xref: /linux/drivers/scsi/aacraid/aachba.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/sched.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/completion.h>
34 #include <linux/blkdev.h>
35 #include <asm/semaphore.h>
36 #include <asm/uaccess.h>
37 
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 
43 #include "aacraid.h"
44 
45 /* values for inqd_pdt: Peripheral device type in plain English */
46 #define	INQD_PDT_DA	0x00	/* Direct-access (DISK) device */
47 #define	INQD_PDT_PROC	0x03	/* Processor device */
48 #define	INQD_PDT_CHNGR	0x08	/* Changer (jukebox, scsi2) */
49 #define	INQD_PDT_COMM	0x09	/* Communication device (scsi2) */
50 #define	INQD_PDT_NOLUN2 0x1f	/* Unknown Device (scsi2) */
51 #define	INQD_PDT_NOLUN	0x7f	/* Logical Unit Not Present */
52 
53 #define	INQD_PDT_DMASK	0x1F	/* Peripheral Device Type Mask */
54 #define	INQD_PDT_QMASK	0xE0	/* Peripheral Device Qualifer Mask */
55 
56 /*
57  *	Sense codes
58  */
59 
60 #define SENCODE_NO_SENSE                        0x00
61 #define SENCODE_END_OF_DATA                     0x00
62 #define SENCODE_BECOMING_READY                  0x04
63 #define SENCODE_INIT_CMD_REQUIRED               0x04
64 #define SENCODE_PARAM_LIST_LENGTH_ERROR         0x1A
65 #define SENCODE_INVALID_COMMAND                 0x20
66 #define SENCODE_LBA_OUT_OF_RANGE                0x21
67 #define SENCODE_INVALID_CDB_FIELD               0x24
68 #define SENCODE_LUN_NOT_SUPPORTED               0x25
69 #define SENCODE_INVALID_PARAM_FIELD             0x26
70 #define SENCODE_PARAM_NOT_SUPPORTED             0x26
71 #define SENCODE_PARAM_VALUE_INVALID             0x26
72 #define SENCODE_RESET_OCCURRED                  0x29
73 #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET     0x3E
74 #define SENCODE_INQUIRY_DATA_CHANGED            0x3F
75 #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED     0x39
76 #define SENCODE_DIAGNOSTIC_FAILURE              0x40
77 #define SENCODE_INTERNAL_TARGET_FAILURE         0x44
78 #define SENCODE_INVALID_MESSAGE_ERROR           0x49
79 #define SENCODE_LUN_FAILED_SELF_CONFIG          0x4c
80 #define SENCODE_OVERLAPPED_COMMAND              0x4E
81 
82 /*
83  *	Additional sense codes
84  */
85 
86 #define ASENCODE_NO_SENSE                       0x00
87 #define ASENCODE_END_OF_DATA                    0x05
88 #define ASENCODE_BECOMING_READY                 0x01
89 #define ASENCODE_INIT_CMD_REQUIRED              0x02
90 #define ASENCODE_PARAM_LIST_LENGTH_ERROR        0x00
91 #define ASENCODE_INVALID_COMMAND                0x00
92 #define ASENCODE_LBA_OUT_OF_RANGE               0x00
93 #define ASENCODE_INVALID_CDB_FIELD              0x00
94 #define ASENCODE_LUN_NOT_SUPPORTED              0x00
95 #define ASENCODE_INVALID_PARAM_FIELD            0x00
96 #define ASENCODE_PARAM_NOT_SUPPORTED            0x01
97 #define ASENCODE_PARAM_VALUE_INVALID            0x02
98 #define ASENCODE_RESET_OCCURRED                 0x00
99 #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET    0x00
100 #define ASENCODE_INQUIRY_DATA_CHANGED           0x03
101 #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED    0x00
102 #define ASENCODE_DIAGNOSTIC_FAILURE             0x80
103 #define ASENCODE_INTERNAL_TARGET_FAILURE        0x00
104 #define ASENCODE_INVALID_MESSAGE_ERROR          0x00
105 #define ASENCODE_LUN_FAILED_SELF_CONFIG         0x00
106 #define ASENCODE_OVERLAPPED_COMMAND             0x00
107 
108 #define BYTE0(x) (unsigned char)(x)
109 #define BYTE1(x) (unsigned char)((x) >> 8)
110 #define BYTE2(x) (unsigned char)((x) >> 16)
111 #define BYTE3(x) (unsigned char)((x) >> 24)
112 
113 /*------------------------------------------------------------------------------
114  *              S T R U C T S / T Y P E D E F S
115  *----------------------------------------------------------------------------*/
116 /* SCSI inquiry data */
117 struct inquiry_data {
118 	u8 inqd_pdt;	/* Peripheral qualifier | Peripheral Device Type  */
119 	u8 inqd_dtq;	/* RMB | Device Type Qualifier  */
120 	u8 inqd_ver;	/* ISO version | ECMA version | ANSI-approved version */
121 	u8 inqd_rdf;	/* AENC | TrmIOP | Response data format */
122 	u8 inqd_len;	/* Additional length (n-4) */
123 	u8 inqd_pad1[2];/* Reserved - must be zero */
124 	u8 inqd_pad2;	/* RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
125 	u8 inqd_vid[8];	/* Vendor ID */
126 	u8 inqd_pid[16];/* Product ID */
127 	u8 inqd_prl[4];	/* Product Revision Level */
128 };
129 
130 /*
131  *              M O D U L E   G L O B A L S
132  */
133 
134 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
135 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
136 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
137 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
138 #ifdef AAC_DETAILED_STATUS_INFO
139 static char *aac_get_status_string(u32 status);
140 #endif
141 
142 /*
143  *	Non dasd selection is handled entirely in aachba now
144  */
145 
146 static int nondasd = -1;
147 static int dacmode = -1;
148 
149 static int commit = -1;
150 
151 module_param(nondasd, int, 0);
152 MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
153 module_param(dacmode, int, 0);
154 MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
155 module_param(commit, int, 0);
156 MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
157 
158 int numacb = -1;
159 module_param(numacb, int, S_IRUGO|S_IWUSR);
160 MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid\nvalues are 512 and down. Default is to use suggestion from Firmware.");
161 
162 int acbsize = -1;
163 module_param(acbsize, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512,\n2048, 4096 and 8192. Default is to use suggestion from Firmware.");
165 /**
166  *	aac_get_config_status	-	check the adapter configuration
167  *	@common: adapter to query
168  *
169  *	Query config status, and commit the configuration if needed.
170  */
171 int aac_get_config_status(struct aac_dev *dev)
172 {
173 	int status = 0;
174 	struct fib * fibptr;
175 
176 	if (!(fibptr = fib_alloc(dev)))
177 		return -ENOMEM;
178 
179 	fib_init(fibptr);
180 	{
181 		struct aac_get_config_status *dinfo;
182 		dinfo = (struct aac_get_config_status *) fib_data(fibptr);
183 
184 		dinfo->command = cpu_to_le32(VM_ContainerConfig);
185 		dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
186 		dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
187 	}
188 
189 	status = fib_send(ContainerCommand,
190 			    fibptr,
191 			    sizeof (struct aac_get_config_status),
192 			    FsaNormal,
193 			    1, 1,
194 			    NULL, NULL);
195 	if (status < 0 ) {
196 		printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
197 	} else {
198 		struct aac_get_config_status_resp *reply
199 		  = (struct aac_get_config_status_resp *) fib_data(fibptr);
200 		dprintk((KERN_WARNING
201 		  "aac_get_config_status: response=%d status=%d action=%d\n",
202 		  le32_to_cpu(reply->response),
203 		  le32_to_cpu(reply->status),
204 		  le32_to_cpu(reply->data.action)));
205 		if ((le32_to_cpu(reply->response) != ST_OK) ||
206 		     (le32_to_cpu(reply->status) != CT_OK) ||
207 		     (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
208 			printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
209 			status = -EINVAL;
210 		}
211 	}
212 	fib_complete(fibptr);
213 	/* Send a CT_COMMIT_CONFIG to enable discovery of devices */
214 	if (status >= 0) {
215 		if (commit == 1) {
216 			struct aac_commit_config * dinfo;
217 			fib_init(fibptr);
218 			dinfo = (struct aac_commit_config *) fib_data(fibptr);
219 
220 			dinfo->command = cpu_to_le32(VM_ContainerConfig);
221 			dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
222 
223 			status = fib_send(ContainerCommand,
224 				    fibptr,
225 				    sizeof (struct aac_commit_config),
226 				    FsaNormal,
227 				    1, 1,
228 				    NULL, NULL);
229 			fib_complete(fibptr);
230 		} else if (commit == 0) {
231 			printk(KERN_WARNING
232 			  "aac_get_config_status: Foreign device configurations are being ignored\n");
233 		}
234 	}
235 	fib_free(fibptr);
236 	return status;
237 }
238 
239 /**
240  *	aac_get_containers	-	list containers
241  *	@common: adapter to probe
242  *
243  *	Make a list of all containers on this controller
244  */
245 int aac_get_containers(struct aac_dev *dev)
246 {
247 	struct fsa_dev_info *fsa_dev_ptr;
248 	u32 index;
249 	int status = 0;
250 	struct fib * fibptr;
251 	unsigned instance;
252 	struct aac_get_container_count *dinfo;
253 	struct aac_get_container_count_resp *dresp;
254 	int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
255 
256 	instance = dev->scsi_host_ptr->unique_id;
257 
258 	if (!(fibptr = fib_alloc(dev)))
259 		return -ENOMEM;
260 
261 	fib_init(fibptr);
262 	dinfo = (struct aac_get_container_count *) fib_data(fibptr);
263 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
264 	dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
265 
266 	status = fib_send(ContainerCommand,
267 		    fibptr,
268 		    sizeof (struct aac_get_container_count),
269 		    FsaNormal,
270 		    1, 1,
271 		    NULL, NULL);
272 	if (status >= 0) {
273 		dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
274 		maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
275 		fib_complete(fibptr);
276 	}
277 
278 	if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
279 		maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
280 	fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
281 	  sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
282 	if (!fsa_dev_ptr) {
283 		fib_free(fibptr);
284 		return -ENOMEM;
285 	}
286 	memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
287 
288 	dev->fsa_dev = fsa_dev_ptr;
289 	dev->maximum_num_containers = maximum_num_containers;
290 
291 	for (index = 0; index < dev->maximum_num_containers; index++) {
292 		struct aac_query_mount *dinfo;
293 		struct aac_mount *dresp;
294 
295 		fsa_dev_ptr[index].devname[0] = '\0';
296 
297 		fib_init(fibptr);
298 		dinfo = (struct aac_query_mount *) fib_data(fibptr);
299 
300 		dinfo->command = cpu_to_le32(VM_NameServe);
301 		dinfo->count = cpu_to_le32(index);
302 		dinfo->type = cpu_to_le32(FT_FILESYS);
303 
304 		status = fib_send(ContainerCommand,
305 				    fibptr,
306 				    sizeof (struct aac_query_mount),
307 				    FsaNormal,
308 				    1, 1,
309 				    NULL, NULL);
310 		if (status < 0 ) {
311 			printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
312 			break;
313 		}
314 		dresp = (struct aac_mount *)fib_data(fibptr);
315 
316 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
317 		    (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
318 			dinfo->command = cpu_to_le32(VM_NameServe64);
319 			dinfo->count = cpu_to_le32(index);
320 			dinfo->type = cpu_to_le32(FT_FILESYS);
321 
322 			if (fib_send(ContainerCommand,
323 				    fibptr,
324 				    sizeof(struct aac_query_mount),
325 				    FsaNormal,
326 				    1, 1,
327 				    NULL, NULL) < 0)
328 				continue;
329 		} else
330 			dresp->mnt[0].capacityhigh = 0;
331 
332 		dprintk ((KERN_DEBUG
333 		  "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n",
334 		  (int)index, (int)le32_to_cpu(dresp->status),
335 		  (int)le32_to_cpu(dresp->mnt[0].vol),
336 		  (int)le32_to_cpu(dresp->mnt[0].state),
337 		  ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
338 		    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32)));
339 		if ((le32_to_cpu(dresp->status) == ST_OK) &&
340 		    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
341 		    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
342 			fsa_dev_ptr[index].valid = 1;
343 			fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
344 			fsa_dev_ptr[index].size
345 			  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
346 			    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
347 			if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
348 				    fsa_dev_ptr[index].ro = 1;
349 		}
350 		fib_complete(fibptr);
351 		/*
352 		 *	If there are no more containers, then stop asking.
