
694 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
695 	 * changed to support the new dev->raid_scsi_mode flag instead of
696 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
697 	 * function aac_detect will have to be modified where it sets up the
698 	 * max number of channels based on the aac->nondasd_support flag only.
699 	 */
700 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
701 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
702 		dev->nondasd_support = 1;
703 		dev->raid_scsi_mode = 1;
704 	}
705 	if (dev->raid_scsi_mode != 0)
706 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
707 				dev->name, dev->id);
708 
709 	if(nondasd != -1) {
710 		dev->nondasd_support = (nondasd!=0);
711 	}
712 	if(dev->nondasd_support != 0){
713 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
714 	}
715 
716 	dev->dac_support = 0;
717 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
718 		printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
719 		dev->dac_support = 1;
720 	}
721 
722 	if(dacmode != -1) {
723 		dev->dac_support = (dacmode!=0);
724 	}
725 	if(dev->dac_support != 0) {
726 		if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL) &&
727 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL)) {
728 			printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
729 				dev->name, dev->id);
730 		} else if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFULL) &&
731 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFULL)) {
732 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
733 				dev->name, dev->id);
734 			dev->dac_support = 0;
735 		} else {
736 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
737 				dev->name, dev->id);
738 			rcode = -ENOMEM;
739 		}
740 	}
741 	/*
742 	 * 57 scatter gather elements
743 	 */
744 	dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
745 		sizeof(struct aac_fibhdr) -
746 		sizeof(struct aac_write) + sizeof(struct sgmap)) /
747 			sizeof(struct sgmap);
748 	if (dev->dac_support) {
749 		/*
750 		 * 38 scatter gather elements
751 		 */
752 		dev->scsi_host_ptr->sg_tablesize =
753 			(dev->max_fib_size -
754 			sizeof(struct aac_fibhdr) -
755 			sizeof(struct aac_write64) +
756 			sizeof(struct sgmap64)) /
757 				sizeof(struct sgmap64);
758 	}
759 	dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
760 	if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
761 		/*
762 		 * Worst case size that could cause sg overflow when
763 		 * we break up SG elements that are larger than 64KB.
764 		 * Would be nice if we could tell the SCSI layer what
765 		 * the maximum SG element size can be. Worst case is
766 		 * (sg_tablesize-1) 4KB elements with one 64KB
767 		 * element.
768 		 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
769 		 */
770 		dev->scsi_host_ptr->max_sectors =
771 		  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
772 	}
773 
774 	fib_complete(fibptr);
775 	fib_free(fibptr);
776 
777 	return rcode;
778 }
779 
780 
781 static void read_callback(void *context, struct fib * fibptr)
782 {
783 	struct aac_dev *dev;
784 	struct aac_read_reply *readreply;
785 	struct scsi_cmnd *scsicmd;
786 	u32 lba;
787 	u32 cid;
788 
789 	scsicmd = (struct scsi_cmnd *) context;
790 
791 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
792 	cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
793 
794 	lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
795 	dprintk((KERN_DEBUG "read_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies));
796 
797 	if (fibptr == NULL)
798 		BUG();
799 
800 	if(scsicmd->use_sg)
801 		pci_unmap_sg(dev->pdev,
802 			(struct scatterlist *)scsicmd->buffer,
803 			scsicmd->use_sg,
804 			scsicmd->sc_data_direction);
805 	else if(scsicmd->request_bufflen)
806 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
807 				 scsicmd->request_bufflen,
808 				 scsicmd->sc_data_direction);
809 	readreply = (struct aac_read_reply *)fib_data(fibptr);
810 	if (le32_to_cpu(readreply->status) == ST_OK)
811 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
812 	else {
813 #ifdef AAC_DETAILED_STATUS_INFO
814 		printk(KERN_WARNING "read_callback: io failed, status = %d\n",
815 		  le32_to_cpu(readreply->status));
816 #endif
817 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
818 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
819 				    HARDWARE_ERROR,
820 				    SENCODE_INTERNAL_TARGET_FAILURE,
821 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
822 				    0, 0);
823 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
824 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
825 		    ? sizeof(scsicmd->sense_buffer)
826 		    : sizeof(dev->fsa_dev[cid].sense_data));
827 	}
828 	fib_complete(fibptr);
829 	fib_free(fibptr);
830 
831 	aac_io_done(scsicmd);
832 }
833 
834 static void write_callback(void *context, struct fib * fibptr)
835 {
836 	struct aac_dev *dev;
837 	struct aac_write_reply *writereply;
838 	struct scsi_cmnd *scsicmd;
839 	u32 lba;
840 	u32 cid;
841 
842 	scsicmd = (struct scsi_cmnd *) context;
843 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
844 	cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
845 
846 	lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
847 	dprintk((KERN_DEBUG "write_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), lba, jiffies));
848 	if (fibptr == NULL)
849 		BUG();
850 
851 	if(scsicmd->use_sg)
852 		pci_unmap_sg(dev->pdev,
853 			(struct scatterlist *)scsicmd->buffer,
854 			scsicmd->use_sg,
855 			scsicmd->sc_data_direction);
856 	else if(scsicmd->request_bufflen)
857 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
858 				 scsicmd->request_bufflen,
859 				 scsicmd->sc_data_direction);
860 
861 	writereply = (struct aac_write_reply *) fib_data(fibptr);
862 	if (le32_to_cpu(writereply->status) == ST_OK)
863 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
864 	else {
865 		printk(KERN_WARNING "write_callback: write failed, status = %d\n", writereply->status);
866 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
867 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
868 				    HARDWARE_ERROR,
869 				    SENCODE_INTERNAL_TARGET_FAILURE,
870 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
871 				    0, 0);
872 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
873 				sizeof(struct sense_data));
874 	}
875 
876 	fib_complete(fibptr);
877 	fib_free(fibptr);
878 	aac_io_done(scsicmd);
879 }
880 
881 static int aac_read(struct scsi_cmnd * scsicmd, int cid)
882 {
883 	u32 lba;
884 	u32 count;
885 	int status;
886 
887 	u16 fibsize;
888 	struct aac_dev *dev;
889 	struct fib * cmd_fibcontext;
890 
891 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
892 	/*
893 	 *	Get block address and transfer length
894 	 */
895 	if (scsicmd->cmnd[0] == READ_6)	/* 6 byte command */
896 	{
897 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
898 
899 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
900 		count = scsicmd->cmnd[4];
901 
902 		if (count == 0)
903 			count = 256;
904 	} else {
905 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
906 
907 		lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
908 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
909 	}
910 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n",
911 	  smp_processor_id(), (unsigned long long)lba, jiffies));
912 	/*
913 	 *	Alocate and initialize a Fib
914 	 */
915 	if (!(cmd_fibcontext = fib_alloc(dev))) {
916 		return -1;
917 	}
918 
919 	fib_init(cmd_fibcontext);
920 
921 	if (dev->dac_support == 1) {
922 		struct aac_read64 *readcmd;
923 		readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
924 		readcmd->command = cpu_to_le32(VM_CtHostRead64);
925 		readcmd->cid = cpu_to_le16(cid);
926 		readcmd->sector_count = cpu_to_le16(count);
927 		readcmd->block = cpu_to_le32(lba);
928 		readcmd->pad   = 0;
929 		readcmd->flags = 0;
930 
931 		aac_build_sg64(scsicmd, &readcmd->sg);
932 		fibsize = sizeof(struct aac_read64) +
933 			((le32_to_cpu(readcmd->sg.count) - 1) *
934 			 sizeof (struct sgentry64));
935 		BUG_ON (fibsize > (sizeof(struct hw_fib) -
936 					sizeof(struct aac_fibhdr)));
937 		/*
938 		 *	Now send the Fib to the adapter
939 		 */
940 		status = fib_send(ContainerCommand64,
941 			  cmd_fibcontext,
942 			  fibsize,
943 			  FsaNormal,
944 			  0, 1,
945 			  (fib_callback) read_callback,
946 			  (void *) scsicmd);
947 	} else {
948 		struct aac_read *readcmd;
949 		readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
950 		readcmd->command = cpu_to_le32(VM_CtBlockRead);
951 		readcmd->cid = cpu_to_le32(cid);
952 		readcmd->block = cpu_to_le32(lba);
953 		readcmd->count = cpu_to_le32(count * 512);
954 
955 		aac_build_sg(scsicmd, &readcmd->sg);
956 		fibsize = sizeof(struct aac_read) +
957 			((le32_to_cpu(readcmd->sg.count) - 1) *
958 			 sizeof (struct sgentry));
959 		BUG_ON (fibsize > (dev->max_fib_size -
960 					sizeof(struct aac_fibhdr)));
961 		/*
962 		 *	Now send the Fib to the adapter
963 		 */
964 		status = fib_send(ContainerCommand,
965 			  cmd_fibcontext,
966 			  fibsize,
967 			  FsaNormal,
968 			  0, 1,
969 			  (fib_callback) read_callback,
970 			  (void *) scsicmd);
971 	}
972 
973 
974 
975 	/*
976 	 *	Check that the command queued to the controller
977 	 */
978 	if (status == -EINPROGRESS)
979 		return 0;
980 
981 	printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status);
982 	/*
983 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
984 	 */
985 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
986 	aac_io_done(scsicmd);
987 	fib_complete(cmd_fibcontext);
988 	fib_free(cmd_fibcontext);
989 	return 0;
990 }
991 
992 static int aac_write(struct scsi_cmnd * scsicmd, int cid)
993 {
994 	u32 lba;
995 	u32 count;
996 	int status;
997 	u16 fibsize;
998 	struct aac_dev *dev;
999 	struct fib * cmd_fibcontext;
1000 
1001 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1002 	/*
1003 	 *	Get block address and transfer length
1004 	 */
1005 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1006 	{
1007 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1008 		count = scsicmd->cmnd[4];
1009 		if (count == 0)
1010 			count = 256;
1011 	} else {
1012 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1013 		lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1014 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1015 	}
1016 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n",
1017 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1018 	/*
1019 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1020 	 */
1021 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1022 		scsicmd->result = DID_ERROR << 16;
1023 		aac_io_done(scsicmd);
1024 		return 0;
1025 	}
1026 	fib_init(cmd_fibcontext);
1027 
1028 	if(dev->dac_support == 1) {
1029 		struct aac_write64 *writecmd;
1030 		writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
1031 		writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1032 		writecmd->cid = cpu_to_le16(cid);
1033 		writecmd->sector_count = cpu_to_le16(count);
1034 		writecmd->block = cpu_to_le32(lba);
1035 		writecmd->pad	= 0;
1036 		writecmd->flags	= 0;
1037 
1038 		aac_build_sg64(scsicmd, &writecmd->sg);
1039 		fibsize = sizeof(struct aac_write64) +
1040 			((le32_to_cpu(writecmd->sg.count) - 1) *
1041 			 sizeof (struct sgentry64));
1042 		BUG_ON (fibsize > (dev->max_fib_size -
1043 					sizeof(struct aac_fibhdr)));
1044 		/*
1045 		 *	Now send the Fib to the adapter