353 		 */
354 		if ((index + 1) >= le32_to_cpu(dresp->count)){
355 			break;
356 		}
357 	}
358 	fib_free(fibptr);
359 	return status;
360 }
361 
362 static void aac_io_done(struct scsi_cmnd * scsicmd)
363 {
364 	unsigned long cpu_flags;
365 	struct Scsi_Host *host = scsicmd->device->host;
366 	spin_lock_irqsave(host->host_lock, cpu_flags);
367 	scsicmd->scsi_done(scsicmd);
368 	spin_unlock_irqrestore(host->host_lock, cpu_flags);
369 }
370 
371 static void aac_internal_transfer(struct scsi_cmnd *scsicmd, void *data, unsigned int offset, unsigned int len)
372 {
373 	void *buf;
374 	unsigned int transfer_len;
375 	struct scatterlist *sg = scsicmd->request_buffer;
376 
377 	if (scsicmd->use_sg) {
378 		buf = kmap_atomic(sg->page, KM_IRQ0) + sg->offset;
379 		transfer_len = min(sg->length, len + offset);
380 	} else {
381 		buf = scsicmd->request_buffer;
382 		transfer_len = min(scsicmd->request_bufflen, len + offset);
383 	}
384 
385 	memcpy(buf + offset, data, transfer_len - offset);
386 
387 	if (scsicmd->use_sg)
388 		kunmap_atomic(buf - sg->offset, KM_IRQ0);
389 
390 }
391 
392 static void get_container_name_callback(void *context, struct fib * fibptr)
393 {
394 	struct aac_get_name_resp * get_name_reply;
395 	struct scsi_cmnd * scsicmd;
396 
397 	scsicmd = (struct scsi_cmnd *) context;
398 
399 	dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
400 	if (fibptr == NULL)
401 		BUG();
402 
403 	get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
404 	/* Failure is irrelevant, using default value instead */
405 	if ((le32_to_cpu(get_name_reply->status) == CT_OK)
406 	 && (get_name_reply->data[0] != '\0')) {
407 		char *sp = get_name_reply->data;
408 		sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
409 		while (*sp == ' ')
410 			++sp;
411 		if (*sp) {
412 			char d[sizeof(((struct inquiry_data *)NULL)->inqd_pid)];
413 			int count = sizeof(d);
414 			char *dp = d;
415 			do {
416 				*dp++ = (*sp) ? *sp++ : ' ';
417 			} while (--count > 0);
418 			aac_internal_transfer(scsicmd, d,
419 			  offsetof(struct inquiry_data, inqd_pid), sizeof(d));
420 		}
421 	}
422 
423 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
424 
425 	fib_complete(fibptr);
426 	fib_free(fibptr);
427 	aac_io_done(scsicmd);
428 }
429 
430 /**
431  *	aac_get_container_name	-	get container name, none blocking.
432  */
433 static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
434 {
435 	int status;
436 	struct aac_get_name *dinfo;
437 	struct fib * cmd_fibcontext;
438 	struct aac_dev * dev;
439 
440 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
441 
442 	if (!(cmd_fibcontext = fib_alloc(dev)))
443 		return -ENOMEM;
444 
445 	fib_init(cmd_fibcontext);
446 	dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
447 
448 	dinfo->command = cpu_to_le32(VM_ContainerConfig);
449 	dinfo->type = cpu_to_le32(CT_READ_NAME);
450 	dinfo->cid = cpu_to_le32(cid);
451 	dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
452 
453 	status = fib_send(ContainerCommand,
454 		  cmd_fibcontext,
455 		  sizeof (struct aac_get_name),
456 		  FsaNormal,
457 		  0, 1,
458 		  (fib_callback) get_container_name_callback,
459 		  (void *) scsicmd);
460 
461 	/*
462 	 *	Check that the command queued to the controller
463 	 */
464 	if (status == -EINPROGRESS)
465 		return 0;
466 
467 	printk(KERN_WARNING "aac_get_container_name: fib_send failed with status: %d.\n", status);
468 	fib_complete(cmd_fibcontext);
469 	fib_free(cmd_fibcontext);
470 	return -1;
471 }
472 
473 /**
474  *	probe_container		-	query a logical volume
475  *	@dev: device to query
476  *	@cid: container identifier
477  *
478  *	Queries the controller about the given volume. The volume information
479  *	is updated in the struct fsa_dev_info structure rather than returned.
480  */
481 
482 int probe_container(struct aac_dev *dev, int cid)
483 {
484 	struct fsa_dev_info *fsa_dev_ptr;
485 	int status;
486 	struct aac_query_mount *dinfo;
487 	struct aac_mount *dresp;
488 	struct fib * fibptr;
489 	unsigned instance;
490 
491 	fsa_dev_ptr = dev->fsa_dev;
492 	instance = dev->scsi_host_ptr->unique_id;
493 
494 	if (!(fibptr = fib_alloc(dev)))
495 		return -ENOMEM;
496 
497 	fib_init(fibptr);
498 
499 	dinfo = (struct aac_query_mount *)fib_data(fibptr);
500 
501 	dinfo->command = cpu_to_le32(VM_NameServe);
502 	dinfo->count = cpu_to_le32(cid);
503 	dinfo->type = cpu_to_le32(FT_FILESYS);
504 
505 	status = fib_send(ContainerCommand,
506 			    fibptr,
507 			    sizeof(struct aac_query_mount),
508 			    FsaNormal,
509 			    1, 1,
510 			    NULL, NULL);
511 	if (status < 0) {
512 		printk(KERN_WARNING "aacraid: probe_container query failed.\n");
513 		goto error;
514 	}
515 
516 	dresp = (struct aac_mount *) fib_data(fibptr);
517 
518 	if ((le32_to_cpu(dresp->status) == ST_OK) &&
519 	    (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
520 		dinfo->command = cpu_to_le32(VM_NameServe64);
521 		dinfo->count = cpu_to_le32(cid);
522 		dinfo->type = cpu_to_le32(FT_FILESYS);
523 
524 		if (fib_send(ContainerCommand,
525 			    fibptr,
526 			    sizeof(struct aac_query_mount),
527 			    FsaNormal,
528 			    1, 1,
529 			    NULL, NULL) < 0)
530 			goto error;
531 	} else
532 		dresp->mnt[0].capacityhigh = 0;
533 
534 	if ((le32_to_cpu(dresp->status) == ST_OK) &&
535 	    (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
536 	    (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
537 		fsa_dev_ptr[cid].valid = 1;
538 		fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
539 		fsa_dev_ptr[cid].size
540 		  = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
541 		    (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
542 		if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
543 			fsa_dev_ptr[cid].ro = 1;
544 	}
545 
546 error:
547 	fib_complete(fibptr);
548 	fib_free(fibptr);
549 
550 	return status;
551 }
552 
553 /* Local Structure to set SCSI inquiry data strings */
554 struct scsi_inq {
555 	char vid[8];         /* Vendor ID */
556 	char pid[16];        /* Product ID */
557 	char prl[4];         /* Product Revision Level */
558 };
559 
560 /**
561  *	InqStrCopy	-	string merge
562  *	@a:	string to copy from
563  *	@b:	string to copy to
564  *
565  * 	Copy a String from one location to another
566  *	without copying \0
567  */
568 
569 static void inqstrcpy(char *a, char *b)
570 {
571 
572 	while(*a != (char)0)
573 		*b++ = *a++;
574 }
575 
576 static char *container_types[] = {
577         "None",
578         "Volume",
579         "Mirror",
580         "Stripe",
581         "RAID5",
582         "SSRW",
583         "SSRO",
584         "Morph",
585         "Legacy",
586         "RAID4",
587         "RAID10",
588         "RAID00",
589         "V-MIRRORS",
590         "PSEUDO R4",
591 	"RAID50",
592 	"RAID5D",
593 	"RAID5D0",
594 	"RAID1E",
595 	"RAID6",
596 	"RAID60",
597         "Unknown"
598 };
599 
600 
601 
602 /* Function: setinqstr
603  *
604  * Arguments: [1] pointer to void [1] int
605  *
606  * Purpose: Sets SCSI inquiry data strings for vendor, product
607  * and revision level. Allows strings to be set in platform dependant
608  * files instead of in OS dependant driver source.
609  */
610 
611 static void setinqstr(int devtype, void *data, int tindex)
612 {
613 	struct scsi_inq *str;
614 	struct aac_driver_ident *mp;
615 
616 	mp = aac_get_driver_ident(devtype);
617 
618 	str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
619 
620 	inqstrcpy (mp->vname, str->vid);
621 	inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */
622 
623 	if (tindex < (sizeof(container_types)/sizeof(char *))){
624 		char *findit = str->pid;
625 
626 		for ( ; *findit != ' '; findit++); /* walk till we find a space */
627 		/* RAID is superfluous in the context of a RAID device */
628 		if (memcmp(findit-4, "RAID", 4) == 0)
629 			*(findit -= 4) = ' ';
630 		inqstrcpy (container_types[tindex], findit + 1);
631 	}
632 	inqstrcpy ("V1.0", str->prl);
633 }
634 
635 static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
636 		      u8 a_sense_code, u8 incorrect_length,
637 		      u8 bit_pointer, u16 field_pointer,
638 		      u32 residue)
639 {
640 	sense_buf[0] = 0xF0;	/* Sense data valid, err code 70h (current error) */
641 	sense_buf[1] = 0;	/* Segment number, always zero */
642 
643 	if (incorrect_length) {
644 		sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
645 		sense_buf[3] = BYTE3(residue);
646 		sense_buf[4] = BYTE2(residue);
647 		sense_buf[5] = BYTE1(residue);
648 		sense_buf[6] = BYTE0(residue);
649 	} else
650 		sense_buf[2] = sense_key;	/* Sense key */
651 
652 	if (sense_key == ILLEGAL_REQUEST)
653 		sense_buf[7] = 10;	/* Additional sense length */
654 	else
655 		sense_buf[7] = 6;	/* Additional sense length */
656 
657 	sense_buf[12] = sense_code;	/* Additional sense code */
658 	sense_buf[13] = a_sense_code;	/* Additional sense code qualifier */
659 	if (sense_key == ILLEGAL_REQUEST) {
660 		sense_buf[15] = 0;
661 
662 		if (sense_code == SENCODE_INVALID_PARAM_FIELD)
663 			sense_buf[15] = 0x80;/* Std sense key specific field */
664 		/* Illegal parameter is in the parameter block */
665 
666 		if (sense_code == SENCODE_INVALID_CDB_FIELD)
667 			sense_buf[15] = 0xc0;/* Std sense key specific field */
668 		/* Illegal parameter is in the CDB block */
669 		sense_buf[15] |= bit_pointer;
670 		sense_buf[16] = field_pointer >> 8;	/* MSB */
671 		sense_buf[17] = field_pointer;		/* LSB */
672 	}
673 }
674 
675 int aac_get_adapter_info(struct aac_dev* dev)
676 {
677 	struct fib* fibptr;
678 	int rcode;
679 	u32 tmp;
680 	struct aac_adapter_info *info;
681 	struct aac_bus_info *command;
682 	struct aac_bus_info_response *bus_info;
683 
684 	if (!(fibptr = fib_alloc(dev)))
685 		return -ENOMEM;
686 
687 	fib_init(fibptr);
688 	info = (struct aac_adapter_info *) fib_data(fibptr);
689 	memset(info,0,sizeof(*info));
690 
691 	rcode = fib_send(RequestAdapterInfo,
692 			 fibptr,
693 			 sizeof(*info),
694 			 FsaNormal,
695 			 -1, 1, /* First `interrupt' command uses special wait */
696 			 NULL,
697 			 NULL);
698 
699 	if (rcode < 0) {
700 		fib_complete(fibptr);
701 		fib_free(fibptr);
702 		return rcode;
703 	}
704 	memcpy(&dev->adapter_info, info, sizeof(*info));
705 
706 	if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
707 		struct aac_supplement_adapter_info * info;
708 
709 		fib_init(fibptr);
710 
711 		info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
712 
713 		memset(info,0,sizeof(*info));
714 
715 		rcode = fib_send(RequestSupplementAdapterInfo,
716 				 fibptr,
717 				 sizeof(*info),
718 				 FsaNormal,
719 				 1, 1,
720 				 NULL,
721 				 NULL);
722 
723 		if (rcode >= 0)
724 			memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
725 	}
726 
727 
728 	/*
729 	 * GetBusInfo
730 	 */
731 
732 	fib_init(fibptr);
733 
734 	bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
735 
736 	memset(bus_info, 0, sizeof(*bus_info));
737 
738 	command = (struct aac_bus_info *)bus_info;
739 
740 	command->Command = cpu_to_le32(VM_Ioctl);
741 	command->ObjType = cpu_to_le32(FT_DRIVE);
742 	command->MethodId = cpu_to_le32(1);
743 	command->CtlCmd = cpu_to_le32(GetBusInfo);
744 
745 	rcode = fib_send(ContainerCommand,
746 			 fibptr,
747 			 sizeof (*bus_info),
748 			 FsaNormal,
749 			 1, 1,
750 			 NULL, NULL);
751 
752 	if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
753 		dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
754 		dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
755 	}
756 
757 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
758 	printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
759 			dev->name,
760 			dev->id,
761 			tmp>>24,
762 			(tmp>>16)&0xff,
763 			tmp&0xff,
764 			le32_to_cpu(dev->adapter_info.kernelbuild),
765 			(int)sizeof(dev->supplement_adapter_info.BuildDate),
766 			dev->supplement_adapter_info.BuildDate);
767 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
768 	printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
769 			dev->name, dev->id,
770 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
771 			le32_to_cpu(dev->adapter_info.monitorbuild));
772 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
773 	printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
774 			dev->name, dev->id,
775 			tmp>>24,(tmp>>16)&0xff,tmp&0xff,
776 			le32_to_cpu(dev->adapter_info.biosbuild));
777 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
778 		printk(KERN_INFO "%s%d: serial %x\n",
779 			dev->name, dev->id,
780 			le32_to_cpu(dev->adapter_info.serial[0]));
781 
782 	dev->nondasd_support = 0;
783 	dev->raid_scsi_mode = 0;
784 	if(dev->adapter_info.options & AAC_OPT_NONDASD){
785 		dev->nondasd_support = 1;
786 	}
787 
788 	/*
789 	 * If the firmware supports ROMB RAID/SCSI mode and we are currently
790 	 * in RAID/SCSI mode, set the flag. For now if in this mode we will
791 	 * force nondasd support on. If we decide to allow the non-dasd flag
792 	 * additional changes changes will have to be made to support
793 	 * RAID/SCSI.  the function aac_scsi_cmd in this module will have to be
794 	 * changed to support the new dev->raid_scsi_mode flag instead of
795 	 * leaching off of the dev->nondasd_support flag. Also in linit.c the
796 	 * function aac_detect will have to be modified where it sets up the
797 	 * max number of channels based on the aac->nondasd_support flag only.
798 	 */
799 	if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
800 	    (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
801 		dev->nondasd_support = 1;
802 		dev->raid_scsi_mode = 1;
803 	}
804 	if (dev->raid_scsi_mode != 0)
805 		printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
806 				dev->name, dev->id);
807 
808 	if(nondasd != -1) {
809 		dev->nondasd_support = (nondasd!=0);
810 	}
811 	if(dev->nondasd_support != 0){
812 		printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
813 	}
814 
815 	dev->dac_support = 0;
816 	if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
817 		printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
818 		dev->dac_support = 1;
819 	}
820 
821 	if(dacmode != -1) {
822 		dev->dac_support = (dacmode!=0);
823 	}
824 	if(dev->dac_support != 0) {
825 		if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL) &&
826 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL)) {
827 			printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
828 				dev->name, dev->id);
829 		} else if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFULL) &&
830 			!pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFULL)) {
831 			printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
832 				dev->name, dev->id);
833 			dev->dac_support = 0;
834 		} else {
835 			printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
836 				dev->name, dev->id);
837 			rcode = -ENOMEM;
838 		}
839 	}
840 	/*
841 	 * 57 scatter gather elements
842 	 */
843 	if (!(dev->raw_io_interface)) {
844 		dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
845 			sizeof(struct aac_fibhdr) -
846 			sizeof(struct aac_write) + sizeof(struct sgentry)) /
847 				sizeof(struct sgentry);
848 		if (dev->dac_support) {
849 			/*
850 			 * 38 scatter gather elements
851 			 */
852 			dev->scsi_host_ptr->sg_tablesize =
853 				(dev->max_fib_size -
854 				sizeof(struct aac_fibhdr) -
855 				sizeof(struct aac_write64) +
856 				sizeof(struct sgentry64)) /
857 					sizeof(struct sgentry64);
858 		}
859 		dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
860 		if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
861 			/*
862 			 * Worst case size that could cause sg overflow when
863 			 * we break up SG elements that are larger than 64KB.
864 			 * Would be nice if we could tell the SCSI layer what
865 			 * the maximum SG element size can be. Worst case is
866 			 * (sg_tablesize-1) 4KB elements with one 64KB
867 			 * element.