1046 		 */
1047 		status = fib_send(ContainerCommand64,
1048 			  cmd_fibcontext,
1049 			  fibsize,
1050 			  FsaNormal,
1051 			  0, 1,
1052 			  (fib_callback) write_callback,
1053 			  (void *) scsicmd);
1054 	} else {
1055 		struct aac_write *writecmd;
1056 		writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
1057 		writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1058 		writecmd->cid = cpu_to_le32(cid);
1059 		writecmd->block = cpu_to_le32(lba);
1060 		writecmd->count = cpu_to_le32(count * 512);
1061 		writecmd->sg.count = cpu_to_le32(1);
1062 		/* ->stable is not used - it did mean which type of write */
1063 
1064 		aac_build_sg(scsicmd, &writecmd->sg);
1065 		fibsize = sizeof(struct aac_write) +
1066 			((le32_to_cpu(writecmd->sg.count) - 1) *
1067 			 sizeof (struct sgentry));
1068 		BUG_ON (fibsize > (dev->max_fib_size -
1069 					sizeof(struct aac_fibhdr)));
1070 		/*
1071 		 *	Now send the Fib to the adapter
1072 		 */
1073 		status = fib_send(ContainerCommand,
1074 			  cmd_fibcontext,
1075 			  fibsize,
1076 			  FsaNormal,
1077 			  0, 1,
1078 			  (fib_callback) write_callback,
1079 			  (void *) scsicmd);
1080 	}
1081 
1082 	/*
1083 	 *	Check that the command queued to the controller
1084 	 */
1085 	if (status == -EINPROGRESS)
1086 	{
1087 		return 0;
1088 	}
1089 
1090 	printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status);
1091 	/*
1092 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1093 	 */
1094 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1095 	aac_io_done(scsicmd);
1096 
1097 	fib_complete(cmd_fibcontext);
1098 	fib_free(cmd_fibcontext);
1099 	return 0;
1100 }
1101 
1102 static void synchronize_callback(void *context, struct fib *fibptr)
1103 {
1104 	struct aac_synchronize_reply *synchronizereply;
1105 	struct scsi_cmnd *cmd;
1106 
1107 	cmd = context;
1108 
1109 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1110 				smp_processor_id(), jiffies));
1111 	BUG_ON(fibptr == NULL);
1112 
1113 
1114 	synchronizereply = fib_data(fibptr);
1115 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1116 		cmd->result = DID_OK << 16 |
1117 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1118 	else {
1119 		struct scsi_device *sdev = cmd->device;
1120 		struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1121 		u32 cid = ID_LUN_TO_CONTAINER(sdev->id, sdev->lun);
1122 		printk(KERN_WARNING
1123 		     "synchronize_callback: synchronize failed, status = %d\n",
1124 		     le32_to_cpu(synchronizereply->status));
1125 		cmd->result = DID_OK << 16 |
1126 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1127 		set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1128 				    HARDWARE_ERROR,
1129 				    SENCODE_INTERNAL_TARGET_FAILURE,
1130 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1131 				    0, 0);
1132 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1133 		  min(sizeof(dev->fsa_dev[cid].sense_data),
1134 			  sizeof(cmd->sense_buffer)));
1135 	}
1136 
1137 	fib_complete(fibptr);
1138 	fib_free(fibptr);
1139 	aac_io_done(cmd);
1140 }
1141 
1142 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
1143 {
1144 	int status;
1145 	struct fib *cmd_fibcontext;
1146 	struct aac_synchronize *synchronizecmd;
1147 	struct scsi_cmnd *cmd;
1148 	struct scsi_device *sdev = scsicmd->device;
1149 	int active = 0;
1150 	unsigned long flags;
1151 
1152 	/*
1153 	 * Wait for all commands to complete to this specific
1154 	 * target (block).
1155 	 */
1156 	spin_lock_irqsave(&sdev->list_lock, flags);
1157 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1158 		if (cmd != scsicmd && cmd->serial_number != 0) {
1159 			++active;
1160 			break;
1161 		}
1162 
1163 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1164 
1165 	/*
1166 	 *	Yield the processor (requeue for later)
1167 	 */
1168 	if (active)
1169 		return SCSI_MLQUEUE_DEVICE_BUSY;
1170 
1171 	/*
1172 	 *	Allocate and initialize a Fib
1173 	 */
1174 	if (!(cmd_fibcontext =
1175 	    fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
1176 		return SCSI_MLQUEUE_HOST_BUSY;
1177 
1178 	fib_init(cmd_fibcontext);
1179 
1180 	synchronizecmd = fib_data(cmd_fibcontext);
1181 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1182 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1183 	synchronizecmd->cid = cpu_to_le32(cid);
1184 	synchronizecmd->count =
1185 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1186 
1187 	/*
1188 	 *	Now send the Fib to the adapter
1189 	 */
1190 	status = fib_send(ContainerCommand,
1191 		  cmd_fibcontext,
1192 		  sizeof(struct aac_synchronize),
1193 		  FsaNormal,
1194 		  0, 1,
1195 		  (fib_callback)synchronize_callback,
1196 		  (void *)scsicmd);
1197 
1198 	/*
1199 	 *	Check that the command queued to the controller
1200 	 */
1201 	if (status == -EINPROGRESS)
1202 		return 0;
1203 
1204 	printk(KERN_WARNING
1205 		"aac_synchronize: fib_send failed with status: %d.\n", status);
1206 	fib_complete(cmd_fibcontext);
1207 	fib_free(cmd_fibcontext);
1208 	return SCSI_MLQUEUE_HOST_BUSY;
1209 }
1210 
1211 /**
1212  *	aac_scsi_cmd()		-	Process SCSI command
1213  *	@scsicmd:		SCSI command block
1214  *
1215  *	Emulate a SCSI command and queue the required request for the
1216  *	aacraid firmware.
1217  */
1218 
1219 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1220 {
1221 	u32 cid = 0;
1222 	struct Scsi_Host *host = scsicmd->device->host;
1223 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1224 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1225 	int cardtype = dev->cardtype;
1226 	int ret;
1227 
1228 	/*
1229 	 *	If the bus, id or lun is out of range, return fail
1230 	 *	Test does not apply to ID 16, the pseudo id for the controller
1231 	 *	itself.
1232 	 */
1233 	if (scsicmd->device->id != host->this_id) {
1234 		if ((scsicmd->device->channel == 0) ){
1235 			if( (scsicmd->device->id >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)){
1236 				scsicmd->result = DID_NO_CONNECT << 16;
1237 				scsicmd->scsi_done(scsicmd);
1238 				return 0;
1239 			}
1240 			cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
1241 
1242 			/*
1243 			 *	If the target container doesn't exist, it may have
1244 			 *	been newly created
1245 			 */
1246 			if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1247 				switch (scsicmd->cmnd[0]) {
1248 				case INQUIRY:
1249 				case READ_CAPACITY:
1250 				case TEST_UNIT_READY:
1251 					spin_unlock_irq(host->host_lock);
1252 					probe_container(dev, cid);
1253 					spin_lock_irq(host->host_lock);
1254 					if (fsa_dev_ptr[cid].valid == 0) {
1255 						scsicmd->result = DID_NO_CONNECT << 16;
1256 						scsicmd->scsi_done(scsicmd);
1257 						return 0;
1258 					}
1259 				default:
1260 					break;
1261 				}
1262 			}
1263 			/*
1264 			 *	If the target container still doesn't exist,
1265 			 *	return failure
1266 			 */
1267 			if (fsa_dev_ptr[cid].valid == 0) {
1268 				scsicmd->result = DID_BAD_TARGET << 16;
1269 				scsicmd->scsi_done(scsicmd);
1270 				return 0;
1271 			}
1272 		} else {  /* check for physical non-dasd devices */
1273 			if(dev->nondasd_support == 1){
1274 				return aac_send_srb_fib(scsicmd);
1275 			} else {
1276 				scsicmd->result = DID_NO_CONNECT << 16;
1277 				scsicmd->scsi_done(scsicmd);
1278 				return 0;
1279 			}
1280 		}
1281 	}
1282 	/*
1283 	 * else Command for the controller itself
1284 	 */
1285 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
1286 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
1287 	{
1288 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1289 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1290 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1291 			    ILLEGAL_REQUEST,
1292 			    SENCODE_INVALID_COMMAND,
1293 			    ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1294 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1295 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1296 		    ? sizeof(scsicmd->sense_buffer)
1297 		    : sizeof(dev->fsa_dev[cid].sense_data));
1298 		scsicmd->scsi_done(scsicmd);
1299 		return 0;
1300 	}
1301 
1302 
1303 	/* Handle commands here that don't really require going out to the adapter */
1304 	switch (scsicmd->cmnd[0]) {
1305 	case INQUIRY:
1306 	{
1307 		struct inquiry_data *inq_data_ptr;
1308 
1309 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->device->id));
1310 		inq_data_ptr = (struct inquiry_data *)scsicmd->request_buffer;
1311 		memset(inq_data_ptr, 0, sizeof (struct inquiry_data));
1312 
1313 		inq_data_ptr->inqd_ver = 2;	/* claim compliance to SCSI-2 */
1314 		inq_data_ptr->inqd_dtq = 0x80;	/* set RMB bit to one indicating that the medium is removable */
1315 		inq_data_ptr->inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1316 		inq_data_ptr->inqd_len = 31;
1317 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
1318 		inq_data_ptr->inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
1319 		/*
1320 		 *	Set the Vendor, Product, and Revision Level
1321 		 *	see: <vendor>.c i.e. aac.c
1322 		 */
1323 		if (scsicmd->device->id == host->this_id) {
1324 			setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), (sizeof(container_types)/sizeof(char *)));
1325 			inq_data_ptr->inqd_pdt = INQD_PDT_PROC;	/* Processor device */
1326 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1327 			scsicmd->scsi_done(scsicmd);
1328 			return 0;
1329 		}
1330 		setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), fsa_dev_ptr[cid].type);
1331 		inq_data_ptr->inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
1332 		return aac_get_container_name(scsicmd, cid);
1333 	}
1334 	case READ_CAPACITY:
1335 	{
1336 		u32 capacity;
1337 		char *cp;
1338 
1339 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1340 		if (fsa_dev_ptr[cid].size <= 0x100000000LL)
1341 			capacity = fsa_dev_ptr[cid].size - 1;
1342 		else
1343 			capacity = (u32)-1;
1344 		cp = scsicmd->request_buffer;
1345 		cp[0] = (capacity >> 24) & 0xff;
1346 		cp[1] = (capacity >> 16) & 0xff;
1347 		cp[2] = (capacity >> 8) & 0xff;
1348 		cp[3] = (capacity >> 0) & 0xff;
1349 		cp[4] = 0;
1350 		cp[5] = 0;
1351 		cp[6] = 2;
1352 		cp[7] = 0;
1353 
1354 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1355 		scsicmd->scsi_done(scsicmd);
1356 
1357 		return 0;
1358 	}
1359 
1360 	case MODE_SENSE:
1361 	{
1362 		char *mode_buf;
1363 
1364 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1365 		mode_buf = scsicmd->request_buffer;
1366 		mode_buf[0] = 3;	/* Mode data length */
1367 		mode_buf[1] = 0;	/* Medium type - default */
1368 		mode_buf[2] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1369 		mode_buf[3] = 0;	/* Block descriptor length */
1370 
1371 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1372 		scsicmd->scsi_done(scsicmd);
1373 
1374 		return 0;
1375 	}
1376 	case MODE_SENSE_10:
1377 	{
1378 		char *mode_buf;
1379 
1380 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1381 		mode_buf = scsicmd->request_buffer;
1382 		mode_buf[0] = 0;	/* Mode data length (MSB) */
1383 		mode_buf[1] = 6;	/* Mode data length (LSB) */
1384 		mode_buf[2] = 0;	/* Medium type - default */