868 			 *	32bit -> 468 or 238KB	64bit -> 424 or 212KB
869 			 */
870 			dev->scsi_host_ptr->max_sectors =
871 			  (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
872 		}
873 	}
874 
875 	fib_complete(fibptr);
876 	fib_free(fibptr);
877 
878 	return rcode;
879 }
880 
881 
882 static void io_callback(void *context, struct fib * fibptr)
883 {
884 	struct aac_dev *dev;
885 	struct aac_read_reply *readreply;
886 	struct scsi_cmnd *scsicmd;
887 	u32 cid;
888 
889 	scsicmd = (struct scsi_cmnd *) context;
890 
891 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
892 	cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
893 
894 	if (nblank(dprintk(x))) {
895 		u64 lba;
896 		switch (scsicmd->cmnd[0]) {
897 		case WRITE_6:
898 		case READ_6:
899 			lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
900 			    (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
901 			break;
902 		case WRITE_16:
903 		case READ_16:
904 			lba = ((u64)scsicmd->cmnd[2] << 56) |
905 			      ((u64)scsicmd->cmnd[3] << 48) |
906 			      ((u64)scsicmd->cmnd[4] << 40) |
907 			      ((u64)scsicmd->cmnd[5] << 32) |
908 			      ((u64)scsicmd->cmnd[6] << 24) |
909 			      (scsicmd->cmnd[7] << 16) |
910 			      (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
911 			break;
912 		case WRITE_12:
913 		case READ_12:
914 			lba = ((u64)scsicmd->cmnd[2] << 24) |
915 			      (scsicmd->cmnd[3] << 16) |
916 			      (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
917 			break;
918 		default:
919 			lba = ((u64)scsicmd->cmnd[2] << 24) |
920 			       (scsicmd->cmnd[3] << 16) |
921 			       (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
922 			break;
923 		}
924 		printk(KERN_DEBUG
925 		  "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
926 		  smp_processor_id(), (unsigned long long)lba, jiffies);
927 	}
928 
929 	if (fibptr == NULL)
930 		BUG();
931 
932 	if(scsicmd->use_sg)
933 		pci_unmap_sg(dev->pdev,
934 			(struct scatterlist *)scsicmd->buffer,
935 			scsicmd->use_sg,
936 			scsicmd->sc_data_direction);
937 	else if(scsicmd->request_bufflen)
938 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
939 				 scsicmd->request_bufflen,
940 				 scsicmd->sc_data_direction);
941 	readreply = (struct aac_read_reply *)fib_data(fibptr);
942 	if (le32_to_cpu(readreply->status) == ST_OK)
943 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
944 	else {
945 #ifdef AAC_DETAILED_STATUS_INFO
946 		printk(KERN_WARNING "io_callback: io failed, status = %d\n",
947 		  le32_to_cpu(readreply->status));
948 #endif
949 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
950 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
951 				    HARDWARE_ERROR,
952 				    SENCODE_INTERNAL_TARGET_FAILURE,
953 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
954 				    0, 0);
955 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
956 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
957 		    ? sizeof(scsicmd->sense_buffer)
958 		    : sizeof(dev->fsa_dev[cid].sense_data));
959 	}
960 	fib_complete(fibptr);
961 	fib_free(fibptr);
962 
963 	aac_io_done(scsicmd);
964 }
965 
966 static int aac_read(struct scsi_cmnd * scsicmd, int cid)
967 {
968 	u64 lba;
969 	u32 count;
970 	int status;
971 
972 	u16 fibsize;
973 	struct aac_dev *dev;
974 	struct fib * cmd_fibcontext;
975 
976 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
977 	/*
978 	 *	Get block address and transfer length
979 	 */
980 	switch (scsicmd->cmnd[0]) {
981 	case READ_6:
982 		dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
983 
984 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
985 			(scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
986 		count = scsicmd->cmnd[4];
987 
988 		if (count == 0)
989 			count = 256;
990 		break;
991 	case READ_16:
992 		dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid));
993 
994 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
995 		 	((u64)scsicmd->cmnd[3] << 48) |
996 			((u64)scsicmd->cmnd[4] << 40) |
997 			((u64)scsicmd->cmnd[5] << 32) |
998 			((u64)scsicmd->cmnd[6] << 24) |
999 			(scsicmd->cmnd[7] << 16) |
1000 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1001 		count = (scsicmd->cmnd[10] << 24) |
1002 			(scsicmd->cmnd[11] << 16) |
1003 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1004 		break;
1005 	case READ_12:
1006 		dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid));
1007 
1008 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1009 			(scsicmd->cmnd[3] << 16) |
1010 		    	(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1011 		count = (scsicmd->cmnd[6] << 24) |
1012 			(scsicmd->cmnd[7] << 16) |
1013 		      	(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1014 		break;
1015 	default:
1016 		dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
1017 
1018 		lba = ((u64)scsicmd->cmnd[2] << 24) |
1019 			(scsicmd->cmnd[3] << 16) |
1020 			(scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1021 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1022 		break;
1023 	}
1024 	dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
1025 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1026 	if ((!(dev->raw_io_interface) || !(dev->raw_io_64)) &&
1027 		(lba & 0xffffffff00000000LL)) {
1028 		dprintk((KERN_DEBUG "aac_read: Illegal lba\n"));
1029 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1030 			SAM_STAT_CHECK_CONDITION;
1031 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1032 			    HARDWARE_ERROR,
1033 			    SENCODE_INTERNAL_TARGET_FAILURE,
1034 			    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1035 			    0, 0);
1036 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1037 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1038 		    ? sizeof(scsicmd->sense_buffer)
1039 		    : sizeof(dev->fsa_dev[cid].sense_data));
1040 		scsicmd->scsi_done(scsicmd);
1041 		return 0;
1042 	}
1043 	/*
1044 	 *	Alocate and initialize a Fib
1045 	 */
1046 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1047 		return -1;
1048 	}
1049 
1050 	fib_init(cmd_fibcontext);
1051 
1052 	if (dev->raw_io_interface) {
1053 		struct aac_raw_io *readcmd;
1054 		readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
1055 		readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1056 		readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1057 		readcmd->count = cpu_to_le32(count<<9);
1058 		readcmd->cid = cpu_to_le16(cid);
1059 		readcmd->flags = cpu_to_le16(1);
1060 		readcmd->bpTotal = 0;
1061 		readcmd->bpComplete = 0;
1062 
1063 		aac_build_sgraw(scsicmd, &readcmd->sg);
1064 		fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
1065 		if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
1066 			BUG();
1067 		/*
1068 		 *	Now send the Fib to the adapter
1069 		 */
1070 		status = fib_send(ContainerRawIo,
1071 			  cmd_fibcontext,
1072 			  fibsize,
1073 			  FsaNormal,
1074 			  0, 1,
1075 			  (fib_callback) io_callback,
1076 			  (void *) scsicmd);
1077 	} else if (dev->dac_support == 1) {
1078 		struct aac_read64 *readcmd;
1079 		readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
1080 		readcmd->command = cpu_to_le32(VM_CtHostRead64);
1081 		readcmd->cid = cpu_to_le16(cid);
1082 		readcmd->sector_count = cpu_to_le16(count);
1083 		readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1084 		readcmd->pad   = 0;
1085 		readcmd->flags = 0;
1086 
1087 		aac_build_sg64(scsicmd, &readcmd->sg);
1088 		fibsize = sizeof(struct aac_read64) +
1089 			((le32_to_cpu(readcmd->sg.count) - 1) *
1090 			 sizeof (struct sgentry64));
1091 		BUG_ON (fibsize > (dev->max_fib_size -
1092 					sizeof(struct aac_fibhdr)));
1093 		/*
1094 		 *	Now send the Fib to the adapter
1095 		 */
1096 		status = fib_send(ContainerCommand64,
1097 			  cmd_fibcontext,
1098 			  fibsize,
1099 			  FsaNormal,
1100 			  0, 1,
1101 			  (fib_callback) io_callback,
1102 			  (void *) scsicmd);
1103 	} else {
1104 		struct aac_read *readcmd;
1105 		readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
1106 		readcmd->command = cpu_to_le32(VM_CtBlockRead);
1107 		readcmd->cid = cpu_to_le32(cid);
1108 		readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1109 		readcmd->count = cpu_to_le32(count * 512);
1110 
1111 		aac_build_sg(scsicmd, &readcmd->sg);
1112 		fibsize = sizeof(struct aac_read) +
1113 			((le32_to_cpu(readcmd->sg.count) - 1) *
1114 			 sizeof (struct sgentry));
1115 		BUG_ON (fibsize > (dev->max_fib_size -
1116 					sizeof(struct aac_fibhdr)));
1117 		/*
1118 		 *	Now send the Fib to the adapter
1119 		 */
1120 		status = fib_send(ContainerCommand,
1121 			  cmd_fibcontext,
1122 			  fibsize,
1123 			  FsaNormal,
1124 			  0, 1,
1125 			  (fib_callback) io_callback,
1126 			  (void *) scsicmd);
1127 	}
1128 
1129 
1130 
1131 	/*
1132 	 *	Check that the command queued to the controller
1133 	 */
1134 	if (status == -EINPROGRESS)
1135 		return 0;
1136 
1137 	printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status);
1138 	/*
1139 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1140 	 */
1141 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1142 	aac_io_done(scsicmd);
1143 	fib_complete(cmd_fibcontext);
1144 	fib_free(cmd_fibcontext);
1145 	return 0;
1146 }
1147 
1148 static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1149 {
1150 	u64 lba;
1151 	u32 count;
1152 	int status;
1153 	u16 fibsize;
1154 	struct aac_dev *dev;
1155 	struct fib * cmd_fibcontext;
1156 
1157 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1158 	/*
1159 	 *	Get block address and transfer length
1160 	 */
1161 	if (scsicmd->cmnd[0] == WRITE_6)	/* 6 byte command */
1162 	{
1163 		lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
1164 		count = scsicmd->cmnd[4];
1165 		if (count == 0)
1166 			count = 256;
1167 	} else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1168 		dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid));
1169 
1170 		lba = 	((u64)scsicmd->cmnd[2] << 56) |
1171 			((u64)scsicmd->cmnd[3] << 48) |
1172 			((u64)scsicmd->cmnd[4] << 40) |
1173 			((u64)scsicmd->cmnd[5] << 32) |
1174 			((u64)scsicmd->cmnd[6] << 24) |
1175 			(scsicmd->cmnd[7] << 16) |
1176 			(scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1177 		count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1178 			(scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1179 	} else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1180 		dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid));
1181 
1182 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1183 		    | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1184 		count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1185 		      | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1186 	} else {
1187 		dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1188 		lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1189 		count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1190 	}
1191 	dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1192 	  smp_processor_id(), (unsigned long long)lba, jiffies));
1193 	if ((!(dev->raw_io_interface) || !(dev->raw_io_64))
1194 	 && (lba & 0xffffffff00000000LL)) {
1195 		dprintk((KERN_DEBUG "aac_write: Illegal lba\n"));
1196 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1197 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1198 			    HARDWARE_ERROR,
1199 			    SENCODE_INTERNAL_TARGET_FAILURE,
1200 			    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1201 			    0, 0);
1202 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1203 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1204 		    ? sizeof(scsicmd->sense_buffer)
1205 		    : sizeof(dev->fsa_dev[cid].sense_data));
1206 		scsicmd->scsi_done(scsicmd);
1207 		return 0;
1208 	}
1209 	/*
1210 	 *	Allocate and initialize a Fib then setup a BlockWrite command
1211 	 */
1212 	if (!(cmd_fibcontext = fib_alloc(dev))) {
1213 		scsicmd->result = DID_ERROR << 16;
1214 		aac_io_done(scsicmd);
1215 		return 0;
1216 	}
1217 	fib_init(cmd_fibcontext);
1218 
1219 	if (dev->raw_io_interface) {
1220 		struct aac_raw_io *writecmd;
1221 		writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
1222 		writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1223 		writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1224 		writecmd->count = cpu_to_le32(count<<9);
1225 		writecmd->cid = cpu_to_le16(cid);
1226 		writecmd->flags = 0;
1227 		writecmd->bpTotal = 0;
1228 		writecmd->bpComplete = 0;
1229 
1230 		aac_build_sgraw(scsicmd, &writecmd->sg);
1231 		fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
1232 		if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
1233 			BUG();
1234 		/*
1235 		 *	Now send the Fib to the adapter
1236 		 */
1237 		status = fib_send(ContainerRawIo,
1238 			  cmd_fibcontext,
1239 			  fibsize,
1240 			  FsaNormal,
1241 			  0, 1,
1242 			  (fib_callback) io_callback,
1243 			  (void *) scsicmd);
1244 	} else if (dev->dac_support == 1) {
1245 		struct aac_write64 *writecmd;
1246 		writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
1247 		writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1248 		writecmd->cid = cpu_to_le16(cid);
1249 		writecmd->sector_count = cpu_to_le16(count);
1250 		writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1251 		writecmd->pad	= 0;
1252 		writecmd->flags	= 0;
1253 
1254 		aac_build_sg64(scsicmd, &writecmd->sg);
1255 		fibsize = sizeof(struct aac_write64) +
1256 			((le32_to_cpu(writecmd->sg.count) - 1) *
1257 			 sizeof (struct sgentry64));
1258 		BUG_ON (fibsize > (dev->max_fib_size -
1259 					sizeof(struct aac_fibhdr)));
1260 		/*
1261 		 *	Now send the Fib to the adapter
1262 		 */
1263 		status = fib_send(ContainerCommand64,
1264 			  cmd_fibcontext,
1265 			  fibsize,
1266 			  FsaNormal,
1267 			  0, 1,
1268 			  (fib_callback) io_callback,
1269 			  (void *) scsicmd);
1270 	} else {
1271 		struct aac_write *writecmd;
1272 		writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
1273 		writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1274 		writecmd->cid = cpu_to_le32(cid);
1275 		writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1276 		writecmd->count = cpu_to_le32(count * 512);
1277 		writecmd->sg.count = cpu_to_le32(1);
1278 		/* ->stable is not used - it did mean which type of write */
1279 
1280 		aac_build_sg(scsicmd, &writecmd->sg);
1281 		fibsize = sizeof(struct aac_write) +
1282 			((le32_to_cpu(writecmd->sg.count) - 1) *
1283 			 sizeof (struct sgentry));
1284 		BUG_ON (fibsize > (dev->max_fib_size -
1285 					sizeof(struct aac_fibhdr)));
1286 		/*
1287 		 *	Now send the Fib to the adapter
1288 		 */
1289 		status = fib_send(ContainerCommand,
1290 			  cmd_fibcontext,
1291 			  fibsize,
1292 			  FsaNormal,
1293 			  0, 1,
1294 			  (fib_callback) io_callback,
1295 			  (void *) scsicmd);
1296 	}
1297 
1298 	/*
1299 	 *	Check that the command queued to the controller
1300 	 */
1301 	if (status == -EINPROGRESS)
1302 	{
1303 		return 0;
1304 	}
1305 
1306 	printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status);
1307 	/*
1308 	 *	For some reason, the Fib didn't queue, return QUEUE_FULL
1309 	 */
1310 	scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
1311 	aac_io_done(scsicmd);
1312 
1313 	fib_complete(cmd_fibcontext);
1314 	fib_free(cmd_fibcontext);
1315 	return 0;
1316 }
1317 
1318 static void synchronize_callback(void *context, struct fib *fibptr)
1319 {
1320 	struct aac_synchronize_reply *synchronizereply;
1321 	struct scsi_cmnd *cmd;
1322 
1323 	cmd = context;
1324 
1325 	dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
1326 				smp_processor_id(), jiffies));
1327 	BUG_ON(fibptr == NULL);
1328 
1329 
1330 	synchronizereply = fib_data(fibptr);
1331 	if (le32_to_cpu(synchronizereply->status) == CT_OK)
1332 		cmd->result = DID_OK << 16 |
1333 			COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1334 	else {
1335 		struct scsi_device *sdev = cmd->device;
1336 		struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1337 		u32 cid = ID_LUN_TO_CONTAINER(sdev->id, sdev->lun);
1338 		printk(KERN_WARNING
1339 		     "synchronize_callback: synchronize failed, status = %d\n",
1340 		     le32_to_cpu(synchronizereply->status));
1341 		cmd->result = DID_OK << 16 |
1342 			COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1343 		set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
1344 				    HARDWARE_ERROR,
1345 				    SENCODE_INTERNAL_TARGET_FAILURE,
1346 				    ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1347 				    0, 0);
1348 		memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1349 		  min(sizeof(dev->fsa_dev[cid].sense_data),
1350 			  sizeof(cmd->sense_buffer)));
1351 	}
1352 
1353 	fib_complete(fibptr);
1354 	fib_free(fibptr);
1355 	aac_io_done(cmd);
1356 }
1357 
1358 static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
1359 {
1360 	int status;
1361 	struct fib *cmd_fibcontext;
1362 	struct aac_synchronize *synchronizecmd;
1363 	struct scsi_cmnd *cmd;
1364 	struct scsi_device *sdev = scsicmd->device;
1365 	int active = 0;
1366 	unsigned long flags;
1367 
1368 	/*
1369 	 * Wait for all commands to complete to this specific
1370 	 * target (block).
1371 	 */
1372 	spin_lock_irqsave(&sdev->list_lock, flags);
1373 	list_for_each_entry(cmd, &sdev->cmd_list, list)
1374 		if (cmd != scsicmd && cmd->serial_number != 0) {
1375 			++active;
1376 			break;
1377 		}
1378 
1379 	spin_unlock_irqrestore(&sdev->list_lock, flags);
1380 
1381 	/*
1382 	 *	Yield the processor (requeue for later)
1383 	 */
1384 	if (active)
1385 		return SCSI_MLQUEUE_DEVICE_BUSY;
1386 
1387 	/*
1388 	 *	Allocate and initialize a Fib
1389 	 */
1390 	if (!(cmd_fibcontext =
1391 	    fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
1392 		return SCSI_MLQUEUE_HOST_BUSY;
1393 
1394 	fib_init(cmd_fibcontext);
1395 
1396 	synchronizecmd = fib_data(cmd_fibcontext);
1397 	synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
1398 	synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
1399 	synchronizecmd->cid = cpu_to_le32(cid);
1400 	synchronizecmd->count =
1401 	     cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
1402 
1403 	/*
1404 	 *	Now send the Fib to the adapter
1405 	 */
1406 	status = fib_send(ContainerCommand,
1407 		  cmd_fibcontext,
1408 		  sizeof(struct aac_synchronize),
1409 		  FsaNormal,
1410 		  0, 1,
1411 		  (fib_callback)synchronize_callback,
1412 		  (void *)scsicmd);
1413 
1414 	/*
1415 	 *	Check that the command queued to the controller
1416 	 */
1417 	if (status == -EINPROGRESS)
1418 		return 0;
1419 
1420 	printk(KERN_WARNING
1421 		"aac_synchronize: fib_send failed with status: %d.\n", status);
1422 	fib_complete(cmd_fibcontext);
1423 	fib_free(cmd_fibcontext);
1424 	return SCSI_MLQUEUE_HOST_BUSY;
1425 }
1426 
1427 /**
1428  *	aac_scsi_cmd()		-	Process SCSI command
1429  *	@scsicmd:		SCSI command block
1430  *
1431  *	Emulate a SCSI command and queue the required request for the
1432  *	aacraid firmware.
1433  */
1434 
1435 int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1436 {
1437 	u32 cid = 0;
1438 	struct Scsi_Host *host = scsicmd->device->host;
1439 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
1440 	struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
1441 	int cardtype = dev->cardtype;
1442 	int ret;
1443 
1444 	/*
1445 	 *	If the bus, id or lun is out of range, return fail
1446 	 *	Test does not apply to ID 16, the pseudo id for the controller
1447 	 *	itself.
1448 	 */
1449 	if (scsicmd->device->id != host->this_id) {
1450 		if ((scsicmd->device->channel == 0) ){
1451 			if( (scsicmd->device->id >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)){
1452 				scsicmd->result = DID_NO_CONNECT << 16;
1453 				scsicmd->scsi_done(scsicmd);
1454 				return 0;
1455 			}
1456 			cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
1457 
1458 			/*
1459 			 *	If the target container doesn't exist, it may have
1460 			 *	been newly created
1461 			 */
1462 			if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1463 				switch (scsicmd->cmnd[0]) {
1464 				case SERVICE_ACTION_IN:
1465 					if (!(dev->raw_io_interface) ||
1466 					    !(dev->raw_io_64) ||
1467 					    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1468 						break;
1469 				case INQUIRY:
1470 				case READ_CAPACITY:
1471 				case TEST_UNIT_READY:
1472 					spin_unlock_irq(host->host_lock);
1473 					probe_container(dev, cid);
1474 					if ((fsa_dev_ptr[cid].valid & 1) == 0)
1475 						fsa_dev_ptr[cid].valid = 0;
1476 					spin_lock_irq(host->host_lock);
1477 					if (fsa_dev_ptr[cid].valid == 0) {
1478 						scsicmd->result = DID_NO_CONNECT << 16;
1479 						scsicmd->scsi_done(scsicmd);
1480 						return 0;
1481 					}
1482 				default:
1483 					break;
1484 				}
1485 			}
1486 			/*
1487 			 *	If the target container still doesn't exist,
1488 			 *	return failure
1489 			 */
1490 			if (fsa_dev_ptr[cid].valid == 0) {
1491 				scsicmd->result = DID_BAD_TARGET << 16;
1492 				scsicmd->scsi_done(scsicmd);
1493 				return 0;
1494 			}
1495 		} else {  /* check for physical non-dasd devices */
1496 			if(dev->nondasd_support == 1){
1497 				return aac_send_srb_fib(scsicmd);
1498 			} else {
1499 				scsicmd->result = DID_NO_CONNECT << 16;
1500 				scsicmd->scsi_done(scsicmd);
1501 				return 0;
1502 			}
1503 		}
1504 	}
1505 	/*
1506 	 * else Command for the controller itself
1507 	 */
1508 	else if ((scsicmd->cmnd[0] != INQUIRY) &&	/* only INQUIRY & TUR cmnd supported for controller */
1509 		(scsicmd->cmnd[0] != TEST_UNIT_READY))
1510 	{
1511 		dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
1512 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1513 		set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1514 			    ILLEGAL_REQUEST,
1515 			    SENCODE_INVALID_COMMAND,
1516 			    ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1517 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1518 		  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1519 		    ? sizeof(scsicmd->sense_buffer)
1520 		    : sizeof(dev->fsa_dev[cid].sense_data));
1521 		scsicmd->scsi_done(scsicmd);
1522 		return 0;
1523 	}
1524 
1525 
1526 	/* Handle commands here that don't really require going out to the adapter */
1527 	switch (scsicmd->cmnd[0]) {
1528 	case INQUIRY:
1529 	{
1530 		struct inquiry_data inq_data;
1531 
1532 		dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->device->id));
1533 		memset(&inq_data, 0, sizeof (struct inquiry_data));
1534 
1535 		inq_data.inqd_ver = 2;	/* claim compliance to SCSI-2 */
1536 		inq_data.inqd_rdf = 2;	/* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1537 		inq_data.inqd_len = 31;
1538 		/*Format for "pad2" is  RelAdr | WBus32 | WBus16 |  Sync  | Linked |Reserved| CmdQue | SftRe */
1539 		inq_data.inqd_pad2= 0x32 ;	 /*WBus16|Sync|CmdQue */