1385 		mode_buf[3] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1386 		mode_buf[4] = 0;	/* reserved */
1387 		mode_buf[5] = 0;	/* reserved */
1388 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
1389 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
1390 
1391 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1392 		scsicmd->scsi_done(scsicmd);
1393 
1394 		return 0;
1395 	}
1396 	case REQUEST_SENSE:
1397 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1398 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1399 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1400 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1401 		scsicmd->scsi_done(scsicmd);
1402 		return 0;
1403 
1404 	case ALLOW_MEDIUM_REMOVAL:
1405 		dprintk((KERN_DEBUG "LOCK command.\n"));
1406 		if (scsicmd->cmnd[4])
1407 			fsa_dev_ptr[cid].locked = 1;
1408 		else
1409 			fsa_dev_ptr[cid].locked = 0;
1410 
1411 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1412 		scsicmd->scsi_done(scsicmd);
1413 		return 0;
1414 	/*
1415 	 *	These commands are all No-Ops
1416 	 */
1417 	case TEST_UNIT_READY:
1418 	case RESERVE:
1419 	case RELEASE:
1420 	case REZERO_UNIT:
1421 	case REASSIGN_BLOCKS:
1422 	case SEEK_10:
1423 	case START_STOP:
1424 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1425 		scsicmd->scsi_done(scsicmd);
1426 		return 0;
1427 	}
1428 
1429 	switch (scsicmd->cmnd[0])
1430 	{
1431 		case READ_6:
1432 		case READ_10:
1433 			/*
1434 			 *	Hack to keep track of ordinal number of the device that
1435 			 *	corresponds to a container. Needed to convert
1436 			 *	containers to /dev/sd device names
1437 			 */
1438 
1439 			spin_unlock_irq(host->host_lock);
1440 			if  (scsicmd->request->rq_disk)
1441 				memcpy(fsa_dev_ptr[cid].devname,
1442 					scsicmd->request->rq_disk->disk_name,
1443 					8);
1444 
1445 			ret = aac_read(scsicmd, cid);
1446 			spin_lock_irq(host->host_lock);
1447 			return ret;
1448 
1449 		case WRITE_6:
1450 		case WRITE_10:
1451 			spin_unlock_irq(host->host_lock);
1452 			ret = aac_write(scsicmd, cid);
1453 			spin_lock_irq(host->host_lock);
1454 			return ret;
1455 
1456 		case SYNCHRONIZE_CACHE:
1457 			/* Issue FIB to tell Firmware to flush it's cache */
1458 			return aac_synchronize(scsicmd, cid);
1459 
1460 		default:
1461 			/*
1462 			 *	Unhandled commands
1463 			 */
1464 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1465 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1466 			set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1467 				ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1468 				ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1469 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1470 			  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1471 			    ? sizeof(scsicmd->sense_buffer)
1472 			    : sizeof(dev->fsa_dev[cid].sense_data));
1473 			scsicmd->scsi_done(scsicmd);
1474 			return 0;
1475 	}
1476 }
1477 
1478 static int query_disk(struct aac_dev *dev, void __user *arg)
1479 {
1480 	struct aac_query_disk qd;
1481 	struct fsa_dev_info *fsa_dev_ptr;
1482 
1483 	fsa_dev_ptr = dev->fsa_dev;
1484 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
1485 		return -EFAULT;
1486 	if (qd.cnum == -1)
1487 		qd.cnum = ID_LUN_TO_CONTAINER(qd.id, qd.lun);
1488 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
1489 	{
1490 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
1491 			return -EINVAL;
1492 		qd.instance = dev->scsi_host_ptr->host_no;
1493 		qd.bus = 0;
1494 		qd.id = CONTAINER_TO_ID(qd.cnum);
1495 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
1496 	}
1497 	else return -EINVAL;
1498 
1499 	qd.valid = fsa_dev_ptr[qd.cnum].valid;
1500 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
1501 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
1502 
1503 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
1504 		qd.unmapped = 1;
1505 	else
1506 		qd.unmapped = 0;
1507 
1508 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
1509 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
1510 
1511 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
1512 		return -EFAULT;
1513 	return 0;
1514 }
1515 
1516 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
1517 {
1518 	struct aac_delete_disk dd;
1519 	struct fsa_dev_info *fsa_dev_ptr;
1520 
1521 	fsa_dev_ptr = dev->fsa_dev;
1522 
1523 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1524 		return -EFAULT;
1525 
1526 	if (dd.cnum >= dev->maximum_num_containers)
1527 		return -EINVAL;
1528 	/*
1529 	 *	Mark this container as being deleted.
1530 	 */
1531 	fsa_dev_ptr[dd.cnum].deleted = 1;
1532 	/*
1533 	 *	Mark the container as no longer valid
1534 	 */
1535 	fsa_dev_ptr[dd.cnum].valid = 0;
1536 	return 0;
1537 }
1538 
1539 static int delete_disk(struct aac_dev *dev, void __user *arg)
1540 {
1541 	struct aac_delete_disk dd;
1542 	struct fsa_dev_info *fsa_dev_ptr;
1543 
1544 	fsa_dev_ptr = dev->fsa_dev;
1545 
1546 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1547 		return -EFAULT;
1548 
1549 	if (dd.cnum >= dev->maximum_num_containers)
1550 		return -EINVAL;
1551 	/*
1552 	 *	If the container is locked, it can not be deleted by the API.
1553 	 */
1554 	if (fsa_dev_ptr[dd.cnum].locked)
1555 		return -EBUSY;
1556 	else {
1557 		/*
1558 		 *	Mark the container as no longer being valid.