1540 		/*
1541 		 *	Set the Vendor, Product, and Revision Level
1542 		 *	see: <vendor>.c i.e. aac.c
1543 		 */
1544 		if (scsicmd->device->id == host->this_id) {
1545 			setinqstr(cardtype, (void *) (inq_data.inqd_vid), (sizeof(container_types)/sizeof(char *)));
1546 			inq_data.inqd_pdt = INQD_PDT_PROC;	/* Processor device */
1547 			aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1548 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1549 			scsicmd->scsi_done(scsicmd);
1550 			return 0;
1551 		}
1552 		setinqstr(cardtype, (void *) (inq_data.inqd_vid), fsa_dev_ptr[cid].type);
1553 		inq_data.inqd_pdt = INQD_PDT_DA;	/* Direct/random access device */
1554 		aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1555 		return aac_get_container_name(scsicmd, cid);
1556 	}
1557 	case SERVICE_ACTION_IN:
1558 		if (!(dev->raw_io_interface) ||
1559 		    !(dev->raw_io_64) ||
1560 		    ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1561 			break;
1562 	{
1563 		u64 capacity;
1564 		char cp[12];
1565 		unsigned int offset = 0;
1566 
1567 		dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1568 		capacity = fsa_dev_ptr[cid].size - 1;
1569 		if (scsicmd->cmnd[13] > 12) {
1570 			offset = scsicmd->cmnd[13] - 12;
1571 			if (offset > sizeof(cp))
1572 				break;
1573 			memset(cp, 0, offset);
1574 			aac_internal_transfer(scsicmd, cp, 0, offset);
1575 		}
1576 		cp[0] = (capacity >> 56) & 0xff;
1577 		cp[1] = (capacity >> 48) & 0xff;
1578 		cp[2] = (capacity >> 40) & 0xff;
1579 		cp[3] = (capacity >> 32) & 0xff;
1580 		cp[4] = (capacity >> 24) & 0xff;
1581 		cp[5] = (capacity >> 16) & 0xff;
1582 		cp[6] = (capacity >> 8) & 0xff;
1583 		cp[7] = (capacity >> 0) & 0xff;
1584 		cp[8] = 0;
1585 		cp[9] = 0;
1586 		cp[10] = 2;
1587 		cp[11] = 0;
1588 		aac_internal_transfer(scsicmd, cp, offset, sizeof(cp));
1589 
1590 		/* Do not cache partition table for arrays */
1591 		scsicmd->device->removable = 1;
1592 
1593 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1594 		scsicmd->scsi_done(scsicmd);
1595 
1596 		return 0;
1597 	}
1598 
1599 	case READ_CAPACITY:
1600 	{
1601 		u32 capacity;
1602 		char cp[8];
1603 
1604 		dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1605 		if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1606 			capacity = fsa_dev_ptr[cid].size - 1;
1607 		else
1608 			capacity = (u32)-1;
1609 
1610 		cp[0] = (capacity >> 24) & 0xff;
1611 		cp[1] = (capacity >> 16) & 0xff;
1612 		cp[2] = (capacity >> 8) & 0xff;
1613 		cp[3] = (capacity >> 0) & 0xff;
1614 		cp[4] = 0;
1615 		cp[5] = 0;
1616 		cp[6] = 2;
1617 		cp[7] = 0;
1618 		aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1619 		/* Do not cache partition table for arrays */
1620 		scsicmd->device->removable = 1;
1621 
1622 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1623 		scsicmd->scsi_done(scsicmd);
1624 
1625 		return 0;
1626 	}
1627 
1628 	case MODE_SENSE:
1629 	{
1630 		char mode_buf[4];
1631 
1632 		dprintk((KERN_DEBUG "MODE SENSE command.\n"));
1633 		mode_buf[0] = 3;	/* Mode data length */
1634 		mode_buf[1] = 0;	/* Medium type - default */
1635 		mode_buf[2] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1636 		mode_buf[3] = 0;	/* Block descriptor length */
1637 
1638 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1639 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1640 		scsicmd->scsi_done(scsicmd);
1641 
1642 		return 0;
1643 	}
1644 	case MODE_SENSE_10:
1645 	{
1646 		char mode_buf[8];
1647 
1648 		dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
1649 		mode_buf[0] = 0;	/* Mode data length (MSB) */
1650 		mode_buf[1] = 6;	/* Mode data length (LSB) */
1651 		mode_buf[2] = 0;	/* Medium type - default */
1652 		mode_buf[3] = 0;	/* Device-specific param, bit 8: 0/1 = write enabled/protected */
1653 		mode_buf[4] = 0;	/* reserved */
1654 		mode_buf[5] = 0;	/* reserved */
1655 		mode_buf[6] = 0;	/* Block descriptor length (MSB) */
1656 		mode_buf[7] = 0;	/* Block descriptor length (LSB) */
1657 		aac_internal_transfer(scsicmd, mode_buf, 0, sizeof(mode_buf));
1658 
1659 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1660 		scsicmd->scsi_done(scsicmd);
1661 
1662 		return 0;
1663 	}
1664 	case REQUEST_SENSE:
1665 		dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
1666 		memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
1667 		memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
1668 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1669 		scsicmd->scsi_done(scsicmd);
1670 		return 0;
1671 
1672 	case ALLOW_MEDIUM_REMOVAL:
1673 		dprintk((KERN_DEBUG "LOCK command.\n"));
1674 		if (scsicmd->cmnd[4])
1675 			fsa_dev_ptr[cid].locked = 1;
1676 		else
1677 			fsa_dev_ptr[cid].locked = 0;
1678 
1679 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1680 		scsicmd->scsi_done(scsicmd);
1681 		return 0;
1682 	/*
1683 	 *	These commands are all No-Ops
1684 	 */
1685 	case TEST_UNIT_READY:
1686 	case RESERVE:
1687 	case RELEASE:
1688 	case REZERO_UNIT:
1689 	case REASSIGN_BLOCKS:
1690 	case SEEK_10:
1691 	case START_STOP:
1692 		scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1693 		scsicmd->scsi_done(scsicmd);
1694 		return 0;
1695 	}
1696 
1697 	switch (scsicmd->cmnd[0])
1698 	{
1699 		case READ_6:
1700 		case READ_10:
1701 		case READ_12:
1702 		case READ_16:
1703 			/*
1704 			 *	Hack to keep track of ordinal number of the device that
1705 			 *	corresponds to a container. Needed to convert
1706 			 *	containers to /dev/sd device names
1707 			 */
1708 
1709 			spin_unlock_irq(host->host_lock);
1710 			if (scsicmd->request->rq_disk)
1711 				strlcpy(fsa_dev_ptr[cid].devname,
1712 				scsicmd->request->rq_disk->disk_name,
1713 			  	min(sizeof(fsa_dev_ptr[cid].devname),
1714 				sizeof(scsicmd->request->rq_disk->disk_name) + 1));
1715 			ret = aac_read(scsicmd, cid);
1716 			spin_lock_irq(host->host_lock);
1717 			return ret;
1718 
1719 		case WRITE_6:
1720 		case WRITE_10:
1721 		case WRITE_12:
1722 		case WRITE_16:
1723 			spin_unlock_irq(host->host_lock);
1724 			ret = aac_write(scsicmd, cid);
1725 			spin_lock_irq(host->host_lock);
1726 			return ret;
1727 
1728 		case SYNCHRONIZE_CACHE:
1729 			/* Issue FIB to tell Firmware to flush it's cache */
1730 			return aac_synchronize(scsicmd, cid);
1731 
1732 		default:
1733 			/*
1734 			 *	Unhandled commands
1735 			 */
1736 			dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
1737 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1738 			set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1739 				ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
1740 				ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
1741 			memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1742 			  (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1743 			    ? sizeof(scsicmd->sense_buffer)
1744 			    : sizeof(dev->fsa_dev[cid].sense_data));
1745 			scsicmd->scsi_done(scsicmd);
1746 			return 0;
1747 	}
1748 }
1749 
1750 static int query_disk(struct aac_dev *dev, void __user *arg)
1751 {
1752 	struct aac_query_disk qd;
1753 	struct fsa_dev_info *fsa_dev_ptr;
1754 
1755 	fsa_dev_ptr = dev->fsa_dev;
1756 	if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
1757 		return -EFAULT;
1758 	if (qd.cnum == -1)
1759 		qd.cnum = ID_LUN_TO_CONTAINER(qd.id, qd.lun);
1760 	else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
1761 	{
1762 		if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
1763 			return -EINVAL;
1764 		qd.instance = dev->scsi_host_ptr->host_no;
1765 		qd.bus = 0;
1766 		qd.id = CONTAINER_TO_ID(qd.cnum);
1767 		qd.lun = CONTAINER_TO_LUN(qd.cnum);
1768 	}
1769 	else return -EINVAL;
1770 
1771 	qd.valid = fsa_dev_ptr[qd.cnum].valid;
1772 	qd.locked = fsa_dev_ptr[qd.cnum].locked;
1773 	qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
1774 
1775 	if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
1776 		qd.unmapped = 1;
1777 	else
1778 		qd.unmapped = 0;
1779 
1780 	strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
1781 	  min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
1782 
1783 	if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
1784 		return -EFAULT;
1785 	return 0;
1786 }
1787 
1788 static int force_delete_disk(struct aac_dev *dev, void __user *arg)
1789 {
1790 	struct aac_delete_disk dd;
1791 	struct fsa_dev_info *fsa_dev_ptr;
1792 
1793 	fsa_dev_ptr = dev->fsa_dev;
1794 
1795 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1796 		return -EFAULT;
1797 
1798 	if (dd.cnum >= dev->maximum_num_containers)
1799 		return -EINVAL;
1800 	/*
1801 	 *	Mark this container as being deleted.
1802 	 */
1803 	fsa_dev_ptr[dd.cnum].deleted = 1;
1804 	/*
1805 	 *	Mark the container as no longer valid
1806 	 */
1807 	fsa_dev_ptr[dd.cnum].valid = 0;
1808 	return 0;
1809 }
1810 
1811 static int delete_disk(struct aac_dev *dev, void __user *arg)
1812 {
1813 	struct aac_delete_disk dd;
1814 	struct fsa_dev_info *fsa_dev_ptr;
1815 
1816 	fsa_dev_ptr = dev->fsa_dev;
1817 
1818 	if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
1819 		return -EFAULT;
1820 
1821 	if (dd.cnum >= dev->maximum_num_containers)
1822 		return -EINVAL;
1823 	/*
1824 	 *	If the container is locked, it can not be deleted by the API.
1825 	 */
1826 	if (fsa_dev_ptr[dd.cnum].locked)
1827 		return -EBUSY;
1828 	else {
1829 		/*
1830 		 *	Mark the container as no longer being valid.
1831 		 */
1832 		fsa_dev_ptr[dd.cnum].valid = 0;
1833 		fsa_dev_ptr[dd.cnum].devname[0] = '\0';
1834 		return 0;
1835 	}
1836 }
1837 
1838 int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
1839 {
1840 	switch (cmd) {
1841 	case FSACTL_QUERY_DISK:
1842 		return query_disk(dev, arg);
1843 	case FSACTL_DELETE_DISK:
1844 		return delete_disk(dev, arg);
1845 	case FSACTL_FORCE_DELETE_DISK:
1846 		return force_delete_disk(dev, arg);
1847 	case FSACTL_GET_CONTAINERS:
1848 		return aac_get_containers(dev);
1849 	default:
1850 		return -ENOTTY;
1851 	}
1852 }
1853 
1854 /**
1855  *
1856  * aac_srb_callback
1857  * @context: the context set in the fib - here it is scsi cmd
1858  * @fibptr: pointer to the fib
1859  *
1860  * Handles the completion of a scsi command to a non dasd device
1861  *
1862  */
1863 
1864 static void aac_srb_callback(void *context, struct fib * fibptr)
1865 {
1866 	struct aac_dev *dev;
1867 	struct aac_srb_reply *srbreply;
1868 	struct scsi_cmnd *scsicmd;
1869 
1870 	scsicmd = (struct scsi_cmnd *) context;
1871 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
1872 
1873 	if (fibptr == NULL)
1874 		BUG();
1875 
1876 	srbreply = (struct aac_srb_reply *) fib_data(fibptr);
1877 
1878 	scsicmd->sense_buffer[0] = '\0';  /* Initialize sense valid flag to false */
1879 	/*
1880 	 *	Calculate resid for sg
1881 	 */
1882 
1883 	scsicmd->resid = scsicmd->request_bufflen -
1884 		le32_to_cpu(srbreply->data_xfer_length);
1885 
1886 	if(scsicmd->use_sg)
1887 		pci_unmap_sg(dev->pdev,
1888 			(struct scatterlist *)scsicmd->buffer,
1889 			scsicmd->use_sg,
1890 			scsicmd->sc_data_direction);
1891 	else if(scsicmd->request_bufflen)
1892 		pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
1893 			scsicmd->sc_data_direction);
1894 
1895 	/*
1896 	 * First check the fib status
1897 	 */
1898 
1899 	if (le32_to_cpu(srbreply->status) != ST_OK){
1900 		int len;
1901 		printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
1902 		len = (le32_to_cpu(srbreply->sense_data_size) >
1903 				sizeof(scsicmd->sense_buffer)) ?