1559 		 */
1560 		fsa_dev_ptr[dd.cnum].valid = 0;
1561 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
1562 		return 0;
1563 	}
1564 }
1565 
1566 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
1567 {
1568 	switch (cmd) {
1569 	case FSACTL_QUERY_DISK:
1570 		return query_disk(dev, arg);
1571 	case FSACTL_DELETE_DISK:
1572 		return delete_disk(dev, arg);
1573 	case FSACTL_FORCE_DELETE_DISK:
1574 		return force_delete_disk(dev, arg);
1575 	case FSACTL_GET_CONTAINERS:
1576 		return aac_get_containers(dev);
1577 	default:
1578 		return -ENOTTY;
1579 	}
1580 }
1581 
1582 /**
1583  *
1584  * aac_srb_callback
1585  * @context: the context set in the fib - here it is scsi cmd
1586  * @fibptr: pointer to the fib
1587  *
1588  * Handles the completion of a scsi command to a non dasd device
1589  *
1590  */
1591 
1592 static void aac_srb_callback(void *context, struct fib * fibptr)
1593 {
1594 	struct aac_dev *dev;
1595 	struct aac_srb_reply *srbreply;
1596 	struct scsi_cmnd *scsicmd;
1597 
1598 	scsicmd = (struct scsi_cmnd *) context;
1599 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1600 
1601 	if (fibptr == NULL)
1602 		BUG();
1603 
1604 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
1605 
1606 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
1607 	/*
1608 	 *	Calculate resid for sg
1609 	 */
1610 
1611 	scsicmd->resid = scsicmd->request_bufflen -
1612 		le32_to_cpu(srbreply->data_xfer_length);
1613 
1614 	if(scsicmd->use_sg)
1615 		pci_unmap_sg(dev->pdev,
1616 			(struct scatterlist *)scsicmd->buffer,
1617 			scsicmd->use_sg,
1618 			scsicmd->sc_data_direction);
1619 	else if(scsicmd->request_bufflen)
1620 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
1621 			scsicmd->sc_data_direction);
1622 
1623 	/*
1624 	 * First check the fib status
1625 	 */
1626 
1627 	if (le32_to_cpu(srbreply->status) != ST_OK){
1628 		int len;
1629 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
1630 		len = (le32_to_cpu(srbreply->sense_data_size) >
1631 				sizeof(scsicmd->sense_buffer)) ?
1632 				sizeof(scsicmd->sense_buffer) :
1633 				le32_to_cpu(srbreply->sense_data_size);
1634 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1635 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1636 	}
1637 
1638 	/*
1639 	 * Next check the srb status
1640 	 */
1641 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
1642 	case SRB_STATUS_ERROR_RECOVERY:
1643 	case SRB_STATUS_PENDING:
1644 	case SRB_STATUS_SUCCESS:
1645 		if(scsicmd->cmnd[0] == INQUIRY ){
1646 			u8 b;
1647 			u8 b1;
1648 			/* We can't expose disk devices because we can't tell whether they
1649 			 * are the raw container drives or stand alone drives.  If they have
1650 			 * the removable bit set then we should expose them though.
1651 			 */
1652 			b = (*(u8*)scsicmd->buffer)&0x1f;
1653 			b1 = ((u8*)scsicmd->buffer)[1];
1654 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1655 					|| (b==TYPE_DISK && (b1&0x80)) ){
1656 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1657 			/*
1658 			 * We will allow disk devices if in RAID/SCSI mode and
1659 			 * the channel is 2
1660 			 */
1661 			} else if ((dev->raid_scsi_mode) &&
1662 					(scsicmd->device->channel == 2)) {
1663 				scsicmd->result = DID_OK << 16 |
1664 						COMMAND_COMPLETE << 8;
1665 			} else {
1666 				scsicmd->result = DID_NO_CONNECT << 16 |
1667 						COMMAND_COMPLETE << 8;
1668 			}
1669 		} else {
1670 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1671 		}
1672 		break;
1673 	case SRB_STATUS_DATA_OVERRUN:
1674 		switch(scsicmd->cmnd[0]){
1675 		case  READ_6:
1676 		case  WRITE_6:
1677 		case  READ_10:
1678 		case  WRITE_10:
1679 		case  READ_12:
1680 		case  WRITE_12:
1681 			if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
1682 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
1683 			} else {
1684 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
1685 			}
1686 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1687 			break;
1688 		case INQUIRY: {
1689 			u8 b;
1690 			u8 b1;
1691 			/* We can't expose disk devices because we can't tell whether they
1692 			* are the raw container drives or stand alone drives
1693 			*/
1694 			b = (*(u8*)scsicmd->buffer)&0x0f;
1695 			b1 = ((u8*)scsicmd->buffer)[1];
1696 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1697 					|| (b==TYPE_DISK && (b1&0x80)) ){
1698 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1699 			/*
1700 			 * We will allow disk devices if in RAID/SCSI mode and
1701 			 * the channel is 2
1702 			 */
1703 			} else if ((dev->raid_scsi_mode) &&
1704 					(scsicmd->device->channel == 2)) {
1705 				scsicmd->result = DID_OK << 16 |
1706 						COMMAND_COMPLETE << 8;
1707 			} else {
1708 				scsicmd->result = DID_NO_CONNECT << 16 |
1709 						COMMAND_COMPLETE << 8;
1710 			}
1711 			break;
1712 		}
1713 		default:
1714 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1715 			break;
1716 		}
1717 		break;
1718 	case SRB_STATUS_ABORTED:
1719 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
1720 		break;
1721 	case SRB_STATUS_ABORT_FAILED:
1722 		// Not sure about this one - but assuming the hba was trying to abort for some reason
1723 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
1724 		break;
1725 	case SRB_STATUS_PARITY_ERROR:
1726 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
1727 		break;
1728 	case SRB_STATUS_NO_DEVICE:
1729 	case SRB_STATUS_INVALID_PATH_ID:
1730 	case SRB_STATUS_INVALID_TARGET_ID:
1731 	case SRB_STATUS_INVALID_LUN:
1732 	case SRB_STATUS_SELECTION_TIMEOUT:
1733 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1734 		break;
1735 
1736 	case SRB_STATUS_COMMAND_TIMEOUT:
1737 	case SRB_STATUS_TIMEOUT:
1738 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
1739 		break;
1740 
1741 	case SRB_STATUS_BUSY:
1742 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
1743 		break;
1744 
1745 	case SRB_STATUS_BUS_RESET:
1746 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
1747 		break;
1748 
1749 	case SRB_STATUS_MESSAGE_REJECTED:
1750 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
1751 		break;
1752 	case SRB_STATUS_REQUEST_FLUSHED:
1753 	case SRB_STATUS_ERROR:
1754 	case SRB_STATUS_INVALID_REQUEST:
1755 	case SRB_STATUS_REQUEST_SENSE_FAILED:
1756 	case SRB_STATUS_NO_HBA:
1757 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
1758 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
1759 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
1760 	case SRB_STATUS_DELAYED_RETRY:
1761 	case SRB_STATUS_BAD_FUNCTION:
1762 	case SRB_STATUS_NOT_STARTED:
1763 	case SRB_STATUS_NOT_IN_USE:
1764 	case SRB_STATUS_FORCE_ABORT:
1765 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
1766 	default:
1767 #ifdef AAC_DETAILED_STATUS_INFO
1768 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
1769 			le32_to_cpu(srbreply->srb_status) & 0x3F,
1770 			aac_get_status_string(
1771 				le32_to_cpu(srbreply->srb_status) & 0x3F),
1772 			scsicmd->cmnd[0],
1773 			le32_to_cpu(srbreply->scsi_status));
1774 #endif
1775 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1776 		break;
1777 	}
1778 	if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
1779 		int len;
1780 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
1781 		len = (le32_to_cpu(srbreply->sense_data_size) >
1782 				sizeof(scsicmd->sense_buffer)) ?
1783 				sizeof(scsicmd->sense_buffer) :
1784 				le32_to_cpu(srbreply->sense_data_size);
1785 #ifdef AAC_DETAILED_STATUS_INFO
1786 		dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
1787 					le32_to_cpu(srbreply->status), len));
1788 #endif
1789 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1790 
1791 	}
1792 	/*
1793 	 * OR in the scsi status (already shifted up a bit)
1794 	 */
1795 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
1796 
1797 	fib_complete(fibptr);
1798 	fib_free(fibptr);
1799 	aac_io_done(scsicmd);
1800 }
1801 
1802 /**
1803  *
1804  * aac_send_scb_fib
1805  * @scsicmd: the scsi command block
1806  *
1807  * This routine will form a FIB and fill in the aac_srb from the
1808  * scsicmd passed in.
1809  */
1810 
1811 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
1812 {
1813 	struct fib* cmd_fibcontext;
1814 	struct aac_dev* dev;
1815 	int status;
1816 	struct aac_srb *srbcmd;
1817 	u16 fibsize;
1818 	u32 flag;
1819 	u32 timeout;
1820 
1821 	if( scsicmd->device->id > 15 || scsicmd->device->lun > 7) {
1822 		scsicmd->result = DID_NO_CONNECT << 16;
1823 		scsicmd->scsi_done(scsicmd);
1824 		return 0;
1825 	}
1826 
1827 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1828 	switch(scsicmd->sc_data_direction){
1829 	case DMA_TO_DEVICE:
1830 		flag = SRB_DataOut;
1831 		break;
1832 	case DMA_BIDIRECTIONAL:
1833 		flag = SRB_DataIn | SRB_DataOut;
1834 		break;
1835 	case DMA_FROM_DEVICE:
1836 		flag = SRB_DataIn;
1837 		break;
1838 	case DMA_NONE:
1839 	default:	/* shuts up some versions of gcc */
1840 		flag = SRB_NoDataXfer;
1841 		break;
1842 	}
1843 
1844 
1845 	/*
1846 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1847 	 */
1848 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1849 		return -1;
1850 	}
1851 	fib_init(cmd_fibcontext);
1852 
1853 	srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
1854 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
1855 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scsicmd->device->channel));
1856 	srbcmd->id   = cpu_to_le32(scsicmd->device->id);
1857 	srbcmd->lun      = cpu_to_le32(scsicmd->device->lun);
1858 	srbcmd->flags    = cpu_to_le32(flag);
1859 	timeout = (scsicmd->timeout-jiffies)/HZ;
1860 	if(timeout == 0){
1861 		timeout = 1;
1862 	}
1863 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
1864 	srbcmd->retry_limit = 0; /* Obsolete parameter */
1865 	srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
1866 
1867 	if( dev->dac_support == 1 ) {
1868 		aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
1869 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1870 
1871 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1872 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1873 		/*
1874 		 *	Build Scatter/Gather list
1875 		 */
1876 		fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
1877 			((le32_to_cpu(srbcmd->sg.count) & 0xff) *
1878 			 sizeof (struct sgentry64));
1879 		BUG_ON (fibsize > (dev->max_fib_size -
1880 					sizeof(struct aac_fibhdr)));
1881 
1882 		/*
1883 		 *	Now send the Fib to the adapter
1884 		 */
1885 		status = fib_send(ScsiPortCommand64, cmd_fibcontext,
1886 				fibsize, FsaNormal, 0, 1,
1887 				  (fib_callback) aac_srb_callback,
1888 				  (void *) scsicmd);
1889 	} else {
1890 		aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
1891 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
1892 
1893 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
1894 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
1895 		/*
1896 		 *	Build Scatter/Gather list
1897 		 */
1898 		fibsize = sizeof (struct aac_srb) +
1899 			(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
1900 			 sizeof (struct sgentry));
1901 		BUG_ON (fibsize > (dev->max_fib_size -
1902 					sizeof(struct aac_fibhdr)));
1903 
1904 		/*
1905 		 *	Now send the Fib to the adapter
1906 		 */
1907 		status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
1908 				  (fib_callback) aac_srb_callback, (void *) scsicmd);
1909 	}
1910 	/*
1911 	 *	Check that the command queued to the controller
1912 	 */
1913 	if (status == -EINPROGRESS){
1914 		return 0;
1915 	}
1916 
1917 	printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status);
1918 	fib_complete(cmd_fibcontext);
1919 	fib_free(cmd_fibcontext);
1920 
1921 	return -1;
1922 }
1923 
1924 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
1925 {
1926 	struct aac_dev *dev;
1927 	unsigned long byte_count = 0;
1928 
1929 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1930 	// Get rid of old data
1931 	psg->count = 0;