1904 				sizeof(scsicmd->sense_buffer) :
1905 				le32_to_cpu(srbreply->sense_data_size);
1906 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1907 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1908 	}
1909 
1910 	/*
1911 	 * Next check the srb status
1912 	 */
1913 	switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
1914 	case SRB_STATUS_ERROR_RECOVERY:
1915 	case SRB_STATUS_PENDING:
1916 	case SRB_STATUS_SUCCESS:
1917 		if(scsicmd->cmnd[0] == INQUIRY ){
1918 			u8 b;
1919 			u8 b1;
1920 			/* We can't expose disk devices because we can't tell whether they
1921 			 * are the raw container drives or stand alone drives.  If they have
1922 			 * the removable bit set then we should expose them though.
1923 			 */
1924 			b = (*(u8*)scsicmd->buffer)&0x1f;
1925 			b1 = ((u8*)scsicmd->buffer)[1];
1926 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1927 					|| (b==TYPE_DISK && (b1&0x80)) ){
1928 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1929 			/*
1930 			 * We will allow disk devices if in RAID/SCSI mode and
1931 			 * the channel is 2
1932 			 */
1933 			} else if ((dev->raid_scsi_mode) &&
1934 					(scsicmd->device->channel == 2)) {
1935 				scsicmd->result = DID_OK << 16 |
1936 						COMMAND_COMPLETE << 8;
1937 			} else {
1938 				scsicmd->result = DID_NO_CONNECT << 16 |
1939 						COMMAND_COMPLETE << 8;
1940 			}
1941 		} else {
1942 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1943 		}
1944 		break;
1945 	case SRB_STATUS_DATA_OVERRUN:
1946 		switch(scsicmd->cmnd[0]){
1947 		case  READ_6:
1948 		case  WRITE_6:
1949 		case  READ_10:
1950 		case  WRITE_10:
1951 		case  READ_12:
1952 		case  WRITE_12:
1953 		case  READ_16:
1954 		case  WRITE_16:
1955 			if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
1956 				printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
1957 			} else {
1958 				printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
1959 			}
1960 			scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
1961 			break;
1962 		case INQUIRY: {
1963 			u8 b;
1964 			u8 b1;
1965 			/* We can't expose disk devices because we can't tell whether they
1966 			* are the raw container drives or stand alone drives
1967 			*/
1968 			b = (*(u8*)scsicmd->buffer)&0x0f;
1969 			b1 = ((u8*)scsicmd->buffer)[1];
1970 			if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
1971 					|| (b==TYPE_DISK && (b1&0x80)) ){
1972 				scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1973 			/*
1974 			 * We will allow disk devices if in RAID/SCSI mode and
1975 			 * the channel is 2
1976 			 */
1977 			} else if ((dev->raid_scsi_mode) &&
1978 					(scsicmd->device->channel == 2)) {
1979 				scsicmd->result = DID_OK << 16 |
1980 						COMMAND_COMPLETE << 8;
1981 			} else {
1982 				scsicmd->result = DID_NO_CONNECT << 16 |
1983 						COMMAND_COMPLETE << 8;
1984 			}
1985 			break;
1986 		}
1987 		default:
1988 			scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
1989 			break;
1990 		}
1991 		break;
1992 	case SRB_STATUS_ABORTED:
1993 		scsicmd->result = DID_ABORT << 16 | ABORT << 8;
1994 		break;
1995 	case SRB_STATUS_ABORT_FAILED:
1996 		// Not sure about this one - but assuming the hba was trying to abort for some reason
1997 		scsicmd->result = DID_ERROR << 16 | ABORT << 8;
1998 		break;
1999 	case SRB_STATUS_PARITY_ERROR:
2000 		scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
2001 		break;
2002 	case SRB_STATUS_NO_DEVICE:
2003 	case SRB_STATUS_INVALID_PATH_ID:
2004 	case SRB_STATUS_INVALID_TARGET_ID:
2005 	case SRB_STATUS_INVALID_LUN:
2006 	case SRB_STATUS_SELECTION_TIMEOUT:
2007 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2008 		break;
2009 
2010 	case SRB_STATUS_COMMAND_TIMEOUT:
2011 	case SRB_STATUS_TIMEOUT:
2012 		scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
2013 		break;
2014 
2015 	case SRB_STATUS_BUSY:
2016 		scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
2017 		break;
2018 
2019 	case SRB_STATUS_BUS_RESET:
2020 		scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
2021 		break;
2022 
2023 	case SRB_STATUS_MESSAGE_REJECTED:
2024 		scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
2025 		break;
2026 	case SRB_STATUS_REQUEST_FLUSHED:
2027 	case SRB_STATUS_ERROR:
2028 	case SRB_STATUS_INVALID_REQUEST:
2029 	case SRB_STATUS_REQUEST_SENSE_FAILED:
2030 	case SRB_STATUS_NO_HBA:
2031 	case SRB_STATUS_UNEXPECTED_BUS_FREE:
2032 	case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
2033 	case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
2034 	case SRB_STATUS_DELAYED_RETRY:
2035 	case SRB_STATUS_BAD_FUNCTION:
2036 	case SRB_STATUS_NOT_STARTED:
2037 	case SRB_STATUS_NOT_IN_USE:
2038 	case SRB_STATUS_FORCE_ABORT:
2039 	case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
2040 	default:
2041 #ifdef AAC_DETAILED_STATUS_INFO
2042 		printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
2043 			le32_to_cpu(srbreply->srb_status) & 0x3F,
2044 			aac_get_status_string(
2045 				le32_to_cpu(srbreply->srb_status) & 0x3F),
2046 			scsicmd->cmnd[0],
2047 			le32_to_cpu(srbreply->scsi_status));
2048 #endif
2049 		scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
2050 		break;
2051 	}
2052 	if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){  // Check Condition
2053 		int len;
2054 		scsicmd->result |= SAM_STAT_CHECK_CONDITION;
2055 		len = (le32_to_cpu(srbreply->sense_data_size) >
2056 				sizeof(scsicmd->sense_buffer)) ?
2057 				sizeof(scsicmd->sense_buffer) :
2058 				le32_to_cpu(srbreply->sense_data_size);
2059 #ifdef AAC_DETAILED_STATUS_INFO
2060 		printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
2061 					le32_to_cpu(srbreply->status), len);
2062 #endif
2063 		memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
2064 
2065 	}
2066 	/*
2067 	 * OR in the scsi status (already shifted up a bit)
2068 	 */
2069 	scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
2070 
2071 	fib_complete(fibptr);
2072 	fib_free(fibptr);
2073 	aac_io_done(scsicmd);
2074 }
2075 
2076 /**
2077  *
2078  * aac_send_scb_fib
2079  * @scsicmd: the scsi command block
2080  *
2081  * This routine will form a FIB and fill in the aac_srb from the
2082  * scsicmd passed in.