1932 	psg->sg[0].addr = 0;
1933 	psg->sg[0].count = 0;
1934 	if (scsicmd->use_sg) {
1935 		struct scatterlist *sg;
1936 		int i;
1937 		int sg_count;
1938 		sg = (struct scatterlist *) scsicmd->request_buffer;
1939 
1940 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
1941 			scsicmd->sc_data_direction);
1942 		psg->count = cpu_to_le32(sg_count);
1943 
1944 		byte_count = 0;
1945 
1946 		for (i = 0; i < sg_count; i++) {
1947 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
1948 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
1949 			byte_count += sg_dma_len(sg);
1950 			sg++;
1951 		}
1952 		/* hba wants the size to be exact */
1953 		if(byte_count > scsicmd->request_bufflen){
1954 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
1955 				(byte_count - scsicmd->request_bufflen);
1956 			psg->sg[i-1].count = cpu_to_le32(temp);
1957 			byte_count = scsicmd->request_bufflen;
1958 		}
1959 		/* Check for command underflow */
1960 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
1961 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
1962 					byte_count, scsicmd->underflow);
1963 		}
1964 	}
1965 	else if(scsicmd->request_bufflen) {
1966 		dma_addr_t addr;
1967 		addr = pci_map_single(dev->pdev,
1968 				scsicmd->request_buffer,
1969 				scsicmd->request_bufflen,
1970 				scsicmd->sc_data_direction);
1971 		psg->count = cpu_to_le32(1);
1972 		psg->sg[0].addr = cpu_to_le32(addr);
1973 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
1974 		scsicmd->SCp.dma_handle = addr;
1975 		byte_count = scsicmd->request_bufflen;
1976 	}
1977 	return byte_count;
1978 }
1979 
1980 
1981 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
1982 {
1983 	struct aac_dev *dev;
1984 	unsigned long byte_count = 0;
1985 	u64 addr;
1986 
1987 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1988 	// Get rid of old data
1989 	psg->count = 0;
1990 	psg->sg[0].addr[0] = 0;
1991 	psg->sg[0].addr[1] = 0;
1992 	psg->sg[0].count = 0;
1993 	if (scsicmd->use_sg) {
1994 		struct scatterlist *sg;
1995 		int i;
1996 		int sg_count;
1997 		sg = (struct scatterlist *) scsicmd->request_buffer;
1998 
1999 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2000 			scsicmd->sc_data_direction);
2001 		psg->count = cpu_to_le32(sg_count);
2002 
2003 		byte_count = 0;
2004 
2005 		for (i = 0; i < sg_count; i++) {
2006 			addr = sg_dma_address(sg);
2007 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2008 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2009 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2010 			byte_count += sg_dma_len(sg);
2011 			sg++;
2012 		}
2013 		/* hba wants the size to be exact */
2014 		if(byte_count > scsicmd->request_bufflen){
2015 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2016 				(byte_count - scsicmd->request_bufflen);
2017 			psg->sg[i-1].count = cpu_to_le32(temp);
2018 			byte_count = scsicmd->request_bufflen;
2019 		}
2020 		/* Check for command underflow */
2021 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2022 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2023 					byte_count, scsicmd->underflow);
2024 		}
2025 	}
2026 	else if(scsicmd->request_bufflen) {
2027 		u64 addr;
2028 		addr = pci_map_single(dev->pdev,
2029 				scsicmd->request_buffer,
2030 				scsicmd->request_bufflen,
2031 				scsicmd->sc_data_direction);
2032 		psg->count = cpu_to_le32(1);
2033 		psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2034 		psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2035 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2036 		scsicmd->SCp.dma_handle = addr;
2037 		byte_count = scsicmd->request_bufflen;
2038 	}
2039 	return byte_count;
2040 }
2041 
2042 #ifdef AAC_DETAILED_STATUS_INFO
2043 
2044 struct aac_srb_status_info {
2045 	u32	status;
2046 	char	*str;
2047 };
2048 
2049 
2050 static struct aac_srb_status_info srb_status_info[] = {
2051 	{ SRB_STATUS_PENDING,		"Pending Status"},
2052 	{ SRB_STATUS_SUCCESS,		"Success"},
2053 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2054 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2055 	{ SRB_STATUS_ERROR,		"Error Event"},
2056 	{ SRB_STATUS_BUSY,		"Device Busy"},
2057 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2058 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2059 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2060 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2061 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2062 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2063 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2064 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2065 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2066 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2067 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2068 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2069 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2070 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2071 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2072 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2073 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2074 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2075 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2076 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2077 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2078 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2079 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2080     	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2081 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2082 	{ 0xff,				"Unknown Error"}
2083 };
2084 
2085 char *aac_get_status_string(u32 status)
2086 {
2087 	int i;
2088 
2089 	for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){
2090 		if(srb_status_info[i].status == status){
2091 			return srb_status_info[i].str;
2092 		}
2093 	}
2094 
2095 	return "Bad Status Code";
2096 }
2097 
2098 #endif
2099