2083  */
2084 
2085 static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
2086 {
2087 	struct fib* cmd_fibcontext;
2088 	struct aac_dev* dev;
2089 	int status;
2090 	struct aac_srb *srbcmd;
2091 	u16 fibsize;
2092 	u32 flag;
2093 	u32 timeout;
2094 
2095 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2096 	if (scsicmd->device->id >= dev->maximum_num_physicals ||
2097 			scsicmd->device->lun > 7) {
2098 		scsicmd->result = DID_NO_CONNECT << 16;
2099 		scsicmd->scsi_done(scsicmd);
2100 		return 0;
2101 	}
2102 
2103 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2104 	switch(scsicmd->sc_data_direction){
2105 	case DMA_TO_DEVICE:
2106 		flag = SRB_DataOut;
2107 		break;
2108 	case DMA_BIDIRECTIONAL:
2109 		flag = SRB_DataIn | SRB_DataOut;
2110 		break;
2111 	case DMA_FROM_DEVICE:
2112 		flag = SRB_DataIn;
2113 		break;
2114 	case DMA_NONE:
2115 	default:	/* shuts up some versions of gcc */
2116 		flag = SRB_NoDataXfer;
2117 		break;
2118 	}
2119 
2120 
2121 	/*
2122 	 *	Allocate and initialize a Fib then setup a BlockWrite command
2123 	 */
2124 	if (!(cmd_fibcontext = fib_alloc(dev))) {
2125 		return -1;
2126 	}
2127 	fib_init(cmd_fibcontext);
2128 
2129 	srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
2130 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2131 	srbcmd->channel  = cpu_to_le32(aac_logical_to_phys(scsicmd->device->channel));
2132 	srbcmd->id   = cpu_to_le32(scsicmd->device->id);
2133 	srbcmd->lun      = cpu_to_le32(scsicmd->device->lun);
2134 	srbcmd->flags    = cpu_to_le32(flag);
2135 	timeout = scsicmd->timeout_per_command/HZ;
2136 	if(timeout == 0){
2137 		timeout = 1;
2138 	}
2139 	srbcmd->timeout  = cpu_to_le32(timeout);  // timeout in seconds
2140 	srbcmd->retry_limit = 0; /* Obsolete parameter */
2141 	srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
2142 
2143 	if( dev->dac_support == 1 ) {
2144 		aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
2145 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
2146 
2147 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2148 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
2149 		/*
2150 		 *	Build Scatter/Gather list
2151 		 */
2152 		fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
2153 			((le32_to_cpu(srbcmd->sg.count) & 0xff) *
2154 			 sizeof (struct sgentry64));
2155 		BUG_ON (fibsize > (dev->max_fib_size -
2156 					sizeof(struct aac_fibhdr)));
2157 
2158 		/*
2159 		 *	Now send the Fib to the adapter
2160 		 */
2161 		status = fib_send(ScsiPortCommand64, cmd_fibcontext,
2162 				fibsize, FsaNormal, 0, 1,
2163 				  (fib_callback) aac_srb_callback,
2164 				  (void *) scsicmd);
2165 	} else {
2166 		aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
2167 		srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
2168 
2169 		memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2170 		memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
2171 		/*
2172 		 *	Build Scatter/Gather list
2173 		 */
2174 		fibsize = sizeof (struct aac_srb) +
2175 			(((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
2176 			 sizeof (struct sgentry));
2177 		BUG_ON (fibsize > (dev->max_fib_size -
2178 					sizeof(struct aac_fibhdr)));
2179 
2180 		/*
2181 		 *	Now send the Fib to the adapter
2182 		 */
2183 		status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
2184 				  (fib_callback) aac_srb_callback, (void *) scsicmd);
2185 	}
2186 	/*
2187 	 *	Check that the command queued to the controller
2188 	 */
2189 	if (status == -EINPROGRESS){
2190 		return 0;
2191 	}
2192 
2193 	printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status);
2194 	fib_complete(cmd_fibcontext);
2195 	fib_free(cmd_fibcontext);
2196 
2197 	return -1;
2198 }
2199 
2200 static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
2201 {
2202 	struct aac_dev *dev;
2203 	unsigned long byte_count = 0;
2204 
2205 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2206 	// Get rid of old data
2207 	psg->count = 0;
2208 	psg->sg[0].addr = 0;
2209 	psg->sg[0].count = 0;
2210 	if (scsicmd->use_sg) {
2211 		struct scatterlist *sg;
2212 		int i;
2213 		int sg_count;
2214 		sg = (struct scatterlist *) scsicmd->request_buffer;
2215 
2216 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2217 			scsicmd->sc_data_direction);
2218 		psg->count = cpu_to_le32(sg_count);
2219 
2220 		byte_count = 0;
2221 
2222 		for (i = 0; i < sg_count; i++) {
2223 			psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
2224 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2225 			byte_count += sg_dma_len(sg);
2226 			sg++;
2227 		}
2228 		/* hba wants the size to be exact */
2229 		if(byte_count > scsicmd->request_bufflen){
2230 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2231 				(byte_count - scsicmd->request_bufflen);
2232 			psg->sg[i-1].count = cpu_to_le32(temp);
2233 			byte_count = scsicmd->request_bufflen;
2234 		}
2235 		/* Check for command underflow */
2236 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2237 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2238 					byte_count, scsicmd->underflow);
2239 		}
2240 	}
2241 	else if(scsicmd->request_bufflen) {
2242 		dma_addr_t addr;
2243 		addr = pci_map_single(dev->pdev,
2244 				scsicmd->request_buffer,
2245 				scsicmd->request_bufflen,
2246 				scsicmd->sc_data_direction);
2247 		psg->count = cpu_to_le32(1);
2248 		psg->sg[0].addr = cpu_to_le32(addr);
2249 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2250 		scsicmd->SCp.dma_handle = addr;
2251 		byte_count = scsicmd->request_bufflen;
2252 	}
2253 	return byte_count;
2254 }
2255 
2256 
2257 static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
2258 {
2259 	struct aac_dev *dev;
2260 	unsigned long byte_count = 0;
2261 	u64 addr;
2262 
2263 	dev = (struct aac_dev *)scsicmd->device->host->hostdata;
2264 	// Get rid of old data
2265 	psg->count = 0;
2266 	psg->sg[0].addr[0] = 0;
2267 	psg->sg[0].addr[1] = 0;
2268 	psg->sg[0].count = 0;
2269 	if (scsicmd->use_sg) {
2270 		struct scatterlist *sg;
2271 		int i;
2272 		int sg_count;
2273 		sg = (struct scatterlist *) scsicmd->request_buffer;
2274 
2275 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2276 			scsicmd->sc_data_direction);
2277 		psg->count = cpu_to_le32(sg_count);
2278 
2279 		byte_count = 0;
2280 
2281 		for (i = 0; i < sg_count; i++) {
2282 			addr = sg_dma_address(sg);
2283 			psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
2284 			psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
2285 			psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
2286 			byte_count += sg_dma_len(sg);
2287 			sg++;
2288 		}
2289 		/* hba wants the size to be exact */
2290 		if(byte_count > scsicmd->request_bufflen){
2291 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2292 				(byte_count - scsicmd->request_bufflen);
2293 			psg->sg[i-1].count = cpu_to_le32(temp);
2294 			byte_count = scsicmd->request_bufflen;
2295 		}
2296 		/* Check for command underflow */
2297 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2298 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2299 					byte_count, scsicmd->underflow);
2300 		}
2301 	}
2302 	else if(scsicmd->request_bufflen) {
2303 		u64 addr;
2304 		addr = pci_map_single(dev->pdev,
2305 				scsicmd->request_buffer,
2306 				scsicmd->request_bufflen,
2307 				scsicmd->sc_data_direction);
2308 		psg->count = cpu_to_le32(1);
2309 		psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
2310 		psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
2311 		psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
2312 		scsicmd->SCp.dma_handle = addr;
2313 		byte_count = scsicmd->request_bufflen;
2314 	}
2315 	return byte_count;
2316 }
2317 
2318 static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
2319 {
2320 	struct Scsi_Host *host = scsicmd->device->host;
2321 	struct aac_dev *dev = (struct aac_dev *)host->hostdata;
2322 	unsigned long byte_count = 0;
2323 
2324 	// Get rid of old data
2325 	psg->count = 0;
2326 	psg->sg[0].next = 0;
2327 	psg->sg[0].prev = 0;
2328 	psg->sg[0].addr[0] = 0;
2329 	psg->sg[0].addr[1] = 0;
2330 	psg->sg[0].count = 0;
2331 	psg->sg[0].flags = 0;
2332 	if (scsicmd->use_sg) {
2333 		struct scatterlist *sg;
2334 		int i;
2335 		int sg_count;
2336 		sg = (struct scatterlist *) scsicmd->request_buffer;
2337 
2338 		sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
2339 			scsicmd->sc_data_direction);
2340 
2341 		for (i = 0; i < sg_count; i++) {
2342 			int count = sg_dma_len(sg);
2343 			u64 addr = sg_dma_address(sg);
2344 			psg->sg[i].next = 0;
2345 			psg->sg[i].prev = 0;
2346 			psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
2347 			psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2348 			psg->sg[i].count = cpu_to_le32(count);
2349 			psg->sg[i].flags = 0;
2350 			byte_count += count;
2351 			sg++;
2352 		}
2353 		psg->count = cpu_to_le32(sg_count);
2354 		/* hba wants the size to be exact */
2355 		if(byte_count > scsicmd->request_bufflen){
2356 			u32 temp = le32_to_cpu(psg->sg[i-1].count) -
2357 				(byte_count - scsicmd->request_bufflen);
2358 			psg->sg[i-1].count = cpu_to_le32(temp);
2359 			byte_count = scsicmd->request_bufflen;
2360 		}
2361 		/* Check for command underflow */
2362 		if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
2363 			printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
2364 					byte_count, scsicmd->underflow);
2365 		}
2366 	}
2367 	else if(scsicmd->request_bufflen) {
2368 		int count;
2369 		u64 addr;
2370 		scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
2371 				scsicmd->request_buffer,
2372 				scsicmd->request_bufflen,
2373 				scsicmd->sc_data_direction);
2374 		addr = scsicmd->SCp.dma_handle;
2375 		count = scsicmd->request_bufflen;
2376 		psg->count = cpu_to_le32(1);
2377 		psg->sg[0].next = 0;
2378 		psg->sg[0].prev = 0;
2379 		psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
2380 		psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2381 		psg->sg[0].count = cpu_to_le32(count);
2382 		psg->sg[0].flags = 0;
2383 		byte_count = scsicmd->request_bufflen;
2384 	}
2385 	return byte_count;
2386 }
2387 
2388 #ifdef AAC_DETAILED_STATUS_INFO
2389 
2390 struct aac_srb_status_info {
2391 	u32	status;
2392 	char	*str;
2393 };
2394 
2395 
2396 static struct aac_srb_status_info srb_status_info[] = {
2397 	{ SRB_STATUS_PENDING,		"Pending Status"},
2398 	{ SRB_STATUS_SUCCESS,		"Success"},
2399 	{ SRB_STATUS_ABORTED,		"Aborted Command"},
2400 	{ SRB_STATUS_ABORT_FAILED,	"Abort Failed"},
2401 	{ SRB_STATUS_ERROR,		"Error Event"},
2402 	{ SRB_STATUS_BUSY,		"Device Busy"},
2403 	{ SRB_STATUS_INVALID_REQUEST,	"Invalid Request"},
2404 	{ SRB_STATUS_INVALID_PATH_ID,	"Invalid Path ID"},
2405 	{ SRB_STATUS_NO_DEVICE,		"No Device"},
2406 	{ SRB_STATUS_TIMEOUT,		"Timeout"},
2407 	{ SRB_STATUS_SELECTION_TIMEOUT,	"Selection Timeout"},
2408 	{ SRB_STATUS_COMMAND_TIMEOUT,	"Command Timeout"},
2409 	{ SRB_STATUS_MESSAGE_REJECTED,	"Message Rejected"},
2410 	{ SRB_STATUS_BUS_RESET,		"Bus Reset"},
2411 	{ SRB_STATUS_PARITY_ERROR,	"Parity Error"},
2412 	{ SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
2413 	{ SRB_STATUS_NO_HBA,		"No HBA"},
2414 	{ SRB_STATUS_DATA_OVERRUN,	"Data Overrun/Data Underrun"},
2415 	{ SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
2416 	{ SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
2417 	{ SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
2418 	{ SRB_STATUS_REQUEST_FLUSHED,	"Request Flushed"},
2419 	{ SRB_STATUS_DELAYED_RETRY,	"Delayed Retry"},
2420 	{ SRB_STATUS_INVALID_LUN,	"Invalid LUN"},
2421 	{ SRB_STATUS_INVALID_TARGET_ID,	"Invalid TARGET ID"},
2422 	{ SRB_STATUS_BAD_FUNCTION,	"Bad Function"},
2423 	{ SRB_STATUS_ERROR_RECOVERY,	"Error Recovery"},
2424 	{ SRB_STATUS_NOT_STARTED,	"Not Started"},
2425 	{ SRB_STATUS_NOT_IN_USE,	"Not In Use"},
2426     	{ SRB_STATUS_FORCE_ABORT,	"Force Abort"},
2427 	{ SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
2428 	{ 0xff,				"Unknown Error"}
2429 };
2430 
2431 char *aac_get_status_string(u32 status)
2432 {
2433 	int i;
2434 
2435 	for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){
2436 		if(srb_status_info[i].status == status){
2437 			return srb_status_info[i].str;
2438 		}
2439 	}
2440 
2441 	return "Bad Status Code";
2442 }
2443 
2444 #endif
2445